1 | /* |
2 | Name: iprime.c |
3 | Purpose: Pseudoprimality testing routines |
4 | Author: M. J. Fromberger |
5 | |
6 | Copyright (C) 2002-2008 Michael J. Fromberger, All Rights Reserved. |
7 | |
8 | Permission is hereby granted, free of charge, to any person obtaining a copy |
9 | of this software and associated documentation files (the "Software"), to deal |
10 | in the Software without restriction, including without limitation the rights |
11 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
12 | copies of the Software, and to permit persons to whom the Software is |
13 | furnished to do so, subject to the following conditions: |
14 | |
15 | The above copyright notice and this permission notice shall be included in |
16 | all copies or substantial portions of the Software. |
17 | |
18 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
19 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
20 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
21 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
22 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
23 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
24 | SOFTWARE. |
25 | */ |
26 | |
27 | #include "iprime.h" |
28 | #include <stdlib.h> |
29 | |
30 | static int s_ptab[] = { |
31 | 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, |
32 | 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, |
33 | 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, |
34 | 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, |
35 | 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, |
36 | 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, |
37 | 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, |
38 | 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, |
39 | 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, |
40 | 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, |
41 | 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, |
42 | 983, 991, 997, 0, /* sentinel */ |
43 | }; |
44 | |
45 | mp_result mp_int_is_prime(mp_int z) { |
46 | /* Reject values less than 2 immediately. */ |
47 | if (mp_int_compare_value(z, v: 2) < 0) { |
48 | return MP_FALSE; |
49 | } |
50 | /* First check for divisibility by small primes; this eliminates a large |
51 | number of composite candidates quickly |
52 | */ |
53 | for (int i = 0; s_ptab[i] != 0; i++) { |
54 | mp_small rem; |
55 | mp_result res; |
56 | if (mp_int_compare_value(z, v: s_ptab[i]) == 0) return MP_TRUE; |
57 | if ((res = mp_int_div_value(a: z, value: s_ptab[i], NULL, r: &rem)) != MP_OK) return res; |
58 | if (rem == 0) return MP_FALSE; |
59 | } |
60 | |
61 | /* Now try Fermat's test for several prime witnesses (since we now know from |
62 | the above that z is not a multiple of any of them) |
63 | */ |
64 | mp_result res; |
65 | mpz_t tmp; |
66 | |
67 | if ((res = mp_int_init(z: &tmp)) != MP_OK) return res; |
68 | |
69 | for (int i = 0; i < 10 && s_ptab[i] != 0; i++) { |
70 | if ((res = mp_int_exptmod_bvalue(value: s_ptab[i], b: z, m: z, c: &tmp)) != MP_OK) { |
71 | return res; |
72 | } |
73 | if (mp_int_compare_value(z: &tmp, v: s_ptab[i]) != 0) { |
74 | mp_int_clear(z: &tmp); |
75 | return MP_FALSE; |
76 | } |
77 | } |
78 | mp_int_clear(z: &tmp); |
79 | return MP_TRUE; |
80 | } |
81 | |
82 | /* Find the first apparent prime in ascending order from z */ |
83 | mp_result mp_int_find_prime(mp_int z) { |
84 | mp_result res; |
85 | |
86 | if (mp_int_is_even(z) && ((res = mp_int_add_value(a: z, value: 1, c: z)) != MP_OK)) |
87 | return res; |
88 | |
89 | while ((res = mp_int_is_prime(z)) == MP_FALSE) { |
90 | if ((res = mp_int_add_value(a: z, value: 2, c: z)) != MP_OK) break; |
91 | } |
92 | |
93 | return res; |
94 | } |
95 | |
96 | /* Here there be dragons */ |
97 | |