1 | /* |
2 | * Copyright 2008-2009 Katholieke Universiteit Leuven |
3 | * Copyright 2012-2013 Ecole Normale Superieure |
4 | * Copyright 2014-2015 INRIA Rocquencourt |
5 | * Copyright 2016 Sven Verdoolaege |
6 | * |
7 | * Use of this software is governed by the MIT license |
8 | * |
9 | * Written by Sven Verdoolaege, K.U.Leuven, Departement |
10 | * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium |
11 | * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France |
12 | * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, |
13 | * B.P. 105 - 78153 Le Chesnay, France |
14 | */ |
15 | |
16 | #include <isl_ctx_private.h> |
17 | #include <isl_map_private.h> |
18 | #include "isl_equalities.h" |
19 | #include <isl/map.h> |
20 | #include <isl_seq.h> |
21 | #include "isl_tab.h" |
22 | #include <isl_space_private.h> |
23 | #include <isl_mat_private.h> |
24 | #include <isl_vec_private.h> |
25 | |
26 | #include <bset_to_bmap.c> |
27 | #include <bset_from_bmap.c> |
28 | #include <set_to_map.c> |
29 | #include <set_from_map.c> |
30 | |
31 | static void swap_equality(__isl_keep isl_basic_map *bmap, int a, int b) |
32 | { |
33 | isl_int *t = bmap->eq[a]; |
34 | bmap->eq[a] = bmap->eq[b]; |
35 | bmap->eq[b] = t; |
36 | } |
37 | |
38 | static void swap_inequality(__isl_keep isl_basic_map *bmap, int a, int b) |
39 | { |
40 | if (a != b) { |
41 | isl_int *t = bmap->ineq[a]; |
42 | bmap->ineq[a] = bmap->ineq[b]; |
43 | bmap->ineq[b] = t; |
44 | } |
45 | } |
46 | |
47 | __isl_give isl_basic_map *isl_basic_map_normalize_constraints( |
48 | __isl_take isl_basic_map *bmap) |
49 | { |
50 | int i; |
51 | isl_int gcd; |
52 | isl_size total = isl_basic_map_dim(bmap, type: isl_dim_all); |
53 | |
54 | if (total < 0) |
55 | return isl_basic_map_free(bmap); |
56 | |
57 | isl_int_init(gcd); |
58 | for (i = bmap->n_eq - 1; i >= 0; --i) { |
59 | isl_seq_gcd(p: bmap->eq[i]+1, len: total, gcd: &gcd); |
60 | if (isl_int_is_zero(gcd)) { |
61 | if (!isl_int_is_zero(bmap->eq[i][0])) { |
62 | bmap = isl_basic_map_set_to_empty(bmap); |
63 | break; |
64 | } |
65 | if (isl_basic_map_drop_equality(bmap, pos: i) < 0) |
66 | goto error; |
67 | continue; |
68 | } |
69 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) |
70 | isl_int_gcd(gcd, gcd, bmap->eq[i][0]); |
71 | if (isl_int_is_one(gcd)) |
72 | continue; |
73 | if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) { |
74 | bmap = isl_basic_map_set_to_empty(bmap); |
75 | break; |
76 | } |
77 | isl_seq_scale_down(dst: bmap->eq[i], src: bmap->eq[i], f: gcd, len: 1+total); |
78 | } |
79 | |
80 | for (i = bmap->n_ineq - 1; i >= 0; --i) { |
81 | isl_seq_gcd(p: bmap->ineq[i]+1, len: total, gcd: &gcd); |
82 | if (isl_int_is_zero(gcd)) { |
83 | if (isl_int_is_neg(bmap->ineq[i][0])) { |
84 | bmap = isl_basic_map_set_to_empty(bmap); |
85 | break; |
86 | } |
87 | if (isl_basic_map_drop_inequality(bmap, pos: i) < 0) |
88 | goto error; |
89 | continue; |
90 | } |
91 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) |
92 | isl_int_gcd(gcd, gcd, bmap->ineq[i][0]); |
93 | if (isl_int_is_one(gcd)) |
94 | continue; |
95 | isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd); |
96 | isl_seq_scale_down(dst: bmap->ineq[i]+1, src: bmap->ineq[i]+1, f: gcd, len: total); |
97 | } |
98 | isl_int_clear(gcd); |
99 | |
100 | return bmap; |
101 | error: |
102 | isl_int_clear(gcd); |
103 | isl_basic_map_free(bmap); |
104 | return NULL; |
105 | } |
106 | |
107 | __isl_give isl_basic_set *isl_basic_set_normalize_constraints( |
108 | __isl_take isl_basic_set *bset) |
109 | { |
110 | isl_basic_map *bmap = bset_to_bmap(bset); |
111 | return bset_from_bmap(bmap: isl_basic_map_normalize_constraints(bmap)); |
112 | } |
113 | |
114 | /* Reduce the coefficient of the variable at position "pos" |
115 | * in integer division "div", such that it lies in the half-open |
116 | * interval (1/2,1/2], extracting any excess value from this integer division. |
117 | * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0 |
118 | * corresponds to the constant term. |
119 | * |
120 | * That is, the integer division is of the form |
121 | * |
122 | * floor((... + (c * d + r) * x_pos + ...)/d) |
123 | * |
124 | * with -d < 2 * r <= d. |
125 | * Replace it by |
126 | * |
127 | * floor((... + r * x_pos + ...)/d) + c * x_pos |
128 | * |
129 | * If 2 * ((c * d + r) % d) <= d, then c = floor((c * d + r)/d). |
130 | * Otherwise, c = floor((c * d + r)/d) + 1. |
131 | * |
132 | * This is the same normalization that is performed by isl_aff_floor. |
133 | */ |
134 | static __isl_give isl_basic_map *reduce_coefficient_in_div( |
135 | __isl_take isl_basic_map *bmap, int div, int pos) |
136 | { |
137 | isl_int shift; |
138 | int add_one; |
139 | |
140 | isl_int_init(shift); |
141 | isl_int_fdiv_r(shift, bmap->div[div][1 + pos], bmap->div[div][0]); |
142 | isl_int_mul_ui(shift, shift, 2); |
143 | add_one = isl_int_gt(shift, bmap->div[div][0]); |
144 | isl_int_fdiv_q(shift, bmap->div[div][1 + pos], bmap->div[div][0]); |
145 | if (add_one) |
146 | isl_int_add_ui(shift, shift, 1); |
147 | isl_int_neg(shift, shift); |
148 | bmap = isl_basic_map_shift_div(bmap, div, pos, shift); |
149 | isl_int_clear(shift); |
150 | |
151 | return bmap; |
152 | } |
153 | |
154 | /* Does the coefficient of the variable at position "pos" |
155 | * in integer division "div" need to be reduced? |
156 | * That is, does it lie outside the half-open interval (1/2,1/2]? |
157 | * The coefficient c/d lies outside this interval if abs(2 * c) >= d and |
158 | * 2 * c != d. |
159 | */ |
160 | static isl_bool needs_reduction(__isl_keep isl_basic_map *bmap, int div, |
161 | int pos) |
162 | { |
163 | isl_bool r; |
164 | |
165 | if (isl_int_is_zero(bmap->div[div][1 + pos])) |
166 | return isl_bool_false; |
167 | |
168 | isl_int_mul_ui(bmap->div[div][1 + pos], bmap->div[div][1 + pos], 2); |
169 | r = isl_int_abs_ge(bmap->div[div][1 + pos], bmap->div[div][0]) && |
170 | !isl_int_eq(bmap->div[div][1 + pos], bmap->div[div][0]); |
171 | isl_int_divexact_ui(bmap->div[div][1 + pos], |
172 | bmap->div[div][1 + pos], 2); |
173 | |
174 | return r; |
175 | } |
176 | |
177 | /* Reduce the coefficients (including the constant term) of |
178 | * integer division "div", if needed. |
179 | * In particular, make sure all coefficients lie in |
180 | * the half-open interval (1/2,1/2]. |
181 | */ |
182 | static __isl_give isl_basic_map *reduce_div_coefficients_of_div( |
183 | __isl_take isl_basic_map *bmap, int div) |
184 | { |
185 | int i; |
186 | isl_size total; |
187 | |
188 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
189 | if (total < 0) |
190 | return isl_basic_map_free(bmap); |
191 | for (i = 0; i < 1 + total; ++i) { |
192 | isl_bool reduce; |
193 | |
194 | reduce = needs_reduction(bmap, div, pos: i); |
195 | if (reduce < 0) |
196 | return isl_basic_map_free(bmap); |
197 | if (!reduce) |
198 | continue; |
199 | bmap = reduce_coefficient_in_div(bmap, div, pos: i); |
200 | if (!bmap) |
201 | break; |
202 | } |
203 | |
204 | return bmap; |
205 | } |
206 | |
207 | /* Reduce the coefficients (including the constant term) of |
208 | * the known integer divisions, if needed |
209 | * In particular, make sure all coefficients lie in |
210 | * the half-open interval (1/2,1/2]. |
211 | */ |
212 | static __isl_give isl_basic_map *reduce_div_coefficients( |
213 | __isl_take isl_basic_map *bmap) |
214 | { |
215 | int i; |
216 | |
217 | if (!bmap) |
218 | return NULL; |
219 | if (bmap->n_div == 0) |
220 | return bmap; |
221 | |
222 | for (i = 0; i < bmap->n_div; ++i) { |
223 | if (isl_int_is_zero(bmap->div[i][0])) |
224 | continue; |
225 | bmap = reduce_div_coefficients_of_div(bmap, div: i); |
226 | if (!bmap) |
227 | break; |
228 | } |
229 | |
230 | return bmap; |
231 | } |
232 | |
233 | /* Remove any common factor in numerator and denominator of the div expression, |
234 | * not taking into account the constant term. |
235 | * That is, if the div is of the form |
236 | * |
237 | * floor((a + m f(x))/(m d)) |
238 | * |
239 | * then replace it by |
240 | * |
241 | * floor((floor(a/m) + f(x))/d) |
242 | * |
243 | * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d |
244 | * and can therefore not influence the result of the floor. |
245 | */ |
246 | static __isl_give isl_basic_map *normalize_div_expression( |
247 | __isl_take isl_basic_map *bmap, int div) |
248 | { |
249 | isl_size total = isl_basic_map_dim(bmap, type: isl_dim_all); |
250 | isl_ctx *ctx = bmap->ctx; |
251 | |
252 | if (total < 0) |
253 | return isl_basic_map_free(bmap); |
254 | if (isl_int_is_zero(bmap->div[div][0])) |
255 | return bmap; |
256 | isl_seq_gcd(p: bmap->div[div] + 2, len: total, gcd: &ctx->normalize_gcd); |
257 | isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]); |
258 | if (isl_int_is_one(ctx->normalize_gcd)) |
259 | return bmap; |
260 | isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1], |
261 | ctx->normalize_gcd); |
262 | isl_int_divexact(bmap->div[div][0], bmap->div[div][0], |
263 | ctx->normalize_gcd); |
264 | isl_seq_scale_down(dst: bmap->div[div] + 2, src: bmap->div[div] + 2, |
265 | f: ctx->normalize_gcd, len: total); |
266 | |
267 | return bmap; |
268 | } |
269 | |
270 | /* Remove any common factor in numerator and denominator of a div expression, |
271 | * not taking into account the constant term. |
272 | * That is, look for any div of the form |
273 | * |
274 | * floor((a + m f(x))/(m d)) |
275 | * |
276 | * and replace it by |
277 | * |
278 | * floor((floor(a/m) + f(x))/d) |
279 | * |
280 | * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d |
281 | * and can therefore not influence the result of the floor. |
282 | */ |
283 | static __isl_give isl_basic_map *normalize_div_expressions( |
284 | __isl_take isl_basic_map *bmap) |
285 | { |
286 | int i; |
287 | |
288 | if (!bmap) |
289 | return NULL; |
290 | if (bmap->n_div == 0) |
291 | return bmap; |
292 | |
293 | for (i = 0; i < bmap->n_div; ++i) |
294 | bmap = normalize_div_expression(bmap, div: i); |
295 | |
296 | return bmap; |
297 | } |
298 | |
299 | /* Assumes divs have been ordered if keep_divs is set. |
300 | */ |
301 | static __isl_give isl_basic_map *eliminate_var_using_equality( |
302 | __isl_take isl_basic_map *bmap, |
303 | unsigned pos, isl_int *eq, int keep_divs, int *progress) |
304 | { |
305 | isl_size total; |
306 | isl_size v_div; |
307 | int k; |
308 | int last_div; |
309 | |
310 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
311 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
312 | if (total < 0 || v_div < 0) |
313 | return isl_basic_map_free(bmap); |
314 | last_div = isl_seq_last_non_zero(p: eq + 1 + v_div, len: bmap->n_div); |
315 | for (k = 0; k < bmap->n_eq; ++k) { |
316 | if (bmap->eq[k] == eq) |
317 | continue; |
318 | if (isl_int_is_zero(bmap->eq[k][1+pos])) |
319 | continue; |
320 | if (progress) |
321 | *progress = 1; |
322 | isl_seq_elim(dst: bmap->eq[k], src: eq, pos: 1+pos, len: 1+total, NULL); |
323 | isl_seq_normalize(ctx: bmap->ctx, p: bmap->eq[k], len: 1 + total); |
324 | } |
325 | |
326 | for (k = 0; k < bmap->n_ineq; ++k) { |
327 | if (isl_int_is_zero(bmap->ineq[k][1+pos])) |
328 | continue; |
329 | if (progress) |
330 | *progress = 1; |
331 | isl_seq_elim(dst: bmap->ineq[k], src: eq, pos: 1+pos, len: 1+total, NULL); |
332 | isl_seq_normalize(ctx: bmap->ctx, p: bmap->ineq[k], len: 1 + total); |
333 | ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT); |
334 | ISL_F_CLR(bmap, ISL_BASIC_MAP_SORTED); |
335 | } |
336 | |
337 | for (k = 0; k < bmap->n_div; ++k) { |
338 | if (isl_int_is_zero(bmap->div[k][0])) |
339 | continue; |
340 | if (isl_int_is_zero(bmap->div[k][1+1+pos])) |
341 | continue; |
342 | if (progress) |
343 | *progress = 1; |
344 | /* We need to be careful about circular definitions, |
345 | * so for now we just remove the definition of div k |
346 | * if the equality contains any divs. |
347 | * If keep_divs is set, then the divs have been ordered |
348 | * and we can keep the definition as long as the result |
349 | * is still ordered. |
350 | */ |
351 | if (last_div == -1 || (keep_divs && last_div < k)) { |
352 | isl_seq_elim(dst: bmap->div[k]+1, src: eq, |
353 | pos: 1+pos, len: 1+total, m: &bmap->div[k][0]); |
354 | bmap = normalize_div_expression(bmap, div: k); |
355 | if (!bmap) |
356 | return NULL; |
357 | } else |
358 | isl_seq_clr(p: bmap->div[k], len: 1 + total); |
359 | } |
360 | |
361 | return bmap; |
362 | } |
363 | |
364 | /* Assumes divs have been ordered if keep_divs is set. |
365 | */ |
366 | static __isl_give isl_basic_map *eliminate_div(__isl_take isl_basic_map *bmap, |
367 | isl_int *eq, unsigned div, int keep_divs) |
368 | { |
369 | isl_size v_div; |
370 | unsigned pos; |
371 | |
372 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
373 | if (v_div < 0) |
374 | return isl_basic_map_free(bmap); |
375 | pos = v_div + div; |
376 | bmap = eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL); |
377 | |
378 | bmap = isl_basic_map_drop_div(bmap, div); |
379 | |
380 | return bmap; |
381 | } |
382 | |
383 | /* Check if elimination of div "div" using equality "eq" would not |
384 | * result in a div depending on a later div. |
385 | */ |
386 | static isl_bool ok_to_eliminate_div(__isl_keep isl_basic_map *bmap, isl_int *eq, |
387 | unsigned div) |
388 | { |
389 | int k; |
390 | int last_div; |
391 | isl_size v_div; |
392 | unsigned pos; |
393 | |
394 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
395 | if (v_div < 0) |
396 | return isl_bool_error; |
397 | pos = v_div + div; |
398 | |
399 | last_div = isl_seq_last_non_zero(p: eq + 1 + v_div, len: bmap->n_div); |
400 | if (last_div < 0 || last_div <= div) |
401 | return isl_bool_true; |
402 | |
403 | for (k = 0; k <= last_div; ++k) { |
404 | if (isl_int_is_zero(bmap->div[k][0])) |
405 | continue; |
406 | if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos])) |
407 | return isl_bool_false; |
408 | } |
409 | |
410 | return isl_bool_true; |
411 | } |
412 | |
413 | /* Eliminate divs based on equalities |
414 | */ |
415 | static __isl_give isl_basic_map *eliminate_divs_eq( |
416 | __isl_take isl_basic_map *bmap, int *progress) |
417 | { |
418 | int d; |
419 | int i; |
420 | int modified = 0; |
421 | unsigned off; |
422 | |
423 | bmap = isl_basic_map_order_divs(bmap); |
424 | |
425 | if (!bmap) |
426 | return NULL; |
427 | |
428 | off = isl_basic_map_offset(bmap, type: isl_dim_div); |
429 | |
430 | for (d = bmap->n_div - 1; d >= 0 ; --d) { |
431 | for (i = 0; i < bmap->n_eq; ++i) { |
432 | isl_bool ok; |
433 | |
434 | if (!isl_int_is_one(bmap->eq[i][off + d]) && |
435 | !isl_int_is_negone(bmap->eq[i][off + d])) |
436 | continue; |
437 | ok = ok_to_eliminate_div(bmap, eq: bmap->eq[i], div: d); |
438 | if (ok < 0) |
439 | return isl_basic_map_free(bmap); |
440 | if (!ok) |
441 | continue; |
442 | modified = 1; |
443 | *progress = 1; |
444 | bmap = eliminate_div(bmap, eq: bmap->eq[i], div: d, keep_divs: 1); |
445 | if (isl_basic_map_drop_equality(bmap, pos: i) < 0) |
446 | return isl_basic_map_free(bmap); |
447 | break; |
448 | } |
449 | } |
450 | if (modified) |
451 | return eliminate_divs_eq(bmap, progress); |
452 | return bmap; |
453 | } |
454 | |
455 | /* Eliminate divs based on inequalities |
456 | */ |
457 | static __isl_give isl_basic_map *eliminate_divs_ineq( |
458 | __isl_take isl_basic_map *bmap, int *progress) |
459 | { |
460 | int d; |
461 | int i; |
462 | unsigned off; |
463 | struct isl_ctx *ctx; |
464 | |
465 | if (!bmap) |
466 | return NULL; |
467 | |
468 | ctx = bmap->ctx; |
469 | off = isl_basic_map_offset(bmap, type: isl_dim_div); |
470 | |
471 | for (d = bmap->n_div - 1; d >= 0 ; --d) { |
472 | for (i = 0; i < bmap->n_eq; ++i) |
473 | if (!isl_int_is_zero(bmap->eq[i][off + d])) |
474 | break; |
475 | if (i < bmap->n_eq) |
476 | continue; |
477 | for (i = 0; i < bmap->n_ineq; ++i) |
478 | if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one)) |
479 | break; |
480 | if (i < bmap->n_ineq) |
481 | continue; |
482 | *progress = 1; |
483 | bmap = isl_basic_map_eliminate_vars(bmap, pos: (off-1)+d, n: 1); |
484 | if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) |
485 | break; |
486 | bmap = isl_basic_map_drop_div(bmap, div: d); |
487 | if (!bmap) |
488 | break; |
489 | } |
490 | return bmap; |
491 | } |
492 | |
493 | /* Does the equality constraint at position "eq" in "bmap" involve |
494 | * any local variables in the range [first, first + n) |
495 | * that are not marked as having an explicit representation? |
496 | */ |
497 | static isl_bool bmap_eq_involves_unknown_divs(__isl_keep isl_basic_map *bmap, |
498 | int eq, unsigned first, unsigned n) |
499 | { |
500 | unsigned o_div; |
501 | int i; |
502 | |
503 | if (!bmap) |
504 | return isl_bool_error; |
505 | |
506 | o_div = isl_basic_map_offset(bmap, type: isl_dim_div); |
507 | for (i = 0; i < n; ++i) { |
508 | isl_bool unknown; |
509 | |
510 | if (isl_int_is_zero(bmap->eq[eq][o_div + first + i])) |
511 | continue; |
512 | unknown = isl_basic_map_div_is_marked_unknown(bmap, div: first + i); |
513 | if (unknown < 0) |
514 | return isl_bool_error; |
515 | if (unknown) |
516 | return isl_bool_true; |
517 | } |
518 | |
519 | return isl_bool_false; |
520 | } |
521 | |
522 | /* The last local variable involved in the equality constraint |
523 | * at position "eq" in "bmap" is the local variable at position "div". |
524 | * It can therefore be used to extract an explicit representation |
525 | * for that variable. |
526 | * Do so unless the local variable already has an explicit representation or |
527 | * the explicit representation would involve any other local variables |
528 | * that in turn do not have an explicit representation. |
529 | * An equality constraint involving local variables without an explicit |
530 | * representation can be used in isl_basic_map_drop_redundant_divs |
531 | * to separate out an independent local variable. Introducing |
532 | * an explicit representation here would block this transformation, |
533 | * while the partial explicit representation in itself is not very useful. |
534 | * Set *progress if anything is changed. |
535 | * |
536 | * The equality constraint is of the form |
537 | * |
538 | * f(x) + n e >= 0 |
539 | * |
540 | * with n a positive number. The explicit representation derived from |
541 | * this constraint is |
542 | * |
543 | * floor((-f(x))/n) |
544 | */ |
545 | static __isl_give isl_basic_map *set_div_from_eq(__isl_take isl_basic_map *bmap, |
546 | int div, int eq, int *progress) |
547 | { |
548 | isl_size total; |
549 | unsigned o_div; |
550 | isl_bool involves; |
551 | |
552 | if (!bmap) |
553 | return NULL; |
554 | |
555 | if (!isl_int_is_zero(bmap->div[div][0])) |
556 | return bmap; |
557 | |
558 | involves = bmap_eq_involves_unknown_divs(bmap, eq, first: 0, n: div); |
559 | if (involves < 0) |
560 | return isl_basic_map_free(bmap); |
561 | if (involves) |
562 | return bmap; |
563 | |
564 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
565 | if (total < 0) |
566 | return isl_basic_map_free(bmap); |
567 | o_div = isl_basic_map_offset(bmap, type: isl_dim_div); |
568 | isl_seq_neg(dst: bmap->div[div] + 1, src: bmap->eq[eq], len: 1 + total); |
569 | isl_int_set_si(bmap->div[div][1 + o_div + div], 0); |
570 | isl_int_set(bmap->div[div][0], bmap->eq[eq][o_div + div]); |
571 | if (progress) |
572 | *progress = 1; |
573 | |
574 | return bmap; |
575 | } |
576 | |
577 | /* Perform fangcheng (Gaussian elimination) on the equality |
578 | * constraints of "bmap". |
579 | * That is, put them into row-echelon form, starting from the last column |
580 | * backward and use them to eliminate the corresponding coefficients |
581 | * from all constraints. |
582 | * |
583 | * If "progress" is not NULL, then it gets set if the elimination |
584 | * results in any changes. |
585 | * The elimination process may result in some equality constraints |
586 | * getting interchanged or removed. |
587 | * If "swap" or "drop" are not NULL, then they get called when |
588 | * two equality constraints get interchanged or |
589 | * when a number of final equality constraints get removed. |
590 | * As a special case, if the input turns out to be empty, |
591 | * then drop gets called with the number of removed equality |
592 | * constraints set to the total number of equality constraints. |
593 | * If "swap" or "drop" are not NULL, then the local variables (if any) |
594 | * are assumed to be in a valid order. |
595 | */ |
596 | __isl_give isl_basic_map *isl_basic_map_gauss5(__isl_take isl_basic_map *bmap, |
597 | int *progress, |
598 | isl_stat (*swap)(unsigned a, unsigned b, void *user), |
599 | isl_stat (*drop)(unsigned n, void *user), void *user) |
600 | { |
601 | int k; |
602 | int done; |
603 | int last_var; |
604 | unsigned total_var; |
605 | isl_size total; |
606 | unsigned n_drop; |
607 | |
608 | if (!swap && !drop) |
609 | bmap = isl_basic_map_order_divs(bmap); |
610 | |
611 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
612 | if (total < 0) |
613 | return isl_basic_map_free(bmap); |
614 | |
615 | total_var = total - bmap->n_div; |
616 | |
617 | last_var = total - 1; |
618 | for (done = 0; done < bmap->n_eq; ++done) { |
619 | for (; last_var >= 0; --last_var) { |
620 | for (k = done; k < bmap->n_eq; ++k) |
621 | if (!isl_int_is_zero(bmap->eq[k][1+last_var])) |
622 | break; |
623 | if (k < bmap->n_eq) |
624 | break; |
625 | } |
626 | if (last_var < 0) |
627 | break; |
628 | if (k != done) { |
629 | swap_equality(bmap, a: k, b: done); |
630 | if (swap && swap(k, done, user) < 0) |
631 | return isl_basic_map_free(bmap); |
632 | } |
633 | if (isl_int_is_neg(bmap->eq[done][1+last_var])) |
634 | isl_seq_neg(dst: bmap->eq[done], src: bmap->eq[done], len: 1+total); |
635 | |
636 | bmap = eliminate_var_using_equality(bmap, pos: last_var, |
637 | eq: bmap->eq[done], keep_divs: 1, progress); |
638 | |
639 | if (last_var >= total_var) |
640 | bmap = set_div_from_eq(bmap, div: last_var - total_var, |
641 | eq: done, progress); |
642 | if (!bmap) |
643 | return NULL; |
644 | } |
645 | if (done == bmap->n_eq) |
646 | return bmap; |
647 | for (k = done; k < bmap->n_eq; ++k) { |
648 | if (isl_int_is_zero(bmap->eq[k][0])) |
649 | continue; |
650 | if (drop && drop(bmap->n_eq, user) < 0) |
651 | return isl_basic_map_free(bmap); |
652 | return isl_basic_map_set_to_empty(bmap); |
653 | } |
654 | n_drop = bmap->n_eq - done; |
655 | bmap = isl_basic_map_free_equality(bmap, n: n_drop); |
656 | if (drop && drop(n_drop, user) < 0) |
657 | return isl_basic_map_free(bmap); |
658 | return bmap; |
659 | } |
660 | |
661 | __isl_give isl_basic_map *isl_basic_map_gauss(__isl_take isl_basic_map *bmap, |
662 | int *progress) |
663 | { |
664 | return isl_basic_map_gauss5(bmap, progress, NULL, NULL, NULL); |
665 | } |
666 | |
667 | __isl_give isl_basic_set *isl_basic_set_gauss( |
668 | __isl_take isl_basic_set *bset, int *progress) |
669 | { |
670 | return bset_from_bmap(bmap: isl_basic_map_gauss(bmap: bset_to_bmap(bset), |
671 | progress)); |
672 | } |
673 | |
674 | |
675 | static unsigned int round_up(unsigned int v) |
676 | { |
677 | int old_v = v; |
678 | |
679 | while (v) { |
680 | old_v = v; |
681 | v ^= v & -v; |
682 | } |
683 | return old_v << 1; |
684 | } |
685 | |
686 | /* Hash table of inequalities in a basic map. |
687 | * "index" is an array of addresses of inequalities in the basic map, some |
688 | * of which are NULL. The inequalities are hashed on the coefficients |
689 | * except the constant term. |
690 | * "size" is the number of elements in the array and is always a power of two |
691 | * "bits" is the number of bits need to represent an index into the array. |
692 | * "total" is the total dimension of the basic map. |
693 | */ |
694 | struct isl_constraint_index { |
695 | unsigned int size; |
696 | int bits; |
697 | isl_int ***index; |
698 | isl_size total; |
699 | }; |
700 | |
701 | /* Fill in the "ci" data structure for holding the inequalities of "bmap". |
702 | */ |
703 | static isl_stat create_constraint_index(struct isl_constraint_index *ci, |
704 | __isl_keep isl_basic_map *bmap) |
705 | { |
706 | isl_ctx *ctx; |
707 | |
708 | ci->index = NULL; |
709 | if (!bmap) |
710 | return isl_stat_error; |
711 | ci->total = isl_basic_map_dim(bmap, type: isl_dim_all); |
712 | if (ci->total < 0) |
713 | return isl_stat_error; |
714 | if (bmap->n_ineq == 0) |
715 | return isl_stat_ok; |
716 | ci->size = round_up(v: 4 * (bmap->n_ineq + 1) / 3 - 1); |
717 | ci->bits = ffs(i: ci->size) - 1; |
718 | ctx = isl_basic_map_get_ctx(bmap); |
719 | ci->index = isl_calloc_array(ctx, isl_int **, ci->size); |
720 | if (!ci->index) |
721 | return isl_stat_error; |
722 | |
723 | return isl_stat_ok; |
724 | } |
725 | |
726 | /* Free the memory allocated by create_constraint_index. |
727 | */ |
728 | static void constraint_index_free(struct isl_constraint_index *ci) |
729 | { |
730 | free(ptr: ci->index); |
731 | } |
732 | |
733 | /* Return the position in ci->index that contains the address of |
734 | * an inequality that is equal to *ineq up to the constant term, |
735 | * provided this address is not identical to "ineq". |
736 | * If there is no such inequality, then return the position where |
737 | * such an inequality should be inserted. |
738 | */ |
739 | static int hash_index_ineq(struct isl_constraint_index *ci, isl_int **ineq) |
740 | { |
741 | int h; |
742 | uint32_t hash = isl_seq_get_hash_bits(p: (*ineq) + 1, len: ci->total, bits: ci->bits); |
743 | for (h = hash; ci->index[h]; h = (h+1) % ci->size) |
744 | if (ineq != ci->index[h] && |
745 | isl_seq_eq(p1: (*ineq) + 1, p2: ci->index[h][0]+1, len: ci->total)) |
746 | break; |
747 | return h; |
748 | } |
749 | |
750 | /* Return the position in ci->index that contains the address of |
751 | * an inequality that is equal to the k'th inequality of "bmap" |
752 | * up to the constant term, provided it does not point to the very |
753 | * same inequality. |
754 | * If there is no such inequality, then return the position where |
755 | * such an inequality should be inserted. |
756 | */ |
757 | static int hash_index(struct isl_constraint_index *ci, |
758 | __isl_keep isl_basic_map *bmap, int k) |
759 | { |
760 | return hash_index_ineq(ci, ineq: &bmap->ineq[k]); |
761 | } |
762 | |
763 | static int set_hash_index(struct isl_constraint_index *ci, |
764 | __isl_keep isl_basic_set *bset, int k) |
765 | { |
766 | return hash_index(ci, bmap: bset, k); |
767 | } |
768 | |
769 | /* Fill in the "ci" data structure with the inequalities of "bset". |
770 | */ |
771 | static isl_stat setup_constraint_index(struct isl_constraint_index *ci, |
772 | __isl_keep isl_basic_set *bset) |
773 | { |
774 | int k, h; |
775 | |
776 | if (create_constraint_index(ci, bmap: bset) < 0) |
777 | return isl_stat_error; |
778 | |
779 | for (k = 0; k < bset->n_ineq; ++k) { |
780 | h = set_hash_index(ci, bset, k); |
781 | ci->index[h] = &bset->ineq[k]; |
782 | } |
783 | |
784 | return isl_stat_ok; |
785 | } |
786 | |
787 | /* Is the inequality ineq (obviously) redundant with respect |
788 | * to the constraints in "ci"? |
789 | * |
790 | * Look for an inequality in "ci" with the same coefficients and then |
791 | * check if the contant term of "ineq" is greater than or equal |
792 | * to the constant term of that inequality. If so, "ineq" is clearly |
793 | * redundant. |
794 | * |
795 | * Note that hash_index_ineq ignores a stored constraint if it has |
796 | * the same address as the passed inequality. It is ok to pass |
797 | * the address of a local variable here since it will never be |
798 | * the same as the address of a constraint in "ci". |
799 | */ |
800 | static isl_bool constraint_index_is_redundant(struct isl_constraint_index *ci, |
801 | isl_int *ineq) |
802 | { |
803 | int h; |
804 | |
805 | h = hash_index_ineq(ci, ineq: &ineq); |
806 | if (!ci->index[h]) |
807 | return isl_bool_false; |
808 | return isl_int_ge(ineq[0], (*ci->index[h])[0]); |
809 | } |
810 | |
811 | /* If we can eliminate more than one div, then we need to make |
812 | * sure we do it from last div to first div, in order not to |
813 | * change the position of the other divs that still need to |
814 | * be removed. |
815 | */ |
816 | static __isl_give isl_basic_map *remove_duplicate_divs( |
817 | __isl_take isl_basic_map *bmap, int *progress) |
818 | { |
819 | unsigned int size; |
820 | int *index; |
821 | int *elim_for; |
822 | int k, l, h; |
823 | int bits; |
824 | struct isl_blk eq; |
825 | isl_size v_div; |
826 | unsigned total; |
827 | struct isl_ctx *ctx; |
828 | |
829 | bmap = isl_basic_map_order_divs(bmap); |
830 | if (!bmap || bmap->n_div <= 1) |
831 | return bmap; |
832 | |
833 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
834 | if (v_div < 0) |
835 | return isl_basic_map_free(bmap); |
836 | total = v_div + bmap->n_div; |
837 | |
838 | ctx = bmap->ctx; |
839 | for (k = bmap->n_div - 1; k >= 0; --k) |
840 | if (!isl_int_is_zero(bmap->div[k][0])) |
841 | break; |
842 | if (k <= 0) |
843 | return bmap; |
844 | |
845 | size = round_up(v: 4 * bmap->n_div / 3 - 1); |
846 | if (size == 0) |
847 | return bmap; |
848 | elim_for = isl_calloc_array(ctx, int, bmap->n_div); |
849 | bits = ffs(i: size) - 1; |
850 | index = isl_calloc_array(ctx, int, size); |
851 | if (!elim_for || !index) |
852 | goto out; |
853 | eq = isl_blk_alloc(ctx, n: 1+total); |
854 | if (isl_blk_is_error(block: eq)) |
855 | goto out; |
856 | |
857 | isl_seq_clr(p: eq.data, len: 1+total); |
858 | index[isl_seq_get_hash_bits(p: bmap->div[k], len: 2+total, bits)] = k + 1; |
859 | for (--k; k >= 0; --k) { |
860 | uint32_t hash; |
861 | |
862 | if (isl_int_is_zero(bmap->div[k][0])) |
863 | continue; |
864 | |
865 | hash = isl_seq_get_hash_bits(p: bmap->div[k], len: 2+total, bits); |
866 | for (h = hash; index[h]; h = (h+1) % size) |
867 | if (isl_seq_eq(p1: bmap->div[k], |
868 | p2: bmap->div[index[h]-1], len: 2+total)) |
869 | break; |
870 | if (index[h]) { |
871 | *progress = 1; |
872 | l = index[h] - 1; |
873 | elim_for[l] = k + 1; |
874 | } |
875 | index[h] = k+1; |
876 | } |
877 | for (l = bmap->n_div - 1; l >= 0; --l) { |
878 | if (!elim_for[l]) |
879 | continue; |
880 | k = elim_for[l] - 1; |
881 | isl_int_set_si(eq.data[1 + v_div + k], -1); |
882 | isl_int_set_si(eq.data[1 + v_div + l], 1); |
883 | bmap = eliminate_div(bmap, eq: eq.data, div: l, keep_divs: 1); |
884 | if (!bmap) |
885 | break; |
886 | isl_int_set_si(eq.data[1 + v_div + k], 0); |
887 | isl_int_set_si(eq.data[1 + v_div + l], 0); |
888 | } |
889 | |
890 | isl_blk_free(ctx, block: eq); |
891 | out: |
892 | free(ptr: index); |
893 | free(ptr: elim_for); |
894 | return bmap; |
895 | } |
896 | |
897 | static int n_pure_div_eq(__isl_keep isl_basic_map *bmap) |
898 | { |
899 | int i, j; |
900 | isl_size v_div; |
901 | |
902 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
903 | if (v_div < 0) |
904 | return -1; |
905 | for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) { |
906 | while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + v_div + j])) |
907 | --j; |
908 | if (j < 0) |
909 | break; |
910 | if (isl_seq_first_non_zero(p: bmap->eq[i] + 1 + v_div, len: j) != -1) |
911 | return 0; |
912 | } |
913 | return i; |
914 | } |
915 | |
916 | /* Normalize divs that appear in equalities. |
917 | * |
918 | * In particular, we assume that bmap contains some equalities |
919 | * of the form |
920 | * |
921 | * a x = m * e_i |
922 | * |
923 | * and we want to replace the set of e_i by a minimal set and |
924 | * such that the new e_i have a canonical representation in terms |
925 | * of the vector x. |
926 | * If any of the equalities involves more than one divs, then |
927 | * we currently simply bail out. |
928 | * |
929 | * Let us first additionally assume that all equalities involve |
930 | * a div. The equalities then express modulo constraints on the |
931 | * remaining variables and we can use "parameter compression" |
932 | * to find a minimal set of constraints. The result is a transformation |
933 | * |
934 | * x = T(x') = x_0 + G x' |
935 | * |
936 | * with G a lower-triangular matrix with all elements below the diagonal |
937 | * non-negative and smaller than the diagonal element on the same row. |
938 | * We first normalize x_0 by making the same property hold in the affine |
939 | * T matrix. |
940 | * The rows i of G with a 1 on the diagonal do not impose any modulo |
941 | * constraint and simply express x_i = x'_i. |
942 | * For each of the remaining rows i, we introduce a div and a corresponding |
943 | * equality. In particular |
944 | * |
945 | * g_ii e_j = x_i - g_i(x') |
946 | * |
947 | * where each x'_k is replaced either by x_k (if g_kk = 1) or the |
948 | * corresponding div (if g_kk != 1). |
949 | * |
950 | * If there are any equalities not involving any div, then we |
951 | * first apply a variable compression on the variables x: |
952 | * |
953 | * x = C x'' x'' = C_2 x |
954 | * |
955 | * and perform the above parameter compression on A C instead of on A. |
956 | * The resulting compression is then of the form |
957 | * |
958 | * x'' = T(x') = x_0 + G x' |
959 | * |
960 | * and in constructing the new divs and the corresponding equalities, |
961 | * we have to replace each x'', i.e., the x'_k with (g_kk = 1), |
962 | * by the corresponding row from C_2. |
963 | */ |
964 | static __isl_give isl_basic_map *normalize_divs(__isl_take isl_basic_map *bmap, |
965 | int *progress) |
966 | { |
967 | int i, j, k; |
968 | isl_size v_div; |
969 | int div_eq; |
970 | struct isl_mat *B; |
971 | struct isl_vec *d; |
972 | struct isl_mat *T = NULL; |
973 | struct isl_mat *C = NULL; |
974 | struct isl_mat *C2 = NULL; |
975 | isl_int v; |
976 | int *pos = NULL; |
977 | int dropped, needed; |
978 | |
979 | if (!bmap) |
980 | return NULL; |
981 | |
982 | if (bmap->n_div == 0) |
983 | return bmap; |
984 | |
985 | if (bmap->n_eq == 0) |
986 | return bmap; |
987 | |
988 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS)) |
989 | return bmap; |
990 | |
991 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
992 | div_eq = n_pure_div_eq(bmap); |
993 | if (v_div < 0 || div_eq < 0) |
994 | return isl_basic_map_free(bmap); |
995 | if (div_eq == 0) |
996 | return bmap; |
997 | |
998 | if (div_eq < bmap->n_eq) { |
999 | B = isl_mat_sub_alloc6(ctx: bmap->ctx, row: bmap->eq, first_row: div_eq, |
1000 | n_row: bmap->n_eq - div_eq, first_col: 0, n_col: 1 + v_div); |
1001 | C = isl_mat_variable_compression(B, T2: &C2); |
1002 | if (!C || !C2) |
1003 | goto error; |
1004 | if (C->n_col == 0) { |
1005 | bmap = isl_basic_map_set_to_empty(bmap); |
1006 | isl_mat_free(mat: C); |
1007 | isl_mat_free(mat: C2); |
1008 | goto done; |
1009 | } |
1010 | } |
1011 | |
1012 | d = isl_vec_alloc(ctx: bmap->ctx, size: div_eq); |
1013 | if (!d) |
1014 | goto error; |
1015 | for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) { |
1016 | while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + v_div + j])) |
1017 | --j; |
1018 | isl_int_set(d->block.data[i], bmap->eq[i][1 + v_div + j]); |
1019 | } |
1020 | B = isl_mat_sub_alloc6(ctx: bmap->ctx, row: bmap->eq, first_row: 0, n_row: div_eq, first_col: 0, n_col: 1 + v_div); |
1021 | |
1022 | if (C) { |
1023 | B = isl_mat_product(left: B, right: C); |
1024 | C = NULL; |
1025 | } |
1026 | |
1027 | T = isl_mat_parameter_compression(B, d); |
1028 | if (!T) |
1029 | goto error; |
1030 | if (T->n_col == 0) { |
1031 | bmap = isl_basic_map_set_to_empty(bmap); |
1032 | isl_mat_free(mat: C2); |
1033 | isl_mat_free(mat: T); |
1034 | goto done; |
1035 | } |
1036 | isl_int_init(v); |
1037 | for (i = 0; i < T->n_row - 1; ++i) { |
1038 | isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]); |
1039 | if (isl_int_is_zero(v)) |
1040 | continue; |
1041 | isl_mat_col_submul(mat: T, dst_col: 0, f: v, src_col: 1 + i); |
1042 | } |
1043 | isl_int_clear(v); |
1044 | pos = isl_alloc_array(bmap->ctx, int, T->n_row); |
1045 | if (!pos) |
1046 | goto error; |
1047 | /* We have to be careful because dropping equalities may reorder them */ |
1048 | dropped = 0; |
1049 | for (j = bmap->n_div - 1; j >= 0; --j) { |
1050 | for (i = 0; i < bmap->n_eq; ++i) |
1051 | if (!isl_int_is_zero(bmap->eq[i][1 + v_div + j])) |
1052 | break; |
1053 | if (i < bmap->n_eq) { |
1054 | bmap = isl_basic_map_drop_div(bmap, div: j); |
1055 | if (isl_basic_map_drop_equality(bmap, pos: i) < 0) |
1056 | goto error; |
1057 | ++dropped; |
1058 | } |
1059 | } |
1060 | pos[0] = 0; |
1061 | needed = 0; |
1062 | for (i = 1; i < T->n_row; ++i) { |
1063 | if (isl_int_is_one(T->row[i][i])) |
1064 | pos[i] = i; |
1065 | else |
1066 | needed++; |
1067 | } |
1068 | if (needed > dropped) { |
1069 | bmap = isl_basic_map_extend(base: bmap, extra: needed, n_eq: needed, n_ineq: 0); |
1070 | if (!bmap) |
1071 | goto error; |
1072 | } |
1073 | for (i = 1; i < T->n_row; ++i) { |
1074 | if (isl_int_is_one(T->row[i][i])) |
1075 | continue; |
1076 | k = isl_basic_map_alloc_div(bmap); |
1077 | pos[i] = 1 + v_div + k; |
1078 | isl_seq_clr(p: bmap->div[k] + 1, len: 1 + v_div + bmap->n_div); |
1079 | isl_int_set(bmap->div[k][0], T->row[i][i]); |
1080 | if (C2) |
1081 | isl_seq_cpy(dst: bmap->div[k] + 1, src: C2->row[i], len: 1 + v_div); |
1082 | else |
1083 | isl_int_set_si(bmap->div[k][1 + i], 1); |
1084 | for (j = 0; j < i; ++j) { |
1085 | if (isl_int_is_zero(T->row[i][j])) |
1086 | continue; |
1087 | if (pos[j] < T->n_row && C2) |
1088 | isl_seq_submul(dst: bmap->div[k] + 1, f: T->row[i][j], |
1089 | src: C2->row[pos[j]], len: 1 + v_div); |
1090 | else |
1091 | isl_int_neg(bmap->div[k][1 + pos[j]], |
1092 | T->row[i][j]); |
1093 | } |
1094 | j = isl_basic_map_alloc_equality(bmap); |
1095 | isl_seq_neg(dst: bmap->eq[j], src: bmap->div[k]+1, len: 1+v_div+bmap->n_div); |
1096 | isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]); |
1097 | } |
1098 | free(ptr: pos); |
1099 | isl_mat_free(mat: C2); |
1100 | isl_mat_free(mat: T); |
1101 | |
1102 | if (progress) |
1103 | *progress = 1; |
1104 | done: |
1105 | ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS); |
1106 | |
1107 | return bmap; |
1108 | error: |
1109 | free(ptr: pos); |
1110 | isl_mat_free(mat: C); |
1111 | isl_mat_free(mat: C2); |
1112 | isl_mat_free(mat: T); |
1113 | isl_basic_map_free(bmap); |
1114 | return NULL; |
1115 | } |
1116 | |
1117 | static __isl_give isl_basic_map *set_div_from_lower_bound( |
1118 | __isl_take isl_basic_map *bmap, int div, int ineq) |
1119 | { |
1120 | unsigned total = isl_basic_map_offset(bmap, type: isl_dim_div); |
1121 | |
1122 | isl_seq_neg(dst: bmap->div[div] + 1, src: bmap->ineq[ineq], len: total + bmap->n_div); |
1123 | isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]); |
1124 | isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]); |
1125 | isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1); |
1126 | isl_int_set_si(bmap->div[div][1 + total + div], 0); |
1127 | |
1128 | return bmap; |
1129 | } |
1130 | |
1131 | /* Check whether it is ok to define a div based on an inequality. |
1132 | * To avoid the introduction of circular definitions of divs, we |
1133 | * do not allow such a definition if the resulting expression would refer to |
1134 | * any other undefined divs or if any known div is defined in |
1135 | * terms of the unknown div. |
1136 | */ |
1137 | static isl_bool ok_to_set_div_from_bound(__isl_keep isl_basic_map *bmap, |
1138 | int div, int ineq) |
1139 | { |
1140 | int j; |
1141 | unsigned total = isl_basic_map_offset(bmap, type: isl_dim_div); |
1142 | |
1143 | /* Not defined in terms of unknown divs */ |
1144 | for (j = 0; j < bmap->n_div; ++j) { |
1145 | if (div == j) |
1146 | continue; |
1147 | if (isl_int_is_zero(bmap->ineq[ineq][total + j])) |
1148 | continue; |
1149 | if (isl_int_is_zero(bmap->div[j][0])) |
1150 | return isl_bool_false; |
1151 | } |
1152 | |
1153 | /* No other div defined in terms of this one => avoid loops */ |
1154 | for (j = 0; j < bmap->n_div; ++j) { |
1155 | if (div == j) |
1156 | continue; |
1157 | if (isl_int_is_zero(bmap->div[j][0])) |
1158 | continue; |
1159 | if (!isl_int_is_zero(bmap->div[j][1 + total + div])) |
1160 | return isl_bool_false; |
1161 | } |
1162 | |
1163 | return isl_bool_true; |
1164 | } |
1165 | |
1166 | /* Would an expression for div "div" based on inequality "ineq" of "bmap" |
1167 | * be a better expression than the current one? |
1168 | * |
1169 | * If we do not have any expression yet, then any expression would be better. |
1170 | * Otherwise we check if the last variable involved in the inequality |
1171 | * (disregarding the div that it would define) is in an earlier position |
1172 | * than the last variable involved in the current div expression. |
1173 | */ |
1174 | static isl_bool better_div_constraint(__isl_keep isl_basic_map *bmap, |
1175 | int div, int ineq) |
1176 | { |
1177 | unsigned total = isl_basic_map_offset(bmap, type: isl_dim_div); |
1178 | int last_div; |
1179 | int last_ineq; |
1180 | |
1181 | if (isl_int_is_zero(bmap->div[div][0])) |
1182 | return isl_bool_true; |
1183 | |
1184 | if (isl_seq_last_non_zero(p: bmap->ineq[ineq] + total + div + 1, |
1185 | len: bmap->n_div - (div + 1)) >= 0) |
1186 | return isl_bool_false; |
1187 | |
1188 | last_ineq = isl_seq_last_non_zero(p: bmap->ineq[ineq], len: total + div); |
1189 | last_div = isl_seq_last_non_zero(p: bmap->div[div] + 1, |
1190 | len: total + bmap->n_div); |
1191 | |
1192 | return last_ineq < last_div; |
1193 | } |
1194 | |
1195 | /* Given two constraints "k" and "l" that are opposite to each other, |
1196 | * except for the constant term, check if we can use them |
1197 | * to obtain an expression for one of the hitherto unknown divs or |
1198 | * a "better" expression for a div for which we already have an expression. |
1199 | * "sum" is the sum of the constant terms of the constraints. |
1200 | * If this sum is strictly smaller than the coefficient of one |
1201 | * of the divs, then this pair can be used to define the div. |
1202 | * To avoid the introduction of circular definitions of divs, we |
1203 | * do not use the pair if the resulting expression would refer to |
1204 | * any other undefined divs or if any known div is defined in |
1205 | * terms of the unknown div. |
1206 | */ |
1207 | static __isl_give isl_basic_map *check_for_div_constraints( |
1208 | __isl_take isl_basic_map *bmap, int k, int l, isl_int sum, |
1209 | int *progress) |
1210 | { |
1211 | int i; |
1212 | unsigned total = isl_basic_map_offset(bmap, type: isl_dim_div); |
1213 | |
1214 | for (i = 0; i < bmap->n_div; ++i) { |
1215 | isl_bool set_div; |
1216 | |
1217 | if (isl_int_is_zero(bmap->ineq[k][total + i])) |
1218 | continue; |
1219 | if (isl_int_abs_ge(sum, bmap->ineq[k][total + i])) |
1220 | continue; |
1221 | set_div = better_div_constraint(bmap, div: i, ineq: k); |
1222 | if (set_div >= 0 && set_div) |
1223 | set_div = ok_to_set_div_from_bound(bmap, div: i, ineq: k); |
1224 | if (set_div < 0) |
1225 | return isl_basic_map_free(bmap); |
1226 | if (!set_div) |
1227 | break; |
1228 | if (isl_int_is_pos(bmap->ineq[k][total + i])) |
1229 | bmap = set_div_from_lower_bound(bmap, div: i, ineq: k); |
1230 | else |
1231 | bmap = set_div_from_lower_bound(bmap, div: i, ineq: l); |
1232 | if (progress) |
1233 | *progress = 1; |
1234 | break; |
1235 | } |
1236 | return bmap; |
1237 | } |
1238 | |
1239 | __isl_give isl_basic_map *isl_basic_map_remove_duplicate_constraints( |
1240 | __isl_take isl_basic_map *bmap, int *progress, int detect_divs) |
1241 | { |
1242 | struct isl_constraint_index ci; |
1243 | int k, l, h; |
1244 | isl_size total = isl_basic_map_dim(bmap, type: isl_dim_all); |
1245 | isl_int sum; |
1246 | |
1247 | if (total < 0 || bmap->n_ineq <= 1) |
1248 | return bmap; |
1249 | |
1250 | if (create_constraint_index(ci: &ci, bmap) < 0) |
1251 | return bmap; |
1252 | |
1253 | h = isl_seq_get_hash_bits(p: bmap->ineq[0] + 1, len: total, bits: ci.bits); |
1254 | ci.index[h] = &bmap->ineq[0]; |
1255 | for (k = 1; k < bmap->n_ineq; ++k) { |
1256 | h = hash_index(ci: &ci, bmap, k); |
1257 | if (!ci.index[h]) { |
1258 | ci.index[h] = &bmap->ineq[k]; |
1259 | continue; |
1260 | } |
1261 | if (progress) |
1262 | *progress = 1; |
1263 | l = ci.index[h] - &bmap->ineq[0]; |
1264 | if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0])) |
1265 | swap_inequality(bmap, a: k, b: l); |
1266 | isl_basic_map_drop_inequality(bmap, pos: k); |
1267 | --k; |
1268 | } |
1269 | isl_int_init(sum); |
1270 | for (k = 0; bmap && k < bmap->n_ineq-1; ++k) { |
1271 | isl_seq_neg(dst: bmap->ineq[k]+1, src: bmap->ineq[k]+1, len: total); |
1272 | h = hash_index(ci: &ci, bmap, k); |
1273 | isl_seq_neg(dst: bmap->ineq[k]+1, src: bmap->ineq[k]+1, len: total); |
1274 | if (!ci.index[h]) |
1275 | continue; |
1276 | l = ci.index[h] - &bmap->ineq[0]; |
1277 | isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]); |
1278 | if (isl_int_is_pos(sum)) { |
1279 | if (detect_divs) |
1280 | bmap = check_for_div_constraints(bmap, k, l, |
1281 | sum, progress); |
1282 | continue; |
1283 | } |
1284 | if (isl_int_is_zero(sum)) { |
1285 | /* We need to break out of the loop after these |
1286 | * changes since the contents of the hash |
1287 | * will no longer be valid. |
1288 | * Plus, we probably we want to regauss first. |
1289 | */ |
1290 | if (progress) |
1291 | *progress = 1; |
1292 | isl_basic_map_drop_inequality(bmap, pos: l); |
1293 | isl_basic_map_inequality_to_equality(bmap, pos: k); |
1294 | } else |
1295 | bmap = isl_basic_map_set_to_empty(bmap); |
1296 | break; |
1297 | } |
1298 | isl_int_clear(sum); |
1299 | |
1300 | constraint_index_free(ci: &ci); |
1301 | return bmap; |
1302 | } |
1303 | |
1304 | /* Detect all pairs of inequalities that form an equality. |
1305 | * |
1306 | * isl_basic_map_remove_duplicate_constraints detects at most one such pair. |
1307 | * Call it repeatedly while it is making progress. |
1308 | */ |
1309 | __isl_give isl_basic_map *isl_basic_map_detect_inequality_pairs( |
1310 | __isl_take isl_basic_map *bmap, int *progress) |
1311 | { |
1312 | int duplicate; |
1313 | |
1314 | do { |
1315 | duplicate = 0; |
1316 | bmap = isl_basic_map_remove_duplicate_constraints(bmap, |
1317 | progress: &duplicate, detect_divs: 0); |
1318 | if (progress && duplicate) |
1319 | *progress = 1; |
1320 | } while (duplicate); |
1321 | |
1322 | return bmap; |
1323 | } |
1324 | |
1325 | /* Given a known integer division "div" that is not integral |
1326 | * (with denominator 1), eliminate it from the constraints in "bmap" |
1327 | * where it appears with a (positive or negative) unit coefficient. |
1328 | * If "progress" is not NULL, then it gets set if the elimination |
1329 | * results in any changes. |
1330 | * |
1331 | * That is, replace |
1332 | * |
1333 | * floor(e/m) + f >= 0 |
1334 | * |
1335 | * by |
1336 | * |
1337 | * e + m f >= 0 |
1338 | * |
1339 | * and |
1340 | * |
1341 | * -floor(e/m) + f >= 0 |
1342 | * |
1343 | * by |
1344 | * |
1345 | * -e + m f + m - 1 >= 0 |
1346 | * |
1347 | * The first conversion is valid because floor(e/m) >= -f is equivalent |
1348 | * to e/m >= -f because -f is an integral expression. |
1349 | * The second conversion follows from the fact that |
1350 | * |
1351 | * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m) |
1352 | * |
1353 | * |
1354 | * Note that one of the div constraints may have been eliminated |
1355 | * due to being redundant with respect to the constraint that is |
1356 | * being modified by this function. The modified constraint may |
1357 | * no longer imply this div constraint, so we add it back to make |
1358 | * sure we do not lose any information. |
1359 | */ |
1360 | static __isl_give isl_basic_map *eliminate_unit_div( |
1361 | __isl_take isl_basic_map *bmap, int div, int *progress) |
1362 | { |
1363 | int j; |
1364 | isl_size v_div, dim; |
1365 | isl_ctx *ctx; |
1366 | |
1367 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
1368 | dim = isl_basic_map_dim(bmap, type: isl_dim_all); |
1369 | if (v_div < 0 || dim < 0) |
1370 | return isl_basic_map_free(bmap); |
1371 | |
1372 | ctx = isl_basic_map_get_ctx(bmap); |
1373 | |
1374 | for (j = 0; j < bmap->n_ineq; ++j) { |
1375 | int s; |
1376 | |
1377 | if (!isl_int_is_one(bmap->ineq[j][1 + v_div + div]) && |
1378 | !isl_int_is_negone(bmap->ineq[j][1 + v_div + div])) |
1379 | continue; |
1380 | |
1381 | if (progress) |
1382 | *progress = 1; |
1383 | |
1384 | s = isl_int_sgn(bmap->ineq[j][1 + v_div + div]); |
1385 | isl_int_set_si(bmap->ineq[j][1 + v_div + div], 0); |
1386 | if (s < 0) |
1387 | isl_seq_combine(dst: bmap->ineq[j], |
1388 | m1: ctx->negone, src1: bmap->div[div] + 1, |
1389 | m2: bmap->div[div][0], src2: bmap->ineq[j], len: 1 + dim); |
1390 | else |
1391 | isl_seq_combine(dst: bmap->ineq[j], |
1392 | m1: ctx->one, src1: bmap->div[div] + 1, |
1393 | m2: bmap->div[div][0], src2: bmap->ineq[j], len: 1 + dim); |
1394 | if (s < 0) { |
1395 | isl_int_add(bmap->ineq[j][0], |
1396 | bmap->ineq[j][0], bmap->div[div][0]); |
1397 | isl_int_sub_ui(bmap->ineq[j][0], |
1398 | bmap->ineq[j][0], 1); |
1399 | } |
1400 | |
1401 | bmap = isl_basic_map_extend_constraints(base: bmap, n_eq: 0, n_ineq: 1); |
1402 | bmap = isl_basic_map_add_div_constraint(bmap, div, sign: s); |
1403 | if (!bmap) |
1404 | return NULL; |
1405 | } |
1406 | |
1407 | return bmap; |
1408 | } |
1409 | |
1410 | /* Eliminate selected known divs from constraints where they appear with |
1411 | * a (positive or negative) unit coefficient. |
1412 | * In particular, only handle those for which "select" returns isl_bool_true. |
1413 | * If "progress" is not NULL, then it gets set if the elimination |
1414 | * results in any changes. |
1415 | * |
1416 | * We skip integral divs, i.e., those with denominator 1, as we would |
1417 | * risk eliminating the div from the div constraints. We do not need |
1418 | * to handle those divs here anyway since the div constraints will turn |
1419 | * out to form an equality and this equality can then be used to eliminate |
1420 | * the div from all constraints. |
1421 | */ |
1422 | static __isl_give isl_basic_map *eliminate_selected_unit_divs( |
1423 | __isl_take isl_basic_map *bmap, |
1424 | isl_bool (*select)(__isl_keep isl_basic_map *bmap, int div), |
1425 | int *progress) |
1426 | { |
1427 | int i; |
1428 | |
1429 | if (!bmap) |
1430 | return NULL; |
1431 | |
1432 | for (i = 0; i < bmap->n_div; ++i) { |
1433 | isl_bool selected; |
1434 | |
1435 | if (isl_int_is_zero(bmap->div[i][0])) |
1436 | continue; |
1437 | if (isl_int_is_one(bmap->div[i][0])) |
1438 | continue; |
1439 | selected = select(bmap, i); |
1440 | if (selected < 0) |
1441 | return isl_basic_map_free(bmap); |
1442 | if (!selected) |
1443 | continue; |
1444 | bmap = eliminate_unit_div(bmap, div: i, progress); |
1445 | if (!bmap) |
1446 | return NULL; |
1447 | } |
1448 | |
1449 | return bmap; |
1450 | } |
1451 | |
1452 | /* eliminate_selected_unit_divs callback that selects every |
1453 | * integer division. |
1454 | */ |
1455 | static isl_bool is_any_div(__isl_keep isl_basic_map *bmap, int div) |
1456 | { |
1457 | return isl_bool_true; |
1458 | } |
1459 | |
1460 | /* Eliminate known divs from constraints where they appear with |
1461 | * a (positive or negative) unit coefficient. |
1462 | * If "progress" is not NULL, then it gets set if the elimination |
1463 | * results in any changes. |
1464 | */ |
1465 | static __isl_give isl_basic_map *eliminate_unit_divs( |
1466 | __isl_take isl_basic_map *bmap, int *progress) |
1467 | { |
1468 | return eliminate_selected_unit_divs(bmap, select: &is_any_div, progress); |
1469 | } |
1470 | |
1471 | /* eliminate_selected_unit_divs callback that selects |
1472 | * integer divisions that only appear with |
1473 | * a (positive or negative) unit coefficient |
1474 | * (outside their div constraints). |
1475 | */ |
1476 | static isl_bool is_pure_unit_div(__isl_keep isl_basic_map *bmap, int div) |
1477 | { |
1478 | int i; |
1479 | isl_size v_div, n_ineq; |
1480 | |
1481 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
1482 | n_ineq = isl_basic_map_n_inequality(bmap); |
1483 | if (v_div < 0 || n_ineq < 0) |
1484 | return isl_bool_error; |
1485 | |
1486 | for (i = 0; i < n_ineq; ++i) { |
1487 | isl_bool skip; |
1488 | |
1489 | if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div])) |
1490 | continue; |
1491 | skip = isl_basic_map_is_div_constraint(bmap, |
1492 | constraint: bmap->ineq[i], div); |
1493 | if (skip < 0) |
1494 | return isl_bool_error; |
1495 | if (skip) |
1496 | continue; |
1497 | if (!isl_int_is_one(bmap->ineq[i][1 + v_div + div]) && |
1498 | !isl_int_is_negone(bmap->ineq[i][1 + v_div + div])) |
1499 | return isl_bool_false; |
1500 | } |
1501 | |
1502 | return isl_bool_true; |
1503 | } |
1504 | |
1505 | /* Eliminate known divs from constraints where they appear with |
1506 | * a (positive or negative) unit coefficient, |
1507 | * but only if they do not appear in any other constraints |
1508 | * (other than the div constraints). |
1509 | */ |
1510 | __isl_give isl_basic_map *isl_basic_map_eliminate_pure_unit_divs( |
1511 | __isl_take isl_basic_map *bmap) |
1512 | { |
1513 | return eliminate_selected_unit_divs(bmap, select: &is_pure_unit_div, NULL); |
1514 | } |
1515 | |
1516 | __isl_give isl_basic_map *isl_basic_map_simplify(__isl_take isl_basic_map *bmap) |
1517 | { |
1518 | int progress = 1; |
1519 | if (!bmap) |
1520 | return NULL; |
1521 | while (progress) { |
1522 | isl_bool empty; |
1523 | |
1524 | progress = 0; |
1525 | empty = isl_basic_map_plain_is_empty(bmap); |
1526 | if (empty < 0) |
1527 | return isl_basic_map_free(bmap); |
1528 | if (empty) |
1529 | break; |
1530 | bmap = isl_basic_map_normalize_constraints(bmap); |
1531 | bmap = reduce_div_coefficients(bmap); |
1532 | bmap = normalize_div_expressions(bmap); |
1533 | bmap = remove_duplicate_divs(bmap, progress: &progress); |
1534 | bmap = eliminate_unit_divs(bmap, progress: &progress); |
1535 | bmap = eliminate_divs_eq(bmap, progress: &progress); |
1536 | bmap = eliminate_divs_ineq(bmap, progress: &progress); |
1537 | bmap = isl_basic_map_gauss(bmap, progress: &progress); |
1538 | /* requires equalities in normal form */ |
1539 | bmap = normalize_divs(bmap, progress: &progress); |
1540 | bmap = isl_basic_map_remove_duplicate_constraints(bmap, |
1541 | progress: &progress, detect_divs: 1); |
1542 | if (bmap && progress) |
1543 | ISL_F_CLR(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS); |
1544 | } |
1545 | return bmap; |
1546 | } |
1547 | |
1548 | __isl_give isl_basic_set *isl_basic_set_simplify( |
1549 | __isl_take isl_basic_set *bset) |
1550 | { |
1551 | return bset_from_bmap(bmap: isl_basic_map_simplify(bmap: bset_to_bmap(bset))); |
1552 | } |
1553 | |
1554 | |
1555 | isl_bool isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap, |
1556 | isl_int *constraint, unsigned div) |
1557 | { |
1558 | unsigned pos; |
1559 | |
1560 | if (!bmap) |
1561 | return isl_bool_error; |
1562 | |
1563 | pos = isl_basic_map_offset(bmap, type: isl_dim_div) + div; |
1564 | |
1565 | if (isl_int_eq(constraint[pos], bmap->div[div][0])) { |
1566 | int neg; |
1567 | isl_int_sub(bmap->div[div][1], |
1568 | bmap->div[div][1], bmap->div[div][0]); |
1569 | isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1); |
1570 | neg = isl_seq_is_neg(p1: constraint, p2: bmap->div[div]+1, len: pos); |
1571 | isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1); |
1572 | isl_int_add(bmap->div[div][1], |
1573 | bmap->div[div][1], bmap->div[div][0]); |
1574 | if (!neg) |
1575 | return isl_bool_false; |
1576 | if (isl_seq_first_non_zero(p: constraint+pos+1, |
1577 | len: bmap->n_div-div-1) != -1) |
1578 | return isl_bool_false; |
1579 | } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) { |
1580 | if (!isl_seq_eq(p1: constraint, p2: bmap->div[div]+1, len: pos)) |
1581 | return isl_bool_false; |
1582 | if (isl_seq_first_non_zero(p: constraint+pos+1, |
1583 | len: bmap->n_div-div-1) != -1) |
1584 | return isl_bool_false; |
1585 | } else |
1586 | return isl_bool_false; |
1587 | |
1588 | return isl_bool_true; |
1589 | } |
1590 | |
1591 | /* If the only constraints a div d=floor(f/m) |
1592 | * appears in are its two defining constraints |
1593 | * |
1594 | * f - m d >=0 |
1595 | * -(f - (m - 1)) + m d >= 0 |
1596 | * |
1597 | * then it can safely be removed. |
1598 | */ |
1599 | static isl_bool div_is_redundant(__isl_keep isl_basic_map *bmap, int div) |
1600 | { |
1601 | int i; |
1602 | isl_size v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
1603 | unsigned pos = 1 + v_div + div; |
1604 | |
1605 | if (v_div < 0) |
1606 | return isl_bool_error; |
1607 | |
1608 | for (i = 0; i < bmap->n_eq; ++i) |
1609 | if (!isl_int_is_zero(bmap->eq[i][pos])) |
1610 | return isl_bool_false; |
1611 | |
1612 | for (i = 0; i < bmap->n_ineq; ++i) { |
1613 | isl_bool red; |
1614 | |
1615 | if (isl_int_is_zero(bmap->ineq[i][pos])) |
1616 | continue; |
1617 | red = isl_basic_map_is_div_constraint(bmap, constraint: bmap->ineq[i], div); |
1618 | if (red < 0 || !red) |
1619 | return red; |
1620 | } |
1621 | |
1622 | for (i = 0; i < bmap->n_div; ++i) { |
1623 | if (isl_int_is_zero(bmap->div[i][0])) |
1624 | continue; |
1625 | if (!isl_int_is_zero(bmap->div[i][1+pos])) |
1626 | return isl_bool_false; |
1627 | } |
1628 | |
1629 | return isl_bool_true; |
1630 | } |
1631 | |
1632 | /* |
1633 | * Remove divs that don't occur in any of the constraints or other divs. |
1634 | * These can arise when dropping constraints from a basic map or |
1635 | * when the divs of a basic map have been temporarily aligned |
1636 | * with the divs of another basic map. |
1637 | */ |
1638 | static __isl_give isl_basic_map *remove_redundant_divs( |
1639 | __isl_take isl_basic_map *bmap) |
1640 | { |
1641 | int i; |
1642 | isl_size v_div; |
1643 | |
1644 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
1645 | if (v_div < 0) |
1646 | return isl_basic_map_free(bmap); |
1647 | |
1648 | for (i = bmap->n_div-1; i >= 0; --i) { |
1649 | isl_bool redundant; |
1650 | |
1651 | redundant = div_is_redundant(bmap, div: i); |
1652 | if (redundant < 0) |
1653 | return isl_basic_map_free(bmap); |
1654 | if (!redundant) |
1655 | continue; |
1656 | bmap = isl_basic_map_drop_constraints_involving(bmap, |
1657 | first: v_div + i, n: 1); |
1658 | bmap = isl_basic_map_drop_div(bmap, div: i); |
1659 | } |
1660 | return bmap; |
1661 | } |
1662 | |
1663 | /* Mark "bmap" as final, without checking for obviously redundant |
1664 | * integer divisions. This function should be used when "bmap" |
1665 | * is known not to involve any such integer divisions. |
1666 | */ |
1667 | __isl_give isl_basic_map *isl_basic_map_mark_final( |
1668 | __isl_take isl_basic_map *bmap) |
1669 | { |
1670 | if (!bmap) |
1671 | return NULL; |
1672 | ISL_F_SET(bmap, ISL_BASIC_SET_FINAL); |
1673 | return bmap; |
1674 | } |
1675 | |
1676 | /* Mark "bmap" as final, after removing obviously redundant integer divisions. |
1677 | */ |
1678 | __isl_give isl_basic_map *isl_basic_map_finalize(__isl_take isl_basic_map *bmap) |
1679 | { |
1680 | bmap = remove_redundant_divs(bmap); |
1681 | bmap = isl_basic_map_mark_final(bmap); |
1682 | return bmap; |
1683 | } |
1684 | |
1685 | __isl_give isl_basic_set *isl_basic_set_finalize( |
1686 | __isl_take isl_basic_set *bset) |
1687 | { |
1688 | return bset_from_bmap(bmap: isl_basic_map_finalize(bmap: bset_to_bmap(bset))); |
1689 | } |
1690 | |
1691 | /* Remove definition of any div that is defined in terms of the given variable. |
1692 | * The div itself is not removed. Functions such as |
1693 | * eliminate_divs_ineq depend on the other divs remaining in place. |
1694 | */ |
1695 | static __isl_give isl_basic_map *remove_dependent_vars( |
1696 | __isl_take isl_basic_map *bmap, int pos) |
1697 | { |
1698 | int i; |
1699 | |
1700 | if (!bmap) |
1701 | return NULL; |
1702 | |
1703 | for (i = 0; i < bmap->n_div; ++i) { |
1704 | if (isl_int_is_zero(bmap->div[i][0])) |
1705 | continue; |
1706 | if (isl_int_is_zero(bmap->div[i][1+1+pos])) |
1707 | continue; |
1708 | bmap = isl_basic_map_mark_div_unknown(bmap, div: i); |
1709 | if (!bmap) |
1710 | return NULL; |
1711 | } |
1712 | return bmap; |
1713 | } |
1714 | |
1715 | /* Eliminate the specified variables from the constraints using |
1716 | * Fourier-Motzkin. The variables themselves are not removed. |
1717 | */ |
1718 | __isl_give isl_basic_map *isl_basic_map_eliminate_vars( |
1719 | __isl_take isl_basic_map *bmap, unsigned pos, unsigned n) |
1720 | { |
1721 | int d; |
1722 | int i, j, k; |
1723 | isl_size total; |
1724 | int need_gauss = 0; |
1725 | |
1726 | if (n == 0) |
1727 | return bmap; |
1728 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
1729 | if (total < 0) |
1730 | return isl_basic_map_free(bmap); |
1731 | |
1732 | bmap = isl_basic_map_cow(bmap); |
1733 | for (d = pos + n - 1; d >= 0 && d >= pos; --d) |
1734 | bmap = remove_dependent_vars(bmap, pos: d); |
1735 | if (!bmap) |
1736 | return NULL; |
1737 | |
1738 | for (d = pos + n - 1; |
1739 | d >= 0 && d >= total - bmap->n_div && d >= pos; --d) |
1740 | isl_seq_clr(p: bmap->div[d-(total-bmap->n_div)], len: 2+total); |
1741 | for (d = pos + n - 1; d >= 0 && d >= pos; --d) { |
1742 | int n_lower, n_upper; |
1743 | if (!bmap) |
1744 | return NULL; |
1745 | for (i = 0; i < bmap->n_eq; ++i) { |
1746 | if (isl_int_is_zero(bmap->eq[i][1+d])) |
1747 | continue; |
1748 | bmap = eliminate_var_using_equality(bmap, pos: d, |
1749 | eq: bmap->eq[i], keep_divs: 0, NULL); |
1750 | if (isl_basic_map_drop_equality(bmap, pos: i) < 0) |
1751 | return isl_basic_map_free(bmap); |
1752 | need_gauss = 1; |
1753 | break; |
1754 | } |
1755 | if (i < bmap->n_eq) |
1756 | continue; |
1757 | n_lower = 0; |
1758 | n_upper = 0; |
1759 | for (i = 0; i < bmap->n_ineq; ++i) { |
1760 | if (isl_int_is_pos(bmap->ineq[i][1+d])) |
1761 | n_lower++; |
1762 | else if (isl_int_is_neg(bmap->ineq[i][1+d])) |
1763 | n_upper++; |
1764 | } |
1765 | bmap = isl_basic_map_extend_constraints(base: bmap, |
1766 | n_eq: 0, n_ineq: n_lower * n_upper); |
1767 | if (!bmap) |
1768 | goto error; |
1769 | for (i = bmap->n_ineq - 1; i >= 0; --i) { |
1770 | int last; |
1771 | if (isl_int_is_zero(bmap->ineq[i][1+d])) |
1772 | continue; |
1773 | last = -1; |
1774 | for (j = 0; j < i; ++j) { |
1775 | if (isl_int_is_zero(bmap->ineq[j][1+d])) |
1776 | continue; |
1777 | last = j; |
1778 | if (isl_int_sgn(bmap->ineq[i][1+d]) == |
1779 | isl_int_sgn(bmap->ineq[j][1+d])) |
1780 | continue; |
1781 | k = isl_basic_map_alloc_inequality(bmap); |
1782 | if (k < 0) |
1783 | goto error; |
1784 | isl_seq_cpy(dst: bmap->ineq[k], src: bmap->ineq[i], |
1785 | len: 1+total); |
1786 | isl_seq_elim(dst: bmap->ineq[k], src: bmap->ineq[j], |
1787 | pos: 1+d, len: 1+total, NULL); |
1788 | } |
1789 | isl_basic_map_drop_inequality(bmap, pos: i); |
1790 | i = last + 1; |
1791 | } |
1792 | if (n_lower > 0 && n_upper > 0) { |
1793 | bmap = isl_basic_map_normalize_constraints(bmap); |
1794 | bmap = isl_basic_map_remove_duplicate_constraints(bmap, |
1795 | NULL, detect_divs: 0); |
1796 | bmap = isl_basic_map_gauss(bmap, NULL); |
1797 | bmap = isl_basic_map_remove_redundancies(bmap); |
1798 | need_gauss = 0; |
1799 | if (!bmap) |
1800 | goto error; |
1801 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) |
1802 | break; |
1803 | } |
1804 | } |
1805 | if (need_gauss) |
1806 | bmap = isl_basic_map_gauss(bmap, NULL); |
1807 | return bmap; |
1808 | error: |
1809 | isl_basic_map_free(bmap); |
1810 | return NULL; |
1811 | } |
1812 | |
1813 | __isl_give isl_basic_set *isl_basic_set_eliminate_vars( |
1814 | __isl_take isl_basic_set *bset, unsigned pos, unsigned n) |
1815 | { |
1816 | return bset_from_bmap(bmap: isl_basic_map_eliminate_vars(bmap: bset_to_bmap(bset), |
1817 | pos, n)); |
1818 | } |
1819 | |
1820 | /* Eliminate the specified n dimensions starting at first from the |
1821 | * constraints, without removing the dimensions from the space. |
1822 | * If the set is rational, the dimensions are eliminated using Fourier-Motzkin. |
1823 | * Otherwise, they are projected out and the original space is restored. |
1824 | */ |
1825 | __isl_give isl_basic_map *isl_basic_map_eliminate( |
1826 | __isl_take isl_basic_map *bmap, |
1827 | enum isl_dim_type type, unsigned first, unsigned n) |
1828 | { |
1829 | isl_space *space; |
1830 | |
1831 | if (!bmap) |
1832 | return NULL; |
1833 | if (n == 0) |
1834 | return bmap; |
1835 | |
1836 | if (isl_basic_map_check_range(bmap, type, first, n) < 0) |
1837 | return isl_basic_map_free(bmap); |
1838 | |
1839 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) { |
1840 | first += isl_basic_map_offset(bmap, type) - 1; |
1841 | bmap = isl_basic_map_eliminate_vars(bmap, pos: first, n); |
1842 | return isl_basic_map_finalize(bmap); |
1843 | } |
1844 | |
1845 | space = isl_basic_map_get_space(bmap); |
1846 | bmap = isl_basic_map_project_out(bmap, type, first, n); |
1847 | bmap = isl_basic_map_insert_dims(bmap, type, pos: first, n); |
1848 | bmap = isl_basic_map_reset_space(bmap, space); |
1849 | return bmap; |
1850 | } |
1851 | |
1852 | __isl_give isl_basic_set *isl_basic_set_eliminate( |
1853 | __isl_take isl_basic_set *bset, |
1854 | enum isl_dim_type type, unsigned first, unsigned n) |
1855 | { |
1856 | return isl_basic_map_eliminate(bmap: bset, type, first, n); |
1857 | } |
1858 | |
1859 | /* Remove all constraints from "bmap" that reference any unknown local |
1860 | * variables (directly or indirectly). |
1861 | * |
1862 | * Dropping all constraints on a local variable will make it redundant, |
1863 | * so it will get removed implicitly by |
1864 | * isl_basic_map_drop_constraints_involving_dims. Some other local |
1865 | * variables may also end up becoming redundant if they only appear |
1866 | * in constraints together with the unknown local variable. |
1867 | * Therefore, start over after calling |
1868 | * isl_basic_map_drop_constraints_involving_dims. |
1869 | */ |
1870 | __isl_give isl_basic_map *isl_basic_map_drop_constraints_involving_unknown_divs( |
1871 | __isl_take isl_basic_map *bmap) |
1872 | { |
1873 | isl_bool known; |
1874 | isl_size n_div; |
1875 | int i, o_div; |
1876 | |
1877 | known = isl_basic_map_divs_known(bmap); |
1878 | if (known < 0) |
1879 | return isl_basic_map_free(bmap); |
1880 | if (known) |
1881 | return bmap; |
1882 | |
1883 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
1884 | if (n_div < 0) |
1885 | return isl_basic_map_free(bmap); |
1886 | o_div = isl_basic_map_offset(bmap, type: isl_dim_div) - 1; |
1887 | |
1888 | for (i = 0; i < n_div; ++i) { |
1889 | known = isl_basic_map_div_is_known(bmap, div: i); |
1890 | if (known < 0) |
1891 | return isl_basic_map_free(bmap); |
1892 | if (known) |
1893 | continue; |
1894 | bmap = remove_dependent_vars(bmap, pos: o_div + i); |
1895 | bmap = isl_basic_map_drop_constraints_involving_dims(bmap, |
1896 | type: isl_dim_div, first: i, n: 1); |
1897 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
1898 | if (n_div < 0) |
1899 | return isl_basic_map_free(bmap); |
1900 | i = -1; |
1901 | } |
1902 | |
1903 | return bmap; |
1904 | } |
1905 | |
1906 | /* Remove all constraints from "bset" that reference any unknown local |
1907 | * variables (directly or indirectly). |
1908 | */ |
1909 | __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving_unknown_divs( |
1910 | __isl_take isl_basic_set *bset) |
1911 | { |
1912 | isl_basic_map *bmap; |
1913 | |
1914 | bmap = bset_to_bmap(bset); |
1915 | bmap = isl_basic_map_drop_constraints_involving_unknown_divs(bmap); |
1916 | return bset_from_bmap(bmap); |
1917 | } |
1918 | |
1919 | /* Remove all constraints from "map" that reference any unknown local |
1920 | * variables (directly or indirectly). |
1921 | * |
1922 | * Since constraints may get dropped from the basic maps, |
1923 | * they may no longer be disjoint from each other. |
1924 | */ |
1925 | __isl_give isl_map *isl_map_drop_constraints_involving_unknown_divs( |
1926 | __isl_take isl_map *map) |
1927 | { |
1928 | int i; |
1929 | isl_bool known; |
1930 | |
1931 | known = isl_map_divs_known(map); |
1932 | if (known < 0) |
1933 | return isl_map_free(map); |
1934 | if (known) |
1935 | return map; |
1936 | |
1937 | map = isl_map_cow(map); |
1938 | if (!map) |
1939 | return NULL; |
1940 | |
1941 | for (i = 0; i < map->n; ++i) { |
1942 | map->p[i] = |
1943 | isl_basic_map_drop_constraints_involving_unknown_divs( |
1944 | bmap: map->p[i]); |
1945 | if (!map->p[i]) |
1946 | return isl_map_free(map); |
1947 | } |
1948 | |
1949 | if (map->n > 1) |
1950 | ISL_F_CLR(map, ISL_MAP_DISJOINT); |
1951 | |
1952 | return map; |
1953 | } |
1954 | |
1955 | /* Don't assume equalities are in order, because align_divs |
1956 | * may have changed the order of the divs. |
1957 | */ |
1958 | static void compute_elimination_index(__isl_keep isl_basic_map *bmap, int *elim, |
1959 | unsigned len) |
1960 | { |
1961 | int d, i; |
1962 | |
1963 | for (d = 0; d < len; ++d) |
1964 | elim[d] = -1; |
1965 | for (i = 0; i < bmap->n_eq; ++i) { |
1966 | for (d = len - 1; d >= 0; --d) { |
1967 | if (isl_int_is_zero(bmap->eq[i][1+d])) |
1968 | continue; |
1969 | elim[d] = i; |
1970 | break; |
1971 | } |
1972 | } |
1973 | } |
1974 | |
1975 | static void set_compute_elimination_index(__isl_keep isl_basic_set *bset, |
1976 | int *elim, unsigned len) |
1977 | { |
1978 | compute_elimination_index(bmap: bset_to_bmap(bset), elim, len); |
1979 | } |
1980 | |
1981 | static int reduced_using_equalities(isl_int *dst, isl_int *src, |
1982 | __isl_keep isl_basic_map *bmap, int *elim, unsigned total) |
1983 | { |
1984 | int d; |
1985 | int copied = 0; |
1986 | |
1987 | for (d = total - 1; d >= 0; --d) { |
1988 | if (isl_int_is_zero(src[1+d])) |
1989 | continue; |
1990 | if (elim[d] == -1) |
1991 | continue; |
1992 | if (!copied) { |
1993 | isl_seq_cpy(dst, src, len: 1 + total); |
1994 | copied = 1; |
1995 | } |
1996 | isl_seq_elim(dst, src: bmap->eq[elim[d]], pos: 1 + d, len: 1 + total, NULL); |
1997 | } |
1998 | return copied; |
1999 | } |
2000 | |
2001 | static int set_reduced_using_equalities(isl_int *dst, isl_int *src, |
2002 | __isl_keep isl_basic_set *bset, int *elim, unsigned total) |
2003 | { |
2004 | return reduced_using_equalities(dst, src, |
2005 | bmap: bset_to_bmap(bset), elim, total); |
2006 | } |
2007 | |
2008 | static __isl_give isl_basic_set *isl_basic_set_reduce_using_equalities( |
2009 | __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context) |
2010 | { |
2011 | int i; |
2012 | int *elim; |
2013 | isl_size dim; |
2014 | |
2015 | if (!bset || !context) |
2016 | goto error; |
2017 | |
2018 | if (context->n_eq == 0) { |
2019 | isl_basic_set_free(bset: context); |
2020 | return bset; |
2021 | } |
2022 | |
2023 | bset = isl_basic_set_cow(bset); |
2024 | dim = isl_basic_set_dim(bset, type: isl_dim_set); |
2025 | if (dim < 0) |
2026 | goto error; |
2027 | |
2028 | elim = isl_alloc_array(bset->ctx, int, dim); |
2029 | if (!elim) |
2030 | goto error; |
2031 | set_compute_elimination_index(bset: context, elim, len: dim); |
2032 | for (i = 0; i < bset->n_eq; ++i) |
2033 | set_reduced_using_equalities(dst: bset->eq[i], src: bset->eq[i], |
2034 | bset: context, elim, total: dim); |
2035 | for (i = 0; i < bset->n_ineq; ++i) |
2036 | set_reduced_using_equalities(dst: bset->ineq[i], src: bset->ineq[i], |
2037 | bset: context, elim, total: dim); |
2038 | isl_basic_set_free(bset: context); |
2039 | free(ptr: elim); |
2040 | bset = isl_basic_set_simplify(bset); |
2041 | bset = isl_basic_set_finalize(bset); |
2042 | return bset; |
2043 | error: |
2044 | isl_basic_set_free(bset); |
2045 | isl_basic_set_free(bset: context); |
2046 | return NULL; |
2047 | } |
2048 | |
2049 | /* For each inequality in "ineq" that is a shifted (more relaxed) |
2050 | * copy of an inequality in "context", mark the corresponding entry |
2051 | * in "row" with -1. |
2052 | * If an inequality only has a non-negative constant term, then |
2053 | * mark it as well. |
2054 | */ |
2055 | static isl_stat mark_shifted_constraints(__isl_keep isl_mat *ineq, |
2056 | __isl_keep isl_basic_set *context, int *row) |
2057 | { |
2058 | struct isl_constraint_index ci; |
2059 | isl_size n_ineq, cols; |
2060 | unsigned total; |
2061 | int k; |
2062 | |
2063 | if (!ineq || !context) |
2064 | return isl_stat_error; |
2065 | if (context->n_ineq == 0) |
2066 | return isl_stat_ok; |
2067 | if (setup_constraint_index(ci: &ci, bset: context) < 0) |
2068 | return isl_stat_error; |
2069 | |
2070 | n_ineq = isl_mat_rows(mat: ineq); |
2071 | cols = isl_mat_cols(mat: ineq); |
2072 | if (n_ineq < 0 || cols < 0) |
2073 | return isl_stat_error; |
2074 | total = cols - 1; |
2075 | for (k = 0; k < n_ineq; ++k) { |
2076 | int l; |
2077 | isl_bool redundant; |
2078 | |
2079 | l = isl_seq_first_non_zero(p: ineq->row[k] + 1, len: total); |
2080 | if (l < 0 && isl_int_is_nonneg(ineq->row[k][0])) { |
2081 | row[k] = -1; |
2082 | continue; |
2083 | } |
2084 | redundant = constraint_index_is_redundant(ci: &ci, ineq: ineq->row[k]); |
2085 | if (redundant < 0) |
2086 | goto error; |
2087 | if (!redundant) |
2088 | continue; |
2089 | row[k] = -1; |
2090 | } |
2091 | constraint_index_free(ci: &ci); |
2092 | return isl_stat_ok; |
2093 | error: |
2094 | constraint_index_free(ci: &ci); |
2095 | return isl_stat_error; |
2096 | } |
2097 | |
2098 | static __isl_give isl_basic_set *remove_shifted_constraints( |
2099 | __isl_take isl_basic_set *bset, __isl_keep isl_basic_set *context) |
2100 | { |
2101 | struct isl_constraint_index ci; |
2102 | int k; |
2103 | |
2104 | if (!bset || !context) |
2105 | return bset; |
2106 | |
2107 | if (context->n_ineq == 0) |
2108 | return bset; |
2109 | if (setup_constraint_index(ci: &ci, bset: context) < 0) |
2110 | return bset; |
2111 | |
2112 | for (k = 0; k < bset->n_ineq; ++k) { |
2113 | isl_bool redundant; |
2114 | |
2115 | redundant = constraint_index_is_redundant(ci: &ci, ineq: bset->ineq[k]); |
2116 | if (redundant < 0) |
2117 | goto error; |
2118 | if (!redundant) |
2119 | continue; |
2120 | bset = isl_basic_set_cow(bset); |
2121 | if (!bset) |
2122 | goto error; |
2123 | isl_basic_set_drop_inequality(bset, pos: k); |
2124 | --k; |
2125 | } |
2126 | constraint_index_free(ci: &ci); |
2127 | return bset; |
2128 | error: |
2129 | constraint_index_free(ci: &ci); |
2130 | return bset; |
2131 | } |
2132 | |
2133 | /* Remove constraints from "bmap" that are identical to constraints |
2134 | * in "context" or that are more relaxed (greater constant term). |
2135 | * |
2136 | * We perform the test for shifted copies on the pure constraints |
2137 | * in remove_shifted_constraints. |
2138 | */ |
2139 | static __isl_give isl_basic_map *isl_basic_map_remove_shifted_constraints( |
2140 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context) |
2141 | { |
2142 | isl_basic_set *bset, *bset_context; |
2143 | |
2144 | if (!bmap || !context) |
2145 | goto error; |
2146 | |
2147 | if (bmap->n_ineq == 0 || context->n_ineq == 0) { |
2148 | isl_basic_map_free(bmap: context); |
2149 | return bmap; |
2150 | } |
2151 | |
2152 | bmap = isl_basic_map_order_divs(bmap); |
2153 | context = isl_basic_map_align_divs(dst: context, src: bmap); |
2154 | bmap = isl_basic_map_align_divs(dst: bmap, src: context); |
2155 | |
2156 | bset = isl_basic_map_underlying_set(bmap: isl_basic_map_copy(bmap)); |
2157 | bset_context = isl_basic_map_underlying_set(bmap: context); |
2158 | bset = remove_shifted_constraints(bset, context: bset_context); |
2159 | isl_basic_set_free(bset: bset_context); |
2160 | |
2161 | bmap = isl_basic_map_overlying_set(bset, like: bmap); |
2162 | |
2163 | return bmap; |
2164 | error: |
2165 | isl_basic_map_free(bmap); |
2166 | isl_basic_map_free(bmap: context); |
2167 | return NULL; |
2168 | } |
2169 | |
2170 | /* Does the (linear part of a) constraint "c" involve any of the "len" |
2171 | * "relevant" dimensions? |
2172 | */ |
2173 | static int is_related(isl_int *c, int len, int *relevant) |
2174 | { |
2175 | int i; |
2176 | |
2177 | for (i = 0; i < len; ++i) { |
2178 | if (!relevant[i]) |
2179 | continue; |
2180 | if (!isl_int_is_zero(c[i])) |
2181 | return 1; |
2182 | } |
2183 | |
2184 | return 0; |
2185 | } |
2186 | |
2187 | /* Drop constraints from "bmap" that do not involve any of |
2188 | * the dimensions marked "relevant". |
2189 | */ |
2190 | static __isl_give isl_basic_map *drop_unrelated_constraints( |
2191 | __isl_take isl_basic_map *bmap, int *relevant) |
2192 | { |
2193 | int i; |
2194 | isl_size dim; |
2195 | |
2196 | dim = isl_basic_map_dim(bmap, type: isl_dim_all); |
2197 | if (dim < 0) |
2198 | return isl_basic_map_free(bmap); |
2199 | for (i = 0; i < dim; ++i) |
2200 | if (!relevant[i]) |
2201 | break; |
2202 | if (i >= dim) |
2203 | return bmap; |
2204 | |
2205 | for (i = bmap->n_eq - 1; i >= 0; --i) |
2206 | if (!is_related(c: bmap->eq[i] + 1, len: dim, relevant)) { |
2207 | bmap = isl_basic_map_cow(bmap); |
2208 | if (isl_basic_map_drop_equality(bmap, pos: i) < 0) |
2209 | return isl_basic_map_free(bmap); |
2210 | } |
2211 | |
2212 | for (i = bmap->n_ineq - 1; i >= 0; --i) |
2213 | if (!is_related(c: bmap->ineq[i] + 1, len: dim, relevant)) { |
2214 | bmap = isl_basic_map_cow(bmap); |
2215 | if (isl_basic_map_drop_inequality(bmap, pos: i) < 0) |
2216 | return isl_basic_map_free(bmap); |
2217 | } |
2218 | |
2219 | return bmap; |
2220 | } |
2221 | |
2222 | /* Update the groups in "group" based on the (linear part of a) constraint "c". |
2223 | * |
2224 | * In particular, for any variable involved in the constraint, |
2225 | * find the actual group id from before and replace the group |
2226 | * of the corresponding variable by the minimal group of all |
2227 | * the variables involved in the constraint considered so far |
2228 | * (if this minimum is smaller) or replace the minimum by this group |
2229 | * (if the minimum is larger). |
2230 | * |
2231 | * At the end, all the variables in "c" will (indirectly) point |
2232 | * to the minimal of the groups that they referred to originally. |
2233 | */ |
2234 | static void update_groups(int dim, int *group, isl_int *c) |
2235 | { |
2236 | int j; |
2237 | int min = dim; |
2238 | |
2239 | for (j = 0; j < dim; ++j) { |
2240 | if (isl_int_is_zero(c[j])) |
2241 | continue; |
2242 | while (group[j] >= 0 && group[group[j]] != group[j]) |
2243 | group[j] = group[group[j]]; |
2244 | if (group[j] == min) |
2245 | continue; |
2246 | if (group[j] < min) { |
2247 | if (min >= 0 && min < dim) |
2248 | group[min] = group[j]; |
2249 | min = group[j]; |
2250 | } else |
2251 | group[group[j]] = min; |
2252 | } |
2253 | } |
2254 | |
2255 | /* Allocate an array of groups of variables, one for each variable |
2256 | * in "context", initialized to zero. |
2257 | */ |
2258 | static int *alloc_groups(__isl_keep isl_basic_set *context) |
2259 | { |
2260 | isl_ctx *ctx; |
2261 | isl_size dim; |
2262 | |
2263 | dim = isl_basic_set_dim(bset: context, type: isl_dim_set); |
2264 | if (dim < 0) |
2265 | return NULL; |
2266 | ctx = isl_basic_set_get_ctx(bset: context); |
2267 | return isl_calloc_array(ctx, int, dim); |
2268 | } |
2269 | |
2270 | /* Drop constraints from "bmap" that only involve variables that are |
2271 | * not related to any of the variables marked with a "-1" in "group". |
2272 | * |
2273 | * We construct groups of variables that collect variables that |
2274 | * (indirectly) appear in some common constraint of "bmap". |
2275 | * Each group is identified by the first variable in the group, |
2276 | * except for the special group of variables that was already identified |
2277 | * in the input as -1 (or are related to those variables). |
2278 | * If group[i] is equal to i (or -1), then the group of i is i (or -1), |
2279 | * otherwise the group of i is the group of group[i]. |
2280 | * |
2281 | * We first initialize groups for the remaining variables. |
2282 | * Then we iterate over the constraints of "bmap" and update the |
2283 | * group of the variables in the constraint by the smallest group. |
2284 | * Finally, we resolve indirect references to groups by running over |
2285 | * the variables. |
2286 | * |
2287 | * After computing the groups, we drop constraints that do not involve |
2288 | * any variables in the -1 group. |
2289 | */ |
2290 | __isl_give isl_basic_map *isl_basic_map_drop_unrelated_constraints( |
2291 | __isl_take isl_basic_map *bmap, __isl_take int *group) |
2292 | { |
2293 | isl_size dim; |
2294 | int i; |
2295 | int last; |
2296 | |
2297 | dim = isl_basic_map_dim(bmap, type: isl_dim_all); |
2298 | if (dim < 0) |
2299 | return isl_basic_map_free(bmap); |
2300 | |
2301 | last = -1; |
2302 | for (i = 0; i < dim; ++i) |
2303 | if (group[i] >= 0) |
2304 | last = group[i] = i; |
2305 | if (last < 0) { |
2306 | free(ptr: group); |
2307 | return bmap; |
2308 | } |
2309 | |
2310 | for (i = 0; i < bmap->n_eq; ++i) |
2311 | update_groups(dim, group, c: bmap->eq[i] + 1); |
2312 | for (i = 0; i < bmap->n_ineq; ++i) |
2313 | update_groups(dim, group, c: bmap->ineq[i] + 1); |
2314 | |
2315 | for (i = 0; i < dim; ++i) |
2316 | if (group[i] >= 0) |
2317 | group[i] = group[group[i]]; |
2318 | |
2319 | for (i = 0; i < dim; ++i) |
2320 | group[i] = group[i] == -1; |
2321 | |
2322 | bmap = drop_unrelated_constraints(bmap, relevant: group); |
2323 | |
2324 | free(ptr: group); |
2325 | return bmap; |
2326 | } |
2327 | |
2328 | /* Drop constraints from "context" that are irrelevant for computing |
2329 | * the gist of "bset". |
2330 | * |
2331 | * In particular, drop constraints in variables that are not related |
2332 | * to any of the variables involved in the constraints of "bset" |
2333 | * in the sense that there is no sequence of constraints that connects them. |
2334 | * |
2335 | * We first mark all variables that appear in "bset" as belonging |
2336 | * to a "-1" group and then continue with group_and_drop_irrelevant_constraints. |
2337 | */ |
2338 | static __isl_give isl_basic_set *drop_irrelevant_constraints( |
2339 | __isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset) |
2340 | { |
2341 | int *group; |
2342 | isl_size dim; |
2343 | int i, j; |
2344 | |
2345 | dim = isl_basic_set_dim(bset, type: isl_dim_set); |
2346 | if (!context || dim < 0) |
2347 | return isl_basic_set_free(bset: context); |
2348 | |
2349 | group = alloc_groups(context); |
2350 | |
2351 | if (!group) |
2352 | return isl_basic_set_free(bset: context); |
2353 | |
2354 | for (i = 0; i < dim; ++i) { |
2355 | for (j = 0; j < bset->n_eq; ++j) |
2356 | if (!isl_int_is_zero(bset->eq[j][1 + i])) |
2357 | break; |
2358 | if (j < bset->n_eq) { |
2359 | group[i] = -1; |
2360 | continue; |
2361 | } |
2362 | for (j = 0; j < bset->n_ineq; ++j) |
2363 | if (!isl_int_is_zero(bset->ineq[j][1 + i])) |
2364 | break; |
2365 | if (j < bset->n_ineq) |
2366 | group[i] = -1; |
2367 | } |
2368 | |
2369 | return isl_basic_map_drop_unrelated_constraints(bmap: context, group); |
2370 | } |
2371 | |
2372 | /* Drop constraints from "context" that are irrelevant for computing |
2373 | * the gist of the inequalities "ineq". |
2374 | * Inequalities in "ineq" for which the corresponding element of row |
2375 | * is set to -1 have already been marked for removal and should be ignored. |
2376 | * |
2377 | * In particular, drop constraints in variables that are not related |
2378 | * to any of the variables involved in "ineq" |
2379 | * in the sense that there is no sequence of constraints that connects them. |
2380 | * |
2381 | * We first mark all variables that appear in "bset" as belonging |
2382 | * to a "-1" group and then continue with group_and_drop_irrelevant_constraints. |
2383 | */ |
2384 | static __isl_give isl_basic_set *drop_irrelevant_constraints_marked( |
2385 | __isl_take isl_basic_set *context, __isl_keep isl_mat *ineq, int *row) |
2386 | { |
2387 | int *group; |
2388 | isl_size dim; |
2389 | int i, j; |
2390 | isl_size n; |
2391 | |
2392 | dim = isl_basic_set_dim(bset: context, type: isl_dim_set); |
2393 | n = isl_mat_rows(mat: ineq); |
2394 | if (dim < 0 || n < 0) |
2395 | return isl_basic_set_free(bset: context); |
2396 | |
2397 | group = alloc_groups(context); |
2398 | |
2399 | if (!group) |
2400 | return isl_basic_set_free(bset: context); |
2401 | |
2402 | for (i = 0; i < dim; ++i) { |
2403 | for (j = 0; j < n; ++j) { |
2404 | if (row[j] < 0) |
2405 | continue; |
2406 | if (!isl_int_is_zero(ineq->row[j][1 + i])) |
2407 | break; |
2408 | } |
2409 | if (j < n) |
2410 | group[i] = -1; |
2411 | } |
2412 | |
2413 | return isl_basic_map_drop_unrelated_constraints(bmap: context, group); |
2414 | } |
2415 | |
2416 | /* Do all "n" entries of "row" contain a negative value? |
2417 | */ |
2418 | static int all_neg(int *row, int n) |
2419 | { |
2420 | int i; |
2421 | |
2422 | for (i = 0; i < n; ++i) |
2423 | if (row[i] >= 0) |
2424 | return 0; |
2425 | |
2426 | return 1; |
2427 | } |
2428 | |
2429 | /* Update the inequalities in "bset" based on the information in "row" |
2430 | * and "tab". |
2431 | * |
2432 | * In particular, the array "row" contains either -1, meaning that |
2433 | * the corresponding inequality of "bset" is redundant, or the index |
2434 | * of an inequality in "tab". |
2435 | * |
2436 | * If the row entry is -1, then drop the inequality. |
2437 | * Otherwise, if the constraint is marked redundant in the tableau, |
2438 | * then drop the inequality. Similarly, if it is marked as an equality |
2439 | * in the tableau, then turn the inequality into an equality and |
2440 | * perform Gaussian elimination. |
2441 | */ |
2442 | static __isl_give isl_basic_set *update_ineq(__isl_take isl_basic_set *bset, |
2443 | __isl_keep int *row, struct isl_tab *tab) |
2444 | { |
2445 | int i; |
2446 | unsigned n_ineq; |
2447 | unsigned n_eq; |
2448 | int found_equality = 0; |
2449 | |
2450 | if (!bset) |
2451 | return NULL; |
2452 | if (tab && tab->empty) |
2453 | return isl_basic_set_set_to_empty(bset); |
2454 | |
2455 | n_ineq = bset->n_ineq; |
2456 | for (i = n_ineq - 1; i >= 0; --i) { |
2457 | if (row[i] < 0) { |
2458 | if (isl_basic_set_drop_inequality(bset, pos: i) < 0) |
2459 | return isl_basic_set_free(bset); |
2460 | continue; |
2461 | } |
2462 | if (!tab) |
2463 | continue; |
2464 | n_eq = tab->n_eq; |
2465 | if (isl_tab_is_equality(tab, con: n_eq + row[i])) { |
2466 | isl_basic_map_inequality_to_equality(bmap: bset, pos: i); |
2467 | found_equality = 1; |
2468 | } else if (isl_tab_is_redundant(tab, con: n_eq + row[i])) { |
2469 | if (isl_basic_set_drop_inequality(bset, pos: i) < 0) |
2470 | return isl_basic_set_free(bset); |
2471 | } |
2472 | } |
2473 | |
2474 | if (found_equality) |
2475 | bset = isl_basic_set_gauss(bset, NULL); |
2476 | bset = isl_basic_set_finalize(bset); |
2477 | return bset; |
2478 | } |
2479 | |
2480 | /* Update the inequalities in "bset" based on the information in "row" |
2481 | * and "tab" and free all arguments (other than "bset"). |
2482 | */ |
2483 | static __isl_give isl_basic_set *update_ineq_free( |
2484 | __isl_take isl_basic_set *bset, __isl_take isl_mat *ineq, |
2485 | __isl_take isl_basic_set *context, __isl_take int *row, |
2486 | struct isl_tab *tab) |
2487 | { |
2488 | isl_mat_free(mat: ineq); |
2489 | isl_basic_set_free(bset: context); |
2490 | |
2491 | bset = update_ineq(bset, row, tab); |
2492 | |
2493 | free(ptr: row); |
2494 | isl_tab_free(tab); |
2495 | return bset; |
2496 | } |
2497 | |
2498 | /* Remove all information from bset that is redundant in the context |
2499 | * of context. |
2500 | * "ineq" contains the (possibly transformed) inequalities of "bset", |
2501 | * in the same order. |
2502 | * The (explicit) equalities of "bset" are assumed to have been taken |
2503 | * into account by the transformation such that only the inequalities |
2504 | * are relevant. |
2505 | * "context" is assumed not to be empty. |
2506 | * |
2507 | * "row" keeps track of the constraint index of a "bset" inequality in "tab". |
2508 | * A value of -1 means that the inequality is obviously redundant and may |
2509 | * not even appear in "tab". |
2510 | * |
2511 | * We first mark the inequalities of "bset" |
2512 | * that are obviously redundant with respect to some inequality in "context". |
2513 | * Then we remove those constraints from "context" that have become |
2514 | * irrelevant for computing the gist of "bset". |
2515 | * Note that this removal of constraints cannot be replaced by |
2516 | * a factorization because factors in "bset" may still be connected |
2517 | * to each other through constraints in "context". |
2518 | * |
2519 | * If there are any inequalities left, we construct a tableau for |
2520 | * the context and then add the inequalities of "bset". |
2521 | * Before adding these inequalities, we freeze all constraints such that |
2522 | * they won't be considered redundant in terms of the constraints of "bset". |
2523 | * Then we detect all redundant constraints (among the |
2524 | * constraints that weren't frozen), first by checking for redundancy in the |
2525 | * the tableau and then by checking if replacing a constraint by its negation |
2526 | * would lead to an empty set. This last step is fairly expensive |
2527 | * and could be optimized by more reuse of the tableau. |
2528 | * Finally, we update bset according to the results. |
2529 | */ |
2530 | static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset, |
2531 | __isl_take isl_mat *ineq, __isl_take isl_basic_set *context) |
2532 | { |
2533 | int i, r; |
2534 | int *row = NULL; |
2535 | isl_ctx *ctx; |
2536 | isl_basic_set *combined = NULL; |
2537 | struct isl_tab *tab = NULL; |
2538 | unsigned n_eq, context_ineq; |
2539 | |
2540 | if (!bset || !ineq || !context) |
2541 | goto error; |
2542 | |
2543 | if (bset->n_ineq == 0 || isl_basic_set_plain_is_universe(bset: context)) { |
2544 | isl_basic_set_free(bset: context); |
2545 | isl_mat_free(mat: ineq); |
2546 | return bset; |
2547 | } |
2548 | |
2549 | ctx = isl_basic_set_get_ctx(bset: context); |
2550 | row = isl_calloc_array(ctx, int, bset->n_ineq); |
2551 | if (!row) |
2552 | goto error; |
2553 | |
2554 | if (mark_shifted_constraints(ineq, context, row) < 0) |
2555 | goto error; |
2556 | if (all_neg(row, n: bset->n_ineq)) |
2557 | return update_ineq_free(bset, ineq, context, row, NULL); |
2558 | |
2559 | context = drop_irrelevant_constraints_marked(context, ineq, row); |
2560 | if (!context) |
2561 | goto error; |
2562 | if (isl_basic_set_plain_is_universe(bset: context)) |
2563 | return update_ineq_free(bset, ineq, context, row, NULL); |
2564 | |
2565 | n_eq = context->n_eq; |
2566 | context_ineq = context->n_ineq; |
2567 | combined = isl_basic_set_cow(bset: isl_basic_set_copy(bset: context)); |
2568 | combined = isl_basic_set_extend_constraints(base: combined, n_eq: 0, n_ineq: bset->n_ineq); |
2569 | tab = isl_tab_from_basic_set(bset: combined, track: 0); |
2570 | for (i = 0; i < context_ineq; ++i) |
2571 | if (isl_tab_freeze_constraint(tab, con: n_eq + i) < 0) |
2572 | goto error; |
2573 | if (isl_tab_extend_cons(tab, n_new: bset->n_ineq) < 0) |
2574 | goto error; |
2575 | r = context_ineq; |
2576 | for (i = 0; i < bset->n_ineq; ++i) { |
2577 | if (row[i] < 0) |
2578 | continue; |
2579 | combined = isl_basic_set_add_ineq(bset: combined, ineq: ineq->row[i]); |
2580 | if (isl_tab_add_ineq(tab, ineq: ineq->row[i]) < 0) |
2581 | goto error; |
2582 | row[i] = r++; |
2583 | } |
2584 | if (isl_tab_detect_implicit_equalities(tab) < 0) |
2585 | goto error; |
2586 | if (isl_tab_detect_redundant(tab) < 0) |
2587 | goto error; |
2588 | for (i = bset->n_ineq - 1; i >= 0; --i) { |
2589 | isl_basic_set *test; |
2590 | int is_empty; |
2591 | |
2592 | if (row[i] < 0) |
2593 | continue; |
2594 | r = row[i]; |
2595 | if (tab->con[n_eq + r].is_redundant) |
2596 | continue; |
2597 | test = isl_basic_set_dup(bset: combined); |
2598 | test = isl_inequality_negate(bmap: test, pos: r); |
2599 | test = isl_basic_set_update_from_tab(bset: test, tab); |
2600 | is_empty = isl_basic_set_is_empty(bset: test); |
2601 | isl_basic_set_free(bset: test); |
2602 | if (is_empty < 0) |
2603 | goto error; |
2604 | if (is_empty) |
2605 | tab->con[n_eq + r].is_redundant = 1; |
2606 | } |
2607 | bset = update_ineq_free(bset, ineq, context, row, tab); |
2608 | if (bset) { |
2609 | ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT); |
2610 | ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT); |
2611 | } |
2612 | |
2613 | isl_basic_set_free(bset: combined); |
2614 | return bset; |
2615 | error: |
2616 | free(ptr: row); |
2617 | isl_mat_free(mat: ineq); |
2618 | isl_tab_free(tab); |
2619 | isl_basic_set_free(bset: combined); |
2620 | isl_basic_set_free(bset: context); |
2621 | isl_basic_set_free(bset); |
2622 | return NULL; |
2623 | } |
2624 | |
2625 | /* Extract the inequalities of "bset" as an isl_mat. |
2626 | */ |
2627 | static __isl_give isl_mat *(__isl_keep isl_basic_set *bset) |
2628 | { |
2629 | isl_size total; |
2630 | isl_ctx *ctx; |
2631 | isl_mat *ineq; |
2632 | |
2633 | total = isl_basic_set_dim(bset, type: isl_dim_all); |
2634 | if (total < 0) |
2635 | return NULL; |
2636 | |
2637 | ctx = isl_basic_set_get_ctx(bset); |
2638 | ineq = isl_mat_sub_alloc6(ctx, row: bset->ineq, first_row: 0, n_row: bset->n_ineq, |
2639 | first_col: 0, n_col: 1 + total); |
2640 | |
2641 | return ineq; |
2642 | } |
2643 | |
2644 | /* Remove all information from "bset" that is redundant in the context |
2645 | * of "context", for the case where both "bset" and "context" are |
2646 | * full-dimensional. |
2647 | */ |
2648 | static __isl_give isl_basic_set *uset_gist_uncompressed( |
2649 | __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context) |
2650 | { |
2651 | isl_mat *ineq; |
2652 | |
2653 | ineq = extract_ineq(bset); |
2654 | return uset_gist_full(bset, ineq, context); |
2655 | } |
2656 | |
2657 | /* Replace "bset" by an empty basic set in the same space. |
2658 | */ |
2659 | static __isl_give isl_basic_set *replace_by_empty( |
2660 | __isl_take isl_basic_set *bset) |
2661 | { |
2662 | isl_space *space; |
2663 | |
2664 | space = isl_basic_set_get_space(bset); |
2665 | isl_basic_set_free(bset); |
2666 | return isl_basic_set_empty(space); |
2667 | } |
2668 | |
2669 | /* Remove all information from "bset" that is redundant in the context |
2670 | * of "context", for the case where the combined equalities of |
2671 | * "bset" and "context" allow for a compression that can be obtained |
2672 | * by preapplication of "T". |
2673 | * If the compression of "context" is empty, meaning that "bset" and |
2674 | * "context" do not intersect, then return the empty set. |
2675 | * |
2676 | * "bset" itself is not transformed by "T". Instead, the inequalities |
2677 | * are extracted from "bset" and those are transformed by "T". |
2678 | * uset_gist_full then determines which of the transformed inequalities |
2679 | * are redundant with respect to the transformed "context" and removes |
2680 | * the corresponding inequalities from "bset". |
2681 | * |
2682 | * After preapplying "T" to the inequalities, any common factor is |
2683 | * removed from the coefficients. If this results in a tightening |
2684 | * of the constant term, then the same tightening is applied to |
2685 | * the corresponding untransformed inequality in "bset". |
2686 | * That is, if after plugging in T, a constraint f(x) >= 0 is of the form |
2687 | * |
2688 | * g f'(x) + r >= 0 |
2689 | * |
2690 | * with 0 <= r < g, then it is equivalent to |
2691 | * |
2692 | * f'(x) >= 0 |
2693 | * |
2694 | * This means that f(x) >= 0 is equivalent to f(x) - r >= 0 in the affine |
2695 | * subspace compressed by T since the latter would be transformed to |
2696 | * |
2697 | * g f'(x) >= 0 |
2698 | */ |
2699 | static __isl_give isl_basic_set *uset_gist_compressed( |
2700 | __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context, |
2701 | __isl_take isl_mat *T) |
2702 | { |
2703 | isl_ctx *ctx; |
2704 | isl_mat *ineq; |
2705 | int i; |
2706 | isl_size n_row, n_col; |
2707 | isl_int rem; |
2708 | |
2709 | ineq = extract_ineq(bset); |
2710 | ineq = isl_mat_product(left: ineq, right: isl_mat_copy(mat: T)); |
2711 | context = isl_basic_set_preimage(bset: context, mat: T); |
2712 | |
2713 | if (!ineq || !context) |
2714 | goto error; |
2715 | if (isl_basic_set_plain_is_empty(bset: context)) { |
2716 | isl_mat_free(mat: ineq); |
2717 | isl_basic_set_free(bset: context); |
2718 | return replace_by_empty(bset); |
2719 | } |
2720 | |
2721 | ctx = isl_mat_get_ctx(mat: ineq); |
2722 | n_row = isl_mat_rows(mat: ineq); |
2723 | n_col = isl_mat_cols(mat: ineq); |
2724 | if (n_row < 0 || n_col < 0) |
2725 | goto error; |
2726 | isl_int_init(rem); |
2727 | for (i = 0; i < n_row; ++i) { |
2728 | isl_seq_gcd(p: ineq->row[i] + 1, len: n_col - 1, gcd: &ctx->normalize_gcd); |
2729 | if (isl_int_is_zero(ctx->normalize_gcd)) |
2730 | continue; |
2731 | if (isl_int_is_one(ctx->normalize_gcd)) |
2732 | continue; |
2733 | isl_seq_scale_down(dst: ineq->row[i] + 1, src: ineq->row[i] + 1, |
2734 | f: ctx->normalize_gcd, len: n_col - 1); |
2735 | isl_int_fdiv_r(rem, ineq->row[i][0], ctx->normalize_gcd); |
2736 | isl_int_fdiv_q(ineq->row[i][0], |
2737 | ineq->row[i][0], ctx->normalize_gcd); |
2738 | if (isl_int_is_zero(rem)) |
2739 | continue; |
2740 | bset = isl_basic_set_cow(bset); |
2741 | if (!bset) |
2742 | break; |
2743 | isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], rem); |
2744 | } |
2745 | isl_int_clear(rem); |
2746 | |
2747 | return uset_gist_full(bset, ineq, context); |
2748 | error: |
2749 | isl_mat_free(mat: ineq); |
2750 | isl_basic_set_free(bset: context); |
2751 | isl_basic_set_free(bset); |
2752 | return NULL; |
2753 | } |
2754 | |
2755 | /* Project "bset" onto the variables that are involved in "template". |
2756 | */ |
2757 | static __isl_give isl_basic_set *project_onto_involved( |
2758 | __isl_take isl_basic_set *bset, __isl_keep isl_basic_set *template) |
2759 | { |
2760 | int i; |
2761 | isl_size n; |
2762 | |
2763 | n = isl_basic_set_dim(bset: template, type: isl_dim_set); |
2764 | if (n < 0 || !template) |
2765 | return isl_basic_set_free(bset); |
2766 | |
2767 | for (i = 0; i < n; ++i) { |
2768 | isl_bool involved; |
2769 | |
2770 | involved = isl_basic_set_involves_dims(bset: template, |
2771 | type: isl_dim_set, first: i, n: 1); |
2772 | if (involved < 0) |
2773 | return isl_basic_set_free(bset); |
2774 | if (involved) |
2775 | continue; |
2776 | bset = isl_basic_set_eliminate_vars(bset, pos: i, n: 1); |
2777 | } |
2778 | |
2779 | return bset; |
2780 | } |
2781 | |
2782 | /* Remove all information from bset that is redundant in the context |
2783 | * of context. In particular, equalities that are linear combinations |
2784 | * of those in context are removed. Then the inequalities that are |
2785 | * redundant in the context of the equalities and inequalities of |
2786 | * context are removed. |
2787 | * |
2788 | * First of all, we drop those constraints from "context" |
2789 | * that are irrelevant for computing the gist of "bset". |
2790 | * Alternatively, we could factorize the intersection of "context" and "bset". |
2791 | * |
2792 | * We first compute the intersection of the integer affine hulls |
2793 | * of "bset" and "context", |
2794 | * compute the gist inside this intersection and then reduce |
2795 | * the constraints with respect to the equalities of the context |
2796 | * that only involve variables already involved in the input. |
2797 | * If the intersection of the affine hulls turns out to be empty, |
2798 | * then return the empty set. |
2799 | * |
2800 | * If two constraints are mutually redundant, then uset_gist_full |
2801 | * will remove the second of those constraints. We therefore first |
2802 | * sort the constraints so that constraints not involving existentially |
2803 | * quantified variables are given precedence over those that do. |
2804 | * We have to perform this sorting before the variable compression, |
2805 | * because that may effect the order of the variables. |
2806 | */ |
2807 | static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset, |
2808 | __isl_take isl_basic_set *context) |
2809 | { |
2810 | isl_mat *eq; |
2811 | isl_mat *T; |
2812 | isl_basic_set *aff; |
2813 | isl_basic_set *aff_context; |
2814 | isl_size total; |
2815 | |
2816 | total = isl_basic_set_dim(bset, type: isl_dim_all); |
2817 | if (total < 0 || !context) |
2818 | goto error; |
2819 | |
2820 | context = drop_irrelevant_constraints(context, bset); |
2821 | |
2822 | bset = isl_basic_set_detect_equalities(bset); |
2823 | aff = isl_basic_set_copy(bset); |
2824 | aff = isl_basic_set_plain_affine_hull(bset: aff); |
2825 | context = isl_basic_set_detect_equalities(bset: context); |
2826 | aff_context = isl_basic_set_copy(bset: context); |
2827 | aff_context = isl_basic_set_plain_affine_hull(bset: aff_context); |
2828 | aff = isl_basic_set_intersect(bset1: aff, bset2: aff_context); |
2829 | if (!aff) |
2830 | goto error; |
2831 | if (isl_basic_set_plain_is_empty(bset: aff)) { |
2832 | isl_basic_set_free(bset); |
2833 | isl_basic_set_free(bset: context); |
2834 | return aff; |
2835 | } |
2836 | bset = isl_basic_set_sort_constraints(bset); |
2837 | if (aff->n_eq == 0) { |
2838 | isl_basic_set_free(bset: aff); |
2839 | return uset_gist_uncompressed(bset, context); |
2840 | } |
2841 | eq = isl_mat_sub_alloc6(ctx: bset->ctx, row: aff->eq, first_row: 0, n_row: aff->n_eq, first_col: 0, n_col: 1 + total); |
2842 | eq = isl_mat_cow(mat: eq); |
2843 | T = isl_mat_variable_compression(B: eq, NULL); |
2844 | isl_basic_set_free(bset: aff); |
2845 | if (T && T->n_col == 0) { |
2846 | isl_mat_free(mat: T); |
2847 | isl_basic_set_free(bset: context); |
2848 | return replace_by_empty(bset); |
2849 | } |
2850 | |
2851 | aff_context = isl_basic_set_affine_hull(bset: isl_basic_set_copy(bset: context)); |
2852 | aff_context = project_onto_involved(bset: aff_context, template: bset); |
2853 | |
2854 | bset = uset_gist_compressed(bset, context, T); |
2855 | bset = isl_basic_set_reduce_using_equalities(bset, context: aff_context); |
2856 | |
2857 | if (bset) { |
2858 | ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT); |
2859 | ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT); |
2860 | } |
2861 | |
2862 | return bset; |
2863 | error: |
2864 | isl_basic_set_free(bset); |
2865 | isl_basic_set_free(bset: context); |
2866 | return NULL; |
2867 | } |
2868 | |
2869 | /* Return the number of equality constraints in "bmap" that involve |
2870 | * local variables. This function assumes that Gaussian elimination |
2871 | * has been applied to the equality constraints. |
2872 | */ |
2873 | static int n_div_eq(__isl_keep isl_basic_map *bmap) |
2874 | { |
2875 | int i; |
2876 | isl_size total, n_div; |
2877 | |
2878 | if (!bmap) |
2879 | return -1; |
2880 | |
2881 | if (bmap->n_eq == 0) |
2882 | return 0; |
2883 | |
2884 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
2885 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
2886 | if (total < 0 || n_div < 0) |
2887 | return -1; |
2888 | total -= n_div; |
2889 | |
2890 | for (i = 0; i < bmap->n_eq; ++i) |
2891 | if (isl_seq_first_non_zero(p: bmap->eq[i] + 1 + total, |
2892 | len: n_div) == -1) |
2893 | return i; |
2894 | |
2895 | return bmap->n_eq; |
2896 | } |
2897 | |
2898 | /* Construct a basic map in "space" defined by the equality constraints in "eq". |
2899 | * The constraints are assumed not to involve any local variables. |
2900 | */ |
2901 | static __isl_give isl_basic_map *basic_map_from_equalities( |
2902 | __isl_take isl_space *space, __isl_take isl_mat *eq) |
2903 | { |
2904 | int i, k; |
2905 | isl_size total; |
2906 | isl_basic_map *bmap = NULL; |
2907 | |
2908 | total = isl_space_dim(space, type: isl_dim_all); |
2909 | if (total < 0 || !eq) |
2910 | goto error; |
2911 | |
2912 | if (1 + total != eq->n_col) |
2913 | isl_die(isl_space_get_ctx(space), isl_error_internal, |
2914 | "unexpected number of columns" , goto error); |
2915 | |
2916 | bmap = isl_basic_map_alloc_space(space: isl_space_copy(space), |
2917 | extra: 0, n_eq: eq->n_row, n_ineq: 0); |
2918 | for (i = 0; i < eq->n_row; ++i) { |
2919 | k = isl_basic_map_alloc_equality(bmap); |
2920 | if (k < 0) |
2921 | goto error; |
2922 | isl_seq_cpy(dst: bmap->eq[k], src: eq->row[i], len: eq->n_col); |
2923 | } |
2924 | |
2925 | isl_space_free(space); |
2926 | isl_mat_free(mat: eq); |
2927 | return bmap; |
2928 | error: |
2929 | isl_space_free(space); |
2930 | isl_mat_free(mat: eq); |
2931 | isl_basic_map_free(bmap); |
2932 | return NULL; |
2933 | } |
2934 | |
2935 | /* Construct and return a variable compression based on the equality |
2936 | * constraints in "bmap1" and "bmap2" that do not involve the local variables. |
2937 | * "n1" is the number of (initial) equality constraints in "bmap1" |
2938 | * that do involve local variables. |
2939 | * "n2" is the number of (initial) equality constraints in "bmap2" |
2940 | * that do involve local variables. |
2941 | * "total" is the total number of other variables. |
2942 | * This function assumes that Gaussian elimination |
2943 | * has been applied to the equality constraints in both "bmap1" and "bmap2" |
2944 | * such that the equality constraints not involving local variables |
2945 | * are those that start at "n1" or "n2". |
2946 | * |
2947 | * If either of "bmap1" and "bmap2" does not have such equality constraints, |
2948 | * then simply compute the compression based on the equality constraints |
2949 | * in the other basic map. |
2950 | * Otherwise, combine the equality constraints from both into a new |
2951 | * basic map such that Gaussian elimination can be applied to this combination |
2952 | * and then construct a variable compression from the resulting |
2953 | * equality constraints. |
2954 | */ |
2955 | static __isl_give isl_mat *combined_variable_compression( |
2956 | __isl_keep isl_basic_map *bmap1, int n1, |
2957 | __isl_keep isl_basic_map *bmap2, int n2, int total) |
2958 | { |
2959 | isl_ctx *ctx; |
2960 | isl_mat *E1, *E2, *V; |
2961 | isl_basic_map *bmap; |
2962 | |
2963 | ctx = isl_basic_map_get_ctx(bmap: bmap1); |
2964 | if (bmap1->n_eq == n1) { |
2965 | E2 = isl_mat_sub_alloc6(ctx, row: bmap2->eq, |
2966 | first_row: n2, n_row: bmap2->n_eq - n2, first_col: 0, n_col: 1 + total); |
2967 | return isl_mat_variable_compression(B: E2, NULL); |
2968 | } |
2969 | if (bmap2->n_eq == n2) { |
2970 | E1 = isl_mat_sub_alloc6(ctx, row: bmap1->eq, |
2971 | first_row: n1, n_row: bmap1->n_eq - n1, first_col: 0, n_col: 1 + total); |
2972 | return isl_mat_variable_compression(B: E1, NULL); |
2973 | } |
2974 | E1 = isl_mat_sub_alloc6(ctx, row: bmap1->eq, |
2975 | first_row: n1, n_row: bmap1->n_eq - n1, first_col: 0, n_col: 1 + total); |
2976 | E2 = isl_mat_sub_alloc6(ctx, row: bmap2->eq, |
2977 | first_row: n2, n_row: bmap2->n_eq - n2, first_col: 0, n_col: 1 + total); |
2978 | E1 = isl_mat_concat(top: E1, bot: E2); |
2979 | bmap = basic_map_from_equalities(space: isl_basic_map_get_space(bmap: bmap1), eq: E1); |
2980 | bmap = isl_basic_map_gauss(bmap, NULL); |
2981 | if (!bmap) |
2982 | return NULL; |
2983 | E1 = isl_mat_sub_alloc6(ctx, row: bmap->eq, first_row: 0, n_row: bmap->n_eq, first_col: 0, n_col: 1 + total); |
2984 | V = isl_mat_variable_compression(B: E1, NULL); |
2985 | isl_basic_map_free(bmap); |
2986 | |
2987 | return V; |
2988 | } |
2989 | |
2990 | /* Extract the stride constraints from "bmap", compressed |
2991 | * with respect to both the stride constraints in "context" and |
2992 | * the remaining equality constraints in both "bmap" and "context". |
2993 | * "bmap_n_eq" is the number of (initial) stride constraints in "bmap". |
2994 | * "context_n_eq" is the number of (initial) stride constraints in "context". |
2995 | * |
2996 | * Let x be all variables in "bmap" (and "context") other than the local |
2997 | * variables. First compute a variable compression |
2998 | * |
2999 | * x = V x' |
3000 | * |
3001 | * based on the non-stride equality constraints in "bmap" and "context". |
3002 | * Consider the stride constraints of "context", |
3003 | * |
3004 | * A(x) + B(y) = 0 |
3005 | * |
3006 | * with y the local variables and plug in the variable compression, |
3007 | * resulting in |
3008 | * |
3009 | * A(V x') + B(y) = 0 |
3010 | * |
3011 | * Use these constraints to compute a parameter compression on x' |
3012 | * |
3013 | * x' = T x'' |
3014 | * |
3015 | * Now consider the stride constraints of "bmap" |
3016 | * |
3017 | * C(x) + D(y) = 0 |
3018 | * |
3019 | * and plug in x = V*T x''. |
3020 | * That is, return A = [C*V*T D]. |
3021 | */ |
3022 | static __isl_give isl_mat *( |
3023 | __isl_keep isl_basic_map *bmap, int bmap_n_eq, |
3024 | __isl_keep isl_basic_map *context, int context_n_eq) |
3025 | { |
3026 | isl_size total, n_div; |
3027 | isl_ctx *ctx; |
3028 | isl_mat *A, *B, *T, *V; |
3029 | |
3030 | total = isl_basic_map_dim(bmap: context, type: isl_dim_all); |
3031 | n_div = isl_basic_map_dim(bmap: context, type: isl_dim_div); |
3032 | if (total < 0 || n_div < 0) |
3033 | return NULL; |
3034 | total -= n_div; |
3035 | |
3036 | ctx = isl_basic_map_get_ctx(bmap); |
3037 | |
3038 | V = combined_variable_compression(bmap1: bmap, n1: bmap_n_eq, |
3039 | bmap2: context, n2: context_n_eq, total); |
3040 | |
3041 | A = isl_mat_sub_alloc6(ctx, row: context->eq, first_row: 0, n_row: context_n_eq, first_col: 0, n_col: 1 + total); |
3042 | B = isl_mat_sub_alloc6(ctx, row: context->eq, |
3043 | first_row: 0, n_row: context_n_eq, first_col: 1 + total, n_col: n_div); |
3044 | A = isl_mat_product(left: A, right: isl_mat_copy(mat: V)); |
3045 | T = isl_mat_parameter_compression_ext(B: A, A: B); |
3046 | T = isl_mat_product(left: V, right: T); |
3047 | |
3048 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
3049 | if (n_div < 0) |
3050 | T = isl_mat_free(mat: T); |
3051 | else |
3052 | T = isl_mat_diagonal(mat1: T, mat2: isl_mat_identity(ctx, n_row: n_div)); |
3053 | |
3054 | A = isl_mat_sub_alloc6(ctx, row: bmap->eq, |
3055 | first_row: 0, n_row: bmap_n_eq, first_col: 0, n_col: 1 + total + n_div); |
3056 | A = isl_mat_product(left: A, right: T); |
3057 | |
3058 | return A; |
3059 | } |
3060 | |
3061 | /* Remove the prime factors from *g that have an exponent that |
3062 | * is strictly smaller than the exponent in "c". |
3063 | * All exponents in *g are known to be smaller than or equal |
3064 | * to those in "c". |
3065 | * |
3066 | * That is, if *g is equal to |
3067 | * |
3068 | * p_1^{e_1} p_2^{e_2} ... p_n^{e_n} |
3069 | * |
3070 | * and "c" is equal to |
3071 | * |
3072 | * p_1^{f_1} p_2^{f_2} ... p_n^{f_n} |
3073 | * |
3074 | * then update *g to |
3075 | * |
3076 | * p_1^{e_1 * (e_1 = f_1)} p_2^{e_2 * (e_2 = f_2)} ... |
3077 | * p_n^{e_n * (e_n = f_n)} |
3078 | * |
3079 | * If e_i = f_i, then c / *g does not have any p_i factors and therefore |
3080 | * neither does the gcd of *g and c / *g. |
3081 | * If e_i < f_i, then the gcd of *g and c / *g has a positive |
3082 | * power min(e_i, s_i) of p_i with s_i = f_i - e_i among its factors. |
3083 | * Dividing *g by this gcd therefore strictly reduces the exponent |
3084 | * of the prime factors that need to be removed, while leaving the |
3085 | * other prime factors untouched. |
3086 | * Repeating this process until gcd(*g, c / *g) = 1 therefore |
3087 | * removes all undesired factors, without removing any others. |
3088 | */ |
3089 | static void remove_incomplete_powers(isl_int *g, isl_int c) |
3090 | { |
3091 | isl_int t; |
3092 | |
3093 | isl_int_init(t); |
3094 | for (;;) { |
3095 | isl_int_divexact(t, c, *g); |
3096 | isl_int_gcd(t, t, *g); |
3097 | if (isl_int_is_one(t)) |
3098 | break; |
3099 | isl_int_divexact(*g, *g, t); |
3100 | } |
3101 | isl_int_clear(t); |
3102 | } |
3103 | |
3104 | /* Reduce the "n" stride constraints in "bmap" based on a copy "A" |
3105 | * of the same stride constraints in a compressed space that exploits |
3106 | * all equalities in the context and the other equalities in "bmap". |
3107 | * |
3108 | * If the stride constraints of "bmap" are of the form |
3109 | * |
3110 | * C(x) + D(y) = 0 |
3111 | * |
3112 | * then A is of the form |
3113 | * |
3114 | * B(x') + D(y) = 0 |
3115 | * |
3116 | * If any of these constraints involves only a single local variable y, |
3117 | * then the constraint appears as |
3118 | * |
3119 | * f(x) + m y_i = 0 |
3120 | * |
3121 | * in "bmap" and as |
3122 | * |
3123 | * h(x') + m y_i = 0 |
3124 | * |
3125 | * in "A". |
3126 | * |
3127 | * Let g be the gcd of m and the coefficients of h. |
3128 | * Then, in particular, g is a divisor of the coefficients of h and |
3129 | * |
3130 | * f(x) = h(x') |
3131 | * |
3132 | * is known to be a multiple of g. |
3133 | * If some prime factor in m appears with the same exponent in g, |
3134 | * then it can be removed from m because f(x) is already known |
3135 | * to be a multiple of g and therefore in particular of this power |
3136 | * of the prime factors. |
3137 | * Prime factors that appear with a smaller exponent in g cannot |
3138 | * be removed from m. |
3139 | * Let g' be the divisor of g containing all prime factors that |
3140 | * appear with the same exponent in m and g, then |
3141 | * |
3142 | * f(x) + m y_i = 0 |
3143 | * |
3144 | * can be replaced by |
3145 | * |
3146 | * f(x) + m/g' y_i' = 0 |
3147 | * |
3148 | * Note that (if g' != 1) this changes the explicit representation |
3149 | * of y_i to that of y_i', so the integer division at position i |
3150 | * is marked unknown and later recomputed by a call to |
3151 | * isl_basic_map_gauss. |
3152 | */ |
3153 | static __isl_give isl_basic_map *reduce_stride_constraints( |
3154 | __isl_take isl_basic_map *bmap, int n, __isl_keep isl_mat *A) |
3155 | { |
3156 | int i; |
3157 | isl_size total, n_div; |
3158 | int any = 0; |
3159 | isl_int gcd; |
3160 | |
3161 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
3162 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
3163 | if (total < 0 || n_div < 0 || !A) |
3164 | return isl_basic_map_free(bmap); |
3165 | total -= n_div; |
3166 | |
3167 | isl_int_init(gcd); |
3168 | for (i = 0; i < n; ++i) { |
3169 | int div; |
3170 | |
3171 | div = isl_seq_first_non_zero(p: bmap->eq[i] + 1 + total, len: n_div); |
3172 | if (div < 0) |
3173 | isl_die(isl_basic_map_get_ctx(bmap), isl_error_internal, |
3174 | "equality constraints modified unexpectedly" , |
3175 | goto error); |
3176 | if (isl_seq_first_non_zero(p: bmap->eq[i] + 1 + total + div + 1, |
3177 | len: n_div - div - 1) != -1) |
3178 | continue; |
3179 | if (isl_mat_row_gcd(mat: A, row: i, gcd: &gcd) < 0) |
3180 | goto error; |
3181 | if (isl_int_is_one(gcd)) |
3182 | continue; |
3183 | remove_incomplete_powers(g: &gcd, c: bmap->eq[i][1 + total + div]); |
3184 | if (isl_int_is_one(gcd)) |
3185 | continue; |
3186 | isl_int_divexact(bmap->eq[i][1 + total + div], |
3187 | bmap->eq[i][1 + total + div], gcd); |
3188 | bmap = isl_basic_map_mark_div_unknown(bmap, div); |
3189 | if (!bmap) |
3190 | goto error; |
3191 | any = 1; |
3192 | } |
3193 | isl_int_clear(gcd); |
3194 | |
3195 | if (any) |
3196 | bmap = isl_basic_map_gauss(bmap, NULL); |
3197 | |
3198 | return bmap; |
3199 | error: |
3200 | isl_int_clear(gcd); |
3201 | isl_basic_map_free(bmap); |
3202 | return NULL; |
3203 | } |
3204 | |
3205 | /* Simplify the stride constraints in "bmap" based on |
3206 | * the remaining equality constraints in "bmap" and all equality |
3207 | * constraints in "context". |
3208 | * Only do this if both "bmap" and "context" have stride constraints. |
3209 | * |
3210 | * First extract a copy of the stride constraints in "bmap" in a compressed |
3211 | * space exploiting all the other equality constraints and then |
3212 | * use this compressed copy to simplify the original stride constraints. |
3213 | */ |
3214 | static __isl_give isl_basic_map *gist_strides(__isl_take isl_basic_map *bmap, |
3215 | __isl_keep isl_basic_map *context) |
3216 | { |
3217 | int bmap_n_eq, context_n_eq; |
3218 | isl_mat *A; |
3219 | |
3220 | if (!bmap || !context) |
3221 | return isl_basic_map_free(bmap); |
3222 | |
3223 | bmap_n_eq = n_div_eq(bmap); |
3224 | context_n_eq = n_div_eq(bmap: context); |
3225 | |
3226 | if (bmap_n_eq < 0 || context_n_eq < 0) |
3227 | return isl_basic_map_free(bmap); |
3228 | if (bmap_n_eq == 0 || context_n_eq == 0) |
3229 | return bmap; |
3230 | |
3231 | A = extract_compressed_stride_constraints(bmap, bmap_n_eq, |
3232 | context, context_n_eq); |
3233 | bmap = reduce_stride_constraints(bmap, n: bmap_n_eq, A); |
3234 | |
3235 | isl_mat_free(mat: A); |
3236 | |
3237 | return bmap; |
3238 | } |
3239 | |
3240 | /* Return a basic map that has the same intersection with "context" as "bmap" |
3241 | * and that is as "simple" as possible. |
3242 | * |
3243 | * The core computation is performed on the pure constraints. |
3244 | * When we add back the meaning of the integer divisions, we need |
3245 | * to (re)introduce the div constraints. If we happen to have |
3246 | * discovered that some of these integer divisions are equal to |
3247 | * some affine combination of other variables, then these div |
3248 | * constraints may end up getting simplified in terms of the equalities, |
3249 | * resulting in extra inequalities on the other variables that |
3250 | * may have been removed already or that may not even have been |
3251 | * part of the input. We try and remove those constraints of |
3252 | * this form that are most obviously redundant with respect to |
3253 | * the context. We also remove those div constraints that are |
3254 | * redundant with respect to the other constraints in the result. |
3255 | * |
3256 | * The stride constraints among the equality constraints in "bmap" are |
3257 | * also simplified with respecting to the other equality constraints |
3258 | * in "bmap" and with respect to all equality constraints in "context". |
3259 | */ |
3260 | __isl_give isl_basic_map *isl_basic_map_gist(__isl_take isl_basic_map *bmap, |
3261 | __isl_take isl_basic_map *context) |
3262 | { |
3263 | isl_basic_set *bset, *eq; |
3264 | isl_basic_map *eq_bmap; |
3265 | isl_size total, n_div, n_div_bmap; |
3266 | unsigned , n_eq, n_ineq; |
3267 | |
3268 | if (!bmap || !context) |
3269 | goto error; |
3270 | |
3271 | if (isl_basic_map_plain_is_universe(bmap)) { |
3272 | isl_basic_map_free(bmap: context); |
3273 | return bmap; |
3274 | } |
3275 | if (isl_basic_map_plain_is_empty(bmap: context)) { |
3276 | isl_space *space = isl_basic_map_get_space(bmap); |
3277 | isl_basic_map_free(bmap); |
3278 | isl_basic_map_free(bmap: context); |
3279 | return isl_basic_map_universe(space); |
3280 | } |
3281 | if (isl_basic_map_plain_is_empty(bmap)) { |
3282 | isl_basic_map_free(bmap: context); |
3283 | return bmap; |
3284 | } |
3285 | |
3286 | bmap = isl_basic_map_remove_redundancies(bmap); |
3287 | context = isl_basic_map_remove_redundancies(bmap: context); |
3288 | bmap = isl_basic_map_order_divs(bmap); |
3289 | context = isl_basic_map_align_divs(dst: context, src: bmap); |
3290 | |
3291 | n_div = isl_basic_map_dim(bmap: context, type: isl_dim_div); |
3292 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
3293 | n_div_bmap = isl_basic_map_dim(bmap, type: isl_dim_div); |
3294 | if (n_div < 0 || total < 0 || n_div_bmap < 0) |
3295 | goto error; |
3296 | extra = n_div - n_div_bmap; |
3297 | |
3298 | bset = isl_basic_map_underlying_set(bmap: isl_basic_map_copy(bmap)); |
3299 | bset = isl_basic_set_add_dims(bset, type: isl_dim_set, n: extra); |
3300 | bset = uset_gist(bset, |
3301 | context: isl_basic_map_underlying_set(bmap: isl_basic_map_copy(bmap: context))); |
3302 | bset = isl_basic_set_project_out(bset, type: isl_dim_set, first: total, n: extra); |
3303 | |
3304 | if (!bset || bset->n_eq == 0 || n_div == 0 || |
3305 | isl_basic_set_plain_is_empty(bset)) { |
3306 | isl_basic_map_free(bmap: context); |
3307 | return isl_basic_map_overlying_set(bset, like: bmap); |
3308 | } |
3309 | |
3310 | n_eq = bset->n_eq; |
3311 | n_ineq = bset->n_ineq; |
3312 | eq = isl_basic_set_copy(bset); |
3313 | eq = isl_basic_set_cow(bset: eq); |
3314 | eq = isl_basic_set_free_inequality(bset: eq, n: n_ineq); |
3315 | bset = isl_basic_set_free_equality(bset, n: n_eq); |
3316 | |
3317 | eq_bmap = isl_basic_map_overlying_set(bset: eq, like: isl_basic_map_copy(bmap)); |
3318 | eq_bmap = gist_strides(bmap: eq_bmap, context); |
3319 | eq_bmap = isl_basic_map_remove_shifted_constraints(bmap: eq_bmap, context); |
3320 | bmap = isl_basic_map_overlying_set(bset, like: bmap); |
3321 | bmap = isl_basic_map_intersect(bmap1: bmap, bmap2: eq_bmap); |
3322 | bmap = isl_basic_map_remove_redundancies(bmap); |
3323 | |
3324 | return bmap; |
3325 | error: |
3326 | isl_basic_map_free(bmap); |
3327 | isl_basic_map_free(bmap: context); |
3328 | return NULL; |
3329 | } |
3330 | |
3331 | /* |
3332 | * Assumes context has no implicit divs. |
3333 | */ |
3334 | __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map, |
3335 | __isl_take isl_basic_map *context) |
3336 | { |
3337 | int i; |
3338 | |
3339 | if (!map || !context) |
3340 | goto error; |
3341 | |
3342 | if (isl_basic_map_plain_is_empty(bmap: context)) { |
3343 | isl_space *space = isl_map_get_space(map); |
3344 | isl_map_free(map); |
3345 | isl_basic_map_free(bmap: context); |
3346 | return isl_map_universe(space); |
3347 | } |
3348 | |
3349 | context = isl_basic_map_remove_redundancies(bmap: context); |
3350 | map = isl_map_cow(map); |
3351 | if (isl_map_basic_map_check_equal_space(map, bmap: context) < 0) |
3352 | goto error; |
3353 | map = isl_map_compute_divs(map); |
3354 | if (!map) |
3355 | goto error; |
3356 | for (i = map->n - 1; i >= 0; --i) { |
3357 | map->p[i] = isl_basic_map_gist(bmap: map->p[i], |
3358 | context: isl_basic_map_copy(bmap: context)); |
3359 | if (!map->p[i]) |
3360 | goto error; |
3361 | if (isl_basic_map_plain_is_empty(bmap: map->p[i])) { |
3362 | isl_basic_map_free(bmap: map->p[i]); |
3363 | if (i != map->n - 1) |
3364 | map->p[i] = map->p[map->n - 1]; |
3365 | map->n--; |
3366 | } |
3367 | } |
3368 | isl_basic_map_free(bmap: context); |
3369 | ISL_F_CLR(map, ISL_MAP_NORMALIZED); |
3370 | return map; |
3371 | error: |
3372 | isl_map_free(map); |
3373 | isl_basic_map_free(bmap: context); |
3374 | return NULL; |
3375 | } |
3376 | |
3377 | /* Drop all inequalities from "bmap" that also appear in "context". |
3378 | * "context" is assumed to have only known local variables and |
3379 | * the initial local variables of "bmap" are assumed to be the same |
3380 | * as those of "context". |
3381 | * The constraints of both "bmap" and "context" are assumed |
3382 | * to have been sorted using isl_basic_map_sort_constraints. |
3383 | * |
3384 | * Run through the inequality constraints of "bmap" and "context" |
3385 | * in sorted order. |
3386 | * If a constraint of "bmap" involves variables not in "context", |
3387 | * then it cannot appear in "context". |
3388 | * If a matching constraint is found, it is removed from "bmap". |
3389 | */ |
3390 | static __isl_give isl_basic_map *drop_inequalities( |
3391 | __isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context) |
3392 | { |
3393 | int i1, i2; |
3394 | isl_size total, bmap_total; |
3395 | unsigned ; |
3396 | |
3397 | total = isl_basic_map_dim(bmap: context, type: isl_dim_all); |
3398 | bmap_total = isl_basic_map_dim(bmap, type: isl_dim_all); |
3399 | if (total < 0 || bmap_total < 0) |
3400 | return isl_basic_map_free(bmap); |
3401 | |
3402 | extra = bmap_total - total; |
3403 | |
3404 | i1 = bmap->n_ineq - 1; |
3405 | i2 = context->n_ineq - 1; |
3406 | while (bmap && i1 >= 0 && i2 >= 0) { |
3407 | int cmp; |
3408 | |
3409 | if (isl_seq_first_non_zero(p: bmap->ineq[i1] + 1 + total, |
3410 | len: extra) != -1) { |
3411 | --i1; |
3412 | continue; |
3413 | } |
3414 | cmp = isl_basic_map_constraint_cmp(bmap: context, c1: bmap->ineq[i1], |
3415 | c2: context->ineq[i2]); |
3416 | if (cmp < 0) { |
3417 | --i2; |
3418 | continue; |
3419 | } |
3420 | if (cmp > 0) { |
3421 | --i1; |
3422 | continue; |
3423 | } |
3424 | if (isl_int_eq(bmap->ineq[i1][0], context->ineq[i2][0])) { |
3425 | bmap = isl_basic_map_cow(bmap); |
3426 | if (isl_basic_map_drop_inequality(bmap, pos: i1) < 0) |
3427 | bmap = isl_basic_map_free(bmap); |
3428 | } |
3429 | --i1; |
3430 | --i2; |
3431 | } |
3432 | |
3433 | return bmap; |
3434 | } |
3435 | |
3436 | /* Drop all equalities from "bmap" that also appear in "context". |
3437 | * "context" is assumed to have only known local variables and |
3438 | * the initial local variables of "bmap" are assumed to be the same |
3439 | * as those of "context". |
3440 | * |
3441 | * Run through the equality constraints of "bmap" and "context" |
3442 | * in sorted order. |
3443 | * If a constraint of "bmap" involves variables not in "context", |
3444 | * then it cannot appear in "context". |
3445 | * If a matching constraint is found, it is removed from "bmap". |
3446 | */ |
3447 | static __isl_give isl_basic_map *drop_equalities( |
3448 | __isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context) |
3449 | { |
3450 | int i1, i2; |
3451 | isl_size total, bmap_total; |
3452 | unsigned ; |
3453 | |
3454 | total = isl_basic_map_dim(bmap: context, type: isl_dim_all); |
3455 | bmap_total = isl_basic_map_dim(bmap, type: isl_dim_all); |
3456 | if (total < 0 || bmap_total < 0) |
3457 | return isl_basic_map_free(bmap); |
3458 | |
3459 | extra = bmap_total - total; |
3460 | |
3461 | i1 = bmap->n_eq - 1; |
3462 | i2 = context->n_eq - 1; |
3463 | |
3464 | while (bmap && i1 >= 0 && i2 >= 0) { |
3465 | int last1, last2; |
3466 | |
3467 | if (isl_seq_first_non_zero(p: bmap->eq[i1] + 1 + total, |
3468 | len: extra) != -1) |
3469 | break; |
3470 | last1 = isl_seq_last_non_zero(p: bmap->eq[i1] + 1, len: total); |
3471 | last2 = isl_seq_last_non_zero(p: context->eq[i2] + 1, len: total); |
3472 | if (last1 > last2) { |
3473 | --i2; |
3474 | continue; |
3475 | } |
3476 | if (last1 < last2) { |
3477 | --i1; |
3478 | continue; |
3479 | } |
3480 | if (isl_seq_eq(p1: bmap->eq[i1], p2: context->eq[i2], len: 1 + total)) { |
3481 | bmap = isl_basic_map_cow(bmap); |
3482 | if (isl_basic_map_drop_equality(bmap, pos: i1) < 0) |
3483 | bmap = isl_basic_map_free(bmap); |
3484 | } |
3485 | --i1; |
3486 | --i2; |
3487 | } |
3488 | |
3489 | return bmap; |
3490 | } |
3491 | |
3492 | /* Remove the constraints in "context" from "bmap". |
3493 | * "context" is assumed to have explicit representations |
3494 | * for all local variables. |
3495 | * |
3496 | * First align the divs of "bmap" to those of "context" and |
3497 | * sort the constraints. Then drop all constraints from "bmap" |
3498 | * that appear in "context". |
3499 | */ |
3500 | __isl_give isl_basic_map *isl_basic_map_plain_gist( |
3501 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context) |
3502 | { |
3503 | isl_bool done, known; |
3504 | |
3505 | done = isl_basic_map_plain_is_universe(bmap: context); |
3506 | if (done == isl_bool_false) |
3507 | done = isl_basic_map_plain_is_universe(bmap); |
3508 | if (done == isl_bool_false) |
3509 | done = isl_basic_map_plain_is_empty(bmap: context); |
3510 | if (done == isl_bool_false) |
3511 | done = isl_basic_map_plain_is_empty(bmap); |
3512 | if (done < 0) |
3513 | goto error; |
3514 | if (done) { |
3515 | isl_basic_map_free(bmap: context); |
3516 | return bmap; |
3517 | } |
3518 | known = isl_basic_map_divs_known(bmap: context); |
3519 | if (known < 0) |
3520 | goto error; |
3521 | if (!known) |
3522 | isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, |
3523 | "context has unknown divs" , goto error); |
3524 | |
3525 | context = isl_basic_map_order_divs(bmap: context); |
3526 | bmap = isl_basic_map_align_divs(dst: bmap, src: context); |
3527 | bmap = isl_basic_map_gauss(bmap, NULL); |
3528 | bmap = isl_basic_map_sort_constraints(bmap); |
3529 | context = isl_basic_map_sort_constraints(bmap: context); |
3530 | |
3531 | bmap = drop_inequalities(bmap, context); |
3532 | bmap = drop_equalities(bmap, context); |
3533 | |
3534 | isl_basic_map_free(bmap: context); |
3535 | bmap = isl_basic_map_finalize(bmap); |
3536 | return bmap; |
3537 | error: |
3538 | isl_basic_map_free(bmap); |
3539 | isl_basic_map_free(bmap: context); |
3540 | return NULL; |
3541 | } |
3542 | |
3543 | /* Replace "map" by the disjunct at position "pos" and free "context". |
3544 | */ |
3545 | static __isl_give isl_map *replace_by_disjunct(__isl_take isl_map *map, |
3546 | int pos, __isl_take isl_basic_map *context) |
3547 | { |
3548 | isl_basic_map *bmap; |
3549 | |
3550 | bmap = isl_basic_map_copy(bmap: map->p[pos]); |
3551 | isl_map_free(map); |
3552 | isl_basic_map_free(bmap: context); |
3553 | return isl_map_from_basic_map(bmap); |
3554 | } |
3555 | |
3556 | /* Remove the constraints in "context" from "map". |
3557 | * If any of the disjuncts in the result turns out to be the universe, |
3558 | * then return this universe. |
3559 | * "context" is assumed to have explicit representations |
3560 | * for all local variables. |
3561 | */ |
3562 | __isl_give isl_map *isl_map_plain_gist_basic_map(__isl_take isl_map *map, |
3563 | __isl_take isl_basic_map *context) |
3564 | { |
3565 | int i; |
3566 | isl_bool univ, known; |
3567 | |
3568 | univ = isl_basic_map_plain_is_universe(bmap: context); |
3569 | if (univ < 0) |
3570 | goto error; |
3571 | if (univ) { |
3572 | isl_basic_map_free(bmap: context); |
3573 | return map; |
3574 | } |
3575 | known = isl_basic_map_divs_known(bmap: context); |
3576 | if (known < 0) |
3577 | goto error; |
3578 | if (!known) |
3579 | isl_die(isl_map_get_ctx(map), isl_error_invalid, |
3580 | "context has unknown divs" , goto error); |
3581 | |
3582 | map = isl_map_cow(map); |
3583 | if (!map) |
3584 | goto error; |
3585 | for (i = 0; i < map->n; ++i) { |
3586 | map->p[i] = isl_basic_map_plain_gist(bmap: map->p[i], |
3587 | context: isl_basic_map_copy(bmap: context)); |
3588 | univ = isl_basic_map_plain_is_universe(bmap: map->p[i]); |
3589 | if (univ < 0) |
3590 | goto error; |
3591 | if (univ && map->n > 1) |
3592 | return replace_by_disjunct(map, pos: i, context); |
3593 | } |
3594 | |
3595 | isl_basic_map_free(bmap: context); |
3596 | ISL_F_CLR(map, ISL_MAP_NORMALIZED); |
3597 | if (map->n > 1) |
3598 | ISL_F_CLR(map, ISL_MAP_DISJOINT); |
3599 | return map; |
3600 | error: |
3601 | isl_map_free(map); |
3602 | isl_basic_map_free(bmap: context); |
3603 | return NULL; |
3604 | } |
3605 | |
3606 | /* Remove the constraints in "context" from "set". |
3607 | * If any of the disjuncts in the result turns out to be the universe, |
3608 | * then return this universe. |
3609 | * "context" is assumed to have explicit representations |
3610 | * for all local variables. |
3611 | */ |
3612 | __isl_give isl_set *isl_set_plain_gist_basic_set(__isl_take isl_set *set, |
3613 | __isl_take isl_basic_set *context) |
3614 | { |
3615 | return set_from_map(isl_map_plain_gist_basic_map(map: set_to_map(set), |
3616 | context: bset_to_bmap(bset: context))); |
3617 | } |
3618 | |
3619 | /* Remove the constraints in "context" from "map". |
3620 | * If any of the disjuncts in the result turns out to be the universe, |
3621 | * then return this universe. |
3622 | * "context" is assumed to consist of a single disjunct and |
3623 | * to have explicit representations for all local variables. |
3624 | */ |
3625 | __isl_give isl_map *isl_map_plain_gist(__isl_take isl_map *map, |
3626 | __isl_take isl_map *context) |
3627 | { |
3628 | isl_basic_map *hull; |
3629 | |
3630 | hull = isl_map_unshifted_simple_hull(map: context); |
3631 | return isl_map_plain_gist_basic_map(map, context: hull); |
3632 | } |
3633 | |
3634 | /* Replace "map" by a universe map in the same space and free "drop". |
3635 | */ |
3636 | static __isl_give isl_map *replace_by_universe(__isl_take isl_map *map, |
3637 | __isl_take isl_map *drop) |
3638 | { |
3639 | isl_map *res; |
3640 | |
3641 | res = isl_map_universe(space: isl_map_get_space(map)); |
3642 | isl_map_free(map); |
3643 | isl_map_free(map: drop); |
3644 | return res; |
3645 | } |
3646 | |
3647 | /* Return a map that has the same intersection with "context" as "map" |
3648 | * and that is as "simple" as possible. |
3649 | * |
3650 | * If "map" is already the universe, then we cannot make it any simpler. |
3651 | * Similarly, if "context" is the universe, then we cannot exploit it |
3652 | * to simplify "map" |
3653 | * If "map" and "context" are identical to each other, then we can |
3654 | * return the corresponding universe. |
3655 | * |
3656 | * If either "map" or "context" consists of multiple disjuncts, |
3657 | * then check if "context" happens to be a subset of "map", |
3658 | * in which case all constraints can be removed. |
3659 | * In case of multiple disjuncts, the standard procedure |
3660 | * may not be able to detect that all constraints can be removed. |
3661 | * |
3662 | * If none of these cases apply, we have to work a bit harder. |
3663 | * During this computation, we make use of a single disjunct context, |
3664 | * so if the original context consists of more than one disjunct |
3665 | * then we need to approximate the context by a single disjunct set. |
3666 | * Simply taking the simple hull may drop constraints that are |
3667 | * only implicitly available in each disjunct. We therefore also |
3668 | * look for constraints among those defining "map" that are valid |
3669 | * for the context. These can then be used to simplify away |
3670 | * the corresponding constraints in "map". |
3671 | */ |
3672 | __isl_give isl_map *isl_map_gist(__isl_take isl_map *map, |
3673 | __isl_take isl_map *context) |
3674 | { |
3675 | int equal; |
3676 | int is_universe; |
3677 | isl_size n_disjunct_map, n_disjunct_context; |
3678 | isl_bool subset; |
3679 | isl_basic_map *hull; |
3680 | |
3681 | is_universe = isl_map_plain_is_universe(map); |
3682 | if (is_universe >= 0 && !is_universe) |
3683 | is_universe = isl_map_plain_is_universe(map: context); |
3684 | if (is_universe < 0) |
3685 | goto error; |
3686 | if (is_universe) { |
3687 | isl_map_free(map: context); |
3688 | return map; |
3689 | } |
3690 | |
3691 | isl_map_align_params_bin(map1: &map, map2: &context); |
3692 | equal = isl_map_plain_is_equal(map1: map, map2: context); |
3693 | if (equal < 0) |
3694 | goto error; |
3695 | if (equal) |
3696 | return replace_by_universe(map, drop: context); |
3697 | |
3698 | n_disjunct_map = isl_map_n_basic_map(map); |
3699 | n_disjunct_context = isl_map_n_basic_map(map: context); |
3700 | if (n_disjunct_map < 0 || n_disjunct_context < 0) |
3701 | goto error; |
3702 | if (n_disjunct_map != 1 || n_disjunct_context != 1) { |
3703 | subset = isl_map_is_subset(map1: context, map2: map); |
3704 | if (subset < 0) |
3705 | goto error; |
3706 | if (subset) |
3707 | return replace_by_universe(map, drop: context); |
3708 | } |
3709 | |
3710 | context = isl_map_compute_divs(map: context); |
3711 | if (!context) |
3712 | goto error; |
3713 | if (n_disjunct_context == 1) { |
3714 | hull = isl_map_simple_hull(map: context); |
3715 | } else { |
3716 | isl_ctx *ctx; |
3717 | isl_map_list *list; |
3718 | |
3719 | ctx = isl_map_get_ctx(map); |
3720 | list = isl_map_list_alloc(ctx, n: 2); |
3721 | list = isl_map_list_add(list, el: isl_map_copy(map: context)); |
3722 | list = isl_map_list_add(list, el: isl_map_copy(map)); |
3723 | hull = isl_map_unshifted_simple_hull_from_map_list(map: context, |
3724 | list); |
3725 | } |
3726 | return isl_map_gist_basic_map(map, context: hull); |
3727 | error: |
3728 | isl_map_free(map); |
3729 | isl_map_free(map: context); |
3730 | return NULL; |
3731 | } |
3732 | |
3733 | __isl_give isl_basic_set *isl_basic_set_gist(__isl_take isl_basic_set *bset, |
3734 | __isl_take isl_basic_set *context) |
3735 | { |
3736 | return bset_from_bmap(bmap: isl_basic_map_gist(bmap: bset_to_bmap(bset), |
3737 | context: bset_to_bmap(bset: context))); |
3738 | } |
3739 | |
3740 | __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set, |
3741 | __isl_take isl_basic_set *context) |
3742 | { |
3743 | return set_from_map(isl_map_gist_basic_map(map: set_to_map(set), |
3744 | context: bset_to_bmap(bset: context))); |
3745 | } |
3746 | |
3747 | __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set, |
3748 | __isl_take isl_basic_set *context) |
3749 | { |
3750 | isl_space *space = isl_set_get_space(set); |
3751 | isl_basic_set *dom_context = isl_basic_set_universe(space); |
3752 | dom_context = isl_basic_set_intersect_params(bset1: dom_context, bset2: context); |
3753 | return isl_set_gist_basic_set(set, context: dom_context); |
3754 | } |
3755 | |
3756 | __isl_give isl_set *isl_set_gist(__isl_take isl_set *set, |
3757 | __isl_take isl_set *context) |
3758 | { |
3759 | return set_from_map(isl_map_gist(map: set_to_map(set), context: set_to_map(context))); |
3760 | } |
3761 | |
3762 | /* Compute the gist of "bmap" with respect to the constraints "context" |
3763 | * on the domain. |
3764 | */ |
3765 | __isl_give isl_basic_map *isl_basic_map_gist_domain( |
3766 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *context) |
3767 | { |
3768 | isl_space *space = isl_basic_map_get_space(bmap); |
3769 | isl_basic_map *bmap_context = isl_basic_map_universe(space); |
3770 | |
3771 | bmap_context = isl_basic_map_intersect_domain(bmap: bmap_context, bset: context); |
3772 | return isl_basic_map_gist(bmap, context: bmap_context); |
3773 | } |
3774 | |
3775 | __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map, |
3776 | __isl_take isl_set *context) |
3777 | { |
3778 | isl_map *map_context = isl_map_universe(space: isl_map_get_space(map)); |
3779 | map_context = isl_map_intersect_domain(map: map_context, set: context); |
3780 | return isl_map_gist(map, context: map_context); |
3781 | } |
3782 | |
3783 | __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map, |
3784 | __isl_take isl_set *context) |
3785 | { |
3786 | isl_map *map_context = isl_map_universe(space: isl_map_get_space(map)); |
3787 | map_context = isl_map_intersect_range(map: map_context, set: context); |
3788 | return isl_map_gist(map, context: map_context); |
3789 | } |
3790 | |
3791 | __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map, |
3792 | __isl_take isl_set *context) |
3793 | { |
3794 | isl_map *map_context = isl_map_universe(space: isl_map_get_space(map)); |
3795 | map_context = isl_map_intersect_params(map: map_context, params: context); |
3796 | return isl_map_gist(map, context: map_context); |
3797 | } |
3798 | |
3799 | __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set, |
3800 | __isl_take isl_set *context) |
3801 | { |
3802 | return isl_map_gist_params(map: set, context); |
3803 | } |
3804 | |
3805 | /* Quick check to see if two basic maps are disjoint. |
3806 | * In particular, we reduce the equalities and inequalities of |
3807 | * one basic map in the context of the equalities of the other |
3808 | * basic map and check if we get a contradiction. |
3809 | */ |
3810 | isl_bool isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1, |
3811 | __isl_keep isl_basic_map *bmap2) |
3812 | { |
3813 | struct isl_vec *v = NULL; |
3814 | int *elim = NULL; |
3815 | isl_size total; |
3816 | int i; |
3817 | |
3818 | if (isl_basic_map_check_equal_space(bmap1, bmap2) < 0) |
3819 | return isl_bool_error; |
3820 | if (bmap1->n_div || bmap2->n_div) |
3821 | return isl_bool_false; |
3822 | if (!bmap1->n_eq && !bmap2->n_eq) |
3823 | return isl_bool_false; |
3824 | |
3825 | total = isl_space_dim(space: bmap1->dim, type: isl_dim_all); |
3826 | if (total < 0) |
3827 | return isl_bool_error; |
3828 | if (total == 0) |
3829 | return isl_bool_false; |
3830 | v = isl_vec_alloc(ctx: bmap1->ctx, size: 1 + total); |
3831 | if (!v) |
3832 | goto error; |
3833 | elim = isl_alloc_array(bmap1->ctx, int, total); |
3834 | if (!elim) |
3835 | goto error; |
3836 | compute_elimination_index(bmap: bmap1, elim, len: total); |
3837 | for (i = 0; i < bmap2->n_eq; ++i) { |
3838 | int reduced; |
3839 | reduced = reduced_using_equalities(dst: v->block.data, src: bmap2->eq[i], |
3840 | bmap: bmap1, elim, total); |
3841 | if (reduced && !isl_int_is_zero(v->block.data[0]) && |
3842 | isl_seq_first_non_zero(p: v->block.data + 1, len: total) == -1) |
3843 | goto disjoint; |
3844 | } |
3845 | for (i = 0; i < bmap2->n_ineq; ++i) { |
3846 | int reduced; |
3847 | reduced = reduced_using_equalities(dst: v->block.data, |
3848 | src: bmap2->ineq[i], bmap: bmap1, elim, total); |
3849 | if (reduced && isl_int_is_neg(v->block.data[0]) && |
3850 | isl_seq_first_non_zero(p: v->block.data + 1, len: total) == -1) |
3851 | goto disjoint; |
3852 | } |
3853 | compute_elimination_index(bmap: bmap2, elim, len: total); |
3854 | for (i = 0; i < bmap1->n_ineq; ++i) { |
3855 | int reduced; |
3856 | reduced = reduced_using_equalities(dst: v->block.data, |
3857 | src: bmap1->ineq[i], bmap: bmap2, elim, total); |
3858 | if (reduced && isl_int_is_neg(v->block.data[0]) && |
3859 | isl_seq_first_non_zero(p: v->block.data + 1, len: total) == -1) |
3860 | goto disjoint; |
3861 | } |
3862 | isl_vec_free(vec: v); |
3863 | free(ptr: elim); |
3864 | return isl_bool_false; |
3865 | disjoint: |
3866 | isl_vec_free(vec: v); |
3867 | free(ptr: elim); |
3868 | return isl_bool_true; |
3869 | error: |
3870 | isl_vec_free(vec: v); |
3871 | free(ptr: elim); |
3872 | return isl_bool_error; |
3873 | } |
3874 | |
3875 | int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1, |
3876 | __isl_keep isl_basic_set *bset2) |
3877 | { |
3878 | return isl_basic_map_plain_is_disjoint(bmap1: bset_to_bmap(bset: bset1), |
3879 | bmap2: bset_to_bmap(bset: bset2)); |
3880 | } |
3881 | |
3882 | /* Does "test" hold for all pairs of basic maps in "map1" and "map2"? |
3883 | */ |
3884 | static isl_bool all_pairs(__isl_keep isl_map *map1, __isl_keep isl_map *map2, |
3885 | isl_bool (*test)(__isl_keep isl_basic_map *bmap1, |
3886 | __isl_keep isl_basic_map *bmap2)) |
3887 | { |
3888 | int i, j; |
3889 | |
3890 | if (!map1 || !map2) |
3891 | return isl_bool_error; |
3892 | |
3893 | for (i = 0; i < map1->n; ++i) { |
3894 | for (j = 0; j < map2->n; ++j) { |
3895 | isl_bool d = test(map1->p[i], map2->p[j]); |
3896 | if (d != isl_bool_true) |
3897 | return d; |
3898 | } |
3899 | } |
3900 | |
3901 | return isl_bool_true; |
3902 | } |
3903 | |
3904 | /* Are "map1" and "map2" obviously disjoint, based on information |
3905 | * that can be derived without looking at the individual basic maps? |
3906 | * |
3907 | * In particular, if one of them is empty or if they live in different spaces |
3908 | * (ignoring parameters), then they are clearly disjoint. |
3909 | */ |
3910 | static isl_bool isl_map_plain_is_disjoint_global(__isl_keep isl_map *map1, |
3911 | __isl_keep isl_map *map2) |
3912 | { |
3913 | isl_bool disjoint; |
3914 | isl_bool match; |
3915 | |
3916 | if (!map1 || !map2) |
3917 | return isl_bool_error; |
3918 | |
3919 | disjoint = isl_map_plain_is_empty(map: map1); |
3920 | if (disjoint < 0 || disjoint) |
3921 | return disjoint; |
3922 | |
3923 | disjoint = isl_map_plain_is_empty(map: map2); |
3924 | if (disjoint < 0 || disjoint) |
3925 | return disjoint; |
3926 | |
3927 | match = isl_map_tuple_is_equal(map1, type1: isl_dim_in, map2, type2: isl_dim_in); |
3928 | if (match < 0 || !match) |
3929 | return match < 0 ? isl_bool_error : isl_bool_true; |
3930 | |
3931 | match = isl_map_tuple_is_equal(map1, type1: isl_dim_out, map2, type2: isl_dim_out); |
3932 | if (match < 0 || !match) |
3933 | return match < 0 ? isl_bool_error : isl_bool_true; |
3934 | |
3935 | return isl_bool_false; |
3936 | } |
3937 | |
3938 | /* Are "map1" and "map2" obviously disjoint? |
3939 | * |
3940 | * If one of them is empty or if they live in different spaces (ignoring |
3941 | * parameters), then they are clearly disjoint. |
3942 | * This is checked by isl_map_plain_is_disjoint_global. |
3943 | * |
3944 | * If they have different parameters, then we skip any further tests. |
3945 | * |
3946 | * If they are obviously equal, but not obviously empty, then we will |
3947 | * not be able to detect if they are disjoint. |
3948 | * |
3949 | * Otherwise we check if each basic map in "map1" is obviously disjoint |
3950 | * from each basic map in "map2". |
3951 | */ |
3952 | isl_bool isl_map_plain_is_disjoint(__isl_keep isl_map *map1, |
3953 | __isl_keep isl_map *map2) |
3954 | { |
3955 | isl_bool disjoint; |
3956 | isl_bool intersect; |
3957 | isl_bool match; |
3958 | |
3959 | disjoint = isl_map_plain_is_disjoint_global(map1, map2); |
3960 | if (disjoint < 0 || disjoint) |
3961 | return disjoint; |
3962 | |
3963 | match = isl_map_has_equal_params(map1, map2); |
3964 | if (match < 0 || !match) |
3965 | return match < 0 ? isl_bool_error : isl_bool_false; |
3966 | |
3967 | intersect = isl_map_plain_is_equal(map1, map2); |
3968 | if (intersect < 0 || intersect) |
3969 | return intersect < 0 ? isl_bool_error : isl_bool_false; |
3970 | |
3971 | return all_pairs(map1, map2, test: &isl_basic_map_plain_is_disjoint); |
3972 | } |
3973 | |
3974 | /* Are "map1" and "map2" disjoint? |
3975 | * The parameters are assumed to have been aligned. |
3976 | * |
3977 | * In particular, check whether all pairs of basic maps are disjoint. |
3978 | */ |
3979 | static isl_bool isl_map_is_disjoint_aligned(__isl_keep isl_map *map1, |
3980 | __isl_keep isl_map *map2) |
3981 | { |
3982 | return all_pairs(map1, map2, test: &isl_basic_map_is_disjoint); |
3983 | } |
3984 | |
3985 | /* Are "map1" and "map2" disjoint? |
3986 | * |
3987 | * They are disjoint if they are "obviously disjoint" or if one of them |
3988 | * is empty. Otherwise, they are not disjoint if one of them is universal. |
3989 | * If the two inputs are (obviously) equal and not empty, then they are |
3990 | * not disjoint. |
3991 | * If none of these cases apply, then check if all pairs of basic maps |
3992 | * are disjoint after aligning the parameters. |
3993 | */ |
3994 | isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2) |
3995 | { |
3996 | isl_bool disjoint; |
3997 | isl_bool intersect; |
3998 | |
3999 | disjoint = isl_map_plain_is_disjoint_global(map1, map2); |
4000 | if (disjoint < 0 || disjoint) |
4001 | return disjoint; |
4002 | |
4003 | disjoint = isl_map_is_empty(map: map1); |
4004 | if (disjoint < 0 || disjoint) |
4005 | return disjoint; |
4006 | |
4007 | disjoint = isl_map_is_empty(map: map2); |
4008 | if (disjoint < 0 || disjoint) |
4009 | return disjoint; |
4010 | |
4011 | intersect = isl_map_plain_is_universe(map: map1); |
4012 | if (intersect < 0 || intersect) |
4013 | return isl_bool_not(b: intersect); |
4014 | |
4015 | intersect = isl_map_plain_is_universe(map: map2); |
4016 | if (intersect < 0 || intersect) |
4017 | return isl_bool_not(b: intersect); |
4018 | |
4019 | intersect = isl_map_plain_is_equal(map1, map2); |
4020 | if (intersect < 0 || intersect) |
4021 | return isl_bool_not(b: intersect); |
4022 | |
4023 | return isl_map_align_params_map_map_and_test(map1, map2, |
4024 | fn: &isl_map_is_disjoint_aligned); |
4025 | } |
4026 | |
4027 | /* Are "bmap1" and "bmap2" disjoint? |
4028 | * |
4029 | * They are disjoint if they are "obviously disjoint" or if one of them |
4030 | * is empty. Otherwise, they are not disjoint if one of them is universal. |
4031 | * If none of these cases apply, we compute the intersection and see if |
4032 | * the result is empty. |
4033 | */ |
4034 | isl_bool isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1, |
4035 | __isl_keep isl_basic_map *bmap2) |
4036 | { |
4037 | isl_bool disjoint; |
4038 | isl_bool intersect; |
4039 | isl_basic_map *test; |
4040 | |
4041 | disjoint = isl_basic_map_plain_is_disjoint(bmap1, bmap2); |
4042 | if (disjoint < 0 || disjoint) |
4043 | return disjoint; |
4044 | |
4045 | disjoint = isl_basic_map_is_empty(bmap: bmap1); |
4046 | if (disjoint < 0 || disjoint) |
4047 | return disjoint; |
4048 | |
4049 | disjoint = isl_basic_map_is_empty(bmap: bmap2); |
4050 | if (disjoint < 0 || disjoint) |
4051 | return disjoint; |
4052 | |
4053 | intersect = isl_basic_map_plain_is_universe(bmap: bmap1); |
4054 | if (intersect < 0 || intersect) |
4055 | return isl_bool_not(b: intersect); |
4056 | |
4057 | intersect = isl_basic_map_plain_is_universe(bmap: bmap2); |
4058 | if (intersect < 0 || intersect) |
4059 | return isl_bool_not(b: intersect); |
4060 | |
4061 | test = isl_basic_map_intersect(bmap1: isl_basic_map_copy(bmap: bmap1), |
4062 | bmap2: isl_basic_map_copy(bmap: bmap2)); |
4063 | disjoint = isl_basic_map_is_empty(bmap: test); |
4064 | isl_basic_map_free(bmap: test); |
4065 | |
4066 | return disjoint; |
4067 | } |
4068 | |
4069 | /* Are "bset1" and "bset2" disjoint? |
4070 | */ |
4071 | isl_bool isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1, |
4072 | __isl_keep isl_basic_set *bset2) |
4073 | { |
4074 | return isl_basic_map_is_disjoint(bmap1: bset1, bmap2: bset2); |
4075 | } |
4076 | |
4077 | isl_bool isl_set_plain_is_disjoint(__isl_keep isl_set *set1, |
4078 | __isl_keep isl_set *set2) |
4079 | { |
4080 | return isl_map_plain_is_disjoint(map1: set_to_map(set1), map2: set_to_map(set2)); |
4081 | } |
4082 | |
4083 | /* Are "set1" and "set2" disjoint? |
4084 | */ |
4085 | isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2) |
4086 | { |
4087 | return isl_map_is_disjoint(map1: set1, map2: set2); |
4088 | } |
4089 | |
4090 | /* Is "v" equal to 0, 1 or -1? |
4091 | */ |
4092 | static int is_zero_or_one(isl_int v) |
4093 | { |
4094 | return isl_int_is_zero(v) || isl_int_is_one(v) || isl_int_is_negone(v); |
4095 | } |
4096 | |
4097 | /* Are the "n" coefficients starting at "first" of inequality constraints |
4098 | * "i" and "j" of "bmap" opposite to each other? |
4099 | */ |
4100 | static int is_opposite_part(__isl_keep isl_basic_map *bmap, int i, int j, |
4101 | int first, int n) |
4102 | { |
4103 | return isl_seq_is_neg(p1: bmap->ineq[i] + first, p2: bmap->ineq[j] + first, len: n); |
4104 | } |
4105 | |
4106 | /* Are inequality constraints "i" and "j" of "bmap" opposite to each other, |
4107 | * apart from the constant term? |
4108 | */ |
4109 | static isl_bool is_opposite(__isl_keep isl_basic_map *bmap, int i, int j) |
4110 | { |
4111 | isl_size total; |
4112 | |
4113 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
4114 | if (total < 0) |
4115 | return isl_bool_error; |
4116 | return is_opposite_part(bmap, i, j, first: 1, n: total); |
4117 | } |
4118 | |
4119 | /* Check if we can combine a given div with lower bound l and upper |
4120 | * bound u with some other div and if so return that other div. |
4121 | * Otherwise, return a position beyond the integer divisions. |
4122 | * Return -1 on error. |
4123 | * |
4124 | * We first check that |
4125 | * - the bounds are opposites of each other (except for the constant |
4126 | * term) |
4127 | * - the bounds do not reference any other div |
4128 | * - no div is defined in terms of this div |
4129 | * |
4130 | * Let m be the size of the range allowed on the div by the bounds. |
4131 | * That is, the bounds are of the form |
4132 | * |
4133 | * e <= a <= e + m - 1 |
4134 | * |
4135 | * with e some expression in the other variables. |
4136 | * We look for another div b such that no third div is defined in terms |
4137 | * of this second div b and such that in any constraint that contains |
4138 | * a (except for the given lower and upper bound), also contains b |
4139 | * with a coefficient that is m times that of b. |
4140 | * That is, all constraints (except for the lower and upper bound) |
4141 | * are of the form |
4142 | * |
4143 | * e + f (a + m b) >= 0 |
4144 | * |
4145 | * Furthermore, in the constraints that only contain b, the coefficient |
4146 | * of b should be equal to 1 or -1. |
4147 | * If so, we return b so that "a + m b" can be replaced by |
4148 | * a single div "c = a + m b". |
4149 | */ |
4150 | static int div_find_coalesce(__isl_keep isl_basic_map *bmap, int *pairs, |
4151 | unsigned div, unsigned l, unsigned u) |
4152 | { |
4153 | int i, j; |
4154 | unsigned n_div; |
4155 | isl_size v_div; |
4156 | int coalesce; |
4157 | isl_bool opp; |
4158 | |
4159 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
4160 | if (n_div <= 1) |
4161 | return n_div; |
4162 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
4163 | if (v_div < 0) |
4164 | return -1; |
4165 | if (isl_seq_first_non_zero(p: bmap->ineq[l] + 1 + v_div, len: div) != -1) |
4166 | return n_div; |
4167 | if (isl_seq_first_non_zero(p: bmap->ineq[l] + 1 + v_div + div + 1, |
4168 | len: n_div - div - 1) != -1) |
4169 | return n_div; |
4170 | opp = is_opposite(bmap, i: l, j: u); |
4171 | if (opp < 0 || !opp) |
4172 | return opp < 0 ? -1 : n_div; |
4173 | |
4174 | for (i = 0; i < n_div; ++i) { |
4175 | if (isl_int_is_zero(bmap->div[i][0])) |
4176 | continue; |
4177 | if (!isl_int_is_zero(bmap->div[i][1 + 1 + v_div + div])) |
4178 | return n_div; |
4179 | } |
4180 | |
4181 | isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]); |
4182 | if (isl_int_is_neg(bmap->ineq[l][0])) { |
4183 | isl_int_sub(bmap->ineq[l][0], |
4184 | bmap->ineq[l][0], bmap->ineq[u][0]); |
4185 | bmap = isl_basic_map_copy(bmap); |
4186 | bmap = isl_basic_map_set_to_empty(bmap); |
4187 | isl_basic_map_free(bmap); |
4188 | return n_div; |
4189 | } |
4190 | isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1); |
4191 | coalesce = n_div; |
4192 | for (i = 0; i < n_div; ++i) { |
4193 | if (i == div) |
4194 | continue; |
4195 | if (!pairs[i]) |
4196 | continue; |
4197 | for (j = 0; j < n_div; ++j) { |
4198 | if (isl_int_is_zero(bmap->div[j][0])) |
4199 | continue; |
4200 | if (!isl_int_is_zero(bmap->div[j][1 + 1 + v_div + i])) |
4201 | break; |
4202 | } |
4203 | if (j < n_div) |
4204 | continue; |
4205 | for (j = 0; j < bmap->n_ineq; ++j) { |
4206 | int valid; |
4207 | if (j == l || j == u) |
4208 | continue; |
4209 | if (isl_int_is_zero(bmap->ineq[j][1 + v_div + div])) { |
4210 | if (is_zero_or_one(v: bmap->ineq[j][1 + v_div + i])) |
4211 | continue; |
4212 | break; |
4213 | } |
4214 | if (isl_int_is_zero(bmap->ineq[j][1 + v_div + i])) |
4215 | break; |
4216 | isl_int_mul(bmap->ineq[j][1 + v_div + div], |
4217 | bmap->ineq[j][1 + v_div + div], |
4218 | bmap->ineq[l][0]); |
4219 | valid = isl_int_eq(bmap->ineq[j][1 + v_div + div], |
4220 | bmap->ineq[j][1 + v_div + i]); |
4221 | isl_int_divexact(bmap->ineq[j][1 + v_div + div], |
4222 | bmap->ineq[j][1 + v_div + div], |
4223 | bmap->ineq[l][0]); |
4224 | if (!valid) |
4225 | break; |
4226 | } |
4227 | if (j < bmap->n_ineq) |
4228 | continue; |
4229 | coalesce = i; |
4230 | break; |
4231 | } |
4232 | isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1); |
4233 | isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]); |
4234 | return coalesce; |
4235 | } |
4236 | |
4237 | /* Internal data structure used during the construction and/or evaluation of |
4238 | * an inequality that ensures that a pair of bounds always allows |
4239 | * for an integer value. |
4240 | * |
4241 | * "tab" is the tableau in which the inequality is evaluated. It may |
4242 | * be NULL until it is actually needed. |
4243 | * "v" contains the inequality coefficients. |
4244 | * "g", "fl" and "fu" are temporary scalars used during the construction and |
4245 | * evaluation. |
4246 | */ |
4247 | struct test_ineq_data { |
4248 | struct isl_tab *tab; |
4249 | isl_vec *v; |
4250 | isl_int g; |
4251 | isl_int fl; |
4252 | isl_int fu; |
4253 | }; |
4254 | |
4255 | /* Free all the memory allocated by the fields of "data". |
4256 | */ |
4257 | static void test_ineq_data_clear(struct test_ineq_data *data) |
4258 | { |
4259 | isl_tab_free(tab: data->tab); |
4260 | isl_vec_free(vec: data->v); |
4261 | isl_int_clear(data->g); |
4262 | isl_int_clear(data->fl); |
4263 | isl_int_clear(data->fu); |
4264 | } |
4265 | |
4266 | /* Is the inequality stored in data->v satisfied by "bmap"? |
4267 | * That is, does it only attain non-negative values? |
4268 | * data->tab is a tableau corresponding to "bmap". |
4269 | */ |
4270 | static isl_bool test_ineq_is_satisfied(__isl_keep isl_basic_map *bmap, |
4271 | struct test_ineq_data *data) |
4272 | { |
4273 | isl_ctx *ctx; |
4274 | enum isl_lp_result res; |
4275 | |
4276 | ctx = isl_basic_map_get_ctx(bmap); |
4277 | if (!data->tab) |
4278 | data->tab = isl_tab_from_basic_map(bmap, track: 0); |
4279 | res = isl_tab_min(tab: data->tab, f: data->v->el, denom: ctx->one, opt: &data->g, NULL, flags: 0); |
4280 | if (res == isl_lp_error) |
4281 | return isl_bool_error; |
4282 | return res == isl_lp_ok && isl_int_is_nonneg(data->g); |
4283 | } |
4284 | |
4285 | /* Given a lower and an upper bound on div i, do they always allow |
4286 | * for an integer value of the given div? |
4287 | * Determine this property by constructing an inequality |
4288 | * such that the property is guaranteed when the inequality is nonnegative. |
4289 | * The lower bound is inequality l, while the upper bound is inequality u. |
4290 | * The constructed inequality is stored in data->v. |
4291 | * |
4292 | * Let the upper bound be |
4293 | * |
4294 | * -n_u a + e_u >= 0 |
4295 | * |
4296 | * and the lower bound |
4297 | * |
4298 | * n_l a + e_l >= 0 |
4299 | * |
4300 | * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l). |
4301 | * We have |
4302 | * |
4303 | * - f_u e_l <= f_u f_l g a <= f_l e_u |
4304 | * |
4305 | * Since all variables are integer valued, this is equivalent to |
4306 | * |
4307 | * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1) |
4308 | * |
4309 | * If this interval is at least f_u f_l g, then it contains at least |
4310 | * one integer value for a. |
4311 | * That is, the test constraint is |
4312 | * |
4313 | * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g |
4314 | * |
4315 | * or |
4316 | * |
4317 | * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 - f_u f_l g >= 0 |
4318 | * |
4319 | * If the coefficients of f_l e_u + f_u e_l have a common divisor g', |
4320 | * then the constraint can be scaled down by a factor g', |
4321 | * with the constant term replaced by |
4322 | * floor((f_l e_{u,0} + f_u e_{l,0} + f_l - 1 + f_u - 1 + 1 - f_u f_l g)/g'). |
4323 | * Note that the result of applying Fourier-Motzkin to this pair |
4324 | * of constraints is |
4325 | * |
4326 | * f_l e_u + f_u e_l >= 0 |
4327 | * |
4328 | * If the constant term of the scaled down version of this constraint, |
4329 | * i.e., floor((f_l e_{u,0} + f_u e_{l,0})/g') is equal to the constant |
4330 | * term of the scaled down test constraint, then the test constraint |
4331 | * is known to hold and no explicit evaluation is required. |
4332 | * This is essentially the Omega test. |
4333 | * |
4334 | * If the test constraint consists of only a constant term, then |
4335 | * it is sufficient to look at the sign of this constant term. |
4336 | */ |
4337 | static isl_bool int_between_bounds(__isl_keep isl_basic_map *bmap, int i, |
4338 | int l, int u, struct test_ineq_data *data) |
4339 | { |
4340 | unsigned offset; |
4341 | isl_size n_div; |
4342 | |
4343 | offset = isl_basic_map_offset(bmap, type: isl_dim_div); |
4344 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
4345 | if (n_div < 0) |
4346 | return isl_bool_error; |
4347 | |
4348 | isl_int_gcd(data->g, |
4349 | bmap->ineq[l][offset + i], bmap->ineq[u][offset + i]); |
4350 | isl_int_divexact(data->fl, bmap->ineq[l][offset + i], data->g); |
4351 | isl_int_divexact(data->fu, bmap->ineq[u][offset + i], data->g); |
4352 | isl_int_neg(data->fu, data->fu); |
4353 | isl_seq_combine(dst: data->v->el, m1: data->fl, src1: bmap->ineq[u], |
4354 | m2: data->fu, src2: bmap->ineq[l], len: offset + n_div); |
4355 | isl_int_mul(data->g, data->g, data->fl); |
4356 | isl_int_mul(data->g, data->g, data->fu); |
4357 | isl_int_sub(data->g, data->g, data->fl); |
4358 | isl_int_sub(data->g, data->g, data->fu); |
4359 | isl_int_add_ui(data->g, data->g, 1); |
4360 | isl_int_sub(data->fl, data->v->el[0], data->g); |
4361 | |
4362 | isl_seq_gcd(p: data->v->el + 1, len: offset - 1 + n_div, gcd: &data->g); |
4363 | if (isl_int_is_zero(data->g)) |
4364 | return isl_int_is_nonneg(data->fl); |
4365 | if (isl_int_is_one(data->g)) { |
4366 | isl_int_set(data->v->el[0], data->fl); |
4367 | return test_ineq_is_satisfied(bmap, data); |
4368 | } |
4369 | isl_int_fdiv_q(data->fl, data->fl, data->g); |
4370 | isl_int_fdiv_q(data->v->el[0], data->v->el[0], data->g); |
4371 | if (isl_int_eq(data->fl, data->v->el[0])) |
4372 | return isl_bool_true; |
4373 | isl_int_set(data->v->el[0], data->fl); |
4374 | isl_seq_scale_down(dst: data->v->el + 1, src: data->v->el + 1, f: data->g, |
4375 | len: offset - 1 + n_div); |
4376 | |
4377 | return test_ineq_is_satisfied(bmap, data); |
4378 | } |
4379 | |
4380 | /* Remove more kinds of divs that are not strictly needed. |
4381 | * In particular, if all pairs of lower and upper bounds on a div |
4382 | * are such that they allow at least one integer value of the div, |
4383 | * then we can eliminate the div using Fourier-Motzkin without |
4384 | * introducing any spurious solutions. |
4385 | * |
4386 | * If at least one of the two constraints has a unit coefficient for the div, |
4387 | * then the presence of such a value is guaranteed so there is no need to check. |
4388 | * In particular, the value attained by the bound with unit coefficient |
4389 | * can serve as this intermediate value. |
4390 | */ |
4391 | static __isl_give isl_basic_map *drop_more_redundant_divs( |
4392 | __isl_take isl_basic_map *bmap, __isl_take int *pairs, int n) |
4393 | { |
4394 | isl_ctx *ctx; |
4395 | struct test_ineq_data data = { NULL, NULL }; |
4396 | unsigned off; |
4397 | isl_size n_div; |
4398 | int remove = -1; |
4399 | |
4400 | isl_int_init(data.g); |
4401 | isl_int_init(data.fl); |
4402 | isl_int_init(data.fu); |
4403 | |
4404 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
4405 | if (n_div < 0) |
4406 | goto error; |
4407 | |
4408 | ctx = isl_basic_map_get_ctx(bmap); |
4409 | off = isl_basic_map_offset(bmap, type: isl_dim_div); |
4410 | data.v = isl_vec_alloc(ctx, size: off + n_div); |
4411 | if (!data.v) |
4412 | goto error; |
4413 | |
4414 | while (n > 0) { |
4415 | int i, l, u; |
4416 | int best = -1; |
4417 | isl_bool has_int; |
4418 | |
4419 | for (i = 0; i < n_div; ++i) { |
4420 | if (!pairs[i]) |
4421 | continue; |
4422 | if (best >= 0 && pairs[best] <= pairs[i]) |
4423 | continue; |
4424 | best = i; |
4425 | } |
4426 | |
4427 | i = best; |
4428 | for (l = 0; l < bmap->n_ineq; ++l) { |
4429 | if (!isl_int_is_pos(bmap->ineq[l][off + i])) |
4430 | continue; |
4431 | if (isl_int_is_one(bmap->ineq[l][off + i])) |
4432 | continue; |
4433 | for (u = 0; u < bmap->n_ineq; ++u) { |
4434 | if (!isl_int_is_neg(bmap->ineq[u][off + i])) |
4435 | continue; |
4436 | if (isl_int_is_negone(bmap->ineq[u][off + i])) |
4437 | continue; |
4438 | has_int = int_between_bounds(bmap, i, l, u, |
4439 | data: &data); |
4440 | if (has_int < 0) |
4441 | goto error; |
4442 | if (data.tab && data.tab->empty) |
4443 | break; |
4444 | if (!has_int) |
4445 | break; |
4446 | } |
4447 | if (u < bmap->n_ineq) |
4448 | break; |
4449 | } |
4450 | if (data.tab && data.tab->empty) { |
4451 | bmap = isl_basic_map_set_to_empty(bmap); |
4452 | break; |
4453 | } |
4454 | if (l == bmap->n_ineq) { |
4455 | remove = i; |
4456 | break; |
4457 | } |
4458 | pairs[i] = 0; |
4459 | --n; |
4460 | } |
4461 | |
4462 | test_ineq_data_clear(data: &data); |
4463 | |
4464 | free(ptr: pairs); |
4465 | |
4466 | if (remove < 0) |
4467 | return bmap; |
4468 | |
4469 | bmap = isl_basic_map_remove_dims(bmap, type: isl_dim_div, first: remove, n: 1); |
4470 | return isl_basic_map_drop_redundant_divs(bmap); |
4471 | error: |
4472 | free(ptr: pairs); |
4473 | isl_basic_map_free(bmap); |
4474 | test_ineq_data_clear(data: &data); |
4475 | return NULL; |
4476 | } |
4477 | |
4478 | /* Given a pair of divs div1 and div2 such that, except for the lower bound l |
4479 | * and the upper bound u, div1 always occurs together with div2 in the form |
4480 | * (div1 + m div2), where m is the constant range on the variable div1 |
4481 | * allowed by l and u, replace the pair div1 and div2 by a single |
4482 | * div that is equal to div1 + m div2. |
4483 | * |
4484 | * The new div will appear in the location that contains div2. |
4485 | * We need to modify all constraints that contain |
4486 | * div2 = (div - div1) / m |
4487 | * The coefficient of div2 is known to be equal to 1 or -1. |
4488 | * (If a constraint does not contain div2, it will also not contain div1.) |
4489 | * If the constraint also contains div1, then we know they appear |
4490 | * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div, |
4491 | * i.e., the coefficient of div is f. |
4492 | * |
4493 | * Otherwise, we first need to introduce div1 into the constraint. |
4494 | * Let l be |
4495 | * |
4496 | * div1 + f >=0 |
4497 | * |
4498 | * and u |
4499 | * |
4500 | * -div1 + f' >= 0 |
4501 | * |
4502 | * A lower bound on div2 |
4503 | * |
4504 | * div2 + t >= 0 |
4505 | * |
4506 | * can be replaced by |
4507 | * |
4508 | * m div2 + div1 + m t + f >= 0 |
4509 | * |
4510 | * An upper bound |
4511 | * |
4512 | * -div2 + t >= 0 |
4513 | * |
4514 | * can be replaced by |
4515 | * |
4516 | * -(m div2 + div1) + m t + f' >= 0 |
4517 | * |
4518 | * These constraint are those that we would obtain from eliminating |
4519 | * div1 using Fourier-Motzkin. |
4520 | * |
4521 | * After all constraints have been modified, we drop the lower and upper |
4522 | * bound and then drop div1. |
4523 | * Since the new div is only placed in the same location that used |
4524 | * to store div2, but otherwise has a different meaning, any possible |
4525 | * explicit representation of the original div2 is removed. |
4526 | */ |
4527 | static __isl_give isl_basic_map *coalesce_divs(__isl_take isl_basic_map *bmap, |
4528 | unsigned div1, unsigned div2, unsigned l, unsigned u) |
4529 | { |
4530 | isl_ctx *ctx; |
4531 | isl_int m; |
4532 | isl_size v_div; |
4533 | unsigned total; |
4534 | int i; |
4535 | |
4536 | ctx = isl_basic_map_get_ctx(bmap); |
4537 | |
4538 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
4539 | if (v_div < 0) |
4540 | return isl_basic_map_free(bmap); |
4541 | total = 1 + v_div + bmap->n_div; |
4542 | |
4543 | isl_int_init(m); |
4544 | isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]); |
4545 | isl_int_add_ui(m, m, 1); |
4546 | |
4547 | for (i = 0; i < bmap->n_ineq; ++i) { |
4548 | if (i == l || i == u) |
4549 | continue; |
4550 | if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div2])) |
4551 | continue; |
4552 | if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div1])) { |
4553 | if (isl_int_is_pos(bmap->ineq[i][1 + v_div + div2])) |
4554 | isl_seq_combine(dst: bmap->ineq[i], m1: m, src1: bmap->ineq[i], |
4555 | m2: ctx->one, src2: bmap->ineq[l], len: total); |
4556 | else |
4557 | isl_seq_combine(dst: bmap->ineq[i], m1: m, src1: bmap->ineq[i], |
4558 | m2: ctx->one, src2: bmap->ineq[u], len: total); |
4559 | } |
4560 | isl_int_set(bmap->ineq[i][1 + v_div + div2], |
4561 | bmap->ineq[i][1 + v_div + div1]); |
4562 | isl_int_set_si(bmap->ineq[i][1 + v_div + div1], 0); |
4563 | } |
4564 | |
4565 | isl_int_clear(m); |
4566 | if (l > u) { |
4567 | isl_basic_map_drop_inequality(bmap, pos: l); |
4568 | isl_basic_map_drop_inequality(bmap, pos: u); |
4569 | } else { |
4570 | isl_basic_map_drop_inequality(bmap, pos: u); |
4571 | isl_basic_map_drop_inequality(bmap, pos: l); |
4572 | } |
4573 | bmap = isl_basic_map_mark_div_unknown(bmap, div: div2); |
4574 | bmap = isl_basic_map_drop_div(bmap, div: div1); |
4575 | return bmap; |
4576 | } |
4577 | |
4578 | /* First check if we can coalesce any pair of divs and |
4579 | * then continue with dropping more redundant divs. |
4580 | * |
4581 | * We loop over all pairs of lower and upper bounds on a div |
4582 | * with coefficient 1 and -1, respectively, check if there |
4583 | * is any other div "c" with which we can coalesce the div |
4584 | * and if so, perform the coalescing. |
4585 | */ |
4586 | static __isl_give isl_basic_map *coalesce_or_drop_more_redundant_divs( |
4587 | __isl_take isl_basic_map *bmap, int *pairs, int n) |
4588 | { |
4589 | int i, l, u; |
4590 | isl_size v_div; |
4591 | isl_size n_div; |
4592 | |
4593 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
4594 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
4595 | if (v_div < 0 || n_div < 0) |
4596 | return isl_basic_map_free(bmap); |
4597 | |
4598 | for (i = 0; i < n_div; ++i) { |
4599 | if (!pairs[i]) |
4600 | continue; |
4601 | for (l = 0; l < bmap->n_ineq; ++l) { |
4602 | if (!isl_int_is_one(bmap->ineq[l][1 + v_div + i])) |
4603 | continue; |
4604 | for (u = 0; u < bmap->n_ineq; ++u) { |
4605 | int c; |
4606 | |
4607 | if (!isl_int_is_negone(bmap->ineq[u][1+v_div+i])) |
4608 | continue; |
4609 | c = div_find_coalesce(bmap, pairs, div: i, l, u); |
4610 | if (c < 0) |
4611 | goto error; |
4612 | if (c >= n_div) |
4613 | continue; |
4614 | free(ptr: pairs); |
4615 | bmap = coalesce_divs(bmap, div1: i, div2: c, l, u); |
4616 | return isl_basic_map_drop_redundant_divs(bmap); |
4617 | } |
4618 | } |
4619 | } |
4620 | |
4621 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) { |
4622 | free(ptr: pairs); |
4623 | return bmap; |
4624 | } |
4625 | |
4626 | return drop_more_redundant_divs(bmap, pairs, n); |
4627 | error: |
4628 | free(ptr: pairs); |
4629 | isl_basic_map_free(bmap); |
4630 | return NULL; |
4631 | } |
4632 | |
4633 | /* Are the "n" coefficients starting at "first" of inequality constraints |
4634 | * "i" and "j" of "bmap" equal to each other? |
4635 | */ |
4636 | static int is_parallel_part(__isl_keep isl_basic_map *bmap, int i, int j, |
4637 | int first, int n) |
4638 | { |
4639 | return isl_seq_eq(p1: bmap->ineq[i] + first, p2: bmap->ineq[j] + first, len: n); |
4640 | } |
4641 | |
4642 | /* Are inequality constraints "i" and "j" of "bmap" equal to each other, |
4643 | * apart from the constant term and the coefficient at position "pos"? |
4644 | */ |
4645 | static isl_bool is_parallel_except(__isl_keep isl_basic_map *bmap, int i, int j, |
4646 | int pos) |
4647 | { |
4648 | isl_size total; |
4649 | |
4650 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
4651 | if (total < 0) |
4652 | return isl_bool_error; |
4653 | return is_parallel_part(bmap, i, j, first: 1, n: pos - 1) && |
4654 | is_parallel_part(bmap, i, j, first: pos + 1, n: total - pos); |
4655 | } |
4656 | |
4657 | /* Are inequality constraints "i" and "j" of "bmap" opposite to each other, |
4658 | * apart from the constant term and the coefficient at position "pos"? |
4659 | */ |
4660 | static isl_bool is_opposite_except(__isl_keep isl_basic_map *bmap, int i, int j, |
4661 | int pos) |
4662 | { |
4663 | isl_size total; |
4664 | |
4665 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
4666 | if (total < 0) |
4667 | return isl_bool_error; |
4668 | return is_opposite_part(bmap, i, j, first: 1, n: pos - 1) && |
4669 | is_opposite_part(bmap, i, j, first: pos + 1, n: total - pos); |
4670 | } |
4671 | |
4672 | /* Restart isl_basic_map_drop_redundant_divs after "bmap" has |
4673 | * been modified, simplying it if "simplify" is set. |
4674 | * Free the temporary data structure "pairs" that was associated |
4675 | * to the old version of "bmap". |
4676 | */ |
4677 | static __isl_give isl_basic_map *drop_redundant_divs_again( |
4678 | __isl_take isl_basic_map *bmap, __isl_take int *pairs, int simplify) |
4679 | { |
4680 | if (simplify) |
4681 | bmap = isl_basic_map_simplify(bmap); |
4682 | free(ptr: pairs); |
4683 | return isl_basic_map_drop_redundant_divs(bmap); |
4684 | } |
4685 | |
4686 | /* Is "div" the single unknown existentially quantified variable |
4687 | * in inequality constraint "ineq" of "bmap"? |
4688 | * "div" is known to have a non-zero coefficient in "ineq". |
4689 | */ |
4690 | static isl_bool single_unknown(__isl_keep isl_basic_map *bmap, int ineq, |
4691 | int div) |
4692 | { |
4693 | int i; |
4694 | isl_size n_div; |
4695 | unsigned o_div; |
4696 | isl_bool known; |
4697 | |
4698 | known = isl_basic_map_div_is_known(bmap, div); |
4699 | if (known < 0 || known) |
4700 | return isl_bool_not(b: known); |
4701 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
4702 | if (n_div < 0) |
4703 | return isl_bool_error; |
4704 | if (n_div == 1) |
4705 | return isl_bool_true; |
4706 | o_div = isl_basic_map_offset(bmap, type: isl_dim_div); |
4707 | for (i = 0; i < n_div; ++i) { |
4708 | isl_bool known; |
4709 | |
4710 | if (i == div) |
4711 | continue; |
4712 | if (isl_int_is_zero(bmap->ineq[ineq][o_div + i])) |
4713 | continue; |
4714 | known = isl_basic_map_div_is_known(bmap, div: i); |
4715 | if (known < 0 || !known) |
4716 | return known; |
4717 | } |
4718 | |
4719 | return isl_bool_true; |
4720 | } |
4721 | |
4722 | /* Does integer division "div" have coefficient 1 in inequality constraint |
4723 | * "ineq" of "map"? |
4724 | */ |
4725 | static isl_bool has_coef_one(__isl_keep isl_basic_map *bmap, int div, int ineq) |
4726 | { |
4727 | unsigned o_div; |
4728 | |
4729 | o_div = isl_basic_map_offset(bmap, type: isl_dim_div); |
4730 | if (isl_int_is_one(bmap->ineq[ineq][o_div + div])) |
4731 | return isl_bool_true; |
4732 | |
4733 | return isl_bool_false; |
4734 | } |
4735 | |
4736 | /* Turn inequality constraint "ineq" of "bmap" into an equality and |
4737 | * then try and drop redundant divs again, |
4738 | * freeing the temporary data structure "pairs" that was associated |
4739 | * to the old version of "bmap". |
4740 | */ |
4741 | static __isl_give isl_basic_map *set_eq_and_try_again( |
4742 | __isl_take isl_basic_map *bmap, int ineq, __isl_take int *pairs) |
4743 | { |
4744 | bmap = isl_basic_map_cow(bmap); |
4745 | isl_basic_map_inequality_to_equality(bmap, pos: ineq); |
4746 | return drop_redundant_divs_again(bmap, pairs, simplify: 1); |
4747 | } |
4748 | |
4749 | /* Drop the integer division at position "div", along with the two |
4750 | * inequality constraints "ineq1" and "ineq2" in which it appears |
4751 | * from "bmap" and then try and drop redundant divs again, |
4752 | * freeing the temporary data structure "pairs" that was associated |
4753 | * to the old version of "bmap". |
4754 | */ |
4755 | static __isl_give isl_basic_map *drop_div_and_try_again( |
4756 | __isl_take isl_basic_map *bmap, int div, int ineq1, int ineq2, |
4757 | __isl_take int *pairs) |
4758 | { |
4759 | if (ineq1 > ineq2) { |
4760 | isl_basic_map_drop_inequality(bmap, pos: ineq1); |
4761 | isl_basic_map_drop_inequality(bmap, pos: ineq2); |
4762 | } else { |
4763 | isl_basic_map_drop_inequality(bmap, pos: ineq2); |
4764 | isl_basic_map_drop_inequality(bmap, pos: ineq1); |
4765 | } |
4766 | bmap = isl_basic_map_drop_div(bmap, div); |
4767 | return drop_redundant_divs_again(bmap, pairs, simplify: 0); |
4768 | } |
4769 | |
4770 | /* Given two inequality constraints |
4771 | * |
4772 | * f(x) + n d + c >= 0, (ineq) |
4773 | * |
4774 | * with d the variable at position "pos", and |
4775 | * |
4776 | * f(x) + c0 >= 0, (lower) |
4777 | * |
4778 | * compute the maximal value of the lower bound ceil((-f(x) - c)/n) |
4779 | * determined by the first constraint. |
4780 | * That is, store |
4781 | * |
4782 | * ceil((c0 - c)/n) |
4783 | * |
4784 | * in *l. |
4785 | */ |
4786 | static void lower_bound_from_parallel(__isl_keep isl_basic_map *bmap, |
4787 | int ineq, int lower, int pos, isl_int *l) |
4788 | { |
4789 | isl_int_neg(*l, bmap->ineq[ineq][0]); |
4790 | isl_int_add(*l, *l, bmap->ineq[lower][0]); |
4791 | isl_int_cdiv_q(*l, *l, bmap->ineq[ineq][pos]); |
4792 | } |
4793 | |
4794 | /* Given two inequality constraints |
4795 | * |
4796 | * f(x) + n d + c >= 0, (ineq) |
4797 | * |
4798 | * with d the variable at position "pos", and |
4799 | * |
4800 | * -f(x) - c0 >= 0, (upper) |
4801 | * |
4802 | * compute the minimal value of the lower bound ceil((-f(x) - c)/n) |
4803 | * determined by the first constraint. |
4804 | * That is, store |
4805 | * |
4806 | * ceil((-c1 - c)/n) |
4807 | * |
4808 | * in *u. |
4809 | */ |
4810 | static void lower_bound_from_opposite(__isl_keep isl_basic_map *bmap, |
4811 | int ineq, int upper, int pos, isl_int *u) |
4812 | { |
4813 | isl_int_neg(*u, bmap->ineq[ineq][0]); |
4814 | isl_int_sub(*u, *u, bmap->ineq[upper][0]); |
4815 | isl_int_cdiv_q(*u, *u, bmap->ineq[ineq][pos]); |
4816 | } |
4817 | |
4818 | /* Given a lower bound constraint "ineq" on "div" in "bmap", |
4819 | * does the corresponding lower bound have a fixed value in "bmap"? |
4820 | * |
4821 | * In particular, "ineq" is of the form |
4822 | * |
4823 | * f(x) + n d + c >= 0 |
4824 | * |
4825 | * with n > 0, c the constant term and |
4826 | * d the existentially quantified variable "div". |
4827 | * That is, the lower bound is |
4828 | * |
4829 | * ceil((-f(x) - c)/n) |
4830 | * |
4831 | * Look for a pair of constraints |
4832 | * |
4833 | * f(x) + c0 >= 0 |
4834 | * -f(x) + c1 >= 0 |
4835 | * |
4836 | * i.e., -c1 <= -f(x) <= c0, that fix ceil((-f(x) - c)/n) to a constant value. |
4837 | * That is, check that |
4838 | * |
4839 | * ceil((-c1 - c)/n) = ceil((c0 - c)/n) |
4840 | * |
4841 | * If so, return the index of inequality f(x) + c0 >= 0. |
4842 | * Otherwise, return bmap->n_ineq. |
4843 | * Return -1 on error. |
4844 | */ |
4845 | static int lower_bound_is_cst(__isl_keep isl_basic_map *bmap, int div, int ineq) |
4846 | { |
4847 | int i; |
4848 | int lower = -1, upper = -1; |
4849 | unsigned o_div; |
4850 | isl_int l, u; |
4851 | int equal; |
4852 | |
4853 | o_div = isl_basic_map_offset(bmap, type: isl_dim_div); |
4854 | for (i = 0; i < bmap->n_ineq && (lower < 0 || upper < 0); ++i) { |
4855 | isl_bool par, opp; |
4856 | |
4857 | if (i == ineq) |
4858 | continue; |
4859 | if (!isl_int_is_zero(bmap->ineq[i][o_div + div])) |
4860 | continue; |
4861 | par = isl_bool_false; |
4862 | if (lower < 0) |
4863 | par = is_parallel_except(bmap, i: ineq, j: i, pos: o_div + div); |
4864 | if (par < 0) |
4865 | return -1; |
4866 | if (par) { |
4867 | lower = i; |
4868 | continue; |
4869 | } |
4870 | opp = isl_bool_false; |
4871 | if (upper < 0) |
4872 | opp = is_opposite_except(bmap, i: ineq, j: i, pos: o_div + div); |
4873 | if (opp < 0) |
4874 | return -1; |
4875 | if (opp) |
4876 | upper = i; |
4877 | } |
4878 | |
4879 | if (lower < 0 || upper < 0) |
4880 | return bmap->n_ineq; |
4881 | |
4882 | isl_int_init(l); |
4883 | isl_int_init(u); |
4884 | |
4885 | lower_bound_from_parallel(bmap, ineq, lower, pos: o_div + div, l: &l); |
4886 | lower_bound_from_opposite(bmap, ineq, upper, pos: o_div + div, u: &u); |
4887 | |
4888 | equal = isl_int_eq(l, u); |
4889 | |
4890 | isl_int_clear(l); |
4891 | isl_int_clear(u); |
4892 | |
4893 | return equal ? lower : bmap->n_ineq; |
4894 | } |
4895 | |
4896 | /* Given a lower bound constraint "ineq" on the existentially quantified |
4897 | * variable "div", such that the corresponding lower bound has |
4898 | * a fixed value in "bmap", assign this fixed value to the variable and |
4899 | * then try and drop redundant divs again, |
4900 | * freeing the temporary data structure "pairs" that was associated |
4901 | * to the old version of "bmap". |
4902 | * "lower" determines the constant value for the lower bound. |
4903 | * |
4904 | * In particular, "ineq" is of the form |
4905 | * |
4906 | * f(x) + n d + c >= 0, |
4907 | * |
4908 | * while "lower" is of the form |
4909 | * |
4910 | * f(x) + c0 >= 0 |
4911 | * |
4912 | * The lower bound is ceil((-f(x) - c)/n) and its constant value |
4913 | * is ceil((c0 - c)/n). |
4914 | */ |
4915 | static __isl_give isl_basic_map *fix_cst_lower(__isl_take isl_basic_map *bmap, |
4916 | int div, int ineq, int lower, int *pairs) |
4917 | { |
4918 | isl_int c; |
4919 | unsigned o_div; |
4920 | |
4921 | isl_int_init(c); |
4922 | |
4923 | o_div = isl_basic_map_offset(bmap, type: isl_dim_div); |
4924 | lower_bound_from_parallel(bmap, ineq, lower, pos: o_div + div, l: &c); |
4925 | bmap = isl_basic_map_fix(bmap, type: isl_dim_div, pos: div, value: c); |
4926 | free(ptr: pairs); |
4927 | |
4928 | isl_int_clear(c); |
4929 | |
4930 | return isl_basic_map_drop_redundant_divs(bmap); |
4931 | } |
4932 | |
4933 | /* Do any of the integer divisions of "bmap" involve integer division "div"? |
4934 | * |
4935 | * The integer division "div" could only ever appear in any later |
4936 | * integer division (with an explicit representation). |
4937 | */ |
4938 | static isl_bool any_div_involves_div(__isl_keep isl_basic_map *bmap, int div) |
4939 | { |
4940 | int i; |
4941 | isl_size v_div, n_div; |
4942 | |
4943 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
4944 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
4945 | if (v_div < 0 || n_div < 0) |
4946 | return isl_bool_error; |
4947 | |
4948 | for (i = div + 1; i < n_div; ++i) { |
4949 | isl_bool unknown; |
4950 | |
4951 | unknown = isl_basic_map_div_is_marked_unknown(bmap, div: i); |
4952 | if (unknown < 0) |
4953 | return isl_bool_error; |
4954 | if (unknown) |
4955 | continue; |
4956 | if (!isl_int_is_zero(bmap->div[i][1 + 1 + v_div + div])) |
4957 | return isl_bool_true; |
4958 | } |
4959 | |
4960 | return isl_bool_false; |
4961 | } |
4962 | |
4963 | /* Remove divs that are not strictly needed based on the inequality |
4964 | * constraints. |
4965 | * In particular, if a div only occurs positively (or negatively) |
4966 | * in constraints, then it can simply be dropped. |
4967 | * Also, if a div occurs in only two constraints and if moreover |
4968 | * those two constraints are opposite to each other, except for the constant |
4969 | * term and if the sum of the constant terms is such that for any value |
4970 | * of the other values, there is always at least one integer value of the |
4971 | * div, i.e., if one plus this sum is greater than or equal to |
4972 | * the (absolute value) of the coefficient of the div in the constraints, |
4973 | * then we can also simply drop the div. |
4974 | * |
4975 | * If an existentially quantified variable does not have an explicit |
4976 | * representation, appears in only a single lower bound that does not |
4977 | * involve any other such existentially quantified variables and appears |
4978 | * in this lower bound with coefficient 1, |
4979 | * then fix the variable to the value of the lower bound. That is, |
4980 | * turn the inequality into an equality. |
4981 | * If for any value of the other variables, there is any value |
4982 | * for the existentially quantified variable satisfying the constraints, |
4983 | * then this lower bound also satisfies the constraints. |
4984 | * It is therefore safe to pick this lower bound. |
4985 | * |
4986 | * The same reasoning holds even if the coefficient is not one. |
4987 | * However, fixing the variable to the value of the lower bound may |
4988 | * in general introduce an extra integer division, in which case |
4989 | * it may be better to pick another value. |
4990 | * If this integer division has a known constant value, then plugging |
4991 | * in this constant value removes the existentially quantified variable |
4992 | * completely. In particular, if the lower bound is of the form |
4993 | * ceil((-f(x) - c)/n) and there are two constraints, f(x) + c0 >= 0 and |
4994 | * -f(x) + c1 >= 0 such that ceil((-c1 - c)/n) = ceil((c0 - c)/n), |
4995 | * then the existentially quantified variable can be assigned this |
4996 | * shared value. |
4997 | * |
4998 | * We skip divs that appear in equalities or in the definition of other divs. |
4999 | * Divs that appear in the definition of other divs usually occur in at least |
5000 | * 4 constraints, but the constraints may have been simplified. |
5001 | * |
5002 | * If any divs are left after these simple checks then we move on |
5003 | * to more complicated cases in drop_more_redundant_divs. |
5004 | */ |
5005 | static __isl_give isl_basic_map *isl_basic_map_drop_redundant_divs_ineq( |
5006 | __isl_take isl_basic_map *bmap) |
5007 | { |
5008 | int i, j; |
5009 | isl_size off; |
5010 | int *pairs = NULL; |
5011 | int n = 0; |
5012 | isl_size n_ineq; |
5013 | |
5014 | if (!bmap) |
5015 | goto error; |
5016 | if (bmap->n_div == 0) |
5017 | return bmap; |
5018 | |
5019 | off = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
5020 | if (off < 0) |
5021 | return isl_basic_map_free(bmap); |
5022 | pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div); |
5023 | if (!pairs) |
5024 | goto error; |
5025 | |
5026 | n_ineq = isl_basic_map_n_inequality(bmap); |
5027 | if (n_ineq < 0) |
5028 | goto error; |
5029 | for (i = 0; i < bmap->n_div; ++i) { |
5030 | int pos, neg; |
5031 | int last_pos, last_neg; |
5032 | int redundant; |
5033 | int defined; |
5034 | isl_bool involves, opp, set_div; |
5035 | |
5036 | defined = !isl_int_is_zero(bmap->div[i][0]); |
5037 | involves = any_div_involves_div(bmap, div: i); |
5038 | if (involves < 0) |
5039 | goto error; |
5040 | if (involves) |
5041 | continue; |
5042 | for (j = 0; j < bmap->n_eq; ++j) |
5043 | if (!isl_int_is_zero(bmap->eq[j][1 + off + i])) |
5044 | break; |
5045 | if (j < bmap->n_eq) |
5046 | continue; |
5047 | ++n; |
5048 | pos = neg = 0; |
5049 | for (j = 0; j < bmap->n_ineq; ++j) { |
5050 | if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) { |
5051 | last_pos = j; |
5052 | ++pos; |
5053 | } |
5054 | if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) { |
5055 | last_neg = j; |
5056 | ++neg; |
5057 | } |
5058 | } |
5059 | pairs[i] = pos * neg; |
5060 | if (pairs[i] == 0) { |
5061 | for (j = bmap->n_ineq - 1; j >= 0; --j) |
5062 | if (!isl_int_is_zero(bmap->ineq[j][1+off+i])) |
5063 | isl_basic_map_drop_inequality(bmap, pos: j); |
5064 | bmap = isl_basic_map_drop_div(bmap, div: i); |
5065 | return drop_redundant_divs_again(bmap, pairs, simplify: 0); |
5066 | } |
5067 | if (pairs[i] != 1) |
5068 | opp = isl_bool_false; |
5069 | else |
5070 | opp = is_opposite(bmap, i: last_pos, j: last_neg); |
5071 | if (opp < 0) |
5072 | goto error; |
5073 | if (!opp) { |
5074 | int lower; |
5075 | isl_bool single, one; |
5076 | |
5077 | if (pos != 1) |
5078 | continue; |
5079 | single = single_unknown(bmap, ineq: last_pos, div: i); |
5080 | if (single < 0) |
5081 | goto error; |
5082 | if (!single) |
5083 | continue; |
5084 | one = has_coef_one(bmap, div: i, ineq: last_pos); |
5085 | if (one < 0) |
5086 | goto error; |
5087 | if (one) |
5088 | return set_eq_and_try_again(bmap, ineq: last_pos, |
5089 | pairs); |
5090 | lower = lower_bound_is_cst(bmap, div: i, ineq: last_pos); |
5091 | if (lower < 0) |
5092 | goto error; |
5093 | if (lower < n_ineq) |
5094 | return fix_cst_lower(bmap, div: i, ineq: last_pos, lower, |
5095 | pairs); |
5096 | continue; |
5097 | } |
5098 | |
5099 | isl_int_add(bmap->ineq[last_pos][0], |
5100 | bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]); |
5101 | isl_int_add_ui(bmap->ineq[last_pos][0], |
5102 | bmap->ineq[last_pos][0], 1); |
5103 | redundant = isl_int_ge(bmap->ineq[last_pos][0], |
5104 | bmap->ineq[last_pos][1+off+i]); |
5105 | isl_int_sub_ui(bmap->ineq[last_pos][0], |
5106 | bmap->ineq[last_pos][0], 1); |
5107 | isl_int_sub(bmap->ineq[last_pos][0], |
5108 | bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]); |
5109 | if (redundant) |
5110 | return drop_div_and_try_again(bmap, div: i, |
5111 | ineq1: last_pos, ineq2: last_neg, pairs); |
5112 | if (defined) |
5113 | set_div = isl_bool_false; |
5114 | else |
5115 | set_div = ok_to_set_div_from_bound(bmap, div: i, ineq: last_pos); |
5116 | if (set_div < 0) |
5117 | return isl_basic_map_free(bmap); |
5118 | if (set_div) { |
5119 | bmap = set_div_from_lower_bound(bmap, div: i, ineq: last_pos); |
5120 | return drop_redundant_divs_again(bmap, pairs, simplify: 1); |
5121 | } |
5122 | pairs[i] = 0; |
5123 | --n; |
5124 | } |
5125 | |
5126 | if (n > 0) |
5127 | return coalesce_or_drop_more_redundant_divs(bmap, pairs, n); |
5128 | |
5129 | free(ptr: pairs); |
5130 | return bmap; |
5131 | error: |
5132 | free(ptr: pairs); |
5133 | isl_basic_map_free(bmap); |
5134 | return NULL; |
5135 | } |
5136 | |
5137 | /* Consider the coefficients at "c" as a row vector and replace |
5138 | * them with their product with "T". "T" is assumed to be a square matrix. |
5139 | */ |
5140 | static isl_stat preimage(isl_int *c, __isl_keep isl_mat *T) |
5141 | { |
5142 | isl_size n; |
5143 | isl_ctx *ctx; |
5144 | isl_vec *v; |
5145 | |
5146 | n = isl_mat_rows(mat: T); |
5147 | if (n < 0) |
5148 | return isl_stat_error; |
5149 | if (isl_seq_first_non_zero(p: c, len: n) == -1) |
5150 | return isl_stat_ok; |
5151 | ctx = isl_mat_get_ctx(mat: T); |
5152 | v = isl_vec_alloc(ctx, size: n); |
5153 | if (!v) |
5154 | return isl_stat_error; |
5155 | isl_seq_swp_or_cpy(dst: v->el, src: c, len: n); |
5156 | v = isl_vec_mat_product(vec: v, mat: isl_mat_copy(mat: T)); |
5157 | if (!v) |
5158 | return isl_stat_error; |
5159 | isl_seq_swp_or_cpy(dst: c, src: v->el, len: n); |
5160 | isl_vec_free(vec: v); |
5161 | |
5162 | return isl_stat_ok; |
5163 | } |
5164 | |
5165 | /* Plug in T for the variables in "bmap" starting at "pos". |
5166 | * T is a linear unimodular matrix, i.e., without constant term. |
5167 | */ |
5168 | static __isl_give isl_basic_map *isl_basic_map_preimage_vars( |
5169 | __isl_take isl_basic_map *bmap, unsigned pos, __isl_take isl_mat *T) |
5170 | { |
5171 | int i; |
5172 | isl_size n_row, n_col; |
5173 | |
5174 | bmap = isl_basic_map_cow(bmap); |
5175 | n_row = isl_mat_rows(mat: T); |
5176 | n_col = isl_mat_cols(mat: T); |
5177 | if (!bmap || n_row < 0 || n_col < 0) |
5178 | goto error; |
5179 | |
5180 | if (n_col != n_row) |
5181 | isl_die(isl_mat_get_ctx(T), isl_error_invalid, |
5182 | "expecting square matrix" , goto error); |
5183 | |
5184 | if (isl_basic_map_check_range(bmap, type: isl_dim_all, first: pos, n: n_col) < 0) |
5185 | goto error; |
5186 | |
5187 | for (i = 0; i < bmap->n_eq; ++i) |
5188 | if (preimage(c: bmap->eq[i] + 1 + pos, T) < 0) |
5189 | goto error; |
5190 | for (i = 0; i < bmap->n_ineq; ++i) |
5191 | if (preimage(c: bmap->ineq[i] + 1 + pos, T) < 0) |
5192 | goto error; |
5193 | for (i = 0; i < bmap->n_div; ++i) { |
5194 | if (isl_basic_map_div_is_marked_unknown(bmap, div: i)) |
5195 | continue; |
5196 | if (preimage(c: bmap->div[i] + 1 + 1 + pos, T) < 0) |
5197 | goto error; |
5198 | } |
5199 | |
5200 | isl_mat_free(mat: T); |
5201 | return bmap; |
5202 | error: |
5203 | isl_basic_map_free(bmap); |
5204 | isl_mat_free(mat: T); |
5205 | return NULL; |
5206 | } |
5207 | |
5208 | /* Remove divs that are not strictly needed. |
5209 | * |
5210 | * First look for an equality constraint involving two or more |
5211 | * existentially quantified variables without an explicit |
5212 | * representation. Replace the combination that appears |
5213 | * in the equality constraint by a single existentially quantified |
5214 | * variable such that the equality can be used to derive |
5215 | * an explicit representation for the variable. |
5216 | * If there are no more such equality constraints, then continue |
5217 | * with isl_basic_map_drop_redundant_divs_ineq. |
5218 | * |
5219 | * In particular, if the equality constraint is of the form |
5220 | * |
5221 | * f(x) + \sum_i c_i a_i = 0 |
5222 | * |
5223 | * with a_i existentially quantified variable without explicit |
5224 | * representation, then apply a transformation on the existentially |
5225 | * quantified variables to turn the constraint into |
5226 | * |
5227 | * f(x) + g a_1' = 0 |
5228 | * |
5229 | * with g the gcd of the c_i. |
5230 | * In order to easily identify which existentially quantified variables |
5231 | * have a complete explicit representation, i.e., without being defined |
5232 | * in terms of other existentially quantified variables without |
5233 | * an explicit representation, the existentially quantified variables |
5234 | * are first sorted. |
5235 | * |
5236 | * The variable transformation is computed by extending the row |
5237 | * [c_1/g ... c_n/g] to a unimodular matrix, obtaining the transformation |
5238 | * |
5239 | * [a_1'] [c_1/g ... c_n/g] [ a_1 ] |
5240 | * [a_2'] [ a_2 ] |
5241 | * ... = U .... |
5242 | * [a_n'] [ a_n ] |
5243 | * |
5244 | * with [c_1/g ... c_n/g] representing the first row of U. |
5245 | * The inverse of U is then plugged into the original constraints. |
5246 | * The call to isl_basic_map_simplify makes sure the explicit |
5247 | * representation for a_1' is extracted from the equality constraint. |
5248 | */ |
5249 | __isl_give isl_basic_map *isl_basic_map_drop_redundant_divs( |
5250 | __isl_take isl_basic_map *bmap) |
5251 | { |
5252 | int first; |
5253 | int i; |
5254 | unsigned o_div; |
5255 | isl_size n_div; |
5256 | int l; |
5257 | isl_ctx *ctx; |
5258 | isl_mat *T; |
5259 | |
5260 | if (!bmap) |
5261 | return NULL; |
5262 | if (isl_basic_map_divs_known(bmap)) |
5263 | return isl_basic_map_drop_redundant_divs_ineq(bmap); |
5264 | if (bmap->n_eq == 0) |
5265 | return isl_basic_map_drop_redundant_divs_ineq(bmap); |
5266 | bmap = isl_basic_map_sort_divs(bmap); |
5267 | if (!bmap) |
5268 | return NULL; |
5269 | |
5270 | first = isl_basic_map_first_unknown_div(bmap); |
5271 | if (first < 0) |
5272 | return isl_basic_map_free(bmap); |
5273 | |
5274 | o_div = isl_basic_map_offset(bmap, type: isl_dim_div); |
5275 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
5276 | if (n_div < 0) |
5277 | return isl_basic_map_free(bmap); |
5278 | |
5279 | for (i = 0; i < bmap->n_eq; ++i) { |
5280 | l = isl_seq_first_non_zero(p: bmap->eq[i] + o_div + first, |
5281 | len: n_div - (first)); |
5282 | if (l < 0) |
5283 | continue; |
5284 | l += first; |
5285 | if (isl_seq_first_non_zero(p: bmap->eq[i] + o_div + l + 1, |
5286 | len: n_div - (l + 1)) == -1) |
5287 | continue; |
5288 | break; |
5289 | } |
5290 | if (i >= bmap->n_eq) |
5291 | return isl_basic_map_drop_redundant_divs_ineq(bmap); |
5292 | |
5293 | ctx = isl_basic_map_get_ctx(bmap); |
5294 | T = isl_mat_alloc(ctx, n_row: n_div - l, n_col: n_div - l); |
5295 | if (!T) |
5296 | return isl_basic_map_free(bmap); |
5297 | isl_seq_cpy(dst: T->row[0], src: bmap->eq[i] + o_div + l, len: n_div - l); |
5298 | T = isl_mat_normalize_row(mat: T, row: 0); |
5299 | T = isl_mat_unimodular_complete(M: T, row: 1); |
5300 | T = isl_mat_right_inverse(mat: T); |
5301 | |
5302 | for (i = l; i < n_div; ++i) |
5303 | bmap = isl_basic_map_mark_div_unknown(bmap, div: i); |
5304 | bmap = isl_basic_map_preimage_vars(bmap, pos: o_div - 1 + l, T); |
5305 | bmap = isl_basic_map_simplify(bmap); |
5306 | |
5307 | return isl_basic_map_drop_redundant_divs(bmap); |
5308 | } |
5309 | |
5310 | /* Does "bmap" satisfy any equality that involves more than 2 variables |
5311 | * and/or has coefficients different from -1 and 1? |
5312 | */ |
5313 | static isl_bool has_multiple_var_equality(__isl_keep isl_basic_map *bmap) |
5314 | { |
5315 | int i; |
5316 | isl_size total; |
5317 | |
5318 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
5319 | if (total < 0) |
5320 | return isl_bool_error; |
5321 | |
5322 | for (i = 0; i < bmap->n_eq; ++i) { |
5323 | int j, k; |
5324 | |
5325 | j = isl_seq_first_non_zero(p: bmap->eq[i] + 1, len: total); |
5326 | if (j < 0) |
5327 | continue; |
5328 | if (!isl_int_is_one(bmap->eq[i][1 + j]) && |
5329 | !isl_int_is_negone(bmap->eq[i][1 + j])) |
5330 | return isl_bool_true; |
5331 | |
5332 | j += 1; |
5333 | k = isl_seq_first_non_zero(p: bmap->eq[i] + 1 + j, len: total - j); |
5334 | if (k < 0) |
5335 | continue; |
5336 | j += k; |
5337 | if (!isl_int_is_one(bmap->eq[i][1 + j]) && |
5338 | !isl_int_is_negone(bmap->eq[i][1 + j])) |
5339 | return isl_bool_true; |
5340 | |
5341 | j += 1; |
5342 | k = isl_seq_first_non_zero(p: bmap->eq[i] + 1 + j, len: total - j); |
5343 | if (k >= 0) |
5344 | return isl_bool_true; |
5345 | } |
5346 | |
5347 | return isl_bool_false; |
5348 | } |
5349 | |
5350 | /* Remove any common factor g from the constraint coefficients in "v". |
5351 | * The constant term is stored in the first position and is replaced |
5352 | * by floor(c/g). If any common factor is removed and if this results |
5353 | * in a tightening of the constraint, then set *tightened. |
5354 | */ |
5355 | static __isl_give isl_vec *normalize_constraint(__isl_take isl_vec *v, |
5356 | int *tightened) |
5357 | { |
5358 | isl_ctx *ctx; |
5359 | |
5360 | if (!v) |
5361 | return NULL; |
5362 | ctx = isl_vec_get_ctx(vec: v); |
5363 | isl_seq_gcd(p: v->el + 1, len: v->size - 1, gcd: &ctx->normalize_gcd); |
5364 | if (isl_int_is_zero(ctx->normalize_gcd)) |
5365 | return v; |
5366 | if (isl_int_is_one(ctx->normalize_gcd)) |
5367 | return v; |
5368 | v = isl_vec_cow(vec: v); |
5369 | if (!v) |
5370 | return NULL; |
5371 | if (tightened && !isl_int_is_divisible_by(v->el[0], ctx->normalize_gcd)) |
5372 | *tightened = 1; |
5373 | isl_int_fdiv_q(v->el[0], v->el[0], ctx->normalize_gcd); |
5374 | isl_seq_scale_down(dst: v->el + 1, src: v->el + 1, f: ctx->normalize_gcd, |
5375 | len: v->size - 1); |
5376 | return v; |
5377 | } |
5378 | |
5379 | /* If "bmap" is an integer set that satisfies any equality involving |
5380 | * more than 2 variables and/or has coefficients different from -1 and 1, |
5381 | * then use variable compression to reduce the coefficients by removing |
5382 | * any (hidden) common factor. |
5383 | * In particular, apply the variable compression to each constraint, |
5384 | * factor out any common factor in the non-constant coefficients and |
5385 | * then apply the inverse of the compression. |
5386 | * At the end, we mark the basic map as having reduced constants. |
5387 | * If this flag is still set on the next invocation of this function, |
5388 | * then we skip the computation. |
5389 | * |
5390 | * Removing a common factor may result in a tightening of some of |
5391 | * the constraints. If this happens, then we may end up with two |
5392 | * opposite inequalities that can be replaced by an equality. |
5393 | * We therefore call isl_basic_map_detect_inequality_pairs, |
5394 | * which checks for such pairs of inequalities as well as eliminate_divs_eq |
5395 | * and isl_basic_map_gauss if such a pair was found. |
5396 | * |
5397 | * Tightening may also result in some other constraints becoming |
5398 | * (rationally) redundant with respect to the tightened constraint |
5399 | * (in combination with other constraints). The basic map may |
5400 | * therefore no longer be assumed to have no redundant constraints. |
5401 | * |
5402 | * Note that this function may leave the result in an inconsistent state. |
5403 | * In particular, the constraints may not be gaussed. |
5404 | * Unfortunately, isl_map_coalesce actually depends on this inconsistent state |
5405 | * for some of the test cases to pass successfully. |
5406 | * Any potential modification of the representation is therefore only |
5407 | * performed on a single copy of the basic map. |
5408 | */ |
5409 | __isl_give isl_basic_map *isl_basic_map_reduce_coefficients( |
5410 | __isl_take isl_basic_map *bmap) |
5411 | { |
5412 | isl_size total; |
5413 | isl_bool multi; |
5414 | isl_ctx *ctx; |
5415 | isl_vec *v; |
5416 | isl_mat *eq, *T, *T2; |
5417 | int i; |
5418 | int tightened; |
5419 | |
5420 | if (!bmap) |
5421 | return NULL; |
5422 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS)) |
5423 | return bmap; |
5424 | if (isl_basic_map_is_rational(bmap)) |
5425 | return bmap; |
5426 | if (bmap->n_eq == 0) |
5427 | return bmap; |
5428 | multi = has_multiple_var_equality(bmap); |
5429 | if (multi < 0) |
5430 | return isl_basic_map_free(bmap); |
5431 | if (!multi) |
5432 | return bmap; |
5433 | |
5434 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
5435 | if (total < 0) |
5436 | return isl_basic_map_free(bmap); |
5437 | ctx = isl_basic_map_get_ctx(bmap); |
5438 | v = isl_vec_alloc(ctx, size: 1 + total); |
5439 | if (!v) |
5440 | return isl_basic_map_free(bmap); |
5441 | |
5442 | eq = isl_mat_sub_alloc6(ctx, row: bmap->eq, first_row: 0, n_row: bmap->n_eq, first_col: 0, n_col: 1 + total); |
5443 | T = isl_mat_variable_compression(B: eq, T2: &T2); |
5444 | if (!T || !T2) |
5445 | goto error; |
5446 | if (T->n_col == 0) { |
5447 | isl_mat_free(mat: T); |
5448 | isl_mat_free(mat: T2); |
5449 | isl_vec_free(vec: v); |
5450 | return isl_basic_map_set_to_empty(bmap); |
5451 | } |
5452 | |
5453 | bmap = isl_basic_map_cow(bmap); |
5454 | if (!bmap) |
5455 | goto error; |
5456 | |
5457 | tightened = 0; |
5458 | for (i = 0; i < bmap->n_ineq; ++i) { |
5459 | isl_seq_cpy(dst: v->el, src: bmap->ineq[i], len: 1 + total); |
5460 | v = isl_vec_mat_product(vec: v, mat: isl_mat_copy(mat: T)); |
5461 | v = normalize_constraint(v, tightened: &tightened); |
5462 | v = isl_vec_mat_product(vec: v, mat: isl_mat_copy(mat: T2)); |
5463 | if (!v) |
5464 | goto error; |
5465 | isl_seq_cpy(dst: bmap->ineq[i], src: v->el, len: 1 + total); |
5466 | } |
5467 | |
5468 | isl_mat_free(mat: T); |
5469 | isl_mat_free(mat: T2); |
5470 | isl_vec_free(vec: v); |
5471 | |
5472 | ISL_F_SET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS); |
5473 | |
5474 | if (tightened) { |
5475 | int progress = 0; |
5476 | |
5477 | ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT); |
5478 | bmap = isl_basic_map_detect_inequality_pairs(bmap, progress: &progress); |
5479 | if (progress) { |
5480 | bmap = eliminate_divs_eq(bmap, progress: &progress); |
5481 | bmap = isl_basic_map_gauss(bmap, NULL); |
5482 | } |
5483 | } |
5484 | |
5485 | return bmap; |
5486 | error: |
5487 | isl_mat_free(mat: T); |
5488 | isl_mat_free(mat: T2); |
5489 | isl_vec_free(vec: v); |
5490 | return isl_basic_map_free(bmap); |
5491 | } |
5492 | |
5493 | /* Shift the integer division at position "div" of "bmap" |
5494 | * by "shift" times the variable at position "pos". |
5495 | * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0 |
5496 | * corresponds to the constant term. |
5497 | * |
5498 | * That is, if the integer division has the form |
5499 | * |
5500 | * floor(f(x)/d) |
5501 | * |
5502 | * then replace it by |
5503 | * |
5504 | * floor((f(x) + shift * d * x_pos)/d) - shift * x_pos |
5505 | */ |
5506 | __isl_give isl_basic_map *isl_basic_map_shift_div( |
5507 | __isl_take isl_basic_map *bmap, int div, int pos, isl_int shift) |
5508 | { |
5509 | int i; |
5510 | isl_size total, n_div; |
5511 | |
5512 | if (isl_int_is_zero(shift)) |
5513 | return bmap; |
5514 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
5515 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
5516 | total -= n_div; |
5517 | if (total < 0 || n_div < 0) |
5518 | return isl_basic_map_free(bmap); |
5519 | |
5520 | isl_int_addmul(bmap->div[div][1 + pos], shift, bmap->div[div][0]); |
5521 | |
5522 | for (i = 0; i < bmap->n_eq; ++i) { |
5523 | if (isl_int_is_zero(bmap->eq[i][1 + total + div])) |
5524 | continue; |
5525 | isl_int_submul(bmap->eq[i][pos], |
5526 | shift, bmap->eq[i][1 + total + div]); |
5527 | } |
5528 | for (i = 0; i < bmap->n_ineq; ++i) { |
5529 | if (isl_int_is_zero(bmap->ineq[i][1 + total + div])) |
5530 | continue; |
5531 | isl_int_submul(bmap->ineq[i][pos], |
5532 | shift, bmap->ineq[i][1 + total + div]); |
5533 | } |
5534 | for (i = 0; i < bmap->n_div; ++i) { |
5535 | if (isl_int_is_zero(bmap->div[i][0])) |
5536 | continue; |
5537 | if (isl_int_is_zero(bmap->div[i][1 + 1 + total + div])) |
5538 | continue; |
5539 | isl_int_submul(bmap->div[i][1 + pos], |
5540 | shift, bmap->div[i][1 + 1 + total + div]); |
5541 | } |
5542 | |
5543 | return bmap; |
5544 | } |
5545 | |