1 | /* |
2 | * Copyright 2008-2009 Katholieke Universiteit Leuven |
3 | * Copyright 2014 INRIA Rocquencourt |
4 | * |
5 | * Use of this software is governed by the MIT license |
6 | * |
7 | * Written by Sven Verdoolaege, K.U.Leuven, Departement |
8 | * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium |
9 | * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, |
10 | * B.P. 105 - 78153 Le Chesnay, France |
11 | */ |
12 | |
13 | #include <isl_ctx_private.h> |
14 | #include <isl_map_private.h> |
15 | #include <isl_lp_private.h> |
16 | #include <isl/map.h> |
17 | #include <isl_mat_private.h> |
18 | #include <isl_vec_private.h> |
19 | #include <isl/set.h> |
20 | #include <isl_seq.h> |
21 | #include <isl_options_private.h> |
22 | #include "isl_equalities.h" |
23 | #include "isl_tab.h" |
24 | #include <isl_sort.h> |
25 | |
26 | #include <bset_to_bmap.c> |
27 | #include <bset_from_bmap.c> |
28 | #include <set_to_map.c> |
29 | |
30 | static __isl_give isl_basic_set *uset_convex_hull_wrap_bounded( |
31 | __isl_take isl_set *set); |
32 | |
33 | /* Remove redundant |
34 | * constraints. If the minimal value along the normal of a constraint |
35 | * is the same if the constraint is removed, then the constraint is redundant. |
36 | * |
37 | * Since some constraints may be mutually redundant, sort the constraints |
38 | * first such that constraints that involve existentially quantified |
39 | * variables are considered for removal before those that do not. |
40 | * The sorting is also needed for the use in map_simple_hull. |
41 | * |
42 | * Note that isl_tab_detect_implicit_equalities may also end up |
43 | * marking some constraints as redundant. Make sure the constraints |
44 | * are preserved and undo those marking such that isl_tab_detect_redundant |
45 | * can consider the constraints in the sorted order. |
46 | * |
47 | * Alternatively, we could have intersected the basic map with the |
48 | * corresponding equality and then checked if the dimension was that |
49 | * of a facet. |
50 | */ |
51 | __isl_give isl_basic_map *isl_basic_map_remove_redundancies( |
52 | __isl_take isl_basic_map *bmap) |
53 | { |
54 | struct isl_tab *tab; |
55 | |
56 | if (!bmap) |
57 | return NULL; |
58 | |
59 | bmap = isl_basic_map_gauss(bmap, NULL); |
60 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) |
61 | return bmap; |
62 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT)) |
63 | return bmap; |
64 | if (bmap->n_ineq <= 1) |
65 | return bmap; |
66 | |
67 | bmap = isl_basic_map_sort_constraints(bmap); |
68 | tab = isl_tab_from_basic_map(bmap, track: 0); |
69 | if (!tab) |
70 | goto error; |
71 | tab->preserve = 1; |
72 | if (isl_tab_detect_implicit_equalities(tab) < 0) |
73 | goto error; |
74 | if (isl_tab_restore_redundant(tab) < 0) |
75 | goto error; |
76 | tab->preserve = 0; |
77 | if (isl_tab_detect_redundant(tab) < 0) |
78 | goto error; |
79 | bmap = isl_basic_map_update_from_tab(bmap, tab); |
80 | isl_tab_free(tab); |
81 | if (!bmap) |
82 | return NULL; |
83 | ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT); |
84 | ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT); |
85 | return bmap; |
86 | error: |
87 | isl_tab_free(tab); |
88 | isl_basic_map_free(bmap); |
89 | return NULL; |
90 | } |
91 | |
92 | __isl_give isl_basic_set *isl_basic_set_remove_redundancies( |
93 | __isl_take isl_basic_set *bset) |
94 | { |
95 | return bset_from_bmap( |
96 | bmap: isl_basic_map_remove_redundancies(bmap: bset_to_bmap(bset))); |
97 | } |
98 | |
99 | /* Remove redundant constraints in each of the basic maps. |
100 | */ |
101 | __isl_give isl_map *isl_map_remove_redundancies(__isl_take isl_map *map) |
102 | { |
103 | return isl_map_inline_foreach_basic_map(map, |
104 | fn: &isl_basic_map_remove_redundancies); |
105 | } |
106 | |
107 | __isl_give isl_set *isl_set_remove_redundancies(__isl_take isl_set *set) |
108 | { |
109 | return isl_map_remove_redundancies(map: set); |
110 | } |
111 | |
112 | /* Check if the set set is bound in the direction of the affine |
113 | * constraint c and if so, set the constant term such that the |
114 | * resulting constraint is a bounding constraint for the set. |
115 | */ |
116 | static isl_bool uset_is_bound(__isl_keep isl_set *set, isl_int *c, unsigned len) |
117 | { |
118 | int first; |
119 | int j; |
120 | isl_int opt; |
121 | isl_int opt_denom; |
122 | |
123 | isl_int_init(opt); |
124 | isl_int_init(opt_denom); |
125 | first = 1; |
126 | for (j = 0; j < set->n; ++j) { |
127 | enum isl_lp_result res; |
128 | |
129 | if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY)) |
130 | continue; |
131 | |
132 | res = isl_basic_set_solve_lp(bset: set->p[j], |
133 | max: 0, f: c, denom: set->ctx->one, opt: &opt, opt_denom: &opt_denom, NULL); |
134 | if (res == isl_lp_unbounded) |
135 | break; |
136 | if (res == isl_lp_error) |
137 | goto error; |
138 | if (res == isl_lp_empty) { |
139 | set->p[j] = isl_basic_set_set_to_empty(bset: set->p[j]); |
140 | if (!set->p[j]) |
141 | goto error; |
142 | continue; |
143 | } |
144 | if (first || isl_int_is_neg(opt)) { |
145 | if (!isl_int_is_one(opt_denom)) |
146 | isl_seq_scale(dst: c, src: c, f: opt_denom, len); |
147 | isl_int_sub(c[0], c[0], opt); |
148 | } |
149 | first = 0; |
150 | } |
151 | isl_int_clear(opt); |
152 | isl_int_clear(opt_denom); |
153 | return isl_bool_ok(b: j >= set->n); |
154 | error: |
155 | isl_int_clear(opt); |
156 | isl_int_clear(opt_denom); |
157 | return isl_bool_error; |
158 | } |
159 | |
160 | static __isl_give isl_set *isl_set_add_basic_set_equality( |
161 | __isl_take isl_set *set, isl_int *c) |
162 | { |
163 | int i; |
164 | |
165 | set = isl_set_cow(set); |
166 | if (!set) |
167 | return NULL; |
168 | for (i = 0; i < set->n; ++i) { |
169 | set->p[i] = isl_basic_set_add_eq(bset: set->p[i], eq: c); |
170 | if (!set->p[i]) |
171 | goto error; |
172 | } |
173 | return set; |
174 | error: |
175 | isl_set_free(set); |
176 | return NULL; |
177 | } |
178 | |
179 | /* Given a union of basic sets, construct the constraints for wrapping |
180 | * a facet around one of its ridges. |
181 | * In particular, if each of n the d-dimensional basic sets i in "set" |
182 | * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0 |
183 | * and is defined by the constraints |
184 | * [ 1 ] |
185 | * A_i [ x ] >= 0 |
186 | * |
187 | * then the resulting set is of dimension n*(1+d) and has as constraints |
188 | * |
189 | * [ a_i ] |
190 | * A_i [ x_i ] >= 0 |
191 | * |
192 | * a_i >= 0 |
193 | * |
194 | * \sum_i x_{i,1} = 1 |
195 | */ |
196 | static __isl_give isl_basic_set *wrap_constraints(__isl_keep isl_set *set) |
197 | { |
198 | struct isl_basic_set *lp; |
199 | unsigned n_eq; |
200 | unsigned n_ineq; |
201 | int i, j, k; |
202 | isl_size dim, lp_dim; |
203 | |
204 | dim = isl_set_dim(set, type: isl_dim_set); |
205 | if (dim < 0) |
206 | return NULL; |
207 | |
208 | dim += 1; |
209 | n_eq = 1; |
210 | n_ineq = set->n; |
211 | for (i = 0; i < set->n; ++i) { |
212 | n_eq += set->p[i]->n_eq; |
213 | n_ineq += set->p[i]->n_ineq; |
214 | } |
215 | lp = isl_basic_set_alloc(ctx: set->ctx, nparam: 0, dim: dim * set->n, extra: 0, n_eq, n_ineq); |
216 | lp = isl_basic_set_set_rational(bset: lp); |
217 | if (!lp) |
218 | return NULL; |
219 | lp_dim = isl_basic_set_dim(bset: lp, type: isl_dim_set); |
220 | if (lp_dim < 0) |
221 | return isl_basic_set_free(bset: lp); |
222 | k = isl_basic_set_alloc_equality(bset: lp); |
223 | isl_int_set_si(lp->eq[k][0], -1); |
224 | for (i = 0; i < set->n; ++i) { |
225 | isl_int_set_si(lp->eq[k][1+dim*i], 0); |
226 | isl_int_set_si(lp->eq[k][1+dim*i+1], 1); |
227 | isl_seq_clr(p: lp->eq[k]+1+dim*i+2, len: dim-2); |
228 | } |
229 | for (i = 0; i < set->n; ++i) { |
230 | k = isl_basic_set_alloc_inequality(bset: lp); |
231 | isl_seq_clr(p: lp->ineq[k], len: 1+lp_dim); |
232 | isl_int_set_si(lp->ineq[k][1+dim*i], 1); |
233 | |
234 | for (j = 0; j < set->p[i]->n_eq; ++j) { |
235 | k = isl_basic_set_alloc_equality(bset: lp); |
236 | isl_seq_clr(p: lp->eq[k], len: 1+dim*i); |
237 | isl_seq_cpy(dst: lp->eq[k]+1+dim*i, src: set->p[i]->eq[j], len: dim); |
238 | isl_seq_clr(p: lp->eq[k]+1+dim*(i+1), len: dim*(set->n-i-1)); |
239 | } |
240 | |
241 | for (j = 0; j < set->p[i]->n_ineq; ++j) { |
242 | k = isl_basic_set_alloc_inequality(bset: lp); |
243 | isl_seq_clr(p: lp->ineq[k], len: 1+dim*i); |
244 | isl_seq_cpy(dst: lp->ineq[k]+1+dim*i, src: set->p[i]->ineq[j], len: dim); |
245 | isl_seq_clr(p: lp->ineq[k]+1+dim*(i+1), len: dim*(set->n-i-1)); |
246 | } |
247 | } |
248 | return lp; |
249 | } |
250 | |
251 | /* Given a facet "facet" of the convex hull of "set" and a facet "ridge" |
252 | * of that facet, compute the other facet of the convex hull that contains |
253 | * the ridge. |
254 | * |
255 | * We first transform the set such that the facet constraint becomes |
256 | * |
257 | * x_1 >= 0 |
258 | * |
259 | * I.e., the facet lies in |
260 | * |
261 | * x_1 = 0 |
262 | * |
263 | * and on that facet, the constraint that defines the ridge is |
264 | * |
265 | * x_2 >= 0 |
266 | * |
267 | * (This transformation is not strictly needed, all that is needed is |
268 | * that the ridge contains the origin.) |
269 | * |
270 | * Since the ridge contains the origin, the cone of the convex hull |
271 | * will be of the form |
272 | * |
273 | * x_1 >= 0 |
274 | * x_2 >= a x_1 |
275 | * |
276 | * with this second constraint defining the new facet. |
277 | * The constant a is obtained by settting x_1 in the cone of the |
278 | * convex hull to 1 and minimizing x_2. |
279 | * Now, each element in the cone of the convex hull is the sum |
280 | * of elements in the cones of the basic sets. |
281 | * If a_i is the dilation factor of basic set i, then the problem |
282 | * we need to solve is |
283 | * |
284 | * min \sum_i x_{i,2} |
285 | * st |
286 | * \sum_i x_{i,1} = 1 |
287 | * a_i >= 0 |
288 | * [ a_i ] |
289 | * A [ x_i ] >= 0 |
290 | * |
291 | * with |
292 | * [ 1 ] |
293 | * A_i [ x_i ] >= 0 |
294 | * |
295 | * the constraints of each (transformed) basic set. |
296 | * If a = n/d, then the constraint defining the new facet (in the transformed |
297 | * space) is |
298 | * |
299 | * -n x_1 + d x_2 >= 0 |
300 | * |
301 | * In the original space, we need to take the same combination of the |
302 | * corresponding constraints "facet" and "ridge". |
303 | * |
304 | * If a = -infty = "-1/0", then we just return the original facet constraint. |
305 | * This means that the facet is unbounded, but has a bounded intersection |
306 | * with the union of sets. |
307 | */ |
308 | isl_int *isl_set_wrap_facet(__isl_keep isl_set *set, |
309 | isl_int *facet, isl_int *ridge) |
310 | { |
311 | int i; |
312 | isl_ctx *ctx; |
313 | struct isl_mat *T = NULL; |
314 | struct isl_basic_set *lp = NULL; |
315 | struct isl_vec *obj; |
316 | enum isl_lp_result res; |
317 | isl_int num, den; |
318 | isl_size dim; |
319 | |
320 | dim = isl_set_dim(set, type: isl_dim_set); |
321 | if (dim < 0) |
322 | return NULL; |
323 | ctx = set->ctx; |
324 | set = isl_set_copy(set); |
325 | set = isl_set_set_rational(set); |
326 | |
327 | dim += 1; |
328 | T = isl_mat_alloc(ctx, n_row: 3, n_col: dim); |
329 | if (!T) |
330 | goto error; |
331 | isl_int_set_si(T->row[0][0], 1); |
332 | isl_seq_clr(p: T->row[0]+1, len: dim - 1); |
333 | isl_seq_cpy(dst: T->row[1], src: facet, len: dim); |
334 | isl_seq_cpy(dst: T->row[2], src: ridge, len: dim); |
335 | T = isl_mat_right_inverse(mat: T); |
336 | set = isl_set_preimage(set, mat: T); |
337 | T = NULL; |
338 | if (!set) |
339 | goto error; |
340 | lp = wrap_constraints(set); |
341 | obj = isl_vec_alloc(ctx, size: 1 + dim*set->n); |
342 | if (!obj) |
343 | goto error; |
344 | isl_int_set_si(obj->block.data[0], 0); |
345 | for (i = 0; i < set->n; ++i) { |
346 | isl_seq_clr(p: obj->block.data + 1 + dim*i, len: 2); |
347 | isl_int_set_si(obj->block.data[1 + dim*i+2], 1); |
348 | isl_seq_clr(p: obj->block.data + 1 + dim*i+3, len: dim-3); |
349 | } |
350 | isl_int_init(num); |
351 | isl_int_init(den); |
352 | res = isl_basic_set_solve_lp(bset: lp, max: 0, |
353 | f: obj->block.data, denom: ctx->one, opt: &num, opt_denom: &den, NULL); |
354 | if (res == isl_lp_ok) { |
355 | isl_int_neg(num, num); |
356 | isl_seq_combine(dst: facet, m1: num, src1: facet, m2: den, src2: ridge, len: dim); |
357 | isl_seq_normalize(ctx, p: facet, len: dim); |
358 | } |
359 | isl_int_clear(num); |
360 | isl_int_clear(den); |
361 | isl_vec_free(vec: obj); |
362 | isl_basic_set_free(bset: lp); |
363 | isl_set_free(set); |
364 | if (res == isl_lp_error) |
365 | return NULL; |
366 | isl_assert(ctx, res == isl_lp_ok || res == isl_lp_unbounded, |
367 | return NULL); |
368 | return facet; |
369 | error: |
370 | isl_basic_set_free(bset: lp); |
371 | isl_mat_free(mat: T); |
372 | isl_set_free(set); |
373 | return NULL; |
374 | } |
375 | |
376 | /* Compute the constraint of a facet of "set". |
377 | * |
378 | * We first compute the intersection with a bounding constraint |
379 | * that is orthogonal to one of the coordinate axes. |
380 | * If the affine hull of this intersection has only one equality, |
381 | * we have found a facet. |
382 | * Otherwise, we wrap the current bounding constraint around |
383 | * one of the equalities of the face (one that is not equal to |
384 | * the current bounding constraint). |
385 | * This process continues until we have found a facet. |
386 | * The dimension of the intersection increases by at least |
387 | * one on each iteration, so termination is guaranteed. |
388 | */ |
389 | static __isl_give isl_mat *initial_facet_constraint(__isl_keep isl_set *set) |
390 | { |
391 | struct isl_set *slice = NULL; |
392 | struct isl_basic_set *face = NULL; |
393 | int i; |
394 | isl_size dim = isl_set_dim(set, type: isl_dim_set); |
395 | isl_bool is_bound; |
396 | isl_mat *bounds = NULL; |
397 | |
398 | if (dim < 0) |
399 | return NULL; |
400 | isl_assert(set->ctx, set->n > 0, goto error); |
401 | bounds = isl_mat_alloc(ctx: set->ctx, n_row: 1, n_col: 1 + dim); |
402 | if (!bounds) |
403 | return NULL; |
404 | |
405 | isl_seq_clr(p: bounds->row[0], len: dim); |
406 | isl_int_set_si(bounds->row[0][1 + dim - 1], 1); |
407 | is_bound = uset_is_bound(set, c: bounds->row[0], len: 1 + dim); |
408 | if (is_bound < 0) |
409 | goto error; |
410 | isl_assert(set->ctx, is_bound, goto error); |
411 | isl_seq_normalize(ctx: set->ctx, p: bounds->row[0], len: 1 + dim); |
412 | bounds->n_row = 1; |
413 | |
414 | for (;;) { |
415 | slice = isl_set_copy(set); |
416 | slice = isl_set_add_basic_set_equality(set: slice, c: bounds->row[0]); |
417 | face = isl_set_affine_hull(set: slice); |
418 | if (!face) |
419 | goto error; |
420 | if (face->n_eq == 1) { |
421 | isl_basic_set_free(bset: face); |
422 | break; |
423 | } |
424 | for (i = 0; i < face->n_eq; ++i) |
425 | if (!isl_seq_eq(p1: bounds->row[0], p2: face->eq[i], len: 1 + dim) && |
426 | !isl_seq_is_neg(p1: bounds->row[0], |
427 | p2: face->eq[i], len: 1 + dim)) |
428 | break; |
429 | isl_assert(set->ctx, i < face->n_eq, goto error); |
430 | if (!isl_set_wrap_facet(set, facet: bounds->row[0], ridge: face->eq[i])) |
431 | goto error; |
432 | isl_seq_normalize(ctx: set->ctx, p: bounds->row[0], len: bounds->n_col); |
433 | isl_basic_set_free(bset: face); |
434 | } |
435 | |
436 | return bounds; |
437 | error: |
438 | isl_basic_set_free(bset: face); |
439 | isl_mat_free(mat: bounds); |
440 | return NULL; |
441 | } |
442 | |
443 | /* Given the bounding constraint "c" of a facet of the convex hull of "set", |
444 | * compute a hyperplane description of the facet, i.e., compute the facets |
445 | * of the facet. |
446 | * |
447 | * We compute an affine transformation that transforms the constraint |
448 | * |
449 | * [ 1 ] |
450 | * c [ x ] = 0 |
451 | * |
452 | * to the constraint |
453 | * |
454 | * z_1 = 0 |
455 | * |
456 | * by computing the right inverse U of a matrix that starts with the rows |
457 | * |
458 | * [ 1 0 ] |
459 | * [ c ] |
460 | * |
461 | * Then |
462 | * [ 1 ] [ 1 ] |
463 | * [ x ] = U [ z ] |
464 | * and |
465 | * [ 1 ] [ 1 ] |
466 | * [ z ] = Q [ x ] |
467 | * |
468 | * with Q = U^{-1} |
469 | * Since z_1 is zero, we can drop this variable as well as the corresponding |
470 | * column of U to obtain |
471 | * |
472 | * [ 1 ] [ 1 ] |
473 | * [ x ] = U' [ z' ] |
474 | * and |
475 | * [ 1 ] [ 1 ] |
476 | * [ z' ] = Q' [ x ] |
477 | * |
478 | * with Q' equal to Q, but without the corresponding row. |
479 | * After computing the facets of the facet in the z' space, |
480 | * we convert them back to the x space through Q. |
481 | */ |
482 | static __isl_give isl_basic_set *compute_facet(__isl_keep isl_set *set, |
483 | isl_int *c) |
484 | { |
485 | struct isl_mat *m, *U, *Q; |
486 | struct isl_basic_set *facet = NULL; |
487 | struct isl_ctx *ctx; |
488 | isl_size dim; |
489 | |
490 | dim = isl_set_dim(set, type: isl_dim_set); |
491 | if (dim < 0) |
492 | return NULL; |
493 | ctx = set->ctx; |
494 | set = isl_set_copy(set); |
495 | m = isl_mat_alloc(ctx: set->ctx, n_row: 2, n_col: 1 + dim); |
496 | if (!m) |
497 | goto error; |
498 | isl_int_set_si(m->row[0][0], 1); |
499 | isl_seq_clr(p: m->row[0]+1, len: dim); |
500 | isl_seq_cpy(dst: m->row[1], src: c, len: 1+dim); |
501 | U = isl_mat_right_inverse(mat: m); |
502 | Q = isl_mat_right_inverse(mat: isl_mat_copy(mat: U)); |
503 | U = isl_mat_drop_cols(mat: U, col: 1, n: 1); |
504 | Q = isl_mat_drop_rows(mat: Q, row: 1, n: 1); |
505 | set = isl_set_preimage(set, mat: U); |
506 | facet = uset_convex_hull_wrap_bounded(set); |
507 | facet = isl_basic_set_preimage(bset: facet, mat: Q); |
508 | if (facet && facet->n_eq != 0) |
509 | isl_die(ctx, isl_error_internal, "unexpected equality" , |
510 | return isl_basic_set_free(facet)); |
511 | return facet; |
512 | error: |
513 | isl_basic_set_free(bset: facet); |
514 | isl_set_free(set); |
515 | return NULL; |
516 | } |
517 | |
518 | /* Given an initial facet constraint, compute the remaining facets. |
519 | * We do this by running through all facets found so far and computing |
520 | * the adjacent facets through wrapping, adding those facets that we |
521 | * hadn't already found before. |
522 | * |
523 | * For each facet we have found so far, we first compute its facets |
524 | * in the resulting convex hull. That is, we compute the ridges |
525 | * of the resulting convex hull contained in the facet. |
526 | * We also compute the corresponding facet in the current approximation |
527 | * of the convex hull. There is no need to wrap around the ridges |
528 | * in this facet since that would result in a facet that is already |
529 | * present in the current approximation. |
530 | * |
531 | * This function can still be significantly optimized by checking which of |
532 | * the facets of the basic sets are also facets of the convex hull and |
533 | * using all the facets so far to help in constructing the facets of the |
534 | * facets |
535 | * and/or |
536 | * using the technique in section "3.1 Ridge Generation" of |
537 | * "Extended Convex Hull" by Fukuda et al. |
538 | */ |
539 | static __isl_give isl_basic_set *extend(__isl_take isl_basic_set *hull, |
540 | __isl_keep isl_set *set) |
541 | { |
542 | int i, j, f; |
543 | int k; |
544 | struct isl_basic_set *facet = NULL; |
545 | struct isl_basic_set *hull_facet = NULL; |
546 | isl_size dim; |
547 | |
548 | dim = isl_set_dim(set, type: isl_dim_set); |
549 | if (dim < 0 || !hull) |
550 | return isl_basic_set_free(bset: hull); |
551 | |
552 | isl_assert(set->ctx, set->n > 0, goto error); |
553 | |
554 | for (i = 0; i < hull->n_ineq; ++i) { |
555 | facet = compute_facet(set, c: hull->ineq[i]); |
556 | facet = isl_basic_set_add_eq(bset: facet, eq: hull->ineq[i]); |
557 | facet = isl_basic_set_gauss(bset: facet, NULL); |
558 | facet = isl_basic_set_normalize_constraints(bset: facet); |
559 | hull_facet = isl_basic_set_copy(bset: hull); |
560 | hull_facet = isl_basic_set_add_eq(bset: hull_facet, eq: hull->ineq[i]); |
561 | hull_facet = isl_basic_set_gauss(bset: hull_facet, NULL); |
562 | hull_facet = isl_basic_set_normalize_constraints(bset: hull_facet); |
563 | if (!facet || !hull_facet) |
564 | goto error; |
565 | hull = isl_basic_set_cow(bset: hull); |
566 | hull = isl_basic_set_extend(base: hull, extra: 0, n_eq: 0, n_ineq: facet->n_ineq); |
567 | if (!hull) |
568 | goto error; |
569 | for (j = 0; j < facet->n_ineq; ++j) { |
570 | for (f = 0; f < hull_facet->n_ineq; ++f) |
571 | if (isl_seq_eq(p1: facet->ineq[j], |
572 | p2: hull_facet->ineq[f], len: 1 + dim)) |
573 | break; |
574 | if (f < hull_facet->n_ineq) |
575 | continue; |
576 | k = isl_basic_set_alloc_inequality(bset: hull); |
577 | if (k < 0) |
578 | goto error; |
579 | isl_seq_cpy(dst: hull->ineq[k], src: hull->ineq[i], len: 1+dim); |
580 | if (!isl_set_wrap_facet(set, facet: hull->ineq[k], ridge: facet->ineq[j])) |
581 | goto error; |
582 | } |
583 | isl_basic_set_free(bset: hull_facet); |
584 | isl_basic_set_free(bset: facet); |
585 | } |
586 | hull = isl_basic_set_simplify(bset: hull); |
587 | hull = isl_basic_set_finalize(bset: hull); |
588 | return hull; |
589 | error: |
590 | isl_basic_set_free(bset: hull_facet); |
591 | isl_basic_set_free(bset: facet); |
592 | isl_basic_set_free(bset: hull); |
593 | return NULL; |
594 | } |
595 | |
596 | /* Special case for computing the convex hull of a one dimensional set. |
597 | * We simply collect the lower and upper bounds of each basic set |
598 | * and the biggest of those. |
599 | */ |
600 | static __isl_give isl_basic_set *convex_hull_1d(__isl_take isl_set *set) |
601 | { |
602 | struct isl_mat *c = NULL; |
603 | isl_int *lower = NULL; |
604 | isl_int *upper = NULL; |
605 | int i, j, k; |
606 | isl_int a, b; |
607 | struct isl_basic_set *hull; |
608 | |
609 | for (i = 0; i < set->n; ++i) { |
610 | set->p[i] = isl_basic_set_simplify(bset: set->p[i]); |
611 | if (!set->p[i]) |
612 | goto error; |
613 | } |
614 | set = isl_set_remove_empty_parts(set); |
615 | if (!set) |
616 | goto error; |
617 | isl_assert(set->ctx, set->n > 0, goto error); |
618 | c = isl_mat_alloc(ctx: set->ctx, n_row: 2, n_col: 2); |
619 | if (!c) |
620 | goto error; |
621 | |
622 | if (set->p[0]->n_eq > 0) { |
623 | isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error); |
624 | lower = c->row[0]; |
625 | upper = c->row[1]; |
626 | if (isl_int_is_pos(set->p[0]->eq[0][1])) { |
627 | isl_seq_cpy(dst: lower, src: set->p[0]->eq[0], len: 2); |
628 | isl_seq_neg(dst: upper, src: set->p[0]->eq[0], len: 2); |
629 | } else { |
630 | isl_seq_neg(dst: lower, src: set->p[0]->eq[0], len: 2); |
631 | isl_seq_cpy(dst: upper, src: set->p[0]->eq[0], len: 2); |
632 | } |
633 | } else { |
634 | for (j = 0; j < set->p[0]->n_ineq; ++j) { |
635 | if (isl_int_is_pos(set->p[0]->ineq[j][1])) { |
636 | lower = c->row[0]; |
637 | isl_seq_cpy(dst: lower, src: set->p[0]->ineq[j], len: 2); |
638 | } else { |
639 | upper = c->row[1]; |
640 | isl_seq_cpy(dst: upper, src: set->p[0]->ineq[j], len: 2); |
641 | } |
642 | } |
643 | } |
644 | |
645 | isl_int_init(a); |
646 | isl_int_init(b); |
647 | for (i = 0; i < set->n; ++i) { |
648 | struct isl_basic_set *bset = set->p[i]; |
649 | int has_lower = 0; |
650 | int has_upper = 0; |
651 | |
652 | for (j = 0; j < bset->n_eq; ++j) { |
653 | has_lower = 1; |
654 | has_upper = 1; |
655 | if (lower) { |
656 | isl_int_mul(a, lower[0], bset->eq[j][1]); |
657 | isl_int_mul(b, lower[1], bset->eq[j][0]); |
658 | if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1])) |
659 | isl_seq_cpy(dst: lower, src: bset->eq[j], len: 2); |
660 | if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1])) |
661 | isl_seq_neg(dst: lower, src: bset->eq[j], len: 2); |
662 | } |
663 | if (upper) { |
664 | isl_int_mul(a, upper[0], bset->eq[j][1]); |
665 | isl_int_mul(b, upper[1], bset->eq[j][0]); |
666 | if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1])) |
667 | isl_seq_neg(dst: upper, src: bset->eq[j], len: 2); |
668 | if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1])) |
669 | isl_seq_cpy(dst: upper, src: bset->eq[j], len: 2); |
670 | } |
671 | } |
672 | for (j = 0; j < bset->n_ineq; ++j) { |
673 | if (isl_int_is_pos(bset->ineq[j][1])) |
674 | has_lower = 1; |
675 | if (isl_int_is_neg(bset->ineq[j][1])) |
676 | has_upper = 1; |
677 | if (lower && isl_int_is_pos(bset->ineq[j][1])) { |
678 | isl_int_mul(a, lower[0], bset->ineq[j][1]); |
679 | isl_int_mul(b, lower[1], bset->ineq[j][0]); |
680 | if (isl_int_lt(a, b)) |
681 | isl_seq_cpy(dst: lower, src: bset->ineq[j], len: 2); |
682 | } |
683 | if (upper && isl_int_is_neg(bset->ineq[j][1])) { |
684 | isl_int_mul(a, upper[0], bset->ineq[j][1]); |
685 | isl_int_mul(b, upper[1], bset->ineq[j][0]); |
686 | if (isl_int_gt(a, b)) |
687 | isl_seq_cpy(dst: upper, src: bset->ineq[j], len: 2); |
688 | } |
689 | } |
690 | if (!has_lower) |
691 | lower = NULL; |
692 | if (!has_upper) |
693 | upper = NULL; |
694 | } |
695 | isl_int_clear(a); |
696 | isl_int_clear(b); |
697 | |
698 | hull = isl_basic_set_alloc(ctx: set->ctx, nparam: 0, dim: 1, extra: 0, n_eq: 0, n_ineq: 2); |
699 | hull = isl_basic_set_set_rational(bset: hull); |
700 | if (!hull) |
701 | goto error; |
702 | if (lower) { |
703 | k = isl_basic_set_alloc_inequality(bset: hull); |
704 | isl_seq_cpy(dst: hull->ineq[k], src: lower, len: 2); |
705 | } |
706 | if (upper) { |
707 | k = isl_basic_set_alloc_inequality(bset: hull); |
708 | isl_seq_cpy(dst: hull->ineq[k], src: upper, len: 2); |
709 | } |
710 | hull = isl_basic_set_finalize(bset: hull); |
711 | isl_set_free(set); |
712 | isl_mat_free(mat: c); |
713 | return hull; |
714 | error: |
715 | isl_set_free(set); |
716 | isl_mat_free(mat: c); |
717 | return NULL; |
718 | } |
719 | |
720 | static __isl_give isl_basic_set *convex_hull_0d(__isl_take isl_set *set) |
721 | { |
722 | struct isl_basic_set *convex_hull; |
723 | |
724 | if (!set) |
725 | return NULL; |
726 | |
727 | if (isl_set_is_empty(set)) |
728 | convex_hull = isl_basic_set_empty(space: isl_space_copy(space: set->dim)); |
729 | else |
730 | convex_hull = isl_basic_set_universe(space: isl_space_copy(space: set->dim)); |
731 | isl_set_free(set); |
732 | return convex_hull; |
733 | } |
734 | |
735 | /* Compute the convex hull of a pair of basic sets without any parameters or |
736 | * integer divisions using Fourier-Motzkin elimination. |
737 | * The convex hull is the set of all points that can be written as |
738 | * the sum of points from both basic sets (in homogeneous coordinates). |
739 | * We set up the constraints in a space with dimensions for each of |
740 | * the three sets and then project out the dimensions corresponding |
741 | * to the two original basic sets, retaining only those corresponding |
742 | * to the convex hull. |
743 | */ |
744 | static __isl_give isl_basic_set *convex_hull_pair_elim( |
745 | __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2) |
746 | { |
747 | int i, j, k; |
748 | struct isl_basic_set *bset[2]; |
749 | struct isl_basic_set *hull = NULL; |
750 | isl_size dim; |
751 | |
752 | dim = isl_basic_set_dim(bset: bset1, type: isl_dim_set); |
753 | if (dim < 0 || !bset2) |
754 | goto error; |
755 | |
756 | hull = isl_basic_set_alloc(ctx: bset1->ctx, nparam: 0, dim: 2 + 3 * dim, extra: 0, |
757 | n_eq: 1 + dim + bset1->n_eq + bset2->n_eq, |
758 | n_ineq: 2 + bset1->n_ineq + bset2->n_ineq); |
759 | bset[0] = bset1; |
760 | bset[1] = bset2; |
761 | for (i = 0; i < 2; ++i) { |
762 | for (j = 0; j < bset[i]->n_eq; ++j) { |
763 | k = isl_basic_set_alloc_equality(bset: hull); |
764 | if (k < 0) |
765 | goto error; |
766 | isl_seq_clr(p: hull->eq[k], len: (i+1) * (1+dim)); |
767 | isl_seq_clr(p: hull->eq[k]+(i+2)*(1+dim), len: (1-i)*(1+dim)); |
768 | isl_seq_cpy(dst: hull->eq[k]+(i+1)*(1+dim), src: bset[i]->eq[j], |
769 | len: 1+dim); |
770 | } |
771 | for (j = 0; j < bset[i]->n_ineq; ++j) { |
772 | k = isl_basic_set_alloc_inequality(bset: hull); |
773 | if (k < 0) |
774 | goto error; |
775 | isl_seq_clr(p: hull->ineq[k], len: (i+1) * (1+dim)); |
776 | isl_seq_clr(p: hull->ineq[k]+(i+2)*(1+dim), len: (1-i)*(1+dim)); |
777 | isl_seq_cpy(dst: hull->ineq[k]+(i+1)*(1+dim), |
778 | src: bset[i]->ineq[j], len: 1+dim); |
779 | } |
780 | k = isl_basic_set_alloc_inequality(bset: hull); |
781 | if (k < 0) |
782 | goto error; |
783 | isl_seq_clr(p: hull->ineq[k], len: 1+2+3*dim); |
784 | isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1); |
785 | } |
786 | for (j = 0; j < 1+dim; ++j) { |
787 | k = isl_basic_set_alloc_equality(bset: hull); |
788 | if (k < 0) |
789 | goto error; |
790 | isl_seq_clr(p: hull->eq[k], len: 1+2+3*dim); |
791 | isl_int_set_si(hull->eq[k][j], -1); |
792 | isl_int_set_si(hull->eq[k][1+dim+j], 1); |
793 | isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1); |
794 | } |
795 | hull = isl_basic_set_set_rational(bset: hull); |
796 | hull = isl_basic_set_remove_dims(bset: hull, type: isl_dim_set, first: dim, n: 2*(1+dim)); |
797 | hull = isl_basic_set_remove_redundancies(bset: hull); |
798 | isl_basic_set_free(bset: bset1); |
799 | isl_basic_set_free(bset: bset2); |
800 | return hull; |
801 | error: |
802 | isl_basic_set_free(bset: bset1); |
803 | isl_basic_set_free(bset: bset2); |
804 | isl_basic_set_free(bset: hull); |
805 | return NULL; |
806 | } |
807 | |
808 | /* Is the set bounded for each value of the parameters? |
809 | */ |
810 | isl_bool isl_basic_set_is_bounded(__isl_keep isl_basic_set *bset) |
811 | { |
812 | struct isl_tab *tab; |
813 | isl_bool bounded; |
814 | |
815 | if (!bset) |
816 | return isl_bool_error; |
817 | if (isl_basic_set_plain_is_empty(bset)) |
818 | return isl_bool_true; |
819 | |
820 | tab = isl_tab_from_recession_cone(bset, parametric: 1); |
821 | bounded = isl_tab_cone_is_bounded(tab); |
822 | isl_tab_free(tab); |
823 | return bounded; |
824 | } |
825 | |
826 | /* Is the image bounded for each value of the parameters and |
827 | * the domain variables? |
828 | */ |
829 | isl_bool isl_basic_map_image_is_bounded(__isl_keep isl_basic_map *bmap) |
830 | { |
831 | isl_size nparam = isl_basic_map_dim(bmap, type: isl_dim_param); |
832 | isl_size n_in = isl_basic_map_dim(bmap, type: isl_dim_in); |
833 | isl_bool bounded; |
834 | |
835 | if (nparam < 0 || n_in < 0) |
836 | return isl_bool_error; |
837 | |
838 | bmap = isl_basic_map_copy(bmap); |
839 | bmap = isl_basic_map_cow(bmap); |
840 | bmap = isl_basic_map_move_dims(bmap, dst_type: isl_dim_param, dst_pos: nparam, |
841 | src_type: isl_dim_in, src_pos: 0, n: n_in); |
842 | bounded = isl_basic_set_is_bounded(bset: bset_from_bmap(bmap)); |
843 | isl_basic_map_free(bmap); |
844 | |
845 | return bounded; |
846 | } |
847 | |
848 | /* Is the set bounded for each value of the parameters? |
849 | */ |
850 | isl_bool isl_set_is_bounded(__isl_keep isl_set *set) |
851 | { |
852 | int i; |
853 | |
854 | if (!set) |
855 | return isl_bool_error; |
856 | |
857 | for (i = 0; i < set->n; ++i) { |
858 | isl_bool bounded = isl_basic_set_is_bounded(bset: set->p[i]); |
859 | if (!bounded || bounded < 0) |
860 | return bounded; |
861 | } |
862 | return isl_bool_true; |
863 | } |
864 | |
865 | /* Compute the lineality space of the convex hull of bset1 and bset2. |
866 | * |
867 | * We first compute the intersection of the recession cone of bset1 |
868 | * with the negative of the recession cone of bset2 and then compute |
869 | * the linear hull of the resulting cone. |
870 | */ |
871 | static __isl_give isl_basic_set *induced_lineality_space( |
872 | __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2) |
873 | { |
874 | int i, k; |
875 | struct isl_basic_set *lin = NULL; |
876 | isl_size dim; |
877 | |
878 | dim = isl_basic_set_dim(bset: bset1, type: isl_dim_all); |
879 | if (dim < 0 || !bset2) |
880 | goto error; |
881 | |
882 | lin = isl_basic_set_alloc_space(space: isl_basic_set_get_space(bset: bset1), extra: 0, |
883 | n_eq: bset1->n_eq + bset2->n_eq, |
884 | n_ineq: bset1->n_ineq + bset2->n_ineq); |
885 | lin = isl_basic_set_set_rational(bset: lin); |
886 | if (!lin) |
887 | goto error; |
888 | for (i = 0; i < bset1->n_eq; ++i) { |
889 | k = isl_basic_set_alloc_equality(bset: lin); |
890 | if (k < 0) |
891 | goto error; |
892 | isl_int_set_si(lin->eq[k][0], 0); |
893 | isl_seq_cpy(dst: lin->eq[k] + 1, src: bset1->eq[i] + 1, len: dim); |
894 | } |
895 | for (i = 0; i < bset1->n_ineq; ++i) { |
896 | k = isl_basic_set_alloc_inequality(bset: lin); |
897 | if (k < 0) |
898 | goto error; |
899 | isl_int_set_si(lin->ineq[k][0], 0); |
900 | isl_seq_cpy(dst: lin->ineq[k] + 1, src: bset1->ineq[i] + 1, len: dim); |
901 | } |
902 | for (i = 0; i < bset2->n_eq; ++i) { |
903 | k = isl_basic_set_alloc_equality(bset: lin); |
904 | if (k < 0) |
905 | goto error; |
906 | isl_int_set_si(lin->eq[k][0], 0); |
907 | isl_seq_neg(dst: lin->eq[k] + 1, src: bset2->eq[i] + 1, len: dim); |
908 | } |
909 | for (i = 0; i < bset2->n_ineq; ++i) { |
910 | k = isl_basic_set_alloc_inequality(bset: lin); |
911 | if (k < 0) |
912 | goto error; |
913 | isl_int_set_si(lin->ineq[k][0], 0); |
914 | isl_seq_neg(dst: lin->ineq[k] + 1, src: bset2->ineq[i] + 1, len: dim); |
915 | } |
916 | |
917 | isl_basic_set_free(bset: bset1); |
918 | isl_basic_set_free(bset: bset2); |
919 | return isl_basic_set_affine_hull(bset: lin); |
920 | error: |
921 | isl_basic_set_free(bset: lin); |
922 | isl_basic_set_free(bset: bset1); |
923 | isl_basic_set_free(bset: bset2); |
924 | return NULL; |
925 | } |
926 | |
927 | static __isl_give isl_basic_set *uset_convex_hull(__isl_take isl_set *set); |
928 | |
929 | /* Given a set and a linear space "lin" of dimension n > 0, |
930 | * project the linear space from the set, compute the convex hull |
931 | * and then map the set back to the original space. |
932 | * |
933 | * Let |
934 | * |
935 | * M x = 0 |
936 | * |
937 | * describe the linear space. We first compute the Hermite normal |
938 | * form H = M U of M = H Q, to obtain |
939 | * |
940 | * H Q x = 0 |
941 | * |
942 | * The last n rows of H will be zero, so the last n variables of x' = Q x |
943 | * are the one we want to project out. We do this by transforming each |
944 | * basic set A x >= b to A U x' >= b and then removing the last n dimensions. |
945 | * After computing the convex hull in x'_1, i.e., A' x'_1 >= b', |
946 | * we transform the hull back to the original space as A' Q_1 x >= b', |
947 | * with Q_1 all but the last n rows of Q. |
948 | */ |
949 | static __isl_give isl_basic_set *modulo_lineality(__isl_take isl_set *set, |
950 | __isl_take isl_basic_set *lin) |
951 | { |
952 | isl_size total = isl_basic_set_dim(bset: lin, type: isl_dim_all); |
953 | unsigned lin_dim; |
954 | struct isl_basic_set *hull; |
955 | struct isl_mat *M, *U, *Q; |
956 | |
957 | if (!set || total < 0) |
958 | goto error; |
959 | lin_dim = total - lin->n_eq; |
960 | M = isl_mat_sub_alloc6(ctx: set->ctx, row: lin->eq, first_row: 0, n_row: lin->n_eq, first_col: 1, n_col: total); |
961 | M = isl_mat_left_hermite(M, neg: 0, U: &U, Q: &Q); |
962 | if (!M) |
963 | goto error; |
964 | isl_mat_free(mat: M); |
965 | isl_basic_set_free(bset: lin); |
966 | |
967 | Q = isl_mat_drop_rows(mat: Q, row: Q->n_row - lin_dim, n: lin_dim); |
968 | |
969 | U = isl_mat_lin_to_aff(mat: U); |
970 | Q = isl_mat_lin_to_aff(mat: Q); |
971 | |
972 | set = isl_set_preimage(set, mat: U); |
973 | set = isl_set_remove_dims(bset: set, type: isl_dim_set, first: total - lin_dim, n: lin_dim); |
974 | hull = uset_convex_hull(set); |
975 | hull = isl_basic_set_preimage(bset: hull, mat: Q); |
976 | |
977 | return hull; |
978 | error: |
979 | isl_basic_set_free(bset: lin); |
980 | isl_set_free(set); |
981 | return NULL; |
982 | } |
983 | |
984 | /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space, |
985 | * set up an LP for solving |
986 | * |
987 | * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j} |
988 | * |
989 | * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0 |
990 | * The next \alpha{ij} correspond to the equalities and come in pairs. |
991 | * The final \alpha{ij} correspond to the inequalities. |
992 | */ |
993 | static __isl_give isl_basic_set *valid_direction_lp( |
994 | __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2) |
995 | { |
996 | isl_space *space; |
997 | struct isl_basic_set *lp; |
998 | unsigned d; |
999 | int n; |
1000 | int i, j, k; |
1001 | isl_size total; |
1002 | |
1003 | total = isl_basic_set_dim(bset: bset1, type: isl_dim_all); |
1004 | if (total < 0 || !bset2) |
1005 | goto error; |
1006 | d = 1 + total; |
1007 | n = 2 + |
1008 | 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq; |
1009 | space = isl_space_set_alloc(ctx: bset1->ctx, nparam: 0, dim: n); |
1010 | lp = isl_basic_set_alloc_space(space, extra: 0, n_eq: d, n_ineq: n); |
1011 | if (!lp) |
1012 | goto error; |
1013 | for (i = 0; i < n; ++i) { |
1014 | k = isl_basic_set_alloc_inequality(bset: lp); |
1015 | if (k < 0) |
1016 | goto error; |
1017 | isl_seq_clr(p: lp->ineq[k] + 1, len: n); |
1018 | isl_int_set_si(lp->ineq[k][0], -1); |
1019 | isl_int_set_si(lp->ineq[k][1 + i], 1); |
1020 | } |
1021 | for (i = 0; i < d; ++i) { |
1022 | k = isl_basic_set_alloc_equality(bset: lp); |
1023 | if (k < 0) |
1024 | goto error; |
1025 | n = 0; |
1026 | isl_int_set_si(lp->eq[k][n], 0); n++; |
1027 | /* positivity constraint 1 >= 0 */ |
1028 | isl_int_set_si(lp->eq[k][n], i == 0); n++; |
1029 | for (j = 0; j < bset1->n_eq; ++j) { |
1030 | isl_int_set(lp->eq[k][n], bset1->eq[j][i]); n++; |
1031 | isl_int_neg(lp->eq[k][n], bset1->eq[j][i]); n++; |
1032 | } |
1033 | for (j = 0; j < bset1->n_ineq; ++j) { |
1034 | isl_int_set(lp->eq[k][n], bset1->ineq[j][i]); n++; |
1035 | } |
1036 | /* positivity constraint 1 >= 0 */ |
1037 | isl_int_set_si(lp->eq[k][n], -(i == 0)); n++; |
1038 | for (j = 0; j < bset2->n_eq; ++j) { |
1039 | isl_int_neg(lp->eq[k][n], bset2->eq[j][i]); n++; |
1040 | isl_int_set(lp->eq[k][n], bset2->eq[j][i]); n++; |
1041 | } |
1042 | for (j = 0; j < bset2->n_ineq; ++j) { |
1043 | isl_int_neg(lp->eq[k][n], bset2->ineq[j][i]); n++; |
1044 | } |
1045 | } |
1046 | lp = isl_basic_set_gauss(bset: lp, NULL); |
1047 | isl_basic_set_free(bset: bset1); |
1048 | isl_basic_set_free(bset: bset2); |
1049 | return lp; |
1050 | error: |
1051 | isl_basic_set_free(bset: bset1); |
1052 | isl_basic_set_free(bset: bset2); |
1053 | return NULL; |
1054 | } |
1055 | |
1056 | /* Compute a vector s in the homogeneous space such that <s, r> > 0 |
1057 | * for all rays in the homogeneous space of the two cones that correspond |
1058 | * to the input polyhedra bset1 and bset2. |
1059 | * |
1060 | * We compute s as a vector that satisfies |
1061 | * |
1062 | * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*) |
1063 | * |
1064 | * with h_{ij} the normals of the facets of polyhedron i |
1065 | * (including the "positivity constraint" 1 >= 0) and \alpha_{ij} |
1066 | * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1. |
1067 | * We first set up an LP with as variables the \alpha{ij}. |
1068 | * In this formulation, for each polyhedron i, |
1069 | * the first constraint is the positivity constraint, followed by pairs |
1070 | * of variables for the equalities, followed by variables for the inequalities. |
1071 | * We then simply pick a feasible solution and compute s using (*). |
1072 | * |
1073 | * Note that we simply pick any valid direction and make no attempt |
1074 | * to pick a "good" or even the "best" valid direction. |
1075 | */ |
1076 | static __isl_give isl_vec *valid_direction( |
1077 | __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2) |
1078 | { |
1079 | struct isl_basic_set *lp; |
1080 | struct isl_tab *tab; |
1081 | struct isl_vec *sample = NULL; |
1082 | struct isl_vec *dir; |
1083 | isl_size d; |
1084 | int i; |
1085 | int n; |
1086 | |
1087 | if (!bset1 || !bset2) |
1088 | goto error; |
1089 | lp = valid_direction_lp(bset1: isl_basic_set_copy(bset: bset1), |
1090 | bset2: isl_basic_set_copy(bset: bset2)); |
1091 | tab = isl_tab_from_basic_set(bset: lp, track: 0); |
1092 | sample = isl_tab_get_sample_value(tab); |
1093 | isl_tab_free(tab); |
1094 | isl_basic_set_free(bset: lp); |
1095 | if (!sample) |
1096 | goto error; |
1097 | d = isl_basic_set_dim(bset: bset1, type: isl_dim_all); |
1098 | if (d < 0) |
1099 | goto error; |
1100 | dir = isl_vec_alloc(ctx: bset1->ctx, size: 1 + d); |
1101 | if (!dir) |
1102 | goto error; |
1103 | isl_seq_clr(p: dir->block.data + 1, len: dir->size - 1); |
1104 | n = 1; |
1105 | /* positivity constraint 1 >= 0 */ |
1106 | isl_int_set(dir->block.data[0], sample->block.data[n]); n++; |
1107 | for (i = 0; i < bset1->n_eq; ++i) { |
1108 | isl_int_sub(sample->block.data[n], |
1109 | sample->block.data[n], sample->block.data[n+1]); |
1110 | isl_seq_combine(dst: dir->block.data, |
1111 | m1: bset1->ctx->one, src1: dir->block.data, |
1112 | m2: sample->block.data[n], src2: bset1->eq[i], len: 1 + d); |
1113 | |
1114 | n += 2; |
1115 | } |
1116 | for (i = 0; i < bset1->n_ineq; ++i) |
1117 | isl_seq_combine(dst: dir->block.data, |
1118 | m1: bset1->ctx->one, src1: dir->block.data, |
1119 | m2: sample->block.data[n++], src2: bset1->ineq[i], len: 1 + d); |
1120 | isl_vec_free(vec: sample); |
1121 | isl_seq_normalize(ctx: bset1->ctx, p: dir->el, len: dir->size); |
1122 | isl_basic_set_free(bset: bset1); |
1123 | isl_basic_set_free(bset: bset2); |
1124 | return dir; |
1125 | error: |
1126 | isl_vec_free(vec: sample); |
1127 | isl_basic_set_free(bset: bset1); |
1128 | isl_basic_set_free(bset: bset2); |
1129 | return NULL; |
1130 | } |
1131 | |
1132 | /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1}, |
1133 | * compute b_i' + A_i' x' >= 0, with |
1134 | * |
1135 | * [ b_i A_i ] [ y' ] [ y' ] |
1136 | * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0 |
1137 | * |
1138 | * In particular, add the "positivity constraint" and then perform |
1139 | * the mapping. |
1140 | */ |
1141 | static __isl_give isl_basic_set *homogeneous_map(__isl_take isl_basic_set *bset, |
1142 | __isl_take isl_mat *T) |
1143 | { |
1144 | int k; |
1145 | isl_size total; |
1146 | |
1147 | total = isl_basic_set_dim(bset, type: isl_dim_all); |
1148 | if (total < 0) |
1149 | goto error; |
1150 | bset = isl_basic_set_extend_constraints(base: bset, n_eq: 0, n_ineq: 1); |
1151 | k = isl_basic_set_alloc_inequality(bset); |
1152 | if (k < 0) |
1153 | goto error; |
1154 | isl_seq_clr(p: bset->ineq[k] + 1, len: total); |
1155 | isl_int_set_si(bset->ineq[k][0], 1); |
1156 | bset = isl_basic_set_preimage(bset, mat: T); |
1157 | return bset; |
1158 | error: |
1159 | isl_mat_free(mat: T); |
1160 | isl_basic_set_free(bset); |
1161 | return NULL; |
1162 | } |
1163 | |
1164 | /* Compute the convex hull of a pair of basic sets without any parameters or |
1165 | * integer divisions, where the convex hull is known to be pointed, |
1166 | * but the basic sets may be unbounded. |
1167 | * |
1168 | * We turn this problem into the computation of a convex hull of a pair |
1169 | * _bounded_ polyhedra by "changing the direction of the homogeneous |
1170 | * dimension". This idea is due to Matthias Koeppe. |
1171 | * |
1172 | * Consider the cones in homogeneous space that correspond to the |
1173 | * input polyhedra. The rays of these cones are also rays of the |
1174 | * polyhedra if the coordinate that corresponds to the homogeneous |
1175 | * dimension is zero. That is, if the inner product of the rays |
1176 | * with the homogeneous direction is zero. |
1177 | * The cones in the homogeneous space can also be considered to |
1178 | * correspond to other pairs of polyhedra by chosing a different |
1179 | * homogeneous direction. To ensure that both of these polyhedra |
1180 | * are bounded, we need to make sure that all rays of the cones |
1181 | * correspond to vertices and not to rays. |
1182 | * Let s be a direction such that <s, r> > 0 for all rays r of both cones. |
1183 | * Then using s as a homogeneous direction, we obtain a pair of polytopes. |
1184 | * The vector s is computed in valid_direction. |
1185 | * |
1186 | * Note that we need to consider _all_ rays of the cones and not just |
1187 | * the rays that correspond to rays in the polyhedra. If we were to |
1188 | * only consider those rays and turn them into vertices, then we |
1189 | * may inadvertently turn some vertices into rays. |
1190 | * |
1191 | * The standard homogeneous direction is the unit vector in the 0th coordinate. |
1192 | * We therefore transform the two polyhedra such that the selected |
1193 | * direction is mapped onto this standard direction and then proceed |
1194 | * with the normal computation. |
1195 | * Let S be a non-singular square matrix with s as its first row, |
1196 | * then we want to map the polyhedra to the space |
1197 | * |
1198 | * [ y' ] [ y ] [ y ] [ y' ] |
1199 | * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ] |
1200 | * |
1201 | * We take S to be the unimodular completion of s to limit the growth |
1202 | * of the coefficients in the following computations. |
1203 | * |
1204 | * Let b_i + A_i x >= 0 be the constraints of polyhedron i. |
1205 | * We first move to the homogeneous dimension |
1206 | * |
1207 | * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ] |
1208 | * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ] |
1209 | * |
1210 | * Then we change directoin |
1211 | * |
1212 | * [ b_i A_i ] [ y' ] [ y' ] |
1213 | * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0 |
1214 | * |
1215 | * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0 |
1216 | * resulting in b' + A' x' >= 0, which we then convert back |
1217 | * |
1218 | * [ y ] [ y ] |
1219 | * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0 |
1220 | * |
1221 | * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra. |
1222 | */ |
1223 | static __isl_give isl_basic_set *convex_hull_pair_pointed( |
1224 | __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2) |
1225 | { |
1226 | struct isl_ctx *ctx = NULL; |
1227 | struct isl_vec *dir = NULL; |
1228 | struct isl_mat *T = NULL; |
1229 | struct isl_mat *T2 = NULL; |
1230 | struct isl_basic_set *hull; |
1231 | struct isl_set *set; |
1232 | |
1233 | if (!bset1 || !bset2) |
1234 | goto error; |
1235 | ctx = isl_basic_set_get_ctx(bset: bset1); |
1236 | dir = valid_direction(bset1: isl_basic_set_copy(bset: bset1), |
1237 | bset2: isl_basic_set_copy(bset: bset2)); |
1238 | if (!dir) |
1239 | goto error; |
1240 | T = isl_mat_alloc(ctx, n_row: dir->size, n_col: dir->size); |
1241 | if (!T) |
1242 | goto error; |
1243 | isl_seq_cpy(dst: T->row[0], src: dir->block.data, len: dir->size); |
1244 | T = isl_mat_unimodular_complete(M: T, row: 1); |
1245 | T2 = isl_mat_right_inverse(mat: isl_mat_copy(mat: T)); |
1246 | |
1247 | bset1 = homogeneous_map(bset: bset1, T: isl_mat_copy(mat: T2)); |
1248 | bset2 = homogeneous_map(bset: bset2, T: T2); |
1249 | set = isl_set_alloc_space(space: isl_basic_set_get_space(bset: bset1), n: 2, flags: 0); |
1250 | set = isl_set_add_basic_set(set, bset: bset1); |
1251 | set = isl_set_add_basic_set(set, bset: bset2); |
1252 | hull = uset_convex_hull(set); |
1253 | hull = isl_basic_set_preimage(bset: hull, mat: T); |
1254 | |
1255 | isl_vec_free(vec: dir); |
1256 | |
1257 | return hull; |
1258 | error: |
1259 | isl_vec_free(vec: dir); |
1260 | isl_basic_set_free(bset: bset1); |
1261 | isl_basic_set_free(bset: bset2); |
1262 | return NULL; |
1263 | } |
1264 | |
1265 | static __isl_give isl_basic_set *uset_convex_hull_wrap(__isl_take isl_set *set); |
1266 | static __isl_give isl_basic_set *modulo_affine_hull( |
1267 | __isl_take isl_set *set, __isl_take isl_basic_set *affine_hull); |
1268 | |
1269 | /* Compute the convex hull of a pair of basic sets without any parameters or |
1270 | * integer divisions. |
1271 | * |
1272 | * This function is called from uset_convex_hull_unbounded, which |
1273 | * means that the complete convex hull is unbounded. Some pairs |
1274 | * of basic sets may still be bounded, though. |
1275 | * They may even lie inside a lower dimensional space, in which |
1276 | * case they need to be handled inside their affine hull since |
1277 | * the main algorithm assumes that the result is full-dimensional. |
1278 | * |
1279 | * If the convex hull of the two basic sets would have a non-trivial |
1280 | * lineality space, we first project out this lineality space. |
1281 | */ |
1282 | static __isl_give isl_basic_set *convex_hull_pair( |
1283 | __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2) |
1284 | { |
1285 | isl_basic_set *lin, *aff; |
1286 | isl_bool bounded1, bounded2; |
1287 | isl_size total; |
1288 | |
1289 | if (bset1->ctx->opt->convex == ISL_CONVEX_HULL_FM) |
1290 | return convex_hull_pair_elim(bset1, bset2); |
1291 | |
1292 | aff = isl_set_affine_hull(set: isl_basic_set_union(bset1: isl_basic_set_copy(bset: bset1), |
1293 | bset2: isl_basic_set_copy(bset: bset2))); |
1294 | if (!aff) |
1295 | goto error; |
1296 | if (aff->n_eq != 0) |
1297 | return modulo_affine_hull(set: isl_basic_set_union(bset1, bset2), affine_hull: aff); |
1298 | isl_basic_set_free(bset: aff); |
1299 | |
1300 | bounded1 = isl_basic_set_is_bounded(bset: bset1); |
1301 | bounded2 = isl_basic_set_is_bounded(bset: bset2); |
1302 | |
1303 | if (bounded1 < 0 || bounded2 < 0) |
1304 | goto error; |
1305 | |
1306 | if (bounded1 && bounded2) |
1307 | return uset_convex_hull_wrap(set: isl_basic_set_union(bset1, bset2)); |
1308 | |
1309 | if (bounded1 || bounded2) |
1310 | return convex_hull_pair_pointed(bset1, bset2); |
1311 | |
1312 | lin = induced_lineality_space(bset1: isl_basic_set_copy(bset: bset1), |
1313 | bset2: isl_basic_set_copy(bset: bset2)); |
1314 | if (!lin) |
1315 | goto error; |
1316 | if (isl_basic_set_plain_is_universe(bset: lin)) { |
1317 | isl_basic_set_free(bset: bset1); |
1318 | isl_basic_set_free(bset: bset2); |
1319 | return lin; |
1320 | } |
1321 | total = isl_basic_set_dim(bset: lin, type: isl_dim_all); |
1322 | if (lin->n_eq < total) { |
1323 | struct isl_set *set; |
1324 | set = isl_set_alloc_space(space: isl_basic_set_get_space(bset: bset1), n: 2, flags: 0); |
1325 | set = isl_set_add_basic_set(set, bset: bset1); |
1326 | set = isl_set_add_basic_set(set, bset: bset2); |
1327 | return modulo_lineality(set, lin); |
1328 | } |
1329 | isl_basic_set_free(bset: lin); |
1330 | if (total < 0) |
1331 | goto error; |
1332 | |
1333 | return convex_hull_pair_pointed(bset1, bset2); |
1334 | error: |
1335 | isl_basic_set_free(bset: bset1); |
1336 | isl_basic_set_free(bset: bset2); |
1337 | return NULL; |
1338 | } |
1339 | |
1340 | /* Compute the lineality space of a basic set. |
1341 | * We basically just drop the constants and turn every inequality |
1342 | * into an equality. |
1343 | * Any explicit representations of local variables are removed |
1344 | * because they may no longer be valid representations |
1345 | * in the lineality space. |
1346 | */ |
1347 | __isl_give isl_basic_set *isl_basic_set_lineality_space( |
1348 | __isl_take isl_basic_set *bset) |
1349 | { |
1350 | int i, k; |
1351 | struct isl_basic_set *lin = NULL; |
1352 | isl_size n_div, dim; |
1353 | |
1354 | n_div = isl_basic_set_dim(bset, type: isl_dim_div); |
1355 | dim = isl_basic_set_dim(bset, type: isl_dim_all); |
1356 | if (n_div < 0 || dim < 0) |
1357 | return isl_basic_set_free(bset); |
1358 | |
1359 | lin = isl_basic_set_alloc_space(space: isl_basic_set_get_space(bset), |
1360 | extra: n_div, n_eq: dim, n_ineq: 0); |
1361 | for (i = 0; i < n_div; ++i) |
1362 | if (isl_basic_set_alloc_div(bset: lin) < 0) |
1363 | goto error; |
1364 | if (!lin) |
1365 | goto error; |
1366 | for (i = 0; i < bset->n_eq; ++i) { |
1367 | k = isl_basic_set_alloc_equality(bset: lin); |
1368 | if (k < 0) |
1369 | goto error; |
1370 | isl_int_set_si(lin->eq[k][0], 0); |
1371 | isl_seq_cpy(dst: lin->eq[k] + 1, src: bset->eq[i] + 1, len: dim); |
1372 | } |
1373 | lin = isl_basic_set_gauss(bset: lin, NULL); |
1374 | if (!lin) |
1375 | goto error; |
1376 | for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) { |
1377 | k = isl_basic_set_alloc_equality(bset: lin); |
1378 | if (k < 0) |
1379 | goto error; |
1380 | isl_int_set_si(lin->eq[k][0], 0); |
1381 | isl_seq_cpy(dst: lin->eq[k] + 1, src: bset->ineq[i] + 1, len: dim); |
1382 | lin = isl_basic_set_gauss(bset: lin, NULL); |
1383 | if (!lin) |
1384 | goto error; |
1385 | } |
1386 | isl_basic_set_free(bset); |
1387 | return lin; |
1388 | error: |
1389 | isl_basic_set_free(bset: lin); |
1390 | isl_basic_set_free(bset); |
1391 | return NULL; |
1392 | } |
1393 | |
1394 | /* Compute the (linear) hull of the lineality spaces of the basic sets in the |
1395 | * set "set". |
1396 | */ |
1397 | __isl_give isl_basic_set *isl_set_combined_lineality_space( |
1398 | __isl_take isl_set *set) |
1399 | { |
1400 | int i; |
1401 | struct isl_set *lin = NULL; |
1402 | |
1403 | if (!set) |
1404 | return NULL; |
1405 | if (set->n == 0) { |
1406 | isl_space *space = isl_set_get_space(set); |
1407 | isl_set_free(set); |
1408 | return isl_basic_set_empty(space); |
1409 | } |
1410 | |
1411 | lin = isl_set_alloc_space(space: isl_set_get_space(set), n: set->n, flags: 0); |
1412 | for (i = 0; i < set->n; ++i) |
1413 | lin = isl_set_add_basic_set(set: lin, |
1414 | bset: isl_basic_set_lineality_space(bset: isl_basic_set_copy(bset: set->p[i]))); |
1415 | isl_set_free(set); |
1416 | return isl_set_affine_hull(set: lin); |
1417 | } |
1418 | |
1419 | /* Compute the convex hull of a set without any parameters or |
1420 | * integer divisions. |
1421 | * In each step, we combined two basic sets until only one |
1422 | * basic set is left. |
1423 | * The input basic sets are assumed not to have a non-trivial |
1424 | * lineality space. If any of the intermediate results has |
1425 | * a non-trivial lineality space, it is projected out. |
1426 | */ |
1427 | static __isl_give isl_basic_set *uset_convex_hull_unbounded( |
1428 | __isl_take isl_set *set) |
1429 | { |
1430 | isl_basic_set_list *list; |
1431 | |
1432 | list = isl_set_get_basic_set_list(set); |
1433 | isl_set_free(set); |
1434 | |
1435 | while (list) { |
1436 | isl_size n, total; |
1437 | struct isl_basic_set *t; |
1438 | isl_basic_set *bset1, *bset2; |
1439 | |
1440 | n = isl_basic_set_list_n_basic_set(list); |
1441 | if (n < 0) |
1442 | goto error; |
1443 | if (n < 2) |
1444 | isl_die(isl_basic_set_list_get_ctx(list), |
1445 | isl_error_internal, |
1446 | "expecting at least two elements" , goto error); |
1447 | bset1 = isl_basic_set_list_get_basic_set(list, index: n - 1); |
1448 | bset2 = isl_basic_set_list_get_basic_set(list, index: n - 2); |
1449 | bset1 = convex_hull_pair(bset1, bset2); |
1450 | if (n == 2) { |
1451 | isl_basic_set_list_free(list); |
1452 | return bset1; |
1453 | } |
1454 | bset1 = isl_basic_set_underlying_set(bset: bset1); |
1455 | list = isl_basic_set_list_drop(list, first: n - 2, n: 2); |
1456 | list = isl_basic_set_list_add(list, el: bset1); |
1457 | |
1458 | t = isl_basic_set_list_get_basic_set(list, index: n - 2); |
1459 | t = isl_basic_set_lineality_space(bset: t); |
1460 | if (!t) |
1461 | goto error; |
1462 | if (isl_basic_set_plain_is_universe(bset: t)) { |
1463 | isl_basic_set_list_free(list); |
1464 | return t; |
1465 | } |
1466 | total = isl_basic_set_dim(bset: t, type: isl_dim_all); |
1467 | if (t->n_eq < total) { |
1468 | set = isl_basic_set_list_union(list); |
1469 | return modulo_lineality(set, lin: t); |
1470 | } |
1471 | isl_basic_set_free(bset: t); |
1472 | if (total < 0) |
1473 | goto error; |
1474 | } |
1475 | |
1476 | return NULL; |
1477 | error: |
1478 | isl_basic_set_list_free(list); |
1479 | return NULL; |
1480 | } |
1481 | |
1482 | /* Compute an initial hull for wrapping containing a single initial |
1483 | * facet. |
1484 | * This function assumes that the given set is bounded. |
1485 | */ |
1486 | static __isl_give isl_basic_set *initial_hull(__isl_take isl_basic_set *hull, |
1487 | __isl_keep isl_set *set) |
1488 | { |
1489 | struct isl_mat *bounds = NULL; |
1490 | isl_size dim; |
1491 | int k; |
1492 | |
1493 | if (!hull) |
1494 | goto error; |
1495 | bounds = initial_facet_constraint(set); |
1496 | if (!bounds) |
1497 | goto error; |
1498 | k = isl_basic_set_alloc_inequality(bset: hull); |
1499 | if (k < 0) |
1500 | goto error; |
1501 | dim = isl_set_dim(set, type: isl_dim_set); |
1502 | if (dim < 0) |
1503 | goto error; |
1504 | isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error); |
1505 | isl_seq_cpy(dst: hull->ineq[k], src: bounds->row[0], len: bounds->n_col); |
1506 | isl_mat_free(mat: bounds); |
1507 | |
1508 | return hull; |
1509 | error: |
1510 | isl_basic_set_free(bset: hull); |
1511 | isl_mat_free(mat: bounds); |
1512 | return NULL; |
1513 | } |
1514 | |
1515 | struct max_constraint { |
1516 | struct isl_mat *c; |
1517 | int count; |
1518 | int ineq; |
1519 | }; |
1520 | |
1521 | static isl_bool max_constraint_equal(const void *entry, const void *val) |
1522 | { |
1523 | struct max_constraint *a = (struct max_constraint *)entry; |
1524 | isl_int *b = (isl_int *)val; |
1525 | |
1526 | return isl_bool_ok(b: isl_seq_eq(p1: a->c->row[0] + 1, p2: b, len: a->c->n_col - 1)); |
1527 | } |
1528 | |
1529 | static isl_stat update_constraint(struct isl_ctx *ctx, |
1530 | struct isl_hash_table *table, |
1531 | isl_int *con, unsigned len, int n, int ineq) |
1532 | { |
1533 | struct isl_hash_table_entry *entry; |
1534 | struct max_constraint *c; |
1535 | uint32_t c_hash; |
1536 | |
1537 | c_hash = isl_seq_get_hash(p: con + 1, len); |
1538 | entry = isl_hash_table_find(ctx, table, key_hash: c_hash, eq: max_constraint_equal, |
1539 | val: con + 1, reserve: 0); |
1540 | if (!entry) |
1541 | return isl_stat_error; |
1542 | if (entry == isl_hash_table_entry_none) |
1543 | return isl_stat_ok; |
1544 | c = entry->data; |
1545 | if (c->count < n) { |
1546 | isl_hash_table_remove(ctx, table, entry); |
1547 | return isl_stat_ok; |
1548 | } |
1549 | c->count++; |
1550 | if (isl_int_gt(c->c->row[0][0], con[0])) |
1551 | return isl_stat_ok; |
1552 | if (isl_int_eq(c->c->row[0][0], con[0])) { |
1553 | if (ineq) |
1554 | c->ineq = ineq; |
1555 | return isl_stat_ok; |
1556 | } |
1557 | c->c = isl_mat_cow(mat: c->c); |
1558 | isl_int_set(c->c->row[0][0], con[0]); |
1559 | c->ineq = ineq; |
1560 | |
1561 | return isl_stat_ok; |
1562 | } |
1563 | |
1564 | /* Check whether the constraint hash table "table" contains the constraint |
1565 | * "con". |
1566 | */ |
1567 | static isl_bool has_constraint(struct isl_ctx *ctx, |
1568 | struct isl_hash_table *table, isl_int *con, unsigned len, int n) |
1569 | { |
1570 | struct isl_hash_table_entry *entry; |
1571 | struct max_constraint *c; |
1572 | uint32_t c_hash; |
1573 | |
1574 | c_hash = isl_seq_get_hash(p: con + 1, len); |
1575 | entry = isl_hash_table_find(ctx, table, key_hash: c_hash, eq: max_constraint_equal, |
1576 | val: con + 1, reserve: 0); |
1577 | if (!entry) |
1578 | return isl_bool_error; |
1579 | if (entry == isl_hash_table_entry_none) |
1580 | return isl_bool_false; |
1581 | c = entry->data; |
1582 | if (c->count < n) |
1583 | return isl_bool_false; |
1584 | return isl_bool_ok(isl_int_eq(c->c->row[0][0], con[0])); |
1585 | } |
1586 | |
1587 | /* Are the constraints of "bset" known to be facets? |
1588 | * If there are any equality constraints, then they are not. |
1589 | * If there may be redundant constraints, then those |
1590 | * redundant constraints are not facets. |
1591 | */ |
1592 | static isl_bool has_facets(__isl_keep isl_basic_set *bset) |
1593 | { |
1594 | isl_size n_eq; |
1595 | |
1596 | n_eq = isl_basic_set_n_equality(bset); |
1597 | if (n_eq < 0) |
1598 | return isl_bool_error; |
1599 | if (n_eq != 0) |
1600 | return isl_bool_false; |
1601 | return ISL_F_ISSET(bset, ISL_BASIC_SET_NO_REDUNDANT); |
1602 | } |
1603 | |
1604 | /* Check for inequality constraints of a basic set without equalities |
1605 | * or redundant constraints |
1606 | * such that the same or more stringent copies of the constraint appear |
1607 | * in all of the basic sets. Such constraints are necessarily facet |
1608 | * constraints of the convex hull. |
1609 | * |
1610 | * If the resulting basic set is by chance identical to one of |
1611 | * the basic sets in "set", then we know that this basic set contains |
1612 | * all other basic sets and is therefore the convex hull of set. |
1613 | * In this case we set *is_hull to 1. |
1614 | */ |
1615 | static __isl_give isl_basic_set *common_constraints( |
1616 | __isl_take isl_basic_set *hull, __isl_keep isl_set *set, int *is_hull) |
1617 | { |
1618 | int i, j, s, n; |
1619 | int min_constraints; |
1620 | int best; |
1621 | struct max_constraint *constraints = NULL; |
1622 | struct isl_hash_table *table = NULL; |
1623 | isl_size total; |
1624 | |
1625 | *is_hull = 0; |
1626 | |
1627 | for (i = 0; i < set->n; ++i) { |
1628 | isl_bool facets = has_facets(bset: set->p[i]); |
1629 | if (facets < 0) |
1630 | return isl_basic_set_free(bset: hull); |
1631 | if (facets) |
1632 | break; |
1633 | } |
1634 | if (i >= set->n) |
1635 | return hull; |
1636 | min_constraints = set->p[i]->n_ineq; |
1637 | best = i; |
1638 | for (i = best + 1; i < set->n; ++i) { |
1639 | isl_bool facets = has_facets(bset: set->p[i]); |
1640 | if (facets < 0) |
1641 | return isl_basic_set_free(bset: hull); |
1642 | if (!facets) |
1643 | continue; |
1644 | if (set->p[i]->n_ineq >= min_constraints) |
1645 | continue; |
1646 | min_constraints = set->p[i]->n_ineq; |
1647 | best = i; |
1648 | } |
1649 | constraints = isl_calloc_array(hull->ctx, struct max_constraint, |
1650 | min_constraints); |
1651 | if (!constraints) |
1652 | return hull; |
1653 | table = isl_alloc_type(hull->ctx, struct isl_hash_table); |
1654 | if (isl_hash_table_init(ctx: hull->ctx, table, min_size: min_constraints)) |
1655 | goto error; |
1656 | |
1657 | total = isl_set_dim(set, type: isl_dim_all); |
1658 | if (total < 0) |
1659 | goto error; |
1660 | for (i = 0; i < set->p[best]->n_ineq; ++i) { |
1661 | constraints[i].c = isl_mat_sub_alloc6(ctx: hull->ctx, |
1662 | row: set->p[best]->ineq + i, first_row: 0, n_row: 1, first_col: 0, n_col: 1 + total); |
1663 | if (!constraints[i].c) |
1664 | goto error; |
1665 | constraints[i].ineq = 1; |
1666 | } |
1667 | for (i = 0; i < min_constraints; ++i) { |
1668 | struct isl_hash_table_entry *entry; |
1669 | uint32_t c_hash; |
1670 | c_hash = isl_seq_get_hash(p: constraints[i].c->row[0] + 1, len: total); |
1671 | entry = isl_hash_table_find(ctx: hull->ctx, table, key_hash: c_hash, |
1672 | eq: max_constraint_equal, val: constraints[i].c->row[0] + 1, reserve: 1); |
1673 | if (!entry) |
1674 | goto error; |
1675 | isl_assert(hull->ctx, !entry->data, goto error); |
1676 | entry->data = &constraints[i]; |
1677 | } |
1678 | |
1679 | n = 0; |
1680 | for (s = 0; s < set->n; ++s) { |
1681 | if (s == best) |
1682 | continue; |
1683 | |
1684 | for (i = 0; i < set->p[s]->n_eq; ++i) { |
1685 | isl_int *eq = set->p[s]->eq[i]; |
1686 | for (j = 0; j < 2; ++j) { |
1687 | isl_seq_neg(dst: eq, src: eq, len: 1 + total); |
1688 | if (update_constraint(ctx: hull->ctx, table, |
1689 | con: eq, len: total, n, ineq: 0) < 0) |
1690 | goto error; |
1691 | } |
1692 | } |
1693 | for (i = 0; i < set->p[s]->n_ineq; ++i) { |
1694 | isl_int *ineq = set->p[s]->ineq[i]; |
1695 | if (update_constraint(ctx: hull->ctx, table, con: ineq, len: total, n, |
1696 | ineq: set->p[s]->n_eq == 0) < 0) |
1697 | goto error; |
1698 | } |
1699 | ++n; |
1700 | } |
1701 | |
1702 | for (i = 0; i < min_constraints; ++i) { |
1703 | if (constraints[i].count < n) |
1704 | continue; |
1705 | if (!constraints[i].ineq) |
1706 | continue; |
1707 | j = isl_basic_set_alloc_inequality(bset: hull); |
1708 | if (j < 0) |
1709 | goto error; |
1710 | isl_seq_cpy(dst: hull->ineq[j], src: constraints[i].c->row[0], len: 1 + total); |
1711 | } |
1712 | |
1713 | for (s = 0; s < set->n; ++s) { |
1714 | if (set->p[s]->n_eq) |
1715 | continue; |
1716 | if (set->p[s]->n_ineq != hull->n_ineq) |
1717 | continue; |
1718 | for (i = 0; i < set->p[s]->n_ineq; ++i) { |
1719 | isl_bool has; |
1720 | isl_int *ineq = set->p[s]->ineq[i]; |
1721 | has = has_constraint(ctx: hull->ctx, table, con: ineq, len: total, n); |
1722 | if (has < 0) |
1723 | goto error; |
1724 | if (!has) |
1725 | break; |
1726 | } |
1727 | if (i == set->p[s]->n_ineq) |
1728 | *is_hull = 1; |
1729 | } |
1730 | |
1731 | isl_hash_table_clear(table); |
1732 | for (i = 0; i < min_constraints; ++i) |
1733 | isl_mat_free(mat: constraints[i].c); |
1734 | free(ptr: constraints); |
1735 | free(ptr: table); |
1736 | return hull; |
1737 | error: |
1738 | isl_hash_table_clear(table); |
1739 | free(ptr: table); |
1740 | if (constraints) |
1741 | for (i = 0; i < min_constraints; ++i) |
1742 | isl_mat_free(mat: constraints[i].c); |
1743 | free(ptr: constraints); |
1744 | return hull; |
1745 | } |
1746 | |
1747 | /* Create a template for the convex hull of "set" and fill it up |
1748 | * obvious facet constraints, if any. If the result happens to |
1749 | * be the convex hull of "set" then *is_hull is set to 1. |
1750 | */ |
1751 | static __isl_give isl_basic_set *proto_hull(__isl_keep isl_set *set, |
1752 | int *is_hull) |
1753 | { |
1754 | struct isl_basic_set *hull; |
1755 | unsigned n_ineq; |
1756 | int i; |
1757 | |
1758 | n_ineq = 1; |
1759 | for (i = 0; i < set->n; ++i) { |
1760 | n_ineq += set->p[i]->n_eq; |
1761 | n_ineq += set->p[i]->n_ineq; |
1762 | } |
1763 | hull = isl_basic_set_alloc_space(space: isl_space_copy(space: set->dim), extra: 0, n_eq: 0, n_ineq); |
1764 | hull = isl_basic_set_set_rational(bset: hull); |
1765 | if (!hull) |
1766 | return NULL; |
1767 | return common_constraints(hull, set, is_hull); |
1768 | } |
1769 | |
1770 | static __isl_give isl_basic_set *uset_convex_hull_wrap(__isl_take isl_set *set) |
1771 | { |
1772 | struct isl_basic_set *hull; |
1773 | int is_hull; |
1774 | |
1775 | hull = proto_hull(set, is_hull: &is_hull); |
1776 | if (hull && !is_hull) { |
1777 | if (hull->n_ineq == 0) |
1778 | hull = initial_hull(hull, set); |
1779 | hull = extend(hull, set); |
1780 | } |
1781 | isl_set_free(set); |
1782 | |
1783 | return hull; |
1784 | } |
1785 | |
1786 | /* Compute the convex hull of a set without any parameters or |
1787 | * integer divisions. Depending on whether the set is bounded, |
1788 | * we pass control to the wrapping based convex hull or |
1789 | * the Fourier-Motzkin elimination based convex hull. |
1790 | * We also handle a few special cases before checking the boundedness. |
1791 | */ |
1792 | static __isl_give isl_basic_set *uset_convex_hull(__isl_take isl_set *set) |
1793 | { |
1794 | isl_bool bounded; |
1795 | isl_size dim; |
1796 | struct isl_basic_set *convex_hull = NULL; |
1797 | struct isl_basic_set *lin; |
1798 | |
1799 | dim = isl_set_dim(set, type: isl_dim_all); |
1800 | if (dim < 0) |
1801 | goto error; |
1802 | if (dim == 0) |
1803 | return convex_hull_0d(set); |
1804 | |
1805 | set = isl_set_coalesce(set); |
1806 | set = isl_set_set_rational(set); |
1807 | |
1808 | if (!set) |
1809 | return NULL; |
1810 | if (set->n == 1) { |
1811 | convex_hull = isl_basic_set_copy(bset: set->p[0]); |
1812 | isl_set_free(set); |
1813 | return convex_hull; |
1814 | } |
1815 | if (dim == 1) |
1816 | return convex_hull_1d(set); |
1817 | |
1818 | bounded = isl_set_is_bounded(set); |
1819 | if (bounded < 0) |
1820 | goto error; |
1821 | if (bounded && set->ctx->opt->convex == ISL_CONVEX_HULL_WRAP) |
1822 | return uset_convex_hull_wrap(set); |
1823 | |
1824 | lin = isl_set_combined_lineality_space(set: isl_set_copy(set)); |
1825 | if (!lin) |
1826 | goto error; |
1827 | if (isl_basic_set_plain_is_universe(bset: lin)) { |
1828 | isl_set_free(set); |
1829 | return lin; |
1830 | } |
1831 | if (lin->n_eq < dim) |
1832 | return modulo_lineality(set, lin); |
1833 | isl_basic_set_free(bset: lin); |
1834 | |
1835 | return uset_convex_hull_unbounded(set); |
1836 | error: |
1837 | isl_set_free(set); |
1838 | isl_basic_set_free(bset: convex_hull); |
1839 | return NULL; |
1840 | } |
1841 | |
1842 | /* This is the core procedure, where "set" is a "pure" set, i.e., |
1843 | * without parameters or divs and where the convex hull of set is |
1844 | * known to be full-dimensional. |
1845 | */ |
1846 | static __isl_give isl_basic_set *uset_convex_hull_wrap_bounded( |
1847 | __isl_take isl_set *set) |
1848 | { |
1849 | struct isl_basic_set *convex_hull = NULL; |
1850 | isl_size dim; |
1851 | |
1852 | dim = isl_set_dim(set, type: isl_dim_all); |
1853 | if (dim < 0) |
1854 | goto error; |
1855 | |
1856 | if (dim == 0) { |
1857 | convex_hull = isl_basic_set_universe(space: isl_space_copy(space: set->dim)); |
1858 | isl_set_free(set); |
1859 | convex_hull = isl_basic_set_set_rational(bset: convex_hull); |
1860 | return convex_hull; |
1861 | } |
1862 | |
1863 | set = isl_set_set_rational(set); |
1864 | set = isl_set_coalesce(set); |
1865 | if (!set) |
1866 | goto error; |
1867 | if (set->n == 1) { |
1868 | convex_hull = isl_basic_set_copy(bset: set->p[0]); |
1869 | isl_set_free(set); |
1870 | convex_hull = isl_basic_map_remove_redundancies(bmap: convex_hull); |
1871 | return convex_hull; |
1872 | } |
1873 | if (dim == 1) |
1874 | return convex_hull_1d(set); |
1875 | |
1876 | return uset_convex_hull_wrap(set); |
1877 | error: |
1878 | isl_set_free(set); |
1879 | return NULL; |
1880 | } |
1881 | |
1882 | /* Compute the convex hull of set "set" with affine hull "affine_hull", |
1883 | * We first remove the equalities (transforming the set), compute the |
1884 | * convex hull of the transformed set and then add the equalities back |
1885 | * (after performing the inverse transformation. |
1886 | */ |
1887 | static __isl_give isl_basic_set *modulo_affine_hull( |
1888 | __isl_take isl_set *set, __isl_take isl_basic_set *affine_hull) |
1889 | { |
1890 | struct isl_mat *T; |
1891 | struct isl_mat *T2; |
1892 | struct isl_basic_set *dummy; |
1893 | struct isl_basic_set *convex_hull; |
1894 | |
1895 | dummy = isl_basic_set_remove_equalities( |
1896 | bset: isl_basic_set_copy(bset: affine_hull), T: &T, T2: &T2); |
1897 | if (!dummy) |
1898 | goto error; |
1899 | isl_basic_set_free(bset: dummy); |
1900 | set = isl_set_preimage(set, mat: T); |
1901 | convex_hull = uset_convex_hull(set); |
1902 | convex_hull = isl_basic_set_preimage(bset: convex_hull, mat: T2); |
1903 | convex_hull = isl_basic_set_intersect(bset1: convex_hull, bset2: affine_hull); |
1904 | return convex_hull; |
1905 | error: |
1906 | isl_mat_free(mat: T); |
1907 | isl_mat_free(mat: T2); |
1908 | isl_basic_set_free(bset: affine_hull); |
1909 | isl_set_free(set); |
1910 | return NULL; |
1911 | } |
1912 | |
1913 | /* Return an empty basic map living in the same space as "map". |
1914 | */ |
1915 | static __isl_give isl_basic_map *replace_map_by_empty_basic_map( |
1916 | __isl_take isl_map *map) |
1917 | { |
1918 | isl_space *space; |
1919 | |
1920 | space = isl_map_get_space(map); |
1921 | isl_map_free(map); |
1922 | return isl_basic_map_empty(space); |
1923 | } |
1924 | |
1925 | /* Compute the convex hull of a map. |
1926 | * |
1927 | * The implementation was inspired by "Extended Convex Hull" by Fukuda et al., |
1928 | * specifically, the wrapping of facets to obtain new facets. |
1929 | */ |
1930 | __isl_give isl_basic_map *isl_map_convex_hull(__isl_take isl_map *map) |
1931 | { |
1932 | struct isl_basic_set *bset; |
1933 | struct isl_basic_map *model = NULL; |
1934 | struct isl_basic_set *affine_hull = NULL; |
1935 | struct isl_basic_map *convex_hull = NULL; |
1936 | struct isl_set *set = NULL; |
1937 | |
1938 | map = isl_map_detect_equalities(map); |
1939 | map = isl_map_align_divs_internal(map); |
1940 | if (!map) |
1941 | goto error; |
1942 | |
1943 | if (map->n == 0) |
1944 | return replace_map_by_empty_basic_map(map); |
1945 | |
1946 | model = isl_basic_map_copy(bmap: map->p[0]); |
1947 | set = isl_map_underlying_set(map); |
1948 | if (!set) |
1949 | goto error; |
1950 | |
1951 | affine_hull = isl_set_affine_hull(set: isl_set_copy(set)); |
1952 | if (!affine_hull) |
1953 | goto error; |
1954 | if (affine_hull->n_eq != 0) |
1955 | bset = modulo_affine_hull(set, affine_hull); |
1956 | else { |
1957 | isl_basic_set_free(bset: affine_hull); |
1958 | bset = uset_convex_hull(set); |
1959 | } |
1960 | |
1961 | convex_hull = isl_basic_map_overlying_set(bset, like: model); |
1962 | if (!convex_hull) |
1963 | return NULL; |
1964 | |
1965 | ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT); |
1966 | ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES); |
1967 | ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL); |
1968 | return convex_hull; |
1969 | error: |
1970 | isl_set_free(set); |
1971 | isl_basic_map_free(bmap: model); |
1972 | return NULL; |
1973 | } |
1974 | |
1975 | __isl_give isl_basic_set *isl_set_convex_hull(__isl_take isl_set *set) |
1976 | { |
1977 | return bset_from_bmap(bmap: isl_map_convex_hull(map: set_to_map(set))); |
1978 | } |
1979 | |
1980 | __isl_give isl_basic_map *isl_map_polyhedral_hull(__isl_take isl_map *map) |
1981 | { |
1982 | isl_basic_map *hull; |
1983 | |
1984 | hull = isl_map_convex_hull(map); |
1985 | return isl_basic_map_remove_divs(bmap: hull); |
1986 | } |
1987 | |
1988 | __isl_give isl_basic_set *isl_set_polyhedral_hull(__isl_take isl_set *set) |
1989 | { |
1990 | return bset_from_bmap(bmap: isl_map_polyhedral_hull(map: set_to_map(set))); |
1991 | } |
1992 | |
1993 | struct sh_data_entry { |
1994 | struct isl_hash_table *table; |
1995 | struct isl_tab *tab; |
1996 | }; |
1997 | |
1998 | /* Holds the data needed during the simple hull computation. |
1999 | * In particular, |
2000 | * n the number of basic sets in the original set |
2001 | * hull_table a hash table of already computed constraints |
2002 | * in the simple hull |
2003 | * p for each basic set, |
2004 | * table a hash table of the constraints |
2005 | * tab the tableau corresponding to the basic set |
2006 | */ |
2007 | struct sh_data { |
2008 | struct isl_ctx *ctx; |
2009 | unsigned n; |
2010 | struct isl_hash_table *hull_table; |
2011 | struct sh_data_entry p[1]; |
2012 | }; |
2013 | |
2014 | static void sh_data_free(struct sh_data *data) |
2015 | { |
2016 | int i; |
2017 | |
2018 | if (!data) |
2019 | return; |
2020 | isl_hash_table_free(ctx: data->ctx, table: data->hull_table); |
2021 | for (i = 0; i < data->n; ++i) { |
2022 | isl_hash_table_free(ctx: data->ctx, table: data->p[i].table); |
2023 | isl_tab_free(tab: data->p[i].tab); |
2024 | } |
2025 | free(ptr: data); |
2026 | } |
2027 | |
2028 | struct ineq_cmp_data { |
2029 | unsigned len; |
2030 | isl_int *p; |
2031 | }; |
2032 | |
2033 | static isl_bool has_ineq(const void *entry, const void *val) |
2034 | { |
2035 | isl_int *row = (isl_int *)entry; |
2036 | struct ineq_cmp_data *v = (struct ineq_cmp_data *)val; |
2037 | |
2038 | return isl_bool_ok(b: isl_seq_eq(p1: row + 1, p2: v->p + 1, len: v->len) || |
2039 | isl_seq_is_neg(p1: row + 1, p2: v->p + 1, len: v->len)); |
2040 | } |
2041 | |
2042 | static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table, |
2043 | isl_int *ineq, unsigned len) |
2044 | { |
2045 | uint32_t c_hash; |
2046 | struct ineq_cmp_data v; |
2047 | struct isl_hash_table_entry *entry; |
2048 | |
2049 | v.len = len; |
2050 | v.p = ineq; |
2051 | c_hash = isl_seq_get_hash(p: ineq + 1, len); |
2052 | entry = isl_hash_table_find(ctx, table, key_hash: c_hash, eq: has_ineq, val: &v, reserve: 1); |
2053 | if (!entry) |
2054 | return - 1; |
2055 | entry->data = ineq; |
2056 | return 0; |
2057 | } |
2058 | |
2059 | /* Fill hash table "table" with the constraints of "bset". |
2060 | * Equalities are added as two inequalities. |
2061 | * The value in the hash table is a pointer to the (in)equality of "bset". |
2062 | */ |
2063 | static isl_stat hash_basic_set(struct isl_hash_table *table, |
2064 | __isl_keep isl_basic_set *bset) |
2065 | { |
2066 | int i, j; |
2067 | isl_size dim = isl_basic_set_dim(bset, type: isl_dim_all); |
2068 | |
2069 | if (dim < 0) |
2070 | return isl_stat_error; |
2071 | for (i = 0; i < bset->n_eq; ++i) { |
2072 | for (j = 0; j < 2; ++j) { |
2073 | isl_seq_neg(dst: bset->eq[i], src: bset->eq[i], len: 1 + dim); |
2074 | if (hash_ineq(ctx: bset->ctx, table, ineq: bset->eq[i], len: dim) < 0) |
2075 | return isl_stat_error; |
2076 | } |
2077 | } |
2078 | for (i = 0; i < bset->n_ineq; ++i) { |
2079 | if (hash_ineq(ctx: bset->ctx, table, ineq: bset->ineq[i], len: dim) < 0) |
2080 | return isl_stat_error; |
2081 | } |
2082 | return isl_stat_ok; |
2083 | } |
2084 | |
2085 | static struct sh_data *sh_data_alloc(__isl_keep isl_set *set, unsigned n_ineq) |
2086 | { |
2087 | struct sh_data *data; |
2088 | int i; |
2089 | |
2090 | data = isl_calloc(set->ctx, struct sh_data, |
2091 | sizeof(struct sh_data) + |
2092 | (set->n - 1) * sizeof(struct sh_data_entry)); |
2093 | if (!data) |
2094 | return NULL; |
2095 | data->ctx = set->ctx; |
2096 | data->n = set->n; |
2097 | data->hull_table = isl_hash_table_alloc(ctx: set->ctx, min_size: n_ineq); |
2098 | if (!data->hull_table) |
2099 | goto error; |
2100 | for (i = 0; i < set->n; ++i) { |
2101 | data->p[i].table = isl_hash_table_alloc(ctx: set->ctx, |
2102 | min_size: 2 * set->p[i]->n_eq + set->p[i]->n_ineq); |
2103 | if (!data->p[i].table) |
2104 | goto error; |
2105 | if (hash_basic_set(table: data->p[i].table, bset: set->p[i]) < 0) |
2106 | goto error; |
2107 | } |
2108 | return data; |
2109 | error: |
2110 | sh_data_free(data); |
2111 | return NULL; |
2112 | } |
2113 | |
2114 | /* Check if inequality "ineq" is a bound for basic set "j" or if |
2115 | * it can be relaxed (by increasing the constant term) to become |
2116 | * a bound for that basic set. In the latter case, the constant |
2117 | * term is updated. |
2118 | * Relaxation of the constant term is only allowed if "shift" is set. |
2119 | * |
2120 | * Return 1 if "ineq" is a bound |
2121 | * 0 if "ineq" may attain arbitrarily small values on basic set "j" |
2122 | * -1 if some error occurred |
2123 | */ |
2124 | static int is_bound(struct sh_data *data, __isl_keep isl_set *set, int j, |
2125 | isl_int *ineq, int shift) |
2126 | { |
2127 | enum isl_lp_result res; |
2128 | isl_int opt; |
2129 | |
2130 | if (!data->p[j].tab) { |
2131 | data->p[j].tab = isl_tab_from_basic_set(bset: set->p[j], track: 0); |
2132 | if (!data->p[j].tab) |
2133 | return -1; |
2134 | } |
2135 | |
2136 | isl_int_init(opt); |
2137 | |
2138 | res = isl_tab_min(tab: data->p[j].tab, f: ineq, denom: data->ctx->one, |
2139 | opt: &opt, NULL, flags: 0); |
2140 | if (res == isl_lp_ok && isl_int_is_neg(opt)) { |
2141 | if (shift) |
2142 | isl_int_sub(ineq[0], ineq[0], opt); |
2143 | else |
2144 | res = isl_lp_unbounded; |
2145 | } |
2146 | |
2147 | isl_int_clear(opt); |
2148 | |
2149 | return (res == isl_lp_ok || res == isl_lp_empty) ? 1 : |
2150 | res == isl_lp_unbounded ? 0 : -1; |
2151 | } |
2152 | |
2153 | /* Set the constant term of "ineq" to the maximum of those of the constraints |
2154 | * in the basic sets of "set" following "i" that are parallel to "ineq". |
2155 | * That is, if any of the basic sets of "set" following "i" have a more |
2156 | * relaxed copy of "ineq", then replace "ineq" by the most relaxed copy. |
2157 | * "c_hash" is the hash value of the linear part of "ineq". |
2158 | * "v" has been set up for use by has_ineq. |
2159 | * |
2160 | * Note that the two inequality constraints corresponding to an equality are |
2161 | * represented by the same inequality constraint in data->p[j].table |
2162 | * (but with different hash values). This means the constraint (or at |
2163 | * least its constant term) may need to be temporarily negated to get |
2164 | * the actually hashed constraint. |
2165 | */ |
2166 | static isl_stat set_max_constant_term(struct sh_data *data, |
2167 | __isl_keep isl_set *set, |
2168 | int i, isl_int *ineq, uint32_t c_hash, struct ineq_cmp_data *v) |
2169 | { |
2170 | int j; |
2171 | isl_ctx *ctx; |
2172 | struct isl_hash_table_entry *entry; |
2173 | |
2174 | ctx = isl_set_get_ctx(set); |
2175 | for (j = i + 1; j < set->n; ++j) { |
2176 | int neg; |
2177 | isl_int *ineq_j; |
2178 | |
2179 | entry = isl_hash_table_find(ctx, table: data->p[j].table, |
2180 | key_hash: c_hash, eq: &has_ineq, val: v, reserve: 0); |
2181 | if (!entry) |
2182 | return isl_stat_error; |
2183 | if (entry == isl_hash_table_entry_none) |
2184 | continue; |
2185 | |
2186 | ineq_j = entry->data; |
2187 | neg = isl_seq_is_neg(p1: ineq_j + 1, p2: ineq + 1, len: v->len); |
2188 | if (neg) |
2189 | isl_int_neg(ineq_j[0], ineq_j[0]); |
2190 | if (isl_int_gt(ineq_j[0], ineq[0])) |
2191 | isl_int_set(ineq[0], ineq_j[0]); |
2192 | if (neg) |
2193 | isl_int_neg(ineq_j[0], ineq_j[0]); |
2194 | } |
2195 | |
2196 | return isl_stat_ok; |
2197 | } |
2198 | |
2199 | /* Check if inequality "ineq" from basic set "i" is or can be relaxed to |
2200 | * become a bound on the whole set. If so, add the (relaxed) inequality |
2201 | * to "hull". Relaxation is only allowed if "shift" is set. |
2202 | * |
2203 | * We first check if "hull" already contains a translate of the inequality. |
2204 | * If so, we are done. |
2205 | * Then, we check if any of the previous basic sets contains a translate |
2206 | * of the inequality. If so, then we have already considered this |
2207 | * inequality and we are done. |
2208 | * Otherwise, for each basic set other than "i", we check if the inequality |
2209 | * is a bound on the basic set, but first replace the constant term |
2210 | * by the maximal value of any translate of the inequality in any |
2211 | * of the following basic sets. |
2212 | * For previous basic sets, we know that they do not contain a translate |
2213 | * of the inequality, so we directly call is_bound. |
2214 | * For following basic sets, we first check if a translate of the |
2215 | * inequality appears in its description. If so, the constant term |
2216 | * of the inequality has already been updated with respect to this |
2217 | * translate and the inequality is therefore known to be a bound |
2218 | * of this basic set. |
2219 | */ |
2220 | static __isl_give isl_basic_set *add_bound(__isl_take isl_basic_set *hull, |
2221 | struct sh_data *data, __isl_keep isl_set *set, int i, isl_int *ineq, |
2222 | int shift) |
2223 | { |
2224 | uint32_t c_hash; |
2225 | struct ineq_cmp_data v; |
2226 | struct isl_hash_table_entry *entry; |
2227 | int j, k; |
2228 | isl_size total; |
2229 | |
2230 | total = isl_basic_set_dim(bset: hull, type: isl_dim_all); |
2231 | if (total < 0) |
2232 | return isl_basic_set_free(bset: hull); |
2233 | |
2234 | v.len = total; |
2235 | v.p = ineq; |
2236 | c_hash = isl_seq_get_hash(p: ineq + 1, len: v.len); |
2237 | |
2238 | entry = isl_hash_table_find(ctx: hull->ctx, table: data->hull_table, key_hash: c_hash, |
2239 | eq: has_ineq, val: &v, reserve: 0); |
2240 | if (!entry) |
2241 | return isl_basic_set_free(bset: hull); |
2242 | if (entry != isl_hash_table_entry_none) |
2243 | return hull; |
2244 | |
2245 | for (j = 0; j < i; ++j) { |
2246 | entry = isl_hash_table_find(ctx: hull->ctx, table: data->p[j].table, |
2247 | key_hash: c_hash, eq: has_ineq, val: &v, reserve: 0); |
2248 | if (!entry) |
2249 | return isl_basic_set_free(bset: hull); |
2250 | if (entry != isl_hash_table_entry_none) |
2251 | break; |
2252 | } |
2253 | if (j < i) |
2254 | return hull; |
2255 | |
2256 | k = isl_basic_set_alloc_inequality(bset: hull); |
2257 | if (k < 0) |
2258 | goto error; |
2259 | isl_seq_cpy(dst: hull->ineq[k], src: ineq, len: 1 + v.len); |
2260 | |
2261 | if (set_max_constant_term(data, set, i, ineq: hull->ineq[k], c_hash, v: &v) < 0) |
2262 | goto error; |
2263 | for (j = 0; j < i; ++j) { |
2264 | int bound; |
2265 | bound = is_bound(data, set, j, ineq: hull->ineq[k], shift); |
2266 | if (bound < 0) |
2267 | goto error; |
2268 | if (!bound) |
2269 | break; |
2270 | } |
2271 | if (j < i) |
2272 | return isl_basic_set_free_inequality(bset: hull, n: 1); |
2273 | |
2274 | for (j = i + 1; j < set->n; ++j) { |
2275 | int bound; |
2276 | entry = isl_hash_table_find(ctx: hull->ctx, table: data->p[j].table, |
2277 | key_hash: c_hash, eq: has_ineq, val: &v, reserve: 0); |
2278 | if (!entry) |
2279 | return isl_basic_set_free(bset: hull); |
2280 | if (entry != isl_hash_table_entry_none) |
2281 | continue; |
2282 | bound = is_bound(data, set, j, ineq: hull->ineq[k], shift); |
2283 | if (bound < 0) |
2284 | goto error; |
2285 | if (!bound) |
2286 | break; |
2287 | } |
2288 | if (j < set->n) |
2289 | return isl_basic_set_free_inequality(bset: hull, n: 1); |
2290 | |
2291 | entry = isl_hash_table_find(ctx: hull->ctx, table: data->hull_table, key_hash: c_hash, |
2292 | eq: has_ineq, val: &v, reserve: 1); |
2293 | if (!entry) |
2294 | goto error; |
2295 | entry->data = hull->ineq[k]; |
2296 | |
2297 | return hull; |
2298 | error: |
2299 | isl_basic_set_free(bset: hull); |
2300 | return NULL; |
2301 | } |
2302 | |
2303 | /* Check if any inequality from basic set "i" is or can be relaxed to |
2304 | * become a bound on the whole set. If so, add the (relaxed) inequality |
2305 | * to "hull". Relaxation is only allowed if "shift" is set. |
2306 | */ |
2307 | static __isl_give isl_basic_set *add_bounds(__isl_take isl_basic_set *bset, |
2308 | struct sh_data *data, __isl_keep isl_set *set, int i, int shift) |
2309 | { |
2310 | int j, k; |
2311 | isl_size dim = isl_basic_set_dim(bset, type: isl_dim_all); |
2312 | |
2313 | if (dim < 0) |
2314 | return isl_basic_set_free(bset); |
2315 | |
2316 | for (j = 0; j < set->p[i]->n_eq; ++j) { |
2317 | for (k = 0; k < 2; ++k) { |
2318 | isl_seq_neg(dst: set->p[i]->eq[j], src: set->p[i]->eq[j], len: 1+dim); |
2319 | bset = add_bound(hull: bset, data, set, i, ineq: set->p[i]->eq[j], |
2320 | shift); |
2321 | } |
2322 | } |
2323 | for (j = 0; j < set->p[i]->n_ineq; ++j) |
2324 | bset = add_bound(hull: bset, data, set, i, ineq: set->p[i]->ineq[j], shift); |
2325 | return bset; |
2326 | } |
2327 | |
2328 | /* Compute a superset of the convex hull of set that is described |
2329 | * by only (translates of) the constraints in the constituents of set. |
2330 | * Translation is only allowed if "shift" is set. |
2331 | */ |
2332 | static __isl_give isl_basic_set *uset_simple_hull(__isl_take isl_set *set, |
2333 | int shift) |
2334 | { |
2335 | struct sh_data *data = NULL; |
2336 | struct isl_basic_set *hull = NULL; |
2337 | unsigned n_ineq; |
2338 | int i; |
2339 | |
2340 | if (!set) |
2341 | return NULL; |
2342 | |
2343 | n_ineq = 0; |
2344 | for (i = 0; i < set->n; ++i) { |
2345 | if (!set->p[i]) |
2346 | goto error; |
2347 | n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq; |
2348 | } |
2349 | |
2350 | hull = isl_basic_set_alloc_space(space: isl_space_copy(space: set->dim), extra: 0, n_eq: 0, n_ineq); |
2351 | if (!hull) |
2352 | goto error; |
2353 | |
2354 | data = sh_data_alloc(set, n_ineq); |
2355 | if (!data) |
2356 | goto error; |
2357 | |
2358 | for (i = 0; i < set->n; ++i) |
2359 | hull = add_bounds(bset: hull, data, set, i, shift); |
2360 | |
2361 | sh_data_free(data); |
2362 | isl_set_free(set); |
2363 | |
2364 | return hull; |
2365 | error: |
2366 | sh_data_free(data); |
2367 | isl_basic_set_free(bset: hull); |
2368 | isl_set_free(set); |
2369 | return NULL; |
2370 | } |
2371 | |
2372 | /* Compute a superset of the convex hull of map that is described |
2373 | * by only (translates of) the constraints in the constituents of map. |
2374 | * Handle trivial cases where map is NULL or contains at most one disjunct. |
2375 | */ |
2376 | static __isl_give isl_basic_map *map_simple_hull_trivial( |
2377 | __isl_take isl_map *map) |
2378 | { |
2379 | isl_basic_map *hull; |
2380 | |
2381 | if (!map) |
2382 | return NULL; |
2383 | if (map->n == 0) |
2384 | return replace_map_by_empty_basic_map(map); |
2385 | |
2386 | hull = isl_basic_map_copy(bmap: map->p[0]); |
2387 | isl_map_free(map); |
2388 | return hull; |
2389 | } |
2390 | |
2391 | /* Return a copy of the simple hull cached inside "map". |
2392 | * "shift" determines whether to return the cached unshifted or shifted |
2393 | * simple hull. |
2394 | */ |
2395 | static __isl_give isl_basic_map *cached_simple_hull(__isl_take isl_map *map, |
2396 | int shift) |
2397 | { |
2398 | isl_basic_map *hull; |
2399 | |
2400 | hull = isl_basic_map_copy(bmap: map->cached_simple_hull[shift]); |
2401 | isl_map_free(map); |
2402 | |
2403 | return hull; |
2404 | } |
2405 | |
2406 | /* Compute a superset of the convex hull of map that is described |
2407 | * by only (translates of) the constraints in the constituents of map. |
2408 | * Translation is only allowed if "shift" is set. |
2409 | * |
2410 | * The constraints are sorted while removing redundant constraints |
2411 | * in order to indicate a preference of which constraints should |
2412 | * be preserved. In particular, pairs of constraints that are |
2413 | * sorted together are preferred to either both be preserved |
2414 | * or both be removed. The sorting is performed inside |
2415 | * isl_basic_map_remove_redundancies. |
2416 | * |
2417 | * The result of the computation is stored in map->cached_simple_hull[shift] |
2418 | * such that it can be reused in subsequent calls. The cache is cleared |
2419 | * whenever the map is modified (in isl_map_cow). |
2420 | * Note that the results need to be stored in the input map for there |
2421 | * to be any chance that they may get reused. In particular, they |
2422 | * are stored in a copy of the input map that is saved before |
2423 | * the integer division alignment. |
2424 | */ |
2425 | static __isl_give isl_basic_map *map_simple_hull(__isl_take isl_map *map, |
2426 | int shift) |
2427 | { |
2428 | struct isl_set *set = NULL; |
2429 | struct isl_basic_map *model = NULL; |
2430 | struct isl_basic_map *hull; |
2431 | struct isl_basic_map *affine_hull; |
2432 | struct isl_basic_set *bset = NULL; |
2433 | isl_map *input; |
2434 | |
2435 | if (!map || map->n <= 1) |
2436 | return map_simple_hull_trivial(map); |
2437 | |
2438 | if (map->cached_simple_hull[shift]) |
2439 | return cached_simple_hull(map, shift); |
2440 | |
2441 | map = isl_map_detect_equalities(map); |
2442 | if (!map || map->n <= 1) |
2443 | return map_simple_hull_trivial(map); |
2444 | affine_hull = isl_map_affine_hull(map: isl_map_copy(map)); |
2445 | input = isl_map_copy(map); |
2446 | map = isl_map_align_divs_internal(map); |
2447 | model = map ? isl_basic_map_copy(bmap: map->p[0]) : NULL; |
2448 | |
2449 | set = isl_map_underlying_set(map); |
2450 | |
2451 | bset = uset_simple_hull(set, shift); |
2452 | |
2453 | hull = isl_basic_map_overlying_set(bset, like: model); |
2454 | |
2455 | hull = isl_basic_map_intersect(bmap1: hull, bmap2: affine_hull); |
2456 | hull = isl_basic_map_remove_redundancies(bmap: hull); |
2457 | |
2458 | if (hull) { |
2459 | ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT); |
2460 | ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES); |
2461 | } |
2462 | |
2463 | hull = isl_basic_map_finalize(bmap: hull); |
2464 | if (input) |
2465 | input->cached_simple_hull[shift] = isl_basic_map_copy(bmap: hull); |
2466 | isl_map_free(map: input); |
2467 | |
2468 | return hull; |
2469 | } |
2470 | |
2471 | /* Compute a superset of the convex hull of map that is described |
2472 | * by only translates of the constraints in the constituents of map. |
2473 | */ |
2474 | __isl_give isl_basic_map *isl_map_simple_hull(__isl_take isl_map *map) |
2475 | { |
2476 | return map_simple_hull(map, shift: 1); |
2477 | } |
2478 | |
2479 | __isl_give isl_basic_set *isl_set_simple_hull(__isl_take isl_set *set) |
2480 | { |
2481 | return bset_from_bmap(bmap: isl_map_simple_hull(map: set_to_map(set))); |
2482 | } |
2483 | |
2484 | /* Compute a superset of the convex hull of map that is described |
2485 | * by only the constraints in the constituents of map. |
2486 | */ |
2487 | __isl_give isl_basic_map *isl_map_unshifted_simple_hull( |
2488 | __isl_take isl_map *map) |
2489 | { |
2490 | return map_simple_hull(map, shift: 0); |
2491 | } |
2492 | |
2493 | __isl_give isl_basic_set *isl_set_unshifted_simple_hull( |
2494 | __isl_take isl_set *set) |
2495 | { |
2496 | return isl_map_unshifted_simple_hull(map: set); |
2497 | } |
2498 | |
2499 | /* Drop all inequalities from "bmap1" that do not also appear in "bmap2". |
2500 | * A constraint that appears with different constant terms |
2501 | * in "bmap1" and "bmap2" is also kept, with the least restrictive |
2502 | * (i.e., greatest) constant term. |
2503 | * "bmap1" and "bmap2" are assumed to have the same (known) |
2504 | * integer divisions. |
2505 | * The constraints of both "bmap1" and "bmap2" are assumed |
2506 | * to have been sorted using isl_basic_map_sort_constraints. |
2507 | * |
2508 | * Run through the inequality constraints of "bmap1" and "bmap2" |
2509 | * in sorted order. |
2510 | * Each constraint of "bmap1" without a matching constraint in "bmap2" |
2511 | * is removed. |
2512 | * If a match is found, the constraint is kept. If needed, the constant |
2513 | * term of the constraint is adjusted. |
2514 | */ |
2515 | static __isl_give isl_basic_map *select_shared_inequalities( |
2516 | __isl_take isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2) |
2517 | { |
2518 | int i1, i2; |
2519 | |
2520 | bmap1 = isl_basic_map_cow(bmap: bmap1); |
2521 | if (!bmap1 || !bmap2) |
2522 | return isl_basic_map_free(bmap: bmap1); |
2523 | |
2524 | i1 = bmap1->n_ineq - 1; |
2525 | i2 = bmap2->n_ineq - 1; |
2526 | while (bmap1 && i1 >= 0 && i2 >= 0) { |
2527 | int cmp; |
2528 | |
2529 | cmp = isl_basic_map_constraint_cmp(bmap: bmap1, c1: bmap1->ineq[i1], |
2530 | c2: bmap2->ineq[i2]); |
2531 | if (cmp < 0) { |
2532 | --i2; |
2533 | continue; |
2534 | } |
2535 | if (cmp > 0) { |
2536 | if (isl_basic_map_drop_inequality(bmap: bmap1, pos: i1) < 0) |
2537 | bmap1 = isl_basic_map_free(bmap: bmap1); |
2538 | --i1; |
2539 | continue; |
2540 | } |
2541 | if (isl_int_lt(bmap1->ineq[i1][0], bmap2->ineq[i2][0])) |
2542 | isl_int_set(bmap1->ineq[i1][0], bmap2->ineq[i2][0]); |
2543 | --i1; |
2544 | --i2; |
2545 | } |
2546 | for (; i1 >= 0; --i1) |
2547 | if (isl_basic_map_drop_inequality(bmap: bmap1, pos: i1) < 0) |
2548 | bmap1 = isl_basic_map_free(bmap: bmap1); |
2549 | |
2550 | return bmap1; |
2551 | } |
2552 | |
2553 | /* Drop all equalities from "bmap1" that do not also appear in "bmap2". |
2554 | * "bmap1" and "bmap2" are assumed to have the same (known) |
2555 | * integer divisions. |
2556 | * |
2557 | * Run through the equality constraints of "bmap1" and "bmap2". |
2558 | * Each constraint of "bmap1" without a matching constraint in "bmap2" |
2559 | * is removed. |
2560 | */ |
2561 | static __isl_give isl_basic_map *select_shared_equalities( |
2562 | __isl_take isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2) |
2563 | { |
2564 | int i1, i2; |
2565 | isl_size total; |
2566 | |
2567 | bmap1 = isl_basic_map_cow(bmap: bmap1); |
2568 | total = isl_basic_map_dim(bmap: bmap1, type: isl_dim_all); |
2569 | if (total < 0 || !bmap2) |
2570 | return isl_basic_map_free(bmap: bmap1); |
2571 | |
2572 | i1 = bmap1->n_eq - 1; |
2573 | i2 = bmap2->n_eq - 1; |
2574 | while (bmap1 && i1 >= 0 && i2 >= 0) { |
2575 | int last1, last2; |
2576 | |
2577 | last1 = isl_seq_last_non_zero(p: bmap1->eq[i1] + 1, len: total); |
2578 | last2 = isl_seq_last_non_zero(p: bmap2->eq[i2] + 1, len: total); |
2579 | if (last1 > last2) { |
2580 | --i2; |
2581 | continue; |
2582 | } |
2583 | if (last1 < last2) { |
2584 | if (isl_basic_map_drop_equality(bmap: bmap1, pos: i1) < 0) |
2585 | bmap1 = isl_basic_map_free(bmap: bmap1); |
2586 | --i1; |
2587 | continue; |
2588 | } |
2589 | if (!isl_seq_eq(p1: bmap1->eq[i1], p2: bmap2->eq[i2], len: 1 + total)) { |
2590 | if (isl_basic_map_drop_equality(bmap: bmap1, pos: i1) < 0) |
2591 | bmap1 = isl_basic_map_free(bmap: bmap1); |
2592 | } |
2593 | --i1; |
2594 | --i2; |
2595 | } |
2596 | for (; i1 >= 0; --i1) |
2597 | if (isl_basic_map_drop_equality(bmap: bmap1, pos: i1) < 0) |
2598 | bmap1 = isl_basic_map_free(bmap: bmap1); |
2599 | |
2600 | return bmap1; |
2601 | } |
2602 | |
2603 | /* Compute a superset of "bmap1" and "bmap2" that is described |
2604 | * by only the constraints that appear in both "bmap1" and "bmap2". |
2605 | * |
2606 | * First drop constraints that involve unknown integer divisions |
2607 | * since it is not trivial to check whether two such integer divisions |
2608 | * in different basic maps are the same. |
2609 | * Then align the remaining (known) divs and sort the constraints. |
2610 | * Finally drop all inequalities and equalities from "bmap1" that |
2611 | * do not also appear in "bmap2". |
2612 | */ |
2613 | __isl_give isl_basic_map *isl_basic_map_plain_unshifted_simple_hull( |
2614 | __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2) |
2615 | { |
2616 | if (isl_basic_map_check_equal_space(bmap1, bmap2) < 0) |
2617 | goto error; |
2618 | |
2619 | bmap1 = isl_basic_map_drop_constraints_involving_unknown_divs(bmap: bmap1); |
2620 | bmap2 = isl_basic_map_drop_constraints_involving_unknown_divs(bmap: bmap2); |
2621 | bmap1 = isl_basic_map_order_divs(bmap: bmap1); |
2622 | bmap2 = isl_basic_map_align_divs(dst: bmap2, src: bmap1); |
2623 | bmap1 = isl_basic_map_align_divs(dst: bmap1, src: bmap2); |
2624 | bmap1 = isl_basic_map_sort_constraints(bmap: bmap1); |
2625 | bmap2 = isl_basic_map_sort_constraints(bmap: bmap2); |
2626 | |
2627 | bmap1 = select_shared_inequalities(bmap1, bmap2); |
2628 | bmap1 = select_shared_equalities(bmap1, bmap2); |
2629 | |
2630 | isl_basic_map_free(bmap: bmap2); |
2631 | bmap1 = isl_basic_map_finalize(bmap: bmap1); |
2632 | return bmap1; |
2633 | error: |
2634 | isl_basic_map_free(bmap: bmap1); |
2635 | isl_basic_map_free(bmap: bmap2); |
2636 | return NULL; |
2637 | } |
2638 | |
2639 | /* Compute a superset of the convex hull of "map" that is described |
2640 | * by only the constraints in the constituents of "map". |
2641 | * In particular, the result is composed of constraints that appear |
2642 | * in each of the basic maps of "map" |
2643 | * |
2644 | * Constraints that involve unknown integer divisions are dropped |
2645 | * since it is not trivial to check whether two such integer divisions |
2646 | * in different basic maps are the same. |
2647 | * |
2648 | * The hull is initialized from the first basic map and then |
2649 | * updated with respect to the other basic maps in turn. |
2650 | */ |
2651 | __isl_give isl_basic_map *isl_map_plain_unshifted_simple_hull( |
2652 | __isl_take isl_map *map) |
2653 | { |
2654 | int i; |
2655 | isl_basic_map *hull; |
2656 | |
2657 | if (!map) |
2658 | return NULL; |
2659 | if (map->n <= 1) |
2660 | return map_simple_hull_trivial(map); |
2661 | map = isl_map_drop_constraints_involving_unknown_divs(map); |
2662 | hull = isl_basic_map_copy(bmap: map->p[0]); |
2663 | for (i = 1; i < map->n; ++i) { |
2664 | isl_basic_map *bmap_i; |
2665 | |
2666 | bmap_i = isl_basic_map_copy(bmap: map->p[i]); |
2667 | hull = isl_basic_map_plain_unshifted_simple_hull(bmap1: hull, bmap2: bmap_i); |
2668 | } |
2669 | |
2670 | isl_map_free(map); |
2671 | return hull; |
2672 | } |
2673 | |
2674 | /* Compute a superset of the convex hull of "set" that is described |
2675 | * by only the constraints in the constituents of "set". |
2676 | * In particular, the result is composed of constraints that appear |
2677 | * in each of the basic sets of "set" |
2678 | */ |
2679 | __isl_give isl_basic_set *isl_set_plain_unshifted_simple_hull( |
2680 | __isl_take isl_set *set) |
2681 | { |
2682 | return isl_map_plain_unshifted_simple_hull(map: set); |
2683 | } |
2684 | |
2685 | /* Check if "ineq" is a bound on "set" and, if so, add it to "hull". |
2686 | * |
2687 | * For each basic set in "set", we first check if the basic set |
2688 | * contains a translate of "ineq". If this translate is more relaxed, |
2689 | * then we assume that "ineq" is not a bound on this basic set. |
2690 | * Otherwise, we know that it is a bound. |
2691 | * If the basic set does not contain a translate of "ineq", then |
2692 | * we call is_bound to perform the test. |
2693 | */ |
2694 | static __isl_give isl_basic_set *add_bound_from_constraint( |
2695 | __isl_take isl_basic_set *hull, struct sh_data *data, |
2696 | __isl_keep isl_set *set, isl_int *ineq) |
2697 | { |
2698 | int i, k; |
2699 | isl_ctx *ctx; |
2700 | uint32_t c_hash; |
2701 | struct ineq_cmp_data v; |
2702 | isl_size total; |
2703 | |
2704 | total = isl_basic_set_dim(bset: hull, type: isl_dim_all); |
2705 | if (total < 0 || !set) |
2706 | return isl_basic_set_free(bset: hull); |
2707 | |
2708 | v.len = total; |
2709 | v.p = ineq; |
2710 | c_hash = isl_seq_get_hash(p: ineq + 1, len: v.len); |
2711 | |
2712 | ctx = isl_basic_set_get_ctx(bset: hull); |
2713 | for (i = 0; i < set->n; ++i) { |
2714 | int bound; |
2715 | struct isl_hash_table_entry *entry; |
2716 | |
2717 | entry = isl_hash_table_find(ctx, table: data->p[i].table, |
2718 | key_hash: c_hash, eq: &has_ineq, val: &v, reserve: 0); |
2719 | if (!entry) |
2720 | return isl_basic_set_free(bset: hull); |
2721 | if (entry != isl_hash_table_entry_none) { |
2722 | isl_int *ineq_i = entry->data; |
2723 | int neg, more_relaxed; |
2724 | |
2725 | neg = isl_seq_is_neg(p1: ineq_i + 1, p2: ineq + 1, len: v.len); |
2726 | if (neg) |
2727 | isl_int_neg(ineq_i[0], ineq_i[0]); |
2728 | more_relaxed = isl_int_gt(ineq_i[0], ineq[0]); |
2729 | if (neg) |
2730 | isl_int_neg(ineq_i[0], ineq_i[0]); |
2731 | if (more_relaxed) |
2732 | break; |
2733 | else |
2734 | continue; |
2735 | } |
2736 | bound = is_bound(data, set, j: i, ineq, shift: 0); |
2737 | if (bound < 0) |
2738 | return isl_basic_set_free(bset: hull); |
2739 | if (!bound) |
2740 | break; |
2741 | } |
2742 | if (i < set->n) |
2743 | return hull; |
2744 | |
2745 | k = isl_basic_set_alloc_inequality(bset: hull); |
2746 | if (k < 0) |
2747 | return isl_basic_set_free(bset: hull); |
2748 | isl_seq_cpy(dst: hull->ineq[k], src: ineq, len: 1 + v.len); |
2749 | |
2750 | return hull; |
2751 | } |
2752 | |
2753 | /* Compute a superset of the convex hull of "set" that is described |
2754 | * by only some of the "n_ineq" constraints in the list "ineq", where "set" |
2755 | * has no parameters or integer divisions. |
2756 | * |
2757 | * The inequalities in "ineq" are assumed to have been sorted such |
2758 | * that constraints with the same linear part appear together and |
2759 | * that among constraints with the same linear part, those with |
2760 | * smaller constant term appear first. |
2761 | * |
2762 | * We reuse the same data structure that is used by uset_simple_hull, |
2763 | * but we do not need the hull table since we will not consider the |
2764 | * same constraint more than once. We therefore allocate it with zero size. |
2765 | * |
2766 | * We run through the constraints and try to add them one by one, |
2767 | * skipping identical constraints. If we have added a constraint and |
2768 | * the next constraint is a more relaxed translate, then we skip this |
2769 | * next constraint as well. |
2770 | */ |
2771 | static __isl_give isl_basic_set *uset_unshifted_simple_hull_from_constraints( |
2772 | __isl_take isl_set *set, int n_ineq, isl_int **ineq) |
2773 | { |
2774 | int i; |
2775 | int last_added = 0; |
2776 | struct sh_data *data = NULL; |
2777 | isl_basic_set *hull = NULL; |
2778 | isl_size dim; |
2779 | |
2780 | hull = isl_basic_set_alloc_space(space: isl_set_get_space(set), extra: 0, n_eq: 0, n_ineq); |
2781 | if (!hull) |
2782 | goto error; |
2783 | |
2784 | data = sh_data_alloc(set, n_ineq: 0); |
2785 | if (!data) |
2786 | goto error; |
2787 | |
2788 | dim = isl_set_dim(set, type: isl_dim_set); |
2789 | if (dim < 0) |
2790 | goto error; |
2791 | for (i = 0; i < n_ineq; ++i) { |
2792 | int hull_n_ineq = hull->n_ineq; |
2793 | int parallel; |
2794 | |
2795 | parallel = i > 0 && isl_seq_eq(p1: ineq[i - 1] + 1, p2: ineq[i] + 1, |
2796 | len: dim); |
2797 | if (parallel && |
2798 | (last_added || isl_int_eq(ineq[i - 1][0], ineq[i][0]))) |
2799 | continue; |
2800 | hull = add_bound_from_constraint(hull, data, set, ineq: ineq[i]); |
2801 | if (!hull) |
2802 | goto error; |
2803 | last_added = hull->n_ineq > hull_n_ineq; |
2804 | } |
2805 | |
2806 | sh_data_free(data); |
2807 | isl_set_free(set); |
2808 | return hull; |
2809 | error: |
2810 | sh_data_free(data); |
2811 | isl_set_free(set); |
2812 | isl_basic_set_free(bset: hull); |
2813 | return NULL; |
2814 | } |
2815 | |
2816 | /* Collect pointers to all the inequalities in the elements of "list" |
2817 | * in "ineq". For equalities, store both a pointer to the equality and |
2818 | * a pointer to its opposite, which is first copied to "mat". |
2819 | * "ineq" and "mat" are assumed to have been preallocated to the right size |
2820 | * (the number of inequalities + 2 times the number of equalites and |
2821 | * the number of equalities, respectively). |
2822 | */ |
2823 | static __isl_give isl_mat *collect_inequalities(__isl_take isl_mat *mat, |
2824 | __isl_keep isl_basic_set_list *list, isl_int **ineq) |
2825 | { |
2826 | int i, j, n_eq, n_ineq; |
2827 | isl_size n; |
2828 | |
2829 | n = isl_basic_set_list_n_basic_set(list); |
2830 | if (!mat || n < 0) |
2831 | return isl_mat_free(mat); |
2832 | |
2833 | n_eq = 0; |
2834 | n_ineq = 0; |
2835 | for (i = 0; i < n; ++i) { |
2836 | isl_basic_set *bset; |
2837 | bset = isl_basic_set_list_get_basic_set(list, index: i); |
2838 | if (!bset) |
2839 | return isl_mat_free(mat); |
2840 | for (j = 0; j < bset->n_eq; ++j) { |
2841 | ineq[n_ineq++] = mat->row[n_eq]; |
2842 | ineq[n_ineq++] = bset->eq[j]; |
2843 | isl_seq_neg(dst: mat->row[n_eq++], src: bset->eq[j], len: mat->n_col); |
2844 | } |
2845 | for (j = 0; j < bset->n_ineq; ++j) |
2846 | ineq[n_ineq++] = bset->ineq[j]; |
2847 | isl_basic_set_free(bset); |
2848 | } |
2849 | |
2850 | return mat; |
2851 | } |
2852 | |
2853 | /* Comparison routine for use as an isl_sort callback. |
2854 | * |
2855 | * Constraints with the same linear part are sorted together and |
2856 | * among constraints with the same linear part, those with smaller |
2857 | * constant term are sorted first. |
2858 | */ |
2859 | static int cmp_ineq(const void *a, const void *b, void *arg) |
2860 | { |
2861 | unsigned dim = *(unsigned *) arg; |
2862 | isl_int * const *ineq1 = a; |
2863 | isl_int * const *ineq2 = b; |
2864 | int cmp; |
2865 | |
2866 | cmp = isl_seq_cmp(p1: (*ineq1) + 1, p2: (*ineq2) + 1, len: dim); |
2867 | if (cmp != 0) |
2868 | return cmp; |
2869 | return isl_int_cmp((*ineq1)[0], (*ineq2)[0]); |
2870 | } |
2871 | |
2872 | /* Compute a superset of the convex hull of "set" that is described |
2873 | * by only constraints in the elements of "list", where "set" has |
2874 | * no parameters or integer divisions. |
2875 | * |
2876 | * We collect all the constraints in those elements and then |
2877 | * sort the constraints such that constraints with the same linear part |
2878 | * are sorted together and that those with smaller constant term are |
2879 | * sorted first. |
2880 | */ |
2881 | static __isl_give isl_basic_set *uset_unshifted_simple_hull_from_basic_set_list( |
2882 | __isl_take isl_set *set, __isl_take isl_basic_set_list *list) |
2883 | { |
2884 | int i, n_eq, n_ineq; |
2885 | isl_size n; |
2886 | isl_size dim; |
2887 | isl_ctx *ctx; |
2888 | isl_mat *mat = NULL; |
2889 | isl_int **ineq = NULL; |
2890 | isl_basic_set *hull; |
2891 | |
2892 | n = isl_basic_set_list_n_basic_set(list); |
2893 | if (!set || n < 0) |
2894 | goto error; |
2895 | ctx = isl_set_get_ctx(set); |
2896 | |
2897 | n_eq = 0; |
2898 | n_ineq = 0; |
2899 | for (i = 0; i < n; ++i) { |
2900 | isl_basic_set *bset; |
2901 | bset = isl_basic_set_list_get_basic_set(list, index: i); |
2902 | if (!bset) |
2903 | goto error; |
2904 | n_eq += bset->n_eq; |
2905 | n_ineq += 2 * bset->n_eq + bset->n_ineq; |
2906 | isl_basic_set_free(bset); |
2907 | } |
2908 | |
2909 | ineq = isl_alloc_array(ctx, isl_int *, n_ineq); |
2910 | if (n_ineq > 0 && !ineq) |
2911 | goto error; |
2912 | |
2913 | dim = isl_set_dim(set, type: isl_dim_set); |
2914 | if (dim < 0) |
2915 | goto error; |
2916 | mat = isl_mat_alloc(ctx, n_row: n_eq, n_col: 1 + dim); |
2917 | mat = collect_inequalities(mat, list, ineq); |
2918 | if (!mat) |
2919 | goto error; |
2920 | |
2921 | if (isl_sort(pbase: ineq, total_elems: n_ineq, size: sizeof(ineq[0]), cmp: &cmp_ineq, arg: &dim) < 0) |
2922 | goto error; |
2923 | |
2924 | hull = uset_unshifted_simple_hull_from_constraints(set, n_ineq, ineq); |
2925 | |
2926 | isl_mat_free(mat); |
2927 | free(ptr: ineq); |
2928 | isl_basic_set_list_free(list); |
2929 | return hull; |
2930 | error: |
2931 | isl_mat_free(mat); |
2932 | free(ptr: ineq); |
2933 | isl_set_free(set); |
2934 | isl_basic_set_list_free(list); |
2935 | return NULL; |
2936 | } |
2937 | |
2938 | /* Compute a superset of the convex hull of "map" that is described |
2939 | * by only constraints in the elements of "list". |
2940 | * |
2941 | * If the list is empty, then we can only describe the universe set. |
2942 | * If the input map is empty, then all constraints are valid, so |
2943 | * we return the intersection of the elements in "list". |
2944 | * |
2945 | * Otherwise, we align all divs and temporarily treat them |
2946 | * as regular variables, computing the unshifted simple hull in |
2947 | * uset_unshifted_simple_hull_from_basic_set_list. |
2948 | */ |
2949 | static __isl_give isl_basic_map *map_unshifted_simple_hull_from_basic_map_list( |
2950 | __isl_take isl_map *map, __isl_take isl_basic_map_list *list) |
2951 | { |
2952 | isl_size n; |
2953 | isl_basic_map *model; |
2954 | isl_basic_map *hull; |
2955 | isl_set *set; |
2956 | isl_basic_set_list *bset_list; |
2957 | |
2958 | n = isl_basic_map_list_n_basic_map(list); |
2959 | if (!map || n < 0) |
2960 | goto error; |
2961 | |
2962 | if (n == 0) { |
2963 | isl_space *space; |
2964 | |
2965 | space = isl_map_get_space(map); |
2966 | isl_map_free(map); |
2967 | isl_basic_map_list_free(list); |
2968 | return isl_basic_map_universe(space); |
2969 | } |
2970 | if (isl_map_plain_is_empty(map)) { |
2971 | isl_map_free(map); |
2972 | return isl_basic_map_list_intersect(list); |
2973 | } |
2974 | |
2975 | map = isl_map_align_divs_to_basic_map_list(map, list); |
2976 | if (!map) |
2977 | goto error; |
2978 | list = isl_basic_map_list_align_divs_to_basic_map(list, bmap: map->p[0]); |
2979 | |
2980 | model = isl_basic_map_list_get_basic_map(list, index: 0); |
2981 | |
2982 | set = isl_map_underlying_set(map); |
2983 | bset_list = isl_basic_map_list_underlying_set(list); |
2984 | |
2985 | hull = uset_unshifted_simple_hull_from_basic_set_list(set, list: bset_list); |
2986 | hull = isl_basic_map_overlying_set(bset: hull, like: model); |
2987 | |
2988 | return hull; |
2989 | error: |
2990 | isl_map_free(map); |
2991 | isl_basic_map_list_free(list); |
2992 | return NULL; |
2993 | } |
2994 | |
2995 | /* Return a sequence of the basic maps that make up the maps in "list". |
2996 | */ |
2997 | static __isl_give isl_basic_map_list *collect_basic_maps( |
2998 | __isl_take isl_map_list *list) |
2999 | { |
3000 | int i; |
3001 | isl_size n; |
3002 | isl_ctx *ctx; |
3003 | isl_basic_map_list *bmap_list; |
3004 | |
3005 | if (!list) |
3006 | return NULL; |
3007 | n = isl_map_list_n_map(list); |
3008 | ctx = isl_map_list_get_ctx(list); |
3009 | bmap_list = isl_basic_map_list_alloc(ctx, n: 0); |
3010 | if (n < 0) |
3011 | bmap_list = isl_basic_map_list_free(list: bmap_list); |
3012 | |
3013 | for (i = 0; i < n; ++i) { |
3014 | isl_map *map; |
3015 | isl_basic_map_list *list_i; |
3016 | |
3017 | map = isl_map_list_get_map(list, index: i); |
3018 | map = isl_map_compute_divs(map); |
3019 | list_i = isl_map_get_basic_map_list(map); |
3020 | isl_map_free(map); |
3021 | bmap_list = isl_basic_map_list_concat(list1: bmap_list, list2: list_i); |
3022 | } |
3023 | |
3024 | isl_map_list_free(list); |
3025 | return bmap_list; |
3026 | } |
3027 | |
3028 | /* Compute a superset of the convex hull of "map" that is described |
3029 | * by only constraints in the elements of "list". |
3030 | * |
3031 | * If "map" is the universe, then the convex hull (and therefore |
3032 | * any superset of the convexhull) is the universe as well. |
3033 | * |
3034 | * Otherwise, we collect all the basic maps in the map list and |
3035 | * continue with map_unshifted_simple_hull_from_basic_map_list. |
3036 | */ |
3037 | __isl_give isl_basic_map *isl_map_unshifted_simple_hull_from_map_list( |
3038 | __isl_take isl_map *map, __isl_take isl_map_list *list) |
3039 | { |
3040 | isl_basic_map_list *bmap_list; |
3041 | int is_universe; |
3042 | |
3043 | is_universe = isl_map_plain_is_universe(map); |
3044 | if (is_universe < 0) |
3045 | map = isl_map_free(map); |
3046 | if (is_universe < 0 || is_universe) { |
3047 | isl_map_list_free(list); |
3048 | return isl_map_unshifted_simple_hull(map); |
3049 | } |
3050 | |
3051 | bmap_list = collect_basic_maps(list); |
3052 | return map_unshifted_simple_hull_from_basic_map_list(map, list: bmap_list); |
3053 | } |
3054 | |
3055 | /* Compute a superset of the convex hull of "set" that is described |
3056 | * by only constraints in the elements of "list". |
3057 | */ |
3058 | __isl_give isl_basic_set *isl_set_unshifted_simple_hull_from_set_list( |
3059 | __isl_take isl_set *set, __isl_take isl_set_list *list) |
3060 | { |
3061 | return isl_map_unshifted_simple_hull_from_map_list(map: set, list); |
3062 | } |
3063 | |
3064 | /* Given a set "set", return parametric bounds on the dimension "dim". |
3065 | */ |
3066 | static __isl_give isl_basic_set *set_bounds(__isl_keep isl_set *set, int dim) |
3067 | { |
3068 | isl_size set_dim = isl_set_dim(set, type: isl_dim_set); |
3069 | if (set_dim < 0) |
3070 | return NULL; |
3071 | set = isl_set_copy(set); |
3072 | set = isl_set_eliminate_dims(set, first: dim + 1, n: set_dim - (dim + 1)); |
3073 | set = isl_set_eliminate_dims(set, first: 0, n: dim); |
3074 | return isl_set_convex_hull(set); |
3075 | } |
3076 | |
3077 | /* Computes a "simple hull" and then check if each dimension in the |
3078 | * resulting hull is bounded by a symbolic constant. If not, the |
3079 | * hull is intersected with the corresponding bounds on the whole set. |
3080 | */ |
3081 | __isl_give isl_basic_set *isl_set_bounded_simple_hull(__isl_take isl_set *set) |
3082 | { |
3083 | int i, j; |
3084 | struct isl_basic_set *hull; |
3085 | isl_size nparam, dim, total; |
3086 | unsigned left; |
3087 | int removed_divs = 0; |
3088 | |
3089 | hull = isl_set_simple_hull(set: isl_set_copy(set)); |
3090 | nparam = isl_basic_set_dim(bset: hull, type: isl_dim_param); |
3091 | dim = isl_basic_set_dim(bset: hull, type: isl_dim_set); |
3092 | total = isl_basic_set_dim(bset: hull, type: isl_dim_all); |
3093 | if (nparam < 0 || dim < 0 || total < 0) |
3094 | goto error; |
3095 | |
3096 | for (i = 0; i < dim; ++i) { |
3097 | int lower = 0, upper = 0; |
3098 | struct isl_basic_set *bounds; |
3099 | |
3100 | left = total - nparam - i - 1; |
3101 | for (j = 0; j < hull->n_eq; ++j) { |
3102 | if (isl_int_is_zero(hull->eq[j][1 + nparam + i])) |
3103 | continue; |
3104 | if (isl_seq_first_non_zero(p: hull->eq[j]+1+nparam+i+1, |
3105 | len: left) == -1) |
3106 | break; |
3107 | } |
3108 | if (j < hull->n_eq) |
3109 | continue; |
3110 | |
3111 | for (j = 0; j < hull->n_ineq; ++j) { |
3112 | if (isl_int_is_zero(hull->ineq[j][1 + nparam + i])) |
3113 | continue; |
3114 | if (isl_seq_first_non_zero(p: hull->ineq[j]+1+nparam+i+1, |
3115 | len: left) != -1 || |
3116 | isl_seq_first_non_zero(p: hull->ineq[j]+1+nparam, |
3117 | len: i) != -1) |
3118 | continue; |
3119 | if (isl_int_is_pos(hull->ineq[j][1 + nparam + i])) |
3120 | lower = 1; |
3121 | else |
3122 | upper = 1; |
3123 | if (lower && upper) |
3124 | break; |
3125 | } |
3126 | |
3127 | if (lower && upper) |
3128 | continue; |
3129 | |
3130 | if (!removed_divs) { |
3131 | set = isl_set_remove_divs(set); |
3132 | if (!set) |
3133 | goto error; |
3134 | removed_divs = 1; |
3135 | } |
3136 | bounds = set_bounds(set, dim: i); |
3137 | hull = isl_basic_set_intersect(bset1: hull, bset2: bounds); |
3138 | if (!hull) |
3139 | goto error; |
3140 | } |
3141 | |
3142 | isl_set_free(set); |
3143 | return hull; |
3144 | error: |
3145 | isl_set_free(set); |
3146 | isl_basic_set_free(bset: hull); |
3147 | return NULL; |
3148 | } |
3149 | |