| 1 | /* |
| 2 | * Copyright 2008-2009 Katholieke Universiteit Leuven |
| 3 | * Copyright 2014 INRIA Rocquencourt |
| 4 | * |
| 5 | * Use of this software is governed by the MIT license |
| 6 | * |
| 7 | * Written by Sven Verdoolaege, K.U.Leuven, Departement |
| 8 | * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium |
| 9 | * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, |
| 10 | * B.P. 105 - 78153 Le Chesnay, France |
| 11 | */ |
| 12 | |
| 13 | #include <isl_ctx_private.h> |
| 14 | #include <isl_map_private.h> |
| 15 | #include <isl_lp_private.h> |
| 16 | #include <isl/map.h> |
| 17 | #include <isl_mat_private.h> |
| 18 | #include <isl_vec_private.h> |
| 19 | #include <isl/set.h> |
| 20 | #include <isl_seq.h> |
| 21 | #include <isl_options_private.h> |
| 22 | #include "isl_equalities.h" |
| 23 | #include "isl_tab.h" |
| 24 | #include <isl_sort.h> |
| 25 | |
| 26 | #include <bset_to_bmap.c> |
| 27 | #include <bset_from_bmap.c> |
| 28 | #include <set_to_map.c> |
| 29 | |
| 30 | static __isl_give isl_basic_set *uset_convex_hull_wrap_bounded( |
| 31 | __isl_take isl_set *set); |
| 32 | |
| 33 | /* Remove redundant |
| 34 | * constraints. If the minimal value along the normal of a constraint |
| 35 | * is the same if the constraint is removed, then the constraint is redundant. |
| 36 | * |
| 37 | * Since some constraints may be mutually redundant, sort the constraints |
| 38 | * first such that constraints that involve existentially quantified |
| 39 | * variables are considered for removal before those that do not. |
| 40 | * The sorting is also needed for the use in map_simple_hull. |
| 41 | * |
| 42 | * Note that isl_tab_detect_implicit_equalities may also end up |
| 43 | * marking some constraints as redundant. Make sure the constraints |
| 44 | * are preserved and undo those marking such that isl_tab_detect_redundant |
| 45 | * can consider the constraints in the sorted order. |
| 46 | * |
| 47 | * Alternatively, we could have intersected the basic map with the |
| 48 | * corresponding equality and then checked if the dimension was that |
| 49 | * of a facet. |
| 50 | */ |
| 51 | __isl_give isl_basic_map *isl_basic_map_remove_redundancies( |
| 52 | __isl_take isl_basic_map *bmap) |
| 53 | { |
| 54 | struct isl_tab *tab; |
| 55 | |
| 56 | if (!bmap) |
| 57 | return NULL; |
| 58 | |
| 59 | bmap = isl_basic_map_gauss(bmap, NULL); |
| 60 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) |
| 61 | return bmap; |
| 62 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT)) |
| 63 | return bmap; |
| 64 | if (bmap->n_ineq <= 1) |
| 65 | return bmap; |
| 66 | |
| 67 | bmap = isl_basic_map_sort_constraints(bmap); |
| 68 | tab = isl_tab_from_basic_map(bmap, track: 0); |
| 69 | if (!tab) |
| 70 | goto error; |
| 71 | tab->preserve = 1; |
| 72 | if (isl_tab_detect_implicit_equalities(tab) < 0) |
| 73 | goto error; |
| 74 | if (isl_tab_restore_redundant(tab) < 0) |
| 75 | goto error; |
| 76 | tab->preserve = 0; |
| 77 | if (isl_tab_detect_redundant(tab) < 0) |
| 78 | goto error; |
| 79 | bmap = isl_basic_map_update_from_tab(bmap, tab); |
| 80 | isl_tab_free(tab); |
| 81 | if (!bmap) |
| 82 | return NULL; |
| 83 | ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT); |
| 84 | ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT); |
| 85 | return bmap; |
| 86 | error: |
| 87 | isl_tab_free(tab); |
| 88 | isl_basic_map_free(bmap); |
| 89 | return NULL; |
| 90 | } |
| 91 | |
| 92 | __isl_give isl_basic_set *isl_basic_set_remove_redundancies( |
| 93 | __isl_take isl_basic_set *bset) |
| 94 | { |
| 95 | return bset_from_bmap( |
| 96 | bmap: isl_basic_map_remove_redundancies(bmap: bset_to_bmap(bset))); |
| 97 | } |
| 98 | |
| 99 | /* Remove redundant constraints in each of the basic maps. |
| 100 | */ |
| 101 | __isl_give isl_map *isl_map_remove_redundancies(__isl_take isl_map *map) |
| 102 | { |
| 103 | return isl_map_inline_foreach_basic_map(map, |
| 104 | fn: &isl_basic_map_remove_redundancies); |
| 105 | } |
| 106 | |
| 107 | __isl_give isl_set *isl_set_remove_redundancies(__isl_take isl_set *set) |
| 108 | { |
| 109 | return isl_map_remove_redundancies(map: set); |
| 110 | } |
| 111 | |
| 112 | /* Check if the set set is bound in the direction of the affine |
| 113 | * constraint c and if so, set the constant term such that the |
| 114 | * resulting constraint is a bounding constraint for the set. |
| 115 | */ |
| 116 | static isl_bool uset_is_bound(__isl_keep isl_set *set, isl_int *c, unsigned len) |
| 117 | { |
| 118 | int first; |
| 119 | int j; |
| 120 | isl_int opt; |
| 121 | isl_int opt_denom; |
| 122 | |
| 123 | isl_int_init(opt); |
| 124 | isl_int_init(opt_denom); |
| 125 | first = 1; |
| 126 | for (j = 0; j < set->n; ++j) { |
| 127 | enum isl_lp_result res; |
| 128 | |
| 129 | if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY)) |
| 130 | continue; |
| 131 | |
| 132 | res = isl_basic_set_solve_lp(bset: set->p[j], |
| 133 | max: 0, f: c, denom: set->ctx->one, opt: &opt, opt_denom: &opt_denom, NULL); |
| 134 | if (res == isl_lp_unbounded) |
| 135 | break; |
| 136 | if (res == isl_lp_error) |
| 137 | goto error; |
| 138 | if (res == isl_lp_empty) { |
| 139 | set->p[j] = isl_basic_set_set_to_empty(bset: set->p[j]); |
| 140 | if (!set->p[j]) |
| 141 | goto error; |
| 142 | continue; |
| 143 | } |
| 144 | if (first || isl_int_is_neg(opt)) { |
| 145 | if (!isl_int_is_one(opt_denom)) |
| 146 | isl_seq_scale(dst: c, src: c, f: opt_denom, len); |
| 147 | isl_int_sub(c[0], c[0], opt); |
| 148 | } |
| 149 | first = 0; |
| 150 | } |
| 151 | isl_int_clear(opt); |
| 152 | isl_int_clear(opt_denom); |
| 153 | return isl_bool_ok(b: j >= set->n); |
| 154 | error: |
| 155 | isl_int_clear(opt); |
| 156 | isl_int_clear(opt_denom); |
| 157 | return isl_bool_error; |
| 158 | } |
| 159 | |
| 160 | static __isl_give isl_set *isl_set_add_basic_set_equality( |
| 161 | __isl_take isl_set *set, isl_int *c) |
| 162 | { |
| 163 | int i; |
| 164 | |
| 165 | set = isl_set_cow(set); |
| 166 | if (!set) |
| 167 | return NULL; |
| 168 | for (i = 0; i < set->n; ++i) { |
| 169 | set->p[i] = isl_basic_set_add_eq(bset: set->p[i], eq: c); |
| 170 | if (!set->p[i]) |
| 171 | goto error; |
| 172 | } |
| 173 | return set; |
| 174 | error: |
| 175 | isl_set_free(set); |
| 176 | return NULL; |
| 177 | } |
| 178 | |
| 179 | /* Given a union of basic sets, construct the constraints for wrapping |
| 180 | * a facet around one of its ridges. |
| 181 | * In particular, if each of n the d-dimensional basic sets i in "set" |
| 182 | * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0 |
| 183 | * and is defined by the constraints |
| 184 | * [ 1 ] |
| 185 | * A_i [ x ] >= 0 |
| 186 | * |
| 187 | * then the resulting set is of dimension n*(1+d) and has as constraints |
| 188 | * |
| 189 | * [ a_i ] |
| 190 | * A_i [ x_i ] >= 0 |
| 191 | * |
| 192 | * a_i >= 0 |
| 193 | * |
| 194 | * \sum_i x_{i,1} = 1 |
| 195 | */ |
| 196 | static __isl_give isl_basic_set *wrap_constraints(__isl_keep isl_set *set) |
| 197 | { |
| 198 | struct isl_basic_set *lp; |
| 199 | unsigned n_eq; |
| 200 | unsigned n_ineq; |
| 201 | int i, j, k; |
| 202 | isl_size dim, lp_dim; |
| 203 | |
| 204 | dim = isl_set_dim(set, type: isl_dim_set); |
| 205 | if (dim < 0) |
| 206 | return NULL; |
| 207 | |
| 208 | dim += 1; |
| 209 | n_eq = 1; |
| 210 | n_ineq = set->n; |
| 211 | for (i = 0; i < set->n; ++i) { |
| 212 | n_eq += set->p[i]->n_eq; |
| 213 | n_ineq += set->p[i]->n_ineq; |
| 214 | } |
| 215 | lp = isl_basic_set_alloc(ctx: set->ctx, nparam: 0, dim: dim * set->n, extra: 0, n_eq, n_ineq); |
| 216 | lp = isl_basic_set_set_rational(bset: lp); |
| 217 | if (!lp) |
| 218 | return NULL; |
| 219 | lp_dim = isl_basic_set_dim(bset: lp, type: isl_dim_set); |
| 220 | if (lp_dim < 0) |
| 221 | return isl_basic_set_free(bset: lp); |
| 222 | k = isl_basic_set_alloc_equality(bset: lp); |
| 223 | isl_int_set_si(lp->eq[k][0], -1); |
| 224 | for (i = 0; i < set->n; ++i) { |
| 225 | isl_int_set_si(lp->eq[k][1+dim*i], 0); |
| 226 | isl_int_set_si(lp->eq[k][1+dim*i+1], 1); |
| 227 | isl_seq_clr(p: lp->eq[k]+1+dim*i+2, len: dim-2); |
| 228 | } |
| 229 | for (i = 0; i < set->n; ++i) { |
| 230 | k = isl_basic_set_alloc_inequality(bset: lp); |
| 231 | isl_seq_clr(p: lp->ineq[k], len: 1+lp_dim); |
| 232 | isl_int_set_si(lp->ineq[k][1+dim*i], 1); |
| 233 | |
| 234 | for (j = 0; j < set->p[i]->n_eq; ++j) { |
| 235 | k = isl_basic_set_alloc_equality(bset: lp); |
| 236 | isl_seq_clr(p: lp->eq[k], len: 1+dim*i); |
| 237 | isl_seq_cpy(dst: lp->eq[k]+1+dim*i, src: set->p[i]->eq[j], len: dim); |
| 238 | isl_seq_clr(p: lp->eq[k]+1+dim*(i+1), len: dim*(set->n-i-1)); |
| 239 | } |
| 240 | |
| 241 | for (j = 0; j < set->p[i]->n_ineq; ++j) { |
| 242 | k = isl_basic_set_alloc_inequality(bset: lp); |
| 243 | isl_seq_clr(p: lp->ineq[k], len: 1+dim*i); |
| 244 | isl_seq_cpy(dst: lp->ineq[k]+1+dim*i, src: set->p[i]->ineq[j], len: dim); |
| 245 | isl_seq_clr(p: lp->ineq[k]+1+dim*(i+1), len: dim*(set->n-i-1)); |
| 246 | } |
| 247 | } |
| 248 | return lp; |
| 249 | } |
| 250 | |
| 251 | /* Given a facet "facet" of the convex hull of "set" and a facet "ridge" |
| 252 | * of that facet, compute the other facet of the convex hull that contains |
| 253 | * the ridge. |
| 254 | * |
| 255 | * We first transform the set such that the facet constraint becomes |
| 256 | * |
| 257 | * x_1 >= 0 |
| 258 | * |
| 259 | * I.e., the facet lies in |
| 260 | * |
| 261 | * x_1 = 0 |
| 262 | * |
| 263 | * and on that facet, the constraint that defines the ridge is |
| 264 | * |
| 265 | * x_2 >= 0 |
| 266 | * |
| 267 | * (This transformation is not strictly needed, all that is needed is |
| 268 | * that the ridge contains the origin.) |
| 269 | * |
| 270 | * Since the ridge contains the origin, the cone of the convex hull |
| 271 | * will be of the form |
| 272 | * |
| 273 | * x_1 >= 0 |
| 274 | * x_2 >= a x_1 |
| 275 | * |
| 276 | * with this second constraint defining the new facet. |
| 277 | * The constant a is obtained by settting x_1 in the cone of the |
| 278 | * convex hull to 1 and minimizing x_2. |
| 279 | * Now, each element in the cone of the convex hull is the sum |
| 280 | * of elements in the cones of the basic sets. |
| 281 | * If a_i is the dilation factor of basic set i, then the problem |
| 282 | * we need to solve is |
| 283 | * |
| 284 | * min \sum_i x_{i,2} |
| 285 | * st |
| 286 | * \sum_i x_{i,1} = 1 |
| 287 | * a_i >= 0 |
| 288 | * [ a_i ] |
| 289 | * A [ x_i ] >= 0 |
| 290 | * |
| 291 | * with |
| 292 | * [ 1 ] |
| 293 | * A_i [ x_i ] >= 0 |
| 294 | * |
| 295 | * the constraints of each (transformed) basic set. |
| 296 | * If a = n/d, then the constraint defining the new facet (in the transformed |
| 297 | * space) is |
| 298 | * |
| 299 | * -n x_1 + d x_2 >= 0 |
| 300 | * |
| 301 | * In the original space, we need to take the same combination of the |
| 302 | * corresponding constraints "facet" and "ridge". |
| 303 | * |
| 304 | * If a = -infty = "-1/0", then we just return the original facet constraint. |
| 305 | * This means that the facet is unbounded, but has a bounded intersection |
| 306 | * with the union of sets. |
| 307 | */ |
| 308 | isl_int *isl_set_wrap_facet(__isl_keep isl_set *set, |
| 309 | isl_int *facet, isl_int *ridge) |
| 310 | { |
| 311 | int i; |
| 312 | isl_ctx *ctx; |
| 313 | struct isl_mat *T = NULL; |
| 314 | struct isl_basic_set *lp = NULL; |
| 315 | struct isl_vec *obj; |
| 316 | enum isl_lp_result res; |
| 317 | isl_int num, den; |
| 318 | isl_size dim; |
| 319 | |
| 320 | dim = isl_set_dim(set, type: isl_dim_set); |
| 321 | if (dim < 0) |
| 322 | return NULL; |
| 323 | ctx = set->ctx; |
| 324 | set = isl_set_copy(set); |
| 325 | set = isl_set_set_rational(set); |
| 326 | |
| 327 | dim += 1; |
| 328 | T = isl_mat_alloc(ctx, n_row: 3, n_col: dim); |
| 329 | if (!T) |
| 330 | goto error; |
| 331 | isl_int_set_si(T->row[0][0], 1); |
| 332 | isl_seq_clr(p: T->row[0]+1, len: dim - 1); |
| 333 | isl_seq_cpy(dst: T->row[1], src: facet, len: dim); |
| 334 | isl_seq_cpy(dst: T->row[2], src: ridge, len: dim); |
| 335 | T = isl_mat_right_inverse(mat: T); |
| 336 | set = isl_set_preimage(set, mat: T); |
| 337 | T = NULL; |
| 338 | if (!set) |
| 339 | goto error; |
| 340 | lp = wrap_constraints(set); |
| 341 | obj = isl_vec_alloc(ctx, size: 1 + dim*set->n); |
| 342 | if (!obj) |
| 343 | goto error; |
| 344 | isl_int_set_si(obj->block.data[0], 0); |
| 345 | for (i = 0; i < set->n; ++i) { |
| 346 | isl_seq_clr(p: obj->block.data + 1 + dim*i, len: 2); |
| 347 | isl_int_set_si(obj->block.data[1 + dim*i+2], 1); |
| 348 | isl_seq_clr(p: obj->block.data + 1 + dim*i+3, len: dim-3); |
| 349 | } |
| 350 | isl_int_init(num); |
| 351 | isl_int_init(den); |
| 352 | res = isl_basic_set_solve_lp(bset: lp, max: 0, |
| 353 | f: obj->block.data, denom: ctx->one, opt: &num, opt_denom: &den, NULL); |
| 354 | if (res == isl_lp_ok) { |
| 355 | isl_int_neg(num, num); |
| 356 | isl_seq_combine(dst: facet, m1: num, src1: facet, m2: den, src2: ridge, len: dim); |
| 357 | isl_seq_normalize(ctx, p: facet, len: dim); |
| 358 | } |
| 359 | isl_int_clear(num); |
| 360 | isl_int_clear(den); |
| 361 | isl_vec_free(vec: obj); |
| 362 | isl_basic_set_free(bset: lp); |
| 363 | isl_set_free(set); |
| 364 | if (res == isl_lp_error) |
| 365 | return NULL; |
| 366 | isl_assert(ctx, res == isl_lp_ok || res == isl_lp_unbounded, |
| 367 | return NULL); |
| 368 | return facet; |
| 369 | error: |
| 370 | isl_basic_set_free(bset: lp); |
| 371 | isl_mat_free(mat: T); |
| 372 | isl_set_free(set); |
| 373 | return NULL; |
| 374 | } |
| 375 | |
| 376 | /* Compute the constraint of a facet of "set". |
| 377 | * |
| 378 | * We first compute the intersection with a bounding constraint |
| 379 | * that is orthogonal to one of the coordinate axes. |
| 380 | * If the affine hull of this intersection has only one equality, |
| 381 | * we have found a facet. |
| 382 | * Otherwise, we wrap the current bounding constraint around |
| 383 | * one of the equalities of the face (one that is not equal to |
| 384 | * the current bounding constraint). |
| 385 | * This process continues until we have found a facet. |
| 386 | * The dimension of the intersection increases by at least |
| 387 | * one on each iteration, so termination is guaranteed. |
| 388 | */ |
| 389 | static __isl_give isl_mat *initial_facet_constraint(__isl_keep isl_set *set) |
| 390 | { |
| 391 | struct isl_set *slice = NULL; |
| 392 | struct isl_basic_set *face = NULL; |
| 393 | int i; |
| 394 | isl_size dim = isl_set_dim(set, type: isl_dim_set); |
| 395 | isl_bool is_bound; |
| 396 | isl_mat *bounds = NULL; |
| 397 | |
| 398 | if (dim < 0) |
| 399 | return NULL; |
| 400 | isl_assert(set->ctx, set->n > 0, goto error); |
| 401 | bounds = isl_mat_alloc(ctx: set->ctx, n_row: 1, n_col: 1 + dim); |
| 402 | if (!bounds) |
| 403 | return NULL; |
| 404 | |
| 405 | isl_seq_clr(p: bounds->row[0], len: dim); |
| 406 | isl_int_set_si(bounds->row[0][1 + dim - 1], 1); |
| 407 | is_bound = uset_is_bound(set, c: bounds->row[0], len: 1 + dim); |
| 408 | if (is_bound < 0) |
| 409 | goto error; |
| 410 | isl_assert(set->ctx, is_bound, goto error); |
| 411 | isl_seq_normalize(ctx: set->ctx, p: bounds->row[0], len: 1 + dim); |
| 412 | bounds->n_row = 1; |
| 413 | |
| 414 | for (;;) { |
| 415 | slice = isl_set_copy(set); |
| 416 | slice = isl_set_add_basic_set_equality(set: slice, c: bounds->row[0]); |
| 417 | face = isl_set_affine_hull(set: slice); |
| 418 | if (!face) |
| 419 | goto error; |
| 420 | if (face->n_eq == 1) { |
| 421 | isl_basic_set_free(bset: face); |
| 422 | break; |
| 423 | } |
| 424 | for (i = 0; i < face->n_eq; ++i) |
| 425 | if (!isl_seq_eq(p1: bounds->row[0], p2: face->eq[i], len: 1 + dim) && |
| 426 | !isl_seq_is_neg(p1: bounds->row[0], |
| 427 | p2: face->eq[i], len: 1 + dim)) |
| 428 | break; |
| 429 | isl_assert(set->ctx, i < face->n_eq, goto error); |
| 430 | if (!isl_set_wrap_facet(set, facet: bounds->row[0], ridge: face->eq[i])) |
| 431 | goto error; |
| 432 | isl_seq_normalize(ctx: set->ctx, p: bounds->row[0], len: bounds->n_col); |
| 433 | isl_basic_set_free(bset: face); |
| 434 | } |
| 435 | |
| 436 | return bounds; |
| 437 | error: |
| 438 | isl_basic_set_free(bset: face); |
| 439 | isl_mat_free(mat: bounds); |
| 440 | return NULL; |
| 441 | } |
| 442 | |
| 443 | /* Given the bounding constraint "c" of a facet of the convex hull of "set", |
| 444 | * compute a hyperplane description of the facet, i.e., compute the facets |
| 445 | * of the facet. |
| 446 | * |
| 447 | * We compute an affine transformation that transforms the constraint |
| 448 | * |
| 449 | * [ 1 ] |
| 450 | * c [ x ] = 0 |
| 451 | * |
| 452 | * to the constraint |
| 453 | * |
| 454 | * z_1 = 0 |
| 455 | * |
| 456 | * by computing the right inverse U of a matrix that starts with the rows |
| 457 | * |
| 458 | * [ 1 0 ] |
| 459 | * [ c ] |
| 460 | * |
| 461 | * Then |
| 462 | * [ 1 ] [ 1 ] |
| 463 | * [ x ] = U [ z ] |
| 464 | * and |
| 465 | * [ 1 ] [ 1 ] |
| 466 | * [ z ] = Q [ x ] |
| 467 | * |
| 468 | * with Q = U^{-1} |
| 469 | * Since z_1 is zero, we can drop this variable as well as the corresponding |
| 470 | * column of U to obtain |
| 471 | * |
| 472 | * [ 1 ] [ 1 ] |
| 473 | * [ x ] = U' [ z' ] |
| 474 | * and |
| 475 | * [ 1 ] [ 1 ] |
| 476 | * [ z' ] = Q' [ x ] |
| 477 | * |
| 478 | * with Q' equal to Q, but without the corresponding row. |
| 479 | * After computing the facets of the facet in the z' space, |
| 480 | * we convert them back to the x space through Q. |
| 481 | */ |
| 482 | static __isl_give isl_basic_set *compute_facet(__isl_keep isl_set *set, |
| 483 | isl_int *c) |
| 484 | { |
| 485 | struct isl_mat *m, *U, *Q; |
| 486 | struct isl_basic_set *facet = NULL; |
| 487 | struct isl_ctx *ctx; |
| 488 | isl_size dim; |
| 489 | |
| 490 | dim = isl_set_dim(set, type: isl_dim_set); |
| 491 | if (dim < 0) |
| 492 | return NULL; |
| 493 | ctx = set->ctx; |
| 494 | set = isl_set_copy(set); |
| 495 | m = isl_mat_alloc(ctx: set->ctx, n_row: 2, n_col: 1 + dim); |
| 496 | if (!m) |
| 497 | goto error; |
| 498 | isl_int_set_si(m->row[0][0], 1); |
| 499 | isl_seq_clr(p: m->row[0]+1, len: dim); |
| 500 | isl_seq_cpy(dst: m->row[1], src: c, len: 1+dim); |
| 501 | U = isl_mat_right_inverse(mat: m); |
| 502 | Q = isl_mat_right_inverse(mat: isl_mat_copy(mat: U)); |
| 503 | U = isl_mat_drop_cols(mat: U, col: 1, n: 1); |
| 504 | Q = isl_mat_drop_rows(mat: Q, row: 1, n: 1); |
| 505 | set = isl_set_preimage(set, mat: U); |
| 506 | facet = uset_convex_hull_wrap_bounded(set); |
| 507 | facet = isl_basic_set_preimage(bset: facet, mat: Q); |
| 508 | if (facet && facet->n_eq != 0) |
| 509 | isl_die(ctx, isl_error_internal, "unexpected equality" , |
| 510 | return isl_basic_set_free(facet)); |
| 511 | return facet; |
| 512 | error: |
| 513 | isl_basic_set_free(bset: facet); |
| 514 | isl_set_free(set); |
| 515 | return NULL; |
| 516 | } |
| 517 | |
| 518 | /* Given an initial facet constraint, compute the remaining facets. |
| 519 | * We do this by running through all facets found so far and computing |
| 520 | * the adjacent facets through wrapping, adding those facets that we |
| 521 | * hadn't already found before. |
| 522 | * |
| 523 | * For each facet we have found so far, we first compute its facets |
| 524 | * in the resulting convex hull. That is, we compute the ridges |
| 525 | * of the resulting convex hull contained in the facet. |
| 526 | * We also compute the corresponding facet in the current approximation |
| 527 | * of the convex hull. There is no need to wrap around the ridges |
| 528 | * in this facet since that would result in a facet that is already |
| 529 | * present in the current approximation. |
| 530 | * |
| 531 | * This function can still be significantly optimized by checking which of |
| 532 | * the facets of the basic sets are also facets of the convex hull and |
| 533 | * using all the facets so far to help in constructing the facets of the |
| 534 | * facets |
| 535 | * and/or |
| 536 | * using the technique in section "3.1 Ridge Generation" of |
| 537 | * "Extended Convex Hull" by Fukuda et al. |
| 538 | */ |
| 539 | static __isl_give isl_basic_set *extend(__isl_take isl_basic_set *hull, |
| 540 | __isl_keep isl_set *set) |
| 541 | { |
| 542 | int i, j, f; |
| 543 | int k; |
| 544 | struct isl_basic_set *facet = NULL; |
| 545 | struct isl_basic_set *hull_facet = NULL; |
| 546 | isl_size dim; |
| 547 | |
| 548 | dim = isl_set_dim(set, type: isl_dim_set); |
| 549 | if (dim < 0 || !hull) |
| 550 | return isl_basic_set_free(bset: hull); |
| 551 | |
| 552 | isl_assert(set->ctx, set->n > 0, goto error); |
| 553 | |
| 554 | for (i = 0; i < hull->n_ineq; ++i) { |
| 555 | facet = compute_facet(set, c: hull->ineq[i]); |
| 556 | facet = isl_basic_set_add_eq(bset: facet, eq: hull->ineq[i]); |
| 557 | facet = isl_basic_set_gauss(bset: facet, NULL); |
| 558 | facet = isl_basic_set_normalize_constraints(bset: facet); |
| 559 | hull_facet = isl_basic_set_copy(bset: hull); |
| 560 | hull_facet = isl_basic_set_add_eq(bset: hull_facet, eq: hull->ineq[i]); |
| 561 | hull_facet = isl_basic_set_gauss(bset: hull_facet, NULL); |
| 562 | hull_facet = isl_basic_set_normalize_constraints(bset: hull_facet); |
| 563 | if (!facet || !hull_facet) |
| 564 | goto error; |
| 565 | hull = isl_basic_set_cow(bset: hull); |
| 566 | hull = isl_basic_set_extend(base: hull, extra: 0, n_eq: 0, n_ineq: facet->n_ineq); |
| 567 | if (!hull) |
| 568 | goto error; |
| 569 | for (j = 0; j < facet->n_ineq; ++j) { |
| 570 | for (f = 0; f < hull_facet->n_ineq; ++f) |
| 571 | if (isl_seq_eq(p1: facet->ineq[j], |
| 572 | p2: hull_facet->ineq[f], len: 1 + dim)) |
| 573 | break; |
| 574 | if (f < hull_facet->n_ineq) |
| 575 | continue; |
| 576 | k = isl_basic_set_alloc_inequality(bset: hull); |
| 577 | if (k < 0) |
| 578 | goto error; |
| 579 | isl_seq_cpy(dst: hull->ineq[k], src: hull->ineq[i], len: 1+dim); |
| 580 | if (!isl_set_wrap_facet(set, facet: hull->ineq[k], ridge: facet->ineq[j])) |
| 581 | goto error; |
| 582 | } |
| 583 | isl_basic_set_free(bset: hull_facet); |
| 584 | isl_basic_set_free(bset: facet); |
| 585 | } |
| 586 | hull = isl_basic_set_simplify(bset: hull); |
| 587 | hull = isl_basic_set_finalize(bset: hull); |
| 588 | return hull; |
| 589 | error: |
| 590 | isl_basic_set_free(bset: hull_facet); |
| 591 | isl_basic_set_free(bset: facet); |
| 592 | isl_basic_set_free(bset: hull); |
| 593 | return NULL; |
| 594 | } |
| 595 | |
| 596 | /* Special case for computing the convex hull of a one dimensional set. |
| 597 | * We simply collect the lower and upper bounds of each basic set |
| 598 | * and the biggest of those. |
| 599 | */ |
| 600 | static __isl_give isl_basic_set *convex_hull_1d(__isl_take isl_set *set) |
| 601 | { |
| 602 | struct isl_mat *c = NULL; |
| 603 | isl_int *lower = NULL; |
| 604 | isl_int *upper = NULL; |
| 605 | int i, j, k; |
| 606 | isl_int a, b; |
| 607 | struct isl_basic_set *hull; |
| 608 | |
| 609 | for (i = 0; i < set->n; ++i) { |
| 610 | set->p[i] = isl_basic_set_simplify(bset: set->p[i]); |
| 611 | if (!set->p[i]) |
| 612 | goto error; |
| 613 | } |
| 614 | set = isl_set_remove_empty_parts(set); |
| 615 | if (!set) |
| 616 | goto error; |
| 617 | isl_assert(set->ctx, set->n > 0, goto error); |
| 618 | c = isl_mat_alloc(ctx: set->ctx, n_row: 2, n_col: 2); |
| 619 | if (!c) |
| 620 | goto error; |
| 621 | |
| 622 | if (set->p[0]->n_eq > 0) { |
| 623 | isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error); |
| 624 | lower = c->row[0]; |
| 625 | upper = c->row[1]; |
| 626 | if (isl_int_is_pos(set->p[0]->eq[0][1])) { |
| 627 | isl_seq_cpy(dst: lower, src: set->p[0]->eq[0], len: 2); |
| 628 | isl_seq_neg(dst: upper, src: set->p[0]->eq[0], len: 2); |
| 629 | } else { |
| 630 | isl_seq_neg(dst: lower, src: set->p[0]->eq[0], len: 2); |
| 631 | isl_seq_cpy(dst: upper, src: set->p[0]->eq[0], len: 2); |
| 632 | } |
| 633 | } else { |
| 634 | for (j = 0; j < set->p[0]->n_ineq; ++j) { |
| 635 | if (isl_int_is_pos(set->p[0]->ineq[j][1])) { |
| 636 | lower = c->row[0]; |
| 637 | isl_seq_cpy(dst: lower, src: set->p[0]->ineq[j], len: 2); |
| 638 | } else { |
| 639 | upper = c->row[1]; |
| 640 | isl_seq_cpy(dst: upper, src: set->p[0]->ineq[j], len: 2); |
| 641 | } |
| 642 | } |
| 643 | } |
| 644 | |
| 645 | isl_int_init(a); |
| 646 | isl_int_init(b); |
| 647 | for (i = 0; i < set->n; ++i) { |
| 648 | struct isl_basic_set *bset = set->p[i]; |
| 649 | int has_lower = 0; |
| 650 | int has_upper = 0; |
| 651 | |
| 652 | for (j = 0; j < bset->n_eq; ++j) { |
| 653 | has_lower = 1; |
| 654 | has_upper = 1; |
| 655 | if (lower) { |
| 656 | isl_int_mul(a, lower[0], bset->eq[j][1]); |
| 657 | isl_int_mul(b, lower[1], bset->eq[j][0]); |
| 658 | if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1])) |
| 659 | isl_seq_cpy(dst: lower, src: bset->eq[j], len: 2); |
| 660 | if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1])) |
| 661 | isl_seq_neg(dst: lower, src: bset->eq[j], len: 2); |
| 662 | } |
| 663 | if (upper) { |
| 664 | isl_int_mul(a, upper[0], bset->eq[j][1]); |
| 665 | isl_int_mul(b, upper[1], bset->eq[j][0]); |
| 666 | if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1])) |
| 667 | isl_seq_neg(dst: upper, src: bset->eq[j], len: 2); |
| 668 | if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1])) |
| 669 | isl_seq_cpy(dst: upper, src: bset->eq[j], len: 2); |
| 670 | } |
| 671 | } |
| 672 | for (j = 0; j < bset->n_ineq; ++j) { |
| 673 | if (isl_int_is_pos(bset->ineq[j][1])) |
| 674 | has_lower = 1; |
| 675 | if (isl_int_is_neg(bset->ineq[j][1])) |
| 676 | has_upper = 1; |
| 677 | if (lower && isl_int_is_pos(bset->ineq[j][1])) { |
| 678 | isl_int_mul(a, lower[0], bset->ineq[j][1]); |
| 679 | isl_int_mul(b, lower[1], bset->ineq[j][0]); |
| 680 | if (isl_int_lt(a, b)) |
| 681 | isl_seq_cpy(dst: lower, src: bset->ineq[j], len: 2); |
| 682 | } |
| 683 | if (upper && isl_int_is_neg(bset->ineq[j][1])) { |
| 684 | isl_int_mul(a, upper[0], bset->ineq[j][1]); |
| 685 | isl_int_mul(b, upper[1], bset->ineq[j][0]); |
| 686 | if (isl_int_gt(a, b)) |
| 687 | isl_seq_cpy(dst: upper, src: bset->ineq[j], len: 2); |
| 688 | } |
| 689 | } |
| 690 | if (!has_lower) |
| 691 | lower = NULL; |
| 692 | if (!has_upper) |
| 693 | upper = NULL; |
| 694 | } |
| 695 | isl_int_clear(a); |
| 696 | isl_int_clear(b); |
| 697 | |
| 698 | hull = isl_basic_set_alloc(ctx: set->ctx, nparam: 0, dim: 1, extra: 0, n_eq: 0, n_ineq: 2); |
| 699 | hull = isl_basic_set_set_rational(bset: hull); |
| 700 | if (!hull) |
| 701 | goto error; |
| 702 | if (lower) { |
| 703 | k = isl_basic_set_alloc_inequality(bset: hull); |
| 704 | isl_seq_cpy(dst: hull->ineq[k], src: lower, len: 2); |
| 705 | } |
| 706 | if (upper) { |
| 707 | k = isl_basic_set_alloc_inequality(bset: hull); |
| 708 | isl_seq_cpy(dst: hull->ineq[k], src: upper, len: 2); |
| 709 | } |
| 710 | hull = isl_basic_set_finalize(bset: hull); |
| 711 | isl_set_free(set); |
| 712 | isl_mat_free(mat: c); |
| 713 | return hull; |
| 714 | error: |
| 715 | isl_set_free(set); |
| 716 | isl_mat_free(mat: c); |
| 717 | return NULL; |
| 718 | } |
| 719 | |
| 720 | static __isl_give isl_basic_set *convex_hull_0d(__isl_take isl_set *set) |
| 721 | { |
| 722 | struct isl_basic_set *convex_hull; |
| 723 | |
| 724 | if (!set) |
| 725 | return NULL; |
| 726 | |
| 727 | if (isl_set_is_empty(set)) |
| 728 | convex_hull = isl_basic_set_empty(space: isl_space_copy(space: set->dim)); |
| 729 | else |
| 730 | convex_hull = isl_basic_set_universe(space: isl_space_copy(space: set->dim)); |
| 731 | isl_set_free(set); |
| 732 | return convex_hull; |
| 733 | } |
| 734 | |
| 735 | /* Compute the convex hull of a pair of basic sets without any parameters or |
| 736 | * integer divisions using Fourier-Motzkin elimination. |
| 737 | * The convex hull is the set of all points that can be written as |
| 738 | * the sum of points from both basic sets (in homogeneous coordinates). |
| 739 | * We set up the constraints in a space with dimensions for each of |
| 740 | * the three sets and then project out the dimensions corresponding |
| 741 | * to the two original basic sets, retaining only those corresponding |
| 742 | * to the convex hull. |
| 743 | */ |
| 744 | static __isl_give isl_basic_set *convex_hull_pair_elim( |
| 745 | __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2) |
| 746 | { |
| 747 | int i, j, k; |
| 748 | struct isl_basic_set *bset[2]; |
| 749 | struct isl_basic_set *hull = NULL; |
| 750 | isl_size dim; |
| 751 | |
| 752 | dim = isl_basic_set_dim(bset: bset1, type: isl_dim_set); |
| 753 | if (dim < 0 || !bset2) |
| 754 | goto error; |
| 755 | |
| 756 | hull = isl_basic_set_alloc(ctx: bset1->ctx, nparam: 0, dim: 2 + 3 * dim, extra: 0, |
| 757 | n_eq: 1 + dim + bset1->n_eq + bset2->n_eq, |
| 758 | n_ineq: 2 + bset1->n_ineq + bset2->n_ineq); |
| 759 | bset[0] = bset1; |
| 760 | bset[1] = bset2; |
| 761 | for (i = 0; i < 2; ++i) { |
| 762 | for (j = 0; j < bset[i]->n_eq; ++j) { |
| 763 | k = isl_basic_set_alloc_equality(bset: hull); |
| 764 | if (k < 0) |
| 765 | goto error; |
| 766 | isl_seq_clr(p: hull->eq[k], len: (i+1) * (1+dim)); |
| 767 | isl_seq_clr(p: hull->eq[k]+(i+2)*(1+dim), len: (1-i)*(1+dim)); |
| 768 | isl_seq_cpy(dst: hull->eq[k]+(i+1)*(1+dim), src: bset[i]->eq[j], |
| 769 | len: 1+dim); |
| 770 | } |
| 771 | for (j = 0; j < bset[i]->n_ineq; ++j) { |
| 772 | k = isl_basic_set_alloc_inequality(bset: hull); |
| 773 | if (k < 0) |
| 774 | goto error; |
| 775 | isl_seq_clr(p: hull->ineq[k], len: (i+1) * (1+dim)); |
| 776 | isl_seq_clr(p: hull->ineq[k]+(i+2)*(1+dim), len: (1-i)*(1+dim)); |
| 777 | isl_seq_cpy(dst: hull->ineq[k]+(i+1)*(1+dim), |
| 778 | src: bset[i]->ineq[j], len: 1+dim); |
| 779 | } |
| 780 | k = isl_basic_set_alloc_inequality(bset: hull); |
| 781 | if (k < 0) |
| 782 | goto error; |
| 783 | isl_seq_clr(p: hull->ineq[k], len: 1+2+3*dim); |
| 784 | isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1); |
| 785 | } |
| 786 | for (j = 0; j < 1+dim; ++j) { |
| 787 | k = isl_basic_set_alloc_equality(bset: hull); |
| 788 | if (k < 0) |
| 789 | goto error; |
| 790 | isl_seq_clr(p: hull->eq[k], len: 1+2+3*dim); |
| 791 | isl_int_set_si(hull->eq[k][j], -1); |
| 792 | isl_int_set_si(hull->eq[k][1+dim+j], 1); |
| 793 | isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1); |
| 794 | } |
| 795 | hull = isl_basic_set_set_rational(bset: hull); |
| 796 | hull = isl_basic_set_remove_dims(bset: hull, type: isl_dim_set, first: dim, n: 2*(1+dim)); |
| 797 | hull = isl_basic_set_remove_redundancies(bset: hull); |
| 798 | isl_basic_set_free(bset: bset1); |
| 799 | isl_basic_set_free(bset: bset2); |
| 800 | return hull; |
| 801 | error: |
| 802 | isl_basic_set_free(bset: bset1); |
| 803 | isl_basic_set_free(bset: bset2); |
| 804 | isl_basic_set_free(bset: hull); |
| 805 | return NULL; |
| 806 | } |
| 807 | |
| 808 | /* Is the set bounded for each value of the parameters? |
| 809 | */ |
| 810 | isl_bool isl_basic_set_is_bounded(__isl_keep isl_basic_set *bset) |
| 811 | { |
| 812 | struct isl_tab *tab; |
| 813 | isl_bool bounded; |
| 814 | |
| 815 | if (!bset) |
| 816 | return isl_bool_error; |
| 817 | if (isl_basic_set_plain_is_empty(bset)) |
| 818 | return isl_bool_true; |
| 819 | |
| 820 | tab = isl_tab_from_recession_cone(bset, parametric: 1); |
| 821 | bounded = isl_tab_cone_is_bounded(tab); |
| 822 | isl_tab_free(tab); |
| 823 | return bounded; |
| 824 | } |
| 825 | |
| 826 | /* Is the image bounded for each value of the parameters and |
| 827 | * the domain variables? |
| 828 | */ |
| 829 | isl_bool isl_basic_map_image_is_bounded(__isl_keep isl_basic_map *bmap) |
| 830 | { |
| 831 | isl_size nparam = isl_basic_map_dim(bmap, type: isl_dim_param); |
| 832 | isl_size n_in = isl_basic_map_dim(bmap, type: isl_dim_in); |
| 833 | isl_bool bounded; |
| 834 | |
| 835 | if (nparam < 0 || n_in < 0) |
| 836 | return isl_bool_error; |
| 837 | |
| 838 | bmap = isl_basic_map_copy(bmap); |
| 839 | bmap = isl_basic_map_cow(bmap); |
| 840 | bmap = isl_basic_map_move_dims(bmap, dst_type: isl_dim_param, dst_pos: nparam, |
| 841 | src_type: isl_dim_in, src_pos: 0, n: n_in); |
| 842 | bounded = isl_basic_set_is_bounded(bset: bset_from_bmap(bmap)); |
| 843 | isl_basic_map_free(bmap); |
| 844 | |
| 845 | return bounded; |
| 846 | } |
| 847 | |
| 848 | /* Is the set bounded for each value of the parameters? |
| 849 | */ |
| 850 | isl_bool isl_set_is_bounded(__isl_keep isl_set *set) |
| 851 | { |
| 852 | int i; |
| 853 | |
| 854 | if (!set) |
| 855 | return isl_bool_error; |
| 856 | |
| 857 | for (i = 0; i < set->n; ++i) { |
| 858 | isl_bool bounded = isl_basic_set_is_bounded(bset: set->p[i]); |
| 859 | if (!bounded || bounded < 0) |
| 860 | return bounded; |
| 861 | } |
| 862 | return isl_bool_true; |
| 863 | } |
| 864 | |
| 865 | /* Compute the lineality space of the convex hull of bset1 and bset2. |
| 866 | * |
| 867 | * We first compute the intersection of the recession cone of bset1 |
| 868 | * with the negative of the recession cone of bset2 and then compute |
| 869 | * the linear hull of the resulting cone. |
| 870 | */ |
| 871 | static __isl_give isl_basic_set *induced_lineality_space( |
| 872 | __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2) |
| 873 | { |
| 874 | int i, k; |
| 875 | struct isl_basic_set *lin = NULL; |
| 876 | isl_size dim; |
| 877 | |
| 878 | dim = isl_basic_set_dim(bset: bset1, type: isl_dim_all); |
| 879 | if (dim < 0 || !bset2) |
| 880 | goto error; |
| 881 | |
| 882 | lin = isl_basic_set_alloc_space(space: isl_basic_set_get_space(bset: bset1), extra: 0, |
| 883 | n_eq: bset1->n_eq + bset2->n_eq, |
| 884 | n_ineq: bset1->n_ineq + bset2->n_ineq); |
| 885 | lin = isl_basic_set_set_rational(bset: lin); |
| 886 | if (!lin) |
| 887 | goto error; |
| 888 | for (i = 0; i < bset1->n_eq; ++i) { |
| 889 | k = isl_basic_set_alloc_equality(bset: lin); |
| 890 | if (k < 0) |
| 891 | goto error; |
| 892 | isl_int_set_si(lin->eq[k][0], 0); |
| 893 | isl_seq_cpy(dst: lin->eq[k] + 1, src: bset1->eq[i] + 1, len: dim); |
| 894 | } |
| 895 | for (i = 0; i < bset1->n_ineq; ++i) { |
| 896 | k = isl_basic_set_alloc_inequality(bset: lin); |
| 897 | if (k < 0) |
| 898 | goto error; |
| 899 | isl_int_set_si(lin->ineq[k][0], 0); |
| 900 | isl_seq_cpy(dst: lin->ineq[k] + 1, src: bset1->ineq[i] + 1, len: dim); |
| 901 | } |
| 902 | for (i = 0; i < bset2->n_eq; ++i) { |
| 903 | k = isl_basic_set_alloc_equality(bset: lin); |
| 904 | if (k < 0) |
| 905 | goto error; |
| 906 | isl_int_set_si(lin->eq[k][0], 0); |
| 907 | isl_seq_neg(dst: lin->eq[k] + 1, src: bset2->eq[i] + 1, len: dim); |
| 908 | } |
| 909 | for (i = 0; i < bset2->n_ineq; ++i) { |
| 910 | k = isl_basic_set_alloc_inequality(bset: lin); |
| 911 | if (k < 0) |
| 912 | goto error; |
| 913 | isl_int_set_si(lin->ineq[k][0], 0); |
| 914 | isl_seq_neg(dst: lin->ineq[k] + 1, src: bset2->ineq[i] + 1, len: dim); |
| 915 | } |
| 916 | |
| 917 | isl_basic_set_free(bset: bset1); |
| 918 | isl_basic_set_free(bset: bset2); |
| 919 | return isl_basic_set_affine_hull(bset: lin); |
| 920 | error: |
| 921 | isl_basic_set_free(bset: lin); |
| 922 | isl_basic_set_free(bset: bset1); |
| 923 | isl_basic_set_free(bset: bset2); |
| 924 | return NULL; |
| 925 | } |
| 926 | |
| 927 | static __isl_give isl_basic_set *uset_convex_hull(__isl_take isl_set *set); |
| 928 | |
| 929 | /* Given a set and a linear space "lin" of dimension n > 0, |
| 930 | * project the linear space from the set, compute the convex hull |
| 931 | * and then map the set back to the original space. |
| 932 | * |
| 933 | * Let |
| 934 | * |
| 935 | * M x = 0 |
| 936 | * |
| 937 | * describe the linear space. We first compute the Hermite normal |
| 938 | * form H = M U of M = H Q, to obtain |
| 939 | * |
| 940 | * H Q x = 0 |
| 941 | * |
| 942 | * The last n rows of H will be zero, so the last n variables of x' = Q x |
| 943 | * are the one we want to project out. We do this by transforming each |
| 944 | * basic set A x >= b to A U x' >= b and then removing the last n dimensions. |
| 945 | * After computing the convex hull in x'_1, i.e., A' x'_1 >= b', |
| 946 | * we transform the hull back to the original space as A' Q_1 x >= b', |
| 947 | * with Q_1 all but the last n rows of Q. |
| 948 | */ |
| 949 | static __isl_give isl_basic_set *modulo_lineality(__isl_take isl_set *set, |
| 950 | __isl_take isl_basic_set *lin) |
| 951 | { |
| 952 | isl_size total = isl_basic_set_dim(bset: lin, type: isl_dim_all); |
| 953 | unsigned lin_dim; |
| 954 | struct isl_basic_set *hull; |
| 955 | struct isl_mat *M, *U, *Q; |
| 956 | |
| 957 | if (!set || total < 0) |
| 958 | goto error; |
| 959 | lin_dim = total - lin->n_eq; |
| 960 | M = isl_mat_sub_alloc6(ctx: set->ctx, row: lin->eq, first_row: 0, n_row: lin->n_eq, first_col: 1, n_col: total); |
| 961 | M = isl_mat_left_hermite(M, neg: 0, U: &U, Q: &Q); |
| 962 | if (!M) |
| 963 | goto error; |
| 964 | isl_mat_free(mat: M); |
| 965 | isl_basic_set_free(bset: lin); |
| 966 | |
| 967 | Q = isl_mat_drop_rows(mat: Q, row: Q->n_row - lin_dim, n: lin_dim); |
| 968 | |
| 969 | U = isl_mat_lin_to_aff(mat: U); |
| 970 | Q = isl_mat_lin_to_aff(mat: Q); |
| 971 | |
| 972 | set = isl_set_preimage(set, mat: U); |
| 973 | set = isl_set_remove_dims(bset: set, type: isl_dim_set, first: total - lin_dim, n: lin_dim); |
| 974 | hull = uset_convex_hull(set); |
| 975 | hull = isl_basic_set_preimage(bset: hull, mat: Q); |
| 976 | |
| 977 | return hull; |
| 978 | error: |
| 979 | isl_basic_set_free(bset: lin); |
| 980 | isl_set_free(set); |
| 981 | return NULL; |
| 982 | } |
| 983 | |
| 984 | /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space, |
| 985 | * set up an LP for solving |
| 986 | * |
| 987 | * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j} |
| 988 | * |
| 989 | * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0 |
| 990 | * The next \alpha{ij} correspond to the equalities and come in pairs. |
| 991 | * The final \alpha{ij} correspond to the inequalities. |
| 992 | */ |
| 993 | static __isl_give isl_basic_set *valid_direction_lp( |
| 994 | __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2) |
| 995 | { |
| 996 | isl_space *space; |
| 997 | struct isl_basic_set *lp; |
| 998 | unsigned d; |
| 999 | int n; |
| 1000 | int i, j, k; |
| 1001 | isl_size total; |
| 1002 | |
| 1003 | total = isl_basic_set_dim(bset: bset1, type: isl_dim_all); |
| 1004 | if (total < 0 || !bset2) |
| 1005 | goto error; |
| 1006 | d = 1 + total; |
| 1007 | n = 2 + |
| 1008 | 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq; |
| 1009 | space = isl_space_set_alloc(ctx: bset1->ctx, nparam: 0, dim: n); |
| 1010 | lp = isl_basic_set_alloc_space(space, extra: 0, n_eq: d, n_ineq: n); |
| 1011 | if (!lp) |
| 1012 | goto error; |
| 1013 | for (i = 0; i < n; ++i) { |
| 1014 | k = isl_basic_set_alloc_inequality(bset: lp); |
| 1015 | if (k < 0) |
| 1016 | goto error; |
| 1017 | isl_seq_clr(p: lp->ineq[k] + 1, len: n); |
| 1018 | isl_int_set_si(lp->ineq[k][0], -1); |
| 1019 | isl_int_set_si(lp->ineq[k][1 + i], 1); |
| 1020 | } |
| 1021 | for (i = 0; i < d; ++i) { |
| 1022 | k = isl_basic_set_alloc_equality(bset: lp); |
| 1023 | if (k < 0) |
| 1024 | goto error; |
| 1025 | n = 0; |
| 1026 | isl_int_set_si(lp->eq[k][n], 0); n++; |
| 1027 | /* positivity constraint 1 >= 0 */ |
| 1028 | isl_int_set_si(lp->eq[k][n], i == 0); n++; |
| 1029 | for (j = 0; j < bset1->n_eq; ++j) { |
| 1030 | isl_int_set(lp->eq[k][n], bset1->eq[j][i]); n++; |
| 1031 | isl_int_neg(lp->eq[k][n], bset1->eq[j][i]); n++; |
| 1032 | } |
| 1033 | for (j = 0; j < bset1->n_ineq; ++j) { |
| 1034 | isl_int_set(lp->eq[k][n], bset1->ineq[j][i]); n++; |
| 1035 | } |
| 1036 | /* positivity constraint 1 >= 0 */ |
| 1037 | isl_int_set_si(lp->eq[k][n], -(i == 0)); n++; |
| 1038 | for (j = 0; j < bset2->n_eq; ++j) { |
| 1039 | isl_int_neg(lp->eq[k][n], bset2->eq[j][i]); n++; |
| 1040 | isl_int_set(lp->eq[k][n], bset2->eq[j][i]); n++; |
| 1041 | } |
| 1042 | for (j = 0; j < bset2->n_ineq; ++j) { |
| 1043 | isl_int_neg(lp->eq[k][n], bset2->ineq[j][i]); n++; |
| 1044 | } |
| 1045 | } |
| 1046 | lp = isl_basic_set_gauss(bset: lp, NULL); |
| 1047 | isl_basic_set_free(bset: bset1); |
| 1048 | isl_basic_set_free(bset: bset2); |
| 1049 | return lp; |
| 1050 | error: |
| 1051 | isl_basic_set_free(bset: bset1); |
| 1052 | isl_basic_set_free(bset: bset2); |
| 1053 | return NULL; |
| 1054 | } |
| 1055 | |
| 1056 | /* Compute a vector s in the homogeneous space such that <s, r> > 0 |
| 1057 | * for all rays in the homogeneous space of the two cones that correspond |
| 1058 | * to the input polyhedra bset1 and bset2. |
| 1059 | * |
| 1060 | * We compute s as a vector that satisfies |
| 1061 | * |
| 1062 | * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*) |
| 1063 | * |
| 1064 | * with h_{ij} the normals of the facets of polyhedron i |
| 1065 | * (including the "positivity constraint" 1 >= 0) and \alpha_{ij} |
| 1066 | * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1. |
| 1067 | * We first set up an LP with as variables the \alpha{ij}. |
| 1068 | * In this formulation, for each polyhedron i, |
| 1069 | * the first constraint is the positivity constraint, followed by pairs |
| 1070 | * of variables for the equalities, followed by variables for the inequalities. |
| 1071 | * We then simply pick a feasible solution and compute s using (*). |
| 1072 | * |
| 1073 | * Note that we simply pick any valid direction and make no attempt |
| 1074 | * to pick a "good" or even the "best" valid direction. |
| 1075 | */ |
| 1076 | static __isl_give isl_vec *valid_direction( |
| 1077 | __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2) |
| 1078 | { |
| 1079 | struct isl_basic_set *lp; |
| 1080 | struct isl_tab *tab; |
| 1081 | struct isl_vec *sample = NULL; |
| 1082 | struct isl_vec *dir; |
| 1083 | isl_size d; |
| 1084 | int i; |
| 1085 | int n; |
| 1086 | |
| 1087 | if (!bset1 || !bset2) |
| 1088 | goto error; |
| 1089 | lp = valid_direction_lp(bset1: isl_basic_set_copy(bset: bset1), |
| 1090 | bset2: isl_basic_set_copy(bset: bset2)); |
| 1091 | tab = isl_tab_from_basic_set(bset: lp, track: 0); |
| 1092 | sample = isl_tab_get_sample_value(tab); |
| 1093 | isl_tab_free(tab); |
| 1094 | isl_basic_set_free(bset: lp); |
| 1095 | if (!sample) |
| 1096 | goto error; |
| 1097 | d = isl_basic_set_dim(bset: bset1, type: isl_dim_all); |
| 1098 | if (d < 0) |
| 1099 | goto error; |
| 1100 | dir = isl_vec_alloc(ctx: bset1->ctx, size: 1 + d); |
| 1101 | if (!dir) |
| 1102 | goto error; |
| 1103 | isl_seq_clr(p: dir->block.data + 1, len: dir->size - 1); |
| 1104 | n = 1; |
| 1105 | /* positivity constraint 1 >= 0 */ |
| 1106 | isl_int_set(dir->block.data[0], sample->block.data[n]); n++; |
| 1107 | for (i = 0; i < bset1->n_eq; ++i) { |
| 1108 | isl_int_sub(sample->block.data[n], |
| 1109 | sample->block.data[n], sample->block.data[n+1]); |
| 1110 | isl_seq_combine(dst: dir->block.data, |
| 1111 | m1: bset1->ctx->one, src1: dir->block.data, |
| 1112 | m2: sample->block.data[n], src2: bset1->eq[i], len: 1 + d); |
| 1113 | |
| 1114 | n += 2; |
| 1115 | } |
| 1116 | for (i = 0; i < bset1->n_ineq; ++i) |
| 1117 | isl_seq_combine(dst: dir->block.data, |
| 1118 | m1: bset1->ctx->one, src1: dir->block.data, |
| 1119 | m2: sample->block.data[n++], src2: bset1->ineq[i], len: 1 + d); |
| 1120 | isl_vec_free(vec: sample); |
| 1121 | isl_seq_normalize(ctx: bset1->ctx, p: dir->el, len: dir->size); |
| 1122 | isl_basic_set_free(bset: bset1); |
| 1123 | isl_basic_set_free(bset: bset2); |
| 1124 | return dir; |
| 1125 | error: |
| 1126 | isl_vec_free(vec: sample); |
| 1127 | isl_basic_set_free(bset: bset1); |
| 1128 | isl_basic_set_free(bset: bset2); |
| 1129 | return NULL; |
| 1130 | } |
| 1131 | |
| 1132 | /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1}, |
| 1133 | * compute b_i' + A_i' x' >= 0, with |
| 1134 | * |
| 1135 | * [ b_i A_i ] [ y' ] [ y' ] |
| 1136 | * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0 |
| 1137 | * |
| 1138 | * In particular, add the "positivity constraint" and then perform |
| 1139 | * the mapping. |
| 1140 | */ |
| 1141 | static __isl_give isl_basic_set *homogeneous_map(__isl_take isl_basic_set *bset, |
| 1142 | __isl_take isl_mat *T) |
| 1143 | { |
| 1144 | int k; |
| 1145 | isl_size total; |
| 1146 | |
| 1147 | total = isl_basic_set_dim(bset, type: isl_dim_all); |
| 1148 | if (total < 0) |
| 1149 | goto error; |
| 1150 | bset = isl_basic_set_extend_constraints(base: bset, n_eq: 0, n_ineq: 1); |
| 1151 | k = isl_basic_set_alloc_inequality(bset); |
| 1152 | if (k < 0) |
| 1153 | goto error; |
| 1154 | isl_seq_clr(p: bset->ineq[k] + 1, len: total); |
| 1155 | isl_int_set_si(bset->ineq[k][0], 1); |
| 1156 | bset = isl_basic_set_preimage(bset, mat: T); |
| 1157 | return bset; |
| 1158 | error: |
| 1159 | isl_mat_free(mat: T); |
| 1160 | isl_basic_set_free(bset); |
| 1161 | return NULL; |
| 1162 | } |
| 1163 | |
| 1164 | /* Compute the convex hull of a pair of basic sets without any parameters or |
| 1165 | * integer divisions, where the convex hull is known to be pointed, |
| 1166 | * but the basic sets may be unbounded. |
| 1167 | * |
| 1168 | * We turn this problem into the computation of a convex hull of a pair |
| 1169 | * _bounded_ polyhedra by "changing the direction of the homogeneous |
| 1170 | * dimension". This idea is due to Matthias Koeppe. |
| 1171 | * |
| 1172 | * Consider the cones in homogeneous space that correspond to the |
| 1173 | * input polyhedra. The rays of these cones are also rays of the |
| 1174 | * polyhedra if the coordinate that corresponds to the homogeneous |
| 1175 | * dimension is zero. That is, if the inner product of the rays |
| 1176 | * with the homogeneous direction is zero. |
| 1177 | * The cones in the homogeneous space can also be considered to |
| 1178 | * correspond to other pairs of polyhedra by chosing a different |
| 1179 | * homogeneous direction. To ensure that both of these polyhedra |
| 1180 | * are bounded, we need to make sure that all rays of the cones |
| 1181 | * correspond to vertices and not to rays. |
| 1182 | * Let s be a direction such that <s, r> > 0 for all rays r of both cones. |
| 1183 | * Then using s as a homogeneous direction, we obtain a pair of polytopes. |
| 1184 | * The vector s is computed in valid_direction. |
| 1185 | * |
| 1186 | * Note that we need to consider _all_ rays of the cones and not just |
| 1187 | * the rays that correspond to rays in the polyhedra. If we were to |
| 1188 | * only consider those rays and turn them into vertices, then we |
| 1189 | * may inadvertently turn some vertices into rays. |
| 1190 | * |
| 1191 | * The standard homogeneous direction is the unit vector in the 0th coordinate. |
| 1192 | * We therefore transform the two polyhedra such that the selected |
| 1193 | * direction is mapped onto this standard direction and then proceed |
| 1194 | * with the normal computation. |
| 1195 | * Let S be a non-singular square matrix with s as its first row, |
| 1196 | * then we want to map the polyhedra to the space |
| 1197 | * |
| 1198 | * [ y' ] [ y ] [ y ] [ y' ] |
| 1199 | * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ] |
| 1200 | * |
| 1201 | * We take S to be the unimodular completion of s to limit the growth |
| 1202 | * of the coefficients in the following computations. |
| 1203 | * |
| 1204 | * Let b_i + A_i x >= 0 be the constraints of polyhedron i. |
| 1205 | * We first move to the homogeneous dimension |
| 1206 | * |
| 1207 | * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ] |
| 1208 | * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ] |
| 1209 | * |
| 1210 | * Then we change directoin |
| 1211 | * |
| 1212 | * [ b_i A_i ] [ y' ] [ y' ] |
| 1213 | * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0 |
| 1214 | * |
| 1215 | * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0 |
| 1216 | * resulting in b' + A' x' >= 0, which we then convert back |
| 1217 | * |
| 1218 | * [ y ] [ y ] |
| 1219 | * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0 |
| 1220 | * |
| 1221 | * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra. |
| 1222 | */ |
| 1223 | static __isl_give isl_basic_set *convex_hull_pair_pointed( |
| 1224 | __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2) |
| 1225 | { |
| 1226 | struct isl_ctx *ctx = NULL; |
| 1227 | struct isl_vec *dir = NULL; |
| 1228 | struct isl_mat *T = NULL; |
| 1229 | struct isl_mat *T2 = NULL; |
| 1230 | struct isl_basic_set *hull; |
| 1231 | struct isl_set *set; |
| 1232 | |
| 1233 | if (!bset1 || !bset2) |
| 1234 | goto error; |
| 1235 | ctx = isl_basic_set_get_ctx(bset: bset1); |
| 1236 | dir = valid_direction(bset1: isl_basic_set_copy(bset: bset1), |
| 1237 | bset2: isl_basic_set_copy(bset: bset2)); |
| 1238 | if (!dir) |
| 1239 | goto error; |
| 1240 | T = isl_mat_alloc(ctx, n_row: dir->size, n_col: dir->size); |
| 1241 | if (!T) |
| 1242 | goto error; |
| 1243 | isl_seq_cpy(dst: T->row[0], src: dir->block.data, len: dir->size); |
| 1244 | T = isl_mat_unimodular_complete(M: T, row: 1); |
| 1245 | T2 = isl_mat_right_inverse(mat: isl_mat_copy(mat: T)); |
| 1246 | |
| 1247 | bset1 = homogeneous_map(bset: bset1, T: isl_mat_copy(mat: T2)); |
| 1248 | bset2 = homogeneous_map(bset: bset2, T: T2); |
| 1249 | set = isl_set_alloc_space(space: isl_basic_set_get_space(bset: bset1), n: 2, flags: 0); |
| 1250 | set = isl_set_add_basic_set(set, bset: bset1); |
| 1251 | set = isl_set_add_basic_set(set, bset: bset2); |
| 1252 | hull = uset_convex_hull(set); |
| 1253 | hull = isl_basic_set_preimage(bset: hull, mat: T); |
| 1254 | |
| 1255 | isl_vec_free(vec: dir); |
| 1256 | |
| 1257 | return hull; |
| 1258 | error: |
| 1259 | isl_vec_free(vec: dir); |
| 1260 | isl_basic_set_free(bset: bset1); |
| 1261 | isl_basic_set_free(bset: bset2); |
| 1262 | return NULL; |
| 1263 | } |
| 1264 | |
| 1265 | static __isl_give isl_basic_set *uset_convex_hull_wrap(__isl_take isl_set *set); |
| 1266 | static __isl_give isl_basic_set *modulo_affine_hull( |
| 1267 | __isl_take isl_set *set, __isl_take isl_basic_set *affine_hull); |
| 1268 | |
| 1269 | /* Compute the convex hull of a pair of basic sets without any parameters or |
| 1270 | * integer divisions. |
| 1271 | * |
| 1272 | * This function is called from uset_convex_hull_unbounded, which |
| 1273 | * means that the complete convex hull is unbounded. Some pairs |
| 1274 | * of basic sets may still be bounded, though. |
| 1275 | * They may even lie inside a lower dimensional space, in which |
| 1276 | * case they need to be handled inside their affine hull since |
| 1277 | * the main algorithm assumes that the result is full-dimensional. |
| 1278 | * |
| 1279 | * If the convex hull of the two basic sets would have a non-trivial |
| 1280 | * lineality space, we first project out this lineality space. |
| 1281 | */ |
| 1282 | static __isl_give isl_basic_set *convex_hull_pair( |
| 1283 | __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2) |
| 1284 | { |
| 1285 | isl_basic_set *lin, *aff; |
| 1286 | isl_bool bounded1, bounded2; |
| 1287 | isl_size total; |
| 1288 | |
| 1289 | if (bset1->ctx->opt->convex == ISL_CONVEX_HULL_FM) |
| 1290 | return convex_hull_pair_elim(bset1, bset2); |
| 1291 | |
| 1292 | aff = isl_set_affine_hull(set: isl_basic_set_union(bset1: isl_basic_set_copy(bset: bset1), |
| 1293 | bset2: isl_basic_set_copy(bset: bset2))); |
| 1294 | if (!aff) |
| 1295 | goto error; |
| 1296 | if (aff->n_eq != 0) |
| 1297 | return modulo_affine_hull(set: isl_basic_set_union(bset1, bset2), affine_hull: aff); |
| 1298 | isl_basic_set_free(bset: aff); |
| 1299 | |
| 1300 | bounded1 = isl_basic_set_is_bounded(bset: bset1); |
| 1301 | bounded2 = isl_basic_set_is_bounded(bset: bset2); |
| 1302 | |
| 1303 | if (bounded1 < 0 || bounded2 < 0) |
| 1304 | goto error; |
| 1305 | |
| 1306 | if (bounded1 && bounded2) |
| 1307 | return uset_convex_hull_wrap(set: isl_basic_set_union(bset1, bset2)); |
| 1308 | |
| 1309 | if (bounded1 || bounded2) |
| 1310 | return convex_hull_pair_pointed(bset1, bset2); |
| 1311 | |
| 1312 | lin = induced_lineality_space(bset1: isl_basic_set_copy(bset: bset1), |
| 1313 | bset2: isl_basic_set_copy(bset: bset2)); |
| 1314 | if (!lin) |
| 1315 | goto error; |
| 1316 | if (isl_basic_set_plain_is_universe(bset: lin)) { |
| 1317 | isl_basic_set_free(bset: bset1); |
| 1318 | isl_basic_set_free(bset: bset2); |
| 1319 | return lin; |
| 1320 | } |
| 1321 | total = isl_basic_set_dim(bset: lin, type: isl_dim_all); |
| 1322 | if (lin->n_eq < total) { |
| 1323 | struct isl_set *set; |
| 1324 | set = isl_set_alloc_space(space: isl_basic_set_get_space(bset: bset1), n: 2, flags: 0); |
| 1325 | set = isl_set_add_basic_set(set, bset: bset1); |
| 1326 | set = isl_set_add_basic_set(set, bset: bset2); |
| 1327 | return modulo_lineality(set, lin); |
| 1328 | } |
| 1329 | isl_basic_set_free(bset: lin); |
| 1330 | if (total < 0) |
| 1331 | goto error; |
| 1332 | |
| 1333 | return convex_hull_pair_pointed(bset1, bset2); |
| 1334 | error: |
| 1335 | isl_basic_set_free(bset: bset1); |
| 1336 | isl_basic_set_free(bset: bset2); |
| 1337 | return NULL; |
| 1338 | } |
| 1339 | |
| 1340 | /* Compute the lineality space of a basic set. |
| 1341 | * We basically just drop the constants and turn every inequality |
| 1342 | * into an equality. |
| 1343 | * Any explicit representations of local variables are removed |
| 1344 | * because they may no longer be valid representations |
| 1345 | * in the lineality space. |
| 1346 | */ |
| 1347 | __isl_give isl_basic_set *isl_basic_set_lineality_space( |
| 1348 | __isl_take isl_basic_set *bset) |
| 1349 | { |
| 1350 | int i, k; |
| 1351 | struct isl_basic_set *lin = NULL; |
| 1352 | isl_size n_div, dim; |
| 1353 | |
| 1354 | n_div = isl_basic_set_dim(bset, type: isl_dim_div); |
| 1355 | dim = isl_basic_set_dim(bset, type: isl_dim_all); |
| 1356 | if (n_div < 0 || dim < 0) |
| 1357 | return isl_basic_set_free(bset); |
| 1358 | |
| 1359 | lin = isl_basic_set_alloc_space(space: isl_basic_set_get_space(bset), |
| 1360 | extra: n_div, n_eq: dim, n_ineq: 0); |
| 1361 | for (i = 0; i < n_div; ++i) |
| 1362 | if (isl_basic_set_alloc_div(bset: lin) < 0) |
| 1363 | goto error; |
| 1364 | if (!lin) |
| 1365 | goto error; |
| 1366 | for (i = 0; i < bset->n_eq; ++i) { |
| 1367 | k = isl_basic_set_alloc_equality(bset: lin); |
| 1368 | if (k < 0) |
| 1369 | goto error; |
| 1370 | isl_int_set_si(lin->eq[k][0], 0); |
| 1371 | isl_seq_cpy(dst: lin->eq[k] + 1, src: bset->eq[i] + 1, len: dim); |
| 1372 | } |
| 1373 | lin = isl_basic_set_gauss(bset: lin, NULL); |
| 1374 | if (!lin) |
| 1375 | goto error; |
| 1376 | for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) { |
| 1377 | k = isl_basic_set_alloc_equality(bset: lin); |
| 1378 | if (k < 0) |
| 1379 | goto error; |
| 1380 | isl_int_set_si(lin->eq[k][0], 0); |
| 1381 | isl_seq_cpy(dst: lin->eq[k] + 1, src: bset->ineq[i] + 1, len: dim); |
| 1382 | lin = isl_basic_set_gauss(bset: lin, NULL); |
| 1383 | if (!lin) |
| 1384 | goto error; |
| 1385 | } |
| 1386 | isl_basic_set_free(bset); |
| 1387 | return lin; |
| 1388 | error: |
| 1389 | isl_basic_set_free(bset: lin); |
| 1390 | isl_basic_set_free(bset); |
| 1391 | return NULL; |
| 1392 | } |
| 1393 | |
| 1394 | /* Compute the (linear) hull of the lineality spaces of the basic sets in the |
| 1395 | * set "set". |
| 1396 | */ |
| 1397 | __isl_give isl_basic_set *isl_set_combined_lineality_space( |
| 1398 | __isl_take isl_set *set) |
| 1399 | { |
| 1400 | int i; |
| 1401 | struct isl_set *lin = NULL; |
| 1402 | |
| 1403 | if (!set) |
| 1404 | return NULL; |
| 1405 | if (set->n == 0) { |
| 1406 | isl_space *space = isl_set_get_space(set); |
| 1407 | isl_set_free(set); |
| 1408 | return isl_basic_set_empty(space); |
| 1409 | } |
| 1410 | |
| 1411 | lin = isl_set_alloc_space(space: isl_set_get_space(set), n: set->n, flags: 0); |
| 1412 | for (i = 0; i < set->n; ++i) |
| 1413 | lin = isl_set_add_basic_set(set: lin, |
| 1414 | bset: isl_basic_set_lineality_space(bset: isl_basic_set_copy(bset: set->p[i]))); |
| 1415 | isl_set_free(set); |
| 1416 | return isl_set_affine_hull(set: lin); |
| 1417 | } |
| 1418 | |
| 1419 | /* Compute the convex hull of a set without any parameters or |
| 1420 | * integer divisions. |
| 1421 | * In each step, we combined two basic sets until only one |
| 1422 | * basic set is left. |
| 1423 | * The input basic sets are assumed not to have a non-trivial |
| 1424 | * lineality space. If any of the intermediate results has |
| 1425 | * a non-trivial lineality space, it is projected out. |
| 1426 | */ |
| 1427 | static __isl_give isl_basic_set *uset_convex_hull_unbounded( |
| 1428 | __isl_take isl_set *set) |
| 1429 | { |
| 1430 | isl_basic_set_list *list; |
| 1431 | |
| 1432 | list = isl_set_get_basic_set_list(set); |
| 1433 | isl_set_free(set); |
| 1434 | |
| 1435 | while (list) { |
| 1436 | isl_size n, total; |
| 1437 | struct isl_basic_set *t; |
| 1438 | isl_basic_set *bset1, *bset2; |
| 1439 | |
| 1440 | n = isl_basic_set_list_n_basic_set(list); |
| 1441 | if (n < 0) |
| 1442 | goto error; |
| 1443 | if (n < 2) |
| 1444 | isl_die(isl_basic_set_list_get_ctx(list), |
| 1445 | isl_error_internal, |
| 1446 | "expecting at least two elements" , goto error); |
| 1447 | bset1 = isl_basic_set_list_get_basic_set(list, index: n - 1); |
| 1448 | bset2 = isl_basic_set_list_get_basic_set(list, index: n - 2); |
| 1449 | bset1 = convex_hull_pair(bset1, bset2); |
| 1450 | if (n == 2) { |
| 1451 | isl_basic_set_list_free(list); |
| 1452 | return bset1; |
| 1453 | } |
| 1454 | bset1 = isl_basic_set_underlying_set(bset: bset1); |
| 1455 | list = isl_basic_set_list_drop(list, first: n - 2, n: 2); |
| 1456 | list = isl_basic_set_list_add(list, el: bset1); |
| 1457 | |
| 1458 | t = isl_basic_set_list_get_basic_set(list, index: n - 2); |
| 1459 | t = isl_basic_set_lineality_space(bset: t); |
| 1460 | if (!t) |
| 1461 | goto error; |
| 1462 | if (isl_basic_set_plain_is_universe(bset: t)) { |
| 1463 | isl_basic_set_list_free(list); |
| 1464 | return t; |
| 1465 | } |
| 1466 | total = isl_basic_set_dim(bset: t, type: isl_dim_all); |
| 1467 | if (t->n_eq < total) { |
| 1468 | set = isl_basic_set_list_union(list); |
| 1469 | return modulo_lineality(set, lin: t); |
| 1470 | } |
| 1471 | isl_basic_set_free(bset: t); |
| 1472 | if (total < 0) |
| 1473 | goto error; |
| 1474 | } |
| 1475 | |
| 1476 | return NULL; |
| 1477 | error: |
| 1478 | isl_basic_set_list_free(list); |
| 1479 | return NULL; |
| 1480 | } |
| 1481 | |
| 1482 | /* Compute an initial hull for wrapping containing a single initial |
| 1483 | * facet. |
| 1484 | * This function assumes that the given set is bounded. |
| 1485 | */ |
| 1486 | static __isl_give isl_basic_set *initial_hull(__isl_take isl_basic_set *hull, |
| 1487 | __isl_keep isl_set *set) |
| 1488 | { |
| 1489 | struct isl_mat *bounds = NULL; |
| 1490 | isl_size dim; |
| 1491 | int k; |
| 1492 | |
| 1493 | if (!hull) |
| 1494 | goto error; |
| 1495 | bounds = initial_facet_constraint(set); |
| 1496 | if (!bounds) |
| 1497 | goto error; |
| 1498 | k = isl_basic_set_alloc_inequality(bset: hull); |
| 1499 | if (k < 0) |
| 1500 | goto error; |
| 1501 | dim = isl_set_dim(set, type: isl_dim_set); |
| 1502 | if (dim < 0) |
| 1503 | goto error; |
| 1504 | isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error); |
| 1505 | isl_seq_cpy(dst: hull->ineq[k], src: bounds->row[0], len: bounds->n_col); |
| 1506 | isl_mat_free(mat: bounds); |
| 1507 | |
| 1508 | return hull; |
| 1509 | error: |
| 1510 | isl_basic_set_free(bset: hull); |
| 1511 | isl_mat_free(mat: bounds); |
| 1512 | return NULL; |
| 1513 | } |
| 1514 | |
| 1515 | struct max_constraint { |
| 1516 | struct isl_mat *c; |
| 1517 | int count; |
| 1518 | int ineq; |
| 1519 | }; |
| 1520 | |
| 1521 | static isl_bool max_constraint_equal(const void *entry, const void *val) |
| 1522 | { |
| 1523 | struct max_constraint *a = (struct max_constraint *)entry; |
| 1524 | isl_int *b = (isl_int *)val; |
| 1525 | |
| 1526 | return isl_bool_ok(b: isl_seq_eq(p1: a->c->row[0] + 1, p2: b, len: a->c->n_col - 1)); |
| 1527 | } |
| 1528 | |
| 1529 | static isl_stat update_constraint(struct isl_ctx *ctx, |
| 1530 | struct isl_hash_table *table, |
| 1531 | isl_int *con, unsigned len, int n, int ineq) |
| 1532 | { |
| 1533 | struct isl_hash_table_entry *entry; |
| 1534 | struct max_constraint *c; |
| 1535 | uint32_t c_hash; |
| 1536 | |
| 1537 | c_hash = isl_seq_get_hash(p: con + 1, len); |
| 1538 | entry = isl_hash_table_find(ctx, table, key_hash: c_hash, eq: max_constraint_equal, |
| 1539 | val: con + 1, reserve: 0); |
| 1540 | if (!entry) |
| 1541 | return isl_stat_error; |
| 1542 | if (entry == isl_hash_table_entry_none) |
| 1543 | return isl_stat_ok; |
| 1544 | c = entry->data; |
| 1545 | if (c->count < n) { |
| 1546 | isl_hash_table_remove(ctx, table, entry); |
| 1547 | return isl_stat_ok; |
| 1548 | } |
| 1549 | c->count++; |
| 1550 | if (isl_int_gt(c->c->row[0][0], con[0])) |
| 1551 | return isl_stat_ok; |
| 1552 | if (isl_int_eq(c->c->row[0][0], con[0])) { |
| 1553 | if (ineq) |
| 1554 | c->ineq = ineq; |
| 1555 | return isl_stat_ok; |
| 1556 | } |
| 1557 | c->c = isl_mat_cow(mat: c->c); |
| 1558 | isl_int_set(c->c->row[0][0], con[0]); |
| 1559 | c->ineq = ineq; |
| 1560 | |
| 1561 | return isl_stat_ok; |
| 1562 | } |
| 1563 | |
| 1564 | /* Check whether the constraint hash table "table" contains the constraint |
| 1565 | * "con". |
| 1566 | */ |
| 1567 | static isl_bool has_constraint(struct isl_ctx *ctx, |
| 1568 | struct isl_hash_table *table, isl_int *con, unsigned len, int n) |
| 1569 | { |
| 1570 | struct isl_hash_table_entry *entry; |
| 1571 | struct max_constraint *c; |
| 1572 | uint32_t c_hash; |
| 1573 | |
| 1574 | c_hash = isl_seq_get_hash(p: con + 1, len); |
| 1575 | entry = isl_hash_table_find(ctx, table, key_hash: c_hash, eq: max_constraint_equal, |
| 1576 | val: con + 1, reserve: 0); |
| 1577 | if (!entry) |
| 1578 | return isl_bool_error; |
| 1579 | if (entry == isl_hash_table_entry_none) |
| 1580 | return isl_bool_false; |
| 1581 | c = entry->data; |
| 1582 | if (c->count < n) |
| 1583 | return isl_bool_false; |
| 1584 | return isl_bool_ok(isl_int_eq(c->c->row[0][0], con[0])); |
| 1585 | } |
| 1586 | |
| 1587 | /* Are the constraints of "bset" known to be facets? |
| 1588 | * If there are any equality constraints, then they are not. |
| 1589 | * If there may be redundant constraints, then those |
| 1590 | * redundant constraints are not facets. |
| 1591 | */ |
| 1592 | static isl_bool has_facets(__isl_keep isl_basic_set *bset) |
| 1593 | { |
| 1594 | isl_size n_eq; |
| 1595 | |
| 1596 | n_eq = isl_basic_set_n_equality(bset); |
| 1597 | if (n_eq < 0) |
| 1598 | return isl_bool_error; |
| 1599 | if (n_eq != 0) |
| 1600 | return isl_bool_false; |
| 1601 | return ISL_F_ISSET(bset, ISL_BASIC_SET_NO_REDUNDANT); |
| 1602 | } |
| 1603 | |
| 1604 | /* Check for inequality constraints of a basic set without equalities |
| 1605 | * or redundant constraints |
| 1606 | * such that the same or more stringent copies of the constraint appear |
| 1607 | * in all of the basic sets. Such constraints are necessarily facet |
| 1608 | * constraints of the convex hull. |
| 1609 | * |
| 1610 | * If the resulting basic set is by chance identical to one of |
| 1611 | * the basic sets in "set", then we know that this basic set contains |
| 1612 | * all other basic sets and is therefore the convex hull of set. |
| 1613 | * In this case we set *is_hull to 1. |
| 1614 | */ |
| 1615 | static __isl_give isl_basic_set *common_constraints( |
| 1616 | __isl_take isl_basic_set *hull, __isl_keep isl_set *set, int *is_hull) |
| 1617 | { |
| 1618 | int i, j, s, n; |
| 1619 | int min_constraints; |
| 1620 | int best; |
| 1621 | struct max_constraint *constraints = NULL; |
| 1622 | struct isl_hash_table *table = NULL; |
| 1623 | isl_size total; |
| 1624 | |
| 1625 | *is_hull = 0; |
| 1626 | |
| 1627 | for (i = 0; i < set->n; ++i) { |
| 1628 | isl_bool facets = has_facets(bset: set->p[i]); |
| 1629 | if (facets < 0) |
| 1630 | return isl_basic_set_free(bset: hull); |
| 1631 | if (facets) |
| 1632 | break; |
| 1633 | } |
| 1634 | if (i >= set->n) |
| 1635 | return hull; |
| 1636 | min_constraints = set->p[i]->n_ineq; |
| 1637 | best = i; |
| 1638 | for (i = best + 1; i < set->n; ++i) { |
| 1639 | isl_bool facets = has_facets(bset: set->p[i]); |
| 1640 | if (facets < 0) |
| 1641 | return isl_basic_set_free(bset: hull); |
| 1642 | if (!facets) |
| 1643 | continue; |
| 1644 | if (set->p[i]->n_ineq >= min_constraints) |
| 1645 | continue; |
| 1646 | min_constraints = set->p[i]->n_ineq; |
| 1647 | best = i; |
| 1648 | } |
| 1649 | constraints = isl_calloc_array(hull->ctx, struct max_constraint, |
| 1650 | min_constraints); |
| 1651 | if (!constraints) |
| 1652 | return hull; |
| 1653 | table = isl_alloc_type(hull->ctx, struct isl_hash_table); |
| 1654 | if (isl_hash_table_init(ctx: hull->ctx, table, min_size: min_constraints)) |
| 1655 | goto error; |
| 1656 | |
| 1657 | total = isl_set_dim(set, type: isl_dim_all); |
| 1658 | if (total < 0) |
| 1659 | goto error; |
| 1660 | for (i = 0; i < set->p[best]->n_ineq; ++i) { |
| 1661 | constraints[i].c = isl_mat_sub_alloc6(ctx: hull->ctx, |
| 1662 | row: set->p[best]->ineq + i, first_row: 0, n_row: 1, first_col: 0, n_col: 1 + total); |
| 1663 | if (!constraints[i].c) |
| 1664 | goto error; |
| 1665 | constraints[i].ineq = 1; |
| 1666 | } |
| 1667 | for (i = 0; i < min_constraints; ++i) { |
| 1668 | struct isl_hash_table_entry *entry; |
| 1669 | uint32_t c_hash; |
| 1670 | c_hash = isl_seq_get_hash(p: constraints[i].c->row[0] + 1, len: total); |
| 1671 | entry = isl_hash_table_find(ctx: hull->ctx, table, key_hash: c_hash, |
| 1672 | eq: max_constraint_equal, val: constraints[i].c->row[0] + 1, reserve: 1); |
| 1673 | if (!entry) |
| 1674 | goto error; |
| 1675 | isl_assert(hull->ctx, !entry->data, goto error); |
| 1676 | entry->data = &constraints[i]; |
| 1677 | } |
| 1678 | |
| 1679 | n = 0; |
| 1680 | for (s = 0; s < set->n; ++s) { |
| 1681 | if (s == best) |
| 1682 | continue; |
| 1683 | |
| 1684 | for (i = 0; i < set->p[s]->n_eq; ++i) { |
| 1685 | isl_int *eq = set->p[s]->eq[i]; |
| 1686 | for (j = 0; j < 2; ++j) { |
| 1687 | isl_seq_neg(dst: eq, src: eq, len: 1 + total); |
| 1688 | if (update_constraint(ctx: hull->ctx, table, |
| 1689 | con: eq, len: total, n, ineq: 0) < 0) |
| 1690 | goto error; |
| 1691 | } |
| 1692 | } |
| 1693 | for (i = 0; i < set->p[s]->n_ineq; ++i) { |
| 1694 | isl_int *ineq = set->p[s]->ineq[i]; |
| 1695 | if (update_constraint(ctx: hull->ctx, table, con: ineq, len: total, n, |
| 1696 | ineq: set->p[s]->n_eq == 0) < 0) |
| 1697 | goto error; |
| 1698 | } |
| 1699 | ++n; |
| 1700 | } |
| 1701 | |
| 1702 | for (i = 0; i < min_constraints; ++i) { |
| 1703 | if (constraints[i].count < n) |
| 1704 | continue; |
| 1705 | if (!constraints[i].ineq) |
| 1706 | continue; |
| 1707 | j = isl_basic_set_alloc_inequality(bset: hull); |
| 1708 | if (j < 0) |
| 1709 | goto error; |
| 1710 | isl_seq_cpy(dst: hull->ineq[j], src: constraints[i].c->row[0], len: 1 + total); |
| 1711 | } |
| 1712 | |
| 1713 | for (s = 0; s < set->n; ++s) { |
| 1714 | if (set->p[s]->n_eq) |
| 1715 | continue; |
| 1716 | if (set->p[s]->n_ineq != hull->n_ineq) |
| 1717 | continue; |
| 1718 | for (i = 0; i < set->p[s]->n_ineq; ++i) { |
| 1719 | isl_bool has; |
| 1720 | isl_int *ineq = set->p[s]->ineq[i]; |
| 1721 | has = has_constraint(ctx: hull->ctx, table, con: ineq, len: total, n); |
| 1722 | if (has < 0) |
| 1723 | goto error; |
| 1724 | if (!has) |
| 1725 | break; |
| 1726 | } |
| 1727 | if (i == set->p[s]->n_ineq) |
| 1728 | *is_hull = 1; |
| 1729 | } |
| 1730 | |
| 1731 | isl_hash_table_clear(table); |
| 1732 | for (i = 0; i < min_constraints; ++i) |
| 1733 | isl_mat_free(mat: constraints[i].c); |
| 1734 | free(ptr: constraints); |
| 1735 | free(ptr: table); |
| 1736 | return hull; |
| 1737 | error: |
| 1738 | isl_hash_table_clear(table); |
| 1739 | free(ptr: table); |
| 1740 | if (constraints) |
| 1741 | for (i = 0; i < min_constraints; ++i) |
| 1742 | isl_mat_free(mat: constraints[i].c); |
| 1743 | free(ptr: constraints); |
| 1744 | return hull; |
| 1745 | } |
| 1746 | |
| 1747 | /* Create a template for the convex hull of "set" and fill it up |
| 1748 | * obvious facet constraints, if any. If the result happens to |
| 1749 | * be the convex hull of "set" then *is_hull is set to 1. |
| 1750 | */ |
| 1751 | static __isl_give isl_basic_set *proto_hull(__isl_keep isl_set *set, |
| 1752 | int *is_hull) |
| 1753 | { |
| 1754 | struct isl_basic_set *hull; |
| 1755 | unsigned n_ineq; |
| 1756 | int i; |
| 1757 | |
| 1758 | n_ineq = 1; |
| 1759 | for (i = 0; i < set->n; ++i) { |
| 1760 | n_ineq += set->p[i]->n_eq; |
| 1761 | n_ineq += set->p[i]->n_ineq; |
| 1762 | } |
| 1763 | hull = isl_basic_set_alloc_space(space: isl_space_copy(space: set->dim), extra: 0, n_eq: 0, n_ineq); |
| 1764 | hull = isl_basic_set_set_rational(bset: hull); |
| 1765 | if (!hull) |
| 1766 | return NULL; |
| 1767 | return common_constraints(hull, set, is_hull); |
| 1768 | } |
| 1769 | |
| 1770 | static __isl_give isl_basic_set *uset_convex_hull_wrap(__isl_take isl_set *set) |
| 1771 | { |
| 1772 | struct isl_basic_set *hull; |
| 1773 | int is_hull; |
| 1774 | |
| 1775 | hull = proto_hull(set, is_hull: &is_hull); |
| 1776 | if (hull && !is_hull) { |
| 1777 | if (hull->n_ineq == 0) |
| 1778 | hull = initial_hull(hull, set); |
| 1779 | hull = extend(hull, set); |
| 1780 | } |
| 1781 | isl_set_free(set); |
| 1782 | |
| 1783 | return hull; |
| 1784 | } |
| 1785 | |
| 1786 | /* Compute the convex hull of a set without any parameters or |
| 1787 | * integer divisions. Depending on whether the set is bounded, |
| 1788 | * we pass control to the wrapping based convex hull or |
| 1789 | * the Fourier-Motzkin elimination based convex hull. |
| 1790 | * We also handle a few special cases before checking the boundedness. |
| 1791 | */ |
| 1792 | static __isl_give isl_basic_set *uset_convex_hull(__isl_take isl_set *set) |
| 1793 | { |
| 1794 | isl_bool bounded; |
| 1795 | isl_size dim; |
| 1796 | struct isl_basic_set *convex_hull = NULL; |
| 1797 | struct isl_basic_set *lin; |
| 1798 | |
| 1799 | dim = isl_set_dim(set, type: isl_dim_all); |
| 1800 | if (dim < 0) |
| 1801 | goto error; |
| 1802 | if (dim == 0) |
| 1803 | return convex_hull_0d(set); |
| 1804 | |
| 1805 | set = isl_set_coalesce(set); |
| 1806 | set = isl_set_set_rational(set); |
| 1807 | |
| 1808 | if (!set) |
| 1809 | return NULL; |
| 1810 | if (set->n == 1) { |
| 1811 | convex_hull = isl_basic_set_copy(bset: set->p[0]); |
| 1812 | isl_set_free(set); |
| 1813 | return convex_hull; |
| 1814 | } |
| 1815 | if (dim == 1) |
| 1816 | return convex_hull_1d(set); |
| 1817 | |
| 1818 | bounded = isl_set_is_bounded(set); |
| 1819 | if (bounded < 0) |
| 1820 | goto error; |
| 1821 | if (bounded && set->ctx->opt->convex == ISL_CONVEX_HULL_WRAP) |
| 1822 | return uset_convex_hull_wrap(set); |
| 1823 | |
| 1824 | lin = isl_set_combined_lineality_space(set: isl_set_copy(set)); |
| 1825 | if (!lin) |
| 1826 | goto error; |
| 1827 | if (isl_basic_set_plain_is_universe(bset: lin)) { |
| 1828 | isl_set_free(set); |
| 1829 | return lin; |
| 1830 | } |
| 1831 | if (lin->n_eq < dim) |
| 1832 | return modulo_lineality(set, lin); |
| 1833 | isl_basic_set_free(bset: lin); |
| 1834 | |
| 1835 | return uset_convex_hull_unbounded(set); |
| 1836 | error: |
| 1837 | isl_set_free(set); |
| 1838 | isl_basic_set_free(bset: convex_hull); |
| 1839 | return NULL; |
| 1840 | } |
| 1841 | |
| 1842 | /* This is the core procedure, where "set" is a "pure" set, i.e., |
| 1843 | * without parameters or divs and where the convex hull of set is |
| 1844 | * known to be full-dimensional. |
| 1845 | */ |
| 1846 | static __isl_give isl_basic_set *uset_convex_hull_wrap_bounded( |
| 1847 | __isl_take isl_set *set) |
| 1848 | { |
| 1849 | struct isl_basic_set *convex_hull = NULL; |
| 1850 | isl_size dim; |
| 1851 | |
| 1852 | dim = isl_set_dim(set, type: isl_dim_all); |
| 1853 | if (dim < 0) |
| 1854 | goto error; |
| 1855 | |
| 1856 | if (dim == 0) { |
| 1857 | convex_hull = isl_basic_set_universe(space: isl_space_copy(space: set->dim)); |
| 1858 | isl_set_free(set); |
| 1859 | convex_hull = isl_basic_set_set_rational(bset: convex_hull); |
| 1860 | return convex_hull; |
| 1861 | } |
| 1862 | |
| 1863 | set = isl_set_set_rational(set); |
| 1864 | set = isl_set_coalesce(set); |
| 1865 | if (!set) |
| 1866 | goto error; |
| 1867 | if (set->n == 1) { |
| 1868 | convex_hull = isl_basic_set_copy(bset: set->p[0]); |
| 1869 | isl_set_free(set); |
| 1870 | convex_hull = isl_basic_map_remove_redundancies(bmap: convex_hull); |
| 1871 | return convex_hull; |
| 1872 | } |
| 1873 | if (dim == 1) |
| 1874 | return convex_hull_1d(set); |
| 1875 | |
| 1876 | return uset_convex_hull_wrap(set); |
| 1877 | error: |
| 1878 | isl_set_free(set); |
| 1879 | return NULL; |
| 1880 | } |
| 1881 | |
| 1882 | /* Compute the convex hull of set "set" with affine hull "affine_hull", |
| 1883 | * We first remove the equalities (transforming the set), compute the |
| 1884 | * convex hull of the transformed set and then add the equalities back |
| 1885 | * (after performing the inverse transformation. |
| 1886 | */ |
| 1887 | static __isl_give isl_basic_set *modulo_affine_hull( |
| 1888 | __isl_take isl_set *set, __isl_take isl_basic_set *affine_hull) |
| 1889 | { |
| 1890 | struct isl_mat *T; |
| 1891 | struct isl_mat *T2; |
| 1892 | struct isl_basic_set *dummy; |
| 1893 | struct isl_basic_set *convex_hull; |
| 1894 | |
| 1895 | dummy = isl_basic_set_remove_equalities( |
| 1896 | bset: isl_basic_set_copy(bset: affine_hull), T: &T, T2: &T2); |
| 1897 | if (!dummy) |
| 1898 | goto error; |
| 1899 | isl_basic_set_free(bset: dummy); |
| 1900 | set = isl_set_preimage(set, mat: T); |
| 1901 | convex_hull = uset_convex_hull(set); |
| 1902 | convex_hull = isl_basic_set_preimage(bset: convex_hull, mat: T2); |
| 1903 | convex_hull = isl_basic_set_intersect(bset1: convex_hull, bset2: affine_hull); |
| 1904 | return convex_hull; |
| 1905 | error: |
| 1906 | isl_mat_free(mat: T); |
| 1907 | isl_mat_free(mat: T2); |
| 1908 | isl_basic_set_free(bset: affine_hull); |
| 1909 | isl_set_free(set); |
| 1910 | return NULL; |
| 1911 | } |
| 1912 | |
| 1913 | /* Return an empty basic map living in the same space as "map". |
| 1914 | */ |
| 1915 | static __isl_give isl_basic_map *replace_map_by_empty_basic_map( |
| 1916 | __isl_take isl_map *map) |
| 1917 | { |
| 1918 | isl_space *space; |
| 1919 | |
| 1920 | space = isl_map_get_space(map); |
| 1921 | isl_map_free(map); |
| 1922 | return isl_basic_map_empty(space); |
| 1923 | } |
| 1924 | |
| 1925 | /* Compute the convex hull of a map. |
| 1926 | * |
| 1927 | * The implementation was inspired by "Extended Convex Hull" by Fukuda et al., |
| 1928 | * specifically, the wrapping of facets to obtain new facets. |
| 1929 | */ |
| 1930 | __isl_give isl_basic_map *isl_map_convex_hull(__isl_take isl_map *map) |
| 1931 | { |
| 1932 | struct isl_basic_set *bset; |
| 1933 | struct isl_basic_map *model = NULL; |
| 1934 | struct isl_basic_set *affine_hull = NULL; |
| 1935 | struct isl_basic_map *convex_hull = NULL; |
| 1936 | struct isl_set *set = NULL; |
| 1937 | |
| 1938 | map = isl_map_detect_equalities(map); |
| 1939 | map = isl_map_align_divs_internal(map); |
| 1940 | if (!map) |
| 1941 | goto error; |
| 1942 | |
| 1943 | if (map->n == 0) |
| 1944 | return replace_map_by_empty_basic_map(map); |
| 1945 | |
| 1946 | model = isl_basic_map_copy(bmap: map->p[0]); |
| 1947 | set = isl_map_underlying_set(map); |
| 1948 | if (!set) |
| 1949 | goto error; |
| 1950 | |
| 1951 | affine_hull = isl_set_affine_hull(set: isl_set_copy(set)); |
| 1952 | if (!affine_hull) |
| 1953 | goto error; |
| 1954 | if (affine_hull->n_eq != 0) |
| 1955 | bset = modulo_affine_hull(set, affine_hull); |
| 1956 | else { |
| 1957 | isl_basic_set_free(bset: affine_hull); |
| 1958 | bset = uset_convex_hull(set); |
| 1959 | } |
| 1960 | |
| 1961 | convex_hull = isl_basic_map_overlying_set(bset, like: model); |
| 1962 | if (!convex_hull) |
| 1963 | return NULL; |
| 1964 | |
| 1965 | ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT); |
| 1966 | ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES); |
| 1967 | ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL); |
| 1968 | return convex_hull; |
| 1969 | error: |
| 1970 | isl_set_free(set); |
| 1971 | isl_basic_map_free(bmap: model); |
| 1972 | return NULL; |
| 1973 | } |
| 1974 | |
| 1975 | __isl_give isl_basic_set *isl_set_convex_hull(__isl_take isl_set *set) |
| 1976 | { |
| 1977 | return bset_from_bmap(bmap: isl_map_convex_hull(map: set_to_map(set))); |
| 1978 | } |
| 1979 | |
| 1980 | __isl_give isl_basic_map *isl_map_polyhedral_hull(__isl_take isl_map *map) |
| 1981 | { |
| 1982 | isl_basic_map *hull; |
| 1983 | |
| 1984 | hull = isl_map_convex_hull(map); |
| 1985 | return isl_basic_map_remove_divs(bmap: hull); |
| 1986 | } |
| 1987 | |
| 1988 | __isl_give isl_basic_set *isl_set_polyhedral_hull(__isl_take isl_set *set) |
| 1989 | { |
| 1990 | return bset_from_bmap(bmap: isl_map_polyhedral_hull(map: set_to_map(set))); |
| 1991 | } |
| 1992 | |
| 1993 | struct sh_data_entry { |
| 1994 | struct isl_hash_table *table; |
| 1995 | struct isl_tab *tab; |
| 1996 | }; |
| 1997 | |
| 1998 | /* Holds the data needed during the simple hull computation. |
| 1999 | * In particular, |
| 2000 | * n the number of basic sets in the original set |
| 2001 | * hull_table a hash table of already computed constraints |
| 2002 | * in the simple hull |
| 2003 | * p for each basic set, |
| 2004 | * table a hash table of the constraints |
| 2005 | * tab the tableau corresponding to the basic set |
| 2006 | */ |
| 2007 | struct sh_data { |
| 2008 | struct isl_ctx *ctx; |
| 2009 | unsigned n; |
| 2010 | struct isl_hash_table *hull_table; |
| 2011 | struct sh_data_entry p[1]; |
| 2012 | }; |
| 2013 | |
| 2014 | static void sh_data_free(struct sh_data *data) |
| 2015 | { |
| 2016 | int i; |
| 2017 | |
| 2018 | if (!data) |
| 2019 | return; |
| 2020 | isl_hash_table_free(ctx: data->ctx, table: data->hull_table); |
| 2021 | for (i = 0; i < data->n; ++i) { |
| 2022 | isl_hash_table_free(ctx: data->ctx, table: data->p[i].table); |
| 2023 | isl_tab_free(tab: data->p[i].tab); |
| 2024 | } |
| 2025 | free(ptr: data); |
| 2026 | } |
| 2027 | |
| 2028 | struct ineq_cmp_data { |
| 2029 | unsigned len; |
| 2030 | isl_int *p; |
| 2031 | }; |
| 2032 | |
| 2033 | static isl_bool has_ineq(const void *entry, const void *val) |
| 2034 | { |
| 2035 | isl_int *row = (isl_int *)entry; |
| 2036 | struct ineq_cmp_data *v = (struct ineq_cmp_data *)val; |
| 2037 | |
| 2038 | return isl_bool_ok(b: isl_seq_eq(p1: row + 1, p2: v->p + 1, len: v->len) || |
| 2039 | isl_seq_is_neg(p1: row + 1, p2: v->p + 1, len: v->len)); |
| 2040 | } |
| 2041 | |
| 2042 | static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table, |
| 2043 | isl_int *ineq, unsigned len) |
| 2044 | { |
| 2045 | uint32_t c_hash; |
| 2046 | struct ineq_cmp_data v; |
| 2047 | struct isl_hash_table_entry *entry; |
| 2048 | |
| 2049 | v.len = len; |
| 2050 | v.p = ineq; |
| 2051 | c_hash = isl_seq_get_hash(p: ineq + 1, len); |
| 2052 | entry = isl_hash_table_find(ctx, table, key_hash: c_hash, eq: has_ineq, val: &v, reserve: 1); |
| 2053 | if (!entry) |
| 2054 | return - 1; |
| 2055 | entry->data = ineq; |
| 2056 | return 0; |
| 2057 | } |
| 2058 | |
| 2059 | /* Fill hash table "table" with the constraints of "bset". |
| 2060 | * Equalities are added as two inequalities. |
| 2061 | * The value in the hash table is a pointer to the (in)equality of "bset". |
| 2062 | */ |
| 2063 | static isl_stat hash_basic_set(struct isl_hash_table *table, |
| 2064 | __isl_keep isl_basic_set *bset) |
| 2065 | { |
| 2066 | int i, j; |
| 2067 | isl_size dim = isl_basic_set_dim(bset, type: isl_dim_all); |
| 2068 | |
| 2069 | if (dim < 0) |
| 2070 | return isl_stat_error; |
| 2071 | for (i = 0; i < bset->n_eq; ++i) { |
| 2072 | for (j = 0; j < 2; ++j) { |
| 2073 | isl_seq_neg(dst: bset->eq[i], src: bset->eq[i], len: 1 + dim); |
| 2074 | if (hash_ineq(ctx: bset->ctx, table, ineq: bset->eq[i], len: dim) < 0) |
| 2075 | return isl_stat_error; |
| 2076 | } |
| 2077 | } |
| 2078 | for (i = 0; i < bset->n_ineq; ++i) { |
| 2079 | if (hash_ineq(ctx: bset->ctx, table, ineq: bset->ineq[i], len: dim) < 0) |
| 2080 | return isl_stat_error; |
| 2081 | } |
| 2082 | return isl_stat_ok; |
| 2083 | } |
| 2084 | |
| 2085 | static struct sh_data *sh_data_alloc(__isl_keep isl_set *set, unsigned n_ineq) |
| 2086 | { |
| 2087 | struct sh_data *data; |
| 2088 | int i; |
| 2089 | |
| 2090 | data = isl_calloc(set->ctx, struct sh_data, |
| 2091 | sizeof(struct sh_data) + |
| 2092 | (set->n - 1) * sizeof(struct sh_data_entry)); |
| 2093 | if (!data) |
| 2094 | return NULL; |
| 2095 | data->ctx = set->ctx; |
| 2096 | data->n = set->n; |
| 2097 | data->hull_table = isl_hash_table_alloc(ctx: set->ctx, min_size: n_ineq); |
| 2098 | if (!data->hull_table) |
| 2099 | goto error; |
| 2100 | for (i = 0; i < set->n; ++i) { |
| 2101 | data->p[i].table = isl_hash_table_alloc(ctx: set->ctx, |
| 2102 | min_size: 2 * set->p[i]->n_eq + set->p[i]->n_ineq); |
| 2103 | if (!data->p[i].table) |
| 2104 | goto error; |
| 2105 | if (hash_basic_set(table: data->p[i].table, bset: set->p[i]) < 0) |
| 2106 | goto error; |
| 2107 | } |
| 2108 | return data; |
| 2109 | error: |
| 2110 | sh_data_free(data); |
| 2111 | return NULL; |
| 2112 | } |
| 2113 | |
| 2114 | /* Check if inequality "ineq" is a bound for basic set "j" or if |
| 2115 | * it can be relaxed (by increasing the constant term) to become |
| 2116 | * a bound for that basic set. In the latter case, the constant |
| 2117 | * term is updated. |
| 2118 | * Relaxation of the constant term is only allowed if "shift" is set. |
| 2119 | * |
| 2120 | * Return 1 if "ineq" is a bound |
| 2121 | * 0 if "ineq" may attain arbitrarily small values on basic set "j" |
| 2122 | * -1 if some error occurred |
| 2123 | */ |
| 2124 | static int is_bound(struct sh_data *data, __isl_keep isl_set *set, int j, |
| 2125 | isl_int *ineq, int shift) |
| 2126 | { |
| 2127 | enum isl_lp_result res; |
| 2128 | isl_int opt; |
| 2129 | |
| 2130 | if (!data->p[j].tab) { |
| 2131 | data->p[j].tab = isl_tab_from_basic_set(bset: set->p[j], track: 0); |
| 2132 | if (!data->p[j].tab) |
| 2133 | return -1; |
| 2134 | } |
| 2135 | |
| 2136 | isl_int_init(opt); |
| 2137 | |
| 2138 | res = isl_tab_min(tab: data->p[j].tab, f: ineq, denom: data->ctx->one, |
| 2139 | opt: &opt, NULL, flags: 0); |
| 2140 | if (res == isl_lp_ok && isl_int_is_neg(opt)) { |
| 2141 | if (shift) |
| 2142 | isl_int_sub(ineq[0], ineq[0], opt); |
| 2143 | else |
| 2144 | res = isl_lp_unbounded; |
| 2145 | } |
| 2146 | |
| 2147 | isl_int_clear(opt); |
| 2148 | |
| 2149 | return (res == isl_lp_ok || res == isl_lp_empty) ? 1 : |
| 2150 | res == isl_lp_unbounded ? 0 : -1; |
| 2151 | } |
| 2152 | |
| 2153 | /* Set the constant term of "ineq" to the maximum of those of the constraints |
| 2154 | * in the basic sets of "set" following "i" that are parallel to "ineq". |
| 2155 | * That is, if any of the basic sets of "set" following "i" have a more |
| 2156 | * relaxed copy of "ineq", then replace "ineq" by the most relaxed copy. |
| 2157 | * "c_hash" is the hash value of the linear part of "ineq". |
| 2158 | * "v" has been set up for use by has_ineq. |
| 2159 | * |
| 2160 | * Note that the two inequality constraints corresponding to an equality are |
| 2161 | * represented by the same inequality constraint in data->p[j].table |
| 2162 | * (but with different hash values). This means the constraint (or at |
| 2163 | * least its constant term) may need to be temporarily negated to get |
| 2164 | * the actually hashed constraint. |
| 2165 | */ |
| 2166 | static isl_stat set_max_constant_term(struct sh_data *data, |
| 2167 | __isl_keep isl_set *set, |
| 2168 | int i, isl_int *ineq, uint32_t c_hash, struct ineq_cmp_data *v) |
| 2169 | { |
| 2170 | int j; |
| 2171 | isl_ctx *ctx; |
| 2172 | struct isl_hash_table_entry *entry; |
| 2173 | |
| 2174 | ctx = isl_set_get_ctx(set); |
| 2175 | for (j = i + 1; j < set->n; ++j) { |
| 2176 | int neg; |
| 2177 | isl_int *ineq_j; |
| 2178 | |
| 2179 | entry = isl_hash_table_find(ctx, table: data->p[j].table, |
| 2180 | key_hash: c_hash, eq: &has_ineq, val: v, reserve: 0); |
| 2181 | if (!entry) |
| 2182 | return isl_stat_error; |
| 2183 | if (entry == isl_hash_table_entry_none) |
| 2184 | continue; |
| 2185 | |
| 2186 | ineq_j = entry->data; |
| 2187 | neg = isl_seq_is_neg(p1: ineq_j + 1, p2: ineq + 1, len: v->len); |
| 2188 | if (neg) |
| 2189 | isl_int_neg(ineq_j[0], ineq_j[0]); |
| 2190 | if (isl_int_gt(ineq_j[0], ineq[0])) |
| 2191 | isl_int_set(ineq[0], ineq_j[0]); |
| 2192 | if (neg) |
| 2193 | isl_int_neg(ineq_j[0], ineq_j[0]); |
| 2194 | } |
| 2195 | |
| 2196 | return isl_stat_ok; |
| 2197 | } |
| 2198 | |
| 2199 | /* Check if inequality "ineq" from basic set "i" is or can be relaxed to |
| 2200 | * become a bound on the whole set. If so, add the (relaxed) inequality |
| 2201 | * to "hull". Relaxation is only allowed if "shift" is set. |
| 2202 | * |
| 2203 | * We first check if "hull" already contains a translate of the inequality. |
| 2204 | * If so, we are done. |
| 2205 | * Then, we check if any of the previous basic sets contains a translate |
| 2206 | * of the inequality. If so, then we have already considered this |
| 2207 | * inequality and we are done. |
| 2208 | * Otherwise, for each basic set other than "i", we check if the inequality |
| 2209 | * is a bound on the basic set, but first replace the constant term |
| 2210 | * by the maximal value of any translate of the inequality in any |
| 2211 | * of the following basic sets. |
| 2212 | * For previous basic sets, we know that they do not contain a translate |
| 2213 | * of the inequality, so we directly call is_bound. |
| 2214 | * For following basic sets, we first check if a translate of the |
| 2215 | * inequality appears in its description. If so, the constant term |
| 2216 | * of the inequality has already been updated with respect to this |
| 2217 | * translate and the inequality is therefore known to be a bound |
| 2218 | * of this basic set. |
| 2219 | */ |
| 2220 | static __isl_give isl_basic_set *add_bound(__isl_take isl_basic_set *hull, |
| 2221 | struct sh_data *data, __isl_keep isl_set *set, int i, isl_int *ineq, |
| 2222 | int shift) |
| 2223 | { |
| 2224 | uint32_t c_hash; |
| 2225 | struct ineq_cmp_data v; |
| 2226 | struct isl_hash_table_entry *entry; |
| 2227 | int j, k; |
| 2228 | isl_size total; |
| 2229 | |
| 2230 | total = isl_basic_set_dim(bset: hull, type: isl_dim_all); |
| 2231 | if (total < 0) |
| 2232 | return isl_basic_set_free(bset: hull); |
| 2233 | |
| 2234 | v.len = total; |
| 2235 | v.p = ineq; |
| 2236 | c_hash = isl_seq_get_hash(p: ineq + 1, len: v.len); |
| 2237 | |
| 2238 | entry = isl_hash_table_find(ctx: hull->ctx, table: data->hull_table, key_hash: c_hash, |
| 2239 | eq: has_ineq, val: &v, reserve: 0); |
| 2240 | if (!entry) |
| 2241 | return isl_basic_set_free(bset: hull); |
| 2242 | if (entry != isl_hash_table_entry_none) |
| 2243 | return hull; |
| 2244 | |
| 2245 | for (j = 0; j < i; ++j) { |
| 2246 | entry = isl_hash_table_find(ctx: hull->ctx, table: data->p[j].table, |
| 2247 | key_hash: c_hash, eq: has_ineq, val: &v, reserve: 0); |
| 2248 | if (!entry) |
| 2249 | return isl_basic_set_free(bset: hull); |
| 2250 | if (entry != isl_hash_table_entry_none) |
| 2251 | break; |
| 2252 | } |
| 2253 | if (j < i) |
| 2254 | return hull; |
| 2255 | |
| 2256 | k = isl_basic_set_alloc_inequality(bset: hull); |
| 2257 | if (k < 0) |
| 2258 | goto error; |
| 2259 | isl_seq_cpy(dst: hull->ineq[k], src: ineq, len: 1 + v.len); |
| 2260 | |
| 2261 | if (set_max_constant_term(data, set, i, ineq: hull->ineq[k], c_hash, v: &v) < 0) |
| 2262 | goto error; |
| 2263 | for (j = 0; j < i; ++j) { |
| 2264 | int bound; |
| 2265 | bound = is_bound(data, set, j, ineq: hull->ineq[k], shift); |
| 2266 | if (bound < 0) |
| 2267 | goto error; |
| 2268 | if (!bound) |
| 2269 | break; |
| 2270 | } |
| 2271 | if (j < i) |
| 2272 | return isl_basic_set_free_inequality(bset: hull, n: 1); |
| 2273 | |
| 2274 | for (j = i + 1; j < set->n; ++j) { |
| 2275 | int bound; |
| 2276 | entry = isl_hash_table_find(ctx: hull->ctx, table: data->p[j].table, |
| 2277 | key_hash: c_hash, eq: has_ineq, val: &v, reserve: 0); |
| 2278 | if (!entry) |
| 2279 | return isl_basic_set_free(bset: hull); |
| 2280 | if (entry != isl_hash_table_entry_none) |
| 2281 | continue; |
| 2282 | bound = is_bound(data, set, j, ineq: hull->ineq[k], shift); |
| 2283 | if (bound < 0) |
| 2284 | goto error; |
| 2285 | if (!bound) |
| 2286 | break; |
| 2287 | } |
| 2288 | if (j < set->n) |
| 2289 | return isl_basic_set_free_inequality(bset: hull, n: 1); |
| 2290 | |
| 2291 | entry = isl_hash_table_find(ctx: hull->ctx, table: data->hull_table, key_hash: c_hash, |
| 2292 | eq: has_ineq, val: &v, reserve: 1); |
| 2293 | if (!entry) |
| 2294 | goto error; |
| 2295 | entry->data = hull->ineq[k]; |
| 2296 | |
| 2297 | return hull; |
| 2298 | error: |
| 2299 | isl_basic_set_free(bset: hull); |
| 2300 | return NULL; |
| 2301 | } |
| 2302 | |
| 2303 | /* Check if any inequality from basic set "i" is or can be relaxed to |
| 2304 | * become a bound on the whole set. If so, add the (relaxed) inequality |
| 2305 | * to "hull". Relaxation is only allowed if "shift" is set. |
| 2306 | */ |
| 2307 | static __isl_give isl_basic_set *add_bounds(__isl_take isl_basic_set *bset, |
| 2308 | struct sh_data *data, __isl_keep isl_set *set, int i, int shift) |
| 2309 | { |
| 2310 | int j, k; |
| 2311 | isl_size dim = isl_basic_set_dim(bset, type: isl_dim_all); |
| 2312 | |
| 2313 | if (dim < 0) |
| 2314 | return isl_basic_set_free(bset); |
| 2315 | |
| 2316 | for (j = 0; j < set->p[i]->n_eq; ++j) { |
| 2317 | for (k = 0; k < 2; ++k) { |
| 2318 | isl_seq_neg(dst: set->p[i]->eq[j], src: set->p[i]->eq[j], len: 1+dim); |
| 2319 | bset = add_bound(hull: bset, data, set, i, ineq: set->p[i]->eq[j], |
| 2320 | shift); |
| 2321 | } |
| 2322 | } |
| 2323 | for (j = 0; j < set->p[i]->n_ineq; ++j) |
| 2324 | bset = add_bound(hull: bset, data, set, i, ineq: set->p[i]->ineq[j], shift); |
| 2325 | return bset; |
| 2326 | } |
| 2327 | |
| 2328 | /* Compute a superset of the convex hull of set that is described |
| 2329 | * by only (translates of) the constraints in the constituents of set. |
| 2330 | * Translation is only allowed if "shift" is set. |
| 2331 | */ |
| 2332 | static __isl_give isl_basic_set *uset_simple_hull(__isl_take isl_set *set, |
| 2333 | int shift) |
| 2334 | { |
| 2335 | struct sh_data *data = NULL; |
| 2336 | struct isl_basic_set *hull = NULL; |
| 2337 | unsigned n_ineq; |
| 2338 | int i; |
| 2339 | |
| 2340 | if (!set) |
| 2341 | return NULL; |
| 2342 | |
| 2343 | n_ineq = 0; |
| 2344 | for (i = 0; i < set->n; ++i) { |
| 2345 | if (!set->p[i]) |
| 2346 | goto error; |
| 2347 | n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq; |
| 2348 | } |
| 2349 | |
| 2350 | hull = isl_basic_set_alloc_space(space: isl_space_copy(space: set->dim), extra: 0, n_eq: 0, n_ineq); |
| 2351 | if (!hull) |
| 2352 | goto error; |
| 2353 | |
| 2354 | data = sh_data_alloc(set, n_ineq); |
| 2355 | if (!data) |
| 2356 | goto error; |
| 2357 | |
| 2358 | for (i = 0; i < set->n; ++i) |
| 2359 | hull = add_bounds(bset: hull, data, set, i, shift); |
| 2360 | |
| 2361 | sh_data_free(data); |
| 2362 | isl_set_free(set); |
| 2363 | |
| 2364 | return hull; |
| 2365 | error: |
| 2366 | sh_data_free(data); |
| 2367 | isl_basic_set_free(bset: hull); |
| 2368 | isl_set_free(set); |
| 2369 | return NULL; |
| 2370 | } |
| 2371 | |
| 2372 | /* Compute a superset of the convex hull of map that is described |
| 2373 | * by only (translates of) the constraints in the constituents of map. |
| 2374 | * Handle trivial cases where map is NULL or contains at most one disjunct. |
| 2375 | */ |
| 2376 | static __isl_give isl_basic_map *map_simple_hull_trivial( |
| 2377 | __isl_take isl_map *map) |
| 2378 | { |
| 2379 | isl_basic_map *hull; |
| 2380 | |
| 2381 | if (!map) |
| 2382 | return NULL; |
| 2383 | if (map->n == 0) |
| 2384 | return replace_map_by_empty_basic_map(map); |
| 2385 | |
| 2386 | hull = isl_basic_map_copy(bmap: map->p[0]); |
| 2387 | isl_map_free(map); |
| 2388 | return hull; |
| 2389 | } |
| 2390 | |
| 2391 | /* Return a copy of the simple hull cached inside "map". |
| 2392 | * "shift" determines whether to return the cached unshifted or shifted |
| 2393 | * simple hull. |
| 2394 | */ |
| 2395 | static __isl_give isl_basic_map *cached_simple_hull(__isl_take isl_map *map, |
| 2396 | int shift) |
| 2397 | { |
| 2398 | isl_basic_map *hull; |
| 2399 | |
| 2400 | hull = isl_basic_map_copy(bmap: map->cached_simple_hull[shift]); |
| 2401 | isl_map_free(map); |
| 2402 | |
| 2403 | return hull; |
| 2404 | } |
| 2405 | |
| 2406 | /* Compute a superset of the convex hull of map that is described |
| 2407 | * by only (translates of) the constraints in the constituents of map. |
| 2408 | * Translation is only allowed if "shift" is set. |
| 2409 | * |
| 2410 | * The constraints are sorted while removing redundant constraints |
| 2411 | * in order to indicate a preference of which constraints should |
| 2412 | * be preserved. In particular, pairs of constraints that are |
| 2413 | * sorted together are preferred to either both be preserved |
| 2414 | * or both be removed. The sorting is performed inside |
| 2415 | * isl_basic_map_remove_redundancies. |
| 2416 | * |
| 2417 | * The result of the computation is stored in map->cached_simple_hull[shift] |
| 2418 | * such that it can be reused in subsequent calls. The cache is cleared |
| 2419 | * whenever the map is modified (in isl_map_cow). |
| 2420 | * Note that the results need to be stored in the input map for there |
| 2421 | * to be any chance that they may get reused. In particular, they |
| 2422 | * are stored in a copy of the input map that is saved before |
| 2423 | * the integer division alignment. |
| 2424 | */ |
| 2425 | static __isl_give isl_basic_map *map_simple_hull(__isl_take isl_map *map, |
| 2426 | int shift) |
| 2427 | { |
| 2428 | struct isl_set *set = NULL; |
| 2429 | struct isl_basic_map *model = NULL; |
| 2430 | struct isl_basic_map *hull; |
| 2431 | struct isl_basic_map *affine_hull; |
| 2432 | struct isl_basic_set *bset = NULL; |
| 2433 | isl_map *input; |
| 2434 | |
| 2435 | if (!map || map->n <= 1) |
| 2436 | return map_simple_hull_trivial(map); |
| 2437 | |
| 2438 | if (map->cached_simple_hull[shift]) |
| 2439 | return cached_simple_hull(map, shift); |
| 2440 | |
| 2441 | map = isl_map_detect_equalities(map); |
| 2442 | if (!map || map->n <= 1) |
| 2443 | return map_simple_hull_trivial(map); |
| 2444 | affine_hull = isl_map_affine_hull(map: isl_map_copy(map)); |
| 2445 | input = isl_map_copy(map); |
| 2446 | map = isl_map_align_divs_internal(map); |
| 2447 | model = map ? isl_basic_map_copy(bmap: map->p[0]) : NULL; |
| 2448 | |
| 2449 | set = isl_map_underlying_set(map); |
| 2450 | |
| 2451 | bset = uset_simple_hull(set, shift); |
| 2452 | |
| 2453 | hull = isl_basic_map_overlying_set(bset, like: model); |
| 2454 | |
| 2455 | hull = isl_basic_map_intersect(bmap1: hull, bmap2: affine_hull); |
| 2456 | hull = isl_basic_map_remove_redundancies(bmap: hull); |
| 2457 | |
| 2458 | if (hull) { |
| 2459 | ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT); |
| 2460 | ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES); |
| 2461 | } |
| 2462 | |
| 2463 | hull = isl_basic_map_finalize(bmap: hull); |
| 2464 | if (input) |
| 2465 | input->cached_simple_hull[shift] = isl_basic_map_copy(bmap: hull); |
| 2466 | isl_map_free(map: input); |
| 2467 | |
| 2468 | return hull; |
| 2469 | } |
| 2470 | |
| 2471 | /* Compute a superset of the convex hull of map that is described |
| 2472 | * by only translates of the constraints in the constituents of map. |
| 2473 | */ |
| 2474 | __isl_give isl_basic_map *isl_map_simple_hull(__isl_take isl_map *map) |
| 2475 | { |
| 2476 | return map_simple_hull(map, shift: 1); |
| 2477 | } |
| 2478 | |
| 2479 | __isl_give isl_basic_set *isl_set_simple_hull(__isl_take isl_set *set) |
| 2480 | { |
| 2481 | return bset_from_bmap(bmap: isl_map_simple_hull(map: set_to_map(set))); |
| 2482 | } |
| 2483 | |
| 2484 | /* Compute a superset of the convex hull of map that is described |
| 2485 | * by only the constraints in the constituents of map. |
| 2486 | */ |
| 2487 | __isl_give isl_basic_map *isl_map_unshifted_simple_hull( |
| 2488 | __isl_take isl_map *map) |
| 2489 | { |
| 2490 | return map_simple_hull(map, shift: 0); |
| 2491 | } |
| 2492 | |
| 2493 | __isl_give isl_basic_set *isl_set_unshifted_simple_hull( |
| 2494 | __isl_take isl_set *set) |
| 2495 | { |
| 2496 | return isl_map_unshifted_simple_hull(map: set); |
| 2497 | } |
| 2498 | |
| 2499 | /* Drop all inequalities from "bmap1" that do not also appear in "bmap2". |
| 2500 | * A constraint that appears with different constant terms |
| 2501 | * in "bmap1" and "bmap2" is also kept, with the least restrictive |
| 2502 | * (i.e., greatest) constant term. |
| 2503 | * "bmap1" and "bmap2" are assumed to have the same (known) |
| 2504 | * integer divisions. |
| 2505 | * The constraints of both "bmap1" and "bmap2" are assumed |
| 2506 | * to have been sorted using isl_basic_map_sort_constraints. |
| 2507 | * |
| 2508 | * Run through the inequality constraints of "bmap1" and "bmap2" |
| 2509 | * in sorted order. |
| 2510 | * Each constraint of "bmap1" without a matching constraint in "bmap2" |
| 2511 | * is removed. |
| 2512 | * If a match is found, the constraint is kept. If needed, the constant |
| 2513 | * term of the constraint is adjusted. |
| 2514 | */ |
| 2515 | static __isl_give isl_basic_map *select_shared_inequalities( |
| 2516 | __isl_take isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2) |
| 2517 | { |
| 2518 | int i1, i2; |
| 2519 | |
| 2520 | bmap1 = isl_basic_map_cow(bmap: bmap1); |
| 2521 | if (!bmap1 || !bmap2) |
| 2522 | return isl_basic_map_free(bmap: bmap1); |
| 2523 | |
| 2524 | i1 = bmap1->n_ineq - 1; |
| 2525 | i2 = bmap2->n_ineq - 1; |
| 2526 | while (bmap1 && i1 >= 0 && i2 >= 0) { |
| 2527 | int cmp; |
| 2528 | |
| 2529 | cmp = isl_basic_map_constraint_cmp(bmap: bmap1, c1: bmap1->ineq[i1], |
| 2530 | c2: bmap2->ineq[i2]); |
| 2531 | if (cmp < 0) { |
| 2532 | --i2; |
| 2533 | continue; |
| 2534 | } |
| 2535 | if (cmp > 0) { |
| 2536 | if (isl_basic_map_drop_inequality(bmap: bmap1, pos: i1) < 0) |
| 2537 | bmap1 = isl_basic_map_free(bmap: bmap1); |
| 2538 | --i1; |
| 2539 | continue; |
| 2540 | } |
| 2541 | if (isl_int_lt(bmap1->ineq[i1][0], bmap2->ineq[i2][0])) |
| 2542 | isl_int_set(bmap1->ineq[i1][0], bmap2->ineq[i2][0]); |
| 2543 | --i1; |
| 2544 | --i2; |
| 2545 | } |
| 2546 | for (; i1 >= 0; --i1) |
| 2547 | if (isl_basic_map_drop_inequality(bmap: bmap1, pos: i1) < 0) |
| 2548 | bmap1 = isl_basic_map_free(bmap: bmap1); |
| 2549 | |
| 2550 | return bmap1; |
| 2551 | } |
| 2552 | |
| 2553 | /* Drop all equalities from "bmap1" that do not also appear in "bmap2". |
| 2554 | * "bmap1" and "bmap2" are assumed to have the same (known) |
| 2555 | * integer divisions. |
| 2556 | * |
| 2557 | * Run through the equality constraints of "bmap1" and "bmap2". |
| 2558 | * Each constraint of "bmap1" without a matching constraint in "bmap2" |
| 2559 | * is removed. |
| 2560 | */ |
| 2561 | static __isl_give isl_basic_map *select_shared_equalities( |
| 2562 | __isl_take isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2) |
| 2563 | { |
| 2564 | int i1, i2; |
| 2565 | isl_size total; |
| 2566 | |
| 2567 | bmap1 = isl_basic_map_cow(bmap: bmap1); |
| 2568 | total = isl_basic_map_dim(bmap: bmap1, type: isl_dim_all); |
| 2569 | if (total < 0 || !bmap2) |
| 2570 | return isl_basic_map_free(bmap: bmap1); |
| 2571 | |
| 2572 | i1 = bmap1->n_eq - 1; |
| 2573 | i2 = bmap2->n_eq - 1; |
| 2574 | while (bmap1 && i1 >= 0 && i2 >= 0) { |
| 2575 | int last1, last2; |
| 2576 | |
| 2577 | last1 = isl_seq_last_non_zero(p: bmap1->eq[i1] + 1, len: total); |
| 2578 | last2 = isl_seq_last_non_zero(p: bmap2->eq[i2] + 1, len: total); |
| 2579 | if (last1 > last2) { |
| 2580 | --i2; |
| 2581 | continue; |
| 2582 | } |
| 2583 | if (last1 < last2) { |
| 2584 | if (isl_basic_map_drop_equality(bmap: bmap1, pos: i1) < 0) |
| 2585 | bmap1 = isl_basic_map_free(bmap: bmap1); |
| 2586 | --i1; |
| 2587 | continue; |
| 2588 | } |
| 2589 | if (!isl_seq_eq(p1: bmap1->eq[i1], p2: bmap2->eq[i2], len: 1 + total)) { |
| 2590 | if (isl_basic_map_drop_equality(bmap: bmap1, pos: i1) < 0) |
| 2591 | bmap1 = isl_basic_map_free(bmap: bmap1); |
| 2592 | } |
| 2593 | --i1; |
| 2594 | --i2; |
| 2595 | } |
| 2596 | for (; i1 >= 0; --i1) |
| 2597 | if (isl_basic_map_drop_equality(bmap: bmap1, pos: i1) < 0) |
| 2598 | bmap1 = isl_basic_map_free(bmap: bmap1); |
| 2599 | |
| 2600 | return bmap1; |
| 2601 | } |
| 2602 | |
| 2603 | /* Compute a superset of "bmap1" and "bmap2" that is described |
| 2604 | * by only the constraints that appear in both "bmap1" and "bmap2". |
| 2605 | * |
| 2606 | * First drop constraints that involve unknown integer divisions |
| 2607 | * since it is not trivial to check whether two such integer divisions |
| 2608 | * in different basic maps are the same. |
| 2609 | * Then align the remaining (known) divs and sort the constraints. |
| 2610 | * Finally drop all inequalities and equalities from "bmap1" that |
| 2611 | * do not also appear in "bmap2". |
| 2612 | */ |
| 2613 | __isl_give isl_basic_map *isl_basic_map_plain_unshifted_simple_hull( |
| 2614 | __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2) |
| 2615 | { |
| 2616 | if (isl_basic_map_check_equal_space(bmap1, bmap2) < 0) |
| 2617 | goto error; |
| 2618 | |
| 2619 | bmap1 = isl_basic_map_drop_constraints_involving_unknown_divs(bmap: bmap1); |
| 2620 | bmap2 = isl_basic_map_drop_constraints_involving_unknown_divs(bmap: bmap2); |
| 2621 | bmap1 = isl_basic_map_order_divs(bmap: bmap1); |
| 2622 | bmap2 = isl_basic_map_align_divs(dst: bmap2, src: bmap1); |
| 2623 | bmap1 = isl_basic_map_align_divs(dst: bmap1, src: bmap2); |
| 2624 | bmap1 = isl_basic_map_sort_constraints(bmap: bmap1); |
| 2625 | bmap2 = isl_basic_map_sort_constraints(bmap: bmap2); |
| 2626 | |
| 2627 | bmap1 = select_shared_inequalities(bmap1, bmap2); |
| 2628 | bmap1 = select_shared_equalities(bmap1, bmap2); |
| 2629 | |
| 2630 | isl_basic_map_free(bmap: bmap2); |
| 2631 | bmap1 = isl_basic_map_finalize(bmap: bmap1); |
| 2632 | return bmap1; |
| 2633 | error: |
| 2634 | isl_basic_map_free(bmap: bmap1); |
| 2635 | isl_basic_map_free(bmap: bmap2); |
| 2636 | return NULL; |
| 2637 | } |
| 2638 | |
| 2639 | /* Compute a superset of the convex hull of "map" that is described |
| 2640 | * by only the constraints in the constituents of "map". |
| 2641 | * In particular, the result is composed of constraints that appear |
| 2642 | * in each of the basic maps of "map" |
| 2643 | * |
| 2644 | * Constraints that involve unknown integer divisions are dropped |
| 2645 | * since it is not trivial to check whether two such integer divisions |
| 2646 | * in different basic maps are the same. |
| 2647 | * |
| 2648 | * The hull is initialized from the first basic map and then |
| 2649 | * updated with respect to the other basic maps in turn. |
| 2650 | */ |
| 2651 | __isl_give isl_basic_map *isl_map_plain_unshifted_simple_hull( |
| 2652 | __isl_take isl_map *map) |
| 2653 | { |
| 2654 | int i; |
| 2655 | isl_basic_map *hull; |
| 2656 | |
| 2657 | if (!map) |
| 2658 | return NULL; |
| 2659 | if (map->n <= 1) |
| 2660 | return map_simple_hull_trivial(map); |
| 2661 | map = isl_map_drop_constraints_involving_unknown_divs(map); |
| 2662 | hull = isl_basic_map_copy(bmap: map->p[0]); |
| 2663 | for (i = 1; i < map->n; ++i) { |
| 2664 | isl_basic_map *bmap_i; |
| 2665 | |
| 2666 | bmap_i = isl_basic_map_copy(bmap: map->p[i]); |
| 2667 | hull = isl_basic_map_plain_unshifted_simple_hull(bmap1: hull, bmap2: bmap_i); |
| 2668 | } |
| 2669 | |
| 2670 | isl_map_free(map); |
| 2671 | return hull; |
| 2672 | } |
| 2673 | |
| 2674 | /* Compute a superset of the convex hull of "set" that is described |
| 2675 | * by only the constraints in the constituents of "set". |
| 2676 | * In particular, the result is composed of constraints that appear |
| 2677 | * in each of the basic sets of "set" |
| 2678 | */ |
| 2679 | __isl_give isl_basic_set *isl_set_plain_unshifted_simple_hull( |
| 2680 | __isl_take isl_set *set) |
| 2681 | { |
| 2682 | return isl_map_plain_unshifted_simple_hull(map: set); |
| 2683 | } |
| 2684 | |
| 2685 | /* Check if "ineq" is a bound on "set" and, if so, add it to "hull". |
| 2686 | * |
| 2687 | * For each basic set in "set", we first check if the basic set |
| 2688 | * contains a translate of "ineq". If this translate is more relaxed, |
| 2689 | * then we assume that "ineq" is not a bound on this basic set. |
| 2690 | * Otherwise, we know that it is a bound. |
| 2691 | * If the basic set does not contain a translate of "ineq", then |
| 2692 | * we call is_bound to perform the test. |
| 2693 | */ |
| 2694 | static __isl_give isl_basic_set *add_bound_from_constraint( |
| 2695 | __isl_take isl_basic_set *hull, struct sh_data *data, |
| 2696 | __isl_keep isl_set *set, isl_int *ineq) |
| 2697 | { |
| 2698 | int i, k; |
| 2699 | isl_ctx *ctx; |
| 2700 | uint32_t c_hash; |
| 2701 | struct ineq_cmp_data v; |
| 2702 | isl_size total; |
| 2703 | |
| 2704 | total = isl_basic_set_dim(bset: hull, type: isl_dim_all); |
| 2705 | if (total < 0 || !set) |
| 2706 | return isl_basic_set_free(bset: hull); |
| 2707 | |
| 2708 | v.len = total; |
| 2709 | v.p = ineq; |
| 2710 | c_hash = isl_seq_get_hash(p: ineq + 1, len: v.len); |
| 2711 | |
| 2712 | ctx = isl_basic_set_get_ctx(bset: hull); |
| 2713 | for (i = 0; i < set->n; ++i) { |
| 2714 | int bound; |
| 2715 | struct isl_hash_table_entry *entry; |
| 2716 | |
| 2717 | entry = isl_hash_table_find(ctx, table: data->p[i].table, |
| 2718 | key_hash: c_hash, eq: &has_ineq, val: &v, reserve: 0); |
| 2719 | if (!entry) |
| 2720 | return isl_basic_set_free(bset: hull); |
| 2721 | if (entry != isl_hash_table_entry_none) { |
| 2722 | isl_int *ineq_i = entry->data; |
| 2723 | int neg, more_relaxed; |
| 2724 | |
| 2725 | neg = isl_seq_is_neg(p1: ineq_i + 1, p2: ineq + 1, len: v.len); |
| 2726 | if (neg) |
| 2727 | isl_int_neg(ineq_i[0], ineq_i[0]); |
| 2728 | more_relaxed = isl_int_gt(ineq_i[0], ineq[0]); |
| 2729 | if (neg) |
| 2730 | isl_int_neg(ineq_i[0], ineq_i[0]); |
| 2731 | if (more_relaxed) |
| 2732 | break; |
| 2733 | else |
| 2734 | continue; |
| 2735 | } |
| 2736 | bound = is_bound(data, set, j: i, ineq, shift: 0); |
| 2737 | if (bound < 0) |
| 2738 | return isl_basic_set_free(bset: hull); |
| 2739 | if (!bound) |
| 2740 | break; |
| 2741 | } |
| 2742 | if (i < set->n) |
| 2743 | return hull; |
| 2744 | |
| 2745 | k = isl_basic_set_alloc_inequality(bset: hull); |
| 2746 | if (k < 0) |
| 2747 | return isl_basic_set_free(bset: hull); |
| 2748 | isl_seq_cpy(dst: hull->ineq[k], src: ineq, len: 1 + v.len); |
| 2749 | |
| 2750 | return hull; |
| 2751 | } |
| 2752 | |
| 2753 | /* Compute a superset of the convex hull of "set" that is described |
| 2754 | * by only some of the "n_ineq" constraints in the list "ineq", where "set" |
| 2755 | * has no parameters or integer divisions. |
| 2756 | * |
| 2757 | * The inequalities in "ineq" are assumed to have been sorted such |
| 2758 | * that constraints with the same linear part appear together and |
| 2759 | * that among constraints with the same linear part, those with |
| 2760 | * smaller constant term appear first. |
| 2761 | * |
| 2762 | * We reuse the same data structure that is used by uset_simple_hull, |
| 2763 | * but we do not need the hull table since we will not consider the |
| 2764 | * same constraint more than once. We therefore allocate it with zero size. |
| 2765 | * |
| 2766 | * We run through the constraints and try to add them one by one, |
| 2767 | * skipping identical constraints. If we have added a constraint and |
| 2768 | * the next constraint is a more relaxed translate, then we skip this |
| 2769 | * next constraint as well. |
| 2770 | */ |
| 2771 | static __isl_give isl_basic_set *uset_unshifted_simple_hull_from_constraints( |
| 2772 | __isl_take isl_set *set, int n_ineq, isl_int **ineq) |
| 2773 | { |
| 2774 | int i; |
| 2775 | int last_added = 0; |
| 2776 | struct sh_data *data = NULL; |
| 2777 | isl_basic_set *hull = NULL; |
| 2778 | isl_size dim; |
| 2779 | |
| 2780 | hull = isl_basic_set_alloc_space(space: isl_set_get_space(set), extra: 0, n_eq: 0, n_ineq); |
| 2781 | if (!hull) |
| 2782 | goto error; |
| 2783 | |
| 2784 | data = sh_data_alloc(set, n_ineq: 0); |
| 2785 | if (!data) |
| 2786 | goto error; |
| 2787 | |
| 2788 | dim = isl_set_dim(set, type: isl_dim_set); |
| 2789 | if (dim < 0) |
| 2790 | goto error; |
| 2791 | for (i = 0; i < n_ineq; ++i) { |
| 2792 | int hull_n_ineq = hull->n_ineq; |
| 2793 | int parallel; |
| 2794 | |
| 2795 | parallel = i > 0 && isl_seq_eq(p1: ineq[i - 1] + 1, p2: ineq[i] + 1, |
| 2796 | len: dim); |
| 2797 | if (parallel && |
| 2798 | (last_added || isl_int_eq(ineq[i - 1][0], ineq[i][0]))) |
| 2799 | continue; |
| 2800 | hull = add_bound_from_constraint(hull, data, set, ineq: ineq[i]); |
| 2801 | if (!hull) |
| 2802 | goto error; |
| 2803 | last_added = hull->n_ineq > hull_n_ineq; |
| 2804 | } |
| 2805 | |
| 2806 | sh_data_free(data); |
| 2807 | isl_set_free(set); |
| 2808 | return hull; |
| 2809 | error: |
| 2810 | sh_data_free(data); |
| 2811 | isl_set_free(set); |
| 2812 | isl_basic_set_free(bset: hull); |
| 2813 | return NULL; |
| 2814 | } |
| 2815 | |
| 2816 | /* Collect pointers to all the inequalities in the elements of "list" |
| 2817 | * in "ineq". For equalities, store both a pointer to the equality and |
| 2818 | * a pointer to its opposite, which is first copied to "mat". |
| 2819 | * "ineq" and "mat" are assumed to have been preallocated to the right size |
| 2820 | * (the number of inequalities + 2 times the number of equalites and |
| 2821 | * the number of equalities, respectively). |
| 2822 | */ |
| 2823 | static __isl_give isl_mat *collect_inequalities(__isl_take isl_mat *mat, |
| 2824 | __isl_keep isl_basic_set_list *list, isl_int **ineq) |
| 2825 | { |
| 2826 | int i, j, n_eq, n_ineq; |
| 2827 | isl_size n; |
| 2828 | |
| 2829 | n = isl_basic_set_list_n_basic_set(list); |
| 2830 | if (!mat || n < 0) |
| 2831 | return isl_mat_free(mat); |
| 2832 | |
| 2833 | n_eq = 0; |
| 2834 | n_ineq = 0; |
| 2835 | for (i = 0; i < n; ++i) { |
| 2836 | isl_basic_set *bset; |
| 2837 | bset = isl_basic_set_list_get_basic_set(list, index: i); |
| 2838 | if (!bset) |
| 2839 | return isl_mat_free(mat); |
| 2840 | for (j = 0; j < bset->n_eq; ++j) { |
| 2841 | ineq[n_ineq++] = mat->row[n_eq]; |
| 2842 | ineq[n_ineq++] = bset->eq[j]; |
| 2843 | isl_seq_neg(dst: mat->row[n_eq++], src: bset->eq[j], len: mat->n_col); |
| 2844 | } |
| 2845 | for (j = 0; j < bset->n_ineq; ++j) |
| 2846 | ineq[n_ineq++] = bset->ineq[j]; |
| 2847 | isl_basic_set_free(bset); |
| 2848 | } |
| 2849 | |
| 2850 | return mat; |
| 2851 | } |
| 2852 | |
| 2853 | /* Comparison routine for use as an isl_sort callback. |
| 2854 | * |
| 2855 | * Constraints with the same linear part are sorted together and |
| 2856 | * among constraints with the same linear part, those with smaller |
| 2857 | * constant term are sorted first. |
| 2858 | */ |
| 2859 | static int cmp_ineq(const void *a, const void *b, void *arg) |
| 2860 | { |
| 2861 | unsigned dim = *(unsigned *) arg; |
| 2862 | isl_int * const *ineq1 = a; |
| 2863 | isl_int * const *ineq2 = b; |
| 2864 | int cmp; |
| 2865 | |
| 2866 | cmp = isl_seq_cmp(p1: (*ineq1) + 1, p2: (*ineq2) + 1, len: dim); |
| 2867 | if (cmp != 0) |
| 2868 | return cmp; |
| 2869 | return isl_int_cmp((*ineq1)[0], (*ineq2)[0]); |
| 2870 | } |
| 2871 | |
| 2872 | /* Compute a superset of the convex hull of "set" that is described |
| 2873 | * by only constraints in the elements of "list", where "set" has |
| 2874 | * no parameters or integer divisions. |
| 2875 | * |
| 2876 | * We collect all the constraints in those elements and then |
| 2877 | * sort the constraints such that constraints with the same linear part |
| 2878 | * are sorted together and that those with smaller constant term are |
| 2879 | * sorted first. |
| 2880 | */ |
| 2881 | static __isl_give isl_basic_set *uset_unshifted_simple_hull_from_basic_set_list( |
| 2882 | __isl_take isl_set *set, __isl_take isl_basic_set_list *list) |
| 2883 | { |
| 2884 | int i, n_eq, n_ineq; |
| 2885 | isl_size n; |
| 2886 | isl_size dim; |
| 2887 | isl_ctx *ctx; |
| 2888 | isl_mat *mat = NULL; |
| 2889 | isl_int **ineq = NULL; |
| 2890 | isl_basic_set *hull; |
| 2891 | |
| 2892 | n = isl_basic_set_list_n_basic_set(list); |
| 2893 | if (!set || n < 0) |
| 2894 | goto error; |
| 2895 | ctx = isl_set_get_ctx(set); |
| 2896 | |
| 2897 | n_eq = 0; |
| 2898 | n_ineq = 0; |
| 2899 | for (i = 0; i < n; ++i) { |
| 2900 | isl_basic_set *bset; |
| 2901 | bset = isl_basic_set_list_get_basic_set(list, index: i); |
| 2902 | if (!bset) |
| 2903 | goto error; |
| 2904 | n_eq += bset->n_eq; |
| 2905 | n_ineq += 2 * bset->n_eq + bset->n_ineq; |
| 2906 | isl_basic_set_free(bset); |
| 2907 | } |
| 2908 | |
| 2909 | ineq = isl_alloc_array(ctx, isl_int *, n_ineq); |
| 2910 | if (n_ineq > 0 && !ineq) |
| 2911 | goto error; |
| 2912 | |
| 2913 | dim = isl_set_dim(set, type: isl_dim_set); |
| 2914 | if (dim < 0) |
| 2915 | goto error; |
| 2916 | mat = isl_mat_alloc(ctx, n_row: n_eq, n_col: 1 + dim); |
| 2917 | mat = collect_inequalities(mat, list, ineq); |
| 2918 | if (!mat) |
| 2919 | goto error; |
| 2920 | |
| 2921 | if (isl_sort(pbase: ineq, total_elems: n_ineq, size: sizeof(ineq[0]), cmp: &cmp_ineq, arg: &dim) < 0) |
| 2922 | goto error; |
| 2923 | |
| 2924 | hull = uset_unshifted_simple_hull_from_constraints(set, n_ineq, ineq); |
| 2925 | |
| 2926 | isl_mat_free(mat); |
| 2927 | free(ptr: ineq); |
| 2928 | isl_basic_set_list_free(list); |
| 2929 | return hull; |
| 2930 | error: |
| 2931 | isl_mat_free(mat); |
| 2932 | free(ptr: ineq); |
| 2933 | isl_set_free(set); |
| 2934 | isl_basic_set_list_free(list); |
| 2935 | return NULL; |
| 2936 | } |
| 2937 | |
| 2938 | /* Compute a superset of the convex hull of "map" that is described |
| 2939 | * by only constraints in the elements of "list". |
| 2940 | * |
| 2941 | * If the list is empty, then we can only describe the universe set. |
| 2942 | * If the input map is empty, then all constraints are valid, so |
| 2943 | * we return the intersection of the elements in "list". |
| 2944 | * |
| 2945 | * Otherwise, we align all divs and temporarily treat them |
| 2946 | * as regular variables, computing the unshifted simple hull in |
| 2947 | * uset_unshifted_simple_hull_from_basic_set_list. |
| 2948 | */ |
| 2949 | static __isl_give isl_basic_map *map_unshifted_simple_hull_from_basic_map_list( |
| 2950 | __isl_take isl_map *map, __isl_take isl_basic_map_list *list) |
| 2951 | { |
| 2952 | isl_size n; |
| 2953 | isl_basic_map *model; |
| 2954 | isl_basic_map *hull; |
| 2955 | isl_set *set; |
| 2956 | isl_basic_set_list *bset_list; |
| 2957 | |
| 2958 | n = isl_basic_map_list_n_basic_map(list); |
| 2959 | if (!map || n < 0) |
| 2960 | goto error; |
| 2961 | |
| 2962 | if (n == 0) { |
| 2963 | isl_space *space; |
| 2964 | |
| 2965 | space = isl_map_get_space(map); |
| 2966 | isl_map_free(map); |
| 2967 | isl_basic_map_list_free(list); |
| 2968 | return isl_basic_map_universe(space); |
| 2969 | } |
| 2970 | if (isl_map_plain_is_empty(map)) { |
| 2971 | isl_map_free(map); |
| 2972 | return isl_basic_map_list_intersect(list); |
| 2973 | } |
| 2974 | |
| 2975 | map = isl_map_align_divs_to_basic_map_list(map, list); |
| 2976 | if (!map) |
| 2977 | goto error; |
| 2978 | list = isl_basic_map_list_align_divs_to_basic_map(list, bmap: map->p[0]); |
| 2979 | |
| 2980 | model = isl_basic_map_list_get_basic_map(list, index: 0); |
| 2981 | |
| 2982 | set = isl_map_underlying_set(map); |
| 2983 | bset_list = isl_basic_map_list_underlying_set(list); |
| 2984 | |
| 2985 | hull = uset_unshifted_simple_hull_from_basic_set_list(set, list: bset_list); |
| 2986 | hull = isl_basic_map_overlying_set(bset: hull, like: model); |
| 2987 | |
| 2988 | return hull; |
| 2989 | error: |
| 2990 | isl_map_free(map); |
| 2991 | isl_basic_map_list_free(list); |
| 2992 | return NULL; |
| 2993 | } |
| 2994 | |
| 2995 | /* Return a sequence of the basic maps that make up the maps in "list". |
| 2996 | */ |
| 2997 | static __isl_give isl_basic_map_list *collect_basic_maps( |
| 2998 | __isl_take isl_map_list *list) |
| 2999 | { |
| 3000 | int i; |
| 3001 | isl_size n; |
| 3002 | isl_ctx *ctx; |
| 3003 | isl_basic_map_list *bmap_list; |
| 3004 | |
| 3005 | if (!list) |
| 3006 | return NULL; |
| 3007 | n = isl_map_list_n_map(list); |
| 3008 | ctx = isl_map_list_get_ctx(list); |
| 3009 | bmap_list = isl_basic_map_list_alloc(ctx, n: 0); |
| 3010 | if (n < 0) |
| 3011 | bmap_list = isl_basic_map_list_free(list: bmap_list); |
| 3012 | |
| 3013 | for (i = 0; i < n; ++i) { |
| 3014 | isl_map *map; |
| 3015 | isl_basic_map_list *list_i; |
| 3016 | |
| 3017 | map = isl_map_list_get_map(list, index: i); |
| 3018 | map = isl_map_compute_divs(map); |
| 3019 | list_i = isl_map_get_basic_map_list(map); |
| 3020 | isl_map_free(map); |
| 3021 | bmap_list = isl_basic_map_list_concat(list1: bmap_list, list2: list_i); |
| 3022 | } |
| 3023 | |
| 3024 | isl_map_list_free(list); |
| 3025 | return bmap_list; |
| 3026 | } |
| 3027 | |
| 3028 | /* Compute a superset of the convex hull of "map" that is described |
| 3029 | * by only constraints in the elements of "list". |
| 3030 | * |
| 3031 | * If "map" is the universe, then the convex hull (and therefore |
| 3032 | * any superset of the convexhull) is the universe as well. |
| 3033 | * |
| 3034 | * Otherwise, we collect all the basic maps in the map list and |
| 3035 | * continue with map_unshifted_simple_hull_from_basic_map_list. |
| 3036 | */ |
| 3037 | __isl_give isl_basic_map *isl_map_unshifted_simple_hull_from_map_list( |
| 3038 | __isl_take isl_map *map, __isl_take isl_map_list *list) |
| 3039 | { |
| 3040 | isl_basic_map_list *bmap_list; |
| 3041 | int is_universe; |
| 3042 | |
| 3043 | is_universe = isl_map_plain_is_universe(map); |
| 3044 | if (is_universe < 0) |
| 3045 | map = isl_map_free(map); |
| 3046 | if (is_universe < 0 || is_universe) { |
| 3047 | isl_map_list_free(list); |
| 3048 | return isl_map_unshifted_simple_hull(map); |
| 3049 | } |
| 3050 | |
| 3051 | bmap_list = collect_basic_maps(list); |
| 3052 | return map_unshifted_simple_hull_from_basic_map_list(map, list: bmap_list); |
| 3053 | } |
| 3054 | |
| 3055 | /* Compute a superset of the convex hull of "set" that is described |
| 3056 | * by only constraints in the elements of "list". |
| 3057 | */ |
| 3058 | __isl_give isl_basic_set *isl_set_unshifted_simple_hull_from_set_list( |
| 3059 | __isl_take isl_set *set, __isl_take isl_set_list *list) |
| 3060 | { |
| 3061 | return isl_map_unshifted_simple_hull_from_map_list(map: set, list); |
| 3062 | } |
| 3063 | |
| 3064 | /* Given a set "set", return parametric bounds on the dimension "dim". |
| 3065 | */ |
| 3066 | static __isl_give isl_basic_set *set_bounds(__isl_keep isl_set *set, int dim) |
| 3067 | { |
| 3068 | isl_size set_dim = isl_set_dim(set, type: isl_dim_set); |
| 3069 | if (set_dim < 0) |
| 3070 | return NULL; |
| 3071 | set = isl_set_copy(set); |
| 3072 | set = isl_set_eliminate_dims(set, first: dim + 1, n: set_dim - (dim + 1)); |
| 3073 | set = isl_set_eliminate_dims(set, first: 0, n: dim); |
| 3074 | return isl_set_convex_hull(set); |
| 3075 | } |
| 3076 | |
| 3077 | /* Computes a "simple hull" and then check if each dimension in the |
| 3078 | * resulting hull is bounded by a symbolic constant. If not, the |
| 3079 | * hull is intersected with the corresponding bounds on the whole set. |
| 3080 | */ |
| 3081 | __isl_give isl_basic_set *isl_set_bounded_simple_hull(__isl_take isl_set *set) |
| 3082 | { |
| 3083 | int i, j; |
| 3084 | struct isl_basic_set *hull; |
| 3085 | isl_size nparam, dim, total; |
| 3086 | unsigned left; |
| 3087 | int removed_divs = 0; |
| 3088 | |
| 3089 | hull = isl_set_simple_hull(set: isl_set_copy(set)); |
| 3090 | nparam = isl_basic_set_dim(bset: hull, type: isl_dim_param); |
| 3091 | dim = isl_basic_set_dim(bset: hull, type: isl_dim_set); |
| 3092 | total = isl_basic_set_dim(bset: hull, type: isl_dim_all); |
| 3093 | if (nparam < 0 || dim < 0 || total < 0) |
| 3094 | goto error; |
| 3095 | |
| 3096 | for (i = 0; i < dim; ++i) { |
| 3097 | int lower = 0, upper = 0; |
| 3098 | struct isl_basic_set *bounds; |
| 3099 | |
| 3100 | left = total - nparam - i - 1; |
| 3101 | for (j = 0; j < hull->n_eq; ++j) { |
| 3102 | if (isl_int_is_zero(hull->eq[j][1 + nparam + i])) |
| 3103 | continue; |
| 3104 | if (isl_seq_first_non_zero(p: hull->eq[j]+1+nparam+i+1, |
| 3105 | len: left) == -1) |
| 3106 | break; |
| 3107 | } |
| 3108 | if (j < hull->n_eq) |
| 3109 | continue; |
| 3110 | |
| 3111 | for (j = 0; j < hull->n_ineq; ++j) { |
| 3112 | if (isl_int_is_zero(hull->ineq[j][1 + nparam + i])) |
| 3113 | continue; |
| 3114 | if (isl_seq_first_non_zero(p: hull->ineq[j]+1+nparam+i+1, |
| 3115 | len: left) != -1 || |
| 3116 | isl_seq_first_non_zero(p: hull->ineq[j]+1+nparam, |
| 3117 | len: i) != -1) |
| 3118 | continue; |
| 3119 | if (isl_int_is_pos(hull->ineq[j][1 + nparam + i])) |
| 3120 | lower = 1; |
| 3121 | else |
| 3122 | upper = 1; |
| 3123 | if (lower && upper) |
| 3124 | break; |
| 3125 | } |
| 3126 | |
| 3127 | if (lower && upper) |
| 3128 | continue; |
| 3129 | |
| 3130 | if (!removed_divs) { |
| 3131 | set = isl_set_remove_divs(set); |
| 3132 | if (!set) |
| 3133 | goto error; |
| 3134 | removed_divs = 1; |
| 3135 | } |
| 3136 | bounds = set_bounds(set, dim: i); |
| 3137 | hull = isl_basic_set_intersect(bset1: hull, bset2: bounds); |
| 3138 | if (!hull) |
| 3139 | goto error; |
| 3140 | } |
| 3141 | |
| 3142 | isl_set_free(set); |
| 3143 | return hull; |
| 3144 | error: |
| 3145 | isl_set_free(set); |
| 3146 | isl_basic_set_free(bset: hull); |
| 3147 | return NULL; |
| 3148 | } |
| 3149 | |