1 | /* |
2 | * Copyright 2008-2009 Katholieke Universiteit Leuven |
3 | * Copyright 2010 INRIA Saclay |
4 | * Copyright 2012 Ecole Normale Superieure |
5 | * |
6 | * Use of this software is governed by the MIT license |
7 | * |
8 | * Written by Sven Verdoolaege, K.U.Leuven, Departement |
9 | * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium |
10 | * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, |
11 | * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France |
12 | * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France |
13 | */ |
14 | |
15 | #include <isl_ctx_private.h> |
16 | #include <isl_map_private.h> |
17 | #include <isl_seq.h> |
18 | #include <isl/set.h> |
19 | #include <isl/lp.h> |
20 | #include <isl/map.h> |
21 | #include "isl_equalities.h" |
22 | #include "isl_sample.h" |
23 | #include "isl_tab.h" |
24 | #include <isl_mat_private.h> |
25 | #include <isl_vec_private.h> |
26 | |
27 | #include <bset_to_bmap.c> |
28 | #include <bset_from_bmap.c> |
29 | #include <set_to_map.c> |
30 | #include <set_from_map.c> |
31 | |
32 | __isl_give isl_basic_map *isl_basic_map_implicit_equalities( |
33 | __isl_take isl_basic_map *bmap) |
34 | { |
35 | struct isl_tab *tab; |
36 | |
37 | if (!bmap) |
38 | return bmap; |
39 | |
40 | bmap = isl_basic_map_gauss(bmap, NULL); |
41 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) |
42 | return bmap; |
43 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT)) |
44 | return bmap; |
45 | if (bmap->n_ineq <= 1) |
46 | return bmap; |
47 | |
48 | tab = isl_tab_from_basic_map(bmap, track: 0); |
49 | if (isl_tab_detect_implicit_equalities(tab) < 0) |
50 | goto error; |
51 | bmap = isl_basic_map_update_from_tab(bmap, tab); |
52 | isl_tab_free(tab); |
53 | bmap = isl_basic_map_gauss(bmap, NULL); |
54 | ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT); |
55 | return bmap; |
56 | error: |
57 | isl_tab_free(tab); |
58 | isl_basic_map_free(bmap); |
59 | return NULL; |
60 | } |
61 | |
62 | __isl_give isl_basic_set *isl_basic_set_implicit_equalities( |
63 | __isl_take isl_basic_set *bset) |
64 | { |
65 | return bset_from_bmap( |
66 | bmap: isl_basic_map_implicit_equalities(bmap: bset_to_bmap(bset))); |
67 | } |
68 | |
69 | /* Make eq[row][col] of both bmaps equal so we can add the row |
70 | * add the column to the common matrix. |
71 | * Note that because of the echelon form, the columns of row row |
72 | * after column col are zero. |
73 | */ |
74 | static void set_common_multiple( |
75 | struct isl_basic_set *bset1, struct isl_basic_set *bset2, |
76 | unsigned row, unsigned col) |
77 | { |
78 | isl_int m, c; |
79 | |
80 | if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col])) |
81 | return; |
82 | |
83 | isl_int_init(c); |
84 | isl_int_init(m); |
85 | isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]); |
86 | isl_int_divexact(c, m, bset1->eq[row][col]); |
87 | isl_seq_scale(dst: bset1->eq[row], src: bset1->eq[row], f: c, len: col+1); |
88 | isl_int_divexact(c, m, bset2->eq[row][col]); |
89 | isl_seq_scale(dst: bset2->eq[row], src: bset2->eq[row], f: c, len: col+1); |
90 | isl_int_clear(c); |
91 | isl_int_clear(m); |
92 | } |
93 | |
94 | /* Delete a given equality, moving all the following equalities one up. |
95 | */ |
96 | static void delete_row(__isl_keep isl_basic_set *bset, unsigned row) |
97 | { |
98 | isl_int *t; |
99 | int r; |
100 | |
101 | t = bset->eq[row]; |
102 | bset->n_eq--; |
103 | for (r = row; r < bset->n_eq; ++r) |
104 | bset->eq[r] = bset->eq[r+1]; |
105 | bset->eq[bset->n_eq] = t; |
106 | } |
107 | |
108 | /* Make first row entries in column col of bset1 identical to |
109 | * those of bset2, using the fact that entry bset1->eq[row][col]=a |
110 | * is non-zero. Initially, these elements of bset1 are all zero. |
111 | * For each row i < row, we set |
112 | * A[i] = a * A[i] + B[i][col] * A[row] |
113 | * B[i] = a * B[i] |
114 | * so that |
115 | * A[i][col] = B[i][col] = a * old(B[i][col]) |
116 | */ |
117 | static isl_stat construct_column( |
118 | __isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2, |
119 | unsigned row, unsigned col) |
120 | { |
121 | int r; |
122 | isl_int a; |
123 | isl_int b; |
124 | isl_size total; |
125 | |
126 | total = isl_basic_set_dim(bset: bset1, type: isl_dim_set); |
127 | if (total < 0) |
128 | return isl_stat_error; |
129 | |
130 | isl_int_init(a); |
131 | isl_int_init(b); |
132 | for (r = 0; r < row; ++r) { |
133 | if (isl_int_is_zero(bset2->eq[r][col])) |
134 | continue; |
135 | isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]); |
136 | isl_int_divexact(a, bset1->eq[row][col], b); |
137 | isl_int_divexact(b, bset2->eq[r][col], b); |
138 | isl_seq_combine(dst: bset1->eq[r], m1: a, src1: bset1->eq[r], |
139 | m2: b, src2: bset1->eq[row], len: 1 + total); |
140 | isl_seq_scale(dst: bset2->eq[r], src: bset2->eq[r], f: a, len: 1 + total); |
141 | } |
142 | isl_int_clear(a); |
143 | isl_int_clear(b); |
144 | delete_row(bset: bset1, row); |
145 | |
146 | return isl_stat_ok; |
147 | } |
148 | |
149 | /* Make first row entries in column col of bset1 identical to |
150 | * those of bset2, using only these entries of the two matrices. |
151 | * Let t be the last row with different entries. |
152 | * For each row i < t, we set |
153 | * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t] |
154 | * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t] |
155 | * so that |
156 | * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col]) |
157 | */ |
158 | static isl_bool transform_column( |
159 | __isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2, |
160 | unsigned row, unsigned col) |
161 | { |
162 | int i, t; |
163 | isl_int a, b, g; |
164 | isl_size total; |
165 | |
166 | for (t = row-1; t >= 0; --t) |
167 | if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col])) |
168 | break; |
169 | if (t < 0) |
170 | return isl_bool_false; |
171 | |
172 | total = isl_basic_set_dim(bset: bset1, type: isl_dim_set); |
173 | if (total < 0) |
174 | return isl_bool_error; |
175 | isl_int_init(a); |
176 | isl_int_init(b); |
177 | isl_int_init(g); |
178 | isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]); |
179 | for (i = 0; i < t; ++i) { |
180 | isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]); |
181 | isl_int_gcd(g, a, b); |
182 | isl_int_divexact(a, a, g); |
183 | isl_int_divexact(g, b, g); |
184 | isl_seq_combine(dst: bset1->eq[i], m1: g, src1: bset1->eq[i], m2: a, src2: bset1->eq[t], |
185 | len: 1 + total); |
186 | isl_seq_combine(dst: bset2->eq[i], m1: g, src1: bset2->eq[i], m2: a, src2: bset2->eq[t], |
187 | len: 1 + total); |
188 | } |
189 | isl_int_clear(a); |
190 | isl_int_clear(b); |
191 | isl_int_clear(g); |
192 | delete_row(bset: bset1, row: t); |
193 | delete_row(bset: bset2, row: t); |
194 | return isl_bool_true; |
195 | } |
196 | |
197 | /* The implementation is based on Section 5.2 of Michael Karr, |
198 | * "Affine Relationships Among Variables of a Program", |
199 | * except that the echelon form we use starts from the last column |
200 | * and that we are dealing with integer coefficients. |
201 | */ |
202 | static __isl_give isl_basic_set *affine_hull( |
203 | __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2) |
204 | { |
205 | isl_size dim; |
206 | unsigned total; |
207 | int col; |
208 | int row; |
209 | |
210 | dim = isl_basic_set_dim(bset: bset1, type: isl_dim_set); |
211 | if (dim < 0 || !bset2) |
212 | goto error; |
213 | |
214 | total = 1 + dim; |
215 | |
216 | row = 0; |
217 | for (col = total-1; col >= 0; --col) { |
218 | int is_zero1 = row >= bset1->n_eq || |
219 | isl_int_is_zero(bset1->eq[row][col]); |
220 | int is_zero2 = row >= bset2->n_eq || |
221 | isl_int_is_zero(bset2->eq[row][col]); |
222 | if (!is_zero1 && !is_zero2) { |
223 | set_common_multiple(bset1, bset2, row, col); |
224 | ++row; |
225 | } else if (!is_zero1 && is_zero2) { |
226 | if (construct_column(bset1, bset2, row, col) < 0) |
227 | goto error; |
228 | } else if (is_zero1 && !is_zero2) { |
229 | if (construct_column(bset1: bset2, bset2: bset1, row, col) < 0) |
230 | goto error; |
231 | } else { |
232 | isl_bool transform; |
233 | |
234 | transform = transform_column(bset1, bset2, row, col); |
235 | if (transform < 0) |
236 | goto error; |
237 | if (transform) |
238 | --row; |
239 | } |
240 | } |
241 | isl_assert(bset1->ctx, row == bset1->n_eq, goto error); |
242 | isl_basic_set_free(bset: bset2); |
243 | bset1 = isl_basic_set_normalize_constraints(bset: bset1); |
244 | return bset1; |
245 | error: |
246 | isl_basic_set_free(bset: bset1); |
247 | isl_basic_set_free(bset: bset2); |
248 | return NULL; |
249 | } |
250 | |
251 | /* Find an integer point in the set represented by "tab" |
252 | * that lies outside of the equality "eq" e(x) = 0. |
253 | * If "up" is true, look for a point satisfying e(x) - 1 >= 0. |
254 | * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1). |
255 | * The point, if found, is returned. |
256 | * If no point can be found, a zero-length vector is returned. |
257 | * |
258 | * Before solving an ILP problem, we first check if simply |
259 | * adding the normal of the constraint to one of the known |
260 | * integer points in the basic set represented by "tab" |
261 | * yields another point inside the basic set. |
262 | * |
263 | * The caller of this function ensures that the tableau is bounded or |
264 | * that tab->basis and tab->n_unbounded have been set appropriately. |
265 | */ |
266 | static __isl_give isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, |
267 | int up) |
268 | { |
269 | struct isl_ctx *ctx; |
270 | struct isl_vec *sample = NULL; |
271 | struct isl_tab_undo *snap; |
272 | unsigned dim; |
273 | |
274 | if (!tab) |
275 | return NULL; |
276 | ctx = tab->mat->ctx; |
277 | |
278 | dim = tab->n_var; |
279 | sample = isl_vec_alloc(ctx, size: 1 + dim); |
280 | if (!sample) |
281 | return NULL; |
282 | isl_int_set_si(sample->el[0], 1); |
283 | isl_seq_combine(dst: sample->el + 1, |
284 | m1: ctx->one, src1: tab->bmap->sample->el + 1, |
285 | m2: up ? ctx->one : ctx->negone, src2: eq + 1, len: dim); |
286 | if (isl_basic_map_contains(bmap: tab->bmap, vec: sample)) |
287 | return sample; |
288 | isl_vec_free(vec: sample); |
289 | sample = NULL; |
290 | |
291 | snap = isl_tab_snap(tab); |
292 | |
293 | if (!up) |
294 | isl_seq_neg(dst: eq, src: eq, len: 1 + dim); |
295 | isl_int_sub_ui(eq[0], eq[0], 1); |
296 | |
297 | if (isl_tab_extend_cons(tab, n_new: 1) < 0) |
298 | goto error; |
299 | if (isl_tab_add_ineq(tab, ineq: eq) < 0) |
300 | goto error; |
301 | |
302 | sample = isl_tab_sample(tab); |
303 | |
304 | isl_int_add_ui(eq[0], eq[0], 1); |
305 | if (!up) |
306 | isl_seq_neg(dst: eq, src: eq, len: 1 + dim); |
307 | |
308 | if (sample && isl_tab_rollback(tab, snap) < 0) |
309 | goto error; |
310 | |
311 | return sample; |
312 | error: |
313 | isl_vec_free(vec: sample); |
314 | return NULL; |
315 | } |
316 | |
317 | __isl_give isl_basic_set *isl_basic_set_recession_cone( |
318 | __isl_take isl_basic_set *bset) |
319 | { |
320 | int i; |
321 | isl_bool empty; |
322 | |
323 | empty = isl_basic_set_plain_is_empty(bset); |
324 | if (empty < 0) |
325 | return isl_basic_set_free(bset); |
326 | if (empty) |
327 | return bset; |
328 | |
329 | bset = isl_basic_set_cow(bset); |
330 | if (isl_basic_set_check_no_locals(bset) < 0) |
331 | return isl_basic_set_free(bset); |
332 | |
333 | for (i = 0; i < bset->n_eq; ++i) |
334 | isl_int_set_si(bset->eq[i][0], 0); |
335 | |
336 | for (i = 0; i < bset->n_ineq; ++i) |
337 | isl_int_set_si(bset->ineq[i][0], 0); |
338 | |
339 | ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT); |
340 | return isl_basic_set_implicit_equalities(bset); |
341 | } |
342 | |
343 | /* Move "sample" to a point that is one up (or down) from the original |
344 | * point in dimension "pos". |
345 | */ |
346 | static void adjacent_point(__isl_keep isl_vec *sample, int pos, int up) |
347 | { |
348 | if (up) |
349 | isl_int_add_ui(sample->el[1 + pos], sample->el[1 + pos], 1); |
350 | else |
351 | isl_int_sub_ui(sample->el[1 + pos], sample->el[1 + pos], 1); |
352 | } |
353 | |
354 | /* Check if any points that are adjacent to "sample" also belong to "bset". |
355 | * If so, add them to "hull" and return the updated hull. |
356 | * |
357 | * Before checking whether and adjacent point belongs to "bset", we first |
358 | * check whether it already belongs to "hull" as this test is typically |
359 | * much cheaper. |
360 | */ |
361 | static __isl_give isl_basic_set *add_adjacent_points( |
362 | __isl_take isl_basic_set *hull, __isl_take isl_vec *sample, |
363 | __isl_keep isl_basic_set *bset) |
364 | { |
365 | int i, up; |
366 | isl_size dim; |
367 | |
368 | dim = isl_basic_set_dim(bset: hull, type: isl_dim_set); |
369 | if (!sample || dim < 0) |
370 | goto error; |
371 | |
372 | for (i = 0; i < dim; ++i) { |
373 | for (up = 0; up <= 1; ++up) { |
374 | int contains; |
375 | isl_basic_set *point; |
376 | |
377 | adjacent_point(sample, pos: i, up); |
378 | contains = isl_basic_set_contains(bset: hull, vec: sample); |
379 | if (contains < 0) |
380 | goto error; |
381 | if (contains) { |
382 | adjacent_point(sample, pos: i, up: !up); |
383 | continue; |
384 | } |
385 | contains = isl_basic_set_contains(bset, vec: sample); |
386 | if (contains < 0) |
387 | goto error; |
388 | if (contains) { |
389 | point = isl_basic_set_from_vec( |
390 | vec: isl_vec_copy(vec: sample)); |
391 | hull = affine_hull(bset1: hull, bset2: point); |
392 | } |
393 | adjacent_point(sample, pos: i, up: !up); |
394 | if (contains) |
395 | break; |
396 | } |
397 | } |
398 | |
399 | isl_vec_free(vec: sample); |
400 | |
401 | return hull; |
402 | error: |
403 | isl_vec_free(vec: sample); |
404 | isl_basic_set_free(bset: hull); |
405 | return NULL; |
406 | } |
407 | |
408 | /* Extend an initial (under-)approximation of the affine hull of basic |
409 | * set represented by the tableau "tab" |
410 | * by looking for points that do not satisfy one of the equalities |
411 | * in the current approximation and adding them to that approximation |
412 | * until no such points can be found any more. |
413 | * |
414 | * The caller of this function ensures that "tab" is bounded or |
415 | * that tab->basis and tab->n_unbounded have been set appropriately. |
416 | * |
417 | * "bset" may be either NULL or the basic set represented by "tab". |
418 | * If "bset" is not NULL, we check for any point we find if any |
419 | * of its adjacent points also belong to "bset". |
420 | */ |
421 | static __isl_give isl_basic_set *extend_affine_hull(struct isl_tab *tab, |
422 | __isl_take isl_basic_set *hull, __isl_keep isl_basic_set *bset) |
423 | { |
424 | int i, j; |
425 | unsigned dim; |
426 | |
427 | if (!tab || !hull) |
428 | goto error; |
429 | |
430 | dim = tab->n_var; |
431 | |
432 | if (isl_tab_extend_cons(tab, n_new: 2 * dim + 1) < 0) |
433 | goto error; |
434 | |
435 | for (i = 0; i < dim; ++i) { |
436 | struct isl_vec *sample; |
437 | struct isl_basic_set *point; |
438 | for (j = 0; j < hull->n_eq; ++j) { |
439 | sample = outside_point(tab, eq: hull->eq[j], up: 1); |
440 | if (!sample) |
441 | goto error; |
442 | if (sample->size > 0) |
443 | break; |
444 | isl_vec_free(vec: sample); |
445 | sample = outside_point(tab, eq: hull->eq[j], up: 0); |
446 | if (!sample) |
447 | goto error; |
448 | if (sample->size > 0) |
449 | break; |
450 | isl_vec_free(vec: sample); |
451 | |
452 | if (isl_tab_add_eq(tab, eq: hull->eq[j]) < 0) |
453 | goto error; |
454 | } |
455 | if (j == hull->n_eq) |
456 | break; |
457 | if (tab->samples && |
458 | isl_tab_add_sample(tab, sample: isl_vec_copy(vec: sample)) < 0) |
459 | hull = isl_basic_set_free(bset: hull); |
460 | if (bset) |
461 | hull = add_adjacent_points(hull, sample: isl_vec_copy(vec: sample), |
462 | bset); |
463 | point = isl_basic_set_from_vec(vec: sample); |
464 | hull = affine_hull(bset1: hull, bset2: point); |
465 | if (!hull) |
466 | return NULL; |
467 | } |
468 | |
469 | return hull; |
470 | error: |
471 | isl_basic_set_free(bset: hull); |
472 | return NULL; |
473 | } |
474 | |
475 | /* Construct an initial underapproximation of the hull of "bset" |
476 | * from "sample" and any of its adjacent points that also belong to "bset". |
477 | */ |
478 | static __isl_give isl_basic_set *initialize_hull(__isl_keep isl_basic_set *bset, |
479 | __isl_take isl_vec *sample) |
480 | { |
481 | isl_basic_set *hull; |
482 | |
483 | hull = isl_basic_set_from_vec(vec: isl_vec_copy(vec: sample)); |
484 | hull = add_adjacent_points(hull, sample, bset); |
485 | |
486 | return hull; |
487 | } |
488 | |
489 | /* Look for all equalities satisfied by the integer points in bset, |
490 | * which is assumed to be bounded. |
491 | * |
492 | * The equalities are obtained by successively looking for |
493 | * a point that is affinely independent of the points found so far. |
494 | * In particular, for each equality satisfied by the points so far, |
495 | * we check if there is any point on a hyperplane parallel to the |
496 | * corresponding hyperplane shifted by at least one (in either direction). |
497 | */ |
498 | static __isl_give isl_basic_set *uset_affine_hull_bounded( |
499 | __isl_take isl_basic_set *bset) |
500 | { |
501 | struct isl_vec *sample = NULL; |
502 | struct isl_basic_set *hull; |
503 | struct isl_tab *tab = NULL; |
504 | isl_size dim; |
505 | |
506 | if (isl_basic_set_plain_is_empty(bset)) |
507 | return bset; |
508 | |
509 | dim = isl_basic_set_dim(bset, type: isl_dim_set); |
510 | if (dim < 0) |
511 | return isl_basic_set_free(bset); |
512 | |
513 | if (bset->sample && bset->sample->size == 1 + dim) { |
514 | int contains = isl_basic_set_contains(bset, vec: bset->sample); |
515 | if (contains < 0) |
516 | goto error; |
517 | if (contains) { |
518 | if (dim == 0) |
519 | return bset; |
520 | sample = isl_vec_copy(vec: bset->sample); |
521 | } else { |
522 | isl_vec_free(vec: bset->sample); |
523 | bset->sample = NULL; |
524 | } |
525 | } |
526 | |
527 | tab = isl_tab_from_basic_set(bset, track: 1); |
528 | if (!tab) |
529 | goto error; |
530 | if (tab->empty) { |
531 | isl_tab_free(tab); |
532 | isl_vec_free(vec: sample); |
533 | return isl_basic_set_set_to_empty(bset); |
534 | } |
535 | |
536 | if (!sample) { |
537 | struct isl_tab_undo *snap; |
538 | snap = isl_tab_snap(tab); |
539 | sample = isl_tab_sample(tab); |
540 | if (isl_tab_rollback(tab, snap) < 0) |
541 | goto error; |
542 | isl_vec_free(vec: tab->bmap->sample); |
543 | tab->bmap->sample = isl_vec_copy(vec: sample); |
544 | } |
545 | |
546 | if (!sample) |
547 | goto error; |
548 | if (sample->size == 0) { |
549 | isl_tab_free(tab); |
550 | isl_vec_free(vec: sample); |
551 | return isl_basic_set_set_to_empty(bset); |
552 | } |
553 | |
554 | hull = initialize_hull(bset, sample); |
555 | |
556 | hull = extend_affine_hull(tab, hull, bset); |
557 | isl_basic_set_free(bset); |
558 | isl_tab_free(tab); |
559 | |
560 | return hull; |
561 | error: |
562 | isl_vec_free(vec: sample); |
563 | isl_tab_free(tab); |
564 | isl_basic_set_free(bset); |
565 | return NULL; |
566 | } |
567 | |
568 | /* Given an unbounded tableau and an integer point satisfying the tableau, |
569 | * construct an initial affine hull containing the recession cone |
570 | * shifted to the given point. |
571 | * |
572 | * The unbounded directions are taken from the last rows of the basis, |
573 | * which is assumed to have been initialized appropriately. |
574 | */ |
575 | static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab, |
576 | __isl_take isl_vec *vec) |
577 | { |
578 | int i; |
579 | int k; |
580 | struct isl_basic_set *bset = NULL; |
581 | struct isl_ctx *ctx; |
582 | isl_size dim; |
583 | |
584 | if (!vec || !tab) |
585 | return NULL; |
586 | ctx = vec->ctx; |
587 | isl_assert(ctx, vec->size != 0, goto error); |
588 | |
589 | bset = isl_basic_set_alloc(ctx, nparam: 0, dim: vec->size - 1, extra: 0, n_eq: vec->size - 1, n_ineq: 0); |
590 | dim = isl_basic_set_dim(bset, type: isl_dim_set); |
591 | if (dim < 0) |
592 | goto error; |
593 | dim -= tab->n_unbounded; |
594 | for (i = 0; i < dim; ++i) { |
595 | k = isl_basic_set_alloc_equality(bset); |
596 | if (k < 0) |
597 | goto error; |
598 | isl_seq_cpy(dst: bset->eq[k] + 1, src: tab->basis->row[1 + i] + 1, |
599 | len: vec->size - 1); |
600 | isl_seq_inner_product(p1: bset->eq[k] + 1, p2: vec->el +1, |
601 | len: vec->size - 1, prod: &bset->eq[k][0]); |
602 | isl_int_neg(bset->eq[k][0], bset->eq[k][0]); |
603 | } |
604 | bset->sample = vec; |
605 | bset = isl_basic_set_gauss(bset, NULL); |
606 | |
607 | return bset; |
608 | error: |
609 | isl_basic_set_free(bset); |
610 | isl_vec_free(vec); |
611 | return NULL; |
612 | } |
613 | |
614 | /* Given a tableau of a set and a tableau of the corresponding |
615 | * recession cone, detect and add all equalities to the tableau. |
616 | * If the tableau is bounded, then we can simply keep the |
617 | * tableau in its state after the return from extend_affine_hull. |
618 | * However, if the tableau is unbounded, then |
619 | * isl_tab_set_initial_basis_with_cone will add some additional |
620 | * constraints to the tableau that have to be removed again. |
621 | * In this case, we therefore rollback to the state before |
622 | * any constraints were added and then add the equalities back in. |
623 | */ |
624 | struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab, |
625 | struct isl_tab *tab_cone) |
626 | { |
627 | int j; |
628 | struct isl_vec *sample; |
629 | struct isl_basic_set *hull = NULL; |
630 | struct isl_tab_undo *snap; |
631 | |
632 | if (!tab || !tab_cone) |
633 | goto error; |
634 | |
635 | snap = isl_tab_snap(tab); |
636 | |
637 | isl_mat_free(mat: tab->basis); |
638 | tab->basis = NULL; |
639 | |
640 | isl_assert(tab->mat->ctx, tab->bmap, goto error); |
641 | isl_assert(tab->mat->ctx, tab->samples, goto error); |
642 | isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error); |
643 | isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error); |
644 | |
645 | if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0) |
646 | goto error; |
647 | |
648 | sample = isl_vec_alloc(ctx: tab->mat->ctx, size: 1 + tab->n_var); |
649 | if (!sample) |
650 | goto error; |
651 | |
652 | isl_seq_cpy(dst: sample->el, src: tab->samples->row[tab->n_outside], len: sample->size); |
653 | |
654 | isl_vec_free(vec: tab->bmap->sample); |
655 | tab->bmap->sample = isl_vec_copy(vec: sample); |
656 | |
657 | if (tab->n_unbounded == 0) |
658 | hull = isl_basic_set_from_vec(vec: isl_vec_copy(vec: sample)); |
659 | else |
660 | hull = initial_hull(tab, vec: isl_vec_copy(vec: sample)); |
661 | |
662 | for (j = tab->n_outside + 1; j < tab->n_sample; ++j) { |
663 | isl_seq_cpy(dst: sample->el, src: tab->samples->row[j], len: sample->size); |
664 | hull = affine_hull(bset1: hull, |
665 | bset2: isl_basic_set_from_vec(vec: isl_vec_copy(vec: sample))); |
666 | } |
667 | |
668 | isl_vec_free(vec: sample); |
669 | |
670 | hull = extend_affine_hull(tab, hull, NULL); |
671 | if (!hull) |
672 | goto error; |
673 | |
674 | if (tab->n_unbounded == 0) { |
675 | isl_basic_set_free(bset: hull); |
676 | return tab; |
677 | } |
678 | |
679 | if (isl_tab_rollback(tab, snap) < 0) |
680 | goto error; |
681 | |
682 | if (hull->n_eq > tab->n_zero) { |
683 | for (j = 0; j < hull->n_eq; ++j) { |
684 | isl_seq_normalize(ctx: tab->mat->ctx, p: hull->eq[j], len: 1 + tab->n_var); |
685 | if (isl_tab_add_eq(tab, eq: hull->eq[j]) < 0) |
686 | goto error; |
687 | } |
688 | } |
689 | |
690 | isl_basic_set_free(bset: hull); |
691 | |
692 | return tab; |
693 | error: |
694 | isl_basic_set_free(bset: hull); |
695 | isl_tab_free(tab); |
696 | return NULL; |
697 | } |
698 | |
699 | /* Compute the affine hull of "bset", where "cone" is the recession cone |
700 | * of "bset". |
701 | * |
702 | * We first compute a unimodular transformation that puts the unbounded |
703 | * directions in the last dimensions. In particular, we take a transformation |
704 | * that maps all equalities to equalities (in HNF) on the first dimensions. |
705 | * Let x be the original dimensions and y the transformed, with y_1 bounded |
706 | * and y_2 unbounded. |
707 | * |
708 | * [ y_1 ] [ y_1 ] [ Q_1 ] |
709 | * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x |
710 | * |
711 | * Let's call the input basic set S. We compute S' = preimage(S, U) |
712 | * and drop the final dimensions including any constraints involving them. |
713 | * This results in set S''. |
714 | * Then we compute the affine hull A'' of S''. |
715 | * Let F y_1 >= g be the constraint system of A''. In the transformed |
716 | * space the y_2 are unbounded, so we can add them back without any constraints, |
717 | * resulting in |
718 | * |
719 | * [ y_1 ] |
720 | * [ F 0 ] [ y_2 ] >= g |
721 | * or |
722 | * [ Q_1 ] |
723 | * [ F 0 ] [ Q_2 ] x >= g |
724 | * or |
725 | * F Q_1 x >= g |
726 | * |
727 | * The affine hull in the original space is then obtained as |
728 | * A = preimage(A'', Q_1). |
729 | */ |
730 | static __isl_give isl_basic_set *affine_hull_with_cone( |
731 | __isl_take isl_basic_set *bset, __isl_take isl_basic_set *cone) |
732 | { |
733 | isl_size total; |
734 | unsigned cone_dim; |
735 | struct isl_basic_set *hull; |
736 | struct isl_mat *M, *U, *Q; |
737 | |
738 | total = isl_basic_set_dim(bset: cone, type: isl_dim_all); |
739 | if (!bset || total < 0) |
740 | goto error; |
741 | |
742 | cone_dim = total - cone->n_eq; |
743 | |
744 | M = isl_mat_sub_alloc6(ctx: bset->ctx, row: cone->eq, first_row: 0, n_row: cone->n_eq, first_col: 1, n_col: total); |
745 | M = isl_mat_left_hermite(M, neg: 0, U: &U, Q: &Q); |
746 | if (!M) |
747 | goto error; |
748 | isl_mat_free(mat: M); |
749 | |
750 | U = isl_mat_lin_to_aff(mat: U); |
751 | bset = isl_basic_set_preimage(bset, mat: isl_mat_copy(mat: U)); |
752 | |
753 | bset = isl_basic_set_drop_constraints_involving(bset, first: total - cone_dim, |
754 | n: cone_dim); |
755 | bset = isl_basic_set_drop_dims(bset, first: total - cone_dim, n: cone_dim); |
756 | |
757 | Q = isl_mat_lin_to_aff(mat: Q); |
758 | Q = isl_mat_drop_rows(mat: Q, row: 1 + total - cone_dim, n: cone_dim); |
759 | |
760 | if (bset && bset->sample && bset->sample->size == 1 + total) |
761 | bset->sample = isl_mat_vec_product(mat: isl_mat_copy(mat: Q), vec: bset->sample); |
762 | |
763 | hull = uset_affine_hull_bounded(bset); |
764 | |
765 | if (!hull) { |
766 | isl_mat_free(mat: Q); |
767 | isl_mat_free(mat: U); |
768 | } else { |
769 | struct isl_vec *sample = isl_vec_copy(vec: hull->sample); |
770 | U = isl_mat_drop_cols(mat: U, col: 1 + total - cone_dim, n: cone_dim); |
771 | if (sample && sample->size > 0) |
772 | sample = isl_mat_vec_product(mat: U, vec: sample); |
773 | else |
774 | isl_mat_free(mat: U); |
775 | hull = isl_basic_set_preimage(bset: hull, mat: Q); |
776 | if (hull) { |
777 | isl_vec_free(vec: hull->sample); |
778 | hull->sample = sample; |
779 | } else |
780 | isl_vec_free(vec: sample); |
781 | } |
782 | |
783 | isl_basic_set_free(bset: cone); |
784 | |
785 | return hull; |
786 | error: |
787 | isl_basic_set_free(bset); |
788 | isl_basic_set_free(bset: cone); |
789 | return NULL; |
790 | } |
791 | |
792 | /* Look for all equalities satisfied by the integer points in bset, |
793 | * which is assumed not to have any explicit equalities. |
794 | * |
795 | * The equalities are obtained by successively looking for |
796 | * a point that is affinely independent of the points found so far. |
797 | * In particular, for each equality satisfied by the points so far, |
798 | * we check if there is any point on a hyperplane parallel to the |
799 | * corresponding hyperplane shifted by at least one (in either direction). |
800 | * |
801 | * Before looking for any outside points, we first compute the recession |
802 | * cone. The directions of this recession cone will always be part |
803 | * of the affine hull, so there is no need for looking for any points |
804 | * in these directions. |
805 | * In particular, if the recession cone is full-dimensional, then |
806 | * the affine hull is simply the whole universe. |
807 | */ |
808 | static __isl_give isl_basic_set *uset_affine_hull( |
809 | __isl_take isl_basic_set *bset) |
810 | { |
811 | struct isl_basic_set *cone; |
812 | isl_size total; |
813 | |
814 | if (isl_basic_set_plain_is_empty(bset)) |
815 | return bset; |
816 | |
817 | cone = isl_basic_set_recession_cone(bset: isl_basic_set_copy(bset)); |
818 | if (!cone) |
819 | goto error; |
820 | if (cone->n_eq == 0) { |
821 | isl_space *space; |
822 | space = isl_basic_set_get_space(bset); |
823 | isl_basic_set_free(bset: cone); |
824 | isl_basic_set_free(bset); |
825 | return isl_basic_set_universe(space); |
826 | } |
827 | |
828 | total = isl_basic_set_dim(bset: cone, type: isl_dim_all); |
829 | if (total < 0) |
830 | bset = isl_basic_set_free(bset); |
831 | if (cone->n_eq < total) |
832 | return affine_hull_with_cone(bset, cone); |
833 | |
834 | isl_basic_set_free(bset: cone); |
835 | return uset_affine_hull_bounded(bset); |
836 | error: |
837 | isl_basic_set_free(bset); |
838 | return NULL; |
839 | } |
840 | |
841 | /* Look for all equalities satisfied by the integer points in bmap |
842 | * that are independent of the equalities already explicitly available |
843 | * in bmap. |
844 | * |
845 | * We first remove all equalities already explicitly available, |
846 | * then look for additional equalities in the reduced space |
847 | * and then transform the result to the original space. |
848 | * The original equalities are _not_ added to this set. This is |
849 | * the responsibility of the calling function. |
850 | * The resulting basic set has all meaning about the dimensions removed. |
851 | * In particular, dimensions that correspond to existential variables |
852 | * in bmap and that are found to be fixed are not removed. |
853 | */ |
854 | static __isl_give isl_basic_set *equalities_in_underlying_set( |
855 | __isl_take isl_basic_map *bmap) |
856 | { |
857 | struct isl_mat *T1 = NULL; |
858 | struct isl_mat *T2 = NULL; |
859 | struct isl_basic_set *bset = NULL; |
860 | struct isl_basic_set *hull = NULL; |
861 | |
862 | bset = isl_basic_map_underlying_set(bmap); |
863 | if (!bset) |
864 | return NULL; |
865 | if (bset->n_eq) |
866 | bset = isl_basic_set_remove_equalities(bset, T: &T1, T2: &T2); |
867 | if (!bset) |
868 | goto error; |
869 | |
870 | hull = uset_affine_hull(bset); |
871 | if (!T2) |
872 | return hull; |
873 | |
874 | if (!hull) { |
875 | isl_mat_free(mat: T1); |
876 | isl_mat_free(mat: T2); |
877 | } else { |
878 | struct isl_vec *sample = isl_vec_copy(vec: hull->sample); |
879 | if (sample && sample->size > 0) |
880 | sample = isl_mat_vec_product(mat: T1, vec: sample); |
881 | else |
882 | isl_mat_free(mat: T1); |
883 | hull = isl_basic_set_preimage(bset: hull, mat: T2); |
884 | if (hull) { |
885 | isl_vec_free(vec: hull->sample); |
886 | hull->sample = sample; |
887 | } else |
888 | isl_vec_free(vec: sample); |
889 | } |
890 | |
891 | return hull; |
892 | error: |
893 | isl_mat_free(mat: T1); |
894 | isl_mat_free(mat: T2); |
895 | isl_basic_set_free(bset); |
896 | isl_basic_set_free(bset: hull); |
897 | return NULL; |
898 | } |
899 | |
900 | /* Detect and make explicit all equalities satisfied by the (integer) |
901 | * points in bmap. |
902 | */ |
903 | __isl_give isl_basic_map *isl_basic_map_detect_equalities( |
904 | __isl_take isl_basic_map *bmap) |
905 | { |
906 | int i, j; |
907 | isl_size total; |
908 | struct isl_basic_set *hull = NULL; |
909 | |
910 | if (!bmap) |
911 | return NULL; |
912 | if (bmap->n_ineq == 0) |
913 | return bmap; |
914 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) |
915 | return bmap; |
916 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES)) |
917 | return bmap; |
918 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) |
919 | return isl_basic_map_implicit_equalities(bmap); |
920 | |
921 | hull = equalities_in_underlying_set(bmap: isl_basic_map_copy(bmap)); |
922 | if (!hull) |
923 | goto error; |
924 | if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) { |
925 | isl_basic_set_free(bset: hull); |
926 | return isl_basic_map_set_to_empty(bmap); |
927 | } |
928 | bmap = isl_basic_map_extend(base: bmap, extra: 0, n_eq: hull->n_eq, n_ineq: 0); |
929 | total = isl_basic_set_dim(bset: hull, type: isl_dim_all); |
930 | if (total < 0) |
931 | goto error; |
932 | for (i = 0; i < hull->n_eq; ++i) { |
933 | j = isl_basic_map_alloc_equality(bmap); |
934 | if (j < 0) |
935 | goto error; |
936 | isl_seq_cpy(dst: bmap->eq[j], src: hull->eq[i], len: 1 + total); |
937 | } |
938 | isl_vec_free(vec: bmap->sample); |
939 | bmap->sample = isl_vec_copy(vec: hull->sample); |
940 | isl_basic_set_free(bset: hull); |
941 | ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES); |
942 | bmap = isl_basic_map_simplify(bmap); |
943 | return isl_basic_map_finalize(bmap); |
944 | error: |
945 | isl_basic_set_free(bset: hull); |
946 | isl_basic_map_free(bmap); |
947 | return NULL; |
948 | } |
949 | |
950 | __isl_give isl_basic_set *isl_basic_set_detect_equalities( |
951 | __isl_take isl_basic_set *bset) |
952 | { |
953 | return bset_from_bmap( |
954 | bmap: isl_basic_map_detect_equalities(bmap: bset_to_bmap(bset))); |
955 | } |
956 | |
957 | __isl_give isl_map *isl_map_detect_equalities(__isl_take isl_map *map) |
958 | { |
959 | return isl_map_inline_foreach_basic_map(map, |
960 | fn: &isl_basic_map_detect_equalities); |
961 | } |
962 | |
963 | __isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set) |
964 | { |
965 | return set_from_map(isl_map_detect_equalities(map: set_to_map(set))); |
966 | } |
967 | |
968 | /* Return the superset of "bmap" described by the equalities |
969 | * satisfied by "bmap" that are already known. |
970 | */ |
971 | __isl_give isl_basic_map *isl_basic_map_plain_affine_hull( |
972 | __isl_take isl_basic_map *bmap) |
973 | { |
974 | bmap = isl_basic_map_cow(bmap); |
975 | if (bmap) |
976 | isl_basic_map_free_inequality(bmap, n: bmap->n_ineq); |
977 | bmap = isl_basic_map_finalize(bmap); |
978 | return bmap; |
979 | } |
980 | |
981 | /* Return the superset of "bset" described by the equalities |
982 | * satisfied by "bset" that are already known. |
983 | */ |
984 | __isl_give isl_basic_set *isl_basic_set_plain_affine_hull( |
985 | __isl_take isl_basic_set *bset) |
986 | { |
987 | return isl_basic_map_plain_affine_hull(bmap: bset); |
988 | } |
989 | |
990 | /* After computing the rational affine hull (by detecting the implicit |
991 | * equalities), we compute the additional equalities satisfied by |
992 | * the integer points (if any) and add the original equalities back in. |
993 | */ |
994 | __isl_give isl_basic_map *isl_basic_map_affine_hull( |
995 | __isl_take isl_basic_map *bmap) |
996 | { |
997 | bmap = isl_basic_map_detect_equalities(bmap); |
998 | bmap = isl_basic_map_plain_affine_hull(bmap); |
999 | return bmap; |
1000 | } |
1001 | |
1002 | __isl_give isl_basic_set *isl_basic_set_affine_hull( |
1003 | __isl_take isl_basic_set *bset) |
1004 | { |
1005 | return bset_from_bmap(bmap: isl_basic_map_affine_hull(bmap: bset_to_bmap(bset))); |
1006 | } |
1007 | |
1008 | /* Given a rational affine matrix "M", add stride constraints to "bmap" |
1009 | * that ensure that |
1010 | * |
1011 | * M(x) |
1012 | * |
1013 | * is an integer vector. The variables x include all the variables |
1014 | * of "bmap" except the unknown divs. |
1015 | * |
1016 | * If d is the common denominator of M, then we need to impose that |
1017 | * |
1018 | * d M(x) = 0 mod d |
1019 | * |
1020 | * or |
1021 | * |
1022 | * exists alpha : d M(x) = d alpha |
1023 | * |
1024 | * This function is similar to add_strides in isl_morph.c |
1025 | */ |
1026 | static __isl_give isl_basic_map *add_strides(__isl_take isl_basic_map *bmap, |
1027 | __isl_keep isl_mat *M, int n_known) |
1028 | { |
1029 | int i, div, k; |
1030 | isl_int gcd; |
1031 | |
1032 | if (isl_int_is_one(M->row[0][0])) |
1033 | return bmap; |
1034 | |
1035 | bmap = isl_basic_map_extend(base: bmap, extra: M->n_row - 1, n_eq: M->n_row - 1, n_ineq: 0); |
1036 | |
1037 | isl_int_init(gcd); |
1038 | for (i = 1; i < M->n_row; ++i) { |
1039 | isl_seq_gcd(p: M->row[i], len: M->n_col, gcd: &gcd); |
1040 | if (isl_int_is_divisible_by(gcd, M->row[0][0])) |
1041 | continue; |
1042 | div = isl_basic_map_alloc_div(bmap); |
1043 | if (div < 0) |
1044 | goto error; |
1045 | isl_int_set_si(bmap->div[div][0], 0); |
1046 | k = isl_basic_map_alloc_equality(bmap); |
1047 | if (k < 0) |
1048 | goto error; |
1049 | isl_seq_cpy(dst: bmap->eq[k], src: M->row[i], len: M->n_col); |
1050 | isl_seq_clr(p: bmap->eq[k] + M->n_col, len: bmap->n_div - n_known); |
1051 | isl_int_set(bmap->eq[k][M->n_col - n_known + div], |
1052 | M->row[0][0]); |
1053 | } |
1054 | isl_int_clear(gcd); |
1055 | |
1056 | return bmap; |
1057 | error: |
1058 | isl_int_clear(gcd); |
1059 | isl_basic_map_free(bmap); |
1060 | return NULL; |
1061 | } |
1062 | |
1063 | /* If there are any equalities that involve (multiple) unknown divs, |
1064 | * then extract the stride information encoded by those equalities |
1065 | * and make it explicitly available in "bmap". |
1066 | * |
1067 | * We first sort the divs so that the unknown divs appear last and |
1068 | * then we count how many equalities involve these divs. |
1069 | * |
1070 | * Let these equalities be of the form |
1071 | * |
1072 | * A(x) + B y = 0 |
1073 | * |
1074 | * where y represents the unknown divs and x the remaining variables. |
1075 | * Let [H 0] be the Hermite Normal Form of B, i.e., |
1076 | * |
1077 | * B = [H 0] Q |
1078 | * |
1079 | * Then x is a solution of the equalities iff |
1080 | * |
1081 | * H^-1 A(x) (= - [I 0] Q y) |
1082 | * |
1083 | * is an integer vector. Let d be the common denominator of H^-1. |
1084 | * We impose |
1085 | * |
1086 | * d H^-1 A(x) = d alpha |
1087 | * |
1088 | * in add_strides, with alpha fresh existentially quantified variables. |
1089 | */ |
1090 | static __isl_give isl_basic_map *isl_basic_map_make_strides_explicit( |
1091 | __isl_take isl_basic_map *bmap) |
1092 | { |
1093 | isl_bool known; |
1094 | int n_known; |
1095 | int n, n_col; |
1096 | isl_size v_div; |
1097 | isl_ctx *ctx; |
1098 | isl_mat *A, *B, *M; |
1099 | |
1100 | known = isl_basic_map_divs_known(bmap); |
1101 | if (known < 0) |
1102 | return isl_basic_map_free(bmap); |
1103 | if (known) |
1104 | return bmap; |
1105 | bmap = isl_basic_map_sort_divs(bmap); |
1106 | bmap = isl_basic_map_gauss(bmap, NULL); |
1107 | if (!bmap) |
1108 | return NULL; |
1109 | |
1110 | for (n_known = 0; n_known < bmap->n_div; ++n_known) |
1111 | if (isl_int_is_zero(bmap->div[n_known][0])) |
1112 | break; |
1113 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
1114 | if (v_div < 0) |
1115 | return isl_basic_map_free(bmap); |
1116 | for (n = 0; n < bmap->n_eq; ++n) |
1117 | if (isl_seq_first_non_zero(p: bmap->eq[n] + 1 + v_div + n_known, |
1118 | len: bmap->n_div - n_known) == -1) |
1119 | break; |
1120 | if (n == 0) |
1121 | return bmap; |
1122 | ctx = isl_basic_map_get_ctx(bmap); |
1123 | B = isl_mat_sub_alloc6(ctx, row: bmap->eq, first_row: 0, n_row: n, first_col: 0, n_col: 1 + v_div + n_known); |
1124 | n_col = bmap->n_div - n_known; |
1125 | A = isl_mat_sub_alloc6(ctx, row: bmap->eq, first_row: 0, n_row: n, first_col: 1 + v_div + n_known, n_col); |
1126 | A = isl_mat_left_hermite(M: A, neg: 0, NULL, NULL); |
1127 | A = isl_mat_drop_cols(mat: A, col: n, n: n_col - n); |
1128 | A = isl_mat_lin_to_aff(mat: A); |
1129 | A = isl_mat_right_inverse(mat: A); |
1130 | B = isl_mat_insert_zero_rows(mat: B, row: 0, n: 1); |
1131 | B = isl_mat_set_element_si(mat: B, row: 0, col: 0, v: 1); |
1132 | M = isl_mat_product(left: A, right: B); |
1133 | if (!M) |
1134 | return isl_basic_map_free(bmap); |
1135 | bmap = add_strides(bmap, M, n_known); |
1136 | bmap = isl_basic_map_gauss(bmap, NULL); |
1137 | isl_mat_free(mat: M); |
1138 | |
1139 | return bmap; |
1140 | } |
1141 | |
1142 | /* Compute the affine hull of each basic map in "map" separately |
1143 | * and make all stride information explicit so that we can remove |
1144 | * all unknown divs without losing this information. |
1145 | * The result is also guaranteed to be gaussed. |
1146 | * |
1147 | * In simple cases where a div is determined by an equality, |
1148 | * calling isl_basic_map_gauss is enough to make the stride information |
1149 | * explicit, as it will derive an explicit representation for the div |
1150 | * from the equality. If, however, the stride information |
1151 | * is encoded through multiple unknown divs then we need to make |
1152 | * some extra effort in isl_basic_map_make_strides_explicit. |
1153 | */ |
1154 | static __isl_give isl_map *isl_map_local_affine_hull(__isl_take isl_map *map) |
1155 | { |
1156 | int i; |
1157 | |
1158 | map = isl_map_cow(map); |
1159 | if (!map) |
1160 | return NULL; |
1161 | |
1162 | for (i = 0; i < map->n; ++i) { |
1163 | map->p[i] = isl_basic_map_affine_hull(bmap: map->p[i]); |
1164 | map->p[i] = isl_basic_map_gauss(bmap: map->p[i], NULL); |
1165 | map->p[i] = isl_basic_map_make_strides_explicit(bmap: map->p[i]); |
1166 | if (!map->p[i]) |
1167 | return isl_map_free(map); |
1168 | } |
1169 | |
1170 | return map; |
1171 | } |
1172 | |
1173 | static __isl_give isl_set *isl_set_local_affine_hull(__isl_take isl_set *set) |
1174 | { |
1175 | return isl_map_local_affine_hull(map: set); |
1176 | } |
1177 | |
1178 | /* Return an empty basic map living in the same space as "map". |
1179 | */ |
1180 | static __isl_give isl_basic_map *replace_map_by_empty_basic_map( |
1181 | __isl_take isl_map *map) |
1182 | { |
1183 | isl_space *space; |
1184 | |
1185 | space = isl_map_get_space(map); |
1186 | isl_map_free(map); |
1187 | return isl_basic_map_empty(space); |
1188 | } |
1189 | |
1190 | /* Compute the affine hull of "map". |
1191 | * |
1192 | * We first compute the affine hull of each basic map separately. |
1193 | * Then we align the divs and recompute the affine hulls of the basic |
1194 | * maps since some of them may now have extra divs. |
1195 | * In order to avoid performing parametric integer programming to |
1196 | * compute explicit expressions for the divs, possible leading to |
1197 | * an explosion in the number of basic maps, we first drop all unknown |
1198 | * divs before aligning the divs. Note that isl_map_local_affine_hull tries |
1199 | * to make sure that all stride information is explicitly available |
1200 | * in terms of known divs. This involves calling isl_basic_set_gauss, |
1201 | * which is also needed because affine_hull assumes its input has been gaussed, |
1202 | * while isl_map_affine_hull may be called on input that has not been gaussed, |
1203 | * in particular from initial_facet_constraint. |
1204 | * Similarly, align_divs may reorder some divs so that we need to |
1205 | * gauss the result again. |
1206 | * Finally, we combine the individual affine hulls into a single |
1207 | * affine hull. |
1208 | */ |
1209 | __isl_give isl_basic_map *isl_map_affine_hull(__isl_take isl_map *map) |
1210 | { |
1211 | struct isl_basic_map *model = NULL; |
1212 | struct isl_basic_map *hull = NULL; |
1213 | struct isl_set *set; |
1214 | isl_basic_set *bset; |
1215 | |
1216 | map = isl_map_detect_equalities(map); |
1217 | map = isl_map_local_affine_hull(map); |
1218 | map = isl_map_remove_empty_parts(map); |
1219 | map = isl_map_remove_unknown_divs(map); |
1220 | map = isl_map_align_divs_internal(map); |
1221 | |
1222 | if (!map) |
1223 | return NULL; |
1224 | |
1225 | if (map->n == 0) |
1226 | return replace_map_by_empty_basic_map(map); |
1227 | |
1228 | model = isl_basic_map_copy(bmap: map->p[0]); |
1229 | set = isl_map_underlying_set(map); |
1230 | set = isl_set_cow(set); |
1231 | set = isl_set_local_affine_hull(set); |
1232 | if (!set) |
1233 | goto error; |
1234 | |
1235 | while (set->n > 1) |
1236 | set->p[0] = affine_hull(bset1: set->p[0], bset2: set->p[--set->n]); |
1237 | |
1238 | bset = isl_basic_set_copy(bset: set->p[0]); |
1239 | hull = isl_basic_map_overlying_set(bset, like: model); |
1240 | isl_set_free(set); |
1241 | hull = isl_basic_map_simplify(bmap: hull); |
1242 | return isl_basic_map_finalize(bmap: hull); |
1243 | error: |
1244 | isl_basic_map_free(bmap: model); |
1245 | isl_set_free(set); |
1246 | return NULL; |
1247 | } |
1248 | |
1249 | __isl_give isl_basic_set *isl_set_affine_hull(__isl_take isl_set *set) |
1250 | { |
1251 | return bset_from_bmap(bmap: isl_map_affine_hull(map: set_to_map(set))); |
1252 | } |
1253 | |