1 | /* |
2 | * Copyright 2008-2009 Katholieke Universiteit Leuven |
3 | * Copyright 2010 INRIA Saclay |
4 | * Copyright 2012-2013 Ecole Normale Superieure |
5 | * Copyright 2014 INRIA Rocquencourt |
6 | * Copyright 2016 INRIA Paris |
7 | * Copyright 2020 Cerebras Systems |
8 | * |
9 | * Use of this software is governed by the MIT license |
10 | * |
11 | * Written by Sven Verdoolaege, K.U.Leuven, Departement |
12 | * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium |
13 | * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, |
14 | * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France |
15 | * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France |
16 | * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, |
17 | * B.P. 105 - 78153 Le Chesnay, France |
18 | * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12, |
19 | * CS 42112, 75589 Paris Cedex 12, France |
20 | * and Cerebras Systems, 175 S San Antonio Rd, Los Altos, CA, USA |
21 | */ |
22 | |
23 | #include <isl_ctx_private.h> |
24 | #include "isl_map_private.h" |
25 | #include <isl_seq.h> |
26 | #include <isl/options.h> |
27 | #include "isl_tab.h" |
28 | #include <isl_mat_private.h> |
29 | #include <isl_local_space_private.h> |
30 | #include <isl_val_private.h> |
31 | #include <isl_vec_private.h> |
32 | #include <isl_aff_private.h> |
33 | #include <isl_equalities.h> |
34 | #include <isl_constraint_private.h> |
35 | |
36 | #include <set_to_map.c> |
37 | #include <set_from_map.c> |
38 | |
39 | #define STATUS_ERROR -1 |
40 | #define STATUS_REDUNDANT 1 |
41 | #define STATUS_VALID 2 |
42 | #define STATUS_SEPARATE 3 |
43 | #define STATUS_CUT 4 |
44 | #define STATUS_ADJ_EQ 5 |
45 | #define STATUS_ADJ_INEQ 6 |
46 | |
47 | static int status_in(isl_int *ineq, struct isl_tab *tab) |
48 | { |
49 | enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq); |
50 | switch (type) { |
51 | default: |
52 | case isl_ineq_error: return STATUS_ERROR; |
53 | case isl_ineq_redundant: return STATUS_VALID; |
54 | case isl_ineq_separate: return STATUS_SEPARATE; |
55 | case isl_ineq_cut: return STATUS_CUT; |
56 | case isl_ineq_adj_eq: return STATUS_ADJ_EQ; |
57 | case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ; |
58 | } |
59 | } |
60 | |
61 | /* Compute the position of the equalities of basic map "bmap_i" |
62 | * with respect to the basic map represented by "tab_j". |
63 | * The resulting array has twice as many entries as the number |
64 | * of equalities corresponding to the two inequalities to which |
65 | * each equality corresponds. |
66 | */ |
67 | static int *eq_status_in(__isl_keep isl_basic_map *bmap_i, |
68 | struct isl_tab *tab_j) |
69 | { |
70 | int k, l; |
71 | int *eq; |
72 | isl_size dim; |
73 | |
74 | dim = isl_basic_map_dim(bmap: bmap_i, type: isl_dim_all); |
75 | if (dim < 0) |
76 | return NULL; |
77 | |
78 | eq = isl_calloc_array(bmap_i->ctx, int, 2 * bmap_i->n_eq); |
79 | if (!eq) |
80 | return NULL; |
81 | |
82 | for (k = 0; k < bmap_i->n_eq; ++k) { |
83 | for (l = 0; l < 2; ++l) { |
84 | isl_seq_neg(dst: bmap_i->eq[k], src: bmap_i->eq[k], len: 1+dim); |
85 | eq[2 * k + l] = status_in(ineq: bmap_i->eq[k], tab: tab_j); |
86 | if (eq[2 * k + l] == STATUS_ERROR) |
87 | goto error; |
88 | } |
89 | } |
90 | |
91 | return eq; |
92 | error: |
93 | free(ptr: eq); |
94 | return NULL; |
95 | } |
96 | |
97 | /* Compute the position of the inequalities of basic map "bmap_i" |
98 | * (also represented by "tab_i", if not NULL) with respect to the basic map |
99 | * represented by "tab_j". |
100 | */ |
101 | static int *ineq_status_in(__isl_keep isl_basic_map *bmap_i, |
102 | struct isl_tab *tab_i, struct isl_tab *tab_j) |
103 | { |
104 | int k; |
105 | unsigned n_eq = bmap_i->n_eq; |
106 | int *ineq = isl_calloc_array(bmap_i->ctx, int, bmap_i->n_ineq); |
107 | |
108 | if (!ineq) |
109 | return NULL; |
110 | |
111 | for (k = 0; k < bmap_i->n_ineq; ++k) { |
112 | if (tab_i && isl_tab_is_redundant(tab: tab_i, con: n_eq + k)) { |
113 | ineq[k] = STATUS_REDUNDANT; |
114 | continue; |
115 | } |
116 | ineq[k] = status_in(ineq: bmap_i->ineq[k], tab: tab_j); |
117 | if (ineq[k] == STATUS_ERROR) |
118 | goto error; |
119 | if (ineq[k] == STATUS_SEPARATE) |
120 | break; |
121 | } |
122 | |
123 | return ineq; |
124 | error: |
125 | free(ptr: ineq); |
126 | return NULL; |
127 | } |
128 | |
129 | static int any(int *con, unsigned len, int status) |
130 | { |
131 | int i; |
132 | |
133 | for (i = 0; i < len ; ++i) |
134 | if (con[i] == status) |
135 | return 1; |
136 | return 0; |
137 | } |
138 | |
139 | /* Return the first position of "status" in the list "con" of length "len". |
140 | * Return -1 if there is no such entry. |
141 | */ |
142 | static int find(int *con, unsigned len, int status) |
143 | { |
144 | int i; |
145 | |
146 | for (i = 0; i < len ; ++i) |
147 | if (con[i] == status) |
148 | return i; |
149 | return -1; |
150 | } |
151 | |
152 | static int count(int *con, unsigned len, int status) |
153 | { |
154 | int i; |
155 | int c = 0; |
156 | |
157 | for (i = 0; i < len ; ++i) |
158 | if (con[i] == status) |
159 | c++; |
160 | return c; |
161 | } |
162 | |
163 | static int all(int *con, unsigned len, int status) |
164 | { |
165 | int i; |
166 | |
167 | for (i = 0; i < len ; ++i) { |
168 | if (con[i] == STATUS_REDUNDANT) |
169 | continue; |
170 | if (con[i] != status) |
171 | return 0; |
172 | } |
173 | return 1; |
174 | } |
175 | |
176 | /* Internal information associated to a basic map in a map |
177 | * that is to be coalesced by isl_map_coalesce. |
178 | * |
179 | * "bmap" is the basic map itself (or NULL if "removed" is set) |
180 | * "tab" is the corresponding tableau (or NULL if "removed" is set) |
181 | * "hull_hash" identifies the affine space in which "bmap" lives. |
182 | * "modified" is set if this basic map may not be identical |
183 | * to any of the basic maps in the input. |
184 | * "removed" is set if this basic map has been removed from the map |
185 | * "simplify" is set if this basic map may have some unknown integer |
186 | * divisions that were not present in the input basic maps. The basic |
187 | * map should then be simplified such that we may be able to find |
188 | * a definition among the constraints. |
189 | * |
190 | * "eq" and "ineq" are only set if we are currently trying to coalesce |
191 | * this basic map with another basic map, in which case they represent |
192 | * the position of the inequalities of this basic map with respect to |
193 | * the other basic map. The number of elements in the "eq" array |
194 | * is twice the number of equalities in the "bmap", corresponding |
195 | * to the two inequalities that make up each equality. |
196 | */ |
197 | struct isl_coalesce_info { |
198 | isl_basic_map *bmap; |
199 | struct isl_tab *tab; |
200 | uint32_t hull_hash; |
201 | int modified; |
202 | int removed; |
203 | int simplify; |
204 | int *eq; |
205 | int *ineq; |
206 | }; |
207 | |
208 | /* Is there any (half of an) equality constraint in the description |
209 | * of the basic map represented by "info" that |
210 | * has position "status" with respect to the other basic map? |
211 | */ |
212 | static int any_eq(struct isl_coalesce_info *info, int status) |
213 | { |
214 | isl_size n_eq; |
215 | |
216 | n_eq = isl_basic_map_n_equality(bmap: info->bmap); |
217 | return any(con: info->eq, len: 2 * n_eq, status); |
218 | } |
219 | |
220 | /* Is there any inequality constraint in the description |
221 | * of the basic map represented by "info" that |
222 | * has position "status" with respect to the other basic map? |
223 | */ |
224 | static int any_ineq(struct isl_coalesce_info *info, int status) |
225 | { |
226 | isl_size n_ineq; |
227 | |
228 | n_ineq = isl_basic_map_n_inequality(bmap: info->bmap); |
229 | return any(con: info->ineq, len: n_ineq, status); |
230 | } |
231 | |
232 | /* Return the position of the first half on an equality constraint |
233 | * in the description of the basic map represented by "info" that |
234 | * has position "status" with respect to the other basic map. |
235 | * The returned value is twice the position of the equality constraint |
236 | * plus zero for the negative half and plus one for the positive half. |
237 | * Return -1 if there is no such entry. |
238 | */ |
239 | static int find_eq(struct isl_coalesce_info *info, int status) |
240 | { |
241 | isl_size n_eq; |
242 | |
243 | n_eq = isl_basic_map_n_equality(bmap: info->bmap); |
244 | return find(con: info->eq, len: 2 * n_eq, status); |
245 | } |
246 | |
247 | /* Return the position of the first inequality constraint in the description |
248 | * of the basic map represented by "info" that |
249 | * has position "status" with respect to the other basic map. |
250 | * Return -1 if there is no such entry. |
251 | */ |
252 | static int find_ineq(struct isl_coalesce_info *info, int status) |
253 | { |
254 | isl_size n_ineq; |
255 | |
256 | n_ineq = isl_basic_map_n_inequality(bmap: info->bmap); |
257 | return find(con: info->ineq, len: n_ineq, status); |
258 | } |
259 | |
260 | /* Return the number of (halves of) equality constraints in the description |
261 | * of the basic map represented by "info" that |
262 | * have position "status" with respect to the other basic map. |
263 | */ |
264 | static int count_eq(struct isl_coalesce_info *info, int status) |
265 | { |
266 | isl_size n_eq; |
267 | |
268 | n_eq = isl_basic_map_n_equality(bmap: info->bmap); |
269 | return count(con: info->eq, len: 2 * n_eq, status); |
270 | } |
271 | |
272 | /* Return the number of inequality constraints in the description |
273 | * of the basic map represented by "info" that |
274 | * have position "status" with respect to the other basic map. |
275 | */ |
276 | static int count_ineq(struct isl_coalesce_info *info, int status) |
277 | { |
278 | isl_size n_ineq; |
279 | |
280 | n_ineq = isl_basic_map_n_inequality(bmap: info->bmap); |
281 | return count(con: info->ineq, len: n_ineq, status); |
282 | } |
283 | |
284 | /* Are all non-redundant constraints of the basic map represented by "info" |
285 | * either valid or cut constraints with respect to the other basic map? |
286 | */ |
287 | static int all_valid_or_cut(struct isl_coalesce_info *info) |
288 | { |
289 | int i; |
290 | |
291 | for (i = 0; i < 2 * info->bmap->n_eq; ++i) { |
292 | if (info->eq[i] == STATUS_REDUNDANT) |
293 | continue; |
294 | if (info->eq[i] == STATUS_VALID) |
295 | continue; |
296 | if (info->eq[i] == STATUS_CUT) |
297 | continue; |
298 | return 0; |
299 | } |
300 | |
301 | for (i = 0; i < info->bmap->n_ineq; ++i) { |
302 | if (info->ineq[i] == STATUS_REDUNDANT) |
303 | continue; |
304 | if (info->ineq[i] == STATUS_VALID) |
305 | continue; |
306 | if (info->ineq[i] == STATUS_CUT) |
307 | continue; |
308 | return 0; |
309 | } |
310 | |
311 | return 1; |
312 | } |
313 | |
314 | /* Compute the hash of the (apparent) affine hull of info->bmap (with |
315 | * the existentially quantified variables removed) and store it |
316 | * in info->hash. |
317 | */ |
318 | static int coalesce_info_set_hull_hash(struct isl_coalesce_info *info) |
319 | { |
320 | isl_basic_map *hull; |
321 | isl_size n_div; |
322 | |
323 | hull = isl_basic_map_copy(bmap: info->bmap); |
324 | hull = isl_basic_map_plain_affine_hull(bmap: hull); |
325 | n_div = isl_basic_map_dim(bmap: hull, type: isl_dim_div); |
326 | if (n_div < 0) |
327 | hull = isl_basic_map_free(bmap: hull); |
328 | hull = isl_basic_map_drop_constraints_involving_dims(bmap: hull, |
329 | type: isl_dim_div, first: 0, n: n_div); |
330 | info->hull_hash = isl_basic_map_get_hash(bmap: hull); |
331 | isl_basic_map_free(bmap: hull); |
332 | |
333 | return hull ? 0 : -1; |
334 | } |
335 | |
336 | /* Free all the allocated memory in an array |
337 | * of "n" isl_coalesce_info elements. |
338 | */ |
339 | static void clear_coalesce_info(int n, struct isl_coalesce_info *info) |
340 | { |
341 | int i; |
342 | |
343 | if (!info) |
344 | return; |
345 | |
346 | for (i = 0; i < n; ++i) { |
347 | isl_basic_map_free(bmap: info[i].bmap); |
348 | isl_tab_free(tab: info[i].tab); |
349 | } |
350 | |
351 | free(ptr: info); |
352 | } |
353 | |
354 | /* Clear the memory associated to "info". |
355 | */ |
356 | static void clear(struct isl_coalesce_info *info) |
357 | { |
358 | info->bmap = isl_basic_map_free(bmap: info->bmap); |
359 | isl_tab_free(tab: info->tab); |
360 | info->tab = NULL; |
361 | } |
362 | |
363 | /* Drop the basic map represented by "info". |
364 | * That is, clear the memory associated to the entry and |
365 | * mark it as having been removed. |
366 | */ |
367 | static void drop(struct isl_coalesce_info *info) |
368 | { |
369 | clear(info); |
370 | info->removed = 1; |
371 | } |
372 | |
373 | /* Exchange the information in "info1" with that in "info2". |
374 | */ |
375 | static void exchange(struct isl_coalesce_info *info1, |
376 | struct isl_coalesce_info *info2) |
377 | { |
378 | struct isl_coalesce_info info; |
379 | |
380 | info = *info1; |
381 | *info1 = *info2; |
382 | *info2 = info; |
383 | } |
384 | |
385 | /* This type represents the kind of change that has been performed |
386 | * while trying to coalesce two basic maps. |
387 | * |
388 | * isl_change_none: nothing was changed |
389 | * isl_change_drop_first: the first basic map was removed |
390 | * isl_change_drop_second: the second basic map was removed |
391 | * isl_change_fuse: the two basic maps were replaced by a new basic map. |
392 | */ |
393 | enum isl_change { |
394 | isl_change_error = -1, |
395 | isl_change_none = 0, |
396 | isl_change_drop_first, |
397 | isl_change_drop_second, |
398 | isl_change_fuse, |
399 | }; |
400 | |
401 | /* Update "change" based on an interchange of the first and the second |
402 | * basic map. That is, interchange isl_change_drop_first and |
403 | * isl_change_drop_second. |
404 | */ |
405 | static enum isl_change invert_change(enum isl_change change) |
406 | { |
407 | switch (change) { |
408 | case isl_change_error: |
409 | return isl_change_error; |
410 | case isl_change_none: |
411 | return isl_change_none; |
412 | case isl_change_drop_first: |
413 | return isl_change_drop_second; |
414 | case isl_change_drop_second: |
415 | return isl_change_drop_first; |
416 | case isl_change_fuse: |
417 | return isl_change_fuse; |
418 | } |
419 | |
420 | return isl_change_error; |
421 | } |
422 | |
423 | /* Add the valid constraints of the basic map represented by "info" |
424 | * to "bmap". "len" is the size of the constraints. |
425 | * If only one of the pair of inequalities that make up an equality |
426 | * is valid, then add that inequality. |
427 | */ |
428 | static __isl_give isl_basic_map *add_valid_constraints( |
429 | __isl_take isl_basic_map *bmap, struct isl_coalesce_info *info, |
430 | unsigned len) |
431 | { |
432 | int k, l; |
433 | |
434 | if (!bmap) |
435 | return NULL; |
436 | |
437 | for (k = 0; k < info->bmap->n_eq; ++k) { |
438 | if (info->eq[2 * k] == STATUS_VALID && |
439 | info->eq[2 * k + 1] == STATUS_VALID) { |
440 | l = isl_basic_map_alloc_equality(bmap); |
441 | if (l < 0) |
442 | return isl_basic_map_free(bmap); |
443 | isl_seq_cpy(dst: bmap->eq[l], src: info->bmap->eq[k], len); |
444 | } else if (info->eq[2 * k] == STATUS_VALID) { |
445 | l = isl_basic_map_alloc_inequality(bmap); |
446 | if (l < 0) |
447 | return isl_basic_map_free(bmap); |
448 | isl_seq_neg(dst: bmap->ineq[l], src: info->bmap->eq[k], len); |
449 | } else if (info->eq[2 * k + 1] == STATUS_VALID) { |
450 | l = isl_basic_map_alloc_inequality(bmap); |
451 | if (l < 0) |
452 | return isl_basic_map_free(bmap); |
453 | isl_seq_cpy(dst: bmap->ineq[l], src: info->bmap->eq[k], len); |
454 | } |
455 | } |
456 | |
457 | for (k = 0; k < info->bmap->n_ineq; ++k) { |
458 | if (info->ineq[k] != STATUS_VALID) |
459 | continue; |
460 | l = isl_basic_map_alloc_inequality(bmap); |
461 | if (l < 0) |
462 | return isl_basic_map_free(bmap); |
463 | isl_seq_cpy(dst: bmap->ineq[l], src: info->bmap->ineq[k], len); |
464 | } |
465 | |
466 | return bmap; |
467 | } |
468 | |
469 | /* Is "bmap" defined by a number of (non-redundant) constraints that |
470 | * is greater than the number of constraints of basic maps i and j combined? |
471 | * Equalities are counted as two inequalities. |
472 | */ |
473 | static int number_of_constraints_increases(int i, int j, |
474 | struct isl_coalesce_info *info, |
475 | __isl_keep isl_basic_map *bmap, struct isl_tab *tab) |
476 | { |
477 | int k, n_old, n_new; |
478 | |
479 | n_old = 2 * info[i].bmap->n_eq + info[i].bmap->n_ineq; |
480 | n_old += 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq; |
481 | |
482 | n_new = 2 * bmap->n_eq; |
483 | for (k = 0; k < bmap->n_ineq; ++k) |
484 | if (!isl_tab_is_redundant(tab, con: bmap->n_eq + k)) |
485 | ++n_new; |
486 | |
487 | return n_new > n_old; |
488 | } |
489 | |
490 | /* Replace the pair of basic maps i and j by the basic map bounded |
491 | * by the valid constraints in both basic maps and the constraints |
492 | * in extra (if not NULL). |
493 | * Place the fused basic map in the position that is the smallest of i and j. |
494 | * |
495 | * If "detect_equalities" is set, then look for equalities encoded |
496 | * as pairs of inequalities. |
497 | * If "check_number" is set, then the original basic maps are only |
498 | * replaced if the total number of constraints does not increase. |
499 | * While the number of integer divisions in the two basic maps |
500 | * is assumed to be the same, the actual definitions may be different. |
501 | * We only copy the definition from one of the basic maps if it is |
502 | * the same as that of the other basic map. Otherwise, we mark |
503 | * the integer division as unknown and simplify the basic map |
504 | * in an attempt to recover the integer division definition. |
505 | * If any extra constraints get introduced, then these may |
506 | * involve integer divisions with a unit coefficient. |
507 | * Eliminate those that do not appear with any other coefficient |
508 | * in other constraints, to ensure they get eliminated completely, |
509 | * improving the chances of further coalescing. |
510 | */ |
511 | static enum isl_change fuse(int i, int j, struct isl_coalesce_info *info, |
512 | __isl_keep isl_mat *, int detect_equalities, int check_number) |
513 | { |
514 | int k, l; |
515 | struct isl_basic_map *fused = NULL; |
516 | struct isl_tab *fused_tab = NULL; |
517 | isl_size total = isl_basic_map_dim(bmap: info[i].bmap, type: isl_dim_all); |
518 | unsigned = extra ? extra->n_row : 0; |
519 | unsigned n_eq, n_ineq; |
520 | int simplify = 0; |
521 | |
522 | if (total < 0) |
523 | return isl_change_error; |
524 | if (j < i) |
525 | return fuse(i: j, j: i, info, extra, detect_equalities, check_number); |
526 | |
527 | n_eq = info[i].bmap->n_eq + info[j].bmap->n_eq; |
528 | n_ineq = info[i].bmap->n_ineq + info[j].bmap->n_ineq; |
529 | fused = isl_basic_map_alloc_space(space: isl_space_copy(space: info[i].bmap->dim), |
530 | extra: info[i].bmap->n_div, n_eq, n_ineq: n_eq + n_ineq + extra_rows); |
531 | fused = add_valid_constraints(bmap: fused, info: &info[i], len: 1 + total); |
532 | fused = add_valid_constraints(bmap: fused, info: &info[j], len: 1 + total); |
533 | if (!fused) |
534 | goto error; |
535 | if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) && |
536 | ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL)) |
537 | ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL); |
538 | |
539 | for (k = 0; k < info[i].bmap->n_div; ++k) { |
540 | int l = isl_basic_map_alloc_div(bmap: fused); |
541 | if (l < 0) |
542 | goto error; |
543 | if (isl_seq_eq(p1: info[i].bmap->div[k], p2: info[j].bmap->div[k], |
544 | len: 1 + 1 + total)) { |
545 | isl_seq_cpy(dst: fused->div[l], src: info[i].bmap->div[k], |
546 | len: 1 + 1 + total); |
547 | } else { |
548 | isl_int_set_si(fused->div[l][0], 0); |
549 | simplify = 1; |
550 | } |
551 | } |
552 | |
553 | for (k = 0; k < extra_rows; ++k) { |
554 | l = isl_basic_map_alloc_inequality(bmap: fused); |
555 | if (l < 0) |
556 | goto error; |
557 | isl_seq_cpy(dst: fused->ineq[l], src: extra->row[k], len: 1 + total); |
558 | } |
559 | |
560 | if (detect_equalities) |
561 | fused = isl_basic_map_detect_inequality_pairs(bmap: fused, NULL); |
562 | fused = isl_basic_map_gauss(bmap: fused, NULL); |
563 | if (simplify || info[j].simplify) { |
564 | fused = isl_basic_map_simplify(bmap: fused); |
565 | info[i].simplify = 0; |
566 | } else if (extra_rows > 0) { |
567 | fused = isl_basic_map_eliminate_pure_unit_divs(bmap: fused); |
568 | } |
569 | fused = isl_basic_map_finalize(bmap: fused); |
570 | |
571 | fused_tab = isl_tab_from_basic_map(bmap: fused, track: 0); |
572 | if (isl_tab_detect_redundant(tab: fused_tab) < 0) |
573 | goto error; |
574 | |
575 | if (check_number && |
576 | number_of_constraints_increases(i, j, info, bmap: fused, tab: fused_tab)) { |
577 | isl_tab_free(tab: fused_tab); |
578 | isl_basic_map_free(bmap: fused); |
579 | return isl_change_none; |
580 | } |
581 | |
582 | clear(info: &info[i]); |
583 | info[i].bmap = fused; |
584 | info[i].tab = fused_tab; |
585 | info[i].modified = 1; |
586 | drop(info: &info[j]); |
587 | |
588 | return isl_change_fuse; |
589 | error: |
590 | isl_tab_free(tab: fused_tab); |
591 | isl_basic_map_free(bmap: fused); |
592 | return isl_change_error; |
593 | } |
594 | |
595 | /* Given a pair of basic maps i and j such that all constraints are either |
596 | * "valid" or "cut", check if the facets corresponding to the "cut" |
597 | * constraints of i lie entirely within basic map j. |
598 | * If so, replace the pair by the basic map consisting of the valid |
599 | * constraints in both basic maps. |
600 | * Checking whether the facet lies entirely within basic map j |
601 | * is performed by checking whether the constraints of basic map j |
602 | * are valid for the facet. These tests are performed on a rational |
603 | * tableau to avoid the theoretical possibility that a constraint |
604 | * that was considered to be a cut constraint for the entire basic map i |
605 | * happens to be considered to be a valid constraint for the facet, |
606 | * even though it cuts off the same rational points. |
607 | * |
608 | * To see that we are not introducing any extra points, call the |
609 | * two basic maps A and B and the resulting map U and let x |
610 | * be an element of U \setminus ( A \cup B ). |
611 | * A line connecting x with an element of A \cup B meets a facet F |
612 | * of either A or B. Assume it is a facet of B and let c_1 be |
613 | * the corresponding facet constraint. We have c_1(x) < 0 and |
614 | * so c_1 is a cut constraint. This implies that there is some |
615 | * (possibly rational) point x' satisfying the constraints of A |
616 | * and the opposite of c_1 as otherwise c_1 would have been marked |
617 | * valid for A. The line connecting x and x' meets a facet of A |
618 | * in a (possibly rational) point that also violates c_1, but this |
619 | * is impossible since all cut constraints of B are valid for all |
620 | * cut facets of A. |
621 | * In case F is a facet of A rather than B, then we can apply the |
622 | * above reasoning to find a facet of B separating x from A \cup B first. |
623 | */ |
624 | static enum isl_change check_facets(int i, int j, |
625 | struct isl_coalesce_info *info) |
626 | { |
627 | int k, l; |
628 | struct isl_tab_undo *snap, *snap2; |
629 | unsigned n_eq = info[i].bmap->n_eq; |
630 | |
631 | snap = isl_tab_snap(tab: info[i].tab); |
632 | if (isl_tab_mark_rational(tab: info[i].tab) < 0) |
633 | return isl_change_error; |
634 | snap2 = isl_tab_snap(tab: info[i].tab); |
635 | |
636 | for (k = 0; k < info[i].bmap->n_ineq; ++k) { |
637 | if (info[i].ineq[k] != STATUS_CUT) |
638 | continue; |
639 | if (isl_tab_select_facet(tab: info[i].tab, con: n_eq + k) < 0) |
640 | return isl_change_error; |
641 | for (l = 0; l < info[j].bmap->n_ineq; ++l) { |
642 | int stat; |
643 | if (info[j].ineq[l] != STATUS_CUT) |
644 | continue; |
645 | stat = status_in(ineq: info[j].bmap->ineq[l], tab: info[i].tab); |
646 | if (stat < 0) |
647 | return isl_change_error; |
648 | if (stat != STATUS_VALID) |
649 | break; |
650 | } |
651 | if (isl_tab_rollback(tab: info[i].tab, snap: snap2) < 0) |
652 | return isl_change_error; |
653 | if (l < info[j].bmap->n_ineq) |
654 | break; |
655 | } |
656 | |
657 | if (k < info[i].bmap->n_ineq) { |
658 | if (isl_tab_rollback(tab: info[i].tab, snap) < 0) |
659 | return isl_change_error; |
660 | return isl_change_none; |
661 | } |
662 | return fuse(i, j, info, NULL, detect_equalities: 0, check_number: 0); |
663 | } |
664 | |
665 | /* Check if info->bmap contains the basic map represented |
666 | * by the tableau "tab". |
667 | * For each equality, we check both the constraint itself |
668 | * (as an inequality) and its negation. Make sure the |
669 | * equality is returned to its original state before returning. |
670 | */ |
671 | static isl_bool contains(struct isl_coalesce_info *info, struct isl_tab *tab) |
672 | { |
673 | int k; |
674 | isl_size dim; |
675 | isl_basic_map *bmap = info->bmap; |
676 | |
677 | dim = isl_basic_map_dim(bmap, type: isl_dim_all); |
678 | if (dim < 0) |
679 | return isl_bool_error; |
680 | for (k = 0; k < bmap->n_eq; ++k) { |
681 | int stat; |
682 | isl_seq_neg(dst: bmap->eq[k], src: bmap->eq[k], len: 1 + dim); |
683 | stat = status_in(ineq: bmap->eq[k], tab); |
684 | isl_seq_neg(dst: bmap->eq[k], src: bmap->eq[k], len: 1 + dim); |
685 | if (stat < 0) |
686 | return isl_bool_error; |
687 | if (stat != STATUS_VALID) |
688 | return isl_bool_false; |
689 | stat = status_in(ineq: bmap->eq[k], tab); |
690 | if (stat < 0) |
691 | return isl_bool_error; |
692 | if (stat != STATUS_VALID) |
693 | return isl_bool_false; |
694 | } |
695 | |
696 | for (k = 0; k < bmap->n_ineq; ++k) { |
697 | int stat; |
698 | if (info->ineq[k] == STATUS_REDUNDANT) |
699 | continue; |
700 | stat = status_in(ineq: bmap->ineq[k], tab); |
701 | if (stat < 0) |
702 | return isl_bool_error; |
703 | if (stat != STATUS_VALID) |
704 | return isl_bool_false; |
705 | } |
706 | return isl_bool_true; |
707 | } |
708 | |
709 | /* Basic map "i" has an inequality "k" that is adjacent |
710 | * to some inequality of basic map "j". All the other inequalities |
711 | * are valid for "j". |
712 | * If not NULL, then "extra" contains extra wrapping constraints that are valid |
713 | * for both "i" and "j". |
714 | * Check if basic map "j" forms an extension of basic map "i", |
715 | * taking into account the extra constraints, if any. |
716 | * |
717 | * Note that this function is only called if some of the equalities or |
718 | * inequalities of basic map "j" do cut basic map "i". The function is |
719 | * correct even if there are no such cut constraints, but in that case |
720 | * the additional checks performed by this function are overkill. |
721 | * |
722 | * In particular, we replace constraint k, say f >= 0, by constraint |
723 | * f <= -1, add the inequalities of "j" that are valid for "i", |
724 | * as well as the "extra" constraints, if any, |
725 | * and check if the result is a subset of basic map "j". |
726 | * To improve the chances of the subset relation being detected, |
727 | * any variable that only attains a single integer value |
728 | * in the tableau of "i" is first fixed to that value. |
729 | * If the result is a subset, then we know that this result is exactly equal |
730 | * to basic map "j" since all its constraints are valid for basic map "j". |
731 | * By combining the valid constraints of "i" (all equalities and all |
732 | * inequalities except "k"), the valid constraints of "j" and |
733 | * the "extra" constraints, if any, we therefore |
734 | * obtain a basic map that is equal to their union. |
735 | * In this case, there is no need to perform a rollback of the tableau |
736 | * since it is going to be destroyed in fuse(). |
737 | * |
738 | * |
739 | * |\__ |\__ |
740 | * | \__ | \__ |
741 | * | \_ => | \__ |
742 | * |_______| _ |_________\ |
743 | * |
744 | * |
745 | * |\ |\ |
746 | * | \ | \ |
747 | * | \ | \ |
748 | * | | | \ |
749 | * | ||\ => | \ |
750 | * | || \ | \ |
751 | * | || | | | |
752 | * |__||_/ |_____/ |
753 | * |
754 | * |
755 | * _______ _______ |
756 | * | | __ | \__ |
757 | * | ||__| => | __| |
758 | * |_______| |_______/ |
759 | */ |
760 | static enum isl_change is_adj_ineq_extension_with_wraps(int i, int j, int k, |
761 | struct isl_coalesce_info *info, __isl_keep isl_mat *) |
762 | { |
763 | struct isl_tab_undo *snap; |
764 | isl_size n_eq_i, n_ineq_j, ; |
765 | isl_size total = isl_basic_map_dim(bmap: info[i].bmap, type: isl_dim_all); |
766 | isl_stat r; |
767 | isl_bool super; |
768 | |
769 | if (total < 0) |
770 | return isl_change_error; |
771 | |
772 | n_eq_i = isl_basic_map_n_equality(bmap: info[i].bmap); |
773 | n_ineq_j = isl_basic_map_n_inequality(bmap: info[j].bmap); |
774 | n_extra = isl_mat_rows(mat: extra); |
775 | if (n_eq_i < 0 || n_ineq_j < 0 || n_extra < 0) |
776 | return isl_change_error; |
777 | |
778 | if (isl_tab_extend_cons(tab: info[i].tab, n_new: 1 + n_ineq_j + n_extra) < 0) |
779 | return isl_change_error; |
780 | |
781 | snap = isl_tab_snap(tab: info[i].tab); |
782 | |
783 | if (isl_tab_unrestrict(tab: info[i].tab, con: n_eq_i + k) < 0) |
784 | return isl_change_error; |
785 | |
786 | isl_seq_neg(dst: info[i].bmap->ineq[k], src: info[i].bmap->ineq[k], len: 1 + total); |
787 | isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1); |
788 | r = isl_tab_add_ineq(tab: info[i].tab, ineq: info[i].bmap->ineq[k]); |
789 | isl_seq_neg(dst: info[i].bmap->ineq[k], src: info[i].bmap->ineq[k], len: 1 + total); |
790 | isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1); |
791 | if (r < 0) |
792 | return isl_change_error; |
793 | |
794 | for (k = 0; k < n_ineq_j; ++k) { |
795 | if (info[j].ineq[k] != STATUS_VALID) |
796 | continue; |
797 | if (isl_tab_add_ineq(tab: info[i].tab, ineq: info[j].bmap->ineq[k]) < 0) |
798 | return isl_change_error; |
799 | } |
800 | for (k = 0; k < n_extra; ++k) { |
801 | if (isl_tab_add_ineq(tab: info[i].tab, ineq: extra->row[k]) < 0) |
802 | return isl_change_error; |
803 | } |
804 | if (isl_tab_detect_constants(tab: info[i].tab) < 0) |
805 | return isl_change_error; |
806 | |
807 | super = contains(info: &info[j], tab: info[i].tab); |
808 | if (super < 0) |
809 | return isl_change_error; |
810 | if (super) |
811 | return fuse(i, j, info, extra, detect_equalities: 0, check_number: 0); |
812 | |
813 | if (isl_tab_rollback(tab: info[i].tab, snap) < 0) |
814 | return isl_change_error; |
815 | |
816 | return isl_change_none; |
817 | } |
818 | |
819 | /* Given an affine transformation matrix "T", does row "row" represent |
820 | * anything other than a unit vector (possibly shifted by a constant) |
821 | * that is not involved in any of the other rows? |
822 | * |
823 | * That is, if a constraint involves the variable corresponding to |
824 | * the row, then could its preimage by "T" have any coefficients |
825 | * that are different from those in the original constraint? |
826 | */ |
827 | static int not_unique_unit_row(__isl_keep isl_mat *T, int row) |
828 | { |
829 | int i, j; |
830 | int len = T->n_col - 1; |
831 | |
832 | i = isl_seq_first_non_zero(p: T->row[row] + 1, len); |
833 | if (i < 0) |
834 | return 1; |
835 | if (!isl_int_is_one(T->row[row][1 + i]) && |
836 | !isl_int_is_negone(T->row[row][1 + i])) |
837 | return 1; |
838 | |
839 | j = isl_seq_first_non_zero(p: T->row[row] + 1 + i + 1, len: len - (i + 1)); |
840 | if (j >= 0) |
841 | return 1; |
842 | |
843 | for (j = 1; j < T->n_row; ++j) { |
844 | if (j == row) |
845 | continue; |
846 | if (!isl_int_is_zero(T->row[j][1 + i])) |
847 | return 1; |
848 | } |
849 | |
850 | return 0; |
851 | } |
852 | |
853 | /* Does inequality constraint "ineq" of "bmap" involve any of |
854 | * the variables marked in "affected"? |
855 | * "total" is the total number of variables, i.e., the number |
856 | * of entries in "affected". |
857 | */ |
858 | static isl_bool is_affected(__isl_keep isl_basic_map *bmap, int ineq, |
859 | int *affected, int total) |
860 | { |
861 | int i; |
862 | |
863 | for (i = 0; i < total; ++i) { |
864 | if (!affected[i]) |
865 | continue; |
866 | if (!isl_int_is_zero(bmap->ineq[ineq][1 + i])) |
867 | return isl_bool_true; |
868 | } |
869 | |
870 | return isl_bool_false; |
871 | } |
872 | |
873 | /* Given the compressed version of inequality constraint "ineq" |
874 | * of info->bmap in "v", check if the constraint can be tightened, |
875 | * where the compression is based on an equality constraint valid |
876 | * for info->tab. |
877 | * If so, add the tightened version of the inequality constraint |
878 | * to info->tab. "v" may be modified by this function. |
879 | * |
880 | * That is, if the compressed constraint is of the form |
881 | * |
882 | * m f() + c >= 0 |
883 | * |
884 | * with 0 < c < m, then it is equivalent to |
885 | * |
886 | * f() >= 0 |
887 | * |
888 | * This means that c can also be subtracted from the original, |
889 | * uncompressed constraint without affecting the integer points |
890 | * in info->tab. Add this tightened constraint as an extra row |
891 | * to info->tab to make this information explicitly available. |
892 | */ |
893 | static __isl_give isl_vec *try_tightening(struct isl_coalesce_info *info, |
894 | int ineq, __isl_take isl_vec *v) |
895 | { |
896 | isl_ctx *ctx; |
897 | isl_stat r; |
898 | |
899 | if (!v) |
900 | return NULL; |
901 | |
902 | ctx = isl_vec_get_ctx(vec: v); |
903 | isl_seq_gcd(p: v->el + 1, len: v->size - 1, gcd: &ctx->normalize_gcd); |
904 | if (isl_int_is_zero(ctx->normalize_gcd) || |
905 | isl_int_is_one(ctx->normalize_gcd)) { |
906 | return v; |
907 | } |
908 | |
909 | v = isl_vec_cow(vec: v); |
910 | if (!v) |
911 | return NULL; |
912 | |
913 | isl_int_fdiv_r(v->el[0], v->el[0], ctx->normalize_gcd); |
914 | if (isl_int_is_zero(v->el[0])) |
915 | return v; |
916 | |
917 | if (isl_tab_extend_cons(tab: info->tab, n_new: 1) < 0) |
918 | return isl_vec_free(vec: v); |
919 | |
920 | isl_int_sub(info->bmap->ineq[ineq][0], |
921 | info->bmap->ineq[ineq][0], v->el[0]); |
922 | r = isl_tab_add_ineq(tab: info->tab, ineq: info->bmap->ineq[ineq]); |
923 | isl_int_add(info->bmap->ineq[ineq][0], |
924 | info->bmap->ineq[ineq][0], v->el[0]); |
925 | |
926 | if (r < 0) |
927 | return isl_vec_free(vec: v); |
928 | |
929 | return v; |
930 | } |
931 | |
932 | /* Tighten the (non-redundant) constraints on the facet represented |
933 | * by info->tab. |
934 | * In particular, on input, info->tab represents the result |
935 | * of relaxing the "n" inequality constraints of info->bmap in "relaxed" |
936 | * by one, i.e., replacing f_i >= 0 by f_i + 1 >= 0, and then |
937 | * replacing the one at index "l" by the corresponding equality, |
938 | * i.e., f_k + 1 = 0, with k = relaxed[l]. |
939 | * |
940 | * Compute a variable compression from the equality constraint f_k + 1 = 0 |
941 | * and use it to tighten the other constraints of info->bmap |
942 | * (that is, all constraints that have not been relaxed), |
943 | * updating info->tab (and leaving info->bmap untouched). |
944 | * The compression handles essentially two cases, one where a variable |
945 | * is assigned a fixed value and can therefore be eliminated, and one |
946 | * where one variable is a shifted multiple of some other variable and |
947 | * can therefore be replaced by that multiple. |
948 | * Gaussian elimination would also work for the first case, but for |
949 | * the second case, the effectiveness would depend on the order |
950 | * of the variables. |
951 | * After compression, some of the constraints may have coefficients |
952 | * with a common divisor. If this divisor does not divide the constant |
953 | * term, then the constraint can be tightened. |
954 | * The tightening is performed on the tableau info->tab by introducing |
955 | * extra (temporary) constraints. |
956 | * |
957 | * Only constraints that are possibly affected by the compression are |
958 | * considered. In particular, if the constraint only involves variables |
959 | * that are directly mapped to a distinct set of other variables, then |
960 | * no common divisor can be introduced and no tightening can occur. |
961 | * |
962 | * It is important to only consider the non-redundant constraints |
963 | * since the facet constraint has been relaxed prior to the call |
964 | * to this function, meaning that the constraints that were redundant |
965 | * prior to the relaxation may no longer be redundant. |
966 | * These constraints will be ignored in the fused result, so |
967 | * the fusion detection should not exploit them. |
968 | */ |
969 | static isl_stat tighten_on_relaxed_facet(struct isl_coalesce_info *info, |
970 | int n, int *relaxed, int l) |
971 | { |
972 | isl_size total; |
973 | isl_ctx *ctx; |
974 | isl_vec *v = NULL; |
975 | isl_mat *T; |
976 | int i; |
977 | int k; |
978 | int *affected; |
979 | |
980 | k = relaxed[l]; |
981 | ctx = isl_basic_map_get_ctx(bmap: info->bmap); |
982 | total = isl_basic_map_dim(bmap: info->bmap, type: isl_dim_all); |
983 | if (total < 0) |
984 | return isl_stat_error; |
985 | isl_int_add_ui(info->bmap->ineq[k][0], info->bmap->ineq[k][0], 1); |
986 | T = isl_mat_sub_alloc6(ctx, row: info->bmap->ineq, first_row: k, n_row: 1, first_col: 0, n_col: 1 + total); |
987 | T = isl_mat_variable_compression(B: T, NULL); |
988 | isl_int_sub_ui(info->bmap->ineq[k][0], info->bmap->ineq[k][0], 1); |
989 | if (!T) |
990 | return isl_stat_error; |
991 | if (T->n_col == 0) { |
992 | isl_mat_free(mat: T); |
993 | return isl_stat_ok; |
994 | } |
995 | |
996 | affected = isl_alloc_array(ctx, int, total); |
997 | if (!affected) |
998 | goto error; |
999 | |
1000 | for (i = 0; i < total; ++i) |
1001 | affected[i] = not_unique_unit_row(T, row: 1 + i); |
1002 | |
1003 | for (i = 0; i < info->bmap->n_ineq; ++i) { |
1004 | isl_bool handle; |
1005 | if (any(con: relaxed, len: n, status: i)) |
1006 | continue; |
1007 | if (info->ineq[i] == STATUS_REDUNDANT) |
1008 | continue; |
1009 | handle = is_affected(bmap: info->bmap, ineq: i, affected, total); |
1010 | if (handle < 0) |
1011 | goto error; |
1012 | if (!handle) |
1013 | continue; |
1014 | v = isl_vec_alloc(ctx, size: 1 + total); |
1015 | if (!v) |
1016 | goto error; |
1017 | isl_seq_cpy(dst: v->el, src: info->bmap->ineq[i], len: 1 + total); |
1018 | v = isl_vec_mat_product(vec: v, mat: isl_mat_copy(mat: T)); |
1019 | v = try_tightening(info, ineq: i, v); |
1020 | isl_vec_free(vec: v); |
1021 | if (!v) |
1022 | goto error; |
1023 | } |
1024 | |
1025 | isl_mat_free(mat: T); |
1026 | free(ptr: affected); |
1027 | return isl_stat_ok; |
1028 | error: |
1029 | isl_mat_free(mat: T); |
1030 | free(ptr: affected); |
1031 | return isl_stat_error; |
1032 | } |
1033 | |
1034 | /* Replace the basic maps "i" and "j" by an extension of "i" |
1035 | * along the "n" inequality constraints in "relax" by one. |
1036 | * The tableau info[i].tab has already been extended. |
1037 | * Extend info[i].bmap accordingly by relaxing all constraints in "relax" |
1038 | * by one. |
1039 | * Each integer division that does not have exactly the same |
1040 | * definition in "i" and "j" is marked unknown and the basic map |
1041 | * is scheduled to be simplified in an attempt to recover |
1042 | * the integer division definition. |
1043 | * Place the extension in the position that is the smallest of i and j. |
1044 | */ |
1045 | static enum isl_change extend(int i, int j, int n, int *relax, |
1046 | struct isl_coalesce_info *info) |
1047 | { |
1048 | int l; |
1049 | isl_size total; |
1050 | |
1051 | info[i].bmap = isl_basic_map_cow(bmap: info[i].bmap); |
1052 | total = isl_basic_map_dim(bmap: info[i].bmap, type: isl_dim_all); |
1053 | if (total < 0) |
1054 | return isl_change_error; |
1055 | for (l = 0; l < info[i].bmap->n_div; ++l) |
1056 | if (!isl_seq_eq(p1: info[i].bmap->div[l], |
1057 | p2: info[j].bmap->div[l], len: 1 + 1 + total)) { |
1058 | isl_int_set_si(info[i].bmap->div[l][0], 0); |
1059 | info[i].simplify = 1; |
1060 | } |
1061 | for (l = 0; l < n; ++l) |
1062 | isl_int_add_ui(info[i].bmap->ineq[relax[l]][0], |
1063 | info[i].bmap->ineq[relax[l]][0], 1); |
1064 | ISL_F_CLR(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT); |
1065 | ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_FINAL); |
1066 | drop(info: &info[j]); |
1067 | info[i].modified = 1; |
1068 | if (j < i) |
1069 | exchange(info1: &info[i], info2: &info[j]); |
1070 | return isl_change_fuse; |
1071 | } |
1072 | |
1073 | /* Basic map "i" has "n" inequality constraints (collected in "relax") |
1074 | * that are such that they include basic map "j" if they are relaxed |
1075 | * by one. All the other inequalities are valid for "j". |
1076 | * Check if basic map "j" forms an extension of basic map "i". |
1077 | * |
1078 | * In particular, relax the constraints in "relax", compute the corresponding |
1079 | * facets one by one and check whether each of these is included |
1080 | * in the other basic map. |
1081 | * Before testing for inclusion, the constraints on each facet |
1082 | * are tightened to increase the chance of an inclusion being detected. |
1083 | * (Adding the valid constraints of "j" to the tableau of "i", as is done |
1084 | * in is_adj_ineq_extension, may further increase those chances, but this |
1085 | * is not currently done.) |
1086 | * If each facet is included, we know that relaxing the constraints extends |
1087 | * the basic map with exactly the other basic map (we already know that this |
1088 | * other basic map is included in the extension, because all other |
1089 | * inequality constraints are valid of "j") and we can replace the |
1090 | * two basic maps by this extension. |
1091 | * |
1092 | * If any of the relaxed constraints turn out to be redundant, then bail out. |
1093 | * isl_tab_select_facet refuses to handle such constraints. It may be |
1094 | * possible to handle them anyway by making a distinction between |
1095 | * redundant constraints with a corresponding facet that still intersects |
1096 | * the set (allowing isl_tab_select_facet to handle them) and |
1097 | * those where the facet does not intersect the set (which can be ignored |
1098 | * because the empty facet is trivially included in the other disjunct). |
1099 | * However, relaxed constraints that turn out to be redundant should |
1100 | * be fairly rare and no such instance has been reported where |
1101 | * coalescing would be successful. |
1102 | * ____ _____ |
1103 | * / || / | |
1104 | * / || / | |
1105 | * \ || => \ | |
1106 | * \ || \ | |
1107 | * \___|| \____| |
1108 | * |
1109 | * |
1110 | * \ |\ |
1111 | * |\\ | \ |
1112 | * | \\ | \ |
1113 | * | | => | / |
1114 | * | / | / |
1115 | * |/ |/ |
1116 | */ |
1117 | static enum isl_change is_relaxed_extension(int i, int j, int n, int *relax, |
1118 | struct isl_coalesce_info *info) |
1119 | { |
1120 | int l; |
1121 | isl_bool super; |
1122 | struct isl_tab_undo *snap, *snap2; |
1123 | unsigned n_eq = info[i].bmap->n_eq; |
1124 | |
1125 | for (l = 0; l < n; ++l) |
1126 | if (isl_tab_is_equality(tab: info[i].tab, con: n_eq + relax[l])) |
1127 | return isl_change_none; |
1128 | |
1129 | snap = isl_tab_snap(tab: info[i].tab); |
1130 | for (l = 0; l < n; ++l) |
1131 | if (isl_tab_relax(tab: info[i].tab, con: n_eq + relax[l]) < 0) |
1132 | return isl_change_error; |
1133 | for (l = 0; l < n; ++l) { |
1134 | if (!isl_tab_is_redundant(tab: info[i].tab, con: n_eq + relax[l])) |
1135 | continue; |
1136 | if (isl_tab_rollback(tab: info[i].tab, snap) < 0) |
1137 | return isl_change_error; |
1138 | return isl_change_none; |
1139 | } |
1140 | snap2 = isl_tab_snap(tab: info[i].tab); |
1141 | for (l = 0; l < n; ++l) { |
1142 | if (isl_tab_rollback(tab: info[i].tab, snap: snap2) < 0) |
1143 | return isl_change_error; |
1144 | if (isl_tab_select_facet(tab: info[i].tab, con: n_eq + relax[l]) < 0) |
1145 | return isl_change_error; |
1146 | if (tighten_on_relaxed_facet(info: &info[i], n, relaxed: relax, l) < 0) |
1147 | return isl_change_error; |
1148 | super = contains(info: &info[j], tab: info[i].tab); |
1149 | if (super < 0) |
1150 | return isl_change_error; |
1151 | if (super) |
1152 | continue; |
1153 | if (isl_tab_rollback(tab: info[i].tab, snap) < 0) |
1154 | return isl_change_error; |
1155 | return isl_change_none; |
1156 | } |
1157 | |
1158 | if (isl_tab_rollback(tab: info[i].tab, snap: snap2) < 0) |
1159 | return isl_change_error; |
1160 | return extend(i, j, n, relax, info); |
1161 | } |
1162 | |
1163 | /* Data structure that keeps track of the wrapping constraints |
1164 | * and of information to bound the coefficients of those constraints. |
1165 | * |
1166 | * "failed" is set if wrapping has failed. |
1167 | * bound is set if we want to apply a bound on the coefficients |
1168 | * mat contains the wrapping constraints |
1169 | * max is the bound on the coefficients (if bound is set) |
1170 | */ |
1171 | struct isl_wraps { |
1172 | int failed; |
1173 | int bound; |
1174 | isl_mat *mat; |
1175 | isl_int max; |
1176 | }; |
1177 | |
1178 | /* Update wraps->max to be greater than or equal to the coefficients |
1179 | * in the equalities and inequalities of info->bmap that can be removed |
1180 | * if we end up applying wrapping. |
1181 | */ |
1182 | static isl_stat wraps_update_max(struct isl_wraps *wraps, |
1183 | struct isl_coalesce_info *info) |
1184 | { |
1185 | int k; |
1186 | isl_int max_k; |
1187 | isl_size total = isl_basic_map_dim(bmap: info->bmap, type: isl_dim_all); |
1188 | |
1189 | if (total < 0) |
1190 | return isl_stat_error; |
1191 | isl_int_init(max_k); |
1192 | |
1193 | for (k = 0; k < info->bmap->n_eq; ++k) { |
1194 | if (info->eq[2 * k] == STATUS_VALID && |
1195 | info->eq[2 * k + 1] == STATUS_VALID) |
1196 | continue; |
1197 | isl_seq_abs_max(p: info->bmap->eq[k] + 1, len: total, max: &max_k); |
1198 | if (isl_int_abs_gt(max_k, wraps->max)) |
1199 | isl_int_set(wraps->max, max_k); |
1200 | } |
1201 | |
1202 | for (k = 0; k < info->bmap->n_ineq; ++k) { |
1203 | if (info->ineq[k] == STATUS_VALID || |
1204 | info->ineq[k] == STATUS_REDUNDANT) |
1205 | continue; |
1206 | isl_seq_abs_max(p: info->bmap->ineq[k] + 1, len: total, max: &max_k); |
1207 | if (isl_int_abs_gt(max_k, wraps->max)) |
1208 | isl_int_set(wraps->max, max_k); |
1209 | } |
1210 | |
1211 | isl_int_clear(max_k); |
1212 | |
1213 | return isl_stat_ok; |
1214 | } |
1215 | |
1216 | /* Initialize the isl_wraps data structure. |
1217 | * If we want to bound the coefficients of the wrapping constraints, |
1218 | * we set wraps->max to the largest coefficient |
1219 | * in the equalities and inequalities that can be removed if we end up |
1220 | * applying wrapping. |
1221 | */ |
1222 | static isl_stat wraps_init(struct isl_wraps *wraps, __isl_take isl_mat *mat, |
1223 | struct isl_coalesce_info *info, int i, int j) |
1224 | { |
1225 | isl_ctx *ctx; |
1226 | |
1227 | wraps->failed = 0; |
1228 | wraps->bound = 0; |
1229 | wraps->mat = mat; |
1230 | if (!mat) |
1231 | return isl_stat_error; |
1232 | wraps->mat->n_row = 0; |
1233 | ctx = isl_mat_get_ctx(mat); |
1234 | wraps->bound = isl_options_get_coalesce_bounded_wrapping(ctx); |
1235 | if (!wraps->bound) |
1236 | return isl_stat_ok; |
1237 | isl_int_init(wraps->max); |
1238 | isl_int_set_si(wraps->max, 0); |
1239 | if (wraps_update_max(wraps, info: &info[i]) < 0) |
1240 | return isl_stat_error; |
1241 | if (wraps_update_max(wraps, info: &info[j]) < 0) |
1242 | return isl_stat_error; |
1243 | |
1244 | return isl_stat_ok; |
1245 | } |
1246 | |
1247 | /* Free the contents of the isl_wraps data structure. |
1248 | */ |
1249 | static void wraps_free(struct isl_wraps *wraps) |
1250 | { |
1251 | isl_mat_free(mat: wraps->mat); |
1252 | if (wraps->bound) |
1253 | isl_int_clear(wraps->max); |
1254 | } |
1255 | |
1256 | /* Mark the wrapping as failed. |
1257 | */ |
1258 | static isl_stat wraps_mark_failed(struct isl_wraps *wraps) |
1259 | { |
1260 | wraps->failed = 1; |
1261 | return isl_stat_ok; |
1262 | } |
1263 | |
1264 | /* Is the wrapping constraint in row "row" allowed? |
1265 | * |
1266 | * If wraps->bound is set, we check that none of the coefficients |
1267 | * is greater than wraps->max. |
1268 | */ |
1269 | static int allow_wrap(struct isl_wraps *wraps, int row) |
1270 | { |
1271 | int i; |
1272 | |
1273 | if (!wraps->bound) |
1274 | return 1; |
1275 | |
1276 | for (i = 1; i < wraps->mat->n_col; ++i) |
1277 | if (isl_int_abs_gt(wraps->mat->row[row][i], wraps->max)) |
1278 | return 0; |
1279 | |
1280 | return 1; |
1281 | } |
1282 | |
1283 | /* Wrap "ineq" (or its opposite if "negate" is set) around "bound" |
1284 | * to include "set" and add the result in position "w" of "wraps". |
1285 | * "len" is the total number of coefficients in "bound" and "ineq". |
1286 | * Return 1 on success, 0 on failure and -1 on error. |
1287 | * Wrapping can fail if the result of wrapping is equal to "bound" |
1288 | * or if we want to bound the sizes of the coefficients and |
1289 | * the wrapped constraint does not satisfy this bound. |
1290 | */ |
1291 | static int add_wrap(struct isl_wraps *wraps, int w, isl_int *bound, |
1292 | isl_int *ineq, unsigned len, __isl_keep isl_set *set, int negate) |
1293 | { |
1294 | isl_seq_cpy(dst: wraps->mat->row[w], src: bound, len); |
1295 | if (negate) { |
1296 | isl_seq_neg(dst: wraps->mat->row[w + 1], src: ineq, len); |
1297 | ineq = wraps->mat->row[w + 1]; |
1298 | } |
1299 | if (!isl_set_wrap_facet(set, facet: wraps->mat->row[w], ridge: ineq)) |
1300 | return -1; |
1301 | if (isl_seq_eq(p1: wraps->mat->row[w], p2: bound, len)) |
1302 | return 0; |
1303 | if (!allow_wrap(wraps, row: w)) |
1304 | return 0; |
1305 | return 1; |
1306 | } |
1307 | |
1308 | /* This function has two modes of operations. |
1309 | * |
1310 | * If "add_valid" is set, then all the constraints of info->bmap |
1311 | * (except the opposite of "bound") are valid for the other basic map. |
1312 | * In this case, attempts are made to wrap some of these valid constraints |
1313 | * to more tightly fit around "set". Only successful wrappings are recorded |
1314 | * and failed wrappings are ignored. |
1315 | * |
1316 | * If "add_valid" is not set, then some of the constraints of info->bmap |
1317 | * are not valid for the other basic map, and only those are considered |
1318 | * for wrapping. In this case all attempted wrappings need to succeed. |
1319 | * Otherwise "wraps" is marked as failed. |
1320 | * Note that the constraints that are valid for the other basic map |
1321 | * will be added to the combined basic map by default, so there is |
1322 | * no need to wrap them. |
1323 | * The caller wrap_in_facets even relies on this function not wrapping |
1324 | * any constraints that are already valid. |
1325 | * |
1326 | * Only consider constraints that are not redundant (as determined |
1327 | * by info->tab) and that are valid or invalid depending on "add_valid". |
1328 | * Wrap each constraint around "bound" such that it includes the whole |
1329 | * set "set" and append the resulting constraint to "wraps". |
1330 | * "wraps" is assumed to have been pre-allocated to the appropriate size. |
1331 | * wraps->n_row is the number of actual wrapped constraints that have |
1332 | * been added. |
1333 | * If any of the wrapping problems results in a constraint that is |
1334 | * identical to "bound", then this means that "set" is unbounded in such |
1335 | * a way that no wrapping is possible. |
1336 | * Similarly, if we want to bound the coefficients of the wrapping |
1337 | * constraints and a newly added wrapping constraint does not |
1338 | * satisfy the bound, then the wrapping is considered to have failed. |
1339 | * Note though that "wraps" is only marked failed if "add_valid" is not set. |
1340 | */ |
1341 | static isl_stat add_selected_wraps(struct isl_wraps *wraps, |
1342 | struct isl_coalesce_info *info, isl_int *bound, __isl_keep isl_set *set, |
1343 | int add_valid) |
1344 | { |
1345 | int l, m; |
1346 | int w; |
1347 | int added; |
1348 | isl_basic_map *bmap = info->bmap; |
1349 | isl_size total = isl_basic_map_dim(bmap, type: isl_dim_all); |
1350 | unsigned len = 1 + total; |
1351 | |
1352 | if (total < 0) |
1353 | return isl_stat_error; |
1354 | |
1355 | w = wraps->mat->n_row; |
1356 | |
1357 | for (l = 0; l < bmap->n_ineq; ++l) { |
1358 | int is_valid = info->ineq[l] == STATUS_VALID; |
1359 | if ((!add_valid && is_valid) || |
1360 | info->ineq[l] == STATUS_REDUNDANT) |
1361 | continue; |
1362 | if (isl_seq_is_neg(p1: bound, p2: bmap->ineq[l], len)) |
1363 | continue; |
1364 | if (isl_seq_eq(p1: bound, p2: bmap->ineq[l], len)) |
1365 | continue; |
1366 | if (isl_tab_is_redundant(tab: info->tab, con: bmap->n_eq + l)) |
1367 | continue; |
1368 | |
1369 | added = add_wrap(wraps, w, bound, ineq: bmap->ineq[l], len, set, negate: 0); |
1370 | if (added < 0) |
1371 | return isl_stat_error; |
1372 | if (!added && !is_valid) |
1373 | goto unbounded; |
1374 | if (added) |
1375 | ++w; |
1376 | } |
1377 | for (l = 0; l < bmap->n_eq; ++l) { |
1378 | if (isl_seq_is_neg(p1: bound, p2: bmap->eq[l], len)) |
1379 | continue; |
1380 | if (isl_seq_eq(p1: bound, p2: bmap->eq[l], len)) |
1381 | continue; |
1382 | |
1383 | for (m = 0; m < 2; ++m) { |
1384 | if (info->eq[2 * l + m] == STATUS_VALID) |
1385 | continue; |
1386 | added = add_wrap(wraps, w, bound, ineq: bmap->eq[l], len, |
1387 | set, negate: !m); |
1388 | if (added < 0) |
1389 | return isl_stat_error; |
1390 | if (!added) |
1391 | goto unbounded; |
1392 | ++w; |
1393 | } |
1394 | } |
1395 | |
1396 | wraps->mat->n_row = w; |
1397 | return isl_stat_ok; |
1398 | unbounded: |
1399 | return wraps_mark_failed(wraps); |
1400 | } |
1401 | |
1402 | /* For each constraint in info->bmap that is not redundant (as determined |
1403 | * by info->tab) and that is not a valid constraint for the other basic map, |
1404 | * wrap the constraint around "bound" such that it includes the whole |
1405 | * set "set" and append the resulting constraint to "wraps". |
1406 | * Note that the constraints that are valid for the other basic map |
1407 | * will be added to the combined basic map by default, so there is |
1408 | * no need to wrap them. |
1409 | * The caller wrap_in_facets even relies on this function not wrapping |
1410 | * any constraints that are already valid. |
1411 | * "wraps" is assumed to have been pre-allocated to the appropriate size. |
1412 | * wraps->n_row is the number of actual wrapped constraints that have |
1413 | * been added. |
1414 | * If any of the wrapping problems results in a constraint that is |
1415 | * identical to "bound", then this means that "set" is unbounded in such |
1416 | * a way that no wrapping is possible. If this happens then "wraps" |
1417 | * is marked as failed. |
1418 | * Similarly, if we want to bound the coefficients of the wrapping |
1419 | * constraints and a newly added wrapping constraint does not |
1420 | * satisfy the bound, then "wraps" is also marked as failed. |
1421 | */ |
1422 | static isl_stat add_wraps(struct isl_wraps *wraps, |
1423 | struct isl_coalesce_info *info, isl_int *bound, __isl_keep isl_set *set) |
1424 | { |
1425 | return add_selected_wraps(wraps, info, bound, set, add_valid: 0); |
1426 | } |
1427 | |
1428 | /* Check if the constraints in "wraps" from "first" until the last |
1429 | * are all valid for the basic set represented by "tab", |
1430 | * dropping the invalid constraints if "keep" is set and |
1431 | * marking the wrapping as failed if "keep" is not set and |
1432 | * any constraint turns out to be invalid. |
1433 | */ |
1434 | static isl_stat check_wraps(struct isl_wraps *wraps, int first, |
1435 | struct isl_tab *tab, int keep) |
1436 | { |
1437 | int i; |
1438 | |
1439 | for (i = wraps->mat->n_row - 1; i >= first; --i) { |
1440 | enum isl_ineq_type type; |
1441 | type = isl_tab_ineq_type(tab, ineq: wraps->mat->row[i]); |
1442 | if (type == isl_ineq_error) |
1443 | return isl_stat_error; |
1444 | if (type == isl_ineq_redundant) |
1445 | continue; |
1446 | if (!keep) |
1447 | return wraps_mark_failed(wraps); |
1448 | wraps->mat = isl_mat_drop_rows(mat: wraps->mat, row: i, n: 1); |
1449 | if (!wraps->mat) |
1450 | return isl_stat_error; |
1451 | } |
1452 | |
1453 | return isl_stat_ok; |
1454 | } |
1455 | |
1456 | /* Return a set that corresponds to the non-redundant constraints |
1457 | * (as recorded in tab) of bmap. |
1458 | * |
1459 | * It's important to remove the redundant constraints as some |
1460 | * of the other constraints may have been modified after the |
1461 | * constraints were marked redundant. |
1462 | * In particular, a constraint may have been relaxed. |
1463 | * Redundant constraints are ignored when a constraint is relaxed |
1464 | * and should therefore continue to be ignored ever after. |
1465 | * Otherwise, the relaxation might be thwarted by some of |
1466 | * these constraints. |
1467 | * |
1468 | * Update the underlying set to ensure that the dimension doesn't change. |
1469 | * Otherwise the integer divisions could get dropped if the tab |
1470 | * turns out to be empty. |
1471 | */ |
1472 | static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap, |
1473 | struct isl_tab *tab) |
1474 | { |
1475 | isl_basic_set *bset; |
1476 | |
1477 | bmap = isl_basic_map_copy(bmap); |
1478 | bset = isl_basic_map_underlying_set(bmap); |
1479 | bset = isl_basic_set_cow(bset); |
1480 | bset = isl_basic_set_update_from_tab(bset, tab); |
1481 | return isl_set_from_basic_set(bset); |
1482 | } |
1483 | |
1484 | /* Does "info" have any cut constraints that are redundant? |
1485 | */ |
1486 | static isl_bool has_redundant_cuts(struct isl_coalesce_info *info) |
1487 | { |
1488 | int l; |
1489 | isl_size n_eq, n_ineq; |
1490 | |
1491 | n_eq = isl_basic_map_n_equality(bmap: info->bmap); |
1492 | n_ineq = isl_basic_map_n_inequality(bmap: info->bmap); |
1493 | if (n_eq < 0 || n_ineq < 0) |
1494 | return isl_bool_error; |
1495 | for (l = 0; l < n_ineq; ++l) { |
1496 | int red; |
1497 | |
1498 | if (info->ineq[l] != STATUS_CUT) |
1499 | continue; |
1500 | red = isl_tab_is_redundant(tab: info->tab, con: n_eq + l); |
1501 | if (red < 0) |
1502 | return isl_bool_error; |
1503 | if (red) |
1504 | return isl_bool_true; |
1505 | } |
1506 | |
1507 | return isl_bool_false; |
1508 | } |
1509 | |
1510 | /* Wrap some constraints of info->bmap that bound the facet defined |
1511 | * by inequality "k" around (the opposite of) this inequality to |
1512 | * include "set". "bound" may be used to store the negated inequality. |
1513 | * |
1514 | * If "add_valid" is set, then all ridges are already valid and |
1515 | * the purpose is to wrap "set" more tightly. In this case, |
1516 | * wrapping doesn't fail, although it is possible that no constraint |
1517 | * gets wrapped. |
1518 | * |
1519 | * If "add_valid" is not set, then some of the ridges are cut constraints |
1520 | * and only those are wrapped around "set". |
1521 | * |
1522 | * Since the wrapped constraints are not guaranteed to contain the whole |
1523 | * of info->bmap, we check them in check_wraps. |
1524 | * If any of the wrapped constraints turn out to be invalid, then |
1525 | * check_wraps will mark "wraps" as failed if "add_valid" is not set. |
1526 | * If "add_valid" is set, then the offending constraints are |
1527 | * simply removed. |
1528 | * |
1529 | * If the facet turns out to be empty, then no wrapping can be performed. |
1530 | * This is considered a failure, unless "add_valid" is set. |
1531 | * |
1532 | * If any of the cut constraints of info->bmap turn out |
1533 | * to be redundant with respect to other constraints |
1534 | * then these will neither be wrapped nor added directly to the result. |
1535 | * The result may therefore not be correct. |
1536 | * Skip wrapping and mark "wraps" as failed in this case. |
1537 | */ |
1538 | static isl_stat add_selected_wraps_around_facet(struct isl_wraps *wraps, |
1539 | struct isl_coalesce_info *info, int k, isl_int *bound, |
1540 | __isl_keep isl_set *set, int add_valid) |
1541 | { |
1542 | isl_bool nowrap; |
1543 | struct isl_tab_undo *snap; |
1544 | int n; |
1545 | isl_size total = isl_basic_map_dim(bmap: info->bmap, type: isl_dim_all); |
1546 | |
1547 | if (total < 0) |
1548 | return isl_stat_error; |
1549 | |
1550 | snap = isl_tab_snap(tab: info->tab); |
1551 | |
1552 | if (isl_tab_select_facet(tab: info->tab, con: info->bmap->n_eq + k) < 0) |
1553 | return isl_stat_error; |
1554 | if (isl_tab_detect_redundant(tab: info->tab) < 0) |
1555 | return isl_stat_error; |
1556 | if (info->tab->empty) { |
1557 | if (isl_tab_rollback(tab: info->tab, snap) < 0) |
1558 | return isl_stat_error; |
1559 | if (!add_valid) |
1560 | return wraps_mark_failed(wraps); |
1561 | return isl_stat_ok; |
1562 | } |
1563 | nowrap = has_redundant_cuts(info); |
1564 | if (nowrap < 0) |
1565 | return isl_stat_error; |
1566 | |
1567 | n = wraps->mat->n_row; |
1568 | if (!nowrap) { |
1569 | isl_seq_neg(dst: bound, src: info->bmap->ineq[k], len: 1 + total); |
1570 | |
1571 | if (add_selected_wraps(wraps, info, bound, set, add_valid) < 0) |
1572 | return isl_stat_error; |
1573 | } |
1574 | |
1575 | if (isl_tab_rollback(tab: info->tab, snap) < 0) |
1576 | return isl_stat_error; |
1577 | if (nowrap) |
1578 | return wraps_mark_failed(wraps); |
1579 | if (check_wraps(wraps, first: n, tab: info->tab, keep: add_valid) < 0) |
1580 | return isl_stat_error; |
1581 | |
1582 | return isl_stat_ok; |
1583 | } |
1584 | |
1585 | /* Wrap the constraints of info->bmap that bound the facet defined |
1586 | * by inequality "k" around (the opposite of) this inequality to |
1587 | * include "set". "bound" may be used to store the negated inequality. |
1588 | * If any of the wrapped constraints turn out to be invalid for info->bmap |
1589 | * itself, then mark "wraps" as failed. |
1590 | */ |
1591 | static isl_stat add_wraps_around_facet(struct isl_wraps *wraps, |
1592 | struct isl_coalesce_info *info, int k, isl_int *bound, |
1593 | __isl_keep isl_set *set) |
1594 | { |
1595 | return add_selected_wraps_around_facet(wraps, info, k, bound, set, add_valid: 0); |
1596 | } |
1597 | |
1598 | /* Wrap the (valid) constraints of info->bmap that bound the facet defined |
1599 | * by inequality "k" around (the opposite of) this inequality to |
1600 | * include "set" more tightly. |
1601 | * "bound" may be used to store the negated inequality. |
1602 | * Remove any wrapping constraints that turn out to be invalid |
1603 | * for info->bmap itself. |
1604 | */ |
1605 | static isl_stat add_valid_wraps_around_facet(struct isl_wraps *wraps, |
1606 | struct isl_coalesce_info *info, int k, isl_int *bound, |
1607 | __isl_keep isl_set *set) |
1608 | { |
1609 | return add_selected_wraps_around_facet(wraps, info, k, bound, set, add_valid: 1); |
1610 | } |
1611 | |
1612 | /* Basic map "i" has an inequality (say "k") that is adjacent |
1613 | * to some inequality of basic map "j". All the other inequalities |
1614 | * are valid for "j". |
1615 | * Check if basic map "j" forms an extension of basic map "i". |
1616 | * |
1617 | * Note that this function is only called if some of the equalities or |
1618 | * inequalities of basic map "j" do cut basic map "i". The function is |
1619 | * correct even if there are no such cut constraints, but in that case |
1620 | * the additional checks performed by this function are overkill. |
1621 | * |
1622 | * First try and wrap the ridges of "k" around "j". |
1623 | * Note that those ridges are already valid for "j", |
1624 | * but the wrapped versions may wrap "j" more tightly, |
1625 | * increasing the chances of "j" being detected as an extension of "i" |
1626 | */ |
1627 | static enum isl_change is_adj_ineq_extension(int i, int j, |
1628 | struct isl_coalesce_info *info) |
1629 | { |
1630 | int k; |
1631 | enum isl_change change; |
1632 | isl_size total; |
1633 | isl_size n_eq_i, n_ineq_i; |
1634 | struct isl_wraps wraps; |
1635 | isl_ctx *ctx; |
1636 | isl_mat *mat; |
1637 | isl_vec *bound; |
1638 | isl_set *set_j; |
1639 | isl_stat r; |
1640 | |
1641 | k = find_ineq(info: &info[i], STATUS_ADJ_INEQ); |
1642 | if (k < 0) |
1643 | isl_die(isl_basic_map_get_ctx(info[i].bmap), isl_error_internal, |
1644 | "info[i].ineq should have exactly one STATUS_ADJ_INEQ" , |
1645 | return isl_change_error); |
1646 | |
1647 | total = isl_basic_map_dim(bmap: info[i].bmap, type: isl_dim_all); |
1648 | n_eq_i = isl_basic_map_n_equality(bmap: info[i].bmap); |
1649 | n_ineq_i = isl_basic_map_n_inequality(bmap: info[i].bmap); |
1650 | if (total < 0 || n_eq_i < 0 || n_ineq_i < 0) |
1651 | return isl_change_error; |
1652 | |
1653 | set_j = set_from_updated_bmap(bmap: info[j].bmap, tab: info[j].tab); |
1654 | ctx = isl_basic_map_get_ctx(bmap: info[i].bmap); |
1655 | bound = isl_vec_alloc(ctx, size: 1 + total); |
1656 | mat = isl_mat_alloc(ctx, n_row: 2 * n_eq_i + n_ineq_i, n_col: 1 + total); |
1657 | if (wraps_init(wraps: &wraps, mat, info, i, j) < 0) |
1658 | goto error; |
1659 | if (!bound || !set_j) |
1660 | goto error; |
1661 | r = add_valid_wraps_around_facet(wraps: &wraps, info: &info[i], k, bound: bound->el, set: set_j); |
1662 | if (r < 0) |
1663 | goto error; |
1664 | |
1665 | change = is_adj_ineq_extension_with_wraps(i, j, k, info, extra: wraps.mat); |
1666 | |
1667 | wraps_free(wraps: &wraps); |
1668 | isl_vec_free(vec: bound); |
1669 | isl_set_free(set: set_j); |
1670 | |
1671 | return change; |
1672 | error: |
1673 | wraps_free(wraps: &wraps); |
1674 | isl_vec_free(vec: bound); |
1675 | isl_set_free(set: set_j); |
1676 | return isl_change_error; |
1677 | } |
1678 | |
1679 | /* Both basic maps have at least one inequality with and adjacent |
1680 | * (but opposite) inequality in the other basic map. |
1681 | * Check that there are no cut constraints and that there is only |
1682 | * a single pair of adjacent inequalities. |
1683 | * If so, we can replace the pair by a single basic map described |
1684 | * by all but the pair of adjacent inequalities. |
1685 | * Any additional points introduced lie strictly between the two |
1686 | * adjacent hyperplanes and can therefore be integral. |
1687 | * |
1688 | * ____ _____ |
1689 | * / ||\ / \ |
1690 | * / || \ / \ |
1691 | * \ || \ => \ \ |
1692 | * \ || / \ / |
1693 | * \___||_/ \_____/ |
1694 | * |
1695 | * The test for a single pair of adjacent inequalities is important |
1696 | * for avoiding the combination of two basic maps like the following |
1697 | * |
1698 | * /| |
1699 | * / | |
1700 | * /__| |
1701 | * _____ |
1702 | * | | |
1703 | * | | |
1704 | * |___| |
1705 | * |
1706 | * If there are some cut constraints on one side, then we may |
1707 | * still be able to fuse the two basic maps, but we need to perform |
1708 | * some additional checks in is_adj_ineq_extension. |
1709 | */ |
1710 | static enum isl_change check_adj_ineq(int i, int j, |
1711 | struct isl_coalesce_info *info) |
1712 | { |
1713 | int count_i, count_j; |
1714 | int cut_i, cut_j; |
1715 | |
1716 | count_i = count_ineq(info: &info[i], STATUS_ADJ_INEQ); |
1717 | count_j = count_ineq(info: &info[j], STATUS_ADJ_INEQ); |
1718 | |
1719 | if (count_i != 1 && count_j != 1) |
1720 | return isl_change_none; |
1721 | |
1722 | cut_i = any_eq(info: &info[i], STATUS_CUT) || any_ineq(info: &info[i], STATUS_CUT); |
1723 | cut_j = any_eq(info: &info[j], STATUS_CUT) || any_ineq(info: &info[j], STATUS_CUT); |
1724 | |
1725 | if (!cut_i && !cut_j && count_i == 1 && count_j == 1) |
1726 | return fuse(i, j, info, NULL, detect_equalities: 0, check_number: 0); |
1727 | |
1728 | if (count_i == 1 && !cut_i) |
1729 | return is_adj_ineq_extension(i, j, info); |
1730 | |
1731 | if (count_j == 1 && !cut_j) |
1732 | return is_adj_ineq_extension(i: j, j: i, info); |
1733 | |
1734 | return isl_change_none; |
1735 | } |
1736 | |
1737 | /* Given a basic set i with a constraint k that is adjacent to |
1738 | * basic set j, check if we can wrap |
1739 | * both the facet corresponding to k (if "wrap_facet" is set) and basic map j |
1740 | * (always) around their ridges to include the other set. |
1741 | * If so, replace the pair of basic sets by their union. |
1742 | * |
1743 | * All constraints of i (except k) are assumed to be valid or |
1744 | * cut constraints for j. |
1745 | * Wrapping the cut constraints to include basic map j may result |
1746 | * in constraints that are no longer valid of basic map i |
1747 | * we have to check that the resulting wrapping constraints are valid for i. |
1748 | * If "wrap_facet" is not set, then all constraints of i (except k) |
1749 | * are assumed to be valid for j. |
1750 | * ____ _____ |
1751 | * / | / \ |
1752 | * / || / | |
1753 | * \ || => \ | |
1754 | * \ || \ | |
1755 | * \___|| \____| |
1756 | * |
1757 | */ |
1758 | static enum isl_change can_wrap_in_facet(int i, int j, int k, |
1759 | struct isl_coalesce_info *info, int wrap_facet) |
1760 | { |
1761 | enum isl_change change = isl_change_none; |
1762 | struct isl_wraps wraps; |
1763 | isl_ctx *ctx; |
1764 | isl_mat *mat; |
1765 | struct isl_set *set_i = NULL; |
1766 | struct isl_set *set_j = NULL; |
1767 | struct isl_vec *bound = NULL; |
1768 | isl_size total = isl_basic_map_dim(bmap: info[i].bmap, type: isl_dim_all); |
1769 | |
1770 | if (total < 0) |
1771 | return isl_change_error; |
1772 | set_i = set_from_updated_bmap(bmap: info[i].bmap, tab: info[i].tab); |
1773 | set_j = set_from_updated_bmap(bmap: info[j].bmap, tab: info[j].tab); |
1774 | ctx = isl_basic_map_get_ctx(bmap: info[i].bmap); |
1775 | mat = isl_mat_alloc(ctx, n_row: 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) + |
1776 | info[i].bmap->n_ineq + info[j].bmap->n_ineq, |
1777 | n_col: 1 + total); |
1778 | if (wraps_init(wraps: &wraps, mat, info, i, j) < 0) |
1779 | goto error; |
1780 | bound = isl_vec_alloc(ctx, size: 1 + total); |
1781 | if (!set_i || !set_j || !bound) |
1782 | goto error; |
1783 | |
1784 | isl_seq_cpy(dst: bound->el, src: info[i].bmap->ineq[k], len: 1 + total); |
1785 | isl_int_add_ui(bound->el[0], bound->el[0], 1); |
1786 | isl_seq_normalize(ctx, p: bound->el, len: 1 + total); |
1787 | |
1788 | isl_seq_cpy(dst: wraps.mat->row[0], src: bound->el, len: 1 + total); |
1789 | wraps.mat->n_row = 1; |
1790 | |
1791 | if (add_wraps(wraps: &wraps, info: &info[j], bound: bound->el, set: set_i) < 0) |
1792 | goto error; |
1793 | if (wraps.failed) |
1794 | goto unbounded; |
1795 | |
1796 | if (wrap_facet) { |
1797 | if (add_wraps_around_facet(wraps: &wraps, info: &info[i], k, |
1798 | bound: bound->el, set: set_j) < 0) |
1799 | goto error; |
1800 | if (wraps.failed) |
1801 | goto unbounded; |
1802 | } |
1803 | |
1804 | change = fuse(i, j, info, extra: wraps.mat, detect_equalities: 0, check_number: 0); |
1805 | |
1806 | unbounded: |
1807 | wraps_free(wraps: &wraps); |
1808 | |
1809 | isl_set_free(set: set_i); |
1810 | isl_set_free(set: set_j); |
1811 | |
1812 | isl_vec_free(vec: bound); |
1813 | |
1814 | return change; |
1815 | error: |
1816 | wraps_free(wraps: &wraps); |
1817 | isl_vec_free(vec: bound); |
1818 | isl_set_free(set: set_i); |
1819 | isl_set_free(set: set_j); |
1820 | return isl_change_error; |
1821 | } |
1822 | |
1823 | /* Given a cut constraint t(x) >= 0 of basic map i, stored in row "w" |
1824 | * of wrap.mat, replace it by its relaxed version t(x) + 1 >= 0, and |
1825 | * add wrapping constraints to wrap.mat for all constraints |
1826 | * of basic map j that bound the part of basic map j that sticks out |
1827 | * of the cut constraint. |
1828 | * "set_i" is the underlying set of basic map i. |
1829 | * If any wrapping fails, then wraps->mat.n_row is reset to zero. |
1830 | * |
1831 | * In particular, we first intersect basic map j with t(x) + 1 = 0. |
1832 | * If the result is empty, then t(x) >= 0 was actually a valid constraint |
1833 | * (with respect to the integer points), so we add t(x) >= 0 instead. |
1834 | * Otherwise, we wrap the constraints of basic map j that are not |
1835 | * redundant in this intersection and that are not already valid |
1836 | * for basic map i over basic map i. |
1837 | * Note that it is sufficient to wrap the constraints to include |
1838 | * basic map i, because we will only wrap the constraints that do |
1839 | * not include basic map i already. The wrapped constraint will |
1840 | * therefore be more relaxed compared to the original constraint. |
1841 | * Since the original constraint is valid for basic map j, so is |
1842 | * the wrapped constraint. |
1843 | */ |
1844 | static isl_stat wrap_in_facet(struct isl_wraps *wraps, int w, |
1845 | struct isl_coalesce_info *info_j, __isl_keep isl_set *set_i, |
1846 | struct isl_tab_undo *snap) |
1847 | { |
1848 | isl_int_add_ui(wraps->mat->row[w][0], wraps->mat->row[w][0], 1); |
1849 | if (isl_tab_add_eq(tab: info_j->tab, eq: wraps->mat->row[w]) < 0) |
1850 | return isl_stat_error; |
1851 | if (isl_tab_detect_redundant(tab: info_j->tab) < 0) |
1852 | return isl_stat_error; |
1853 | |
1854 | if (info_j->tab->empty) |
1855 | isl_int_sub_ui(wraps->mat->row[w][0], wraps->mat->row[w][0], 1); |
1856 | else if (add_wraps(wraps, info: info_j, bound: wraps->mat->row[w], set: set_i) < 0) |
1857 | return isl_stat_error; |
1858 | |
1859 | if (isl_tab_rollback(tab: info_j->tab, snap) < 0) |
1860 | return isl_stat_error; |
1861 | |
1862 | return isl_stat_ok; |
1863 | } |
1864 | |
1865 | /* Given a pair of basic maps i and j such that j sticks out |
1866 | * of i at n cut constraints, each time by at most one, |
1867 | * try to compute wrapping constraints and replace the two |
1868 | * basic maps by a single basic map. |
1869 | * The other constraints of i are assumed to be valid for j. |
1870 | * "set_i" is the underlying set of basic map i. |
1871 | * "wraps" has been initialized to be of the right size. |
1872 | * |
1873 | * For each cut constraint t(x) >= 0 of i, we add the relaxed version |
1874 | * t(x) + 1 >= 0, along with wrapping constraints for all constraints |
1875 | * of basic map j that bound the part of basic map j that sticks out |
1876 | * of the cut constraint. |
1877 | * |
1878 | * If any wrapping fails, i.e., if we cannot wrap to touch |
1879 | * the union, then we give up. |
1880 | * Otherwise, the pair of basic maps is replaced by their union. |
1881 | */ |
1882 | static enum isl_change try_wrap_in_facets(int i, int j, |
1883 | struct isl_coalesce_info *info, struct isl_wraps *wraps, |
1884 | __isl_keep isl_set *set_i) |
1885 | { |
1886 | int k, l, w; |
1887 | isl_size total; |
1888 | struct isl_tab_undo *snap; |
1889 | |
1890 | total = isl_basic_map_dim(bmap: info[i].bmap, type: isl_dim_all); |
1891 | if (total < 0) |
1892 | return isl_change_error; |
1893 | |
1894 | snap = isl_tab_snap(tab: info[j].tab); |
1895 | |
1896 | for (k = 0; k < info[i].bmap->n_eq; ++k) { |
1897 | for (l = 0; l < 2; ++l) { |
1898 | if (info[i].eq[2 * k + l] != STATUS_CUT) |
1899 | continue; |
1900 | w = wraps->mat->n_row++; |
1901 | if (l == 0) |
1902 | isl_seq_neg(dst: wraps->mat->row[w], |
1903 | src: info[i].bmap->eq[k], len: 1 + total); |
1904 | else |
1905 | isl_seq_cpy(dst: wraps->mat->row[w], |
1906 | src: info[i].bmap->eq[k], len: 1 + total); |
1907 | if (wrap_in_facet(wraps, w, info_j: &info[j], set_i, snap) < 0) |
1908 | return isl_change_error; |
1909 | |
1910 | if (wraps->failed) |
1911 | return isl_change_none; |
1912 | } |
1913 | } |
1914 | |
1915 | for (k = 0; k < info[i].bmap->n_ineq; ++k) { |
1916 | if (info[i].ineq[k] != STATUS_CUT) |
1917 | continue; |
1918 | w = wraps->mat->n_row++; |
1919 | isl_seq_cpy(dst: wraps->mat->row[w], |
1920 | src: info[i].bmap->ineq[k], len: 1 + total); |
1921 | if (wrap_in_facet(wraps, w, info_j: &info[j], set_i, snap) < 0) |
1922 | return isl_change_error; |
1923 | |
1924 | if (wraps->failed) |
1925 | return isl_change_none; |
1926 | } |
1927 | |
1928 | return fuse(i, j, info, extra: wraps->mat, detect_equalities: 0, check_number: 1); |
1929 | } |
1930 | |
1931 | /* Given a pair of basic maps i and j such that j sticks out |
1932 | * of i at n cut constraints, each time by at most one, |
1933 | * try to compute wrapping constraints and replace the two |
1934 | * basic maps by a single basic map. |
1935 | * The other constraints of i are assumed to be valid for j. |
1936 | * |
1937 | * The core computation is performed by try_wrap_in_facets. |
1938 | * This function simply extracts an underlying set representation |
1939 | * of basic map i and initializes the data structure for keeping |
1940 | * track of wrapping constraints. |
1941 | */ |
1942 | static enum isl_change wrap_in_facets(int i, int j, int n, |
1943 | struct isl_coalesce_info *info) |
1944 | { |
1945 | enum isl_change change = isl_change_none; |
1946 | struct isl_wraps wraps; |
1947 | isl_ctx *ctx; |
1948 | isl_mat *mat; |
1949 | isl_set *set_i = NULL; |
1950 | isl_size total = isl_basic_map_dim(bmap: info[i].bmap, type: isl_dim_all); |
1951 | int max_wrap; |
1952 | |
1953 | if (total < 0) |
1954 | return isl_change_error; |
1955 | if (isl_tab_extend_cons(tab: info[j].tab, n_new: 1) < 0) |
1956 | return isl_change_error; |
1957 | |
1958 | max_wrap = 1 + 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq; |
1959 | max_wrap *= n; |
1960 | |
1961 | set_i = set_from_updated_bmap(bmap: info[i].bmap, tab: info[i].tab); |
1962 | ctx = isl_basic_map_get_ctx(bmap: info[i].bmap); |
1963 | mat = isl_mat_alloc(ctx, n_row: max_wrap, n_col: 1 + total); |
1964 | if (wraps_init(wraps: &wraps, mat, info, i, j) < 0) |
1965 | goto error; |
1966 | if (!set_i) |
1967 | goto error; |
1968 | |
1969 | change = try_wrap_in_facets(i, j, info, wraps: &wraps, set_i); |
1970 | |
1971 | wraps_free(wraps: &wraps); |
1972 | isl_set_free(set: set_i); |
1973 | |
1974 | return change; |
1975 | error: |
1976 | wraps_free(wraps: &wraps); |
1977 | isl_set_free(set: set_i); |
1978 | return isl_change_error; |
1979 | } |
1980 | |
1981 | /* Return the effect of inequality "ineq" on the tableau "tab", |
1982 | * after relaxing the constant term of "ineq" by one. |
1983 | */ |
1984 | static enum isl_ineq_type type_of_relaxed(struct isl_tab *tab, isl_int *ineq) |
1985 | { |
1986 | enum isl_ineq_type type; |
1987 | |
1988 | isl_int_add_ui(ineq[0], ineq[0], 1); |
1989 | type = isl_tab_ineq_type(tab, ineq); |
1990 | isl_int_sub_ui(ineq[0], ineq[0], 1); |
1991 | |
1992 | return type; |
1993 | } |
1994 | |
1995 | /* Given two basic sets i and j, |
1996 | * check if relaxing all the cut constraints of i by one turns |
1997 | * them into valid constraint for j and check if we can wrap in |
1998 | * the bits that are sticking out. |
1999 | * If so, replace the pair by their union. |
2000 | * |
2001 | * We first check if all relaxed cut inequalities of i are valid for j |
2002 | * and then try to wrap in the intersections of the relaxed cut inequalities |
2003 | * with j. |
2004 | * |
2005 | * During this wrapping, we consider the points of j that lie at a distance |
2006 | * of exactly 1 from i. In particular, we ignore the points that lie in |
2007 | * between this lower-dimensional space and the basic map i. |
2008 | * We can therefore only apply this to integer maps. |
2009 | * ____ _____ |
2010 | * / ___|_ / \ |
2011 | * / | | / | |
2012 | * \ | | => \ | |
2013 | * \|____| \ | |
2014 | * \___| \____/ |
2015 | * |
2016 | * _____ ______ |
2017 | * | ____|_ | \ |
2018 | * | | | | | |
2019 | * | | | => | | |
2020 | * |_| | | | |
2021 | * |_____| \______| |
2022 | * |
2023 | * _______ |
2024 | * | | |
2025 | * | |\ | |
2026 | * | | \ | |
2027 | * | | \ | |
2028 | * | | \| |
2029 | * | | \ |
2030 | * | |_____\ |
2031 | * | | |
2032 | * |_______| |
2033 | * |
2034 | * Wrapping can fail if the result of wrapping one of the facets |
2035 | * around its edges does not produce any new facet constraint. |
2036 | * In particular, this happens when we try to wrap in unbounded sets. |
2037 | * |
2038 | * _______________________________________________________________________ |
2039 | * | |
2040 | * | ___ |
2041 | * | | | |
2042 | * |_| |_________________________________________________________________ |
2043 | * |___| |
2044 | * |
2045 | * The following is not an acceptable result of coalescing the above two |
2046 | * sets as it includes extra integer points. |
2047 | * _______________________________________________________________________ |
2048 | * | |
2049 | * | |
2050 | * | |
2051 | * | |
2052 | * \______________________________________________________________________ |
2053 | */ |
2054 | static enum isl_change can_wrap_in_set(int i, int j, |
2055 | struct isl_coalesce_info *info) |
2056 | { |
2057 | int k, l; |
2058 | int n; |
2059 | isl_size total; |
2060 | |
2061 | if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) || |
2062 | ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL)) |
2063 | return isl_change_none; |
2064 | |
2065 | n = count_eq(info: &info[i], STATUS_CUT) + count_ineq(info: &info[i], STATUS_CUT); |
2066 | if (n == 0) |
2067 | return isl_change_none; |
2068 | |
2069 | total = isl_basic_map_dim(bmap: info[i].bmap, type: isl_dim_all); |
2070 | if (total < 0) |
2071 | return isl_change_error; |
2072 | for (k = 0; k < info[i].bmap->n_eq; ++k) { |
2073 | for (l = 0; l < 2; ++l) { |
2074 | enum isl_ineq_type type; |
2075 | |
2076 | if (info[i].eq[2 * k + l] != STATUS_CUT) |
2077 | continue; |
2078 | |
2079 | if (l == 0) |
2080 | isl_seq_neg(dst: info[i].bmap->eq[k], |
2081 | src: info[i].bmap->eq[k], len: 1 + total); |
2082 | type = type_of_relaxed(tab: info[j].tab, |
2083 | ineq: info[i].bmap->eq[k]); |
2084 | if (l == 0) |
2085 | isl_seq_neg(dst: info[i].bmap->eq[k], |
2086 | src: info[i].bmap->eq[k], len: 1 + total); |
2087 | if (type == isl_ineq_error) |
2088 | return isl_change_error; |
2089 | if (type != isl_ineq_redundant) |
2090 | return isl_change_none; |
2091 | } |
2092 | } |
2093 | |
2094 | for (k = 0; k < info[i].bmap->n_ineq; ++k) { |
2095 | enum isl_ineq_type type; |
2096 | |
2097 | if (info[i].ineq[k] != STATUS_CUT) |
2098 | continue; |
2099 | |
2100 | type = type_of_relaxed(tab: info[j].tab, ineq: info[i].bmap->ineq[k]); |
2101 | if (type == isl_ineq_error) |
2102 | return isl_change_error; |
2103 | if (type != isl_ineq_redundant) |
2104 | return isl_change_none; |
2105 | } |
2106 | |
2107 | return wrap_in_facets(i, j, n, info); |
2108 | } |
2109 | |
2110 | /* Check if either i or j has only cut constraints that can |
2111 | * be used to wrap in (a facet of) the other basic set. |
2112 | * if so, replace the pair by their union. |
2113 | */ |
2114 | static enum isl_change check_wrap(int i, int j, struct isl_coalesce_info *info) |
2115 | { |
2116 | enum isl_change change = isl_change_none; |
2117 | |
2118 | change = can_wrap_in_set(i, j, info); |
2119 | if (change != isl_change_none) |
2120 | return change; |
2121 | |
2122 | change = can_wrap_in_set(i: j, j: i, info); |
2123 | return change; |
2124 | } |
2125 | |
2126 | /* Check if all inequality constraints of "i" that cut "j" cease |
2127 | * to be cut constraints if they are relaxed by one. |
2128 | * If so, collect the cut constraints in "list". |
2129 | * The caller is responsible for allocating "list". |
2130 | */ |
2131 | static isl_bool all_cut_by_one(int i, int j, struct isl_coalesce_info *info, |
2132 | int *list) |
2133 | { |
2134 | int l, n; |
2135 | |
2136 | n = 0; |
2137 | for (l = 0; l < info[i].bmap->n_ineq; ++l) { |
2138 | enum isl_ineq_type type; |
2139 | |
2140 | if (info[i].ineq[l] != STATUS_CUT) |
2141 | continue; |
2142 | type = type_of_relaxed(tab: info[j].tab, ineq: info[i].bmap->ineq[l]); |
2143 | if (type == isl_ineq_error) |
2144 | return isl_bool_error; |
2145 | if (type != isl_ineq_redundant) |
2146 | return isl_bool_false; |
2147 | list[n++] = l; |
2148 | } |
2149 | |
2150 | return isl_bool_true; |
2151 | } |
2152 | |
2153 | /* Given two basic maps such that "j" has at least one equality constraint |
2154 | * that is adjacent to an inequality constraint of "i" and such that "i" has |
2155 | * exactly one inequality constraint that is adjacent to an equality |
2156 | * constraint of "j", check whether "i" can be extended to include "j" or |
2157 | * whether "j" can be wrapped into "i". |
2158 | * All remaining constraints of "i" and "j" are assumed to be valid |
2159 | * or cut constraints of the other basic map. |
2160 | * However, none of the equality constraints of "i" are cut constraints. |
2161 | * |
2162 | * If "i" has any "cut" inequality constraints, then check if relaxing |
2163 | * each of them by one is sufficient for them to become valid. |
2164 | * If so, check if the inequality constraint adjacent to an equality |
2165 | * constraint of "j" along with all these cut constraints |
2166 | * can be relaxed by one to contain exactly "j". |
2167 | * Otherwise, or if this fails, check if "j" can be wrapped into "i". |
2168 | */ |
2169 | static enum isl_change check_single_adj_eq(int i, int j, |
2170 | struct isl_coalesce_info *info) |
2171 | { |
2172 | enum isl_change change = isl_change_none; |
2173 | int k; |
2174 | int n_cut; |
2175 | int *relax; |
2176 | isl_ctx *ctx; |
2177 | isl_bool try_relax; |
2178 | |
2179 | n_cut = count_ineq(info: &info[i], STATUS_CUT); |
2180 | |
2181 | k = find_ineq(info: &info[i], STATUS_ADJ_EQ); |
2182 | |
2183 | if (n_cut > 0) { |
2184 | ctx = isl_basic_map_get_ctx(bmap: info[i].bmap); |
2185 | relax = isl_calloc_array(ctx, int, 1 + n_cut); |
2186 | if (!relax) |
2187 | return isl_change_error; |
2188 | relax[0] = k; |
2189 | try_relax = all_cut_by_one(i, j, info, list: relax + 1); |
2190 | if (try_relax < 0) |
2191 | change = isl_change_error; |
2192 | } else { |
2193 | try_relax = isl_bool_true; |
2194 | relax = &k; |
2195 | } |
2196 | if (try_relax && change == isl_change_none) |
2197 | change = is_relaxed_extension(i, j, n: 1 + n_cut, relax, info); |
2198 | if (n_cut > 0) |
2199 | free(ptr: relax); |
2200 | if (change != isl_change_none) |
2201 | return change; |
2202 | |
2203 | change = can_wrap_in_facet(i, j, k, info, wrap_facet: n_cut > 0); |
2204 | |
2205 | return change; |
2206 | } |
2207 | |
2208 | /* At least one of the basic maps has an equality that is adjacent |
2209 | * to an inequality. Make sure that only one of the basic maps has |
2210 | * such an equality and that the other basic map has exactly one |
2211 | * inequality adjacent to an equality. |
2212 | * If the other basic map does not have such an inequality, then |
2213 | * check if all its constraints are either valid or cut constraints |
2214 | * and, if so, try wrapping in the first map into the second. |
2215 | * Otherwise, try to extend one basic map with the other or |
2216 | * wrap one basic map in the other. |
2217 | */ |
2218 | static enum isl_change check_adj_eq(int i, int j, |
2219 | struct isl_coalesce_info *info) |
2220 | { |
2221 | if (any_eq(info: &info[i], STATUS_ADJ_INEQ) && |
2222 | any_eq(info: &info[j], STATUS_ADJ_INEQ)) |
2223 | /* ADJ EQ TOO MANY */ |
2224 | return isl_change_none; |
2225 | |
2226 | if (any_eq(info: &info[i], STATUS_ADJ_INEQ)) |
2227 | return check_adj_eq(i: j, j: i, info); |
2228 | |
2229 | /* j has an equality adjacent to an inequality in i */ |
2230 | |
2231 | if (count_ineq(info: &info[i], STATUS_ADJ_EQ) != 1) { |
2232 | if (all_valid_or_cut(info: &info[i])) |
2233 | return can_wrap_in_set(i, j, info); |
2234 | return isl_change_none; |
2235 | } |
2236 | if (any_eq(info: &info[i], STATUS_CUT)) |
2237 | return isl_change_none; |
2238 | if (any_ineq(info: &info[j], STATUS_ADJ_EQ) || |
2239 | any_ineq(info: &info[i], STATUS_ADJ_INEQ) || |
2240 | any_ineq(info: &info[j], STATUS_ADJ_INEQ)) |
2241 | /* ADJ EQ TOO MANY */ |
2242 | return isl_change_none; |
2243 | |
2244 | return check_single_adj_eq(i, j, info); |
2245 | } |
2246 | |
2247 | /* Disjunct "j" lies on a hyperplane that is adjacent to disjunct "i". |
2248 | * In particular, disjunct "i" has an inequality constraint that is adjacent |
2249 | * to a (combination of) equality constraint(s) of disjunct "j", |
2250 | * but disjunct "j" has no explicit equality constraint adjacent |
2251 | * to an inequality constraint of disjunct "i". |
2252 | * |
2253 | * Disjunct "i" is already known not to have any equality constraints |
2254 | * that are adjacent to an equality or inequality constraint. |
2255 | * Check that, other than the inequality constraint mentioned above, |
2256 | * all other constraints of disjunct "i" are valid for disjunct "j". |
2257 | * If so, try and wrap in disjunct "j". |
2258 | */ |
2259 | static enum isl_change check_ineq_adj_eq(int i, int j, |
2260 | struct isl_coalesce_info *info) |
2261 | { |
2262 | int k; |
2263 | |
2264 | if (any_eq(info: &info[i], STATUS_CUT)) |
2265 | return isl_change_none; |
2266 | if (any_ineq(info: &info[i], STATUS_CUT)) |
2267 | return isl_change_none; |
2268 | if (any_ineq(info: &info[i], STATUS_ADJ_INEQ)) |
2269 | return isl_change_none; |
2270 | if (count_ineq(info: &info[i], STATUS_ADJ_EQ) != 1) |
2271 | return isl_change_none; |
2272 | |
2273 | k = find_ineq(info: &info[i], STATUS_ADJ_EQ); |
2274 | |
2275 | return can_wrap_in_facet(i, j, k, info, wrap_facet: 0); |
2276 | } |
2277 | |
2278 | /* The two basic maps lie on adjacent hyperplanes. In particular, |
2279 | * basic map "i" has an equality that lies parallel to basic map "j". |
2280 | * Check if we can wrap the facets around the parallel hyperplanes |
2281 | * to include the other set. |
2282 | * |
2283 | * We perform basically the same operations as can_wrap_in_facet, |
2284 | * except that we don't need to select a facet of one of the sets. |
2285 | * _ |
2286 | * \\ \\ |
2287 | * \\ => \\ |
2288 | * \ \| |
2289 | * |
2290 | * If there is more than one equality of "i" adjacent to an equality of "j", |
2291 | * then the result will satisfy one or more equalities that are a linear |
2292 | * combination of these equalities. These will be encoded as pairs |
2293 | * of inequalities in the wrapping constraints and need to be made |
2294 | * explicit. |
2295 | */ |
2296 | static enum isl_change check_eq_adj_eq(int i, int j, |
2297 | struct isl_coalesce_info *info) |
2298 | { |
2299 | int k; |
2300 | enum isl_change change = isl_change_none; |
2301 | int detect_equalities = 0; |
2302 | struct isl_wraps wraps; |
2303 | isl_ctx *ctx; |
2304 | isl_mat *mat; |
2305 | struct isl_set *set_i = NULL; |
2306 | struct isl_set *set_j = NULL; |
2307 | struct isl_vec *bound = NULL; |
2308 | isl_size total = isl_basic_map_dim(bmap: info[i].bmap, type: isl_dim_all); |
2309 | |
2310 | if (total < 0) |
2311 | return isl_change_error; |
2312 | if (count_eq(info: &info[i], STATUS_ADJ_EQ) != 1) |
2313 | detect_equalities = 1; |
2314 | |
2315 | k = find_eq(info: &info[i], STATUS_ADJ_EQ); |
2316 | |
2317 | set_i = set_from_updated_bmap(bmap: info[i].bmap, tab: info[i].tab); |
2318 | set_j = set_from_updated_bmap(bmap: info[j].bmap, tab: info[j].tab); |
2319 | ctx = isl_basic_map_get_ctx(bmap: info[i].bmap); |
2320 | mat = isl_mat_alloc(ctx, n_row: 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) + |
2321 | info[i].bmap->n_ineq + info[j].bmap->n_ineq, |
2322 | n_col: 1 + total); |
2323 | if (wraps_init(wraps: &wraps, mat, info, i, j) < 0) |
2324 | goto error; |
2325 | bound = isl_vec_alloc(ctx, size: 1 + total); |
2326 | if (!set_i || !set_j || !bound) |
2327 | goto error; |
2328 | |
2329 | if (k % 2 == 0) |
2330 | isl_seq_neg(dst: bound->el, src: info[i].bmap->eq[k / 2], len: 1 + total); |
2331 | else |
2332 | isl_seq_cpy(dst: bound->el, src: info[i].bmap->eq[k / 2], len: 1 + total); |
2333 | isl_int_add_ui(bound->el[0], bound->el[0], 1); |
2334 | |
2335 | isl_seq_cpy(dst: wraps.mat->row[0], src: bound->el, len: 1 + total); |
2336 | wraps.mat->n_row = 1; |
2337 | |
2338 | if (add_wraps(wraps: &wraps, info: &info[j], bound: bound->el, set: set_i) < 0) |
2339 | goto error; |
2340 | if (wraps.failed) |
2341 | goto unbounded; |
2342 | |
2343 | isl_int_sub_ui(bound->el[0], bound->el[0], 1); |
2344 | isl_seq_neg(dst: bound->el, src: bound->el, len: 1 + total); |
2345 | |
2346 | isl_seq_cpy(dst: wraps.mat->row[wraps.mat->n_row], src: bound->el, len: 1 + total); |
2347 | wraps.mat->n_row++; |
2348 | |
2349 | if (add_wraps(wraps: &wraps, info: &info[i], bound: bound->el, set: set_j) < 0) |
2350 | goto error; |
2351 | if (wraps.failed) |
2352 | goto unbounded; |
2353 | |
2354 | change = fuse(i, j, info, extra: wraps.mat, detect_equalities, check_number: 0); |
2355 | |
2356 | if (0) { |
2357 | error: change = isl_change_error; |
2358 | } |
2359 | unbounded: |
2360 | |
2361 | wraps_free(wraps: &wraps); |
2362 | isl_set_free(set: set_i); |
2363 | isl_set_free(set: set_j); |
2364 | isl_vec_free(vec: bound); |
2365 | |
2366 | return change; |
2367 | } |
2368 | |
2369 | /* Initialize the "eq" and "ineq" fields of "info". |
2370 | */ |
2371 | static void init_status(struct isl_coalesce_info *info) |
2372 | { |
2373 | info->eq = info->ineq = NULL; |
2374 | } |
2375 | |
2376 | /* Set info->eq to the positions of the equalities of info->bmap |
2377 | * with respect to the basic map represented by "tab". |
2378 | * If info->eq has already been computed, then do not compute it again. |
2379 | */ |
2380 | static void set_eq_status_in(struct isl_coalesce_info *info, |
2381 | struct isl_tab *tab) |
2382 | { |
2383 | if (info->eq) |
2384 | return; |
2385 | info->eq = eq_status_in(bmap_i: info->bmap, tab_j: tab); |
2386 | } |
2387 | |
2388 | /* Set info->ineq to the positions of the inequalities of info->bmap |
2389 | * with respect to the basic map represented by "tab". |
2390 | * If info->ineq has already been computed, then do not compute it again. |
2391 | */ |
2392 | static void set_ineq_status_in(struct isl_coalesce_info *info, |
2393 | struct isl_tab *tab) |
2394 | { |
2395 | if (info->ineq) |
2396 | return; |
2397 | info->ineq = ineq_status_in(bmap_i: info->bmap, tab_i: info->tab, tab_j: tab); |
2398 | } |
2399 | |
2400 | /* Free the memory allocated by the "eq" and "ineq" fields of "info". |
2401 | * This function assumes that init_status has been called on "info" first, |
2402 | * after which the "eq" and "ineq" fields may or may not have been |
2403 | * assigned a newly allocated array. |
2404 | */ |
2405 | static void clear_status(struct isl_coalesce_info *info) |
2406 | { |
2407 | free(ptr: info->eq); |
2408 | free(ptr: info->ineq); |
2409 | } |
2410 | |
2411 | /* Are all inequality constraints of the basic map represented by "info" |
2412 | * valid for the other basic map, except for a single constraint |
2413 | * that is adjacent to an inequality constraint of the other basic map? |
2414 | */ |
2415 | static int all_ineq_valid_or_single_adj_ineq(struct isl_coalesce_info *info) |
2416 | { |
2417 | int i; |
2418 | int k = -1; |
2419 | |
2420 | for (i = 0; i < info->bmap->n_ineq; ++i) { |
2421 | if (info->ineq[i] == STATUS_REDUNDANT) |
2422 | continue; |
2423 | if (info->ineq[i] == STATUS_VALID) |
2424 | continue; |
2425 | if (info->ineq[i] != STATUS_ADJ_INEQ) |
2426 | return 0; |
2427 | if (k != -1) |
2428 | return 0; |
2429 | k = i; |
2430 | } |
2431 | |
2432 | return k != -1; |
2433 | } |
2434 | |
2435 | /* Basic map "i" has one or more equality constraints that separate it |
2436 | * from basic map "j". Check if it happens to be an extension |
2437 | * of basic map "j". |
2438 | * In particular, check that all constraints of "j" are valid for "i", |
2439 | * except for one inequality constraint that is adjacent |
2440 | * to an inequality constraints of "i". |
2441 | * If so, check for "i" being an extension of "j" by calling |
2442 | * is_adj_ineq_extension. |
2443 | * |
2444 | * Clean up the memory allocated for keeping track of the status |
2445 | * of the constraints before returning. |
2446 | */ |
2447 | static enum isl_change separating_equality(int i, int j, |
2448 | struct isl_coalesce_info *info) |
2449 | { |
2450 | enum isl_change change = isl_change_none; |
2451 | |
2452 | if (all(con: info[j].eq, len: 2 * info[j].bmap->n_eq, STATUS_VALID) && |
2453 | all_ineq_valid_or_single_adj_ineq(info: &info[j])) |
2454 | change = is_adj_ineq_extension(i: j, j: i, info); |
2455 | |
2456 | clear_status(info: &info[i]); |
2457 | clear_status(info: &info[j]); |
2458 | return change; |
2459 | } |
2460 | |
2461 | /* Check if the union of the given pair of basic maps |
2462 | * can be represented by a single basic map. |
2463 | * If so, replace the pair by the single basic map and return |
2464 | * isl_change_drop_first, isl_change_drop_second or isl_change_fuse. |
2465 | * Otherwise, return isl_change_none. |
2466 | * The two basic maps are assumed to live in the same local space. |
2467 | * The "eq" and "ineq" fields of info[i] and info[j] are assumed |
2468 | * to have been initialized by the caller, either to NULL or |
2469 | * to valid information. |
2470 | * |
2471 | * We first check the effect of each constraint of one basic map |
2472 | * on the other basic map. |
2473 | * The constraint may be |
2474 | * redundant the constraint is redundant in its own |
2475 | * basic map and should be ignore and removed |
2476 | * in the end |
2477 | * valid all (integer) points of the other basic map |
2478 | * satisfy the constraint |
2479 | * separate no (integer) point of the other basic map |
2480 | * satisfies the constraint |
2481 | * cut some but not all points of the other basic map |
2482 | * satisfy the constraint |
2483 | * adj_eq the given constraint is adjacent (on the outside) |
2484 | * to an equality of the other basic map |
2485 | * adj_ineq the given constraint is adjacent (on the outside) |
2486 | * to an inequality of the other basic map |
2487 | * |
2488 | * We consider seven cases in which we can replace the pair by a single |
2489 | * basic map. We ignore all "redundant" constraints. |
2490 | * |
2491 | * 1. all constraints of one basic map are valid |
2492 | * => the other basic map is a subset and can be removed |
2493 | * |
2494 | * 2. all constraints of both basic maps are either "valid" or "cut" |
2495 | * and the facets corresponding to the "cut" constraints |
2496 | * of one of the basic maps lies entirely inside the other basic map |
2497 | * => the pair can be replaced by a basic map consisting |
2498 | * of the valid constraints in both basic maps |
2499 | * |
2500 | * 3. there is a single pair of adjacent inequalities |
2501 | * (all other constraints are "valid") |
2502 | * => the pair can be replaced by a basic map consisting |
2503 | * of the valid constraints in both basic maps |
2504 | * |
2505 | * 4. one basic map has a single adjacent inequality, while the other |
2506 | * constraints are "valid". The other basic map has some |
2507 | * "cut" constraints, but replacing the adjacent inequality by |
2508 | * its opposite and adding the valid constraints of the other |
2509 | * basic map results in a subset of the other basic map |
2510 | * => the pair can be replaced by a basic map consisting |
2511 | * of the valid constraints in both basic maps |
2512 | * |
2513 | * 5. there is a single adjacent pair of an inequality and an equality, |
2514 | * the other constraints of the basic map containing the inequality are |
2515 | * "valid". Moreover, if the inequality the basic map is relaxed |
2516 | * and then turned into an equality, then resulting facet lies |
2517 | * entirely inside the other basic map |
2518 | * => the pair can be replaced by the basic map containing |
2519 | * the inequality, with the inequality relaxed. |
2520 | * |
2521 | * 6. there is a single inequality adjacent to an equality, |
2522 | * the other constraints of the basic map containing the inequality are |
2523 | * "valid". Moreover, the facets corresponding to both |
2524 | * the inequality and the equality can be wrapped around their |
2525 | * ridges to include the other basic map |
2526 | * => the pair can be replaced by a basic map consisting |
2527 | * of the valid constraints in both basic maps together |
2528 | * with all wrapping constraints |
2529 | * |
2530 | * 7. one of the basic maps extends beyond the other by at most one. |
2531 | * Moreover, the facets corresponding to the cut constraints and |
2532 | * the pieces of the other basic map at offset one from these cut |
2533 | * constraints can be wrapped around their ridges to include |
2534 | * the union of the two basic maps |
2535 | * => the pair can be replaced by a basic map consisting |
2536 | * of the valid constraints in both basic maps together |
2537 | * with all wrapping constraints |
2538 | * |
2539 | * 8. the two basic maps live in adjacent hyperplanes. In principle |
2540 | * such sets can always be combined through wrapping, but we impose |
2541 | * that there is only one such pair, to avoid overeager coalescing. |
2542 | * |
2543 | * Throughout the computation, we maintain a collection of tableaus |
2544 | * corresponding to the basic maps. When the basic maps are dropped |
2545 | * or combined, the tableaus are modified accordingly. |
2546 | */ |
2547 | static enum isl_change coalesce_local_pair_reuse(int i, int j, |
2548 | struct isl_coalesce_info *info) |
2549 | { |
2550 | enum isl_change change = isl_change_none; |
2551 | |
2552 | set_ineq_status_in(info: &info[i], tab: info[j].tab); |
2553 | if (info[i].bmap->n_ineq && !info[i].ineq) |
2554 | goto error; |
2555 | if (any_ineq(info: &info[i], STATUS_ERROR)) |
2556 | goto error; |
2557 | if (any_ineq(info: &info[i], STATUS_SEPARATE)) |
2558 | goto done; |
2559 | |
2560 | set_ineq_status_in(info: &info[j], tab: info[i].tab); |
2561 | if (info[j].bmap->n_ineq && !info[j].ineq) |
2562 | goto error; |
2563 | if (any_ineq(info: &info[j], STATUS_ERROR)) |
2564 | goto error; |
2565 | if (any_ineq(info: &info[j], STATUS_SEPARATE)) |
2566 | goto done; |
2567 | |
2568 | set_eq_status_in(info: &info[i], tab: info[j].tab); |
2569 | if (info[i].bmap->n_eq && !info[i].eq) |
2570 | goto error; |
2571 | if (any_eq(info: &info[i], STATUS_ERROR)) |
2572 | goto error; |
2573 | |
2574 | set_eq_status_in(info: &info[j], tab: info[i].tab); |
2575 | if (info[j].bmap->n_eq && !info[j].eq) |
2576 | goto error; |
2577 | if (any_eq(info: &info[j], STATUS_ERROR)) |
2578 | goto error; |
2579 | |
2580 | if (any_eq(info: &info[i], STATUS_SEPARATE)) |
2581 | return separating_equality(i, j, info); |
2582 | if (any_eq(info: &info[j], STATUS_SEPARATE)) |
2583 | return separating_equality(i: j, j: i, info); |
2584 | |
2585 | if (all(con: info[i].eq, len: 2 * info[i].bmap->n_eq, STATUS_VALID) && |
2586 | all(con: info[i].ineq, len: info[i].bmap->n_ineq, STATUS_VALID)) { |
2587 | drop(info: &info[j]); |
2588 | change = isl_change_drop_second; |
2589 | } else if (all(con: info[j].eq, len: 2 * info[j].bmap->n_eq, STATUS_VALID) && |
2590 | all(con: info[j].ineq, len: info[j].bmap->n_ineq, STATUS_VALID)) { |
2591 | drop(info: &info[i]); |
2592 | change = isl_change_drop_first; |
2593 | } else if (any_eq(info: &info[i], STATUS_ADJ_EQ)) { |
2594 | change = check_eq_adj_eq(i, j, info); |
2595 | } else if (any_eq(info: &info[j], STATUS_ADJ_EQ)) { |
2596 | change = check_eq_adj_eq(i: j, j: i, info); |
2597 | } else if (any_eq(info: &info[i], STATUS_ADJ_INEQ) || |
2598 | any_eq(info: &info[j], STATUS_ADJ_INEQ)) { |
2599 | change = check_adj_eq(i, j, info); |
2600 | } else if (any_ineq(info: &info[i], STATUS_ADJ_EQ)) { |
2601 | change = check_ineq_adj_eq(i, j, info); |
2602 | } else if (any_ineq(info: &info[j], STATUS_ADJ_EQ)) { |
2603 | change = check_ineq_adj_eq(i: j, j: i, info); |
2604 | } else if (any_ineq(info: &info[i], STATUS_ADJ_INEQ) || |
2605 | any_ineq(info: &info[j], STATUS_ADJ_INEQ)) { |
2606 | change = check_adj_ineq(i, j, info); |
2607 | } else { |
2608 | if (!any_eq(info: &info[i], STATUS_CUT) && |
2609 | !any_eq(info: &info[j], STATUS_CUT)) |
2610 | change = check_facets(i, j, info); |
2611 | if (change == isl_change_none) |
2612 | change = check_wrap(i, j, info); |
2613 | } |
2614 | |
2615 | done: |
2616 | clear_status(info: &info[i]); |
2617 | clear_status(info: &info[j]); |
2618 | return change; |
2619 | error: |
2620 | clear_status(info: &info[i]); |
2621 | clear_status(info: &info[j]); |
2622 | return isl_change_error; |
2623 | } |
2624 | |
2625 | /* Check if the union of the given pair of basic maps |
2626 | * can be represented by a single basic map. |
2627 | * If so, replace the pair by the single basic map and return |
2628 | * isl_change_drop_first, isl_change_drop_second or isl_change_fuse. |
2629 | * Otherwise, return isl_change_none. |
2630 | * The two basic maps are assumed to live in the same local space. |
2631 | */ |
2632 | static enum isl_change coalesce_local_pair(int i, int j, |
2633 | struct isl_coalesce_info *info) |
2634 | { |
2635 | init_status(info: &info[i]); |
2636 | init_status(info: &info[j]); |
2637 | return coalesce_local_pair_reuse(i, j, info); |
2638 | } |
2639 | |
2640 | /* Shift the integer division at position "div" of the basic map |
2641 | * represented by "info" by "shift". |
2642 | * |
2643 | * That is, if the integer division has the form |
2644 | * |
2645 | * floor(f(x)/d) |
2646 | * |
2647 | * then replace it by |
2648 | * |
2649 | * floor((f(x) + shift * d)/d) - shift |
2650 | */ |
2651 | static isl_stat shift_div(struct isl_coalesce_info *info, int div, |
2652 | isl_int shift) |
2653 | { |
2654 | isl_size total, n_div; |
2655 | |
2656 | info->bmap = isl_basic_map_shift_div(bmap: info->bmap, div, pos: 0, shift); |
2657 | if (!info->bmap) |
2658 | return isl_stat_error; |
2659 | |
2660 | total = isl_basic_map_dim(bmap: info->bmap, type: isl_dim_all); |
2661 | n_div = isl_basic_map_dim(bmap: info->bmap, type: isl_dim_div); |
2662 | if (total < 0 || n_div < 0) |
2663 | return isl_stat_error; |
2664 | total -= n_div; |
2665 | if (isl_tab_shift_var(tab: info->tab, pos: total + div, shift) < 0) |
2666 | return isl_stat_error; |
2667 | |
2668 | return isl_stat_ok; |
2669 | } |
2670 | |
2671 | /* If the integer division at position "div" is defined by an equality, |
2672 | * i.e., a stride constraint, then change the integer division expression |
2673 | * to have a constant term equal to zero. |
2674 | * |
2675 | * Let the equality constraint be |
2676 | * |
2677 | * c + f + m a = 0 |
2678 | * |
2679 | * The integer division expression is then typically of the form |
2680 | * |
2681 | * a = floor((-f - c')/m) |
2682 | * |
2683 | * The integer division is first shifted by t = floor(c/m), |
2684 | * turning the equality constraint into |
2685 | * |
2686 | * c - m floor(c/m) + f + m a' = 0 |
2687 | * |
2688 | * i.e., |
2689 | * |
2690 | * (c mod m) + f + m a' = 0 |
2691 | * |
2692 | * That is, |
2693 | * |
2694 | * a' = (-f - (c mod m))/m = floor((-f)/m) |
2695 | * |
2696 | * because a' is an integer and 0 <= (c mod m) < m. |
2697 | * The constant term of a' can therefore be zeroed out, |
2698 | * but only if the integer division expression is of the expected form. |
2699 | */ |
2700 | static isl_stat normalize_stride_div(struct isl_coalesce_info *info, int div) |
2701 | { |
2702 | isl_bool defined, valid; |
2703 | isl_stat r; |
2704 | isl_constraint *c; |
2705 | isl_int shift, stride; |
2706 | |
2707 | defined = isl_basic_map_has_defining_equality(bmap: info->bmap, type: isl_dim_div, |
2708 | pos: div, c: &c); |
2709 | if (defined < 0) |
2710 | return isl_stat_error; |
2711 | if (!defined) |
2712 | return isl_stat_ok; |
2713 | if (!c) |
2714 | return isl_stat_error; |
2715 | valid = isl_constraint_is_div_equality(constraint: c, div); |
2716 | isl_int_init(shift); |
2717 | isl_int_init(stride); |
2718 | isl_constraint_get_constant(constraint: c, v: &shift); |
2719 | isl_constraint_get_coefficient(constraint: c, type: isl_dim_div, pos: div, v: &stride); |
2720 | isl_int_fdiv_q(shift, shift, stride); |
2721 | r = shift_div(info, div, shift); |
2722 | isl_int_clear(stride); |
2723 | isl_int_clear(shift); |
2724 | isl_constraint_free(c); |
2725 | if (r < 0 || valid < 0) |
2726 | return isl_stat_error; |
2727 | if (!valid) |
2728 | return isl_stat_ok; |
2729 | info->bmap = isl_basic_map_set_div_expr_constant_num_si_inplace( |
2730 | bmap: info->bmap, div, value: 0); |
2731 | if (!info->bmap) |
2732 | return isl_stat_error; |
2733 | return isl_stat_ok; |
2734 | } |
2735 | |
2736 | /* The basic maps represented by "info1" and "info2" are known |
2737 | * to have the same number of integer divisions. |
2738 | * Check if pairs of integer divisions are equal to each other |
2739 | * despite the fact that they differ by a rational constant. |
2740 | * |
2741 | * In particular, look for any pair of integer divisions that |
2742 | * only differ in their constant terms. |
2743 | * If either of these integer divisions is defined |
2744 | * by stride constraints, then modify it to have a zero constant term. |
2745 | * If both are defined by stride constraints then in the end they will have |
2746 | * the same (zero) constant term. |
2747 | */ |
2748 | static isl_stat harmonize_stride_divs(struct isl_coalesce_info *info1, |
2749 | struct isl_coalesce_info *info2) |
2750 | { |
2751 | int i; |
2752 | isl_size n; |
2753 | |
2754 | n = isl_basic_map_dim(bmap: info1->bmap, type: isl_dim_div); |
2755 | if (n < 0) |
2756 | return isl_stat_error; |
2757 | for (i = 0; i < n; ++i) { |
2758 | isl_bool known, harmonize; |
2759 | |
2760 | known = isl_basic_map_div_is_known(bmap: info1->bmap, div: i); |
2761 | if (known >= 0 && known) |
2762 | known = isl_basic_map_div_is_known(bmap: info2->bmap, div: i); |
2763 | if (known < 0) |
2764 | return isl_stat_error; |
2765 | if (!known) |
2766 | continue; |
2767 | harmonize = isl_basic_map_equal_div_expr_except_constant( |
2768 | bmap1: info1->bmap, pos1: i, bmap2: info2->bmap, pos2: i); |
2769 | if (harmonize < 0) |
2770 | return isl_stat_error; |
2771 | if (!harmonize) |
2772 | continue; |
2773 | if (normalize_stride_div(info: info1, div: i) < 0) |
2774 | return isl_stat_error; |
2775 | if (normalize_stride_div(info: info2, div: i) < 0) |
2776 | return isl_stat_error; |
2777 | } |
2778 | |
2779 | return isl_stat_ok; |
2780 | } |
2781 | |
2782 | /* If "shift" is an integer constant, then shift the integer division |
2783 | * at position "div" of the basic map represented by "info" by "shift". |
2784 | * If "shift" is not an integer constant, then do nothing. |
2785 | * If "shift" is equal to zero, then no shift needs to be performed either. |
2786 | * |
2787 | * That is, if the integer division has the form |
2788 | * |
2789 | * floor(f(x)/d) |
2790 | * |
2791 | * then replace it by |
2792 | * |
2793 | * floor((f(x) + shift * d)/d) - shift |
2794 | */ |
2795 | static isl_stat shift_if_cst_int(struct isl_coalesce_info *info, int div, |
2796 | __isl_keep isl_aff *shift) |
2797 | { |
2798 | isl_bool cst; |
2799 | isl_stat r; |
2800 | isl_int d; |
2801 | isl_val *c; |
2802 | |
2803 | cst = isl_aff_is_cst(aff: shift); |
2804 | if (cst < 0 || !cst) |
2805 | return cst < 0 ? isl_stat_error : isl_stat_ok; |
2806 | |
2807 | c = isl_aff_get_constant_val(aff: shift); |
2808 | cst = isl_val_is_int(v: c); |
2809 | if (cst >= 0 && cst) |
2810 | cst = isl_bool_not(b: isl_val_is_zero(v: c)); |
2811 | if (cst < 0 || !cst) { |
2812 | isl_val_free(v: c); |
2813 | return cst < 0 ? isl_stat_error : isl_stat_ok; |
2814 | } |
2815 | |
2816 | isl_int_init(d); |
2817 | r = isl_val_get_num_isl_int(v: c, n: &d); |
2818 | if (r >= 0) |
2819 | r = shift_div(info, div, shift: d); |
2820 | isl_int_clear(d); |
2821 | |
2822 | isl_val_free(v: c); |
2823 | |
2824 | return r; |
2825 | } |
2826 | |
2827 | /* Check if some of the divs in the basic map represented by "info1" |
2828 | * are shifts of the corresponding divs in the basic map represented |
2829 | * by "info2", taking into account the equality constraints "eq1" of "info1" |
2830 | * and "eq2" of "info2". If so, align them with those of "info2". |
2831 | * "info1" and "info2" are assumed to have the same number |
2832 | * of integer divisions. |
2833 | * |
2834 | * An integer division is considered to be a shift of another integer |
2835 | * division if, after simplification with respect to the equality |
2836 | * constraints of the other basic map, one is equal to the other |
2837 | * plus a constant. |
2838 | * |
2839 | * In particular, for each pair of integer divisions, if both are known, |
2840 | * have the same denominator and are not already equal to each other, |
2841 | * simplify each with respect to the equality constraints |
2842 | * of the other basic map. If the difference is an integer constant, |
2843 | * then move this difference outside. |
2844 | * That is, if, after simplification, one integer division is of the form |
2845 | * |
2846 | * floor((f(x) + c_1)/d) |
2847 | * |
2848 | * while the other is of the form |
2849 | * |
2850 | * floor((f(x) + c_2)/d) |
2851 | * |
2852 | * and n = (c_2 - c_1)/d is an integer, then replace the first |
2853 | * integer division by |
2854 | * |
2855 | * floor((f_1(x) + c_1 + n * d)/d) - n, |
2856 | * |
2857 | * where floor((f_1(x) + c_1 + n * d)/d) = floor((f2(x) + c_2)/d) |
2858 | * after simplification with respect to the equality constraints. |
2859 | */ |
2860 | static isl_stat harmonize_divs_with_hulls(struct isl_coalesce_info *info1, |
2861 | struct isl_coalesce_info *info2, __isl_keep isl_basic_set *eq1, |
2862 | __isl_keep isl_basic_set *eq2) |
2863 | { |
2864 | int i; |
2865 | isl_size total; |
2866 | isl_local_space *ls1, *ls2; |
2867 | |
2868 | total = isl_basic_map_dim(bmap: info1->bmap, type: isl_dim_all); |
2869 | if (total < 0) |
2870 | return isl_stat_error; |
2871 | ls1 = isl_local_space_wrap(ls: isl_basic_map_get_local_space(bmap: info1->bmap)); |
2872 | ls2 = isl_local_space_wrap(ls: isl_basic_map_get_local_space(bmap: info2->bmap)); |
2873 | for (i = 0; i < info1->bmap->n_div; ++i) { |
2874 | isl_stat r; |
2875 | isl_aff *div1, *div2; |
2876 | |
2877 | if (!isl_local_space_div_is_known(ls: ls1, div: i) || |
2878 | !isl_local_space_div_is_known(ls: ls2, div: i)) |
2879 | continue; |
2880 | if (isl_int_ne(info1->bmap->div[i][0], info2->bmap->div[i][0])) |
2881 | continue; |
2882 | if (isl_seq_eq(p1: info1->bmap->div[i] + 1, |
2883 | p2: info2->bmap->div[i] + 1, len: 1 + total)) |
2884 | continue; |
2885 | div1 = isl_local_space_get_div(ls: ls1, pos: i); |
2886 | div2 = isl_local_space_get_div(ls: ls2, pos: i); |
2887 | div1 = isl_aff_substitute_equalities(aff: div1, |
2888 | eq: isl_basic_set_copy(bset: eq2)); |
2889 | div2 = isl_aff_substitute_equalities(aff: div2, |
2890 | eq: isl_basic_set_copy(bset: eq1)); |
2891 | div2 = isl_aff_sub(aff1: div2, aff2: div1); |
2892 | r = shift_if_cst_int(info: info1, div: i, shift: div2); |
2893 | isl_aff_free(aff: div2); |
2894 | if (r < 0) |
2895 | break; |
2896 | } |
2897 | isl_local_space_free(ls: ls1); |
2898 | isl_local_space_free(ls: ls2); |
2899 | |
2900 | if (i < info1->bmap->n_div) |
2901 | return isl_stat_error; |
2902 | return isl_stat_ok; |
2903 | } |
2904 | |
2905 | /* Check if some of the divs in the basic map represented by "info1" |
2906 | * are shifts of the corresponding divs in the basic map represented |
2907 | * by "info2". If so, align them with those of "info2". |
2908 | * Only do this if "info1" and "info2" have the same number |
2909 | * of integer divisions. |
2910 | * |
2911 | * An integer division is considered to be a shift of another integer |
2912 | * division if, after simplification with respect to the equality |
2913 | * constraints of the other basic map, one is equal to the other |
2914 | * plus a constant. |
2915 | * |
2916 | * First check if pairs of integer divisions are equal to each other |
2917 | * despite the fact that they differ by a rational constant. |
2918 | * If so, try and arrange for them to have the same constant term. |
2919 | * |
2920 | * Then, extract the equality constraints and continue with |
2921 | * harmonize_divs_with_hulls. |
2922 | * |
2923 | * If the equality constraints of both basic maps are the same, |
2924 | * then there is no need to perform any shifting since |
2925 | * the coefficients of the integer divisions should have been |
2926 | * reduced in the same way. |
2927 | */ |
2928 | static isl_stat harmonize_divs(struct isl_coalesce_info *info1, |
2929 | struct isl_coalesce_info *info2) |
2930 | { |
2931 | isl_bool equal; |
2932 | isl_basic_map *bmap1, *bmap2; |
2933 | isl_basic_set *eq1, *eq2; |
2934 | isl_stat r; |
2935 | |
2936 | if (!info1->bmap || !info2->bmap) |
2937 | return isl_stat_error; |
2938 | |
2939 | if (info1->bmap->n_div != info2->bmap->n_div) |
2940 | return isl_stat_ok; |
2941 | if (info1->bmap->n_div == 0) |
2942 | return isl_stat_ok; |
2943 | |
2944 | if (harmonize_stride_divs(info1, info2) < 0) |
2945 | return isl_stat_error; |
2946 | |
2947 | bmap1 = isl_basic_map_copy(bmap: info1->bmap); |
2948 | bmap2 = isl_basic_map_copy(bmap: info2->bmap); |
2949 | eq1 = isl_basic_map_wrap(bmap: isl_basic_map_plain_affine_hull(bmap: bmap1)); |
2950 | eq2 = isl_basic_map_wrap(bmap: isl_basic_map_plain_affine_hull(bmap: bmap2)); |
2951 | equal = isl_basic_set_plain_is_equal(bset1: eq1, bset2: eq2); |
2952 | if (equal < 0) |
2953 | r = isl_stat_error; |
2954 | else if (equal) |
2955 | r = isl_stat_ok; |
2956 | else |
2957 | r = harmonize_divs_with_hulls(info1, info2, eq1, eq2); |
2958 | isl_basic_set_free(bset: eq1); |
2959 | isl_basic_set_free(bset: eq2); |
2960 | |
2961 | return r; |
2962 | } |
2963 | |
2964 | /* Do the two basic maps live in the same local space, i.e., |
2965 | * do they have the same (known) divs? |
2966 | * If either basic map has any unknown divs, then we can only assume |
2967 | * that they do not live in the same local space. |
2968 | */ |
2969 | static isl_bool same_divs(__isl_keep isl_basic_map *bmap1, |
2970 | __isl_keep isl_basic_map *bmap2) |
2971 | { |
2972 | int i; |
2973 | isl_bool known; |
2974 | isl_size total; |
2975 | |
2976 | if (!bmap1 || !bmap2) |
2977 | return isl_bool_error; |
2978 | if (bmap1->n_div != bmap2->n_div) |
2979 | return isl_bool_false; |
2980 | |
2981 | if (bmap1->n_div == 0) |
2982 | return isl_bool_true; |
2983 | |
2984 | known = isl_basic_map_divs_known(bmap: bmap1); |
2985 | if (known < 0 || !known) |
2986 | return known; |
2987 | known = isl_basic_map_divs_known(bmap: bmap2); |
2988 | if (known < 0 || !known) |
2989 | return known; |
2990 | |
2991 | total = isl_basic_map_dim(bmap: bmap1, type: isl_dim_all); |
2992 | if (total < 0) |
2993 | return isl_bool_error; |
2994 | for (i = 0; i < bmap1->n_div; ++i) |
2995 | if (!isl_seq_eq(p1: bmap1->div[i], p2: bmap2->div[i], len: 2 + total)) |
2996 | return isl_bool_false; |
2997 | |
2998 | return isl_bool_true; |
2999 | } |
3000 | |
3001 | /* Assuming that "tab" contains the equality constraints and |
3002 | * the initial inequality constraints of "bmap", copy the remaining |
3003 | * inequality constraints of "bmap" to "Tab". |
3004 | */ |
3005 | static isl_stat copy_ineq(struct isl_tab *tab, __isl_keep isl_basic_map *bmap) |
3006 | { |
3007 | int i, n_ineq; |
3008 | |
3009 | if (!bmap) |
3010 | return isl_stat_error; |
3011 | |
3012 | n_ineq = tab->n_con - tab->n_eq; |
3013 | for (i = n_ineq; i < bmap->n_ineq; ++i) |
3014 | if (isl_tab_add_ineq(tab, ineq: bmap->ineq[i]) < 0) |
3015 | return isl_stat_error; |
3016 | |
3017 | return isl_stat_ok; |
3018 | } |
3019 | |
3020 | /* Description of an integer division that is added |
3021 | * during an expansion. |
3022 | * "pos" is the position of the corresponding variable. |
3023 | * "cst" indicates whether this integer division has a fixed value. |
3024 | * "val" contains the fixed value, if the value is fixed. |
3025 | */ |
3026 | struct isl_expanded { |
3027 | int pos; |
3028 | isl_bool cst; |
3029 | isl_int val; |
3030 | }; |
3031 | |
3032 | /* For each of the "n" integer division variables "expanded", |
3033 | * if the variable has a fixed value, then add two inequality |
3034 | * constraints expressing the fixed value. |
3035 | * Otherwise, add the corresponding div constraints. |
3036 | * The caller is responsible for removing the div constraints |
3037 | * that it added for all these "n" integer divisions. |
3038 | * |
3039 | * The div constraints and the pair of inequality constraints |
3040 | * forcing the fixed value cannot both be added for a given variable |
3041 | * as the combination may render some of the original constraints redundant. |
3042 | * These would then be ignored during the coalescing detection, |
3043 | * while they could remain in the fused result. |
3044 | * |
3045 | * The two added inequality constraints are |
3046 | * |
3047 | * -a + v >= 0 |
3048 | * a - v >= 0 |
3049 | * |
3050 | * with "a" the variable and "v" its fixed value. |
3051 | * The facet corresponding to one of these two constraints is selected |
3052 | * in the tableau to ensure that the pair of inequality constraints |
3053 | * is treated as an equality constraint. |
3054 | * |
3055 | * The information in info->ineq is thrown away because it was |
3056 | * computed in terms of div constraints, while some of those |
3057 | * have now been replaced by these pairs of inequality constraints. |
3058 | */ |
3059 | static isl_stat fix_constant_divs(struct isl_coalesce_info *info, |
3060 | int n, struct isl_expanded *expanded) |
3061 | { |
3062 | unsigned o_div; |
3063 | int i; |
3064 | isl_vec *ineq; |
3065 | |
3066 | o_div = isl_basic_map_offset(bmap: info->bmap, type: isl_dim_div) - 1; |
3067 | ineq = isl_vec_alloc(ctx: isl_tab_get_ctx(tab: info->tab), size: 1 + info->tab->n_var); |
3068 | if (!ineq) |
3069 | return isl_stat_error; |
3070 | isl_seq_clr(p: ineq->el + 1, len: info->tab->n_var); |
3071 | |
3072 | for (i = 0; i < n; ++i) { |
3073 | if (!expanded[i].cst) { |
3074 | info->bmap = isl_basic_map_extend_constraints( |
3075 | base: info->bmap, n_eq: 0, n_ineq: 2); |
3076 | info->bmap = isl_basic_map_add_div_constraints( |
3077 | bmap: info->bmap, div: expanded[i].pos - o_div); |
3078 | } else { |
3079 | isl_int_set_si(ineq->el[1 + expanded[i].pos], -1); |
3080 | isl_int_set(ineq->el[0], expanded[i].val); |
3081 | info->bmap = isl_basic_map_add_ineq(bmap: info->bmap, |
3082 | ineq: ineq->el); |
3083 | isl_int_set_si(ineq->el[1 + expanded[i].pos], 1); |
3084 | isl_int_neg(ineq->el[0], expanded[i].val); |
3085 | info->bmap = isl_basic_map_add_ineq(bmap: info->bmap, |
3086 | ineq: ineq->el); |
3087 | isl_int_set_si(ineq->el[1 + expanded[i].pos], 0); |
3088 | } |
3089 | if (copy_ineq(tab: info->tab, bmap: info->bmap) < 0) |
3090 | break; |
3091 | if (expanded[i].cst && |
3092 | isl_tab_select_facet(tab: info->tab, con: info->tab->n_con - 1) < 0) |
3093 | break; |
3094 | } |
3095 | |
3096 | isl_vec_free(vec: ineq); |
3097 | |
3098 | clear_status(info); |
3099 | init_status(info); |
3100 | |
3101 | return i < n ? isl_stat_error : isl_stat_ok; |
3102 | } |
3103 | |
3104 | /* Insert the "n" integer division variables "expanded" |
3105 | * into info->tab and info->bmap and |
3106 | * update info->ineq with respect to the redundant constraints |
3107 | * in the resulting tableau. |
3108 | * "bmap" contains the result of this insertion in info->bmap, |
3109 | * while info->bmap is the original version |
3110 | * of "bmap", i.e., the one that corresponds to the current |
3111 | * state of info->tab. The number of constraints in info->bmap |
3112 | * is assumed to be the same as the number of constraints |
3113 | * in info->tab. This is required to be able to detect |
3114 | * the extra constraints in "bmap". |
3115 | * |
3116 | * In particular, introduce extra variables corresponding |
3117 | * to the extra integer divisions and add the div constraints |
3118 | * that were added to "bmap" after info->tab was created |
3119 | * from info->bmap. |
3120 | * Furthermore, check if these extra integer divisions happen |
3121 | * to attain a fixed integer value in info->tab. |
3122 | * If so, replace the corresponding div constraints by pairs |
3123 | * of inequality constraints that fix these |
3124 | * integer divisions to their single integer values. |
3125 | * Replace info->bmap by "bmap" to match the changes to info->tab. |
3126 | * info->ineq was computed without a tableau and therefore |
3127 | * does not take into account the redundant constraints |
3128 | * in the tableau. Mark them here. |
3129 | * There is no need to check the newly added div constraints |
3130 | * since they cannot be redundant. |
3131 | * The redundancy check is not performed when constants have been discovered |
3132 | * since info->ineq is completely thrown away in this case. |
3133 | */ |
3134 | static isl_stat tab_insert_divs(struct isl_coalesce_info *info, |
3135 | int n, struct isl_expanded *expanded, __isl_take isl_basic_map *bmap) |
3136 | { |
3137 | int i, n_ineq; |
3138 | unsigned n_eq; |
3139 | struct isl_tab_undo *snap; |
3140 | int any; |
3141 | |
3142 | if (!bmap) |
3143 | return isl_stat_error; |
3144 | if (info->bmap->n_eq + info->bmap->n_ineq != info->tab->n_con) |
3145 | isl_die(isl_basic_map_get_ctx(bmap), isl_error_internal, |
3146 | "original tableau does not correspond " |
3147 | "to original basic map" , goto error); |
3148 | |
3149 | if (isl_tab_extend_vars(tab: info->tab, n_new: n) < 0) |
3150 | goto error; |
3151 | if (isl_tab_extend_cons(tab: info->tab, n_new: 2 * n) < 0) |
3152 | goto error; |
3153 | |
3154 | for (i = 0; i < n; ++i) { |
3155 | if (isl_tab_insert_var(tab: info->tab, pos: expanded[i].pos) < 0) |
3156 | goto error; |
3157 | } |
3158 | |
3159 | snap = isl_tab_snap(tab: info->tab); |
3160 | |
3161 | n_ineq = info->tab->n_con - info->tab->n_eq; |
3162 | if (copy_ineq(tab: info->tab, bmap) < 0) |
3163 | goto error; |
3164 | |
3165 | isl_basic_map_free(bmap: info->bmap); |
3166 | info->bmap = bmap; |
3167 | |
3168 | any = 0; |
3169 | for (i = 0; i < n; ++i) { |
3170 | expanded[i].cst = isl_tab_is_constant(tab: info->tab, |
3171 | var: expanded[i].pos, value: &expanded[i].val); |
3172 | if (expanded[i].cst < 0) |
3173 | return isl_stat_error; |
3174 | if (expanded[i].cst) |
3175 | any = 1; |
3176 | } |
3177 | |
3178 | if (any) { |
3179 | if (isl_tab_rollback(tab: info->tab, snap) < 0) |
3180 | return isl_stat_error; |
3181 | info->bmap = isl_basic_map_cow(bmap: info->bmap); |
3182 | info->bmap = isl_basic_map_free_inequality(bmap: info->bmap, n: 2 * n); |
3183 | if (!info->bmap) |
3184 | return isl_stat_error; |
3185 | |
3186 | return fix_constant_divs(info, n, expanded); |
3187 | } |
3188 | |
3189 | n_eq = info->bmap->n_eq; |
3190 | for (i = 0; i < n_ineq; ++i) { |
3191 | if (isl_tab_is_redundant(tab: info->tab, con: n_eq + i)) |
3192 | info->ineq[i] = STATUS_REDUNDANT; |
3193 | } |
3194 | |
3195 | return isl_stat_ok; |
3196 | error: |
3197 | isl_basic_map_free(bmap); |
3198 | return isl_stat_error; |
3199 | } |
3200 | |
3201 | /* Expand info->tab and info->bmap in the same way "bmap" was expanded |
3202 | * in isl_basic_map_expand_divs using the expansion "exp" and |
3203 | * update info->ineq with respect to the redundant constraints |
3204 | * in the resulting tableau. info->bmap is the original version |
3205 | * of "bmap", i.e., the one that corresponds to the current |
3206 | * state of info->tab. The number of constraints in info->bmap |
3207 | * is assumed to be the same as the number of constraints |
3208 | * in info->tab. This is required to be able to detect |
3209 | * the extra constraints in "bmap". |
3210 | * |
3211 | * Extract the positions where extra local variables are introduced |
3212 | * from "exp" and call tab_insert_divs. |
3213 | */ |
3214 | static isl_stat expand_tab(struct isl_coalesce_info *info, int *exp, |
3215 | __isl_take isl_basic_map *bmap) |
3216 | { |
3217 | isl_ctx *ctx; |
3218 | struct isl_expanded *expanded; |
3219 | int i, j, k, n; |
3220 | int ; |
3221 | isl_size total, n_div; |
3222 | unsigned pos; |
3223 | isl_stat r; |
3224 | |
3225 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
3226 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
3227 | if (total < 0 || n_div < 0) |
3228 | return isl_stat_error; |
3229 | pos = total - n_div; |
3230 | extra_var = total - info->tab->n_var; |
3231 | n = n_div - extra_var; |
3232 | |
3233 | ctx = isl_basic_map_get_ctx(bmap); |
3234 | expanded = isl_calloc_array(ctx, struct isl_expanded, extra_var); |
3235 | if (extra_var && !expanded) |
3236 | goto error; |
3237 | |
3238 | i = 0; |
3239 | k = 0; |
3240 | for (j = 0; j < n_div; ++j) { |
3241 | if (i < n && exp[i] == j) { |
3242 | ++i; |
3243 | continue; |
3244 | } |
3245 | expanded[k++].pos = pos + j; |
3246 | } |
3247 | |
3248 | for (k = 0; k < extra_var; ++k) |
3249 | isl_int_init(expanded[k].val); |
3250 | |
3251 | r = tab_insert_divs(info, n: extra_var, expanded, bmap); |
3252 | |
3253 | for (k = 0; k < extra_var; ++k) |
3254 | isl_int_clear(expanded[k].val); |
3255 | free(ptr: expanded); |
3256 | |
3257 | return r; |
3258 | error: |
3259 | isl_basic_map_free(bmap); |
3260 | return isl_stat_error; |
3261 | } |
3262 | |
3263 | /* Check if the union of the basic maps represented by info[i] and info[j] |
3264 | * can be represented by a single basic map, |
3265 | * after expanding the divs of info[i] to match those of info[j]. |
3266 | * If so, replace the pair by the single basic map and return |
3267 | * isl_change_drop_first, isl_change_drop_second or isl_change_fuse. |
3268 | * Otherwise, return isl_change_none. |
3269 | * |
3270 | * The caller has already checked for info[j] being a subset of info[i]. |
3271 | * If some of the divs of info[j] are unknown, then the expanded info[i] |
3272 | * will not have the corresponding div constraints. The other patterns |
3273 | * therefore cannot apply. Skip the computation in this case. |
3274 | * |
3275 | * The expansion is performed using the divs "div" and expansion "exp" |
3276 | * computed by the caller. |
3277 | * info[i].bmap has already been expanded and the result is passed in |
3278 | * as "bmap". |
3279 | * The "eq" and "ineq" fields of info[i] reflect the status of |
3280 | * the constraints of the expanded "bmap" with respect to info[j].tab. |
3281 | * However, inequality constraints that are redundant in info[i].tab |
3282 | * have not yet been marked as such because no tableau was available. |
3283 | * |
3284 | * Replace info[i].bmap by "bmap" and expand info[i].tab as well, |
3285 | * updating info[i].ineq with respect to the redundant constraints. |
3286 | * Then try and coalesce the expanded info[i] with info[j], |
3287 | * reusing the information in info[i].eq and info[i].ineq. |
3288 | * If this does not result in any coalescing or if it results in info[j] |
3289 | * getting dropped (which should not happen in practice, since the case |
3290 | * of info[j] being a subset of info[i] has already been checked by |
3291 | * the caller), then revert info[i] to its original state. |
3292 | */ |
3293 | static enum isl_change coalesce_expand_tab_divs(__isl_take isl_basic_map *bmap, |
3294 | int i, int j, struct isl_coalesce_info *info, __isl_keep isl_mat *div, |
3295 | int *exp) |
3296 | { |
3297 | isl_bool known; |
3298 | isl_basic_map *bmap_i; |
3299 | struct isl_tab_undo *snap; |
3300 | enum isl_change change = isl_change_none; |
3301 | |
3302 | known = isl_basic_map_divs_known(bmap: info[j].bmap); |
3303 | if (known < 0 || !known) { |
3304 | clear_status(info: &info[i]); |
3305 | isl_basic_map_free(bmap); |
3306 | return known < 0 ? isl_change_error : isl_change_none; |
3307 | } |
3308 | |
3309 | bmap_i = isl_basic_map_copy(bmap: info[i].bmap); |
3310 | snap = isl_tab_snap(tab: info[i].tab); |
3311 | if (expand_tab(info: &info[i], exp, bmap) < 0) |
3312 | change = isl_change_error; |
3313 | |
3314 | init_status(info: &info[j]); |
3315 | if (change == isl_change_none) |
3316 | change = coalesce_local_pair_reuse(i, j, info); |
3317 | else |
3318 | clear_status(info: &info[i]); |
3319 | if (change != isl_change_none && change != isl_change_drop_second) { |
3320 | isl_basic_map_free(bmap: bmap_i); |
3321 | } else { |
3322 | isl_basic_map_free(bmap: info[i].bmap); |
3323 | info[i].bmap = bmap_i; |
3324 | |
3325 | if (isl_tab_rollback(tab: info[i].tab, snap) < 0) |
3326 | change = isl_change_error; |
3327 | } |
3328 | |
3329 | return change; |
3330 | } |
3331 | |
3332 | /* Check if the union of "bmap" and the basic map represented by info[j] |
3333 | * can be represented by a single basic map, |
3334 | * after expanding the divs of "bmap" to match those of info[j]. |
3335 | * If so, replace the pair by the single basic map and return |
3336 | * isl_change_drop_first, isl_change_drop_second or isl_change_fuse. |
3337 | * Otherwise, return isl_change_none. |
3338 | * |
3339 | * In particular, check if the expanded "bmap" contains the basic map |
3340 | * represented by the tableau info[j].tab. |
3341 | * The expansion is performed using the divs "div" and expansion "exp" |
3342 | * computed by the caller. |
3343 | * Then we check if all constraints of the expanded "bmap" are valid for |
3344 | * info[j].tab. |
3345 | * |
3346 | * If "i" is not equal to -1, then "bmap" is equal to info[i].bmap. |
3347 | * In this case, the positions of the constraints of info[i].bmap |
3348 | * with respect to the basic map represented by info[j] are stored |
3349 | * in info[i]. |
3350 | * |
3351 | * If the expanded "bmap" does not contain the basic map |
3352 | * represented by the tableau info[j].tab and if "i" is not -1, |
3353 | * i.e., if the original "bmap" is info[i].bmap, then expand info[i].tab |
3354 | * as well and check if that results in coalescing. |
3355 | */ |
3356 | static enum isl_change coalesce_with_expanded_divs( |
3357 | __isl_keep isl_basic_map *bmap, int i, int j, |
3358 | struct isl_coalesce_info *info, __isl_keep isl_mat *div, int *exp) |
3359 | { |
3360 | enum isl_change change = isl_change_none; |
3361 | struct isl_coalesce_info info_local, *info_i; |
3362 | |
3363 | info_i = i >= 0 ? &info[i] : &info_local; |
3364 | init_status(info: info_i); |
3365 | bmap = isl_basic_map_copy(bmap); |
3366 | bmap = isl_basic_map_expand_divs(bmap, div: isl_mat_copy(mat: div), exp); |
3367 | bmap = isl_basic_map_mark_final(bmap); |
3368 | |
3369 | if (!bmap) |
3370 | goto error; |
3371 | |
3372 | info_local.bmap = bmap; |
3373 | info_i->eq = eq_status_in(bmap_i: bmap, tab_j: info[j].tab); |
3374 | if (bmap->n_eq && !info_i->eq) |
3375 | goto error; |
3376 | if (any_eq(info: info_i, STATUS_ERROR)) |
3377 | goto error; |
3378 | if (any_eq(info: info_i, STATUS_SEPARATE)) |
3379 | goto done; |
3380 | |
3381 | info_i->ineq = ineq_status_in(bmap_i: bmap, NULL, tab_j: info[j].tab); |
3382 | if (bmap->n_ineq && !info_i->ineq) |
3383 | goto error; |
3384 | if (any_ineq(info: info_i, STATUS_ERROR)) |
3385 | goto error; |
3386 | if (any_ineq(info: info_i, STATUS_SEPARATE)) |
3387 | goto done; |
3388 | |
3389 | if (all(con: info_i->eq, len: 2 * bmap->n_eq, STATUS_VALID) && |
3390 | all(con: info_i->ineq, len: bmap->n_ineq, STATUS_VALID)) { |
3391 | drop(info: &info[j]); |
3392 | change = isl_change_drop_second; |
3393 | } |
3394 | |
3395 | if (change == isl_change_none && i != -1) |
3396 | return coalesce_expand_tab_divs(bmap, i, j, info, div, exp); |
3397 | |
3398 | done: |
3399 | isl_basic_map_free(bmap); |
3400 | clear_status(info: info_i); |
3401 | return change; |
3402 | error: |
3403 | isl_basic_map_free(bmap); |
3404 | clear_status(info: info_i); |
3405 | return isl_change_error; |
3406 | } |
3407 | |
3408 | /* Check if the union of "bmap_i" and the basic map represented by info[j] |
3409 | * can be represented by a single basic map, |
3410 | * after aligning the divs of "bmap_i" to match those of info[j]. |
3411 | * If so, replace the pair by the single basic map and return |
3412 | * isl_change_drop_first, isl_change_drop_second or isl_change_fuse. |
3413 | * Otherwise, return isl_change_none. |
3414 | * |
3415 | * In particular, check if "bmap_i" contains the basic map represented by |
3416 | * info[j] after aligning the divs of "bmap_i" to those of info[j]. |
3417 | * Note that this can only succeed if the number of divs of "bmap_i" |
3418 | * is smaller than (or equal to) the number of divs of info[j]. |
3419 | * |
3420 | * We first check if the divs of "bmap_i" are all known and form a subset |
3421 | * of those of info[j].bmap. If so, we pass control over to |
3422 | * coalesce_with_expanded_divs. |
3423 | * |
3424 | * If "i" is not equal to -1, then "bmap" is equal to info[i].bmap. |
3425 | */ |
3426 | static enum isl_change coalesce_after_aligning_divs( |
3427 | __isl_keep isl_basic_map *bmap_i, int i, int j, |
3428 | struct isl_coalesce_info *info) |
3429 | { |
3430 | isl_bool known; |
3431 | isl_mat *div_i, *div_j, *div; |
3432 | int *exp1 = NULL; |
3433 | int *exp2 = NULL; |
3434 | isl_ctx *ctx; |
3435 | enum isl_change change; |
3436 | |
3437 | known = isl_basic_map_divs_known(bmap: bmap_i); |
3438 | if (known < 0) |
3439 | return isl_change_error; |
3440 | if (!known) |
3441 | return isl_change_none; |
3442 | |
3443 | ctx = isl_basic_map_get_ctx(bmap: bmap_i); |
3444 | |
3445 | div_i = isl_basic_map_get_divs(bmap: bmap_i); |
3446 | div_j = isl_basic_map_get_divs(bmap: info[j].bmap); |
3447 | |
3448 | if (!div_i || !div_j) |
3449 | goto error; |
3450 | |
3451 | exp1 = isl_alloc_array(ctx, int, div_i->n_row); |
3452 | exp2 = isl_alloc_array(ctx, int, div_j->n_row); |
3453 | if ((div_i->n_row && !exp1) || (div_j->n_row && !exp2)) |
3454 | goto error; |
3455 | |
3456 | div = isl_merge_divs(div1: div_i, div2: div_j, exp1, exp2); |
3457 | if (!div) |
3458 | goto error; |
3459 | |
3460 | if (div->n_row == div_j->n_row) |
3461 | change = coalesce_with_expanded_divs(bmap: bmap_i, |
3462 | i, j, info, div, exp: exp1); |
3463 | else |
3464 | change = isl_change_none; |
3465 | |
3466 | isl_mat_free(mat: div); |
3467 | |
3468 | isl_mat_free(mat: div_i); |
3469 | isl_mat_free(mat: div_j); |
3470 | |
3471 | free(ptr: exp2); |
3472 | free(ptr: exp1); |
3473 | |
3474 | return change; |
3475 | error: |
3476 | isl_mat_free(mat: div_i); |
3477 | isl_mat_free(mat: div_j); |
3478 | free(ptr: exp1); |
3479 | free(ptr: exp2); |
3480 | return isl_change_error; |
3481 | } |
3482 | |
3483 | /* Check if basic map "j" is a subset of basic map "i" after |
3484 | * exploiting the extra equalities of "j" to simplify the divs of "i". |
3485 | * If so, remove basic map "j" and return isl_change_drop_second. |
3486 | * |
3487 | * If "j" does not have any equalities or if they are the same |
3488 | * as those of "i", then we cannot exploit them to simplify the divs. |
3489 | * Similarly, if there are no divs in "i", then they cannot be simplified. |
3490 | * If, on the other hand, the affine hulls of "i" and "j" do not intersect, |
3491 | * then "j" cannot be a subset of "i". |
3492 | * |
3493 | * Otherwise, we intersect "i" with the affine hull of "j" and then |
3494 | * check if "j" is a subset of the result after aligning the divs. |
3495 | * If so, then "j" is definitely a subset of "i" and can be removed. |
3496 | * Note that if after intersection with the affine hull of "j". |
3497 | * "i" still has more divs than "j", then there is no way we can |
3498 | * align the divs of "i" to those of "j". |
3499 | */ |
3500 | static enum isl_change coalesce_subset_with_equalities(int i, int j, |
3501 | struct isl_coalesce_info *info) |
3502 | { |
3503 | isl_basic_map *hull_i, *hull_j, *bmap_i; |
3504 | int equal, empty; |
3505 | enum isl_change change; |
3506 | |
3507 | if (info[j].bmap->n_eq == 0) |
3508 | return isl_change_none; |
3509 | if (info[i].bmap->n_div == 0) |
3510 | return isl_change_none; |
3511 | |
3512 | hull_i = isl_basic_map_copy(bmap: info[i].bmap); |
3513 | hull_i = isl_basic_map_plain_affine_hull(bmap: hull_i); |
3514 | hull_j = isl_basic_map_copy(bmap: info[j].bmap); |
3515 | hull_j = isl_basic_map_plain_affine_hull(bmap: hull_j); |
3516 | |
3517 | hull_j = isl_basic_map_intersect(bmap1: hull_j, bmap2: isl_basic_map_copy(bmap: hull_i)); |
3518 | equal = isl_basic_map_plain_is_equal(bmap1: hull_i, bmap2: hull_j); |
3519 | empty = isl_basic_map_plain_is_empty(bmap: hull_j); |
3520 | isl_basic_map_free(bmap: hull_i); |
3521 | |
3522 | if (equal < 0 || equal || empty < 0 || empty) { |
3523 | isl_basic_map_free(bmap: hull_j); |
3524 | if (equal < 0 || empty < 0) |
3525 | return isl_change_error; |
3526 | return isl_change_none; |
3527 | } |
3528 | |
3529 | bmap_i = isl_basic_map_copy(bmap: info[i].bmap); |
3530 | bmap_i = isl_basic_map_intersect(bmap1: bmap_i, bmap2: hull_j); |
3531 | if (!bmap_i) |
3532 | return isl_change_error; |
3533 | |
3534 | if (bmap_i->n_div > info[j].bmap->n_div) { |
3535 | isl_basic_map_free(bmap: bmap_i); |
3536 | return isl_change_none; |
3537 | } |
3538 | |
3539 | change = coalesce_after_aligning_divs(bmap_i, i: -1, j, info); |
3540 | |
3541 | isl_basic_map_free(bmap: bmap_i); |
3542 | |
3543 | return change; |
3544 | } |
3545 | |
3546 | /* Check if the union of the basic maps represented by info[i] and info[j] |
3547 | * can be represented by a single basic map, by aligning or equating |
3548 | * their integer divisions. |
3549 | * If so, replace the pair by the single basic map and return |
3550 | * isl_change_drop_first, isl_change_drop_second or isl_change_fuse. |
3551 | * Otherwise, return isl_change_none. |
3552 | * |
3553 | * Note that we only perform any test if the number of divs is different |
3554 | * in the two basic maps. In case the number of divs is the same, |
3555 | * we have already established that the divs are different |
3556 | * in the two basic maps. |
3557 | * In particular, if the number of divs of basic map i is smaller than |
3558 | * the number of divs of basic map j, then we check if j is a subset of i |
3559 | * and vice versa. |
3560 | */ |
3561 | static enum isl_change coalesce_divs(int i, int j, |
3562 | struct isl_coalesce_info *info) |
3563 | { |
3564 | enum isl_change change = isl_change_none; |
3565 | |
3566 | if (info[i].bmap->n_div < info[j].bmap->n_div) |
3567 | change = coalesce_after_aligning_divs(bmap_i: info[i].bmap, i, j, info); |
3568 | if (change != isl_change_none) |
3569 | return change; |
3570 | |
3571 | if (info[j].bmap->n_div < info[i].bmap->n_div) |
3572 | change = coalesce_after_aligning_divs(bmap_i: info[j].bmap, i: j, j: i, info); |
3573 | if (change != isl_change_none) |
3574 | return invert_change(change); |
3575 | |
3576 | change = coalesce_subset_with_equalities(i, j, info); |
3577 | if (change != isl_change_none) |
3578 | return change; |
3579 | |
3580 | change = coalesce_subset_with_equalities(i: j, j: i, info); |
3581 | if (change != isl_change_none) |
3582 | return invert_change(change); |
3583 | |
3584 | return isl_change_none; |
3585 | } |
3586 | |
3587 | /* Does "bmap" involve any divs that themselves refer to divs? |
3588 | */ |
3589 | static isl_bool has_nested_div(__isl_keep isl_basic_map *bmap) |
3590 | { |
3591 | int i; |
3592 | isl_size total; |
3593 | isl_size n_div; |
3594 | |
3595 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
3596 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
3597 | if (total < 0 || n_div < 0) |
3598 | return isl_bool_error; |
3599 | total -= n_div; |
3600 | |
3601 | for (i = 0; i < n_div; ++i) |
3602 | if (isl_seq_first_non_zero(p: bmap->div[i] + 2 + total, |
3603 | len: n_div) != -1) |
3604 | return isl_bool_true; |
3605 | |
3606 | return isl_bool_false; |
3607 | } |
3608 | |
3609 | /* Return a list of affine expressions, one for each integer division |
3610 | * in "bmap_i". For each integer division that also appears in "bmap_j", |
3611 | * the affine expression is set to NaN. The number of NaNs in the list |
3612 | * is equal to the number of integer divisions in "bmap_j". |
3613 | * For the other integer divisions of "bmap_i", the corresponding |
3614 | * element in the list is a purely affine expression equal to the integer |
3615 | * division in "hull". |
3616 | * If no such list can be constructed, then the number of elements |
3617 | * in the returned list is smaller than the number of integer divisions |
3618 | * in "bmap_i". |
3619 | * The integer division of "bmap_i" and "bmap_j" are assumed to be known and |
3620 | * not contain any nested divs. |
3621 | */ |
3622 | static __isl_give isl_aff_list *set_up_substitutions( |
3623 | __isl_keep isl_basic_map *bmap_i, __isl_keep isl_basic_map *bmap_j, |
3624 | __isl_take isl_basic_map *hull) |
3625 | { |
3626 | isl_size n_div_i, n_div_j, total; |
3627 | isl_ctx *ctx; |
3628 | isl_local_space *ls; |
3629 | isl_basic_set *wrap_hull; |
3630 | isl_aff *aff_nan; |
3631 | isl_aff_list *list; |
3632 | int i, j; |
3633 | |
3634 | n_div_i = isl_basic_map_dim(bmap: bmap_i, type: isl_dim_div); |
3635 | n_div_j = isl_basic_map_dim(bmap: bmap_j, type: isl_dim_div); |
3636 | total = isl_basic_map_dim(bmap: bmap_i, type: isl_dim_all); |
3637 | if (!hull || n_div_i < 0 || n_div_j < 0 || total < 0) |
3638 | return NULL; |
3639 | |
3640 | ctx = isl_basic_map_get_ctx(bmap: hull); |
3641 | total -= n_div_i; |
3642 | |
3643 | ls = isl_basic_map_get_local_space(bmap: bmap_i); |
3644 | ls = isl_local_space_wrap(ls); |
3645 | wrap_hull = isl_basic_map_wrap(bmap: hull); |
3646 | |
3647 | aff_nan = isl_aff_nan_on_domain(ls: isl_local_space_copy(ls)); |
3648 | list = isl_aff_list_alloc(ctx, n: n_div_i); |
3649 | |
3650 | j = 0; |
3651 | for (i = 0; i < n_div_i; ++i) { |
3652 | isl_aff *aff; |
3653 | isl_size n_div; |
3654 | |
3655 | if (j < n_div_j && |
3656 | isl_basic_map_equal_div_expr_part(bmap1: bmap_i, pos1: i, bmap2: bmap_j, pos2: j, |
3657 | first: 0, n: 2 + total)) { |
3658 | ++j; |
3659 | list = isl_aff_list_add(list, el: isl_aff_copy(aff: aff_nan)); |
3660 | continue; |
3661 | } |
3662 | if (n_div_i - i <= n_div_j - j) |
3663 | break; |
3664 | |
3665 | aff = isl_local_space_get_div(ls, pos: i); |
3666 | aff = isl_aff_substitute_equalities(aff, |
3667 | eq: isl_basic_set_copy(bset: wrap_hull)); |
3668 | aff = isl_aff_floor(aff); |
3669 | n_div = isl_aff_dim(aff, type: isl_dim_div); |
3670 | if (n_div < 0) |
3671 | goto error; |
3672 | if (n_div != 0) { |
3673 | isl_aff_free(aff); |
3674 | break; |
3675 | } |
3676 | |
3677 | list = isl_aff_list_add(list, el: aff); |
3678 | } |
3679 | |
3680 | isl_aff_free(aff: aff_nan); |
3681 | isl_local_space_free(ls); |
3682 | isl_basic_set_free(bset: wrap_hull); |
3683 | |
3684 | return list; |
3685 | error: |
3686 | isl_aff_free(aff: aff_nan); |
3687 | isl_local_space_free(ls); |
3688 | isl_basic_set_free(bset: wrap_hull); |
3689 | isl_aff_list_free(list); |
3690 | return NULL; |
3691 | } |
3692 | |
3693 | /* Add variables to info->bmap and info->tab corresponding to the elements |
3694 | * in "list" that are not set to NaN. |
3695 | * "extra_var" is the number of these elements. |
3696 | * "dim" is the offset in the variables of "tab" where we should |
3697 | * start considering the elements in "list". |
3698 | * When this function returns, the total number of variables in "tab" |
3699 | * is equal to "dim" plus the number of elements in "list". |
3700 | * |
3701 | * The newly added existentially quantified variables are not given |
3702 | * an explicit representation because the corresponding div constraints |
3703 | * do not appear in info->bmap. These constraints are not added |
3704 | * to info->bmap because for internal consistency, they would need to |
3705 | * be added to info->tab as well, where they could combine with the equality |
3706 | * that is added later to result in constraints that do not hold |
3707 | * in the original input. |
3708 | */ |
3709 | static isl_stat add_sub_vars(struct isl_coalesce_info *info, |
3710 | __isl_keep isl_aff_list *list, int dim, int ) |
3711 | { |
3712 | int i, j, d; |
3713 | isl_size n; |
3714 | |
3715 | info->bmap = isl_basic_map_cow(bmap: info->bmap); |
3716 | info->bmap = isl_basic_map_extend(base: info->bmap, extra: extra_var, n_eq: 0, n_ineq: 0); |
3717 | n = isl_aff_list_n_aff(list); |
3718 | if (!info->bmap || n < 0) |
3719 | return isl_stat_error; |
3720 | for (i = 0; i < n; ++i) { |
3721 | int is_nan; |
3722 | isl_aff *aff; |
3723 | |
3724 | aff = isl_aff_list_get_aff(list, index: i); |
3725 | is_nan = isl_aff_is_nan(aff); |
3726 | isl_aff_free(aff); |
3727 | if (is_nan < 0) |
3728 | return isl_stat_error; |
3729 | if (is_nan) |
3730 | continue; |
3731 | |
3732 | if (isl_tab_insert_var(tab: info->tab, pos: dim + i) < 0) |
3733 | return isl_stat_error; |
3734 | d = isl_basic_map_alloc_div(bmap: info->bmap); |
3735 | if (d < 0) |
3736 | return isl_stat_error; |
3737 | info->bmap = isl_basic_map_mark_div_unknown(bmap: info->bmap, div: d); |
3738 | for (j = d; j > i; --j) |
3739 | info->bmap = isl_basic_map_swap_div(bmap: info->bmap, |
3740 | a: j - 1, b: j); |
3741 | if (!info->bmap) |
3742 | return isl_stat_error; |
3743 | } |
3744 | |
3745 | return isl_stat_ok; |
3746 | } |
3747 | |
3748 | /* For each element in "list" that is not set to NaN, fix the corresponding |
3749 | * variable in "tab" to the purely affine expression defined by the element. |
3750 | * "dim" is the offset in the variables of "tab" where we should |
3751 | * start considering the elements in "list". |
3752 | * |
3753 | * This function assumes that a sufficient number of rows and |
3754 | * elements in the constraint array are available in the tableau. |
3755 | */ |
3756 | static isl_stat add_sub_equalities(struct isl_tab *tab, |
3757 | __isl_keep isl_aff_list *list, int dim) |
3758 | { |
3759 | int i; |
3760 | isl_size n; |
3761 | isl_ctx *ctx; |
3762 | isl_vec *sub; |
3763 | isl_aff *aff; |
3764 | |
3765 | n = isl_aff_list_n_aff(list); |
3766 | if (n < 0) |
3767 | return isl_stat_error; |
3768 | |
3769 | ctx = isl_tab_get_ctx(tab); |
3770 | sub = isl_vec_alloc(ctx, size: 1 + dim + n); |
3771 | if (!sub) |
3772 | return isl_stat_error; |
3773 | isl_seq_clr(p: sub->el + 1 + dim, len: n); |
3774 | |
3775 | for (i = 0; i < n; ++i) { |
3776 | aff = isl_aff_list_get_aff(list, index: i); |
3777 | if (!aff) |
3778 | goto error; |
3779 | if (isl_aff_is_nan(aff)) { |
3780 | isl_aff_free(aff); |
3781 | continue; |
3782 | } |
3783 | isl_seq_cpy(dst: sub->el, src: aff->v->el + 1, len: 1 + dim); |
3784 | isl_int_neg(sub->el[1 + dim + i], aff->v->el[0]); |
3785 | if (isl_tab_add_eq(tab, eq: sub->el) < 0) |
3786 | goto error; |
3787 | isl_int_set_si(sub->el[1 + dim + i], 0); |
3788 | isl_aff_free(aff); |
3789 | } |
3790 | |
3791 | isl_vec_free(vec: sub); |
3792 | return isl_stat_ok; |
3793 | error: |
3794 | isl_aff_free(aff); |
3795 | isl_vec_free(vec: sub); |
3796 | return isl_stat_error; |
3797 | } |
3798 | |
3799 | /* Add variables to info->tab and info->bmap corresponding to the elements |
3800 | * in "list" that are not set to NaN. The value of the added variable |
3801 | * in info->tab is fixed to the purely affine expression defined by the element. |
3802 | * "dim" is the offset in the variables of info->tab where we should |
3803 | * start considering the elements in "list". |
3804 | * When this function returns, the total number of variables in info->tab |
3805 | * is equal to "dim" plus the number of elements in "list". |
3806 | */ |
3807 | static isl_stat add_subs(struct isl_coalesce_info *info, |
3808 | __isl_keep isl_aff_list *list, int dim) |
3809 | { |
3810 | int ; |
3811 | isl_size n; |
3812 | |
3813 | n = isl_aff_list_n_aff(list); |
3814 | if (n < 0) |
3815 | return isl_stat_error; |
3816 | |
3817 | extra_var = n - (info->tab->n_var - dim); |
3818 | |
3819 | if (isl_tab_extend_vars(tab: info->tab, n_new: extra_var) < 0) |
3820 | return isl_stat_error; |
3821 | if (isl_tab_extend_cons(tab: info->tab, n_new: 2 * extra_var) < 0) |
3822 | return isl_stat_error; |
3823 | if (add_sub_vars(info, list, dim, extra_var) < 0) |
3824 | return isl_stat_error; |
3825 | |
3826 | return add_sub_equalities(tab: info->tab, list, dim); |
3827 | } |
3828 | |
3829 | /* Coalesce basic map "j" into basic map "i" after adding the extra integer |
3830 | * divisions in "i" but not in "j" to basic map "j", with values |
3831 | * specified by "list". The total number of elements in "list" |
3832 | * is equal to the number of integer divisions in "i", while the number |
3833 | * of NaN elements in the list is equal to the number of integer divisions |
3834 | * in "j". |
3835 | * |
3836 | * If no coalescing can be performed, then we need to revert basic map "j" |
3837 | * to its original state. We do the same if basic map "i" gets dropped |
3838 | * during the coalescing, even though this should not happen in practice |
3839 | * since we have already checked for "j" being a subset of "i" |
3840 | * before we reach this stage. |
3841 | */ |
3842 | static enum isl_change coalesce_with_subs(int i, int j, |
3843 | struct isl_coalesce_info *info, __isl_keep isl_aff_list *list) |
3844 | { |
3845 | isl_basic_map *bmap_j; |
3846 | struct isl_tab_undo *snap; |
3847 | isl_size dim, n_div; |
3848 | enum isl_change change; |
3849 | |
3850 | bmap_j = isl_basic_map_copy(bmap: info[j].bmap); |
3851 | snap = isl_tab_snap(tab: info[j].tab); |
3852 | |
3853 | dim = isl_basic_map_dim(bmap: bmap_j, type: isl_dim_all); |
3854 | n_div = isl_basic_map_dim(bmap: bmap_j, type: isl_dim_div); |
3855 | if (dim < 0 || n_div < 0) |
3856 | goto error; |
3857 | dim -= n_div; |
3858 | if (add_subs(info: &info[j], list, dim) < 0) |
3859 | goto error; |
3860 | |
3861 | change = coalesce_local_pair(i, j, info); |
3862 | if (change != isl_change_none && change != isl_change_drop_first) { |
3863 | isl_basic_map_free(bmap: bmap_j); |
3864 | } else { |
3865 | isl_basic_map_free(bmap: info[j].bmap); |
3866 | info[j].bmap = bmap_j; |
3867 | |
3868 | if (isl_tab_rollback(tab: info[j].tab, snap) < 0) |
3869 | return isl_change_error; |
3870 | } |
3871 | |
3872 | return change; |
3873 | error: |
3874 | isl_basic_map_free(bmap: bmap_j); |
3875 | return isl_change_error; |
3876 | } |
3877 | |
3878 | /* Check if we can coalesce basic map "j" into basic map "i" after copying |
3879 | * those extra integer divisions in "i" that can be simplified away |
3880 | * using the extra equalities in "j". |
3881 | * All divs are assumed to be known and not contain any nested divs. |
3882 | * |
3883 | * We first check if there are any extra equalities in "j" that we |
3884 | * can exploit. Then we check if every integer division in "i" |
3885 | * either already appears in "j" or can be simplified using the |
3886 | * extra equalities to a purely affine expression. |
3887 | * If these tests succeed, then we try to coalesce the two basic maps |
3888 | * by introducing extra dimensions in "j" corresponding to |
3889 | * the extra integer divisions "i" fixed to the corresponding |
3890 | * purely affine expression. |
3891 | */ |
3892 | static enum isl_change check_coalesce_into_eq(int i, int j, |
3893 | struct isl_coalesce_info *info) |
3894 | { |
3895 | isl_size n_div_i, n_div_j, n; |
3896 | isl_basic_map *hull_i, *hull_j; |
3897 | isl_bool equal, empty; |
3898 | isl_aff_list *list; |
3899 | enum isl_change change; |
3900 | |
3901 | n_div_i = isl_basic_map_dim(bmap: info[i].bmap, type: isl_dim_div); |
3902 | n_div_j = isl_basic_map_dim(bmap: info[j].bmap, type: isl_dim_div); |
3903 | if (n_div_i < 0 || n_div_j < 0) |
3904 | return isl_change_error; |
3905 | if (n_div_i <= n_div_j) |
3906 | return isl_change_none; |
3907 | if (info[j].bmap->n_eq == 0) |
3908 | return isl_change_none; |
3909 | |
3910 | hull_i = isl_basic_map_copy(bmap: info[i].bmap); |
3911 | hull_i = isl_basic_map_plain_affine_hull(bmap: hull_i); |
3912 | hull_j = isl_basic_map_copy(bmap: info[j].bmap); |
3913 | hull_j = isl_basic_map_plain_affine_hull(bmap: hull_j); |
3914 | |
3915 | hull_j = isl_basic_map_intersect(bmap1: hull_j, bmap2: isl_basic_map_copy(bmap: hull_i)); |
3916 | equal = isl_basic_map_plain_is_equal(bmap1: hull_i, bmap2: hull_j); |
3917 | empty = isl_basic_map_plain_is_empty(bmap: hull_j); |
3918 | isl_basic_map_free(bmap: hull_i); |
3919 | |
3920 | if (equal < 0 || empty < 0) |
3921 | goto error; |
3922 | if (equal || empty) { |
3923 | isl_basic_map_free(bmap: hull_j); |
3924 | return isl_change_none; |
3925 | } |
3926 | |
3927 | list = set_up_substitutions(bmap_i: info[i].bmap, bmap_j: info[j].bmap, hull: hull_j); |
3928 | if (!list) |
3929 | return isl_change_error; |
3930 | n = isl_aff_list_n_aff(list); |
3931 | if (n < 0) |
3932 | change = isl_change_error; |
3933 | else if (n < n_div_i) |
3934 | change = isl_change_none; |
3935 | else |
3936 | change = coalesce_with_subs(i, j, info, list); |
3937 | |
3938 | isl_aff_list_free(list); |
3939 | |
3940 | return change; |
3941 | error: |
3942 | isl_basic_map_free(bmap: hull_j); |
3943 | return isl_change_error; |
3944 | } |
3945 | |
3946 | /* Check if we can coalesce basic maps "i" and "j" after copying |
3947 | * those extra integer divisions in one of the basic maps that can |
3948 | * be simplified away using the extra equalities in the other basic map. |
3949 | * We require all divs to be known in both basic maps. |
3950 | * Furthermore, to simplify the comparison of div expressions, |
3951 | * we do not allow any nested integer divisions. |
3952 | */ |
3953 | static enum isl_change check_coalesce_eq(int i, int j, |
3954 | struct isl_coalesce_info *info) |
3955 | { |
3956 | isl_bool known, nested; |
3957 | enum isl_change change; |
3958 | |
3959 | known = isl_basic_map_divs_known(bmap: info[i].bmap); |
3960 | if (known < 0 || !known) |
3961 | return known < 0 ? isl_change_error : isl_change_none; |
3962 | known = isl_basic_map_divs_known(bmap: info[j].bmap); |
3963 | if (known < 0 || !known) |
3964 | return known < 0 ? isl_change_error : isl_change_none; |
3965 | nested = has_nested_div(bmap: info[i].bmap); |
3966 | if (nested < 0 || nested) |
3967 | return nested < 0 ? isl_change_error : isl_change_none; |
3968 | nested = has_nested_div(bmap: info[j].bmap); |
3969 | if (nested < 0 || nested) |
3970 | return nested < 0 ? isl_change_error : isl_change_none; |
3971 | |
3972 | change = check_coalesce_into_eq(i, j, info); |
3973 | if (change != isl_change_none) |
3974 | return change; |
3975 | change = check_coalesce_into_eq(i: j, j: i, info); |
3976 | if (change != isl_change_none) |
3977 | return invert_change(change); |
3978 | |
3979 | return isl_change_none; |
3980 | } |
3981 | |
3982 | /* Check if the union of the given pair of basic maps |
3983 | * can be represented by a single basic map. |
3984 | * If so, replace the pair by the single basic map and return |
3985 | * isl_change_drop_first, isl_change_drop_second or isl_change_fuse. |
3986 | * Otherwise, return isl_change_none. |
3987 | * |
3988 | * We first check if the two basic maps live in the same local space, |
3989 | * after aligning the divs that differ by only an integer constant. |
3990 | * If so, we do the complete check. Otherwise, we check if they have |
3991 | * the same number of integer divisions and can be coalesced, if one is |
3992 | * an obvious subset of the other or if the extra integer divisions |
3993 | * of one basic map can be simplified away using the extra equalities |
3994 | * of the other basic map. |
3995 | * |
3996 | * Note that trying to coalesce pairs of disjuncts with the same |
3997 | * number, but different local variables may drop the explicit |
3998 | * representation of some of these local variables. |
3999 | * This operation is therefore not performed when |
4000 | * the "coalesce_preserve_locals" option is set. |
4001 | */ |
4002 | static enum isl_change coalesce_pair(int i, int j, |
4003 | struct isl_coalesce_info *info) |
4004 | { |
4005 | int preserve; |
4006 | isl_bool same; |
4007 | enum isl_change change; |
4008 | isl_ctx *ctx; |
4009 | |
4010 | if (harmonize_divs(info1: &info[i], info2: &info[j]) < 0) |
4011 | return isl_change_error; |
4012 | same = same_divs(bmap1: info[i].bmap, bmap2: info[j].bmap); |
4013 | if (same < 0) |
4014 | return isl_change_error; |
4015 | if (same) |
4016 | return coalesce_local_pair(i, j, info); |
4017 | |
4018 | ctx = isl_basic_map_get_ctx(bmap: info[i].bmap); |
4019 | preserve = isl_options_get_coalesce_preserve_locals(ctx); |
4020 | if (!preserve && info[i].bmap->n_div == info[j].bmap->n_div) { |
4021 | change = coalesce_local_pair(i, j, info); |
4022 | if (change != isl_change_none) |
4023 | return change; |
4024 | } |
4025 | |
4026 | change = coalesce_divs(i, j, info); |
4027 | if (change != isl_change_none) |
4028 | return change; |
4029 | |
4030 | return check_coalesce_eq(i, j, info); |
4031 | } |
4032 | |
4033 | /* Return the maximum of "a" and "b". |
4034 | */ |
4035 | static int isl_max(int a, int b) |
4036 | { |
4037 | return a > b ? a : b; |
4038 | } |
4039 | |
4040 | /* Pairwise coalesce the basic maps in the range [start1, end1[ of "info" |
4041 | * with those in the range [start2, end2[, skipping basic maps |
4042 | * that have been removed (either before or within this function). |
4043 | * |
4044 | * For each basic map i in the first range, we check if it can be coalesced |
4045 | * with respect to any previously considered basic map j in the second range. |
4046 | * If i gets dropped (because it was a subset of some j), then |
4047 | * we can move on to the next basic map. |
4048 | * If j gets dropped, we need to continue checking against the other |
4049 | * previously considered basic maps. |
4050 | * If the two basic maps got fused, then we recheck the fused basic map |
4051 | * against the previously considered basic maps, starting at i + 1 |
4052 | * (even if start2 is greater than i + 1). |
4053 | */ |
4054 | static int coalesce_range(isl_ctx *ctx, struct isl_coalesce_info *info, |
4055 | int start1, int end1, int start2, int end2) |
4056 | { |
4057 | int i, j; |
4058 | |
4059 | for (i = end1 - 1; i >= start1; --i) { |
4060 | if (info[i].removed) |
4061 | continue; |
4062 | for (j = isl_max(a: i + 1, b: start2); j < end2; ++j) { |
4063 | enum isl_change changed; |
4064 | |
4065 | if (info[j].removed) |
4066 | continue; |
4067 | if (info[i].removed) |
4068 | isl_die(ctx, isl_error_internal, |
4069 | "basic map unexpectedly removed" , |
4070 | return -1); |
4071 | changed = coalesce_pair(i, j, info); |
4072 | switch (changed) { |
4073 | case isl_change_error: |
4074 | return -1; |
4075 | case isl_change_none: |
4076 | case isl_change_drop_second: |
4077 | continue; |
4078 | case isl_change_drop_first: |
4079 | j = end2; |
4080 | break; |
4081 | case isl_change_fuse: |
4082 | j = i; |
4083 | break; |
4084 | } |
4085 | } |
4086 | } |
4087 | |
4088 | return 0; |
4089 | } |
4090 | |
4091 | /* Pairwise coalesce the basic maps described by the "n" elements of "info". |
4092 | * |
4093 | * We consider groups of basic maps that live in the same apparent |
4094 | * affine hull and we first coalesce within such a group before we |
4095 | * coalesce the elements in the group with elements of previously |
4096 | * considered groups. If a fuse happens during the second phase, |
4097 | * then we also reconsider the elements within the group. |
4098 | */ |
4099 | static int coalesce(isl_ctx *ctx, int n, struct isl_coalesce_info *info) |
4100 | { |
4101 | int start, end; |
4102 | |
4103 | for (end = n; end > 0; end = start) { |
4104 | start = end - 1; |
4105 | while (start >= 1 && |
4106 | info[start - 1].hull_hash == info[start].hull_hash) |
4107 | start--; |
4108 | if (coalesce_range(ctx, info, start1: start, end1: end, start2: start, end2: end) < 0) |
4109 | return -1; |
4110 | if (coalesce_range(ctx, info, start1: start, end1: end, start2: end, end2: n) < 0) |
4111 | return -1; |
4112 | } |
4113 | |
4114 | return 0; |
4115 | } |
4116 | |
4117 | /* Update the basic maps in "map" based on the information in "info". |
4118 | * In particular, remove the basic maps that have been marked removed and |
4119 | * update the others based on the information in the corresponding tableau. |
4120 | * Since we detected implicit equalities without calling |
4121 | * isl_basic_map_gauss, we need to do it now. |
4122 | * Also call isl_basic_map_simplify if we may have lost the definition |
4123 | * of one or more integer divisions. |
4124 | * If a basic map is still equal to the one from which the corresponding "info" |
4125 | * entry was created, then redundant constraint and |
4126 | * implicit equality constraint detection have been performed |
4127 | * on the corresponding tableau and the basic map can be marked as such. |
4128 | */ |
4129 | static __isl_give isl_map *update_basic_maps(__isl_take isl_map *map, |
4130 | int n, struct isl_coalesce_info *info) |
4131 | { |
4132 | int i; |
4133 | |
4134 | if (!map) |
4135 | return NULL; |
4136 | |
4137 | for (i = n - 1; i >= 0; --i) { |
4138 | if (info[i].removed) { |
4139 | isl_basic_map_free(bmap: map->p[i]); |
4140 | if (i != map->n - 1) |
4141 | map->p[i] = map->p[map->n - 1]; |
4142 | map->n--; |
4143 | continue; |
4144 | } |
4145 | |
4146 | info[i].bmap = isl_basic_map_update_from_tab(bmap: info[i].bmap, |
4147 | tab: info[i].tab); |
4148 | info[i].bmap = isl_basic_map_gauss(bmap: info[i].bmap, NULL); |
4149 | if (info[i].simplify) |
4150 | info[i].bmap = isl_basic_map_simplify(bmap: info[i].bmap); |
4151 | info[i].bmap = isl_basic_map_finalize(bmap: info[i].bmap); |
4152 | if (!info[i].bmap) |
4153 | return isl_map_free(map); |
4154 | if (!info[i].modified) { |
4155 | ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT); |
4156 | ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT); |
4157 | } |
4158 | isl_basic_map_free(bmap: map->p[i]); |
4159 | map->p[i] = info[i].bmap; |
4160 | info[i].bmap = NULL; |
4161 | } |
4162 | |
4163 | return map; |
4164 | } |
4165 | |
4166 | /* For each pair of basic maps in the map, check if the union of the two |
4167 | * can be represented by a single basic map. |
4168 | * If so, replace the pair by the single basic map and start over. |
4169 | * |
4170 | * We factor out any (hidden) common factor from the constraint |
4171 | * coefficients to improve the detection of adjacent constraints. |
4172 | * Note that this function does not call isl_basic_map_gauss, |
4173 | * but it does make sure that only a single copy of the basic map |
4174 | * is affected. This means that isl_basic_map_gauss may have |
4175 | * to be called at the end of the computation (in update_basic_maps) |
4176 | * on this single copy to ensure that |
4177 | * the basic maps are not left in an unexpected state. |
4178 | * |
4179 | * Since we are constructing the tableaus of the basic maps anyway, |
4180 | * we exploit them to detect implicit equalities and redundant constraints. |
4181 | * This also helps the coalescing as it can ignore the redundant constraints. |
4182 | * In order to avoid confusion, we make all implicit equalities explicit |
4183 | * in the basic maps. If the basic map only has a single reference |
4184 | * (this happens in particular if it was modified by |
4185 | * isl_basic_map_reduce_coefficients), then isl_basic_map_gauss |
4186 | * does not get called on the result. The call to |
4187 | * isl_basic_map_gauss in update_basic_maps resolves this as well. |
4188 | * For each basic map, we also compute the hash of the apparent affine hull |
4189 | * for use in coalesce. |
4190 | */ |
4191 | __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map) |
4192 | { |
4193 | int i; |
4194 | unsigned n; |
4195 | isl_ctx *ctx; |
4196 | struct isl_coalesce_info *info = NULL; |
4197 | |
4198 | map = isl_map_remove_empty_parts(map); |
4199 | if (!map) |
4200 | return NULL; |
4201 | |
4202 | if (map->n <= 1) |
4203 | return map; |
4204 | |
4205 | ctx = isl_map_get_ctx(map); |
4206 | map = isl_map_sort_divs(map); |
4207 | map = isl_map_cow(map); |
4208 | |
4209 | if (!map) |
4210 | return NULL; |
4211 | |
4212 | n = map->n; |
4213 | |
4214 | info = isl_calloc_array(map->ctx, struct isl_coalesce_info, n); |
4215 | if (!info) |
4216 | goto error; |
4217 | |
4218 | for (i = 0; i < map->n; ++i) { |
4219 | map->p[i] = isl_basic_map_reduce_coefficients(bmap: map->p[i]); |
4220 | if (!map->p[i]) |
4221 | goto error; |
4222 | info[i].bmap = isl_basic_map_copy(bmap: map->p[i]); |
4223 | info[i].tab = isl_tab_from_basic_map(bmap: info[i].bmap, track: 0); |
4224 | if (!info[i].tab) |
4225 | goto error; |
4226 | if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT)) |
4227 | if (isl_tab_detect_implicit_equalities(tab: info[i].tab) < 0) |
4228 | goto error; |
4229 | info[i].bmap = isl_tab_make_equalities_explicit(tab: info[i].tab, |
4230 | bmap: info[i].bmap); |
4231 | if (!info[i].bmap) |
4232 | goto error; |
4233 | if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT)) |
4234 | if (isl_tab_detect_redundant(tab: info[i].tab) < 0) |
4235 | goto error; |
4236 | if (coalesce_info_set_hull_hash(info: &info[i]) < 0) |
4237 | goto error; |
4238 | } |
4239 | for (i = map->n - 1; i >= 0; --i) |
4240 | if (info[i].tab->empty) |
4241 | drop(info: &info[i]); |
4242 | |
4243 | if (coalesce(ctx, n, info) < 0) |
4244 | goto error; |
4245 | |
4246 | map = update_basic_maps(map, n, info); |
4247 | |
4248 | clear_coalesce_info(n, info); |
4249 | |
4250 | return map; |
4251 | error: |
4252 | clear_coalesce_info(n, info); |
4253 | isl_map_free(map); |
4254 | return NULL; |
4255 | } |
4256 | |
4257 | /* For each pair of basic sets in the set, check if the union of the two |
4258 | * can be represented by a single basic set. |
4259 | * If so, replace the pair by the single basic set and start over. |
4260 | */ |
4261 | __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set) |
4262 | { |
4263 | return set_from_map(isl_map_coalesce(map: set_to_map(set))); |
4264 | } |
4265 | |