| 1 | /* |
| 2 | * Copyright 2008-2009 Katholieke Universiteit Leuven |
| 3 | * Copyright 2012-2013 Ecole Normale Superieure |
| 4 | * Copyright 2014-2015 INRIA Rocquencourt |
| 5 | * Copyright 2016 Sven Verdoolaege |
| 6 | * |
| 7 | * Use of this software is governed by the MIT license |
| 8 | * |
| 9 | * Written by Sven Verdoolaege, K.U.Leuven, Departement |
| 10 | * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium |
| 11 | * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France |
| 12 | * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, |
| 13 | * B.P. 105 - 78153 Le Chesnay, France |
| 14 | */ |
| 15 | |
| 16 | #include <isl_ctx_private.h> |
| 17 | #include <isl_map_private.h> |
| 18 | #include "isl_equalities.h" |
| 19 | #include <isl/map.h> |
| 20 | #include <isl_seq.h> |
| 21 | #include "isl_tab.h" |
| 22 | #include <isl_space_private.h> |
| 23 | #include <isl_mat_private.h> |
| 24 | #include <isl_vec_private.h> |
| 25 | |
| 26 | #include <bset_to_bmap.c> |
| 27 | #include <bset_from_bmap.c> |
| 28 | #include <set_to_map.c> |
| 29 | #include <set_from_map.c> |
| 30 | |
| 31 | static void swap_equality(__isl_keep isl_basic_map *bmap, int a, int b) |
| 32 | { |
| 33 | isl_int *t = bmap->eq[a]; |
| 34 | bmap->eq[a] = bmap->eq[b]; |
| 35 | bmap->eq[b] = t; |
| 36 | } |
| 37 | |
| 38 | static void swap_inequality(__isl_keep isl_basic_map *bmap, int a, int b) |
| 39 | { |
| 40 | if (a != b) { |
| 41 | isl_int *t = bmap->ineq[a]; |
| 42 | bmap->ineq[a] = bmap->ineq[b]; |
| 43 | bmap->ineq[b] = t; |
| 44 | } |
| 45 | } |
| 46 | |
| 47 | __isl_give isl_basic_map *isl_basic_map_normalize_constraints( |
| 48 | __isl_take isl_basic_map *bmap) |
| 49 | { |
| 50 | int i; |
| 51 | isl_int gcd; |
| 52 | isl_size total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 53 | |
| 54 | if (total < 0) |
| 55 | return isl_basic_map_free(bmap); |
| 56 | |
| 57 | isl_int_init(gcd); |
| 58 | for (i = bmap->n_eq - 1; i >= 0; --i) { |
| 59 | isl_seq_gcd(p: bmap->eq[i]+1, len: total, gcd: &gcd); |
| 60 | if (isl_int_is_zero(gcd)) { |
| 61 | if (!isl_int_is_zero(bmap->eq[i][0])) { |
| 62 | bmap = isl_basic_map_set_to_empty(bmap); |
| 63 | break; |
| 64 | } |
| 65 | if (isl_basic_map_drop_equality(bmap, pos: i) < 0) |
| 66 | goto error; |
| 67 | continue; |
| 68 | } |
| 69 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) |
| 70 | isl_int_gcd(gcd, gcd, bmap->eq[i][0]); |
| 71 | if (isl_int_is_one(gcd)) |
| 72 | continue; |
| 73 | if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) { |
| 74 | bmap = isl_basic_map_set_to_empty(bmap); |
| 75 | break; |
| 76 | } |
| 77 | isl_seq_scale_down(dst: bmap->eq[i], src: bmap->eq[i], f: gcd, len: 1+total); |
| 78 | } |
| 79 | |
| 80 | for (i = bmap->n_ineq - 1; i >= 0; --i) { |
| 81 | isl_seq_gcd(p: bmap->ineq[i]+1, len: total, gcd: &gcd); |
| 82 | if (isl_int_is_zero(gcd)) { |
| 83 | if (isl_int_is_neg(bmap->ineq[i][0])) { |
| 84 | bmap = isl_basic_map_set_to_empty(bmap); |
| 85 | break; |
| 86 | } |
| 87 | if (isl_basic_map_drop_inequality(bmap, pos: i) < 0) |
| 88 | goto error; |
| 89 | continue; |
| 90 | } |
| 91 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) |
| 92 | isl_int_gcd(gcd, gcd, bmap->ineq[i][0]); |
| 93 | if (isl_int_is_one(gcd)) |
| 94 | continue; |
| 95 | isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd); |
| 96 | isl_seq_scale_down(dst: bmap->ineq[i]+1, src: bmap->ineq[i]+1, f: gcd, len: total); |
| 97 | } |
| 98 | isl_int_clear(gcd); |
| 99 | |
| 100 | return bmap; |
| 101 | error: |
| 102 | isl_int_clear(gcd); |
| 103 | isl_basic_map_free(bmap); |
| 104 | return NULL; |
| 105 | } |
| 106 | |
| 107 | __isl_give isl_basic_set *isl_basic_set_normalize_constraints( |
| 108 | __isl_take isl_basic_set *bset) |
| 109 | { |
| 110 | isl_basic_map *bmap = bset_to_bmap(bset); |
| 111 | return bset_from_bmap(bmap: isl_basic_map_normalize_constraints(bmap)); |
| 112 | } |
| 113 | |
| 114 | /* Reduce the coefficient of the variable at position "pos" |
| 115 | * in integer division "div", such that it lies in the half-open |
| 116 | * interval (1/2,1/2], extracting any excess value from this integer division. |
| 117 | * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0 |
| 118 | * corresponds to the constant term. |
| 119 | * |
| 120 | * That is, the integer division is of the form |
| 121 | * |
| 122 | * floor((... + (c * d + r) * x_pos + ...)/d) |
| 123 | * |
| 124 | * with -d < 2 * r <= d. |
| 125 | * Replace it by |
| 126 | * |
| 127 | * floor((... + r * x_pos + ...)/d) + c * x_pos |
| 128 | * |
| 129 | * If 2 * ((c * d + r) % d) <= d, then c = floor((c * d + r)/d). |
| 130 | * Otherwise, c = floor((c * d + r)/d) + 1. |
| 131 | * |
| 132 | * This is the same normalization that is performed by isl_aff_floor. |
| 133 | */ |
| 134 | static __isl_give isl_basic_map *reduce_coefficient_in_div( |
| 135 | __isl_take isl_basic_map *bmap, int div, int pos) |
| 136 | { |
| 137 | isl_int shift; |
| 138 | int add_one; |
| 139 | |
| 140 | isl_int_init(shift); |
| 141 | isl_int_fdiv_r(shift, bmap->div[div][1 + pos], bmap->div[div][0]); |
| 142 | isl_int_mul_ui(shift, shift, 2); |
| 143 | add_one = isl_int_gt(shift, bmap->div[div][0]); |
| 144 | isl_int_fdiv_q(shift, bmap->div[div][1 + pos], bmap->div[div][0]); |
| 145 | if (add_one) |
| 146 | isl_int_add_ui(shift, shift, 1); |
| 147 | isl_int_neg(shift, shift); |
| 148 | bmap = isl_basic_map_shift_div(bmap, div, pos, shift); |
| 149 | isl_int_clear(shift); |
| 150 | |
| 151 | return bmap; |
| 152 | } |
| 153 | |
| 154 | /* Does the coefficient of the variable at position "pos" |
| 155 | * in integer division "div" need to be reduced? |
| 156 | * That is, does it lie outside the half-open interval (1/2,1/2]? |
| 157 | * The coefficient c/d lies outside this interval if abs(2 * c) >= d and |
| 158 | * 2 * c != d. |
| 159 | */ |
| 160 | static isl_bool needs_reduction(__isl_keep isl_basic_map *bmap, int div, |
| 161 | int pos) |
| 162 | { |
| 163 | isl_bool r; |
| 164 | |
| 165 | if (isl_int_is_zero(bmap->div[div][1 + pos])) |
| 166 | return isl_bool_false; |
| 167 | |
| 168 | isl_int_mul_ui(bmap->div[div][1 + pos], bmap->div[div][1 + pos], 2); |
| 169 | r = isl_int_abs_ge(bmap->div[div][1 + pos], bmap->div[div][0]) && |
| 170 | !isl_int_eq(bmap->div[div][1 + pos], bmap->div[div][0]); |
| 171 | isl_int_divexact_ui(bmap->div[div][1 + pos], |
| 172 | bmap->div[div][1 + pos], 2); |
| 173 | |
| 174 | return r; |
| 175 | } |
| 176 | |
| 177 | /* Reduce the coefficients (including the constant term) of |
| 178 | * integer division "div", if needed. |
| 179 | * In particular, make sure all coefficients lie in |
| 180 | * the half-open interval (1/2,1/2]. |
| 181 | */ |
| 182 | static __isl_give isl_basic_map *reduce_div_coefficients_of_div( |
| 183 | __isl_take isl_basic_map *bmap, int div) |
| 184 | { |
| 185 | int i; |
| 186 | isl_size total; |
| 187 | |
| 188 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 189 | if (total < 0) |
| 190 | return isl_basic_map_free(bmap); |
| 191 | for (i = 0; i < 1 + total; ++i) { |
| 192 | isl_bool reduce; |
| 193 | |
| 194 | reduce = needs_reduction(bmap, div, pos: i); |
| 195 | if (reduce < 0) |
| 196 | return isl_basic_map_free(bmap); |
| 197 | if (!reduce) |
| 198 | continue; |
| 199 | bmap = reduce_coefficient_in_div(bmap, div, pos: i); |
| 200 | if (!bmap) |
| 201 | break; |
| 202 | } |
| 203 | |
| 204 | return bmap; |
| 205 | } |
| 206 | |
| 207 | /* Reduce the coefficients (including the constant term) of |
| 208 | * the known integer divisions, if needed |
| 209 | * In particular, make sure all coefficients lie in |
| 210 | * the half-open interval (1/2,1/2]. |
| 211 | */ |
| 212 | static __isl_give isl_basic_map *reduce_div_coefficients( |
| 213 | __isl_take isl_basic_map *bmap) |
| 214 | { |
| 215 | int i; |
| 216 | |
| 217 | if (!bmap) |
| 218 | return NULL; |
| 219 | if (bmap->n_div == 0) |
| 220 | return bmap; |
| 221 | |
| 222 | for (i = 0; i < bmap->n_div; ++i) { |
| 223 | if (isl_int_is_zero(bmap->div[i][0])) |
| 224 | continue; |
| 225 | bmap = reduce_div_coefficients_of_div(bmap, div: i); |
| 226 | if (!bmap) |
| 227 | break; |
| 228 | } |
| 229 | |
| 230 | return bmap; |
| 231 | } |
| 232 | |
| 233 | /* Remove any common factor in numerator and denominator of the div expression, |
| 234 | * not taking into account the constant term. |
| 235 | * That is, if the div is of the form |
| 236 | * |
| 237 | * floor((a + m f(x))/(m d)) |
| 238 | * |
| 239 | * then replace it by |
| 240 | * |
| 241 | * floor((floor(a/m) + f(x))/d) |
| 242 | * |
| 243 | * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d |
| 244 | * and can therefore not influence the result of the floor. |
| 245 | */ |
| 246 | static __isl_give isl_basic_map *normalize_div_expression( |
| 247 | __isl_take isl_basic_map *bmap, int div) |
| 248 | { |
| 249 | isl_size total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 250 | isl_ctx *ctx = bmap->ctx; |
| 251 | |
| 252 | if (total < 0) |
| 253 | return isl_basic_map_free(bmap); |
| 254 | if (isl_int_is_zero(bmap->div[div][0])) |
| 255 | return bmap; |
| 256 | isl_seq_gcd(p: bmap->div[div] + 2, len: total, gcd: &ctx->normalize_gcd); |
| 257 | isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]); |
| 258 | if (isl_int_is_one(ctx->normalize_gcd)) |
| 259 | return bmap; |
| 260 | isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1], |
| 261 | ctx->normalize_gcd); |
| 262 | isl_int_divexact(bmap->div[div][0], bmap->div[div][0], |
| 263 | ctx->normalize_gcd); |
| 264 | isl_seq_scale_down(dst: bmap->div[div] + 2, src: bmap->div[div] + 2, |
| 265 | f: ctx->normalize_gcd, len: total); |
| 266 | |
| 267 | return bmap; |
| 268 | } |
| 269 | |
| 270 | /* Remove any common factor in numerator and denominator of a div expression, |
| 271 | * not taking into account the constant term. |
| 272 | * That is, look for any div of the form |
| 273 | * |
| 274 | * floor((a + m f(x))/(m d)) |
| 275 | * |
| 276 | * and replace it by |
| 277 | * |
| 278 | * floor((floor(a/m) + f(x))/d) |
| 279 | * |
| 280 | * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d |
| 281 | * and can therefore not influence the result of the floor. |
| 282 | */ |
| 283 | static __isl_give isl_basic_map *normalize_div_expressions( |
| 284 | __isl_take isl_basic_map *bmap) |
| 285 | { |
| 286 | int i; |
| 287 | |
| 288 | if (!bmap) |
| 289 | return NULL; |
| 290 | if (bmap->n_div == 0) |
| 291 | return bmap; |
| 292 | |
| 293 | for (i = 0; i < bmap->n_div; ++i) |
| 294 | bmap = normalize_div_expression(bmap, div: i); |
| 295 | |
| 296 | return bmap; |
| 297 | } |
| 298 | |
| 299 | /* Assumes divs have been ordered if keep_divs is set. |
| 300 | */ |
| 301 | static __isl_give isl_basic_map *eliminate_var_using_equality( |
| 302 | __isl_take isl_basic_map *bmap, |
| 303 | unsigned pos, isl_int *eq, int keep_divs, int *progress) |
| 304 | { |
| 305 | isl_size total; |
| 306 | isl_size v_div; |
| 307 | int k; |
| 308 | int last_div; |
| 309 | |
| 310 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 311 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
| 312 | if (total < 0 || v_div < 0) |
| 313 | return isl_basic_map_free(bmap); |
| 314 | last_div = isl_seq_last_non_zero(p: eq + 1 + v_div, len: bmap->n_div); |
| 315 | for (k = 0; k < bmap->n_eq; ++k) { |
| 316 | if (bmap->eq[k] == eq) |
| 317 | continue; |
| 318 | if (isl_int_is_zero(bmap->eq[k][1+pos])) |
| 319 | continue; |
| 320 | if (progress) |
| 321 | *progress = 1; |
| 322 | isl_seq_elim(dst: bmap->eq[k], src: eq, pos: 1+pos, len: 1+total, NULL); |
| 323 | isl_seq_normalize(ctx: bmap->ctx, p: bmap->eq[k], len: 1 + total); |
| 324 | } |
| 325 | |
| 326 | for (k = 0; k < bmap->n_ineq; ++k) { |
| 327 | if (isl_int_is_zero(bmap->ineq[k][1+pos])) |
| 328 | continue; |
| 329 | if (progress) |
| 330 | *progress = 1; |
| 331 | isl_seq_elim(dst: bmap->ineq[k], src: eq, pos: 1+pos, len: 1+total, NULL); |
| 332 | isl_seq_normalize(ctx: bmap->ctx, p: bmap->ineq[k], len: 1 + total); |
| 333 | ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT); |
| 334 | ISL_F_CLR(bmap, ISL_BASIC_MAP_SORTED); |
| 335 | } |
| 336 | |
| 337 | for (k = 0; k < bmap->n_div; ++k) { |
| 338 | if (isl_int_is_zero(bmap->div[k][0])) |
| 339 | continue; |
| 340 | if (isl_int_is_zero(bmap->div[k][1+1+pos])) |
| 341 | continue; |
| 342 | if (progress) |
| 343 | *progress = 1; |
| 344 | /* We need to be careful about circular definitions, |
| 345 | * so for now we just remove the definition of div k |
| 346 | * if the equality contains any divs. |
| 347 | * If keep_divs is set, then the divs have been ordered |
| 348 | * and we can keep the definition as long as the result |
| 349 | * is still ordered. |
| 350 | */ |
| 351 | if (last_div == -1 || (keep_divs && last_div < k)) { |
| 352 | isl_seq_elim(dst: bmap->div[k]+1, src: eq, |
| 353 | pos: 1+pos, len: 1+total, m: &bmap->div[k][0]); |
| 354 | bmap = normalize_div_expression(bmap, div: k); |
| 355 | if (!bmap) |
| 356 | return NULL; |
| 357 | } else |
| 358 | isl_seq_clr(p: bmap->div[k], len: 1 + total); |
| 359 | } |
| 360 | |
| 361 | return bmap; |
| 362 | } |
| 363 | |
| 364 | /* Assumes divs have been ordered if keep_divs is set. |
| 365 | */ |
| 366 | static __isl_give isl_basic_map *eliminate_div(__isl_take isl_basic_map *bmap, |
| 367 | isl_int *eq, unsigned div, int keep_divs) |
| 368 | { |
| 369 | isl_size v_div; |
| 370 | unsigned pos; |
| 371 | |
| 372 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
| 373 | if (v_div < 0) |
| 374 | return isl_basic_map_free(bmap); |
| 375 | pos = v_div + div; |
| 376 | bmap = eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL); |
| 377 | |
| 378 | bmap = isl_basic_map_drop_div(bmap, div); |
| 379 | |
| 380 | return bmap; |
| 381 | } |
| 382 | |
| 383 | /* Check if elimination of div "div" using equality "eq" would not |
| 384 | * result in a div depending on a later div. |
| 385 | */ |
| 386 | static isl_bool ok_to_eliminate_div(__isl_keep isl_basic_map *bmap, isl_int *eq, |
| 387 | unsigned div) |
| 388 | { |
| 389 | int k; |
| 390 | int last_div; |
| 391 | isl_size v_div; |
| 392 | unsigned pos; |
| 393 | |
| 394 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
| 395 | if (v_div < 0) |
| 396 | return isl_bool_error; |
| 397 | pos = v_div + div; |
| 398 | |
| 399 | last_div = isl_seq_last_non_zero(p: eq + 1 + v_div, len: bmap->n_div); |
| 400 | if (last_div < 0 || last_div <= div) |
| 401 | return isl_bool_true; |
| 402 | |
| 403 | for (k = 0; k <= last_div; ++k) { |
| 404 | if (isl_int_is_zero(bmap->div[k][0])) |
| 405 | continue; |
| 406 | if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos])) |
| 407 | return isl_bool_false; |
| 408 | } |
| 409 | |
| 410 | return isl_bool_true; |
| 411 | } |
| 412 | |
| 413 | /* Eliminate divs based on equalities |
| 414 | */ |
| 415 | static __isl_give isl_basic_map *eliminate_divs_eq( |
| 416 | __isl_take isl_basic_map *bmap, int *progress) |
| 417 | { |
| 418 | int d; |
| 419 | int i; |
| 420 | int modified = 0; |
| 421 | unsigned off; |
| 422 | |
| 423 | bmap = isl_basic_map_order_divs(bmap); |
| 424 | |
| 425 | if (!bmap) |
| 426 | return NULL; |
| 427 | |
| 428 | off = isl_basic_map_offset(bmap, type: isl_dim_div); |
| 429 | |
| 430 | for (d = bmap->n_div - 1; d >= 0 ; --d) { |
| 431 | for (i = 0; i < bmap->n_eq; ++i) { |
| 432 | isl_bool ok; |
| 433 | |
| 434 | if (!isl_int_is_one(bmap->eq[i][off + d]) && |
| 435 | !isl_int_is_negone(bmap->eq[i][off + d])) |
| 436 | continue; |
| 437 | ok = ok_to_eliminate_div(bmap, eq: bmap->eq[i], div: d); |
| 438 | if (ok < 0) |
| 439 | return isl_basic_map_free(bmap); |
| 440 | if (!ok) |
| 441 | continue; |
| 442 | modified = 1; |
| 443 | *progress = 1; |
| 444 | bmap = eliminate_div(bmap, eq: bmap->eq[i], div: d, keep_divs: 1); |
| 445 | if (isl_basic_map_drop_equality(bmap, pos: i) < 0) |
| 446 | return isl_basic_map_free(bmap); |
| 447 | break; |
| 448 | } |
| 449 | } |
| 450 | if (modified) |
| 451 | return eliminate_divs_eq(bmap, progress); |
| 452 | return bmap; |
| 453 | } |
| 454 | |
| 455 | /* Eliminate divs based on inequalities |
| 456 | */ |
| 457 | static __isl_give isl_basic_map *eliminate_divs_ineq( |
| 458 | __isl_take isl_basic_map *bmap, int *progress) |
| 459 | { |
| 460 | int d; |
| 461 | int i; |
| 462 | unsigned off; |
| 463 | struct isl_ctx *ctx; |
| 464 | |
| 465 | if (!bmap) |
| 466 | return NULL; |
| 467 | |
| 468 | ctx = bmap->ctx; |
| 469 | off = isl_basic_map_offset(bmap, type: isl_dim_div); |
| 470 | |
| 471 | for (d = bmap->n_div - 1; d >= 0 ; --d) { |
| 472 | for (i = 0; i < bmap->n_eq; ++i) |
| 473 | if (!isl_int_is_zero(bmap->eq[i][off + d])) |
| 474 | break; |
| 475 | if (i < bmap->n_eq) |
| 476 | continue; |
| 477 | for (i = 0; i < bmap->n_ineq; ++i) |
| 478 | if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one)) |
| 479 | break; |
| 480 | if (i < bmap->n_ineq) |
| 481 | continue; |
| 482 | *progress = 1; |
| 483 | bmap = isl_basic_map_eliminate_vars(bmap, pos: (off-1)+d, n: 1); |
| 484 | if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) |
| 485 | break; |
| 486 | bmap = isl_basic_map_drop_div(bmap, div: d); |
| 487 | if (!bmap) |
| 488 | break; |
| 489 | } |
| 490 | return bmap; |
| 491 | } |
| 492 | |
| 493 | /* Does the equality constraint at position "eq" in "bmap" involve |
| 494 | * any local variables in the range [first, first + n) |
| 495 | * that are not marked as having an explicit representation? |
| 496 | */ |
| 497 | static isl_bool bmap_eq_involves_unknown_divs(__isl_keep isl_basic_map *bmap, |
| 498 | int eq, unsigned first, unsigned n) |
| 499 | { |
| 500 | unsigned o_div; |
| 501 | int i; |
| 502 | |
| 503 | if (!bmap) |
| 504 | return isl_bool_error; |
| 505 | |
| 506 | o_div = isl_basic_map_offset(bmap, type: isl_dim_div); |
| 507 | for (i = 0; i < n; ++i) { |
| 508 | isl_bool unknown; |
| 509 | |
| 510 | if (isl_int_is_zero(bmap->eq[eq][o_div + first + i])) |
| 511 | continue; |
| 512 | unknown = isl_basic_map_div_is_marked_unknown(bmap, div: first + i); |
| 513 | if (unknown < 0) |
| 514 | return isl_bool_error; |
| 515 | if (unknown) |
| 516 | return isl_bool_true; |
| 517 | } |
| 518 | |
| 519 | return isl_bool_false; |
| 520 | } |
| 521 | |
| 522 | /* The last local variable involved in the equality constraint |
| 523 | * at position "eq" in "bmap" is the local variable at position "div". |
| 524 | * It can therefore be used to extract an explicit representation |
| 525 | * for that variable. |
| 526 | * Do so unless the local variable already has an explicit representation or |
| 527 | * the explicit representation would involve any other local variables |
| 528 | * that in turn do not have an explicit representation. |
| 529 | * An equality constraint involving local variables without an explicit |
| 530 | * representation can be used in isl_basic_map_drop_redundant_divs |
| 531 | * to separate out an independent local variable. Introducing |
| 532 | * an explicit representation here would block this transformation, |
| 533 | * while the partial explicit representation in itself is not very useful. |
| 534 | * Set *progress if anything is changed. |
| 535 | * |
| 536 | * The equality constraint is of the form |
| 537 | * |
| 538 | * f(x) + n e >= 0 |
| 539 | * |
| 540 | * with n a positive number. The explicit representation derived from |
| 541 | * this constraint is |
| 542 | * |
| 543 | * floor((-f(x))/n) |
| 544 | */ |
| 545 | static __isl_give isl_basic_map *set_div_from_eq(__isl_take isl_basic_map *bmap, |
| 546 | int div, int eq, int *progress) |
| 547 | { |
| 548 | isl_size total; |
| 549 | unsigned o_div; |
| 550 | isl_bool involves; |
| 551 | |
| 552 | if (!bmap) |
| 553 | return NULL; |
| 554 | |
| 555 | if (!isl_int_is_zero(bmap->div[div][0])) |
| 556 | return bmap; |
| 557 | |
| 558 | involves = bmap_eq_involves_unknown_divs(bmap, eq, first: 0, n: div); |
| 559 | if (involves < 0) |
| 560 | return isl_basic_map_free(bmap); |
| 561 | if (involves) |
| 562 | return bmap; |
| 563 | |
| 564 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 565 | if (total < 0) |
| 566 | return isl_basic_map_free(bmap); |
| 567 | o_div = isl_basic_map_offset(bmap, type: isl_dim_div); |
| 568 | isl_seq_neg(dst: bmap->div[div] + 1, src: bmap->eq[eq], len: 1 + total); |
| 569 | isl_int_set_si(bmap->div[div][1 + o_div + div], 0); |
| 570 | isl_int_set(bmap->div[div][0], bmap->eq[eq][o_div + div]); |
| 571 | if (progress) |
| 572 | *progress = 1; |
| 573 | |
| 574 | return bmap; |
| 575 | } |
| 576 | |
| 577 | /* Perform fangcheng (Gaussian elimination) on the equality |
| 578 | * constraints of "bmap". |
| 579 | * That is, put them into row-echelon form, starting from the last column |
| 580 | * backward and use them to eliminate the corresponding coefficients |
| 581 | * from all constraints. |
| 582 | * |
| 583 | * If "progress" is not NULL, then it gets set if the elimination |
| 584 | * results in any changes. |
| 585 | * The elimination process may result in some equality constraints |
| 586 | * getting interchanged or removed. |
| 587 | * If "swap" or "drop" are not NULL, then they get called when |
| 588 | * two equality constraints get interchanged or |
| 589 | * when a number of final equality constraints get removed. |
| 590 | * As a special case, if the input turns out to be empty, |
| 591 | * then drop gets called with the number of removed equality |
| 592 | * constraints set to the total number of equality constraints. |
| 593 | * If "swap" or "drop" are not NULL, then the local variables (if any) |
| 594 | * are assumed to be in a valid order. |
| 595 | */ |
| 596 | __isl_give isl_basic_map *isl_basic_map_gauss5(__isl_take isl_basic_map *bmap, |
| 597 | int *progress, |
| 598 | isl_stat (*swap)(unsigned a, unsigned b, void *user), |
| 599 | isl_stat (*drop)(unsigned n, void *user), void *user) |
| 600 | { |
| 601 | int k; |
| 602 | int done; |
| 603 | int last_var; |
| 604 | unsigned total_var; |
| 605 | isl_size total; |
| 606 | unsigned n_drop; |
| 607 | |
| 608 | if (!swap && !drop) |
| 609 | bmap = isl_basic_map_order_divs(bmap); |
| 610 | |
| 611 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 612 | if (total < 0) |
| 613 | return isl_basic_map_free(bmap); |
| 614 | |
| 615 | total_var = total - bmap->n_div; |
| 616 | |
| 617 | last_var = total - 1; |
| 618 | for (done = 0; done < bmap->n_eq; ++done) { |
| 619 | for (; last_var >= 0; --last_var) { |
| 620 | for (k = done; k < bmap->n_eq; ++k) |
| 621 | if (!isl_int_is_zero(bmap->eq[k][1+last_var])) |
| 622 | break; |
| 623 | if (k < bmap->n_eq) |
| 624 | break; |
| 625 | } |
| 626 | if (last_var < 0) |
| 627 | break; |
| 628 | if (k != done) { |
| 629 | swap_equality(bmap, a: k, b: done); |
| 630 | if (swap && swap(k, done, user) < 0) |
| 631 | return isl_basic_map_free(bmap); |
| 632 | } |
| 633 | if (isl_int_is_neg(bmap->eq[done][1+last_var])) |
| 634 | isl_seq_neg(dst: bmap->eq[done], src: bmap->eq[done], len: 1+total); |
| 635 | |
| 636 | bmap = eliminate_var_using_equality(bmap, pos: last_var, |
| 637 | eq: bmap->eq[done], keep_divs: 1, progress); |
| 638 | |
| 639 | if (last_var >= total_var) |
| 640 | bmap = set_div_from_eq(bmap, div: last_var - total_var, |
| 641 | eq: done, progress); |
| 642 | if (!bmap) |
| 643 | return NULL; |
| 644 | } |
| 645 | if (done == bmap->n_eq) |
| 646 | return bmap; |
| 647 | for (k = done; k < bmap->n_eq; ++k) { |
| 648 | if (isl_int_is_zero(bmap->eq[k][0])) |
| 649 | continue; |
| 650 | if (drop && drop(bmap->n_eq, user) < 0) |
| 651 | return isl_basic_map_free(bmap); |
| 652 | return isl_basic_map_set_to_empty(bmap); |
| 653 | } |
| 654 | n_drop = bmap->n_eq - done; |
| 655 | bmap = isl_basic_map_free_equality(bmap, n: n_drop); |
| 656 | if (drop && drop(n_drop, user) < 0) |
| 657 | return isl_basic_map_free(bmap); |
| 658 | return bmap; |
| 659 | } |
| 660 | |
| 661 | __isl_give isl_basic_map *isl_basic_map_gauss(__isl_take isl_basic_map *bmap, |
| 662 | int *progress) |
| 663 | { |
| 664 | return isl_basic_map_gauss5(bmap, progress, NULL, NULL, NULL); |
| 665 | } |
| 666 | |
| 667 | __isl_give isl_basic_set *isl_basic_set_gauss( |
| 668 | __isl_take isl_basic_set *bset, int *progress) |
| 669 | { |
| 670 | return bset_from_bmap(bmap: isl_basic_map_gauss(bmap: bset_to_bmap(bset), |
| 671 | progress)); |
| 672 | } |
| 673 | |
| 674 | |
| 675 | static unsigned int round_up(unsigned int v) |
| 676 | { |
| 677 | int old_v = v; |
| 678 | |
| 679 | while (v) { |
| 680 | old_v = v; |
| 681 | v ^= v & -v; |
| 682 | } |
| 683 | return old_v << 1; |
| 684 | } |
| 685 | |
| 686 | /* Hash table of inequalities in a basic map. |
| 687 | * "index" is an array of addresses of inequalities in the basic map, some |
| 688 | * of which are NULL. The inequalities are hashed on the coefficients |
| 689 | * except the constant term. |
| 690 | * "size" is the number of elements in the array and is always a power of two |
| 691 | * "bits" is the number of bits need to represent an index into the array. |
| 692 | * "total" is the total dimension of the basic map. |
| 693 | */ |
| 694 | struct isl_constraint_index { |
| 695 | unsigned int size; |
| 696 | int bits; |
| 697 | isl_int ***index; |
| 698 | isl_size total; |
| 699 | }; |
| 700 | |
| 701 | /* Fill in the "ci" data structure for holding the inequalities of "bmap". |
| 702 | */ |
| 703 | static isl_stat create_constraint_index(struct isl_constraint_index *ci, |
| 704 | __isl_keep isl_basic_map *bmap) |
| 705 | { |
| 706 | isl_ctx *ctx; |
| 707 | |
| 708 | ci->index = NULL; |
| 709 | if (!bmap) |
| 710 | return isl_stat_error; |
| 711 | ci->total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 712 | if (ci->total < 0) |
| 713 | return isl_stat_error; |
| 714 | if (bmap->n_ineq == 0) |
| 715 | return isl_stat_ok; |
| 716 | ci->size = round_up(v: 4 * (bmap->n_ineq + 1) / 3 - 1); |
| 717 | ci->bits = ffs(i: ci->size) - 1; |
| 718 | ctx = isl_basic_map_get_ctx(bmap); |
| 719 | ci->index = isl_calloc_array(ctx, isl_int **, ci->size); |
| 720 | if (!ci->index) |
| 721 | return isl_stat_error; |
| 722 | |
| 723 | return isl_stat_ok; |
| 724 | } |
| 725 | |
| 726 | /* Free the memory allocated by create_constraint_index. |
| 727 | */ |
| 728 | static void constraint_index_free(struct isl_constraint_index *ci) |
| 729 | { |
| 730 | free(ptr: ci->index); |
| 731 | } |
| 732 | |
| 733 | /* Return the position in ci->index that contains the address of |
| 734 | * an inequality that is equal to *ineq up to the constant term, |
| 735 | * provided this address is not identical to "ineq". |
| 736 | * If there is no such inequality, then return the position where |
| 737 | * such an inequality should be inserted. |
| 738 | */ |
| 739 | static int hash_index_ineq(struct isl_constraint_index *ci, isl_int **ineq) |
| 740 | { |
| 741 | int h; |
| 742 | uint32_t hash = isl_seq_get_hash_bits(p: (*ineq) + 1, len: ci->total, bits: ci->bits); |
| 743 | for (h = hash; ci->index[h]; h = (h+1) % ci->size) |
| 744 | if (ineq != ci->index[h] && |
| 745 | isl_seq_eq(p1: (*ineq) + 1, p2: ci->index[h][0]+1, len: ci->total)) |
| 746 | break; |
| 747 | return h; |
| 748 | } |
| 749 | |
| 750 | /* Return the position in ci->index that contains the address of |
| 751 | * an inequality that is equal to the k'th inequality of "bmap" |
| 752 | * up to the constant term, provided it does not point to the very |
| 753 | * same inequality. |
| 754 | * If there is no such inequality, then return the position where |
| 755 | * such an inequality should be inserted. |
| 756 | */ |
| 757 | static int hash_index(struct isl_constraint_index *ci, |
| 758 | __isl_keep isl_basic_map *bmap, int k) |
| 759 | { |
| 760 | return hash_index_ineq(ci, ineq: &bmap->ineq[k]); |
| 761 | } |
| 762 | |
| 763 | static int set_hash_index(struct isl_constraint_index *ci, |
| 764 | __isl_keep isl_basic_set *bset, int k) |
| 765 | { |
| 766 | return hash_index(ci, bmap: bset, k); |
| 767 | } |
| 768 | |
| 769 | /* Fill in the "ci" data structure with the inequalities of "bset". |
| 770 | */ |
| 771 | static isl_stat setup_constraint_index(struct isl_constraint_index *ci, |
| 772 | __isl_keep isl_basic_set *bset) |
| 773 | { |
| 774 | int k, h; |
| 775 | |
| 776 | if (create_constraint_index(ci, bmap: bset) < 0) |
| 777 | return isl_stat_error; |
| 778 | |
| 779 | for (k = 0; k < bset->n_ineq; ++k) { |
| 780 | h = set_hash_index(ci, bset, k); |
| 781 | ci->index[h] = &bset->ineq[k]; |
| 782 | } |
| 783 | |
| 784 | return isl_stat_ok; |
| 785 | } |
| 786 | |
| 787 | /* Is the inequality ineq (obviously) redundant with respect |
| 788 | * to the constraints in "ci"? |
| 789 | * |
| 790 | * Look for an inequality in "ci" with the same coefficients and then |
| 791 | * check if the contant term of "ineq" is greater than or equal |
| 792 | * to the constant term of that inequality. If so, "ineq" is clearly |
| 793 | * redundant. |
| 794 | * |
| 795 | * Note that hash_index_ineq ignores a stored constraint if it has |
| 796 | * the same address as the passed inequality. It is ok to pass |
| 797 | * the address of a local variable here since it will never be |
| 798 | * the same as the address of a constraint in "ci". |
| 799 | */ |
| 800 | static isl_bool constraint_index_is_redundant(struct isl_constraint_index *ci, |
| 801 | isl_int *ineq) |
| 802 | { |
| 803 | int h; |
| 804 | |
| 805 | h = hash_index_ineq(ci, ineq: &ineq); |
| 806 | if (!ci->index[h]) |
| 807 | return isl_bool_false; |
| 808 | return isl_int_ge(ineq[0], (*ci->index[h])[0]); |
| 809 | } |
| 810 | |
| 811 | /* If we can eliminate more than one div, then we need to make |
| 812 | * sure we do it from last div to first div, in order not to |
| 813 | * change the position of the other divs that still need to |
| 814 | * be removed. |
| 815 | */ |
| 816 | static __isl_give isl_basic_map *remove_duplicate_divs( |
| 817 | __isl_take isl_basic_map *bmap, int *progress) |
| 818 | { |
| 819 | unsigned int size; |
| 820 | int *index; |
| 821 | int *elim_for; |
| 822 | int k, l, h; |
| 823 | int bits; |
| 824 | struct isl_blk eq; |
| 825 | isl_size v_div; |
| 826 | unsigned total; |
| 827 | struct isl_ctx *ctx; |
| 828 | |
| 829 | bmap = isl_basic_map_order_divs(bmap); |
| 830 | if (!bmap || bmap->n_div <= 1) |
| 831 | return bmap; |
| 832 | |
| 833 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
| 834 | if (v_div < 0) |
| 835 | return isl_basic_map_free(bmap); |
| 836 | total = v_div + bmap->n_div; |
| 837 | |
| 838 | ctx = bmap->ctx; |
| 839 | for (k = bmap->n_div - 1; k >= 0; --k) |
| 840 | if (!isl_int_is_zero(bmap->div[k][0])) |
| 841 | break; |
| 842 | if (k <= 0) |
| 843 | return bmap; |
| 844 | |
| 845 | size = round_up(v: 4 * bmap->n_div / 3 - 1); |
| 846 | if (size == 0) |
| 847 | return bmap; |
| 848 | elim_for = isl_calloc_array(ctx, int, bmap->n_div); |
| 849 | bits = ffs(i: size) - 1; |
| 850 | index = isl_calloc_array(ctx, int, size); |
| 851 | if (!elim_for || !index) |
| 852 | goto out; |
| 853 | eq = isl_blk_alloc(ctx, n: 1+total); |
| 854 | if (isl_blk_is_error(block: eq)) |
| 855 | goto out; |
| 856 | |
| 857 | isl_seq_clr(p: eq.data, len: 1+total); |
| 858 | index[isl_seq_get_hash_bits(p: bmap->div[k], len: 2+total, bits)] = k + 1; |
| 859 | for (--k; k >= 0; --k) { |
| 860 | uint32_t hash; |
| 861 | |
| 862 | if (isl_int_is_zero(bmap->div[k][0])) |
| 863 | continue; |
| 864 | |
| 865 | hash = isl_seq_get_hash_bits(p: bmap->div[k], len: 2+total, bits); |
| 866 | for (h = hash; index[h]; h = (h+1) % size) |
| 867 | if (isl_seq_eq(p1: bmap->div[k], |
| 868 | p2: bmap->div[index[h]-1], len: 2+total)) |
| 869 | break; |
| 870 | if (index[h]) { |
| 871 | *progress = 1; |
| 872 | l = index[h] - 1; |
| 873 | elim_for[l] = k + 1; |
| 874 | } |
| 875 | index[h] = k+1; |
| 876 | } |
| 877 | for (l = bmap->n_div - 1; l >= 0; --l) { |
| 878 | if (!elim_for[l]) |
| 879 | continue; |
| 880 | k = elim_for[l] - 1; |
| 881 | isl_int_set_si(eq.data[1 + v_div + k], -1); |
| 882 | isl_int_set_si(eq.data[1 + v_div + l], 1); |
| 883 | bmap = eliminate_div(bmap, eq: eq.data, div: l, keep_divs: 1); |
| 884 | if (!bmap) |
| 885 | break; |
| 886 | isl_int_set_si(eq.data[1 + v_div + k], 0); |
| 887 | isl_int_set_si(eq.data[1 + v_div + l], 0); |
| 888 | } |
| 889 | |
| 890 | isl_blk_free(ctx, block: eq); |
| 891 | out: |
| 892 | free(ptr: index); |
| 893 | free(ptr: elim_for); |
| 894 | return bmap; |
| 895 | } |
| 896 | |
| 897 | static int n_pure_div_eq(__isl_keep isl_basic_map *bmap) |
| 898 | { |
| 899 | int i, j; |
| 900 | isl_size v_div; |
| 901 | |
| 902 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
| 903 | if (v_div < 0) |
| 904 | return -1; |
| 905 | for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) { |
| 906 | while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + v_div + j])) |
| 907 | --j; |
| 908 | if (j < 0) |
| 909 | break; |
| 910 | if (isl_seq_first_non_zero(p: bmap->eq[i] + 1 + v_div, len: j) != -1) |
| 911 | return 0; |
| 912 | } |
| 913 | return i; |
| 914 | } |
| 915 | |
| 916 | /* Normalize divs that appear in equalities. |
| 917 | * |
| 918 | * In particular, we assume that bmap contains some equalities |
| 919 | * of the form |
| 920 | * |
| 921 | * a x = m * e_i |
| 922 | * |
| 923 | * and we want to replace the set of e_i by a minimal set and |
| 924 | * such that the new e_i have a canonical representation in terms |
| 925 | * of the vector x. |
| 926 | * If any of the equalities involves more than one divs, then |
| 927 | * we currently simply bail out. |
| 928 | * |
| 929 | * Let us first additionally assume that all equalities involve |
| 930 | * a div. The equalities then express modulo constraints on the |
| 931 | * remaining variables and we can use "parameter compression" |
| 932 | * to find a minimal set of constraints. The result is a transformation |
| 933 | * |
| 934 | * x = T(x') = x_0 + G x' |
| 935 | * |
| 936 | * with G a lower-triangular matrix with all elements below the diagonal |
| 937 | * non-negative and smaller than the diagonal element on the same row. |
| 938 | * We first normalize x_0 by making the same property hold in the affine |
| 939 | * T matrix. |
| 940 | * The rows i of G with a 1 on the diagonal do not impose any modulo |
| 941 | * constraint and simply express x_i = x'_i. |
| 942 | * For each of the remaining rows i, we introduce a div and a corresponding |
| 943 | * equality. In particular |
| 944 | * |
| 945 | * g_ii e_j = x_i - g_i(x') |
| 946 | * |
| 947 | * where each x'_k is replaced either by x_k (if g_kk = 1) or the |
| 948 | * corresponding div (if g_kk != 1). |
| 949 | * |
| 950 | * If there are any equalities not involving any div, then we |
| 951 | * first apply a variable compression on the variables x: |
| 952 | * |
| 953 | * x = C x'' x'' = C_2 x |
| 954 | * |
| 955 | * and perform the above parameter compression on A C instead of on A. |
| 956 | * The resulting compression is then of the form |
| 957 | * |
| 958 | * x'' = T(x') = x_0 + G x' |
| 959 | * |
| 960 | * and in constructing the new divs and the corresponding equalities, |
| 961 | * we have to replace each x'', i.e., the x'_k with (g_kk = 1), |
| 962 | * by the corresponding row from C_2. |
| 963 | */ |
| 964 | static __isl_give isl_basic_map *normalize_divs(__isl_take isl_basic_map *bmap, |
| 965 | int *progress) |
| 966 | { |
| 967 | int i, j, k; |
| 968 | isl_size v_div; |
| 969 | int div_eq; |
| 970 | struct isl_mat *B; |
| 971 | struct isl_vec *d; |
| 972 | struct isl_mat *T = NULL; |
| 973 | struct isl_mat *C = NULL; |
| 974 | struct isl_mat *C2 = NULL; |
| 975 | isl_int v; |
| 976 | int *pos = NULL; |
| 977 | int dropped, needed; |
| 978 | |
| 979 | if (!bmap) |
| 980 | return NULL; |
| 981 | |
| 982 | if (bmap->n_div == 0) |
| 983 | return bmap; |
| 984 | |
| 985 | if (bmap->n_eq == 0) |
| 986 | return bmap; |
| 987 | |
| 988 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS)) |
| 989 | return bmap; |
| 990 | |
| 991 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
| 992 | div_eq = n_pure_div_eq(bmap); |
| 993 | if (v_div < 0 || div_eq < 0) |
| 994 | return isl_basic_map_free(bmap); |
| 995 | if (div_eq == 0) |
| 996 | return bmap; |
| 997 | |
| 998 | if (div_eq < bmap->n_eq) { |
| 999 | B = isl_mat_sub_alloc6(ctx: bmap->ctx, row: bmap->eq, first_row: div_eq, |
| 1000 | n_row: bmap->n_eq - div_eq, first_col: 0, n_col: 1 + v_div); |
| 1001 | C = isl_mat_variable_compression(B, T2: &C2); |
| 1002 | if (!C || !C2) |
| 1003 | goto error; |
| 1004 | if (C->n_col == 0) { |
| 1005 | bmap = isl_basic_map_set_to_empty(bmap); |
| 1006 | isl_mat_free(mat: C); |
| 1007 | isl_mat_free(mat: C2); |
| 1008 | goto done; |
| 1009 | } |
| 1010 | } |
| 1011 | |
| 1012 | d = isl_vec_alloc(ctx: bmap->ctx, size: div_eq); |
| 1013 | if (!d) |
| 1014 | goto error; |
| 1015 | for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) { |
| 1016 | while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + v_div + j])) |
| 1017 | --j; |
| 1018 | isl_int_set(d->block.data[i], bmap->eq[i][1 + v_div + j]); |
| 1019 | } |
| 1020 | B = isl_mat_sub_alloc6(ctx: bmap->ctx, row: bmap->eq, first_row: 0, n_row: div_eq, first_col: 0, n_col: 1 + v_div); |
| 1021 | |
| 1022 | if (C) { |
| 1023 | B = isl_mat_product(left: B, right: C); |
| 1024 | C = NULL; |
| 1025 | } |
| 1026 | |
| 1027 | T = isl_mat_parameter_compression(B, d); |
| 1028 | if (!T) |
| 1029 | goto error; |
| 1030 | if (T->n_col == 0) { |
| 1031 | bmap = isl_basic_map_set_to_empty(bmap); |
| 1032 | isl_mat_free(mat: C2); |
| 1033 | isl_mat_free(mat: T); |
| 1034 | goto done; |
| 1035 | } |
| 1036 | isl_int_init(v); |
| 1037 | for (i = 0; i < T->n_row - 1; ++i) { |
| 1038 | isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]); |
| 1039 | if (isl_int_is_zero(v)) |
| 1040 | continue; |
| 1041 | isl_mat_col_submul(mat: T, dst_col: 0, f: v, src_col: 1 + i); |
| 1042 | } |
| 1043 | isl_int_clear(v); |
| 1044 | pos = isl_alloc_array(bmap->ctx, int, T->n_row); |
| 1045 | if (!pos) |
| 1046 | goto error; |
| 1047 | /* We have to be careful because dropping equalities may reorder them */ |
| 1048 | dropped = 0; |
| 1049 | for (j = bmap->n_div - 1; j >= 0; --j) { |
| 1050 | for (i = 0; i < bmap->n_eq; ++i) |
| 1051 | if (!isl_int_is_zero(bmap->eq[i][1 + v_div + j])) |
| 1052 | break; |
| 1053 | if (i < bmap->n_eq) { |
| 1054 | bmap = isl_basic_map_drop_div(bmap, div: j); |
| 1055 | if (isl_basic_map_drop_equality(bmap, pos: i) < 0) |
| 1056 | goto error; |
| 1057 | ++dropped; |
| 1058 | } |
| 1059 | } |
| 1060 | pos[0] = 0; |
| 1061 | needed = 0; |
| 1062 | for (i = 1; i < T->n_row; ++i) { |
| 1063 | if (isl_int_is_one(T->row[i][i])) |
| 1064 | pos[i] = i; |
| 1065 | else |
| 1066 | needed++; |
| 1067 | } |
| 1068 | if (needed > dropped) { |
| 1069 | bmap = isl_basic_map_extend(base: bmap, extra: needed, n_eq: needed, n_ineq: 0); |
| 1070 | if (!bmap) |
| 1071 | goto error; |
| 1072 | } |
| 1073 | for (i = 1; i < T->n_row; ++i) { |
| 1074 | if (isl_int_is_one(T->row[i][i])) |
| 1075 | continue; |
| 1076 | k = isl_basic_map_alloc_div(bmap); |
| 1077 | pos[i] = 1 + v_div + k; |
| 1078 | isl_seq_clr(p: bmap->div[k] + 1, len: 1 + v_div + bmap->n_div); |
| 1079 | isl_int_set(bmap->div[k][0], T->row[i][i]); |
| 1080 | if (C2) |
| 1081 | isl_seq_cpy(dst: bmap->div[k] + 1, src: C2->row[i], len: 1 + v_div); |
| 1082 | else |
| 1083 | isl_int_set_si(bmap->div[k][1 + i], 1); |
| 1084 | for (j = 0; j < i; ++j) { |
| 1085 | if (isl_int_is_zero(T->row[i][j])) |
| 1086 | continue; |
| 1087 | if (pos[j] < T->n_row && C2) |
| 1088 | isl_seq_submul(dst: bmap->div[k] + 1, f: T->row[i][j], |
| 1089 | src: C2->row[pos[j]], len: 1 + v_div); |
| 1090 | else |
| 1091 | isl_int_neg(bmap->div[k][1 + pos[j]], |
| 1092 | T->row[i][j]); |
| 1093 | } |
| 1094 | j = isl_basic_map_alloc_equality(bmap); |
| 1095 | isl_seq_neg(dst: bmap->eq[j], src: bmap->div[k]+1, len: 1+v_div+bmap->n_div); |
| 1096 | isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]); |
| 1097 | } |
| 1098 | free(ptr: pos); |
| 1099 | isl_mat_free(mat: C2); |
| 1100 | isl_mat_free(mat: T); |
| 1101 | |
| 1102 | if (progress) |
| 1103 | *progress = 1; |
| 1104 | done: |
| 1105 | ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS); |
| 1106 | |
| 1107 | return bmap; |
| 1108 | error: |
| 1109 | free(ptr: pos); |
| 1110 | isl_mat_free(mat: C); |
| 1111 | isl_mat_free(mat: C2); |
| 1112 | isl_mat_free(mat: T); |
| 1113 | isl_basic_map_free(bmap); |
| 1114 | return NULL; |
| 1115 | } |
| 1116 | |
| 1117 | static __isl_give isl_basic_map *set_div_from_lower_bound( |
| 1118 | __isl_take isl_basic_map *bmap, int div, int ineq) |
| 1119 | { |
| 1120 | unsigned total = isl_basic_map_offset(bmap, type: isl_dim_div); |
| 1121 | |
| 1122 | isl_seq_neg(dst: bmap->div[div] + 1, src: bmap->ineq[ineq], len: total + bmap->n_div); |
| 1123 | isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]); |
| 1124 | isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]); |
| 1125 | isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1); |
| 1126 | isl_int_set_si(bmap->div[div][1 + total + div], 0); |
| 1127 | |
| 1128 | return bmap; |
| 1129 | } |
| 1130 | |
| 1131 | /* Check whether it is ok to define a div based on an inequality. |
| 1132 | * To avoid the introduction of circular definitions of divs, we |
| 1133 | * do not allow such a definition if the resulting expression would refer to |
| 1134 | * any other undefined divs or if any known div is defined in |
| 1135 | * terms of the unknown div. |
| 1136 | */ |
| 1137 | static isl_bool ok_to_set_div_from_bound(__isl_keep isl_basic_map *bmap, |
| 1138 | int div, int ineq) |
| 1139 | { |
| 1140 | int j; |
| 1141 | unsigned total = isl_basic_map_offset(bmap, type: isl_dim_div); |
| 1142 | |
| 1143 | /* Not defined in terms of unknown divs */ |
| 1144 | for (j = 0; j < bmap->n_div; ++j) { |
| 1145 | if (div == j) |
| 1146 | continue; |
| 1147 | if (isl_int_is_zero(bmap->ineq[ineq][total + j])) |
| 1148 | continue; |
| 1149 | if (isl_int_is_zero(bmap->div[j][0])) |
| 1150 | return isl_bool_false; |
| 1151 | } |
| 1152 | |
| 1153 | /* No other div defined in terms of this one => avoid loops */ |
| 1154 | for (j = 0; j < bmap->n_div; ++j) { |
| 1155 | if (div == j) |
| 1156 | continue; |
| 1157 | if (isl_int_is_zero(bmap->div[j][0])) |
| 1158 | continue; |
| 1159 | if (!isl_int_is_zero(bmap->div[j][1 + total + div])) |
| 1160 | return isl_bool_false; |
| 1161 | } |
| 1162 | |
| 1163 | return isl_bool_true; |
| 1164 | } |
| 1165 | |
| 1166 | /* Would an expression for div "div" based on inequality "ineq" of "bmap" |
| 1167 | * be a better expression than the current one? |
| 1168 | * |
| 1169 | * If we do not have any expression yet, then any expression would be better. |
| 1170 | * Otherwise we check if the last variable involved in the inequality |
| 1171 | * (disregarding the div that it would define) is in an earlier position |
| 1172 | * than the last variable involved in the current div expression. |
| 1173 | */ |
| 1174 | static isl_bool better_div_constraint(__isl_keep isl_basic_map *bmap, |
| 1175 | int div, int ineq) |
| 1176 | { |
| 1177 | unsigned total = isl_basic_map_offset(bmap, type: isl_dim_div); |
| 1178 | int last_div; |
| 1179 | int last_ineq; |
| 1180 | |
| 1181 | if (isl_int_is_zero(bmap->div[div][0])) |
| 1182 | return isl_bool_true; |
| 1183 | |
| 1184 | if (isl_seq_last_non_zero(p: bmap->ineq[ineq] + total + div + 1, |
| 1185 | len: bmap->n_div - (div + 1)) >= 0) |
| 1186 | return isl_bool_false; |
| 1187 | |
| 1188 | last_ineq = isl_seq_last_non_zero(p: bmap->ineq[ineq], len: total + div); |
| 1189 | last_div = isl_seq_last_non_zero(p: bmap->div[div] + 1, |
| 1190 | len: total + bmap->n_div); |
| 1191 | |
| 1192 | return last_ineq < last_div; |
| 1193 | } |
| 1194 | |
| 1195 | /* Given two constraints "k" and "l" that are opposite to each other, |
| 1196 | * except for the constant term, check if we can use them |
| 1197 | * to obtain an expression for one of the hitherto unknown divs or |
| 1198 | * a "better" expression for a div for which we already have an expression. |
| 1199 | * "sum" is the sum of the constant terms of the constraints. |
| 1200 | * If this sum is strictly smaller than the coefficient of one |
| 1201 | * of the divs, then this pair can be used to define the div. |
| 1202 | * To avoid the introduction of circular definitions of divs, we |
| 1203 | * do not use the pair if the resulting expression would refer to |
| 1204 | * any other undefined divs or if any known div is defined in |
| 1205 | * terms of the unknown div. |
| 1206 | */ |
| 1207 | static __isl_give isl_basic_map *check_for_div_constraints( |
| 1208 | __isl_take isl_basic_map *bmap, int k, int l, isl_int sum, |
| 1209 | int *progress) |
| 1210 | { |
| 1211 | int i; |
| 1212 | unsigned total = isl_basic_map_offset(bmap, type: isl_dim_div); |
| 1213 | |
| 1214 | for (i = 0; i < bmap->n_div; ++i) { |
| 1215 | isl_bool set_div; |
| 1216 | |
| 1217 | if (isl_int_is_zero(bmap->ineq[k][total + i])) |
| 1218 | continue; |
| 1219 | if (isl_int_abs_ge(sum, bmap->ineq[k][total + i])) |
| 1220 | continue; |
| 1221 | set_div = better_div_constraint(bmap, div: i, ineq: k); |
| 1222 | if (set_div >= 0 && set_div) |
| 1223 | set_div = ok_to_set_div_from_bound(bmap, div: i, ineq: k); |
| 1224 | if (set_div < 0) |
| 1225 | return isl_basic_map_free(bmap); |
| 1226 | if (!set_div) |
| 1227 | break; |
| 1228 | if (isl_int_is_pos(bmap->ineq[k][total + i])) |
| 1229 | bmap = set_div_from_lower_bound(bmap, div: i, ineq: k); |
| 1230 | else |
| 1231 | bmap = set_div_from_lower_bound(bmap, div: i, ineq: l); |
| 1232 | if (progress) |
| 1233 | *progress = 1; |
| 1234 | break; |
| 1235 | } |
| 1236 | return bmap; |
| 1237 | } |
| 1238 | |
| 1239 | __isl_give isl_basic_map *isl_basic_map_remove_duplicate_constraints( |
| 1240 | __isl_take isl_basic_map *bmap, int *progress, int detect_divs) |
| 1241 | { |
| 1242 | struct isl_constraint_index ci; |
| 1243 | int k, l, h; |
| 1244 | isl_size total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 1245 | isl_int sum; |
| 1246 | |
| 1247 | if (total < 0 || bmap->n_ineq <= 1) |
| 1248 | return bmap; |
| 1249 | |
| 1250 | if (create_constraint_index(ci: &ci, bmap) < 0) |
| 1251 | return bmap; |
| 1252 | |
| 1253 | h = isl_seq_get_hash_bits(p: bmap->ineq[0] + 1, len: total, bits: ci.bits); |
| 1254 | ci.index[h] = &bmap->ineq[0]; |
| 1255 | for (k = 1; k < bmap->n_ineq; ++k) { |
| 1256 | h = hash_index(ci: &ci, bmap, k); |
| 1257 | if (!ci.index[h]) { |
| 1258 | ci.index[h] = &bmap->ineq[k]; |
| 1259 | continue; |
| 1260 | } |
| 1261 | if (progress) |
| 1262 | *progress = 1; |
| 1263 | l = ci.index[h] - &bmap->ineq[0]; |
| 1264 | if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0])) |
| 1265 | swap_inequality(bmap, a: k, b: l); |
| 1266 | isl_basic_map_drop_inequality(bmap, pos: k); |
| 1267 | --k; |
| 1268 | } |
| 1269 | isl_int_init(sum); |
| 1270 | for (k = 0; bmap && k < bmap->n_ineq-1; ++k) { |
| 1271 | isl_seq_neg(dst: bmap->ineq[k]+1, src: bmap->ineq[k]+1, len: total); |
| 1272 | h = hash_index(ci: &ci, bmap, k); |
| 1273 | isl_seq_neg(dst: bmap->ineq[k]+1, src: bmap->ineq[k]+1, len: total); |
| 1274 | if (!ci.index[h]) |
| 1275 | continue; |
| 1276 | l = ci.index[h] - &bmap->ineq[0]; |
| 1277 | isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]); |
| 1278 | if (isl_int_is_pos(sum)) { |
| 1279 | if (detect_divs) |
| 1280 | bmap = check_for_div_constraints(bmap, k, l, |
| 1281 | sum, progress); |
| 1282 | continue; |
| 1283 | } |
| 1284 | if (isl_int_is_zero(sum)) { |
| 1285 | /* We need to break out of the loop after these |
| 1286 | * changes since the contents of the hash |
| 1287 | * will no longer be valid. |
| 1288 | * Plus, we probably we want to regauss first. |
| 1289 | */ |
| 1290 | if (progress) |
| 1291 | *progress = 1; |
| 1292 | isl_basic_map_drop_inequality(bmap, pos: l); |
| 1293 | isl_basic_map_inequality_to_equality(bmap, pos: k); |
| 1294 | } else |
| 1295 | bmap = isl_basic_map_set_to_empty(bmap); |
| 1296 | break; |
| 1297 | } |
| 1298 | isl_int_clear(sum); |
| 1299 | |
| 1300 | constraint_index_free(ci: &ci); |
| 1301 | return bmap; |
| 1302 | } |
| 1303 | |
| 1304 | /* Detect all pairs of inequalities that form an equality. |
| 1305 | * |
| 1306 | * isl_basic_map_remove_duplicate_constraints detects at most one such pair. |
| 1307 | * Call it repeatedly while it is making progress. |
| 1308 | */ |
| 1309 | __isl_give isl_basic_map *isl_basic_map_detect_inequality_pairs( |
| 1310 | __isl_take isl_basic_map *bmap, int *progress) |
| 1311 | { |
| 1312 | int duplicate; |
| 1313 | |
| 1314 | do { |
| 1315 | duplicate = 0; |
| 1316 | bmap = isl_basic_map_remove_duplicate_constraints(bmap, |
| 1317 | progress: &duplicate, detect_divs: 0); |
| 1318 | if (progress && duplicate) |
| 1319 | *progress = 1; |
| 1320 | } while (duplicate); |
| 1321 | |
| 1322 | return bmap; |
| 1323 | } |
| 1324 | |
| 1325 | /* Given a known integer division "div" that is not integral |
| 1326 | * (with denominator 1), eliminate it from the constraints in "bmap" |
| 1327 | * where it appears with a (positive or negative) unit coefficient. |
| 1328 | * If "progress" is not NULL, then it gets set if the elimination |
| 1329 | * results in any changes. |
| 1330 | * |
| 1331 | * That is, replace |
| 1332 | * |
| 1333 | * floor(e/m) + f >= 0 |
| 1334 | * |
| 1335 | * by |
| 1336 | * |
| 1337 | * e + m f >= 0 |
| 1338 | * |
| 1339 | * and |
| 1340 | * |
| 1341 | * -floor(e/m) + f >= 0 |
| 1342 | * |
| 1343 | * by |
| 1344 | * |
| 1345 | * -e + m f + m - 1 >= 0 |
| 1346 | * |
| 1347 | * The first conversion is valid because floor(e/m) >= -f is equivalent |
| 1348 | * to e/m >= -f because -f is an integral expression. |
| 1349 | * The second conversion follows from the fact that |
| 1350 | * |
| 1351 | * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m) |
| 1352 | * |
| 1353 | * |
| 1354 | * Note that one of the div constraints may have been eliminated |
| 1355 | * due to being redundant with respect to the constraint that is |
| 1356 | * being modified by this function. The modified constraint may |
| 1357 | * no longer imply this div constraint, so we add it back to make |
| 1358 | * sure we do not lose any information. |
| 1359 | */ |
| 1360 | static __isl_give isl_basic_map *eliminate_unit_div( |
| 1361 | __isl_take isl_basic_map *bmap, int div, int *progress) |
| 1362 | { |
| 1363 | int j; |
| 1364 | isl_size v_div, dim; |
| 1365 | isl_ctx *ctx; |
| 1366 | |
| 1367 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
| 1368 | dim = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 1369 | if (v_div < 0 || dim < 0) |
| 1370 | return isl_basic_map_free(bmap); |
| 1371 | |
| 1372 | ctx = isl_basic_map_get_ctx(bmap); |
| 1373 | |
| 1374 | for (j = 0; j < bmap->n_ineq; ++j) { |
| 1375 | int s; |
| 1376 | |
| 1377 | if (!isl_int_is_one(bmap->ineq[j][1 + v_div + div]) && |
| 1378 | !isl_int_is_negone(bmap->ineq[j][1 + v_div + div])) |
| 1379 | continue; |
| 1380 | |
| 1381 | if (progress) |
| 1382 | *progress = 1; |
| 1383 | |
| 1384 | s = isl_int_sgn(bmap->ineq[j][1 + v_div + div]); |
| 1385 | isl_int_set_si(bmap->ineq[j][1 + v_div + div], 0); |
| 1386 | if (s < 0) |
| 1387 | isl_seq_combine(dst: bmap->ineq[j], |
| 1388 | m1: ctx->negone, src1: bmap->div[div] + 1, |
| 1389 | m2: bmap->div[div][0], src2: bmap->ineq[j], len: 1 + dim); |
| 1390 | else |
| 1391 | isl_seq_combine(dst: bmap->ineq[j], |
| 1392 | m1: ctx->one, src1: bmap->div[div] + 1, |
| 1393 | m2: bmap->div[div][0], src2: bmap->ineq[j], len: 1 + dim); |
| 1394 | if (s < 0) { |
| 1395 | isl_int_add(bmap->ineq[j][0], |
| 1396 | bmap->ineq[j][0], bmap->div[div][0]); |
| 1397 | isl_int_sub_ui(bmap->ineq[j][0], |
| 1398 | bmap->ineq[j][0], 1); |
| 1399 | } |
| 1400 | |
| 1401 | bmap = isl_basic_map_extend_constraints(base: bmap, n_eq: 0, n_ineq: 1); |
| 1402 | bmap = isl_basic_map_add_div_constraint(bmap, div, sign: s); |
| 1403 | if (!bmap) |
| 1404 | return NULL; |
| 1405 | } |
| 1406 | |
| 1407 | return bmap; |
| 1408 | } |
| 1409 | |
| 1410 | /* Eliminate selected known divs from constraints where they appear with |
| 1411 | * a (positive or negative) unit coefficient. |
| 1412 | * In particular, only handle those for which "select" returns isl_bool_true. |
| 1413 | * If "progress" is not NULL, then it gets set if the elimination |
| 1414 | * results in any changes. |
| 1415 | * |
| 1416 | * We skip integral divs, i.e., those with denominator 1, as we would |
| 1417 | * risk eliminating the div from the div constraints. We do not need |
| 1418 | * to handle those divs here anyway since the div constraints will turn |
| 1419 | * out to form an equality and this equality can then be used to eliminate |
| 1420 | * the div from all constraints. |
| 1421 | */ |
| 1422 | static __isl_give isl_basic_map *eliminate_selected_unit_divs( |
| 1423 | __isl_take isl_basic_map *bmap, |
| 1424 | isl_bool (*select)(__isl_keep isl_basic_map *bmap, int div), |
| 1425 | int *progress) |
| 1426 | { |
| 1427 | int i; |
| 1428 | |
| 1429 | if (!bmap) |
| 1430 | return NULL; |
| 1431 | |
| 1432 | for (i = 0; i < bmap->n_div; ++i) { |
| 1433 | isl_bool selected; |
| 1434 | |
| 1435 | if (isl_int_is_zero(bmap->div[i][0])) |
| 1436 | continue; |
| 1437 | if (isl_int_is_one(bmap->div[i][0])) |
| 1438 | continue; |
| 1439 | selected = select(bmap, i); |
| 1440 | if (selected < 0) |
| 1441 | return isl_basic_map_free(bmap); |
| 1442 | if (!selected) |
| 1443 | continue; |
| 1444 | bmap = eliminate_unit_div(bmap, div: i, progress); |
| 1445 | if (!bmap) |
| 1446 | return NULL; |
| 1447 | } |
| 1448 | |
| 1449 | return bmap; |
| 1450 | } |
| 1451 | |
| 1452 | /* eliminate_selected_unit_divs callback that selects every |
| 1453 | * integer division. |
| 1454 | */ |
| 1455 | static isl_bool is_any_div(__isl_keep isl_basic_map *bmap, int div) |
| 1456 | { |
| 1457 | return isl_bool_true; |
| 1458 | } |
| 1459 | |
| 1460 | /* Eliminate known divs from constraints where they appear with |
| 1461 | * a (positive or negative) unit coefficient. |
| 1462 | * If "progress" is not NULL, then it gets set if the elimination |
| 1463 | * results in any changes. |
| 1464 | */ |
| 1465 | static __isl_give isl_basic_map *eliminate_unit_divs( |
| 1466 | __isl_take isl_basic_map *bmap, int *progress) |
| 1467 | { |
| 1468 | return eliminate_selected_unit_divs(bmap, select: &is_any_div, progress); |
| 1469 | } |
| 1470 | |
| 1471 | /* eliminate_selected_unit_divs callback that selects |
| 1472 | * integer divisions that only appear with |
| 1473 | * a (positive or negative) unit coefficient |
| 1474 | * (outside their div constraints). |
| 1475 | */ |
| 1476 | static isl_bool is_pure_unit_div(__isl_keep isl_basic_map *bmap, int div) |
| 1477 | { |
| 1478 | int i; |
| 1479 | isl_size v_div, n_ineq; |
| 1480 | |
| 1481 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
| 1482 | n_ineq = isl_basic_map_n_inequality(bmap); |
| 1483 | if (v_div < 0 || n_ineq < 0) |
| 1484 | return isl_bool_error; |
| 1485 | |
| 1486 | for (i = 0; i < n_ineq; ++i) { |
| 1487 | isl_bool skip; |
| 1488 | |
| 1489 | if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div])) |
| 1490 | continue; |
| 1491 | skip = isl_basic_map_is_div_constraint(bmap, |
| 1492 | constraint: bmap->ineq[i], div); |
| 1493 | if (skip < 0) |
| 1494 | return isl_bool_error; |
| 1495 | if (skip) |
| 1496 | continue; |
| 1497 | if (!isl_int_is_one(bmap->ineq[i][1 + v_div + div]) && |
| 1498 | !isl_int_is_negone(bmap->ineq[i][1 + v_div + div])) |
| 1499 | return isl_bool_false; |
| 1500 | } |
| 1501 | |
| 1502 | return isl_bool_true; |
| 1503 | } |
| 1504 | |
| 1505 | /* Eliminate known divs from constraints where they appear with |
| 1506 | * a (positive or negative) unit coefficient, |
| 1507 | * but only if they do not appear in any other constraints |
| 1508 | * (other than the div constraints). |
| 1509 | */ |
| 1510 | __isl_give isl_basic_map *isl_basic_map_eliminate_pure_unit_divs( |
| 1511 | __isl_take isl_basic_map *bmap) |
| 1512 | { |
| 1513 | return eliminate_selected_unit_divs(bmap, select: &is_pure_unit_div, NULL); |
| 1514 | } |
| 1515 | |
| 1516 | __isl_give isl_basic_map *isl_basic_map_simplify(__isl_take isl_basic_map *bmap) |
| 1517 | { |
| 1518 | int progress = 1; |
| 1519 | if (!bmap) |
| 1520 | return NULL; |
| 1521 | while (progress) { |
| 1522 | isl_bool empty; |
| 1523 | |
| 1524 | progress = 0; |
| 1525 | empty = isl_basic_map_plain_is_empty(bmap); |
| 1526 | if (empty < 0) |
| 1527 | return isl_basic_map_free(bmap); |
| 1528 | if (empty) |
| 1529 | break; |
| 1530 | bmap = isl_basic_map_normalize_constraints(bmap); |
| 1531 | bmap = reduce_div_coefficients(bmap); |
| 1532 | bmap = normalize_div_expressions(bmap); |
| 1533 | bmap = remove_duplicate_divs(bmap, progress: &progress); |
| 1534 | bmap = eliminate_unit_divs(bmap, progress: &progress); |
| 1535 | bmap = eliminate_divs_eq(bmap, progress: &progress); |
| 1536 | bmap = eliminate_divs_ineq(bmap, progress: &progress); |
| 1537 | bmap = isl_basic_map_gauss(bmap, progress: &progress); |
| 1538 | /* requires equalities in normal form */ |
| 1539 | bmap = normalize_divs(bmap, progress: &progress); |
| 1540 | bmap = isl_basic_map_remove_duplicate_constraints(bmap, |
| 1541 | progress: &progress, detect_divs: 1); |
| 1542 | if (bmap && progress) |
| 1543 | ISL_F_CLR(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS); |
| 1544 | } |
| 1545 | return bmap; |
| 1546 | } |
| 1547 | |
| 1548 | __isl_give isl_basic_set *isl_basic_set_simplify( |
| 1549 | __isl_take isl_basic_set *bset) |
| 1550 | { |
| 1551 | return bset_from_bmap(bmap: isl_basic_map_simplify(bmap: bset_to_bmap(bset))); |
| 1552 | } |
| 1553 | |
| 1554 | |
| 1555 | isl_bool isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap, |
| 1556 | isl_int *constraint, unsigned div) |
| 1557 | { |
| 1558 | unsigned pos; |
| 1559 | |
| 1560 | if (!bmap) |
| 1561 | return isl_bool_error; |
| 1562 | |
| 1563 | pos = isl_basic_map_offset(bmap, type: isl_dim_div) + div; |
| 1564 | |
| 1565 | if (isl_int_eq(constraint[pos], bmap->div[div][0])) { |
| 1566 | int neg; |
| 1567 | isl_int_sub(bmap->div[div][1], |
| 1568 | bmap->div[div][1], bmap->div[div][0]); |
| 1569 | isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1); |
| 1570 | neg = isl_seq_is_neg(p1: constraint, p2: bmap->div[div]+1, len: pos); |
| 1571 | isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1); |
| 1572 | isl_int_add(bmap->div[div][1], |
| 1573 | bmap->div[div][1], bmap->div[div][0]); |
| 1574 | if (!neg) |
| 1575 | return isl_bool_false; |
| 1576 | if (isl_seq_first_non_zero(p: constraint+pos+1, |
| 1577 | len: bmap->n_div-div-1) != -1) |
| 1578 | return isl_bool_false; |
| 1579 | } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) { |
| 1580 | if (!isl_seq_eq(p1: constraint, p2: bmap->div[div]+1, len: pos)) |
| 1581 | return isl_bool_false; |
| 1582 | if (isl_seq_first_non_zero(p: constraint+pos+1, |
| 1583 | len: bmap->n_div-div-1) != -1) |
| 1584 | return isl_bool_false; |
| 1585 | } else |
| 1586 | return isl_bool_false; |
| 1587 | |
| 1588 | return isl_bool_true; |
| 1589 | } |
| 1590 | |
| 1591 | /* If the only constraints a div d=floor(f/m) |
| 1592 | * appears in are its two defining constraints |
| 1593 | * |
| 1594 | * f - m d >=0 |
| 1595 | * -(f - (m - 1)) + m d >= 0 |
| 1596 | * |
| 1597 | * then it can safely be removed. |
| 1598 | */ |
| 1599 | static isl_bool div_is_redundant(__isl_keep isl_basic_map *bmap, int div) |
| 1600 | { |
| 1601 | int i; |
| 1602 | isl_size v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
| 1603 | unsigned pos = 1 + v_div + div; |
| 1604 | |
| 1605 | if (v_div < 0) |
| 1606 | return isl_bool_error; |
| 1607 | |
| 1608 | for (i = 0; i < bmap->n_eq; ++i) |
| 1609 | if (!isl_int_is_zero(bmap->eq[i][pos])) |
| 1610 | return isl_bool_false; |
| 1611 | |
| 1612 | for (i = 0; i < bmap->n_ineq; ++i) { |
| 1613 | isl_bool red; |
| 1614 | |
| 1615 | if (isl_int_is_zero(bmap->ineq[i][pos])) |
| 1616 | continue; |
| 1617 | red = isl_basic_map_is_div_constraint(bmap, constraint: bmap->ineq[i], div); |
| 1618 | if (red < 0 || !red) |
| 1619 | return red; |
| 1620 | } |
| 1621 | |
| 1622 | for (i = 0; i < bmap->n_div; ++i) { |
| 1623 | if (isl_int_is_zero(bmap->div[i][0])) |
| 1624 | continue; |
| 1625 | if (!isl_int_is_zero(bmap->div[i][1+pos])) |
| 1626 | return isl_bool_false; |
| 1627 | } |
| 1628 | |
| 1629 | return isl_bool_true; |
| 1630 | } |
| 1631 | |
| 1632 | /* |
| 1633 | * Remove divs that don't occur in any of the constraints or other divs. |
| 1634 | * These can arise when dropping constraints from a basic map or |
| 1635 | * when the divs of a basic map have been temporarily aligned |
| 1636 | * with the divs of another basic map. |
| 1637 | */ |
| 1638 | static __isl_give isl_basic_map *remove_redundant_divs( |
| 1639 | __isl_take isl_basic_map *bmap) |
| 1640 | { |
| 1641 | int i; |
| 1642 | isl_size v_div; |
| 1643 | |
| 1644 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
| 1645 | if (v_div < 0) |
| 1646 | return isl_basic_map_free(bmap); |
| 1647 | |
| 1648 | for (i = bmap->n_div-1; i >= 0; --i) { |
| 1649 | isl_bool redundant; |
| 1650 | |
| 1651 | redundant = div_is_redundant(bmap, div: i); |
| 1652 | if (redundant < 0) |
| 1653 | return isl_basic_map_free(bmap); |
| 1654 | if (!redundant) |
| 1655 | continue; |
| 1656 | bmap = isl_basic_map_drop_constraints_involving(bmap, |
| 1657 | first: v_div + i, n: 1); |
| 1658 | bmap = isl_basic_map_drop_div(bmap, div: i); |
| 1659 | } |
| 1660 | return bmap; |
| 1661 | } |
| 1662 | |
| 1663 | /* Mark "bmap" as final, without checking for obviously redundant |
| 1664 | * integer divisions. This function should be used when "bmap" |
| 1665 | * is known not to involve any such integer divisions. |
| 1666 | */ |
| 1667 | __isl_give isl_basic_map *isl_basic_map_mark_final( |
| 1668 | __isl_take isl_basic_map *bmap) |
| 1669 | { |
| 1670 | if (!bmap) |
| 1671 | return NULL; |
| 1672 | ISL_F_SET(bmap, ISL_BASIC_SET_FINAL); |
| 1673 | return bmap; |
| 1674 | } |
| 1675 | |
| 1676 | /* Mark "bmap" as final, after removing obviously redundant integer divisions. |
| 1677 | */ |
| 1678 | __isl_give isl_basic_map *isl_basic_map_finalize(__isl_take isl_basic_map *bmap) |
| 1679 | { |
| 1680 | bmap = remove_redundant_divs(bmap); |
| 1681 | bmap = isl_basic_map_mark_final(bmap); |
| 1682 | return bmap; |
| 1683 | } |
| 1684 | |
| 1685 | __isl_give isl_basic_set *isl_basic_set_finalize( |
| 1686 | __isl_take isl_basic_set *bset) |
| 1687 | { |
| 1688 | return bset_from_bmap(bmap: isl_basic_map_finalize(bmap: bset_to_bmap(bset))); |
| 1689 | } |
| 1690 | |
| 1691 | /* Remove definition of any div that is defined in terms of the given variable. |
| 1692 | * The div itself is not removed. Functions such as |
| 1693 | * eliminate_divs_ineq depend on the other divs remaining in place. |
| 1694 | */ |
| 1695 | static __isl_give isl_basic_map *remove_dependent_vars( |
| 1696 | __isl_take isl_basic_map *bmap, int pos) |
| 1697 | { |
| 1698 | int i; |
| 1699 | |
| 1700 | if (!bmap) |
| 1701 | return NULL; |
| 1702 | |
| 1703 | for (i = 0; i < bmap->n_div; ++i) { |
| 1704 | if (isl_int_is_zero(bmap->div[i][0])) |
| 1705 | continue; |
| 1706 | if (isl_int_is_zero(bmap->div[i][1+1+pos])) |
| 1707 | continue; |
| 1708 | bmap = isl_basic_map_mark_div_unknown(bmap, div: i); |
| 1709 | if (!bmap) |
| 1710 | return NULL; |
| 1711 | } |
| 1712 | return bmap; |
| 1713 | } |
| 1714 | |
| 1715 | /* Eliminate the specified variables from the constraints using |
| 1716 | * Fourier-Motzkin. The variables themselves are not removed. |
| 1717 | */ |
| 1718 | __isl_give isl_basic_map *isl_basic_map_eliminate_vars( |
| 1719 | __isl_take isl_basic_map *bmap, unsigned pos, unsigned n) |
| 1720 | { |
| 1721 | int d; |
| 1722 | int i, j, k; |
| 1723 | isl_size total; |
| 1724 | int need_gauss = 0; |
| 1725 | |
| 1726 | if (n == 0) |
| 1727 | return bmap; |
| 1728 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 1729 | if (total < 0) |
| 1730 | return isl_basic_map_free(bmap); |
| 1731 | |
| 1732 | bmap = isl_basic_map_cow(bmap); |
| 1733 | for (d = pos + n - 1; d >= 0 && d >= pos; --d) |
| 1734 | bmap = remove_dependent_vars(bmap, pos: d); |
| 1735 | if (!bmap) |
| 1736 | return NULL; |
| 1737 | |
| 1738 | for (d = pos + n - 1; |
| 1739 | d >= 0 && d >= total - bmap->n_div && d >= pos; --d) |
| 1740 | isl_seq_clr(p: bmap->div[d-(total-bmap->n_div)], len: 2+total); |
| 1741 | for (d = pos + n - 1; d >= 0 && d >= pos; --d) { |
| 1742 | int n_lower, n_upper; |
| 1743 | if (!bmap) |
| 1744 | return NULL; |
| 1745 | for (i = 0; i < bmap->n_eq; ++i) { |
| 1746 | if (isl_int_is_zero(bmap->eq[i][1+d])) |
| 1747 | continue; |
| 1748 | bmap = eliminate_var_using_equality(bmap, pos: d, |
| 1749 | eq: bmap->eq[i], keep_divs: 0, NULL); |
| 1750 | if (isl_basic_map_drop_equality(bmap, pos: i) < 0) |
| 1751 | return isl_basic_map_free(bmap); |
| 1752 | need_gauss = 1; |
| 1753 | break; |
| 1754 | } |
| 1755 | if (i < bmap->n_eq) |
| 1756 | continue; |
| 1757 | n_lower = 0; |
| 1758 | n_upper = 0; |
| 1759 | for (i = 0; i < bmap->n_ineq; ++i) { |
| 1760 | if (isl_int_is_pos(bmap->ineq[i][1+d])) |
| 1761 | n_lower++; |
| 1762 | else if (isl_int_is_neg(bmap->ineq[i][1+d])) |
| 1763 | n_upper++; |
| 1764 | } |
| 1765 | bmap = isl_basic_map_extend_constraints(base: bmap, |
| 1766 | n_eq: 0, n_ineq: n_lower * n_upper); |
| 1767 | if (!bmap) |
| 1768 | goto error; |
| 1769 | for (i = bmap->n_ineq - 1; i >= 0; --i) { |
| 1770 | int last; |
| 1771 | if (isl_int_is_zero(bmap->ineq[i][1+d])) |
| 1772 | continue; |
| 1773 | last = -1; |
| 1774 | for (j = 0; j < i; ++j) { |
| 1775 | if (isl_int_is_zero(bmap->ineq[j][1+d])) |
| 1776 | continue; |
| 1777 | last = j; |
| 1778 | if (isl_int_sgn(bmap->ineq[i][1+d]) == |
| 1779 | isl_int_sgn(bmap->ineq[j][1+d])) |
| 1780 | continue; |
| 1781 | k = isl_basic_map_alloc_inequality(bmap); |
| 1782 | if (k < 0) |
| 1783 | goto error; |
| 1784 | isl_seq_cpy(dst: bmap->ineq[k], src: bmap->ineq[i], |
| 1785 | len: 1+total); |
| 1786 | isl_seq_elim(dst: bmap->ineq[k], src: bmap->ineq[j], |
| 1787 | pos: 1+d, len: 1+total, NULL); |
| 1788 | } |
| 1789 | isl_basic_map_drop_inequality(bmap, pos: i); |
| 1790 | i = last + 1; |
| 1791 | } |
| 1792 | if (n_lower > 0 && n_upper > 0) { |
| 1793 | bmap = isl_basic_map_normalize_constraints(bmap); |
| 1794 | bmap = isl_basic_map_remove_duplicate_constraints(bmap, |
| 1795 | NULL, detect_divs: 0); |
| 1796 | bmap = isl_basic_map_gauss(bmap, NULL); |
| 1797 | bmap = isl_basic_map_remove_redundancies(bmap); |
| 1798 | need_gauss = 0; |
| 1799 | if (!bmap) |
| 1800 | goto error; |
| 1801 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) |
| 1802 | break; |
| 1803 | } |
| 1804 | } |
| 1805 | if (need_gauss) |
| 1806 | bmap = isl_basic_map_gauss(bmap, NULL); |
| 1807 | return bmap; |
| 1808 | error: |
| 1809 | isl_basic_map_free(bmap); |
| 1810 | return NULL; |
| 1811 | } |
| 1812 | |
| 1813 | __isl_give isl_basic_set *isl_basic_set_eliminate_vars( |
| 1814 | __isl_take isl_basic_set *bset, unsigned pos, unsigned n) |
| 1815 | { |
| 1816 | return bset_from_bmap(bmap: isl_basic_map_eliminate_vars(bmap: bset_to_bmap(bset), |
| 1817 | pos, n)); |
| 1818 | } |
| 1819 | |
| 1820 | /* Eliminate the specified n dimensions starting at first from the |
| 1821 | * constraints, without removing the dimensions from the space. |
| 1822 | * If the set is rational, the dimensions are eliminated using Fourier-Motzkin. |
| 1823 | * Otherwise, they are projected out and the original space is restored. |
| 1824 | */ |
| 1825 | __isl_give isl_basic_map *isl_basic_map_eliminate( |
| 1826 | __isl_take isl_basic_map *bmap, |
| 1827 | enum isl_dim_type type, unsigned first, unsigned n) |
| 1828 | { |
| 1829 | isl_space *space; |
| 1830 | |
| 1831 | if (!bmap) |
| 1832 | return NULL; |
| 1833 | if (n == 0) |
| 1834 | return bmap; |
| 1835 | |
| 1836 | if (isl_basic_map_check_range(bmap, type, first, n) < 0) |
| 1837 | return isl_basic_map_free(bmap); |
| 1838 | |
| 1839 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) { |
| 1840 | first += isl_basic_map_offset(bmap, type) - 1; |
| 1841 | bmap = isl_basic_map_eliminate_vars(bmap, pos: first, n); |
| 1842 | return isl_basic_map_finalize(bmap); |
| 1843 | } |
| 1844 | |
| 1845 | space = isl_basic_map_get_space(bmap); |
| 1846 | bmap = isl_basic_map_project_out(bmap, type, first, n); |
| 1847 | bmap = isl_basic_map_insert_dims(bmap, type, pos: first, n); |
| 1848 | bmap = isl_basic_map_reset_space(bmap, space); |
| 1849 | return bmap; |
| 1850 | } |
| 1851 | |
| 1852 | __isl_give isl_basic_set *isl_basic_set_eliminate( |
| 1853 | __isl_take isl_basic_set *bset, |
| 1854 | enum isl_dim_type type, unsigned first, unsigned n) |
| 1855 | { |
| 1856 | return isl_basic_map_eliminate(bmap: bset, type, first, n); |
| 1857 | } |
| 1858 | |
| 1859 | /* Remove all constraints from "bmap" that reference any unknown local |
| 1860 | * variables (directly or indirectly). |
| 1861 | * |
| 1862 | * Dropping all constraints on a local variable will make it redundant, |
| 1863 | * so it will get removed implicitly by |
| 1864 | * isl_basic_map_drop_constraints_involving_dims. Some other local |
| 1865 | * variables may also end up becoming redundant if they only appear |
| 1866 | * in constraints together with the unknown local variable. |
| 1867 | * Therefore, start over after calling |
| 1868 | * isl_basic_map_drop_constraints_involving_dims. |
| 1869 | */ |
| 1870 | __isl_give isl_basic_map *isl_basic_map_drop_constraints_involving_unknown_divs( |
| 1871 | __isl_take isl_basic_map *bmap) |
| 1872 | { |
| 1873 | isl_bool known; |
| 1874 | isl_size n_div; |
| 1875 | int i, o_div; |
| 1876 | |
| 1877 | known = isl_basic_map_divs_known(bmap); |
| 1878 | if (known < 0) |
| 1879 | return isl_basic_map_free(bmap); |
| 1880 | if (known) |
| 1881 | return bmap; |
| 1882 | |
| 1883 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
| 1884 | if (n_div < 0) |
| 1885 | return isl_basic_map_free(bmap); |
| 1886 | o_div = isl_basic_map_offset(bmap, type: isl_dim_div) - 1; |
| 1887 | |
| 1888 | for (i = 0; i < n_div; ++i) { |
| 1889 | known = isl_basic_map_div_is_known(bmap, div: i); |
| 1890 | if (known < 0) |
| 1891 | return isl_basic_map_free(bmap); |
| 1892 | if (known) |
| 1893 | continue; |
| 1894 | bmap = remove_dependent_vars(bmap, pos: o_div + i); |
| 1895 | bmap = isl_basic_map_drop_constraints_involving_dims(bmap, |
| 1896 | type: isl_dim_div, first: i, n: 1); |
| 1897 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
| 1898 | if (n_div < 0) |
| 1899 | return isl_basic_map_free(bmap); |
| 1900 | i = -1; |
| 1901 | } |
| 1902 | |
| 1903 | return bmap; |
| 1904 | } |
| 1905 | |
| 1906 | /* Remove all constraints from "bset" that reference any unknown local |
| 1907 | * variables (directly or indirectly). |
| 1908 | */ |
| 1909 | __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving_unknown_divs( |
| 1910 | __isl_take isl_basic_set *bset) |
| 1911 | { |
| 1912 | isl_basic_map *bmap; |
| 1913 | |
| 1914 | bmap = bset_to_bmap(bset); |
| 1915 | bmap = isl_basic_map_drop_constraints_involving_unknown_divs(bmap); |
| 1916 | return bset_from_bmap(bmap); |
| 1917 | } |
| 1918 | |
| 1919 | /* Remove all constraints from "map" that reference any unknown local |
| 1920 | * variables (directly or indirectly). |
| 1921 | * |
| 1922 | * Since constraints may get dropped from the basic maps, |
| 1923 | * they may no longer be disjoint from each other. |
| 1924 | */ |
| 1925 | __isl_give isl_map *isl_map_drop_constraints_involving_unknown_divs( |
| 1926 | __isl_take isl_map *map) |
| 1927 | { |
| 1928 | int i; |
| 1929 | isl_bool known; |
| 1930 | |
| 1931 | known = isl_map_divs_known(map); |
| 1932 | if (known < 0) |
| 1933 | return isl_map_free(map); |
| 1934 | if (known) |
| 1935 | return map; |
| 1936 | |
| 1937 | map = isl_map_cow(map); |
| 1938 | if (!map) |
| 1939 | return NULL; |
| 1940 | |
| 1941 | for (i = 0; i < map->n; ++i) { |
| 1942 | map->p[i] = |
| 1943 | isl_basic_map_drop_constraints_involving_unknown_divs( |
| 1944 | bmap: map->p[i]); |
| 1945 | if (!map->p[i]) |
| 1946 | return isl_map_free(map); |
| 1947 | } |
| 1948 | |
| 1949 | if (map->n > 1) |
| 1950 | ISL_F_CLR(map, ISL_MAP_DISJOINT); |
| 1951 | |
| 1952 | return map; |
| 1953 | } |
| 1954 | |
| 1955 | /* Don't assume equalities are in order, because align_divs |
| 1956 | * may have changed the order of the divs. |
| 1957 | */ |
| 1958 | static void compute_elimination_index(__isl_keep isl_basic_map *bmap, int *elim, |
| 1959 | unsigned len) |
| 1960 | { |
| 1961 | int d, i; |
| 1962 | |
| 1963 | for (d = 0; d < len; ++d) |
| 1964 | elim[d] = -1; |
| 1965 | for (i = 0; i < bmap->n_eq; ++i) { |
| 1966 | for (d = len - 1; d >= 0; --d) { |
| 1967 | if (isl_int_is_zero(bmap->eq[i][1+d])) |
| 1968 | continue; |
| 1969 | elim[d] = i; |
| 1970 | break; |
| 1971 | } |
| 1972 | } |
| 1973 | } |
| 1974 | |
| 1975 | static void set_compute_elimination_index(__isl_keep isl_basic_set *bset, |
| 1976 | int *elim, unsigned len) |
| 1977 | { |
| 1978 | compute_elimination_index(bmap: bset_to_bmap(bset), elim, len); |
| 1979 | } |
| 1980 | |
| 1981 | static int reduced_using_equalities(isl_int *dst, isl_int *src, |
| 1982 | __isl_keep isl_basic_map *bmap, int *elim, unsigned total) |
| 1983 | { |
| 1984 | int d; |
| 1985 | int copied = 0; |
| 1986 | |
| 1987 | for (d = total - 1; d >= 0; --d) { |
| 1988 | if (isl_int_is_zero(src[1+d])) |
| 1989 | continue; |
| 1990 | if (elim[d] == -1) |
| 1991 | continue; |
| 1992 | if (!copied) { |
| 1993 | isl_seq_cpy(dst, src, len: 1 + total); |
| 1994 | copied = 1; |
| 1995 | } |
| 1996 | isl_seq_elim(dst, src: bmap->eq[elim[d]], pos: 1 + d, len: 1 + total, NULL); |
| 1997 | } |
| 1998 | return copied; |
| 1999 | } |
| 2000 | |
| 2001 | static int set_reduced_using_equalities(isl_int *dst, isl_int *src, |
| 2002 | __isl_keep isl_basic_set *bset, int *elim, unsigned total) |
| 2003 | { |
| 2004 | return reduced_using_equalities(dst, src, |
| 2005 | bmap: bset_to_bmap(bset), elim, total); |
| 2006 | } |
| 2007 | |
| 2008 | static __isl_give isl_basic_set *isl_basic_set_reduce_using_equalities( |
| 2009 | __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context) |
| 2010 | { |
| 2011 | int i; |
| 2012 | int *elim; |
| 2013 | isl_size dim; |
| 2014 | |
| 2015 | if (!bset || !context) |
| 2016 | goto error; |
| 2017 | |
| 2018 | if (context->n_eq == 0) { |
| 2019 | isl_basic_set_free(bset: context); |
| 2020 | return bset; |
| 2021 | } |
| 2022 | |
| 2023 | bset = isl_basic_set_cow(bset); |
| 2024 | dim = isl_basic_set_dim(bset, type: isl_dim_set); |
| 2025 | if (dim < 0) |
| 2026 | goto error; |
| 2027 | |
| 2028 | elim = isl_alloc_array(bset->ctx, int, dim); |
| 2029 | if (!elim) |
| 2030 | goto error; |
| 2031 | set_compute_elimination_index(bset: context, elim, len: dim); |
| 2032 | for (i = 0; i < bset->n_eq; ++i) |
| 2033 | set_reduced_using_equalities(dst: bset->eq[i], src: bset->eq[i], |
| 2034 | bset: context, elim, total: dim); |
| 2035 | for (i = 0; i < bset->n_ineq; ++i) |
| 2036 | set_reduced_using_equalities(dst: bset->ineq[i], src: bset->ineq[i], |
| 2037 | bset: context, elim, total: dim); |
| 2038 | isl_basic_set_free(bset: context); |
| 2039 | free(ptr: elim); |
| 2040 | bset = isl_basic_set_simplify(bset); |
| 2041 | bset = isl_basic_set_finalize(bset); |
| 2042 | return bset; |
| 2043 | error: |
| 2044 | isl_basic_set_free(bset); |
| 2045 | isl_basic_set_free(bset: context); |
| 2046 | return NULL; |
| 2047 | } |
| 2048 | |
| 2049 | /* For each inequality in "ineq" that is a shifted (more relaxed) |
| 2050 | * copy of an inequality in "context", mark the corresponding entry |
| 2051 | * in "row" with -1. |
| 2052 | * If an inequality only has a non-negative constant term, then |
| 2053 | * mark it as well. |
| 2054 | */ |
| 2055 | static isl_stat mark_shifted_constraints(__isl_keep isl_mat *ineq, |
| 2056 | __isl_keep isl_basic_set *context, int *row) |
| 2057 | { |
| 2058 | struct isl_constraint_index ci; |
| 2059 | isl_size n_ineq, cols; |
| 2060 | unsigned total; |
| 2061 | int k; |
| 2062 | |
| 2063 | if (!ineq || !context) |
| 2064 | return isl_stat_error; |
| 2065 | if (context->n_ineq == 0) |
| 2066 | return isl_stat_ok; |
| 2067 | if (setup_constraint_index(ci: &ci, bset: context) < 0) |
| 2068 | return isl_stat_error; |
| 2069 | |
| 2070 | n_ineq = isl_mat_rows(mat: ineq); |
| 2071 | cols = isl_mat_cols(mat: ineq); |
| 2072 | if (n_ineq < 0 || cols < 0) |
| 2073 | return isl_stat_error; |
| 2074 | total = cols - 1; |
| 2075 | for (k = 0; k < n_ineq; ++k) { |
| 2076 | int l; |
| 2077 | isl_bool redundant; |
| 2078 | |
| 2079 | l = isl_seq_first_non_zero(p: ineq->row[k] + 1, len: total); |
| 2080 | if (l < 0 && isl_int_is_nonneg(ineq->row[k][0])) { |
| 2081 | row[k] = -1; |
| 2082 | continue; |
| 2083 | } |
| 2084 | redundant = constraint_index_is_redundant(ci: &ci, ineq: ineq->row[k]); |
| 2085 | if (redundant < 0) |
| 2086 | goto error; |
| 2087 | if (!redundant) |
| 2088 | continue; |
| 2089 | row[k] = -1; |
| 2090 | } |
| 2091 | constraint_index_free(ci: &ci); |
| 2092 | return isl_stat_ok; |
| 2093 | error: |
| 2094 | constraint_index_free(ci: &ci); |
| 2095 | return isl_stat_error; |
| 2096 | } |
| 2097 | |
| 2098 | static __isl_give isl_basic_set *remove_shifted_constraints( |
| 2099 | __isl_take isl_basic_set *bset, __isl_keep isl_basic_set *context) |
| 2100 | { |
| 2101 | struct isl_constraint_index ci; |
| 2102 | int k; |
| 2103 | |
| 2104 | if (!bset || !context) |
| 2105 | return bset; |
| 2106 | |
| 2107 | if (context->n_ineq == 0) |
| 2108 | return bset; |
| 2109 | if (setup_constraint_index(ci: &ci, bset: context) < 0) |
| 2110 | return bset; |
| 2111 | |
| 2112 | for (k = 0; k < bset->n_ineq; ++k) { |
| 2113 | isl_bool redundant; |
| 2114 | |
| 2115 | redundant = constraint_index_is_redundant(ci: &ci, ineq: bset->ineq[k]); |
| 2116 | if (redundant < 0) |
| 2117 | goto error; |
| 2118 | if (!redundant) |
| 2119 | continue; |
| 2120 | bset = isl_basic_set_cow(bset); |
| 2121 | if (!bset) |
| 2122 | goto error; |
| 2123 | isl_basic_set_drop_inequality(bset, pos: k); |
| 2124 | --k; |
| 2125 | } |
| 2126 | constraint_index_free(ci: &ci); |
| 2127 | return bset; |
| 2128 | error: |
| 2129 | constraint_index_free(ci: &ci); |
| 2130 | return bset; |
| 2131 | } |
| 2132 | |
| 2133 | /* Remove constraints from "bmap" that are identical to constraints |
| 2134 | * in "context" or that are more relaxed (greater constant term). |
| 2135 | * |
| 2136 | * We perform the test for shifted copies on the pure constraints |
| 2137 | * in remove_shifted_constraints. |
| 2138 | */ |
| 2139 | static __isl_give isl_basic_map *isl_basic_map_remove_shifted_constraints( |
| 2140 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context) |
| 2141 | { |
| 2142 | isl_basic_set *bset, *bset_context; |
| 2143 | |
| 2144 | if (!bmap || !context) |
| 2145 | goto error; |
| 2146 | |
| 2147 | if (bmap->n_ineq == 0 || context->n_ineq == 0) { |
| 2148 | isl_basic_map_free(bmap: context); |
| 2149 | return bmap; |
| 2150 | } |
| 2151 | |
| 2152 | bmap = isl_basic_map_order_divs(bmap); |
| 2153 | context = isl_basic_map_align_divs(dst: context, src: bmap); |
| 2154 | bmap = isl_basic_map_align_divs(dst: bmap, src: context); |
| 2155 | |
| 2156 | bset = isl_basic_map_underlying_set(bmap: isl_basic_map_copy(bmap)); |
| 2157 | bset_context = isl_basic_map_underlying_set(bmap: context); |
| 2158 | bset = remove_shifted_constraints(bset, context: bset_context); |
| 2159 | isl_basic_set_free(bset: bset_context); |
| 2160 | |
| 2161 | bmap = isl_basic_map_overlying_set(bset, like: bmap); |
| 2162 | |
| 2163 | return bmap; |
| 2164 | error: |
| 2165 | isl_basic_map_free(bmap); |
| 2166 | isl_basic_map_free(bmap: context); |
| 2167 | return NULL; |
| 2168 | } |
| 2169 | |
| 2170 | /* Does the (linear part of a) constraint "c" involve any of the "len" |
| 2171 | * "relevant" dimensions? |
| 2172 | */ |
| 2173 | static int is_related(isl_int *c, int len, int *relevant) |
| 2174 | { |
| 2175 | int i; |
| 2176 | |
| 2177 | for (i = 0; i < len; ++i) { |
| 2178 | if (!relevant[i]) |
| 2179 | continue; |
| 2180 | if (!isl_int_is_zero(c[i])) |
| 2181 | return 1; |
| 2182 | } |
| 2183 | |
| 2184 | return 0; |
| 2185 | } |
| 2186 | |
| 2187 | /* Drop constraints from "bmap" that do not involve any of |
| 2188 | * the dimensions marked "relevant". |
| 2189 | */ |
| 2190 | static __isl_give isl_basic_map *drop_unrelated_constraints( |
| 2191 | __isl_take isl_basic_map *bmap, int *relevant) |
| 2192 | { |
| 2193 | int i; |
| 2194 | isl_size dim; |
| 2195 | |
| 2196 | dim = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 2197 | if (dim < 0) |
| 2198 | return isl_basic_map_free(bmap); |
| 2199 | for (i = 0; i < dim; ++i) |
| 2200 | if (!relevant[i]) |
| 2201 | break; |
| 2202 | if (i >= dim) |
| 2203 | return bmap; |
| 2204 | |
| 2205 | for (i = bmap->n_eq - 1; i >= 0; --i) |
| 2206 | if (!is_related(c: bmap->eq[i] + 1, len: dim, relevant)) { |
| 2207 | bmap = isl_basic_map_cow(bmap); |
| 2208 | if (isl_basic_map_drop_equality(bmap, pos: i) < 0) |
| 2209 | return isl_basic_map_free(bmap); |
| 2210 | } |
| 2211 | |
| 2212 | for (i = bmap->n_ineq - 1; i >= 0; --i) |
| 2213 | if (!is_related(c: bmap->ineq[i] + 1, len: dim, relevant)) { |
| 2214 | bmap = isl_basic_map_cow(bmap); |
| 2215 | if (isl_basic_map_drop_inequality(bmap, pos: i) < 0) |
| 2216 | return isl_basic_map_free(bmap); |
| 2217 | } |
| 2218 | |
| 2219 | return bmap; |
| 2220 | } |
| 2221 | |
| 2222 | /* Update the groups in "group" based on the (linear part of a) constraint "c". |
| 2223 | * |
| 2224 | * In particular, for any variable involved in the constraint, |
| 2225 | * find the actual group id from before and replace the group |
| 2226 | * of the corresponding variable by the minimal group of all |
| 2227 | * the variables involved in the constraint considered so far |
| 2228 | * (if this minimum is smaller) or replace the minimum by this group |
| 2229 | * (if the minimum is larger). |
| 2230 | * |
| 2231 | * At the end, all the variables in "c" will (indirectly) point |
| 2232 | * to the minimal of the groups that they referred to originally. |
| 2233 | */ |
| 2234 | static void update_groups(int dim, int *group, isl_int *c) |
| 2235 | { |
| 2236 | int j; |
| 2237 | int min = dim; |
| 2238 | |
| 2239 | for (j = 0; j < dim; ++j) { |
| 2240 | if (isl_int_is_zero(c[j])) |
| 2241 | continue; |
| 2242 | while (group[j] >= 0 && group[group[j]] != group[j]) |
| 2243 | group[j] = group[group[j]]; |
| 2244 | if (group[j] == min) |
| 2245 | continue; |
| 2246 | if (group[j] < min) { |
| 2247 | if (min >= 0 && min < dim) |
| 2248 | group[min] = group[j]; |
| 2249 | min = group[j]; |
| 2250 | } else |
| 2251 | group[group[j]] = min; |
| 2252 | } |
| 2253 | } |
| 2254 | |
| 2255 | /* Allocate an array of groups of variables, one for each variable |
| 2256 | * in "context", initialized to zero. |
| 2257 | */ |
| 2258 | static int *alloc_groups(__isl_keep isl_basic_set *context) |
| 2259 | { |
| 2260 | isl_ctx *ctx; |
| 2261 | isl_size dim; |
| 2262 | |
| 2263 | dim = isl_basic_set_dim(bset: context, type: isl_dim_set); |
| 2264 | if (dim < 0) |
| 2265 | return NULL; |
| 2266 | ctx = isl_basic_set_get_ctx(bset: context); |
| 2267 | return isl_calloc_array(ctx, int, dim); |
| 2268 | } |
| 2269 | |
| 2270 | /* Drop constraints from "bmap" that only involve variables that are |
| 2271 | * not related to any of the variables marked with a "-1" in "group". |
| 2272 | * |
| 2273 | * We construct groups of variables that collect variables that |
| 2274 | * (indirectly) appear in some common constraint of "bmap". |
| 2275 | * Each group is identified by the first variable in the group, |
| 2276 | * except for the special group of variables that was already identified |
| 2277 | * in the input as -1 (or are related to those variables). |
| 2278 | * If group[i] is equal to i (or -1), then the group of i is i (or -1), |
| 2279 | * otherwise the group of i is the group of group[i]. |
| 2280 | * |
| 2281 | * We first initialize groups for the remaining variables. |
| 2282 | * Then we iterate over the constraints of "bmap" and update the |
| 2283 | * group of the variables in the constraint by the smallest group. |
| 2284 | * Finally, we resolve indirect references to groups by running over |
| 2285 | * the variables. |
| 2286 | * |
| 2287 | * After computing the groups, we drop constraints that do not involve |
| 2288 | * any variables in the -1 group. |
| 2289 | */ |
| 2290 | __isl_give isl_basic_map *isl_basic_map_drop_unrelated_constraints( |
| 2291 | __isl_take isl_basic_map *bmap, __isl_take int *group) |
| 2292 | { |
| 2293 | isl_size dim; |
| 2294 | int i; |
| 2295 | int last; |
| 2296 | |
| 2297 | dim = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 2298 | if (dim < 0) |
| 2299 | return isl_basic_map_free(bmap); |
| 2300 | |
| 2301 | last = -1; |
| 2302 | for (i = 0; i < dim; ++i) |
| 2303 | if (group[i] >= 0) |
| 2304 | last = group[i] = i; |
| 2305 | if (last < 0) { |
| 2306 | free(ptr: group); |
| 2307 | return bmap; |
| 2308 | } |
| 2309 | |
| 2310 | for (i = 0; i < bmap->n_eq; ++i) |
| 2311 | update_groups(dim, group, c: bmap->eq[i] + 1); |
| 2312 | for (i = 0; i < bmap->n_ineq; ++i) |
| 2313 | update_groups(dim, group, c: bmap->ineq[i] + 1); |
| 2314 | |
| 2315 | for (i = 0; i < dim; ++i) |
| 2316 | if (group[i] >= 0) |
| 2317 | group[i] = group[group[i]]; |
| 2318 | |
| 2319 | for (i = 0; i < dim; ++i) |
| 2320 | group[i] = group[i] == -1; |
| 2321 | |
| 2322 | bmap = drop_unrelated_constraints(bmap, relevant: group); |
| 2323 | |
| 2324 | free(ptr: group); |
| 2325 | return bmap; |
| 2326 | } |
| 2327 | |
| 2328 | /* Drop constraints from "context" that are irrelevant for computing |
| 2329 | * the gist of "bset". |
| 2330 | * |
| 2331 | * In particular, drop constraints in variables that are not related |
| 2332 | * to any of the variables involved in the constraints of "bset" |
| 2333 | * in the sense that there is no sequence of constraints that connects them. |
| 2334 | * |
| 2335 | * We first mark all variables that appear in "bset" as belonging |
| 2336 | * to a "-1" group and then continue with group_and_drop_irrelevant_constraints. |
| 2337 | */ |
| 2338 | static __isl_give isl_basic_set *drop_irrelevant_constraints( |
| 2339 | __isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset) |
| 2340 | { |
| 2341 | int *group; |
| 2342 | isl_size dim; |
| 2343 | int i, j; |
| 2344 | |
| 2345 | dim = isl_basic_set_dim(bset, type: isl_dim_set); |
| 2346 | if (!context || dim < 0) |
| 2347 | return isl_basic_set_free(bset: context); |
| 2348 | |
| 2349 | group = alloc_groups(context); |
| 2350 | |
| 2351 | if (!group) |
| 2352 | return isl_basic_set_free(bset: context); |
| 2353 | |
| 2354 | for (i = 0; i < dim; ++i) { |
| 2355 | for (j = 0; j < bset->n_eq; ++j) |
| 2356 | if (!isl_int_is_zero(bset->eq[j][1 + i])) |
| 2357 | break; |
| 2358 | if (j < bset->n_eq) { |
| 2359 | group[i] = -1; |
| 2360 | continue; |
| 2361 | } |
| 2362 | for (j = 0; j < bset->n_ineq; ++j) |
| 2363 | if (!isl_int_is_zero(bset->ineq[j][1 + i])) |
| 2364 | break; |
| 2365 | if (j < bset->n_ineq) |
| 2366 | group[i] = -1; |
| 2367 | } |
| 2368 | |
| 2369 | return isl_basic_map_drop_unrelated_constraints(bmap: context, group); |
| 2370 | } |
| 2371 | |
| 2372 | /* Drop constraints from "context" that are irrelevant for computing |
| 2373 | * the gist of the inequalities "ineq". |
| 2374 | * Inequalities in "ineq" for which the corresponding element of row |
| 2375 | * is set to -1 have already been marked for removal and should be ignored. |
| 2376 | * |
| 2377 | * In particular, drop constraints in variables that are not related |
| 2378 | * to any of the variables involved in "ineq" |
| 2379 | * in the sense that there is no sequence of constraints that connects them. |
| 2380 | * |
| 2381 | * We first mark all variables that appear in "bset" as belonging |
| 2382 | * to a "-1" group and then continue with group_and_drop_irrelevant_constraints. |
| 2383 | */ |
| 2384 | static __isl_give isl_basic_set *drop_irrelevant_constraints_marked( |
| 2385 | __isl_take isl_basic_set *context, __isl_keep isl_mat *ineq, int *row) |
| 2386 | { |
| 2387 | int *group; |
| 2388 | isl_size dim; |
| 2389 | int i, j; |
| 2390 | isl_size n; |
| 2391 | |
| 2392 | dim = isl_basic_set_dim(bset: context, type: isl_dim_set); |
| 2393 | n = isl_mat_rows(mat: ineq); |
| 2394 | if (dim < 0 || n < 0) |
| 2395 | return isl_basic_set_free(bset: context); |
| 2396 | |
| 2397 | group = alloc_groups(context); |
| 2398 | |
| 2399 | if (!group) |
| 2400 | return isl_basic_set_free(bset: context); |
| 2401 | |
| 2402 | for (i = 0; i < dim; ++i) { |
| 2403 | for (j = 0; j < n; ++j) { |
| 2404 | if (row[j] < 0) |
| 2405 | continue; |
| 2406 | if (!isl_int_is_zero(ineq->row[j][1 + i])) |
| 2407 | break; |
| 2408 | } |
| 2409 | if (j < n) |
| 2410 | group[i] = -1; |
| 2411 | } |
| 2412 | |
| 2413 | return isl_basic_map_drop_unrelated_constraints(bmap: context, group); |
| 2414 | } |
| 2415 | |
| 2416 | /* Do all "n" entries of "row" contain a negative value? |
| 2417 | */ |
| 2418 | static int all_neg(int *row, int n) |
| 2419 | { |
| 2420 | int i; |
| 2421 | |
| 2422 | for (i = 0; i < n; ++i) |
| 2423 | if (row[i] >= 0) |
| 2424 | return 0; |
| 2425 | |
| 2426 | return 1; |
| 2427 | } |
| 2428 | |
| 2429 | /* Update the inequalities in "bset" based on the information in "row" |
| 2430 | * and "tab". |
| 2431 | * |
| 2432 | * In particular, the array "row" contains either -1, meaning that |
| 2433 | * the corresponding inequality of "bset" is redundant, or the index |
| 2434 | * of an inequality in "tab". |
| 2435 | * |
| 2436 | * If the row entry is -1, then drop the inequality. |
| 2437 | * Otherwise, if the constraint is marked redundant in the tableau, |
| 2438 | * then drop the inequality. Similarly, if it is marked as an equality |
| 2439 | * in the tableau, then turn the inequality into an equality and |
| 2440 | * perform Gaussian elimination. |
| 2441 | */ |
| 2442 | static __isl_give isl_basic_set *update_ineq(__isl_take isl_basic_set *bset, |
| 2443 | __isl_keep int *row, struct isl_tab *tab) |
| 2444 | { |
| 2445 | int i; |
| 2446 | unsigned n_ineq; |
| 2447 | unsigned n_eq; |
| 2448 | int found_equality = 0; |
| 2449 | |
| 2450 | if (!bset) |
| 2451 | return NULL; |
| 2452 | if (tab && tab->empty) |
| 2453 | return isl_basic_set_set_to_empty(bset); |
| 2454 | |
| 2455 | n_ineq = bset->n_ineq; |
| 2456 | for (i = n_ineq - 1; i >= 0; --i) { |
| 2457 | if (row[i] < 0) { |
| 2458 | if (isl_basic_set_drop_inequality(bset, pos: i) < 0) |
| 2459 | return isl_basic_set_free(bset); |
| 2460 | continue; |
| 2461 | } |
| 2462 | if (!tab) |
| 2463 | continue; |
| 2464 | n_eq = tab->n_eq; |
| 2465 | if (isl_tab_is_equality(tab, con: n_eq + row[i])) { |
| 2466 | isl_basic_map_inequality_to_equality(bmap: bset, pos: i); |
| 2467 | found_equality = 1; |
| 2468 | } else if (isl_tab_is_redundant(tab, con: n_eq + row[i])) { |
| 2469 | if (isl_basic_set_drop_inequality(bset, pos: i) < 0) |
| 2470 | return isl_basic_set_free(bset); |
| 2471 | } |
| 2472 | } |
| 2473 | |
| 2474 | if (found_equality) |
| 2475 | bset = isl_basic_set_gauss(bset, NULL); |
| 2476 | bset = isl_basic_set_finalize(bset); |
| 2477 | return bset; |
| 2478 | } |
| 2479 | |
| 2480 | /* Update the inequalities in "bset" based on the information in "row" |
| 2481 | * and "tab" and free all arguments (other than "bset"). |
| 2482 | */ |
| 2483 | static __isl_give isl_basic_set *update_ineq_free( |
| 2484 | __isl_take isl_basic_set *bset, __isl_take isl_mat *ineq, |
| 2485 | __isl_take isl_basic_set *context, __isl_take int *row, |
| 2486 | struct isl_tab *tab) |
| 2487 | { |
| 2488 | isl_mat_free(mat: ineq); |
| 2489 | isl_basic_set_free(bset: context); |
| 2490 | |
| 2491 | bset = update_ineq(bset, row, tab); |
| 2492 | |
| 2493 | free(ptr: row); |
| 2494 | isl_tab_free(tab); |
| 2495 | return bset; |
| 2496 | } |
| 2497 | |
| 2498 | /* Remove all information from bset that is redundant in the context |
| 2499 | * of context. |
| 2500 | * "ineq" contains the (possibly transformed) inequalities of "bset", |
| 2501 | * in the same order. |
| 2502 | * The (explicit) equalities of "bset" are assumed to have been taken |
| 2503 | * into account by the transformation such that only the inequalities |
| 2504 | * are relevant. |
| 2505 | * "context" is assumed not to be empty. |
| 2506 | * |
| 2507 | * "row" keeps track of the constraint index of a "bset" inequality in "tab". |
| 2508 | * A value of -1 means that the inequality is obviously redundant and may |
| 2509 | * not even appear in "tab". |
| 2510 | * |
| 2511 | * We first mark the inequalities of "bset" |
| 2512 | * that are obviously redundant with respect to some inequality in "context". |
| 2513 | * Then we remove those constraints from "context" that have become |
| 2514 | * irrelevant for computing the gist of "bset". |
| 2515 | * Note that this removal of constraints cannot be replaced by |
| 2516 | * a factorization because factors in "bset" may still be connected |
| 2517 | * to each other through constraints in "context". |
| 2518 | * |
| 2519 | * If there are any inequalities left, we construct a tableau for |
| 2520 | * the context and then add the inequalities of "bset". |
| 2521 | * Before adding these inequalities, we freeze all constraints such that |
| 2522 | * they won't be considered redundant in terms of the constraints of "bset". |
| 2523 | * Then we detect all redundant constraints (among the |
| 2524 | * constraints that weren't frozen), first by checking for redundancy in the |
| 2525 | * the tableau and then by checking if replacing a constraint by its negation |
| 2526 | * would lead to an empty set. This last step is fairly expensive |
| 2527 | * and could be optimized by more reuse of the tableau. |
| 2528 | * Finally, we update bset according to the results. |
| 2529 | */ |
| 2530 | static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset, |
| 2531 | __isl_take isl_mat *ineq, __isl_take isl_basic_set *context) |
| 2532 | { |
| 2533 | int i, r; |
| 2534 | int *row = NULL; |
| 2535 | isl_ctx *ctx; |
| 2536 | isl_basic_set *combined = NULL; |
| 2537 | struct isl_tab *tab = NULL; |
| 2538 | unsigned n_eq, context_ineq; |
| 2539 | |
| 2540 | if (!bset || !ineq || !context) |
| 2541 | goto error; |
| 2542 | |
| 2543 | if (bset->n_ineq == 0 || isl_basic_set_plain_is_universe(bset: context)) { |
| 2544 | isl_basic_set_free(bset: context); |
| 2545 | isl_mat_free(mat: ineq); |
| 2546 | return bset; |
| 2547 | } |
| 2548 | |
| 2549 | ctx = isl_basic_set_get_ctx(bset: context); |
| 2550 | row = isl_calloc_array(ctx, int, bset->n_ineq); |
| 2551 | if (!row) |
| 2552 | goto error; |
| 2553 | |
| 2554 | if (mark_shifted_constraints(ineq, context, row) < 0) |
| 2555 | goto error; |
| 2556 | if (all_neg(row, n: bset->n_ineq)) |
| 2557 | return update_ineq_free(bset, ineq, context, row, NULL); |
| 2558 | |
| 2559 | context = drop_irrelevant_constraints_marked(context, ineq, row); |
| 2560 | if (!context) |
| 2561 | goto error; |
| 2562 | if (isl_basic_set_plain_is_universe(bset: context)) |
| 2563 | return update_ineq_free(bset, ineq, context, row, NULL); |
| 2564 | |
| 2565 | n_eq = context->n_eq; |
| 2566 | context_ineq = context->n_ineq; |
| 2567 | combined = isl_basic_set_cow(bset: isl_basic_set_copy(bset: context)); |
| 2568 | combined = isl_basic_set_extend_constraints(base: combined, n_eq: 0, n_ineq: bset->n_ineq); |
| 2569 | tab = isl_tab_from_basic_set(bset: combined, track: 0); |
| 2570 | for (i = 0; i < context_ineq; ++i) |
| 2571 | if (isl_tab_freeze_constraint(tab, con: n_eq + i) < 0) |
| 2572 | goto error; |
| 2573 | if (isl_tab_extend_cons(tab, n_new: bset->n_ineq) < 0) |
| 2574 | goto error; |
| 2575 | r = context_ineq; |
| 2576 | for (i = 0; i < bset->n_ineq; ++i) { |
| 2577 | if (row[i] < 0) |
| 2578 | continue; |
| 2579 | combined = isl_basic_set_add_ineq(bset: combined, ineq: ineq->row[i]); |
| 2580 | if (isl_tab_add_ineq(tab, ineq: ineq->row[i]) < 0) |
| 2581 | goto error; |
| 2582 | row[i] = r++; |
| 2583 | } |
| 2584 | if (isl_tab_detect_implicit_equalities(tab) < 0) |
| 2585 | goto error; |
| 2586 | if (isl_tab_detect_redundant(tab) < 0) |
| 2587 | goto error; |
| 2588 | for (i = bset->n_ineq - 1; i >= 0; --i) { |
| 2589 | isl_basic_set *test; |
| 2590 | int is_empty; |
| 2591 | |
| 2592 | if (row[i] < 0) |
| 2593 | continue; |
| 2594 | r = row[i]; |
| 2595 | if (tab->con[n_eq + r].is_redundant) |
| 2596 | continue; |
| 2597 | test = isl_basic_set_dup(bset: combined); |
| 2598 | test = isl_inequality_negate(bmap: test, pos: r); |
| 2599 | test = isl_basic_set_update_from_tab(bset: test, tab); |
| 2600 | is_empty = isl_basic_set_is_empty(bset: test); |
| 2601 | isl_basic_set_free(bset: test); |
| 2602 | if (is_empty < 0) |
| 2603 | goto error; |
| 2604 | if (is_empty) |
| 2605 | tab->con[n_eq + r].is_redundant = 1; |
| 2606 | } |
| 2607 | bset = update_ineq_free(bset, ineq, context, row, tab); |
| 2608 | if (bset) { |
| 2609 | ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT); |
| 2610 | ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT); |
| 2611 | } |
| 2612 | |
| 2613 | isl_basic_set_free(bset: combined); |
| 2614 | return bset; |
| 2615 | error: |
| 2616 | free(ptr: row); |
| 2617 | isl_mat_free(mat: ineq); |
| 2618 | isl_tab_free(tab); |
| 2619 | isl_basic_set_free(bset: combined); |
| 2620 | isl_basic_set_free(bset: context); |
| 2621 | isl_basic_set_free(bset); |
| 2622 | return NULL; |
| 2623 | } |
| 2624 | |
| 2625 | /* Extract the inequalities of "bset" as an isl_mat. |
| 2626 | */ |
| 2627 | static __isl_give isl_mat *(__isl_keep isl_basic_set *bset) |
| 2628 | { |
| 2629 | isl_size total; |
| 2630 | isl_ctx *ctx; |
| 2631 | isl_mat *ineq; |
| 2632 | |
| 2633 | total = isl_basic_set_dim(bset, type: isl_dim_all); |
| 2634 | if (total < 0) |
| 2635 | return NULL; |
| 2636 | |
| 2637 | ctx = isl_basic_set_get_ctx(bset); |
| 2638 | ineq = isl_mat_sub_alloc6(ctx, row: bset->ineq, first_row: 0, n_row: bset->n_ineq, |
| 2639 | first_col: 0, n_col: 1 + total); |
| 2640 | |
| 2641 | return ineq; |
| 2642 | } |
| 2643 | |
| 2644 | /* Remove all information from "bset" that is redundant in the context |
| 2645 | * of "context", for the case where both "bset" and "context" are |
| 2646 | * full-dimensional. |
| 2647 | */ |
| 2648 | static __isl_give isl_basic_set *uset_gist_uncompressed( |
| 2649 | __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context) |
| 2650 | { |
| 2651 | isl_mat *ineq; |
| 2652 | |
| 2653 | ineq = extract_ineq(bset); |
| 2654 | return uset_gist_full(bset, ineq, context); |
| 2655 | } |
| 2656 | |
| 2657 | /* Replace "bset" by an empty basic set in the same space. |
| 2658 | */ |
| 2659 | static __isl_give isl_basic_set *replace_by_empty( |
| 2660 | __isl_take isl_basic_set *bset) |
| 2661 | { |
| 2662 | isl_space *space; |
| 2663 | |
| 2664 | space = isl_basic_set_get_space(bset); |
| 2665 | isl_basic_set_free(bset); |
| 2666 | return isl_basic_set_empty(space); |
| 2667 | } |
| 2668 | |
| 2669 | /* Remove all information from "bset" that is redundant in the context |
| 2670 | * of "context", for the case where the combined equalities of |
| 2671 | * "bset" and "context" allow for a compression that can be obtained |
| 2672 | * by preapplication of "T". |
| 2673 | * If the compression of "context" is empty, meaning that "bset" and |
| 2674 | * "context" do not intersect, then return the empty set. |
| 2675 | * |
| 2676 | * "bset" itself is not transformed by "T". Instead, the inequalities |
| 2677 | * are extracted from "bset" and those are transformed by "T". |
| 2678 | * uset_gist_full then determines which of the transformed inequalities |
| 2679 | * are redundant with respect to the transformed "context" and removes |
| 2680 | * the corresponding inequalities from "bset". |
| 2681 | * |
| 2682 | * After preapplying "T" to the inequalities, any common factor is |
| 2683 | * removed from the coefficients. If this results in a tightening |
| 2684 | * of the constant term, then the same tightening is applied to |
| 2685 | * the corresponding untransformed inequality in "bset". |
| 2686 | * That is, if after plugging in T, a constraint f(x) >= 0 is of the form |
| 2687 | * |
| 2688 | * g f'(x) + r >= 0 |
| 2689 | * |
| 2690 | * with 0 <= r < g, then it is equivalent to |
| 2691 | * |
| 2692 | * f'(x) >= 0 |
| 2693 | * |
| 2694 | * This means that f(x) >= 0 is equivalent to f(x) - r >= 0 in the affine |
| 2695 | * subspace compressed by T since the latter would be transformed to |
| 2696 | * |
| 2697 | * g f'(x) >= 0 |
| 2698 | */ |
| 2699 | static __isl_give isl_basic_set *uset_gist_compressed( |
| 2700 | __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context, |
| 2701 | __isl_take isl_mat *T) |
| 2702 | { |
| 2703 | isl_ctx *ctx; |
| 2704 | isl_mat *ineq; |
| 2705 | int i; |
| 2706 | isl_size n_row, n_col; |
| 2707 | isl_int rem; |
| 2708 | |
| 2709 | ineq = extract_ineq(bset); |
| 2710 | ineq = isl_mat_product(left: ineq, right: isl_mat_copy(mat: T)); |
| 2711 | context = isl_basic_set_preimage(bset: context, mat: T); |
| 2712 | |
| 2713 | if (!ineq || !context) |
| 2714 | goto error; |
| 2715 | if (isl_basic_set_plain_is_empty(bset: context)) { |
| 2716 | isl_mat_free(mat: ineq); |
| 2717 | isl_basic_set_free(bset: context); |
| 2718 | return replace_by_empty(bset); |
| 2719 | } |
| 2720 | |
| 2721 | ctx = isl_mat_get_ctx(mat: ineq); |
| 2722 | n_row = isl_mat_rows(mat: ineq); |
| 2723 | n_col = isl_mat_cols(mat: ineq); |
| 2724 | if (n_row < 0 || n_col < 0) |
| 2725 | goto error; |
| 2726 | isl_int_init(rem); |
| 2727 | for (i = 0; i < n_row; ++i) { |
| 2728 | isl_seq_gcd(p: ineq->row[i] + 1, len: n_col - 1, gcd: &ctx->normalize_gcd); |
| 2729 | if (isl_int_is_zero(ctx->normalize_gcd)) |
| 2730 | continue; |
| 2731 | if (isl_int_is_one(ctx->normalize_gcd)) |
| 2732 | continue; |
| 2733 | isl_seq_scale_down(dst: ineq->row[i] + 1, src: ineq->row[i] + 1, |
| 2734 | f: ctx->normalize_gcd, len: n_col - 1); |
| 2735 | isl_int_fdiv_r(rem, ineq->row[i][0], ctx->normalize_gcd); |
| 2736 | isl_int_fdiv_q(ineq->row[i][0], |
| 2737 | ineq->row[i][0], ctx->normalize_gcd); |
| 2738 | if (isl_int_is_zero(rem)) |
| 2739 | continue; |
| 2740 | bset = isl_basic_set_cow(bset); |
| 2741 | if (!bset) |
| 2742 | break; |
| 2743 | isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], rem); |
| 2744 | } |
| 2745 | isl_int_clear(rem); |
| 2746 | |
| 2747 | return uset_gist_full(bset, ineq, context); |
| 2748 | error: |
| 2749 | isl_mat_free(mat: ineq); |
| 2750 | isl_basic_set_free(bset: context); |
| 2751 | isl_basic_set_free(bset); |
| 2752 | return NULL; |
| 2753 | } |
| 2754 | |
| 2755 | /* Project "bset" onto the variables that are involved in "template". |
| 2756 | */ |
| 2757 | static __isl_give isl_basic_set *project_onto_involved( |
| 2758 | __isl_take isl_basic_set *bset, __isl_keep isl_basic_set *template) |
| 2759 | { |
| 2760 | int i; |
| 2761 | isl_size n; |
| 2762 | |
| 2763 | n = isl_basic_set_dim(bset: template, type: isl_dim_set); |
| 2764 | if (n < 0 || !template) |
| 2765 | return isl_basic_set_free(bset); |
| 2766 | |
| 2767 | for (i = 0; i < n; ++i) { |
| 2768 | isl_bool involved; |
| 2769 | |
| 2770 | involved = isl_basic_set_involves_dims(bset: template, |
| 2771 | type: isl_dim_set, first: i, n: 1); |
| 2772 | if (involved < 0) |
| 2773 | return isl_basic_set_free(bset); |
| 2774 | if (involved) |
| 2775 | continue; |
| 2776 | bset = isl_basic_set_eliminate_vars(bset, pos: i, n: 1); |
| 2777 | } |
| 2778 | |
| 2779 | return bset; |
| 2780 | } |
| 2781 | |
| 2782 | /* Remove all information from bset that is redundant in the context |
| 2783 | * of context. In particular, equalities that are linear combinations |
| 2784 | * of those in context are removed. Then the inequalities that are |
| 2785 | * redundant in the context of the equalities and inequalities of |
| 2786 | * context are removed. |
| 2787 | * |
| 2788 | * First of all, we drop those constraints from "context" |
| 2789 | * that are irrelevant for computing the gist of "bset". |
| 2790 | * Alternatively, we could factorize the intersection of "context" and "bset". |
| 2791 | * |
| 2792 | * We first compute the intersection of the integer affine hulls |
| 2793 | * of "bset" and "context", |
| 2794 | * compute the gist inside this intersection and then reduce |
| 2795 | * the constraints with respect to the equalities of the context |
| 2796 | * that only involve variables already involved in the input. |
| 2797 | * If the intersection of the affine hulls turns out to be empty, |
| 2798 | * then return the empty set. |
| 2799 | * |
| 2800 | * If two constraints are mutually redundant, then uset_gist_full |
| 2801 | * will remove the second of those constraints. We therefore first |
| 2802 | * sort the constraints so that constraints not involving existentially |
| 2803 | * quantified variables are given precedence over those that do. |
| 2804 | * We have to perform this sorting before the variable compression, |
| 2805 | * because that may effect the order of the variables. |
| 2806 | */ |
| 2807 | static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset, |
| 2808 | __isl_take isl_basic_set *context) |
| 2809 | { |
| 2810 | isl_mat *eq; |
| 2811 | isl_mat *T; |
| 2812 | isl_basic_set *aff; |
| 2813 | isl_basic_set *aff_context; |
| 2814 | isl_size total; |
| 2815 | |
| 2816 | total = isl_basic_set_dim(bset, type: isl_dim_all); |
| 2817 | if (total < 0 || !context) |
| 2818 | goto error; |
| 2819 | |
| 2820 | context = drop_irrelevant_constraints(context, bset); |
| 2821 | |
| 2822 | bset = isl_basic_set_detect_equalities(bset); |
| 2823 | aff = isl_basic_set_copy(bset); |
| 2824 | aff = isl_basic_set_plain_affine_hull(bset: aff); |
| 2825 | context = isl_basic_set_detect_equalities(bset: context); |
| 2826 | aff_context = isl_basic_set_copy(bset: context); |
| 2827 | aff_context = isl_basic_set_plain_affine_hull(bset: aff_context); |
| 2828 | aff = isl_basic_set_intersect(bset1: aff, bset2: aff_context); |
| 2829 | if (!aff) |
| 2830 | goto error; |
| 2831 | if (isl_basic_set_plain_is_empty(bset: aff)) { |
| 2832 | isl_basic_set_free(bset); |
| 2833 | isl_basic_set_free(bset: context); |
| 2834 | return aff; |
| 2835 | } |
| 2836 | bset = isl_basic_set_sort_constraints(bset); |
| 2837 | if (aff->n_eq == 0) { |
| 2838 | isl_basic_set_free(bset: aff); |
| 2839 | return uset_gist_uncompressed(bset, context); |
| 2840 | } |
| 2841 | eq = isl_mat_sub_alloc6(ctx: bset->ctx, row: aff->eq, first_row: 0, n_row: aff->n_eq, first_col: 0, n_col: 1 + total); |
| 2842 | eq = isl_mat_cow(mat: eq); |
| 2843 | T = isl_mat_variable_compression(B: eq, NULL); |
| 2844 | isl_basic_set_free(bset: aff); |
| 2845 | if (T && T->n_col == 0) { |
| 2846 | isl_mat_free(mat: T); |
| 2847 | isl_basic_set_free(bset: context); |
| 2848 | return replace_by_empty(bset); |
| 2849 | } |
| 2850 | |
| 2851 | aff_context = isl_basic_set_affine_hull(bset: isl_basic_set_copy(bset: context)); |
| 2852 | aff_context = project_onto_involved(bset: aff_context, template: bset); |
| 2853 | |
| 2854 | bset = uset_gist_compressed(bset, context, T); |
| 2855 | bset = isl_basic_set_reduce_using_equalities(bset, context: aff_context); |
| 2856 | |
| 2857 | if (bset) { |
| 2858 | ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT); |
| 2859 | ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT); |
| 2860 | } |
| 2861 | |
| 2862 | return bset; |
| 2863 | error: |
| 2864 | isl_basic_set_free(bset); |
| 2865 | isl_basic_set_free(bset: context); |
| 2866 | return NULL; |
| 2867 | } |
| 2868 | |
| 2869 | /* Return the number of equality constraints in "bmap" that involve |
| 2870 | * local variables. This function assumes that Gaussian elimination |
| 2871 | * has been applied to the equality constraints. |
| 2872 | */ |
| 2873 | static int n_div_eq(__isl_keep isl_basic_map *bmap) |
| 2874 | { |
| 2875 | int i; |
| 2876 | isl_size total, n_div; |
| 2877 | |
| 2878 | if (!bmap) |
| 2879 | return -1; |
| 2880 | |
| 2881 | if (bmap->n_eq == 0) |
| 2882 | return 0; |
| 2883 | |
| 2884 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 2885 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
| 2886 | if (total < 0 || n_div < 0) |
| 2887 | return -1; |
| 2888 | total -= n_div; |
| 2889 | |
| 2890 | for (i = 0; i < bmap->n_eq; ++i) |
| 2891 | if (isl_seq_first_non_zero(p: bmap->eq[i] + 1 + total, |
| 2892 | len: n_div) == -1) |
| 2893 | return i; |
| 2894 | |
| 2895 | return bmap->n_eq; |
| 2896 | } |
| 2897 | |
| 2898 | /* Construct a basic map in "space" defined by the equality constraints in "eq". |
| 2899 | * The constraints are assumed not to involve any local variables. |
| 2900 | */ |
| 2901 | static __isl_give isl_basic_map *basic_map_from_equalities( |
| 2902 | __isl_take isl_space *space, __isl_take isl_mat *eq) |
| 2903 | { |
| 2904 | int i, k; |
| 2905 | isl_size total; |
| 2906 | isl_basic_map *bmap = NULL; |
| 2907 | |
| 2908 | total = isl_space_dim(space, type: isl_dim_all); |
| 2909 | if (total < 0 || !eq) |
| 2910 | goto error; |
| 2911 | |
| 2912 | if (1 + total != eq->n_col) |
| 2913 | isl_die(isl_space_get_ctx(space), isl_error_internal, |
| 2914 | "unexpected number of columns" , goto error); |
| 2915 | |
| 2916 | bmap = isl_basic_map_alloc_space(space: isl_space_copy(space), |
| 2917 | extra: 0, n_eq: eq->n_row, n_ineq: 0); |
| 2918 | for (i = 0; i < eq->n_row; ++i) { |
| 2919 | k = isl_basic_map_alloc_equality(bmap); |
| 2920 | if (k < 0) |
| 2921 | goto error; |
| 2922 | isl_seq_cpy(dst: bmap->eq[k], src: eq->row[i], len: eq->n_col); |
| 2923 | } |
| 2924 | |
| 2925 | isl_space_free(space); |
| 2926 | isl_mat_free(mat: eq); |
| 2927 | return bmap; |
| 2928 | error: |
| 2929 | isl_space_free(space); |
| 2930 | isl_mat_free(mat: eq); |
| 2931 | isl_basic_map_free(bmap); |
| 2932 | return NULL; |
| 2933 | } |
| 2934 | |
| 2935 | /* Construct and return a variable compression based on the equality |
| 2936 | * constraints in "bmap1" and "bmap2" that do not involve the local variables. |
| 2937 | * "n1" is the number of (initial) equality constraints in "bmap1" |
| 2938 | * that do involve local variables. |
| 2939 | * "n2" is the number of (initial) equality constraints in "bmap2" |
| 2940 | * that do involve local variables. |
| 2941 | * "total" is the total number of other variables. |
| 2942 | * This function assumes that Gaussian elimination |
| 2943 | * has been applied to the equality constraints in both "bmap1" and "bmap2" |
| 2944 | * such that the equality constraints not involving local variables |
| 2945 | * are those that start at "n1" or "n2". |
| 2946 | * |
| 2947 | * If either of "bmap1" and "bmap2" does not have such equality constraints, |
| 2948 | * then simply compute the compression based on the equality constraints |
| 2949 | * in the other basic map. |
| 2950 | * Otherwise, combine the equality constraints from both into a new |
| 2951 | * basic map such that Gaussian elimination can be applied to this combination |
| 2952 | * and then construct a variable compression from the resulting |
| 2953 | * equality constraints. |
| 2954 | */ |
| 2955 | static __isl_give isl_mat *combined_variable_compression( |
| 2956 | __isl_keep isl_basic_map *bmap1, int n1, |
| 2957 | __isl_keep isl_basic_map *bmap2, int n2, int total) |
| 2958 | { |
| 2959 | isl_ctx *ctx; |
| 2960 | isl_mat *E1, *E2, *V; |
| 2961 | isl_basic_map *bmap; |
| 2962 | |
| 2963 | ctx = isl_basic_map_get_ctx(bmap: bmap1); |
| 2964 | if (bmap1->n_eq == n1) { |
| 2965 | E2 = isl_mat_sub_alloc6(ctx, row: bmap2->eq, |
| 2966 | first_row: n2, n_row: bmap2->n_eq - n2, first_col: 0, n_col: 1 + total); |
| 2967 | return isl_mat_variable_compression(B: E2, NULL); |
| 2968 | } |
| 2969 | if (bmap2->n_eq == n2) { |
| 2970 | E1 = isl_mat_sub_alloc6(ctx, row: bmap1->eq, |
| 2971 | first_row: n1, n_row: bmap1->n_eq - n1, first_col: 0, n_col: 1 + total); |
| 2972 | return isl_mat_variable_compression(B: E1, NULL); |
| 2973 | } |
| 2974 | E1 = isl_mat_sub_alloc6(ctx, row: bmap1->eq, |
| 2975 | first_row: n1, n_row: bmap1->n_eq - n1, first_col: 0, n_col: 1 + total); |
| 2976 | E2 = isl_mat_sub_alloc6(ctx, row: bmap2->eq, |
| 2977 | first_row: n2, n_row: bmap2->n_eq - n2, first_col: 0, n_col: 1 + total); |
| 2978 | E1 = isl_mat_concat(top: E1, bot: E2); |
| 2979 | bmap = basic_map_from_equalities(space: isl_basic_map_get_space(bmap: bmap1), eq: E1); |
| 2980 | bmap = isl_basic_map_gauss(bmap, NULL); |
| 2981 | if (!bmap) |
| 2982 | return NULL; |
| 2983 | E1 = isl_mat_sub_alloc6(ctx, row: bmap->eq, first_row: 0, n_row: bmap->n_eq, first_col: 0, n_col: 1 + total); |
| 2984 | V = isl_mat_variable_compression(B: E1, NULL); |
| 2985 | isl_basic_map_free(bmap); |
| 2986 | |
| 2987 | return V; |
| 2988 | } |
| 2989 | |
| 2990 | /* Extract the stride constraints from "bmap", compressed |
| 2991 | * with respect to both the stride constraints in "context" and |
| 2992 | * the remaining equality constraints in both "bmap" and "context". |
| 2993 | * "bmap_n_eq" is the number of (initial) stride constraints in "bmap". |
| 2994 | * "context_n_eq" is the number of (initial) stride constraints in "context". |
| 2995 | * |
| 2996 | * Let x be all variables in "bmap" (and "context") other than the local |
| 2997 | * variables. First compute a variable compression |
| 2998 | * |
| 2999 | * x = V x' |
| 3000 | * |
| 3001 | * based on the non-stride equality constraints in "bmap" and "context". |
| 3002 | * Consider the stride constraints of "context", |
| 3003 | * |
| 3004 | * A(x) + B(y) = 0 |
| 3005 | * |
| 3006 | * with y the local variables and plug in the variable compression, |
| 3007 | * resulting in |
| 3008 | * |
| 3009 | * A(V x') + B(y) = 0 |
| 3010 | * |
| 3011 | * Use these constraints to compute a parameter compression on x' |
| 3012 | * |
| 3013 | * x' = T x'' |
| 3014 | * |
| 3015 | * Now consider the stride constraints of "bmap" |
| 3016 | * |
| 3017 | * C(x) + D(y) = 0 |
| 3018 | * |
| 3019 | * and plug in x = V*T x''. |
| 3020 | * That is, return A = [C*V*T D]. |
| 3021 | */ |
| 3022 | static __isl_give isl_mat *( |
| 3023 | __isl_keep isl_basic_map *bmap, int bmap_n_eq, |
| 3024 | __isl_keep isl_basic_map *context, int context_n_eq) |
| 3025 | { |
| 3026 | isl_size total, n_div; |
| 3027 | isl_ctx *ctx; |
| 3028 | isl_mat *A, *B, *T, *V; |
| 3029 | |
| 3030 | total = isl_basic_map_dim(bmap: context, type: isl_dim_all); |
| 3031 | n_div = isl_basic_map_dim(bmap: context, type: isl_dim_div); |
| 3032 | if (total < 0 || n_div < 0) |
| 3033 | return NULL; |
| 3034 | total -= n_div; |
| 3035 | |
| 3036 | ctx = isl_basic_map_get_ctx(bmap); |
| 3037 | |
| 3038 | V = combined_variable_compression(bmap1: bmap, n1: bmap_n_eq, |
| 3039 | bmap2: context, n2: context_n_eq, total); |
| 3040 | |
| 3041 | A = isl_mat_sub_alloc6(ctx, row: context->eq, first_row: 0, n_row: context_n_eq, first_col: 0, n_col: 1 + total); |
| 3042 | B = isl_mat_sub_alloc6(ctx, row: context->eq, |
| 3043 | first_row: 0, n_row: context_n_eq, first_col: 1 + total, n_col: n_div); |
| 3044 | A = isl_mat_product(left: A, right: isl_mat_copy(mat: V)); |
| 3045 | T = isl_mat_parameter_compression_ext(B: A, A: B); |
| 3046 | T = isl_mat_product(left: V, right: T); |
| 3047 | |
| 3048 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
| 3049 | if (n_div < 0) |
| 3050 | T = isl_mat_free(mat: T); |
| 3051 | else |
| 3052 | T = isl_mat_diagonal(mat1: T, mat2: isl_mat_identity(ctx, n_row: n_div)); |
| 3053 | |
| 3054 | A = isl_mat_sub_alloc6(ctx, row: bmap->eq, |
| 3055 | first_row: 0, n_row: bmap_n_eq, first_col: 0, n_col: 1 + total + n_div); |
| 3056 | A = isl_mat_product(left: A, right: T); |
| 3057 | |
| 3058 | return A; |
| 3059 | } |
| 3060 | |
| 3061 | /* Remove the prime factors from *g that have an exponent that |
| 3062 | * is strictly smaller than the exponent in "c". |
| 3063 | * All exponents in *g are known to be smaller than or equal |
| 3064 | * to those in "c". |
| 3065 | * |
| 3066 | * That is, if *g is equal to |
| 3067 | * |
| 3068 | * p_1^{e_1} p_2^{e_2} ... p_n^{e_n} |
| 3069 | * |
| 3070 | * and "c" is equal to |
| 3071 | * |
| 3072 | * p_1^{f_1} p_2^{f_2} ... p_n^{f_n} |
| 3073 | * |
| 3074 | * then update *g to |
| 3075 | * |
| 3076 | * p_1^{e_1 * (e_1 = f_1)} p_2^{e_2 * (e_2 = f_2)} ... |
| 3077 | * p_n^{e_n * (e_n = f_n)} |
| 3078 | * |
| 3079 | * If e_i = f_i, then c / *g does not have any p_i factors and therefore |
| 3080 | * neither does the gcd of *g and c / *g. |
| 3081 | * If e_i < f_i, then the gcd of *g and c / *g has a positive |
| 3082 | * power min(e_i, s_i) of p_i with s_i = f_i - e_i among its factors. |
| 3083 | * Dividing *g by this gcd therefore strictly reduces the exponent |
| 3084 | * of the prime factors that need to be removed, while leaving the |
| 3085 | * other prime factors untouched. |
| 3086 | * Repeating this process until gcd(*g, c / *g) = 1 therefore |
| 3087 | * removes all undesired factors, without removing any others. |
| 3088 | */ |
| 3089 | static void remove_incomplete_powers(isl_int *g, isl_int c) |
| 3090 | { |
| 3091 | isl_int t; |
| 3092 | |
| 3093 | isl_int_init(t); |
| 3094 | for (;;) { |
| 3095 | isl_int_divexact(t, c, *g); |
| 3096 | isl_int_gcd(t, t, *g); |
| 3097 | if (isl_int_is_one(t)) |
| 3098 | break; |
| 3099 | isl_int_divexact(*g, *g, t); |
| 3100 | } |
| 3101 | isl_int_clear(t); |
| 3102 | } |
| 3103 | |
| 3104 | /* Reduce the "n" stride constraints in "bmap" based on a copy "A" |
| 3105 | * of the same stride constraints in a compressed space that exploits |
| 3106 | * all equalities in the context and the other equalities in "bmap". |
| 3107 | * |
| 3108 | * If the stride constraints of "bmap" are of the form |
| 3109 | * |
| 3110 | * C(x) + D(y) = 0 |
| 3111 | * |
| 3112 | * then A is of the form |
| 3113 | * |
| 3114 | * B(x') + D(y) = 0 |
| 3115 | * |
| 3116 | * If any of these constraints involves only a single local variable y, |
| 3117 | * then the constraint appears as |
| 3118 | * |
| 3119 | * f(x) + m y_i = 0 |
| 3120 | * |
| 3121 | * in "bmap" and as |
| 3122 | * |
| 3123 | * h(x') + m y_i = 0 |
| 3124 | * |
| 3125 | * in "A". |
| 3126 | * |
| 3127 | * Let g be the gcd of m and the coefficients of h. |
| 3128 | * Then, in particular, g is a divisor of the coefficients of h and |
| 3129 | * |
| 3130 | * f(x) = h(x') |
| 3131 | * |
| 3132 | * is known to be a multiple of g. |
| 3133 | * If some prime factor in m appears with the same exponent in g, |
| 3134 | * then it can be removed from m because f(x) is already known |
| 3135 | * to be a multiple of g and therefore in particular of this power |
| 3136 | * of the prime factors. |
| 3137 | * Prime factors that appear with a smaller exponent in g cannot |
| 3138 | * be removed from m. |
| 3139 | * Let g' be the divisor of g containing all prime factors that |
| 3140 | * appear with the same exponent in m and g, then |
| 3141 | * |
| 3142 | * f(x) + m y_i = 0 |
| 3143 | * |
| 3144 | * can be replaced by |
| 3145 | * |
| 3146 | * f(x) + m/g' y_i' = 0 |
| 3147 | * |
| 3148 | * Note that (if g' != 1) this changes the explicit representation |
| 3149 | * of y_i to that of y_i', so the integer division at position i |
| 3150 | * is marked unknown and later recomputed by a call to |
| 3151 | * isl_basic_map_gauss. |
| 3152 | */ |
| 3153 | static __isl_give isl_basic_map *reduce_stride_constraints( |
| 3154 | __isl_take isl_basic_map *bmap, int n, __isl_keep isl_mat *A) |
| 3155 | { |
| 3156 | int i; |
| 3157 | isl_size total, n_div; |
| 3158 | int any = 0; |
| 3159 | isl_int gcd; |
| 3160 | |
| 3161 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 3162 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
| 3163 | if (total < 0 || n_div < 0 || !A) |
| 3164 | return isl_basic_map_free(bmap); |
| 3165 | total -= n_div; |
| 3166 | |
| 3167 | isl_int_init(gcd); |
| 3168 | for (i = 0; i < n; ++i) { |
| 3169 | int div; |
| 3170 | |
| 3171 | div = isl_seq_first_non_zero(p: bmap->eq[i] + 1 + total, len: n_div); |
| 3172 | if (div < 0) |
| 3173 | isl_die(isl_basic_map_get_ctx(bmap), isl_error_internal, |
| 3174 | "equality constraints modified unexpectedly" , |
| 3175 | goto error); |
| 3176 | if (isl_seq_first_non_zero(p: bmap->eq[i] + 1 + total + div + 1, |
| 3177 | len: n_div - div - 1) != -1) |
| 3178 | continue; |
| 3179 | if (isl_mat_row_gcd(mat: A, row: i, gcd: &gcd) < 0) |
| 3180 | goto error; |
| 3181 | if (isl_int_is_one(gcd)) |
| 3182 | continue; |
| 3183 | remove_incomplete_powers(g: &gcd, c: bmap->eq[i][1 + total + div]); |
| 3184 | if (isl_int_is_one(gcd)) |
| 3185 | continue; |
| 3186 | isl_int_divexact(bmap->eq[i][1 + total + div], |
| 3187 | bmap->eq[i][1 + total + div], gcd); |
| 3188 | bmap = isl_basic_map_mark_div_unknown(bmap, div); |
| 3189 | if (!bmap) |
| 3190 | goto error; |
| 3191 | any = 1; |
| 3192 | } |
| 3193 | isl_int_clear(gcd); |
| 3194 | |
| 3195 | if (any) |
| 3196 | bmap = isl_basic_map_gauss(bmap, NULL); |
| 3197 | |
| 3198 | return bmap; |
| 3199 | error: |
| 3200 | isl_int_clear(gcd); |
| 3201 | isl_basic_map_free(bmap); |
| 3202 | return NULL; |
| 3203 | } |
| 3204 | |
| 3205 | /* Simplify the stride constraints in "bmap" based on |
| 3206 | * the remaining equality constraints in "bmap" and all equality |
| 3207 | * constraints in "context". |
| 3208 | * Only do this if both "bmap" and "context" have stride constraints. |
| 3209 | * |
| 3210 | * First extract a copy of the stride constraints in "bmap" in a compressed |
| 3211 | * space exploiting all the other equality constraints and then |
| 3212 | * use this compressed copy to simplify the original stride constraints. |
| 3213 | */ |
| 3214 | static __isl_give isl_basic_map *gist_strides(__isl_take isl_basic_map *bmap, |
| 3215 | __isl_keep isl_basic_map *context) |
| 3216 | { |
| 3217 | int bmap_n_eq, context_n_eq; |
| 3218 | isl_mat *A; |
| 3219 | |
| 3220 | if (!bmap || !context) |
| 3221 | return isl_basic_map_free(bmap); |
| 3222 | |
| 3223 | bmap_n_eq = n_div_eq(bmap); |
| 3224 | context_n_eq = n_div_eq(bmap: context); |
| 3225 | |
| 3226 | if (bmap_n_eq < 0 || context_n_eq < 0) |
| 3227 | return isl_basic_map_free(bmap); |
| 3228 | if (bmap_n_eq == 0 || context_n_eq == 0) |
| 3229 | return bmap; |
| 3230 | |
| 3231 | A = extract_compressed_stride_constraints(bmap, bmap_n_eq, |
| 3232 | context, context_n_eq); |
| 3233 | bmap = reduce_stride_constraints(bmap, n: bmap_n_eq, A); |
| 3234 | |
| 3235 | isl_mat_free(mat: A); |
| 3236 | |
| 3237 | return bmap; |
| 3238 | } |
| 3239 | |
| 3240 | /* Return a basic map that has the same intersection with "context" as "bmap" |
| 3241 | * and that is as "simple" as possible. |
| 3242 | * |
| 3243 | * The core computation is performed on the pure constraints. |
| 3244 | * When we add back the meaning of the integer divisions, we need |
| 3245 | * to (re)introduce the div constraints. If we happen to have |
| 3246 | * discovered that some of these integer divisions are equal to |
| 3247 | * some affine combination of other variables, then these div |
| 3248 | * constraints may end up getting simplified in terms of the equalities, |
| 3249 | * resulting in extra inequalities on the other variables that |
| 3250 | * may have been removed already or that may not even have been |
| 3251 | * part of the input. We try and remove those constraints of |
| 3252 | * this form that are most obviously redundant with respect to |
| 3253 | * the context. We also remove those div constraints that are |
| 3254 | * redundant with respect to the other constraints in the result. |
| 3255 | * |
| 3256 | * The stride constraints among the equality constraints in "bmap" are |
| 3257 | * also simplified with respecting to the other equality constraints |
| 3258 | * in "bmap" and with respect to all equality constraints in "context". |
| 3259 | */ |
| 3260 | __isl_give isl_basic_map *isl_basic_map_gist(__isl_take isl_basic_map *bmap, |
| 3261 | __isl_take isl_basic_map *context) |
| 3262 | { |
| 3263 | isl_basic_set *bset, *eq; |
| 3264 | isl_basic_map *eq_bmap; |
| 3265 | isl_size total, n_div, n_div_bmap; |
| 3266 | unsigned , n_eq, n_ineq; |
| 3267 | |
| 3268 | if (!bmap || !context) |
| 3269 | goto error; |
| 3270 | |
| 3271 | if (isl_basic_map_plain_is_universe(bmap)) { |
| 3272 | isl_basic_map_free(bmap: context); |
| 3273 | return bmap; |
| 3274 | } |
| 3275 | if (isl_basic_map_plain_is_empty(bmap: context)) { |
| 3276 | isl_space *space = isl_basic_map_get_space(bmap); |
| 3277 | isl_basic_map_free(bmap); |
| 3278 | isl_basic_map_free(bmap: context); |
| 3279 | return isl_basic_map_universe(space); |
| 3280 | } |
| 3281 | if (isl_basic_map_plain_is_empty(bmap)) { |
| 3282 | isl_basic_map_free(bmap: context); |
| 3283 | return bmap; |
| 3284 | } |
| 3285 | |
| 3286 | bmap = isl_basic_map_remove_redundancies(bmap); |
| 3287 | context = isl_basic_map_remove_redundancies(bmap: context); |
| 3288 | bmap = isl_basic_map_order_divs(bmap); |
| 3289 | context = isl_basic_map_align_divs(dst: context, src: bmap); |
| 3290 | |
| 3291 | n_div = isl_basic_map_dim(bmap: context, type: isl_dim_div); |
| 3292 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 3293 | n_div_bmap = isl_basic_map_dim(bmap, type: isl_dim_div); |
| 3294 | if (n_div < 0 || total < 0 || n_div_bmap < 0) |
| 3295 | goto error; |
| 3296 | extra = n_div - n_div_bmap; |
| 3297 | |
| 3298 | bset = isl_basic_map_underlying_set(bmap: isl_basic_map_copy(bmap)); |
| 3299 | bset = isl_basic_set_add_dims(bset, type: isl_dim_set, n: extra); |
| 3300 | bset = uset_gist(bset, |
| 3301 | context: isl_basic_map_underlying_set(bmap: isl_basic_map_copy(bmap: context))); |
| 3302 | bset = isl_basic_set_project_out(bset, type: isl_dim_set, first: total, n: extra); |
| 3303 | |
| 3304 | if (!bset || bset->n_eq == 0 || n_div == 0 || |
| 3305 | isl_basic_set_plain_is_empty(bset)) { |
| 3306 | isl_basic_map_free(bmap: context); |
| 3307 | return isl_basic_map_overlying_set(bset, like: bmap); |
| 3308 | } |
| 3309 | |
| 3310 | n_eq = bset->n_eq; |
| 3311 | n_ineq = bset->n_ineq; |
| 3312 | eq = isl_basic_set_copy(bset); |
| 3313 | eq = isl_basic_set_cow(bset: eq); |
| 3314 | eq = isl_basic_set_free_inequality(bset: eq, n: n_ineq); |
| 3315 | bset = isl_basic_set_free_equality(bset, n: n_eq); |
| 3316 | |
| 3317 | eq_bmap = isl_basic_map_overlying_set(bset: eq, like: isl_basic_map_copy(bmap)); |
| 3318 | eq_bmap = gist_strides(bmap: eq_bmap, context); |
| 3319 | eq_bmap = isl_basic_map_remove_shifted_constraints(bmap: eq_bmap, context); |
| 3320 | bmap = isl_basic_map_overlying_set(bset, like: bmap); |
| 3321 | bmap = isl_basic_map_intersect(bmap1: bmap, bmap2: eq_bmap); |
| 3322 | bmap = isl_basic_map_remove_redundancies(bmap); |
| 3323 | |
| 3324 | return bmap; |
| 3325 | error: |
| 3326 | isl_basic_map_free(bmap); |
| 3327 | isl_basic_map_free(bmap: context); |
| 3328 | return NULL; |
| 3329 | } |
| 3330 | |
| 3331 | /* |
| 3332 | * Assumes context has no implicit divs. |
| 3333 | */ |
| 3334 | __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map, |
| 3335 | __isl_take isl_basic_map *context) |
| 3336 | { |
| 3337 | int i; |
| 3338 | |
| 3339 | if (!map || !context) |
| 3340 | goto error; |
| 3341 | |
| 3342 | if (isl_basic_map_plain_is_empty(bmap: context)) { |
| 3343 | isl_space *space = isl_map_get_space(map); |
| 3344 | isl_map_free(map); |
| 3345 | isl_basic_map_free(bmap: context); |
| 3346 | return isl_map_universe(space); |
| 3347 | } |
| 3348 | |
| 3349 | context = isl_basic_map_remove_redundancies(bmap: context); |
| 3350 | map = isl_map_cow(map); |
| 3351 | if (isl_map_basic_map_check_equal_space(map, bmap: context) < 0) |
| 3352 | goto error; |
| 3353 | map = isl_map_compute_divs(map); |
| 3354 | if (!map) |
| 3355 | goto error; |
| 3356 | for (i = map->n - 1; i >= 0; --i) { |
| 3357 | map->p[i] = isl_basic_map_gist(bmap: map->p[i], |
| 3358 | context: isl_basic_map_copy(bmap: context)); |
| 3359 | if (!map->p[i]) |
| 3360 | goto error; |
| 3361 | if (isl_basic_map_plain_is_empty(bmap: map->p[i])) { |
| 3362 | isl_basic_map_free(bmap: map->p[i]); |
| 3363 | if (i != map->n - 1) |
| 3364 | map->p[i] = map->p[map->n - 1]; |
| 3365 | map->n--; |
| 3366 | } |
| 3367 | } |
| 3368 | isl_basic_map_free(bmap: context); |
| 3369 | ISL_F_CLR(map, ISL_MAP_NORMALIZED); |
| 3370 | return map; |
| 3371 | error: |
| 3372 | isl_map_free(map); |
| 3373 | isl_basic_map_free(bmap: context); |
| 3374 | return NULL; |
| 3375 | } |
| 3376 | |
| 3377 | /* Drop all inequalities from "bmap" that also appear in "context". |
| 3378 | * "context" is assumed to have only known local variables and |
| 3379 | * the initial local variables of "bmap" are assumed to be the same |
| 3380 | * as those of "context". |
| 3381 | * The constraints of both "bmap" and "context" are assumed |
| 3382 | * to have been sorted using isl_basic_map_sort_constraints. |
| 3383 | * |
| 3384 | * Run through the inequality constraints of "bmap" and "context" |
| 3385 | * in sorted order. |
| 3386 | * If a constraint of "bmap" involves variables not in "context", |
| 3387 | * then it cannot appear in "context". |
| 3388 | * If a matching constraint is found, it is removed from "bmap". |
| 3389 | */ |
| 3390 | static __isl_give isl_basic_map *drop_inequalities( |
| 3391 | __isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context) |
| 3392 | { |
| 3393 | int i1, i2; |
| 3394 | isl_size total, bmap_total; |
| 3395 | unsigned ; |
| 3396 | |
| 3397 | total = isl_basic_map_dim(bmap: context, type: isl_dim_all); |
| 3398 | bmap_total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 3399 | if (total < 0 || bmap_total < 0) |
| 3400 | return isl_basic_map_free(bmap); |
| 3401 | |
| 3402 | extra = bmap_total - total; |
| 3403 | |
| 3404 | i1 = bmap->n_ineq - 1; |
| 3405 | i2 = context->n_ineq - 1; |
| 3406 | while (bmap && i1 >= 0 && i2 >= 0) { |
| 3407 | int cmp; |
| 3408 | |
| 3409 | if (isl_seq_first_non_zero(p: bmap->ineq[i1] + 1 + total, |
| 3410 | len: extra) != -1) { |
| 3411 | --i1; |
| 3412 | continue; |
| 3413 | } |
| 3414 | cmp = isl_basic_map_constraint_cmp(bmap: context, c1: bmap->ineq[i1], |
| 3415 | c2: context->ineq[i2]); |
| 3416 | if (cmp < 0) { |
| 3417 | --i2; |
| 3418 | continue; |
| 3419 | } |
| 3420 | if (cmp > 0) { |
| 3421 | --i1; |
| 3422 | continue; |
| 3423 | } |
| 3424 | if (isl_int_eq(bmap->ineq[i1][0], context->ineq[i2][0])) { |
| 3425 | bmap = isl_basic_map_cow(bmap); |
| 3426 | if (isl_basic_map_drop_inequality(bmap, pos: i1) < 0) |
| 3427 | bmap = isl_basic_map_free(bmap); |
| 3428 | } |
| 3429 | --i1; |
| 3430 | --i2; |
| 3431 | } |
| 3432 | |
| 3433 | return bmap; |
| 3434 | } |
| 3435 | |
| 3436 | /* Drop all equalities from "bmap" that also appear in "context". |
| 3437 | * "context" is assumed to have only known local variables and |
| 3438 | * the initial local variables of "bmap" are assumed to be the same |
| 3439 | * as those of "context". |
| 3440 | * |
| 3441 | * Run through the equality constraints of "bmap" and "context" |
| 3442 | * in sorted order. |
| 3443 | * If a constraint of "bmap" involves variables not in "context", |
| 3444 | * then it cannot appear in "context". |
| 3445 | * If a matching constraint is found, it is removed from "bmap". |
| 3446 | */ |
| 3447 | static __isl_give isl_basic_map *drop_equalities( |
| 3448 | __isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context) |
| 3449 | { |
| 3450 | int i1, i2; |
| 3451 | isl_size total, bmap_total; |
| 3452 | unsigned ; |
| 3453 | |
| 3454 | total = isl_basic_map_dim(bmap: context, type: isl_dim_all); |
| 3455 | bmap_total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 3456 | if (total < 0 || bmap_total < 0) |
| 3457 | return isl_basic_map_free(bmap); |
| 3458 | |
| 3459 | extra = bmap_total - total; |
| 3460 | |
| 3461 | i1 = bmap->n_eq - 1; |
| 3462 | i2 = context->n_eq - 1; |
| 3463 | |
| 3464 | while (bmap && i1 >= 0 && i2 >= 0) { |
| 3465 | int last1, last2; |
| 3466 | |
| 3467 | if (isl_seq_first_non_zero(p: bmap->eq[i1] + 1 + total, |
| 3468 | len: extra) != -1) |
| 3469 | break; |
| 3470 | last1 = isl_seq_last_non_zero(p: bmap->eq[i1] + 1, len: total); |
| 3471 | last2 = isl_seq_last_non_zero(p: context->eq[i2] + 1, len: total); |
| 3472 | if (last1 > last2) { |
| 3473 | --i2; |
| 3474 | continue; |
| 3475 | } |
| 3476 | if (last1 < last2) { |
| 3477 | --i1; |
| 3478 | continue; |
| 3479 | } |
| 3480 | if (isl_seq_eq(p1: bmap->eq[i1], p2: context->eq[i2], len: 1 + total)) { |
| 3481 | bmap = isl_basic_map_cow(bmap); |
| 3482 | if (isl_basic_map_drop_equality(bmap, pos: i1) < 0) |
| 3483 | bmap = isl_basic_map_free(bmap); |
| 3484 | } |
| 3485 | --i1; |
| 3486 | --i2; |
| 3487 | } |
| 3488 | |
| 3489 | return bmap; |
| 3490 | } |
| 3491 | |
| 3492 | /* Remove the constraints in "context" from "bmap". |
| 3493 | * "context" is assumed to have explicit representations |
| 3494 | * for all local variables. |
| 3495 | * |
| 3496 | * First align the divs of "bmap" to those of "context" and |
| 3497 | * sort the constraints. Then drop all constraints from "bmap" |
| 3498 | * that appear in "context". |
| 3499 | */ |
| 3500 | __isl_give isl_basic_map *isl_basic_map_plain_gist( |
| 3501 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context) |
| 3502 | { |
| 3503 | isl_bool done, known; |
| 3504 | |
| 3505 | done = isl_basic_map_plain_is_universe(bmap: context); |
| 3506 | if (done == isl_bool_false) |
| 3507 | done = isl_basic_map_plain_is_universe(bmap); |
| 3508 | if (done == isl_bool_false) |
| 3509 | done = isl_basic_map_plain_is_empty(bmap: context); |
| 3510 | if (done == isl_bool_false) |
| 3511 | done = isl_basic_map_plain_is_empty(bmap); |
| 3512 | if (done < 0) |
| 3513 | goto error; |
| 3514 | if (done) { |
| 3515 | isl_basic_map_free(bmap: context); |
| 3516 | return bmap; |
| 3517 | } |
| 3518 | known = isl_basic_map_divs_known(bmap: context); |
| 3519 | if (known < 0) |
| 3520 | goto error; |
| 3521 | if (!known) |
| 3522 | isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, |
| 3523 | "context has unknown divs" , goto error); |
| 3524 | |
| 3525 | context = isl_basic_map_order_divs(bmap: context); |
| 3526 | bmap = isl_basic_map_align_divs(dst: bmap, src: context); |
| 3527 | bmap = isl_basic_map_gauss(bmap, NULL); |
| 3528 | bmap = isl_basic_map_sort_constraints(bmap); |
| 3529 | context = isl_basic_map_sort_constraints(bmap: context); |
| 3530 | |
| 3531 | bmap = drop_inequalities(bmap, context); |
| 3532 | bmap = drop_equalities(bmap, context); |
| 3533 | |
| 3534 | isl_basic_map_free(bmap: context); |
| 3535 | bmap = isl_basic_map_finalize(bmap); |
| 3536 | return bmap; |
| 3537 | error: |
| 3538 | isl_basic_map_free(bmap); |
| 3539 | isl_basic_map_free(bmap: context); |
| 3540 | return NULL; |
| 3541 | } |
| 3542 | |
| 3543 | /* Replace "map" by the disjunct at position "pos" and free "context". |
| 3544 | */ |
| 3545 | static __isl_give isl_map *replace_by_disjunct(__isl_take isl_map *map, |
| 3546 | int pos, __isl_take isl_basic_map *context) |
| 3547 | { |
| 3548 | isl_basic_map *bmap; |
| 3549 | |
| 3550 | bmap = isl_basic_map_copy(bmap: map->p[pos]); |
| 3551 | isl_map_free(map); |
| 3552 | isl_basic_map_free(bmap: context); |
| 3553 | return isl_map_from_basic_map(bmap); |
| 3554 | } |
| 3555 | |
| 3556 | /* Remove the constraints in "context" from "map". |
| 3557 | * If any of the disjuncts in the result turns out to be the universe, |
| 3558 | * then return this universe. |
| 3559 | * "context" is assumed to have explicit representations |
| 3560 | * for all local variables. |
| 3561 | */ |
| 3562 | __isl_give isl_map *isl_map_plain_gist_basic_map(__isl_take isl_map *map, |
| 3563 | __isl_take isl_basic_map *context) |
| 3564 | { |
| 3565 | int i; |
| 3566 | isl_bool univ, known; |
| 3567 | |
| 3568 | univ = isl_basic_map_plain_is_universe(bmap: context); |
| 3569 | if (univ < 0) |
| 3570 | goto error; |
| 3571 | if (univ) { |
| 3572 | isl_basic_map_free(bmap: context); |
| 3573 | return map; |
| 3574 | } |
| 3575 | known = isl_basic_map_divs_known(bmap: context); |
| 3576 | if (known < 0) |
| 3577 | goto error; |
| 3578 | if (!known) |
| 3579 | isl_die(isl_map_get_ctx(map), isl_error_invalid, |
| 3580 | "context has unknown divs" , goto error); |
| 3581 | |
| 3582 | map = isl_map_cow(map); |
| 3583 | if (!map) |
| 3584 | goto error; |
| 3585 | for (i = 0; i < map->n; ++i) { |
| 3586 | map->p[i] = isl_basic_map_plain_gist(bmap: map->p[i], |
| 3587 | context: isl_basic_map_copy(bmap: context)); |
| 3588 | univ = isl_basic_map_plain_is_universe(bmap: map->p[i]); |
| 3589 | if (univ < 0) |
| 3590 | goto error; |
| 3591 | if (univ && map->n > 1) |
| 3592 | return replace_by_disjunct(map, pos: i, context); |
| 3593 | } |
| 3594 | |
| 3595 | isl_basic_map_free(bmap: context); |
| 3596 | ISL_F_CLR(map, ISL_MAP_NORMALIZED); |
| 3597 | if (map->n > 1) |
| 3598 | ISL_F_CLR(map, ISL_MAP_DISJOINT); |
| 3599 | return map; |
| 3600 | error: |
| 3601 | isl_map_free(map); |
| 3602 | isl_basic_map_free(bmap: context); |
| 3603 | return NULL; |
| 3604 | } |
| 3605 | |
| 3606 | /* Remove the constraints in "context" from "set". |
| 3607 | * If any of the disjuncts in the result turns out to be the universe, |
| 3608 | * then return this universe. |
| 3609 | * "context" is assumed to have explicit representations |
| 3610 | * for all local variables. |
| 3611 | */ |
| 3612 | __isl_give isl_set *isl_set_plain_gist_basic_set(__isl_take isl_set *set, |
| 3613 | __isl_take isl_basic_set *context) |
| 3614 | { |
| 3615 | return set_from_map(isl_map_plain_gist_basic_map(map: set_to_map(set), |
| 3616 | context: bset_to_bmap(bset: context))); |
| 3617 | } |
| 3618 | |
| 3619 | /* Remove the constraints in "context" from "map". |
| 3620 | * If any of the disjuncts in the result turns out to be the universe, |
| 3621 | * then return this universe. |
| 3622 | * "context" is assumed to consist of a single disjunct and |
| 3623 | * to have explicit representations for all local variables. |
| 3624 | */ |
| 3625 | __isl_give isl_map *isl_map_plain_gist(__isl_take isl_map *map, |
| 3626 | __isl_take isl_map *context) |
| 3627 | { |
| 3628 | isl_basic_map *hull; |
| 3629 | |
| 3630 | hull = isl_map_unshifted_simple_hull(map: context); |
| 3631 | return isl_map_plain_gist_basic_map(map, context: hull); |
| 3632 | } |
| 3633 | |
| 3634 | /* Replace "map" by a universe map in the same space and free "drop". |
| 3635 | */ |
| 3636 | static __isl_give isl_map *replace_by_universe(__isl_take isl_map *map, |
| 3637 | __isl_take isl_map *drop) |
| 3638 | { |
| 3639 | isl_map *res; |
| 3640 | |
| 3641 | res = isl_map_universe(space: isl_map_get_space(map)); |
| 3642 | isl_map_free(map); |
| 3643 | isl_map_free(map: drop); |
| 3644 | return res; |
| 3645 | } |
| 3646 | |
| 3647 | /* Return a map that has the same intersection with "context" as "map" |
| 3648 | * and that is as "simple" as possible. |
| 3649 | * |
| 3650 | * If "map" is already the universe, then we cannot make it any simpler. |
| 3651 | * Similarly, if "context" is the universe, then we cannot exploit it |
| 3652 | * to simplify "map" |
| 3653 | * If "map" and "context" are identical to each other, then we can |
| 3654 | * return the corresponding universe. |
| 3655 | * |
| 3656 | * If either "map" or "context" consists of multiple disjuncts, |
| 3657 | * then check if "context" happens to be a subset of "map", |
| 3658 | * in which case all constraints can be removed. |
| 3659 | * In case of multiple disjuncts, the standard procedure |
| 3660 | * may not be able to detect that all constraints can be removed. |
| 3661 | * |
| 3662 | * If none of these cases apply, we have to work a bit harder. |
| 3663 | * During this computation, we make use of a single disjunct context, |
| 3664 | * so if the original context consists of more than one disjunct |
| 3665 | * then we need to approximate the context by a single disjunct set. |
| 3666 | * Simply taking the simple hull may drop constraints that are |
| 3667 | * only implicitly available in each disjunct. We therefore also |
| 3668 | * look for constraints among those defining "map" that are valid |
| 3669 | * for the context. These can then be used to simplify away |
| 3670 | * the corresponding constraints in "map". |
| 3671 | */ |
| 3672 | __isl_give isl_map *isl_map_gist(__isl_take isl_map *map, |
| 3673 | __isl_take isl_map *context) |
| 3674 | { |
| 3675 | int equal; |
| 3676 | int is_universe; |
| 3677 | isl_size n_disjunct_map, n_disjunct_context; |
| 3678 | isl_bool subset; |
| 3679 | isl_basic_map *hull; |
| 3680 | |
| 3681 | is_universe = isl_map_plain_is_universe(map); |
| 3682 | if (is_universe >= 0 && !is_universe) |
| 3683 | is_universe = isl_map_plain_is_universe(map: context); |
| 3684 | if (is_universe < 0) |
| 3685 | goto error; |
| 3686 | if (is_universe) { |
| 3687 | isl_map_free(map: context); |
| 3688 | return map; |
| 3689 | } |
| 3690 | |
| 3691 | isl_map_align_params_bin(map1: &map, map2: &context); |
| 3692 | equal = isl_map_plain_is_equal(map1: map, map2: context); |
| 3693 | if (equal < 0) |
| 3694 | goto error; |
| 3695 | if (equal) |
| 3696 | return replace_by_universe(map, drop: context); |
| 3697 | |
| 3698 | n_disjunct_map = isl_map_n_basic_map(map); |
| 3699 | n_disjunct_context = isl_map_n_basic_map(map: context); |
| 3700 | if (n_disjunct_map < 0 || n_disjunct_context < 0) |
| 3701 | goto error; |
| 3702 | if (n_disjunct_map != 1 || n_disjunct_context != 1) { |
| 3703 | subset = isl_map_is_subset(map1: context, map2: map); |
| 3704 | if (subset < 0) |
| 3705 | goto error; |
| 3706 | if (subset) |
| 3707 | return replace_by_universe(map, drop: context); |
| 3708 | } |
| 3709 | |
| 3710 | context = isl_map_compute_divs(map: context); |
| 3711 | if (!context) |
| 3712 | goto error; |
| 3713 | if (n_disjunct_context == 1) { |
| 3714 | hull = isl_map_simple_hull(map: context); |
| 3715 | } else { |
| 3716 | isl_ctx *ctx; |
| 3717 | isl_map_list *list; |
| 3718 | |
| 3719 | ctx = isl_map_get_ctx(map); |
| 3720 | list = isl_map_list_alloc(ctx, n: 2); |
| 3721 | list = isl_map_list_add(list, el: isl_map_copy(map: context)); |
| 3722 | list = isl_map_list_add(list, el: isl_map_copy(map)); |
| 3723 | hull = isl_map_unshifted_simple_hull_from_map_list(map: context, |
| 3724 | list); |
| 3725 | } |
| 3726 | return isl_map_gist_basic_map(map, context: hull); |
| 3727 | error: |
| 3728 | isl_map_free(map); |
| 3729 | isl_map_free(map: context); |
| 3730 | return NULL; |
| 3731 | } |
| 3732 | |
| 3733 | __isl_give isl_basic_set *isl_basic_set_gist(__isl_take isl_basic_set *bset, |
| 3734 | __isl_take isl_basic_set *context) |
| 3735 | { |
| 3736 | return bset_from_bmap(bmap: isl_basic_map_gist(bmap: bset_to_bmap(bset), |
| 3737 | context: bset_to_bmap(bset: context))); |
| 3738 | } |
| 3739 | |
| 3740 | __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set, |
| 3741 | __isl_take isl_basic_set *context) |
| 3742 | { |
| 3743 | return set_from_map(isl_map_gist_basic_map(map: set_to_map(set), |
| 3744 | context: bset_to_bmap(bset: context))); |
| 3745 | } |
| 3746 | |
| 3747 | __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set, |
| 3748 | __isl_take isl_basic_set *context) |
| 3749 | { |
| 3750 | isl_space *space = isl_set_get_space(set); |
| 3751 | isl_basic_set *dom_context = isl_basic_set_universe(space); |
| 3752 | dom_context = isl_basic_set_intersect_params(bset1: dom_context, bset2: context); |
| 3753 | return isl_set_gist_basic_set(set, context: dom_context); |
| 3754 | } |
| 3755 | |
| 3756 | __isl_give isl_set *isl_set_gist(__isl_take isl_set *set, |
| 3757 | __isl_take isl_set *context) |
| 3758 | { |
| 3759 | return set_from_map(isl_map_gist(map: set_to_map(set), context: set_to_map(context))); |
| 3760 | } |
| 3761 | |
| 3762 | /* Compute the gist of "bmap" with respect to the constraints "context" |
| 3763 | * on the domain. |
| 3764 | */ |
| 3765 | __isl_give isl_basic_map *isl_basic_map_gist_domain( |
| 3766 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *context) |
| 3767 | { |
| 3768 | isl_space *space = isl_basic_map_get_space(bmap); |
| 3769 | isl_basic_map *bmap_context = isl_basic_map_universe(space); |
| 3770 | |
| 3771 | bmap_context = isl_basic_map_intersect_domain(bmap: bmap_context, bset: context); |
| 3772 | return isl_basic_map_gist(bmap, context: bmap_context); |
| 3773 | } |
| 3774 | |
| 3775 | __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map, |
| 3776 | __isl_take isl_set *context) |
| 3777 | { |
| 3778 | isl_map *map_context = isl_map_universe(space: isl_map_get_space(map)); |
| 3779 | map_context = isl_map_intersect_domain(map: map_context, set: context); |
| 3780 | return isl_map_gist(map, context: map_context); |
| 3781 | } |
| 3782 | |
| 3783 | __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map, |
| 3784 | __isl_take isl_set *context) |
| 3785 | { |
| 3786 | isl_map *map_context = isl_map_universe(space: isl_map_get_space(map)); |
| 3787 | map_context = isl_map_intersect_range(map: map_context, set: context); |
| 3788 | return isl_map_gist(map, context: map_context); |
| 3789 | } |
| 3790 | |
| 3791 | __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map, |
| 3792 | __isl_take isl_set *context) |
| 3793 | { |
| 3794 | isl_map *map_context = isl_map_universe(space: isl_map_get_space(map)); |
| 3795 | map_context = isl_map_intersect_params(map: map_context, params: context); |
| 3796 | return isl_map_gist(map, context: map_context); |
| 3797 | } |
| 3798 | |
| 3799 | __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set, |
| 3800 | __isl_take isl_set *context) |
| 3801 | { |
| 3802 | return isl_map_gist_params(map: set, context); |
| 3803 | } |
| 3804 | |
| 3805 | /* Quick check to see if two basic maps are disjoint. |
| 3806 | * In particular, we reduce the equalities and inequalities of |
| 3807 | * one basic map in the context of the equalities of the other |
| 3808 | * basic map and check if we get a contradiction. |
| 3809 | */ |
| 3810 | isl_bool isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1, |
| 3811 | __isl_keep isl_basic_map *bmap2) |
| 3812 | { |
| 3813 | struct isl_vec *v = NULL; |
| 3814 | int *elim = NULL; |
| 3815 | isl_size total; |
| 3816 | int i; |
| 3817 | |
| 3818 | if (isl_basic_map_check_equal_space(bmap1, bmap2) < 0) |
| 3819 | return isl_bool_error; |
| 3820 | if (bmap1->n_div || bmap2->n_div) |
| 3821 | return isl_bool_false; |
| 3822 | if (!bmap1->n_eq && !bmap2->n_eq) |
| 3823 | return isl_bool_false; |
| 3824 | |
| 3825 | total = isl_space_dim(space: bmap1->dim, type: isl_dim_all); |
| 3826 | if (total < 0) |
| 3827 | return isl_bool_error; |
| 3828 | if (total == 0) |
| 3829 | return isl_bool_false; |
| 3830 | v = isl_vec_alloc(ctx: bmap1->ctx, size: 1 + total); |
| 3831 | if (!v) |
| 3832 | goto error; |
| 3833 | elim = isl_alloc_array(bmap1->ctx, int, total); |
| 3834 | if (!elim) |
| 3835 | goto error; |
| 3836 | compute_elimination_index(bmap: bmap1, elim, len: total); |
| 3837 | for (i = 0; i < bmap2->n_eq; ++i) { |
| 3838 | int reduced; |
| 3839 | reduced = reduced_using_equalities(dst: v->block.data, src: bmap2->eq[i], |
| 3840 | bmap: bmap1, elim, total); |
| 3841 | if (reduced && !isl_int_is_zero(v->block.data[0]) && |
| 3842 | isl_seq_first_non_zero(p: v->block.data + 1, len: total) == -1) |
| 3843 | goto disjoint; |
| 3844 | } |
| 3845 | for (i = 0; i < bmap2->n_ineq; ++i) { |
| 3846 | int reduced; |
| 3847 | reduced = reduced_using_equalities(dst: v->block.data, |
| 3848 | src: bmap2->ineq[i], bmap: bmap1, elim, total); |
| 3849 | if (reduced && isl_int_is_neg(v->block.data[0]) && |
| 3850 | isl_seq_first_non_zero(p: v->block.data + 1, len: total) == -1) |
| 3851 | goto disjoint; |
| 3852 | } |
| 3853 | compute_elimination_index(bmap: bmap2, elim, len: total); |
| 3854 | for (i = 0; i < bmap1->n_ineq; ++i) { |
| 3855 | int reduced; |
| 3856 | reduced = reduced_using_equalities(dst: v->block.data, |
| 3857 | src: bmap1->ineq[i], bmap: bmap2, elim, total); |
| 3858 | if (reduced && isl_int_is_neg(v->block.data[0]) && |
| 3859 | isl_seq_first_non_zero(p: v->block.data + 1, len: total) == -1) |
| 3860 | goto disjoint; |
| 3861 | } |
| 3862 | isl_vec_free(vec: v); |
| 3863 | free(ptr: elim); |
| 3864 | return isl_bool_false; |
| 3865 | disjoint: |
| 3866 | isl_vec_free(vec: v); |
| 3867 | free(ptr: elim); |
| 3868 | return isl_bool_true; |
| 3869 | error: |
| 3870 | isl_vec_free(vec: v); |
| 3871 | free(ptr: elim); |
| 3872 | return isl_bool_error; |
| 3873 | } |
| 3874 | |
| 3875 | int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1, |
| 3876 | __isl_keep isl_basic_set *bset2) |
| 3877 | { |
| 3878 | return isl_basic_map_plain_is_disjoint(bmap1: bset_to_bmap(bset: bset1), |
| 3879 | bmap2: bset_to_bmap(bset: bset2)); |
| 3880 | } |
| 3881 | |
| 3882 | /* Does "test" hold for all pairs of basic maps in "map1" and "map2"? |
| 3883 | */ |
| 3884 | static isl_bool all_pairs(__isl_keep isl_map *map1, __isl_keep isl_map *map2, |
| 3885 | isl_bool (*test)(__isl_keep isl_basic_map *bmap1, |
| 3886 | __isl_keep isl_basic_map *bmap2)) |
| 3887 | { |
| 3888 | int i, j; |
| 3889 | |
| 3890 | if (!map1 || !map2) |
| 3891 | return isl_bool_error; |
| 3892 | |
| 3893 | for (i = 0; i < map1->n; ++i) { |
| 3894 | for (j = 0; j < map2->n; ++j) { |
| 3895 | isl_bool d = test(map1->p[i], map2->p[j]); |
| 3896 | if (d != isl_bool_true) |
| 3897 | return d; |
| 3898 | } |
| 3899 | } |
| 3900 | |
| 3901 | return isl_bool_true; |
| 3902 | } |
| 3903 | |
| 3904 | /* Are "map1" and "map2" obviously disjoint, based on information |
| 3905 | * that can be derived without looking at the individual basic maps? |
| 3906 | * |
| 3907 | * In particular, if one of them is empty or if they live in different spaces |
| 3908 | * (ignoring parameters), then they are clearly disjoint. |
| 3909 | */ |
| 3910 | static isl_bool isl_map_plain_is_disjoint_global(__isl_keep isl_map *map1, |
| 3911 | __isl_keep isl_map *map2) |
| 3912 | { |
| 3913 | isl_bool disjoint; |
| 3914 | isl_bool match; |
| 3915 | |
| 3916 | if (!map1 || !map2) |
| 3917 | return isl_bool_error; |
| 3918 | |
| 3919 | disjoint = isl_map_plain_is_empty(map: map1); |
| 3920 | if (disjoint < 0 || disjoint) |
| 3921 | return disjoint; |
| 3922 | |
| 3923 | disjoint = isl_map_plain_is_empty(map: map2); |
| 3924 | if (disjoint < 0 || disjoint) |
| 3925 | return disjoint; |
| 3926 | |
| 3927 | match = isl_map_tuple_is_equal(map1, type1: isl_dim_in, map2, type2: isl_dim_in); |
| 3928 | if (match < 0 || !match) |
| 3929 | return match < 0 ? isl_bool_error : isl_bool_true; |
| 3930 | |
| 3931 | match = isl_map_tuple_is_equal(map1, type1: isl_dim_out, map2, type2: isl_dim_out); |
| 3932 | if (match < 0 || !match) |
| 3933 | return match < 0 ? isl_bool_error : isl_bool_true; |
| 3934 | |
| 3935 | return isl_bool_false; |
| 3936 | } |
| 3937 | |
| 3938 | /* Are "map1" and "map2" obviously disjoint? |
| 3939 | * |
| 3940 | * If one of them is empty or if they live in different spaces (ignoring |
| 3941 | * parameters), then they are clearly disjoint. |
| 3942 | * This is checked by isl_map_plain_is_disjoint_global. |
| 3943 | * |
| 3944 | * If they have different parameters, then we skip any further tests. |
| 3945 | * |
| 3946 | * If they are obviously equal, but not obviously empty, then we will |
| 3947 | * not be able to detect if they are disjoint. |
| 3948 | * |
| 3949 | * Otherwise we check if each basic map in "map1" is obviously disjoint |
| 3950 | * from each basic map in "map2". |
| 3951 | */ |
| 3952 | isl_bool isl_map_plain_is_disjoint(__isl_keep isl_map *map1, |
| 3953 | __isl_keep isl_map *map2) |
| 3954 | { |
| 3955 | isl_bool disjoint; |
| 3956 | isl_bool intersect; |
| 3957 | isl_bool match; |
| 3958 | |
| 3959 | disjoint = isl_map_plain_is_disjoint_global(map1, map2); |
| 3960 | if (disjoint < 0 || disjoint) |
| 3961 | return disjoint; |
| 3962 | |
| 3963 | match = isl_map_has_equal_params(map1, map2); |
| 3964 | if (match < 0 || !match) |
| 3965 | return match < 0 ? isl_bool_error : isl_bool_false; |
| 3966 | |
| 3967 | intersect = isl_map_plain_is_equal(map1, map2); |
| 3968 | if (intersect < 0 || intersect) |
| 3969 | return intersect < 0 ? isl_bool_error : isl_bool_false; |
| 3970 | |
| 3971 | return all_pairs(map1, map2, test: &isl_basic_map_plain_is_disjoint); |
| 3972 | } |
| 3973 | |
| 3974 | /* Are "map1" and "map2" disjoint? |
| 3975 | * The parameters are assumed to have been aligned. |
| 3976 | * |
| 3977 | * In particular, check whether all pairs of basic maps are disjoint. |
| 3978 | */ |
| 3979 | static isl_bool isl_map_is_disjoint_aligned(__isl_keep isl_map *map1, |
| 3980 | __isl_keep isl_map *map2) |
| 3981 | { |
| 3982 | return all_pairs(map1, map2, test: &isl_basic_map_is_disjoint); |
| 3983 | } |
| 3984 | |
| 3985 | /* Are "map1" and "map2" disjoint? |
| 3986 | * |
| 3987 | * They are disjoint if they are "obviously disjoint" or if one of them |
| 3988 | * is empty. Otherwise, they are not disjoint if one of them is universal. |
| 3989 | * If the two inputs are (obviously) equal and not empty, then they are |
| 3990 | * not disjoint. |
| 3991 | * If none of these cases apply, then check if all pairs of basic maps |
| 3992 | * are disjoint after aligning the parameters. |
| 3993 | */ |
| 3994 | isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2) |
| 3995 | { |
| 3996 | isl_bool disjoint; |
| 3997 | isl_bool intersect; |
| 3998 | |
| 3999 | disjoint = isl_map_plain_is_disjoint_global(map1, map2); |
| 4000 | if (disjoint < 0 || disjoint) |
| 4001 | return disjoint; |
| 4002 | |
| 4003 | disjoint = isl_map_is_empty(map: map1); |
| 4004 | if (disjoint < 0 || disjoint) |
| 4005 | return disjoint; |
| 4006 | |
| 4007 | disjoint = isl_map_is_empty(map: map2); |
| 4008 | if (disjoint < 0 || disjoint) |
| 4009 | return disjoint; |
| 4010 | |
| 4011 | intersect = isl_map_plain_is_universe(map: map1); |
| 4012 | if (intersect < 0 || intersect) |
| 4013 | return isl_bool_not(b: intersect); |
| 4014 | |
| 4015 | intersect = isl_map_plain_is_universe(map: map2); |
| 4016 | if (intersect < 0 || intersect) |
| 4017 | return isl_bool_not(b: intersect); |
| 4018 | |
| 4019 | intersect = isl_map_plain_is_equal(map1, map2); |
| 4020 | if (intersect < 0 || intersect) |
| 4021 | return isl_bool_not(b: intersect); |
| 4022 | |
| 4023 | return isl_map_align_params_map_map_and_test(map1, map2, |
| 4024 | fn: &isl_map_is_disjoint_aligned); |
| 4025 | } |
| 4026 | |
| 4027 | /* Are "bmap1" and "bmap2" disjoint? |
| 4028 | * |
| 4029 | * They are disjoint if they are "obviously disjoint" or if one of them |
| 4030 | * is empty. Otherwise, they are not disjoint if one of them is universal. |
| 4031 | * If none of these cases apply, we compute the intersection and see if |
| 4032 | * the result is empty. |
| 4033 | */ |
| 4034 | isl_bool isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1, |
| 4035 | __isl_keep isl_basic_map *bmap2) |
| 4036 | { |
| 4037 | isl_bool disjoint; |
| 4038 | isl_bool intersect; |
| 4039 | isl_basic_map *test; |
| 4040 | |
| 4041 | disjoint = isl_basic_map_plain_is_disjoint(bmap1, bmap2); |
| 4042 | if (disjoint < 0 || disjoint) |
| 4043 | return disjoint; |
| 4044 | |
| 4045 | disjoint = isl_basic_map_is_empty(bmap: bmap1); |
| 4046 | if (disjoint < 0 || disjoint) |
| 4047 | return disjoint; |
| 4048 | |
| 4049 | disjoint = isl_basic_map_is_empty(bmap: bmap2); |
| 4050 | if (disjoint < 0 || disjoint) |
| 4051 | return disjoint; |
| 4052 | |
| 4053 | intersect = isl_basic_map_plain_is_universe(bmap: bmap1); |
| 4054 | if (intersect < 0 || intersect) |
| 4055 | return isl_bool_not(b: intersect); |
| 4056 | |
| 4057 | intersect = isl_basic_map_plain_is_universe(bmap: bmap2); |
| 4058 | if (intersect < 0 || intersect) |
| 4059 | return isl_bool_not(b: intersect); |
| 4060 | |
| 4061 | test = isl_basic_map_intersect(bmap1: isl_basic_map_copy(bmap: bmap1), |
| 4062 | bmap2: isl_basic_map_copy(bmap: bmap2)); |
| 4063 | disjoint = isl_basic_map_is_empty(bmap: test); |
| 4064 | isl_basic_map_free(bmap: test); |
| 4065 | |
| 4066 | return disjoint; |
| 4067 | } |
| 4068 | |
| 4069 | /* Are "bset1" and "bset2" disjoint? |
| 4070 | */ |
| 4071 | isl_bool isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1, |
| 4072 | __isl_keep isl_basic_set *bset2) |
| 4073 | { |
| 4074 | return isl_basic_map_is_disjoint(bmap1: bset1, bmap2: bset2); |
| 4075 | } |
| 4076 | |
| 4077 | isl_bool isl_set_plain_is_disjoint(__isl_keep isl_set *set1, |
| 4078 | __isl_keep isl_set *set2) |
| 4079 | { |
| 4080 | return isl_map_plain_is_disjoint(map1: set_to_map(set1), map2: set_to_map(set2)); |
| 4081 | } |
| 4082 | |
| 4083 | /* Are "set1" and "set2" disjoint? |
| 4084 | */ |
| 4085 | isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2) |
| 4086 | { |
| 4087 | return isl_map_is_disjoint(map1: set1, map2: set2); |
| 4088 | } |
| 4089 | |
| 4090 | /* Is "v" equal to 0, 1 or -1? |
| 4091 | */ |
| 4092 | static int is_zero_or_one(isl_int v) |
| 4093 | { |
| 4094 | return isl_int_is_zero(v) || isl_int_is_one(v) || isl_int_is_negone(v); |
| 4095 | } |
| 4096 | |
| 4097 | /* Are the "n" coefficients starting at "first" of inequality constraints |
| 4098 | * "i" and "j" of "bmap" opposite to each other? |
| 4099 | */ |
| 4100 | static int is_opposite_part(__isl_keep isl_basic_map *bmap, int i, int j, |
| 4101 | int first, int n) |
| 4102 | { |
| 4103 | return isl_seq_is_neg(p1: bmap->ineq[i] + first, p2: bmap->ineq[j] + first, len: n); |
| 4104 | } |
| 4105 | |
| 4106 | /* Are inequality constraints "i" and "j" of "bmap" opposite to each other, |
| 4107 | * apart from the constant term? |
| 4108 | */ |
| 4109 | static isl_bool is_opposite(__isl_keep isl_basic_map *bmap, int i, int j) |
| 4110 | { |
| 4111 | isl_size total; |
| 4112 | |
| 4113 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 4114 | if (total < 0) |
| 4115 | return isl_bool_error; |
| 4116 | return is_opposite_part(bmap, i, j, first: 1, n: total); |
| 4117 | } |
| 4118 | |
| 4119 | /* Check if we can combine a given div with lower bound l and upper |
| 4120 | * bound u with some other div and if so return that other div. |
| 4121 | * Otherwise, return a position beyond the integer divisions. |
| 4122 | * Return -1 on error. |
| 4123 | * |
| 4124 | * We first check that |
| 4125 | * - the bounds are opposites of each other (except for the constant |
| 4126 | * term) |
| 4127 | * - the bounds do not reference any other div |
| 4128 | * - no div is defined in terms of this div |
| 4129 | * |
| 4130 | * Let m be the size of the range allowed on the div by the bounds. |
| 4131 | * That is, the bounds are of the form |
| 4132 | * |
| 4133 | * e <= a <= e + m - 1 |
| 4134 | * |
| 4135 | * with e some expression in the other variables. |
| 4136 | * We look for another div b such that no third div is defined in terms |
| 4137 | * of this second div b and such that in any constraint that contains |
| 4138 | * a (except for the given lower and upper bound), also contains b |
| 4139 | * with a coefficient that is m times that of b. |
| 4140 | * That is, all constraints (except for the lower and upper bound) |
| 4141 | * are of the form |
| 4142 | * |
| 4143 | * e + f (a + m b) >= 0 |
| 4144 | * |
| 4145 | * Furthermore, in the constraints that only contain b, the coefficient |
| 4146 | * of b should be equal to 1 or -1. |
| 4147 | * If so, we return b so that "a + m b" can be replaced by |
| 4148 | * a single div "c = a + m b". |
| 4149 | */ |
| 4150 | static int div_find_coalesce(__isl_keep isl_basic_map *bmap, int *pairs, |
| 4151 | unsigned div, unsigned l, unsigned u) |
| 4152 | { |
| 4153 | int i, j; |
| 4154 | unsigned n_div; |
| 4155 | isl_size v_div; |
| 4156 | int coalesce; |
| 4157 | isl_bool opp; |
| 4158 | |
| 4159 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
| 4160 | if (n_div <= 1) |
| 4161 | return n_div; |
| 4162 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
| 4163 | if (v_div < 0) |
| 4164 | return -1; |
| 4165 | if (isl_seq_first_non_zero(p: bmap->ineq[l] + 1 + v_div, len: div) != -1) |
| 4166 | return n_div; |
| 4167 | if (isl_seq_first_non_zero(p: bmap->ineq[l] + 1 + v_div + div + 1, |
| 4168 | len: n_div - div - 1) != -1) |
| 4169 | return n_div; |
| 4170 | opp = is_opposite(bmap, i: l, j: u); |
| 4171 | if (opp < 0 || !opp) |
| 4172 | return opp < 0 ? -1 : n_div; |
| 4173 | |
| 4174 | for (i = 0; i < n_div; ++i) { |
| 4175 | if (isl_int_is_zero(bmap->div[i][0])) |
| 4176 | continue; |
| 4177 | if (!isl_int_is_zero(bmap->div[i][1 + 1 + v_div + div])) |
| 4178 | return n_div; |
| 4179 | } |
| 4180 | |
| 4181 | isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]); |
| 4182 | if (isl_int_is_neg(bmap->ineq[l][0])) { |
| 4183 | isl_int_sub(bmap->ineq[l][0], |
| 4184 | bmap->ineq[l][0], bmap->ineq[u][0]); |
| 4185 | bmap = isl_basic_map_copy(bmap); |
| 4186 | bmap = isl_basic_map_set_to_empty(bmap); |
| 4187 | isl_basic_map_free(bmap); |
| 4188 | return n_div; |
| 4189 | } |
| 4190 | isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1); |
| 4191 | coalesce = n_div; |
| 4192 | for (i = 0; i < n_div; ++i) { |
| 4193 | if (i == div) |
| 4194 | continue; |
| 4195 | if (!pairs[i]) |
| 4196 | continue; |
| 4197 | for (j = 0; j < n_div; ++j) { |
| 4198 | if (isl_int_is_zero(bmap->div[j][0])) |
| 4199 | continue; |
| 4200 | if (!isl_int_is_zero(bmap->div[j][1 + 1 + v_div + i])) |
| 4201 | break; |
| 4202 | } |
| 4203 | if (j < n_div) |
| 4204 | continue; |
| 4205 | for (j = 0; j < bmap->n_ineq; ++j) { |
| 4206 | int valid; |
| 4207 | if (j == l || j == u) |
| 4208 | continue; |
| 4209 | if (isl_int_is_zero(bmap->ineq[j][1 + v_div + div])) { |
| 4210 | if (is_zero_or_one(v: bmap->ineq[j][1 + v_div + i])) |
| 4211 | continue; |
| 4212 | break; |
| 4213 | } |
| 4214 | if (isl_int_is_zero(bmap->ineq[j][1 + v_div + i])) |
| 4215 | break; |
| 4216 | isl_int_mul(bmap->ineq[j][1 + v_div + div], |
| 4217 | bmap->ineq[j][1 + v_div + div], |
| 4218 | bmap->ineq[l][0]); |
| 4219 | valid = isl_int_eq(bmap->ineq[j][1 + v_div + div], |
| 4220 | bmap->ineq[j][1 + v_div + i]); |
| 4221 | isl_int_divexact(bmap->ineq[j][1 + v_div + div], |
| 4222 | bmap->ineq[j][1 + v_div + div], |
| 4223 | bmap->ineq[l][0]); |
| 4224 | if (!valid) |
| 4225 | break; |
| 4226 | } |
| 4227 | if (j < bmap->n_ineq) |
| 4228 | continue; |
| 4229 | coalesce = i; |
| 4230 | break; |
| 4231 | } |
| 4232 | isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1); |
| 4233 | isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]); |
| 4234 | return coalesce; |
| 4235 | } |
| 4236 | |
| 4237 | /* Internal data structure used during the construction and/or evaluation of |
| 4238 | * an inequality that ensures that a pair of bounds always allows |
| 4239 | * for an integer value. |
| 4240 | * |
| 4241 | * "tab" is the tableau in which the inequality is evaluated. It may |
| 4242 | * be NULL until it is actually needed. |
| 4243 | * "v" contains the inequality coefficients. |
| 4244 | * "g", "fl" and "fu" are temporary scalars used during the construction and |
| 4245 | * evaluation. |
| 4246 | */ |
| 4247 | struct test_ineq_data { |
| 4248 | struct isl_tab *tab; |
| 4249 | isl_vec *v; |
| 4250 | isl_int g; |
| 4251 | isl_int fl; |
| 4252 | isl_int fu; |
| 4253 | }; |
| 4254 | |
| 4255 | /* Free all the memory allocated by the fields of "data". |
| 4256 | */ |
| 4257 | static void test_ineq_data_clear(struct test_ineq_data *data) |
| 4258 | { |
| 4259 | isl_tab_free(tab: data->tab); |
| 4260 | isl_vec_free(vec: data->v); |
| 4261 | isl_int_clear(data->g); |
| 4262 | isl_int_clear(data->fl); |
| 4263 | isl_int_clear(data->fu); |
| 4264 | } |
| 4265 | |
| 4266 | /* Is the inequality stored in data->v satisfied by "bmap"? |
| 4267 | * That is, does it only attain non-negative values? |
| 4268 | * data->tab is a tableau corresponding to "bmap". |
| 4269 | */ |
| 4270 | static isl_bool test_ineq_is_satisfied(__isl_keep isl_basic_map *bmap, |
| 4271 | struct test_ineq_data *data) |
| 4272 | { |
| 4273 | isl_ctx *ctx; |
| 4274 | enum isl_lp_result res; |
| 4275 | |
| 4276 | ctx = isl_basic_map_get_ctx(bmap); |
| 4277 | if (!data->tab) |
| 4278 | data->tab = isl_tab_from_basic_map(bmap, track: 0); |
| 4279 | res = isl_tab_min(tab: data->tab, f: data->v->el, denom: ctx->one, opt: &data->g, NULL, flags: 0); |
| 4280 | if (res == isl_lp_error) |
| 4281 | return isl_bool_error; |
| 4282 | return res == isl_lp_ok && isl_int_is_nonneg(data->g); |
| 4283 | } |
| 4284 | |
| 4285 | /* Given a lower and an upper bound on div i, do they always allow |
| 4286 | * for an integer value of the given div? |
| 4287 | * Determine this property by constructing an inequality |
| 4288 | * such that the property is guaranteed when the inequality is nonnegative. |
| 4289 | * The lower bound is inequality l, while the upper bound is inequality u. |
| 4290 | * The constructed inequality is stored in data->v. |
| 4291 | * |
| 4292 | * Let the upper bound be |
| 4293 | * |
| 4294 | * -n_u a + e_u >= 0 |
| 4295 | * |
| 4296 | * and the lower bound |
| 4297 | * |
| 4298 | * n_l a + e_l >= 0 |
| 4299 | * |
| 4300 | * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l). |
| 4301 | * We have |
| 4302 | * |
| 4303 | * - f_u e_l <= f_u f_l g a <= f_l e_u |
| 4304 | * |
| 4305 | * Since all variables are integer valued, this is equivalent to |
| 4306 | * |
| 4307 | * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1) |
| 4308 | * |
| 4309 | * If this interval is at least f_u f_l g, then it contains at least |
| 4310 | * one integer value for a. |
| 4311 | * That is, the test constraint is |
| 4312 | * |
| 4313 | * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g |
| 4314 | * |
| 4315 | * or |
| 4316 | * |
| 4317 | * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 - f_u f_l g >= 0 |
| 4318 | * |
| 4319 | * If the coefficients of f_l e_u + f_u e_l have a common divisor g', |
| 4320 | * then the constraint can be scaled down by a factor g', |
| 4321 | * with the constant term replaced by |
| 4322 | * floor((f_l e_{u,0} + f_u e_{l,0} + f_l - 1 + f_u - 1 + 1 - f_u f_l g)/g'). |
| 4323 | * Note that the result of applying Fourier-Motzkin to this pair |
| 4324 | * of constraints is |
| 4325 | * |
| 4326 | * f_l e_u + f_u e_l >= 0 |
| 4327 | * |
| 4328 | * If the constant term of the scaled down version of this constraint, |
| 4329 | * i.e., floor((f_l e_{u,0} + f_u e_{l,0})/g') is equal to the constant |
| 4330 | * term of the scaled down test constraint, then the test constraint |
| 4331 | * is known to hold and no explicit evaluation is required. |
| 4332 | * This is essentially the Omega test. |
| 4333 | * |
| 4334 | * If the test constraint consists of only a constant term, then |
| 4335 | * it is sufficient to look at the sign of this constant term. |
| 4336 | */ |
| 4337 | static isl_bool int_between_bounds(__isl_keep isl_basic_map *bmap, int i, |
| 4338 | int l, int u, struct test_ineq_data *data) |
| 4339 | { |
| 4340 | unsigned offset; |
| 4341 | isl_size n_div; |
| 4342 | |
| 4343 | offset = isl_basic_map_offset(bmap, type: isl_dim_div); |
| 4344 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
| 4345 | if (n_div < 0) |
| 4346 | return isl_bool_error; |
| 4347 | |
| 4348 | isl_int_gcd(data->g, |
| 4349 | bmap->ineq[l][offset + i], bmap->ineq[u][offset + i]); |
| 4350 | isl_int_divexact(data->fl, bmap->ineq[l][offset + i], data->g); |
| 4351 | isl_int_divexact(data->fu, bmap->ineq[u][offset + i], data->g); |
| 4352 | isl_int_neg(data->fu, data->fu); |
| 4353 | isl_seq_combine(dst: data->v->el, m1: data->fl, src1: bmap->ineq[u], |
| 4354 | m2: data->fu, src2: bmap->ineq[l], len: offset + n_div); |
| 4355 | isl_int_mul(data->g, data->g, data->fl); |
| 4356 | isl_int_mul(data->g, data->g, data->fu); |
| 4357 | isl_int_sub(data->g, data->g, data->fl); |
| 4358 | isl_int_sub(data->g, data->g, data->fu); |
| 4359 | isl_int_add_ui(data->g, data->g, 1); |
| 4360 | isl_int_sub(data->fl, data->v->el[0], data->g); |
| 4361 | |
| 4362 | isl_seq_gcd(p: data->v->el + 1, len: offset - 1 + n_div, gcd: &data->g); |
| 4363 | if (isl_int_is_zero(data->g)) |
| 4364 | return isl_int_is_nonneg(data->fl); |
| 4365 | if (isl_int_is_one(data->g)) { |
| 4366 | isl_int_set(data->v->el[0], data->fl); |
| 4367 | return test_ineq_is_satisfied(bmap, data); |
| 4368 | } |
| 4369 | isl_int_fdiv_q(data->fl, data->fl, data->g); |
| 4370 | isl_int_fdiv_q(data->v->el[0], data->v->el[0], data->g); |
| 4371 | if (isl_int_eq(data->fl, data->v->el[0])) |
| 4372 | return isl_bool_true; |
| 4373 | isl_int_set(data->v->el[0], data->fl); |
| 4374 | isl_seq_scale_down(dst: data->v->el + 1, src: data->v->el + 1, f: data->g, |
| 4375 | len: offset - 1 + n_div); |
| 4376 | |
| 4377 | return test_ineq_is_satisfied(bmap, data); |
| 4378 | } |
| 4379 | |
| 4380 | /* Remove more kinds of divs that are not strictly needed. |
| 4381 | * In particular, if all pairs of lower and upper bounds on a div |
| 4382 | * are such that they allow at least one integer value of the div, |
| 4383 | * then we can eliminate the div using Fourier-Motzkin without |
| 4384 | * introducing any spurious solutions. |
| 4385 | * |
| 4386 | * If at least one of the two constraints has a unit coefficient for the div, |
| 4387 | * then the presence of such a value is guaranteed so there is no need to check. |
| 4388 | * In particular, the value attained by the bound with unit coefficient |
| 4389 | * can serve as this intermediate value. |
| 4390 | */ |
| 4391 | static __isl_give isl_basic_map *drop_more_redundant_divs( |
| 4392 | __isl_take isl_basic_map *bmap, __isl_take int *pairs, int n) |
| 4393 | { |
| 4394 | isl_ctx *ctx; |
| 4395 | struct test_ineq_data data = { NULL, NULL }; |
| 4396 | unsigned off; |
| 4397 | isl_size n_div; |
| 4398 | int remove = -1; |
| 4399 | |
| 4400 | isl_int_init(data.g); |
| 4401 | isl_int_init(data.fl); |
| 4402 | isl_int_init(data.fu); |
| 4403 | |
| 4404 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
| 4405 | if (n_div < 0) |
| 4406 | goto error; |
| 4407 | |
| 4408 | ctx = isl_basic_map_get_ctx(bmap); |
| 4409 | off = isl_basic_map_offset(bmap, type: isl_dim_div); |
| 4410 | data.v = isl_vec_alloc(ctx, size: off + n_div); |
| 4411 | if (!data.v) |
| 4412 | goto error; |
| 4413 | |
| 4414 | while (n > 0) { |
| 4415 | int i, l, u; |
| 4416 | int best = -1; |
| 4417 | isl_bool has_int; |
| 4418 | |
| 4419 | for (i = 0; i < n_div; ++i) { |
| 4420 | if (!pairs[i]) |
| 4421 | continue; |
| 4422 | if (best >= 0 && pairs[best] <= pairs[i]) |
| 4423 | continue; |
| 4424 | best = i; |
| 4425 | } |
| 4426 | |
| 4427 | i = best; |
| 4428 | for (l = 0; l < bmap->n_ineq; ++l) { |
| 4429 | if (!isl_int_is_pos(bmap->ineq[l][off + i])) |
| 4430 | continue; |
| 4431 | if (isl_int_is_one(bmap->ineq[l][off + i])) |
| 4432 | continue; |
| 4433 | for (u = 0; u < bmap->n_ineq; ++u) { |
| 4434 | if (!isl_int_is_neg(bmap->ineq[u][off + i])) |
| 4435 | continue; |
| 4436 | if (isl_int_is_negone(bmap->ineq[u][off + i])) |
| 4437 | continue; |
| 4438 | has_int = int_between_bounds(bmap, i, l, u, |
| 4439 | data: &data); |
| 4440 | if (has_int < 0) |
| 4441 | goto error; |
| 4442 | if (data.tab && data.tab->empty) |
| 4443 | break; |
| 4444 | if (!has_int) |
| 4445 | break; |
| 4446 | } |
| 4447 | if (u < bmap->n_ineq) |
| 4448 | break; |
| 4449 | } |
| 4450 | if (data.tab && data.tab->empty) { |
| 4451 | bmap = isl_basic_map_set_to_empty(bmap); |
| 4452 | break; |
| 4453 | } |
| 4454 | if (l == bmap->n_ineq) { |
| 4455 | remove = i; |
| 4456 | break; |
| 4457 | } |
| 4458 | pairs[i] = 0; |
| 4459 | --n; |
| 4460 | } |
| 4461 | |
| 4462 | test_ineq_data_clear(data: &data); |
| 4463 | |
| 4464 | free(ptr: pairs); |
| 4465 | |
| 4466 | if (remove < 0) |
| 4467 | return bmap; |
| 4468 | |
| 4469 | bmap = isl_basic_map_remove_dims(bmap, type: isl_dim_div, first: remove, n: 1); |
| 4470 | return isl_basic_map_drop_redundant_divs(bmap); |
| 4471 | error: |
| 4472 | free(ptr: pairs); |
| 4473 | isl_basic_map_free(bmap); |
| 4474 | test_ineq_data_clear(data: &data); |
| 4475 | return NULL; |
| 4476 | } |
| 4477 | |
| 4478 | /* Given a pair of divs div1 and div2 such that, except for the lower bound l |
| 4479 | * and the upper bound u, div1 always occurs together with div2 in the form |
| 4480 | * (div1 + m div2), where m is the constant range on the variable div1 |
| 4481 | * allowed by l and u, replace the pair div1 and div2 by a single |
| 4482 | * div that is equal to div1 + m div2. |
| 4483 | * |
| 4484 | * The new div will appear in the location that contains div2. |
| 4485 | * We need to modify all constraints that contain |
| 4486 | * div2 = (div - div1) / m |
| 4487 | * The coefficient of div2 is known to be equal to 1 or -1. |
| 4488 | * (If a constraint does not contain div2, it will also not contain div1.) |
| 4489 | * If the constraint also contains div1, then we know they appear |
| 4490 | * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div, |
| 4491 | * i.e., the coefficient of div is f. |
| 4492 | * |
| 4493 | * Otherwise, we first need to introduce div1 into the constraint. |
| 4494 | * Let l be |
| 4495 | * |
| 4496 | * div1 + f >=0 |
| 4497 | * |
| 4498 | * and u |
| 4499 | * |
| 4500 | * -div1 + f' >= 0 |
| 4501 | * |
| 4502 | * A lower bound on div2 |
| 4503 | * |
| 4504 | * div2 + t >= 0 |
| 4505 | * |
| 4506 | * can be replaced by |
| 4507 | * |
| 4508 | * m div2 + div1 + m t + f >= 0 |
| 4509 | * |
| 4510 | * An upper bound |
| 4511 | * |
| 4512 | * -div2 + t >= 0 |
| 4513 | * |
| 4514 | * can be replaced by |
| 4515 | * |
| 4516 | * -(m div2 + div1) + m t + f' >= 0 |
| 4517 | * |
| 4518 | * These constraint are those that we would obtain from eliminating |
| 4519 | * div1 using Fourier-Motzkin. |
| 4520 | * |
| 4521 | * After all constraints have been modified, we drop the lower and upper |
| 4522 | * bound and then drop div1. |
| 4523 | * Since the new div is only placed in the same location that used |
| 4524 | * to store div2, but otherwise has a different meaning, any possible |
| 4525 | * explicit representation of the original div2 is removed. |
| 4526 | */ |
| 4527 | static __isl_give isl_basic_map *coalesce_divs(__isl_take isl_basic_map *bmap, |
| 4528 | unsigned div1, unsigned div2, unsigned l, unsigned u) |
| 4529 | { |
| 4530 | isl_ctx *ctx; |
| 4531 | isl_int m; |
| 4532 | isl_size v_div; |
| 4533 | unsigned total; |
| 4534 | int i; |
| 4535 | |
| 4536 | ctx = isl_basic_map_get_ctx(bmap); |
| 4537 | |
| 4538 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
| 4539 | if (v_div < 0) |
| 4540 | return isl_basic_map_free(bmap); |
| 4541 | total = 1 + v_div + bmap->n_div; |
| 4542 | |
| 4543 | isl_int_init(m); |
| 4544 | isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]); |
| 4545 | isl_int_add_ui(m, m, 1); |
| 4546 | |
| 4547 | for (i = 0; i < bmap->n_ineq; ++i) { |
| 4548 | if (i == l || i == u) |
| 4549 | continue; |
| 4550 | if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div2])) |
| 4551 | continue; |
| 4552 | if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div1])) { |
| 4553 | if (isl_int_is_pos(bmap->ineq[i][1 + v_div + div2])) |
| 4554 | isl_seq_combine(dst: bmap->ineq[i], m1: m, src1: bmap->ineq[i], |
| 4555 | m2: ctx->one, src2: bmap->ineq[l], len: total); |
| 4556 | else |
| 4557 | isl_seq_combine(dst: bmap->ineq[i], m1: m, src1: bmap->ineq[i], |
| 4558 | m2: ctx->one, src2: bmap->ineq[u], len: total); |
| 4559 | } |
| 4560 | isl_int_set(bmap->ineq[i][1 + v_div + div2], |
| 4561 | bmap->ineq[i][1 + v_div + div1]); |
| 4562 | isl_int_set_si(bmap->ineq[i][1 + v_div + div1], 0); |
| 4563 | } |
| 4564 | |
| 4565 | isl_int_clear(m); |
| 4566 | if (l > u) { |
| 4567 | isl_basic_map_drop_inequality(bmap, pos: l); |
| 4568 | isl_basic_map_drop_inequality(bmap, pos: u); |
| 4569 | } else { |
| 4570 | isl_basic_map_drop_inequality(bmap, pos: u); |
| 4571 | isl_basic_map_drop_inequality(bmap, pos: l); |
| 4572 | } |
| 4573 | bmap = isl_basic_map_mark_div_unknown(bmap, div: div2); |
| 4574 | bmap = isl_basic_map_drop_div(bmap, div: div1); |
| 4575 | return bmap; |
| 4576 | } |
| 4577 | |
| 4578 | /* First check if we can coalesce any pair of divs and |
| 4579 | * then continue with dropping more redundant divs. |
| 4580 | * |
| 4581 | * We loop over all pairs of lower and upper bounds on a div |
| 4582 | * with coefficient 1 and -1, respectively, check if there |
| 4583 | * is any other div "c" with which we can coalesce the div |
| 4584 | * and if so, perform the coalescing. |
| 4585 | */ |
| 4586 | static __isl_give isl_basic_map *coalesce_or_drop_more_redundant_divs( |
| 4587 | __isl_take isl_basic_map *bmap, int *pairs, int n) |
| 4588 | { |
| 4589 | int i, l, u; |
| 4590 | isl_size v_div; |
| 4591 | isl_size n_div; |
| 4592 | |
| 4593 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
| 4594 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
| 4595 | if (v_div < 0 || n_div < 0) |
| 4596 | return isl_basic_map_free(bmap); |
| 4597 | |
| 4598 | for (i = 0; i < n_div; ++i) { |
| 4599 | if (!pairs[i]) |
| 4600 | continue; |
| 4601 | for (l = 0; l < bmap->n_ineq; ++l) { |
| 4602 | if (!isl_int_is_one(bmap->ineq[l][1 + v_div + i])) |
| 4603 | continue; |
| 4604 | for (u = 0; u < bmap->n_ineq; ++u) { |
| 4605 | int c; |
| 4606 | |
| 4607 | if (!isl_int_is_negone(bmap->ineq[u][1+v_div+i])) |
| 4608 | continue; |
| 4609 | c = div_find_coalesce(bmap, pairs, div: i, l, u); |
| 4610 | if (c < 0) |
| 4611 | goto error; |
| 4612 | if (c >= n_div) |
| 4613 | continue; |
| 4614 | free(ptr: pairs); |
| 4615 | bmap = coalesce_divs(bmap, div1: i, div2: c, l, u); |
| 4616 | return isl_basic_map_drop_redundant_divs(bmap); |
| 4617 | } |
| 4618 | } |
| 4619 | } |
| 4620 | |
| 4621 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) { |
| 4622 | free(ptr: pairs); |
| 4623 | return bmap; |
| 4624 | } |
| 4625 | |
| 4626 | return drop_more_redundant_divs(bmap, pairs, n); |
| 4627 | error: |
| 4628 | free(ptr: pairs); |
| 4629 | isl_basic_map_free(bmap); |
| 4630 | return NULL; |
| 4631 | } |
| 4632 | |
| 4633 | /* Are the "n" coefficients starting at "first" of inequality constraints |
| 4634 | * "i" and "j" of "bmap" equal to each other? |
| 4635 | */ |
| 4636 | static int is_parallel_part(__isl_keep isl_basic_map *bmap, int i, int j, |
| 4637 | int first, int n) |
| 4638 | { |
| 4639 | return isl_seq_eq(p1: bmap->ineq[i] + first, p2: bmap->ineq[j] + first, len: n); |
| 4640 | } |
| 4641 | |
| 4642 | /* Are inequality constraints "i" and "j" of "bmap" equal to each other, |
| 4643 | * apart from the constant term and the coefficient at position "pos"? |
| 4644 | */ |
| 4645 | static isl_bool is_parallel_except(__isl_keep isl_basic_map *bmap, int i, int j, |
| 4646 | int pos) |
| 4647 | { |
| 4648 | isl_size total; |
| 4649 | |
| 4650 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 4651 | if (total < 0) |
| 4652 | return isl_bool_error; |
| 4653 | return is_parallel_part(bmap, i, j, first: 1, n: pos - 1) && |
| 4654 | is_parallel_part(bmap, i, j, first: pos + 1, n: total - pos); |
| 4655 | } |
| 4656 | |
| 4657 | /* Are inequality constraints "i" and "j" of "bmap" opposite to each other, |
| 4658 | * apart from the constant term and the coefficient at position "pos"? |
| 4659 | */ |
| 4660 | static isl_bool is_opposite_except(__isl_keep isl_basic_map *bmap, int i, int j, |
| 4661 | int pos) |
| 4662 | { |
| 4663 | isl_size total; |
| 4664 | |
| 4665 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 4666 | if (total < 0) |
| 4667 | return isl_bool_error; |
| 4668 | return is_opposite_part(bmap, i, j, first: 1, n: pos - 1) && |
| 4669 | is_opposite_part(bmap, i, j, first: pos + 1, n: total - pos); |
| 4670 | } |
| 4671 | |
| 4672 | /* Restart isl_basic_map_drop_redundant_divs after "bmap" has |
| 4673 | * been modified, simplying it if "simplify" is set. |
| 4674 | * Free the temporary data structure "pairs" that was associated |
| 4675 | * to the old version of "bmap". |
| 4676 | */ |
| 4677 | static __isl_give isl_basic_map *drop_redundant_divs_again( |
| 4678 | __isl_take isl_basic_map *bmap, __isl_take int *pairs, int simplify) |
| 4679 | { |
| 4680 | if (simplify) |
| 4681 | bmap = isl_basic_map_simplify(bmap); |
| 4682 | free(ptr: pairs); |
| 4683 | return isl_basic_map_drop_redundant_divs(bmap); |
| 4684 | } |
| 4685 | |
| 4686 | /* Is "div" the single unknown existentially quantified variable |
| 4687 | * in inequality constraint "ineq" of "bmap"? |
| 4688 | * "div" is known to have a non-zero coefficient in "ineq". |
| 4689 | */ |
| 4690 | static isl_bool single_unknown(__isl_keep isl_basic_map *bmap, int ineq, |
| 4691 | int div) |
| 4692 | { |
| 4693 | int i; |
| 4694 | isl_size n_div; |
| 4695 | unsigned o_div; |
| 4696 | isl_bool known; |
| 4697 | |
| 4698 | known = isl_basic_map_div_is_known(bmap, div); |
| 4699 | if (known < 0 || known) |
| 4700 | return isl_bool_not(b: known); |
| 4701 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
| 4702 | if (n_div < 0) |
| 4703 | return isl_bool_error; |
| 4704 | if (n_div == 1) |
| 4705 | return isl_bool_true; |
| 4706 | o_div = isl_basic_map_offset(bmap, type: isl_dim_div); |
| 4707 | for (i = 0; i < n_div; ++i) { |
| 4708 | isl_bool known; |
| 4709 | |
| 4710 | if (i == div) |
| 4711 | continue; |
| 4712 | if (isl_int_is_zero(bmap->ineq[ineq][o_div + i])) |
| 4713 | continue; |
| 4714 | known = isl_basic_map_div_is_known(bmap, div: i); |
| 4715 | if (known < 0 || !known) |
| 4716 | return known; |
| 4717 | } |
| 4718 | |
| 4719 | return isl_bool_true; |
| 4720 | } |
| 4721 | |
| 4722 | /* Does integer division "div" have coefficient 1 in inequality constraint |
| 4723 | * "ineq" of "map"? |
| 4724 | */ |
| 4725 | static isl_bool has_coef_one(__isl_keep isl_basic_map *bmap, int div, int ineq) |
| 4726 | { |
| 4727 | unsigned o_div; |
| 4728 | |
| 4729 | o_div = isl_basic_map_offset(bmap, type: isl_dim_div); |
| 4730 | if (isl_int_is_one(bmap->ineq[ineq][o_div + div])) |
| 4731 | return isl_bool_true; |
| 4732 | |
| 4733 | return isl_bool_false; |
| 4734 | } |
| 4735 | |
| 4736 | /* Turn inequality constraint "ineq" of "bmap" into an equality and |
| 4737 | * then try and drop redundant divs again, |
| 4738 | * freeing the temporary data structure "pairs" that was associated |
| 4739 | * to the old version of "bmap". |
| 4740 | */ |
| 4741 | static __isl_give isl_basic_map *set_eq_and_try_again( |
| 4742 | __isl_take isl_basic_map *bmap, int ineq, __isl_take int *pairs) |
| 4743 | { |
| 4744 | bmap = isl_basic_map_cow(bmap); |
| 4745 | isl_basic_map_inequality_to_equality(bmap, pos: ineq); |
| 4746 | return drop_redundant_divs_again(bmap, pairs, simplify: 1); |
| 4747 | } |
| 4748 | |
| 4749 | /* Drop the integer division at position "div", along with the two |
| 4750 | * inequality constraints "ineq1" and "ineq2" in which it appears |
| 4751 | * from "bmap" and then try and drop redundant divs again, |
| 4752 | * freeing the temporary data structure "pairs" that was associated |
| 4753 | * to the old version of "bmap". |
| 4754 | */ |
| 4755 | static __isl_give isl_basic_map *drop_div_and_try_again( |
| 4756 | __isl_take isl_basic_map *bmap, int div, int ineq1, int ineq2, |
| 4757 | __isl_take int *pairs) |
| 4758 | { |
| 4759 | if (ineq1 > ineq2) { |
| 4760 | isl_basic_map_drop_inequality(bmap, pos: ineq1); |
| 4761 | isl_basic_map_drop_inequality(bmap, pos: ineq2); |
| 4762 | } else { |
| 4763 | isl_basic_map_drop_inequality(bmap, pos: ineq2); |
| 4764 | isl_basic_map_drop_inequality(bmap, pos: ineq1); |
| 4765 | } |
| 4766 | bmap = isl_basic_map_drop_div(bmap, div); |
| 4767 | return drop_redundant_divs_again(bmap, pairs, simplify: 0); |
| 4768 | } |
| 4769 | |
| 4770 | /* Given two inequality constraints |
| 4771 | * |
| 4772 | * f(x) + n d + c >= 0, (ineq) |
| 4773 | * |
| 4774 | * with d the variable at position "pos", and |
| 4775 | * |
| 4776 | * f(x) + c0 >= 0, (lower) |
| 4777 | * |
| 4778 | * compute the maximal value of the lower bound ceil((-f(x) - c)/n) |
| 4779 | * determined by the first constraint. |
| 4780 | * That is, store |
| 4781 | * |
| 4782 | * ceil((c0 - c)/n) |
| 4783 | * |
| 4784 | * in *l. |
| 4785 | */ |
| 4786 | static void lower_bound_from_parallel(__isl_keep isl_basic_map *bmap, |
| 4787 | int ineq, int lower, int pos, isl_int *l) |
| 4788 | { |
| 4789 | isl_int_neg(*l, bmap->ineq[ineq][0]); |
| 4790 | isl_int_add(*l, *l, bmap->ineq[lower][0]); |
| 4791 | isl_int_cdiv_q(*l, *l, bmap->ineq[ineq][pos]); |
| 4792 | } |
| 4793 | |
| 4794 | /* Given two inequality constraints |
| 4795 | * |
| 4796 | * f(x) + n d + c >= 0, (ineq) |
| 4797 | * |
| 4798 | * with d the variable at position "pos", and |
| 4799 | * |
| 4800 | * -f(x) - c0 >= 0, (upper) |
| 4801 | * |
| 4802 | * compute the minimal value of the lower bound ceil((-f(x) - c)/n) |
| 4803 | * determined by the first constraint. |
| 4804 | * That is, store |
| 4805 | * |
| 4806 | * ceil((-c1 - c)/n) |
| 4807 | * |
| 4808 | * in *u. |
| 4809 | */ |
| 4810 | static void lower_bound_from_opposite(__isl_keep isl_basic_map *bmap, |
| 4811 | int ineq, int upper, int pos, isl_int *u) |
| 4812 | { |
| 4813 | isl_int_neg(*u, bmap->ineq[ineq][0]); |
| 4814 | isl_int_sub(*u, *u, bmap->ineq[upper][0]); |
| 4815 | isl_int_cdiv_q(*u, *u, bmap->ineq[ineq][pos]); |
| 4816 | } |
| 4817 | |
| 4818 | /* Given a lower bound constraint "ineq" on "div" in "bmap", |
| 4819 | * does the corresponding lower bound have a fixed value in "bmap"? |
| 4820 | * |
| 4821 | * In particular, "ineq" is of the form |
| 4822 | * |
| 4823 | * f(x) + n d + c >= 0 |
| 4824 | * |
| 4825 | * with n > 0, c the constant term and |
| 4826 | * d the existentially quantified variable "div". |
| 4827 | * That is, the lower bound is |
| 4828 | * |
| 4829 | * ceil((-f(x) - c)/n) |
| 4830 | * |
| 4831 | * Look for a pair of constraints |
| 4832 | * |
| 4833 | * f(x) + c0 >= 0 |
| 4834 | * -f(x) + c1 >= 0 |
| 4835 | * |
| 4836 | * i.e., -c1 <= -f(x) <= c0, that fix ceil((-f(x) - c)/n) to a constant value. |
| 4837 | * That is, check that |
| 4838 | * |
| 4839 | * ceil((-c1 - c)/n) = ceil((c0 - c)/n) |
| 4840 | * |
| 4841 | * If so, return the index of inequality f(x) + c0 >= 0. |
| 4842 | * Otherwise, return bmap->n_ineq. |
| 4843 | * Return -1 on error. |
| 4844 | */ |
| 4845 | static int lower_bound_is_cst(__isl_keep isl_basic_map *bmap, int div, int ineq) |
| 4846 | { |
| 4847 | int i; |
| 4848 | int lower = -1, upper = -1; |
| 4849 | unsigned o_div; |
| 4850 | isl_int l, u; |
| 4851 | int equal; |
| 4852 | |
| 4853 | o_div = isl_basic_map_offset(bmap, type: isl_dim_div); |
| 4854 | for (i = 0; i < bmap->n_ineq && (lower < 0 || upper < 0); ++i) { |
| 4855 | isl_bool par, opp; |
| 4856 | |
| 4857 | if (i == ineq) |
| 4858 | continue; |
| 4859 | if (!isl_int_is_zero(bmap->ineq[i][o_div + div])) |
| 4860 | continue; |
| 4861 | par = isl_bool_false; |
| 4862 | if (lower < 0) |
| 4863 | par = is_parallel_except(bmap, i: ineq, j: i, pos: o_div + div); |
| 4864 | if (par < 0) |
| 4865 | return -1; |
| 4866 | if (par) { |
| 4867 | lower = i; |
| 4868 | continue; |
| 4869 | } |
| 4870 | opp = isl_bool_false; |
| 4871 | if (upper < 0) |
| 4872 | opp = is_opposite_except(bmap, i: ineq, j: i, pos: o_div + div); |
| 4873 | if (opp < 0) |
| 4874 | return -1; |
| 4875 | if (opp) |
| 4876 | upper = i; |
| 4877 | } |
| 4878 | |
| 4879 | if (lower < 0 || upper < 0) |
| 4880 | return bmap->n_ineq; |
| 4881 | |
| 4882 | isl_int_init(l); |
| 4883 | isl_int_init(u); |
| 4884 | |
| 4885 | lower_bound_from_parallel(bmap, ineq, lower, pos: o_div + div, l: &l); |
| 4886 | lower_bound_from_opposite(bmap, ineq, upper, pos: o_div + div, u: &u); |
| 4887 | |
| 4888 | equal = isl_int_eq(l, u); |
| 4889 | |
| 4890 | isl_int_clear(l); |
| 4891 | isl_int_clear(u); |
| 4892 | |
| 4893 | return equal ? lower : bmap->n_ineq; |
| 4894 | } |
| 4895 | |
| 4896 | /* Given a lower bound constraint "ineq" on the existentially quantified |
| 4897 | * variable "div", such that the corresponding lower bound has |
| 4898 | * a fixed value in "bmap", assign this fixed value to the variable and |
| 4899 | * then try and drop redundant divs again, |
| 4900 | * freeing the temporary data structure "pairs" that was associated |
| 4901 | * to the old version of "bmap". |
| 4902 | * "lower" determines the constant value for the lower bound. |
| 4903 | * |
| 4904 | * In particular, "ineq" is of the form |
| 4905 | * |
| 4906 | * f(x) + n d + c >= 0, |
| 4907 | * |
| 4908 | * while "lower" is of the form |
| 4909 | * |
| 4910 | * f(x) + c0 >= 0 |
| 4911 | * |
| 4912 | * The lower bound is ceil((-f(x) - c)/n) and its constant value |
| 4913 | * is ceil((c0 - c)/n). |
| 4914 | */ |
| 4915 | static __isl_give isl_basic_map *fix_cst_lower(__isl_take isl_basic_map *bmap, |
| 4916 | int div, int ineq, int lower, int *pairs) |
| 4917 | { |
| 4918 | isl_int c; |
| 4919 | unsigned o_div; |
| 4920 | |
| 4921 | isl_int_init(c); |
| 4922 | |
| 4923 | o_div = isl_basic_map_offset(bmap, type: isl_dim_div); |
| 4924 | lower_bound_from_parallel(bmap, ineq, lower, pos: o_div + div, l: &c); |
| 4925 | bmap = isl_basic_map_fix(bmap, type: isl_dim_div, pos: div, value: c); |
| 4926 | free(ptr: pairs); |
| 4927 | |
| 4928 | isl_int_clear(c); |
| 4929 | |
| 4930 | return isl_basic_map_drop_redundant_divs(bmap); |
| 4931 | } |
| 4932 | |
| 4933 | /* Do any of the integer divisions of "bmap" involve integer division "div"? |
| 4934 | * |
| 4935 | * The integer division "div" could only ever appear in any later |
| 4936 | * integer division (with an explicit representation). |
| 4937 | */ |
| 4938 | static isl_bool any_div_involves_div(__isl_keep isl_basic_map *bmap, int div) |
| 4939 | { |
| 4940 | int i; |
| 4941 | isl_size v_div, n_div; |
| 4942 | |
| 4943 | v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
| 4944 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
| 4945 | if (v_div < 0 || n_div < 0) |
| 4946 | return isl_bool_error; |
| 4947 | |
| 4948 | for (i = div + 1; i < n_div; ++i) { |
| 4949 | isl_bool unknown; |
| 4950 | |
| 4951 | unknown = isl_basic_map_div_is_marked_unknown(bmap, div: i); |
| 4952 | if (unknown < 0) |
| 4953 | return isl_bool_error; |
| 4954 | if (unknown) |
| 4955 | continue; |
| 4956 | if (!isl_int_is_zero(bmap->div[i][1 + 1 + v_div + div])) |
| 4957 | return isl_bool_true; |
| 4958 | } |
| 4959 | |
| 4960 | return isl_bool_false; |
| 4961 | } |
| 4962 | |
| 4963 | /* Remove divs that are not strictly needed based on the inequality |
| 4964 | * constraints. |
| 4965 | * In particular, if a div only occurs positively (or negatively) |
| 4966 | * in constraints, then it can simply be dropped. |
| 4967 | * Also, if a div occurs in only two constraints and if moreover |
| 4968 | * those two constraints are opposite to each other, except for the constant |
| 4969 | * term and if the sum of the constant terms is such that for any value |
| 4970 | * of the other values, there is always at least one integer value of the |
| 4971 | * div, i.e., if one plus this sum is greater than or equal to |
| 4972 | * the (absolute value) of the coefficient of the div in the constraints, |
| 4973 | * then we can also simply drop the div. |
| 4974 | * |
| 4975 | * If an existentially quantified variable does not have an explicit |
| 4976 | * representation, appears in only a single lower bound that does not |
| 4977 | * involve any other such existentially quantified variables and appears |
| 4978 | * in this lower bound with coefficient 1, |
| 4979 | * then fix the variable to the value of the lower bound. That is, |
| 4980 | * turn the inequality into an equality. |
| 4981 | * If for any value of the other variables, there is any value |
| 4982 | * for the existentially quantified variable satisfying the constraints, |
| 4983 | * then this lower bound also satisfies the constraints. |
| 4984 | * It is therefore safe to pick this lower bound. |
| 4985 | * |
| 4986 | * The same reasoning holds even if the coefficient is not one. |
| 4987 | * However, fixing the variable to the value of the lower bound may |
| 4988 | * in general introduce an extra integer division, in which case |
| 4989 | * it may be better to pick another value. |
| 4990 | * If this integer division has a known constant value, then plugging |
| 4991 | * in this constant value removes the existentially quantified variable |
| 4992 | * completely. In particular, if the lower bound is of the form |
| 4993 | * ceil((-f(x) - c)/n) and there are two constraints, f(x) + c0 >= 0 and |
| 4994 | * -f(x) + c1 >= 0 such that ceil((-c1 - c)/n) = ceil((c0 - c)/n), |
| 4995 | * then the existentially quantified variable can be assigned this |
| 4996 | * shared value. |
| 4997 | * |
| 4998 | * We skip divs that appear in equalities or in the definition of other divs. |
| 4999 | * Divs that appear in the definition of other divs usually occur in at least |
| 5000 | * 4 constraints, but the constraints may have been simplified. |
| 5001 | * |
| 5002 | * If any divs are left after these simple checks then we move on |
| 5003 | * to more complicated cases in drop_more_redundant_divs. |
| 5004 | */ |
| 5005 | static __isl_give isl_basic_map *isl_basic_map_drop_redundant_divs_ineq( |
| 5006 | __isl_take isl_basic_map *bmap) |
| 5007 | { |
| 5008 | int i, j; |
| 5009 | isl_size off; |
| 5010 | int *pairs = NULL; |
| 5011 | int n = 0; |
| 5012 | isl_size n_ineq; |
| 5013 | |
| 5014 | if (!bmap) |
| 5015 | goto error; |
| 5016 | if (bmap->n_div == 0) |
| 5017 | return bmap; |
| 5018 | |
| 5019 | off = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
| 5020 | if (off < 0) |
| 5021 | return isl_basic_map_free(bmap); |
| 5022 | pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div); |
| 5023 | if (!pairs) |
| 5024 | goto error; |
| 5025 | |
| 5026 | n_ineq = isl_basic_map_n_inequality(bmap); |
| 5027 | if (n_ineq < 0) |
| 5028 | goto error; |
| 5029 | for (i = 0; i < bmap->n_div; ++i) { |
| 5030 | int pos, neg; |
| 5031 | int last_pos, last_neg; |
| 5032 | int redundant; |
| 5033 | int defined; |
| 5034 | isl_bool involves, opp, set_div; |
| 5035 | |
| 5036 | defined = !isl_int_is_zero(bmap->div[i][0]); |
| 5037 | involves = any_div_involves_div(bmap, div: i); |
| 5038 | if (involves < 0) |
| 5039 | goto error; |
| 5040 | if (involves) |
| 5041 | continue; |
| 5042 | for (j = 0; j < bmap->n_eq; ++j) |
| 5043 | if (!isl_int_is_zero(bmap->eq[j][1 + off + i])) |
| 5044 | break; |
| 5045 | if (j < bmap->n_eq) |
| 5046 | continue; |
| 5047 | ++n; |
| 5048 | pos = neg = 0; |
| 5049 | for (j = 0; j < bmap->n_ineq; ++j) { |
| 5050 | if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) { |
| 5051 | last_pos = j; |
| 5052 | ++pos; |
| 5053 | } |
| 5054 | if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) { |
| 5055 | last_neg = j; |
| 5056 | ++neg; |
| 5057 | } |
| 5058 | } |
| 5059 | pairs[i] = pos * neg; |
| 5060 | if (pairs[i] == 0) { |
| 5061 | for (j = bmap->n_ineq - 1; j >= 0; --j) |
| 5062 | if (!isl_int_is_zero(bmap->ineq[j][1+off+i])) |
| 5063 | isl_basic_map_drop_inequality(bmap, pos: j); |
| 5064 | bmap = isl_basic_map_drop_div(bmap, div: i); |
| 5065 | return drop_redundant_divs_again(bmap, pairs, simplify: 0); |
| 5066 | } |
| 5067 | if (pairs[i] != 1) |
| 5068 | opp = isl_bool_false; |
| 5069 | else |
| 5070 | opp = is_opposite(bmap, i: last_pos, j: last_neg); |
| 5071 | if (opp < 0) |
| 5072 | goto error; |
| 5073 | if (!opp) { |
| 5074 | int lower; |
| 5075 | isl_bool single, one; |
| 5076 | |
| 5077 | if (pos != 1) |
| 5078 | continue; |
| 5079 | single = single_unknown(bmap, ineq: last_pos, div: i); |
| 5080 | if (single < 0) |
| 5081 | goto error; |
| 5082 | if (!single) |
| 5083 | continue; |
| 5084 | one = has_coef_one(bmap, div: i, ineq: last_pos); |
| 5085 | if (one < 0) |
| 5086 | goto error; |
| 5087 | if (one) |
| 5088 | return set_eq_and_try_again(bmap, ineq: last_pos, |
| 5089 | pairs); |
| 5090 | lower = lower_bound_is_cst(bmap, div: i, ineq: last_pos); |
| 5091 | if (lower < 0) |
| 5092 | goto error; |
| 5093 | if (lower < n_ineq) |
| 5094 | return fix_cst_lower(bmap, div: i, ineq: last_pos, lower, |
| 5095 | pairs); |
| 5096 | continue; |
| 5097 | } |
| 5098 | |
| 5099 | isl_int_add(bmap->ineq[last_pos][0], |
| 5100 | bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]); |
| 5101 | isl_int_add_ui(bmap->ineq[last_pos][0], |
| 5102 | bmap->ineq[last_pos][0], 1); |
| 5103 | redundant = isl_int_ge(bmap->ineq[last_pos][0], |
| 5104 | bmap->ineq[last_pos][1+off+i]); |
| 5105 | isl_int_sub_ui(bmap->ineq[last_pos][0], |
| 5106 | bmap->ineq[last_pos][0], 1); |
| 5107 | isl_int_sub(bmap->ineq[last_pos][0], |
| 5108 | bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]); |
| 5109 | if (redundant) |
| 5110 | return drop_div_and_try_again(bmap, div: i, |
| 5111 | ineq1: last_pos, ineq2: last_neg, pairs); |
| 5112 | if (defined) |
| 5113 | set_div = isl_bool_false; |
| 5114 | else |
| 5115 | set_div = ok_to_set_div_from_bound(bmap, div: i, ineq: last_pos); |
| 5116 | if (set_div < 0) |
| 5117 | return isl_basic_map_free(bmap); |
| 5118 | if (set_div) { |
| 5119 | bmap = set_div_from_lower_bound(bmap, div: i, ineq: last_pos); |
| 5120 | return drop_redundant_divs_again(bmap, pairs, simplify: 1); |
| 5121 | } |
| 5122 | pairs[i] = 0; |
| 5123 | --n; |
| 5124 | } |
| 5125 | |
| 5126 | if (n > 0) |
| 5127 | return coalesce_or_drop_more_redundant_divs(bmap, pairs, n); |
| 5128 | |
| 5129 | free(ptr: pairs); |
| 5130 | return bmap; |
| 5131 | error: |
| 5132 | free(ptr: pairs); |
| 5133 | isl_basic_map_free(bmap); |
| 5134 | return NULL; |
| 5135 | } |
| 5136 | |
| 5137 | /* Consider the coefficients at "c" as a row vector and replace |
| 5138 | * them with their product with "T". "T" is assumed to be a square matrix. |
| 5139 | */ |
| 5140 | static isl_stat preimage(isl_int *c, __isl_keep isl_mat *T) |
| 5141 | { |
| 5142 | isl_size n; |
| 5143 | isl_ctx *ctx; |
| 5144 | isl_vec *v; |
| 5145 | |
| 5146 | n = isl_mat_rows(mat: T); |
| 5147 | if (n < 0) |
| 5148 | return isl_stat_error; |
| 5149 | if (isl_seq_first_non_zero(p: c, len: n) == -1) |
| 5150 | return isl_stat_ok; |
| 5151 | ctx = isl_mat_get_ctx(mat: T); |
| 5152 | v = isl_vec_alloc(ctx, size: n); |
| 5153 | if (!v) |
| 5154 | return isl_stat_error; |
| 5155 | isl_seq_swp_or_cpy(dst: v->el, src: c, len: n); |
| 5156 | v = isl_vec_mat_product(vec: v, mat: isl_mat_copy(mat: T)); |
| 5157 | if (!v) |
| 5158 | return isl_stat_error; |
| 5159 | isl_seq_swp_or_cpy(dst: c, src: v->el, len: n); |
| 5160 | isl_vec_free(vec: v); |
| 5161 | |
| 5162 | return isl_stat_ok; |
| 5163 | } |
| 5164 | |
| 5165 | /* Plug in T for the variables in "bmap" starting at "pos". |
| 5166 | * T is a linear unimodular matrix, i.e., without constant term. |
| 5167 | */ |
| 5168 | static __isl_give isl_basic_map *isl_basic_map_preimage_vars( |
| 5169 | __isl_take isl_basic_map *bmap, unsigned pos, __isl_take isl_mat *T) |
| 5170 | { |
| 5171 | int i; |
| 5172 | isl_size n_row, n_col; |
| 5173 | |
| 5174 | bmap = isl_basic_map_cow(bmap); |
| 5175 | n_row = isl_mat_rows(mat: T); |
| 5176 | n_col = isl_mat_cols(mat: T); |
| 5177 | if (!bmap || n_row < 0 || n_col < 0) |
| 5178 | goto error; |
| 5179 | |
| 5180 | if (n_col != n_row) |
| 5181 | isl_die(isl_mat_get_ctx(T), isl_error_invalid, |
| 5182 | "expecting square matrix" , goto error); |
| 5183 | |
| 5184 | if (isl_basic_map_check_range(bmap, type: isl_dim_all, first: pos, n: n_col) < 0) |
| 5185 | goto error; |
| 5186 | |
| 5187 | for (i = 0; i < bmap->n_eq; ++i) |
| 5188 | if (preimage(c: bmap->eq[i] + 1 + pos, T) < 0) |
| 5189 | goto error; |
| 5190 | for (i = 0; i < bmap->n_ineq; ++i) |
| 5191 | if (preimage(c: bmap->ineq[i] + 1 + pos, T) < 0) |
| 5192 | goto error; |
| 5193 | for (i = 0; i < bmap->n_div; ++i) { |
| 5194 | if (isl_basic_map_div_is_marked_unknown(bmap, div: i)) |
| 5195 | continue; |
| 5196 | if (preimage(c: bmap->div[i] + 1 + 1 + pos, T) < 0) |
| 5197 | goto error; |
| 5198 | } |
| 5199 | |
| 5200 | isl_mat_free(mat: T); |
| 5201 | return bmap; |
| 5202 | error: |
| 5203 | isl_basic_map_free(bmap); |
| 5204 | isl_mat_free(mat: T); |
| 5205 | return NULL; |
| 5206 | } |
| 5207 | |
| 5208 | /* Remove divs that are not strictly needed. |
| 5209 | * |
| 5210 | * First look for an equality constraint involving two or more |
| 5211 | * existentially quantified variables without an explicit |
| 5212 | * representation. Replace the combination that appears |
| 5213 | * in the equality constraint by a single existentially quantified |
| 5214 | * variable such that the equality can be used to derive |
| 5215 | * an explicit representation for the variable. |
| 5216 | * If there are no more such equality constraints, then continue |
| 5217 | * with isl_basic_map_drop_redundant_divs_ineq. |
| 5218 | * |
| 5219 | * In particular, if the equality constraint is of the form |
| 5220 | * |
| 5221 | * f(x) + \sum_i c_i a_i = 0 |
| 5222 | * |
| 5223 | * with a_i existentially quantified variable without explicit |
| 5224 | * representation, then apply a transformation on the existentially |
| 5225 | * quantified variables to turn the constraint into |
| 5226 | * |
| 5227 | * f(x) + g a_1' = 0 |
| 5228 | * |
| 5229 | * with g the gcd of the c_i. |
| 5230 | * In order to easily identify which existentially quantified variables |
| 5231 | * have a complete explicit representation, i.e., without being defined |
| 5232 | * in terms of other existentially quantified variables without |
| 5233 | * an explicit representation, the existentially quantified variables |
| 5234 | * are first sorted. |
| 5235 | * |
| 5236 | * The variable transformation is computed by extending the row |
| 5237 | * [c_1/g ... c_n/g] to a unimodular matrix, obtaining the transformation |
| 5238 | * |
| 5239 | * [a_1'] [c_1/g ... c_n/g] [ a_1 ] |
| 5240 | * [a_2'] [ a_2 ] |
| 5241 | * ... = U .... |
| 5242 | * [a_n'] [ a_n ] |
| 5243 | * |
| 5244 | * with [c_1/g ... c_n/g] representing the first row of U. |
| 5245 | * The inverse of U is then plugged into the original constraints. |
| 5246 | * The call to isl_basic_map_simplify makes sure the explicit |
| 5247 | * representation for a_1' is extracted from the equality constraint. |
| 5248 | */ |
| 5249 | __isl_give isl_basic_map *isl_basic_map_drop_redundant_divs( |
| 5250 | __isl_take isl_basic_map *bmap) |
| 5251 | { |
| 5252 | int first; |
| 5253 | int i; |
| 5254 | unsigned o_div; |
| 5255 | isl_size n_div; |
| 5256 | int l; |
| 5257 | isl_ctx *ctx; |
| 5258 | isl_mat *T; |
| 5259 | |
| 5260 | if (!bmap) |
| 5261 | return NULL; |
| 5262 | if (isl_basic_map_divs_known(bmap)) |
| 5263 | return isl_basic_map_drop_redundant_divs_ineq(bmap); |
| 5264 | if (bmap->n_eq == 0) |
| 5265 | return isl_basic_map_drop_redundant_divs_ineq(bmap); |
| 5266 | bmap = isl_basic_map_sort_divs(bmap); |
| 5267 | if (!bmap) |
| 5268 | return NULL; |
| 5269 | |
| 5270 | first = isl_basic_map_first_unknown_div(bmap); |
| 5271 | if (first < 0) |
| 5272 | return isl_basic_map_free(bmap); |
| 5273 | |
| 5274 | o_div = isl_basic_map_offset(bmap, type: isl_dim_div); |
| 5275 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
| 5276 | if (n_div < 0) |
| 5277 | return isl_basic_map_free(bmap); |
| 5278 | |
| 5279 | for (i = 0; i < bmap->n_eq; ++i) { |
| 5280 | l = isl_seq_first_non_zero(p: bmap->eq[i] + o_div + first, |
| 5281 | len: n_div - (first)); |
| 5282 | if (l < 0) |
| 5283 | continue; |
| 5284 | l += first; |
| 5285 | if (isl_seq_first_non_zero(p: bmap->eq[i] + o_div + l + 1, |
| 5286 | len: n_div - (l + 1)) == -1) |
| 5287 | continue; |
| 5288 | break; |
| 5289 | } |
| 5290 | if (i >= bmap->n_eq) |
| 5291 | return isl_basic_map_drop_redundant_divs_ineq(bmap); |
| 5292 | |
| 5293 | ctx = isl_basic_map_get_ctx(bmap); |
| 5294 | T = isl_mat_alloc(ctx, n_row: n_div - l, n_col: n_div - l); |
| 5295 | if (!T) |
| 5296 | return isl_basic_map_free(bmap); |
| 5297 | isl_seq_cpy(dst: T->row[0], src: bmap->eq[i] + o_div + l, len: n_div - l); |
| 5298 | T = isl_mat_normalize_row(mat: T, row: 0); |
| 5299 | T = isl_mat_unimodular_complete(M: T, row: 1); |
| 5300 | T = isl_mat_right_inverse(mat: T); |
| 5301 | |
| 5302 | for (i = l; i < n_div; ++i) |
| 5303 | bmap = isl_basic_map_mark_div_unknown(bmap, div: i); |
| 5304 | bmap = isl_basic_map_preimage_vars(bmap, pos: o_div - 1 + l, T); |
| 5305 | bmap = isl_basic_map_simplify(bmap); |
| 5306 | |
| 5307 | return isl_basic_map_drop_redundant_divs(bmap); |
| 5308 | } |
| 5309 | |
| 5310 | /* Does "bmap" satisfy any equality that involves more than 2 variables |
| 5311 | * and/or has coefficients different from -1 and 1? |
| 5312 | */ |
| 5313 | static isl_bool has_multiple_var_equality(__isl_keep isl_basic_map *bmap) |
| 5314 | { |
| 5315 | int i; |
| 5316 | isl_size total; |
| 5317 | |
| 5318 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 5319 | if (total < 0) |
| 5320 | return isl_bool_error; |
| 5321 | |
| 5322 | for (i = 0; i < bmap->n_eq; ++i) { |
| 5323 | int j, k; |
| 5324 | |
| 5325 | j = isl_seq_first_non_zero(p: bmap->eq[i] + 1, len: total); |
| 5326 | if (j < 0) |
| 5327 | continue; |
| 5328 | if (!isl_int_is_one(bmap->eq[i][1 + j]) && |
| 5329 | !isl_int_is_negone(bmap->eq[i][1 + j])) |
| 5330 | return isl_bool_true; |
| 5331 | |
| 5332 | j += 1; |
| 5333 | k = isl_seq_first_non_zero(p: bmap->eq[i] + 1 + j, len: total - j); |
| 5334 | if (k < 0) |
| 5335 | continue; |
| 5336 | j += k; |
| 5337 | if (!isl_int_is_one(bmap->eq[i][1 + j]) && |
| 5338 | !isl_int_is_negone(bmap->eq[i][1 + j])) |
| 5339 | return isl_bool_true; |
| 5340 | |
| 5341 | j += 1; |
| 5342 | k = isl_seq_first_non_zero(p: bmap->eq[i] + 1 + j, len: total - j); |
| 5343 | if (k >= 0) |
| 5344 | return isl_bool_true; |
| 5345 | } |
| 5346 | |
| 5347 | return isl_bool_false; |
| 5348 | } |
| 5349 | |
| 5350 | /* Remove any common factor g from the constraint coefficients in "v". |
| 5351 | * The constant term is stored in the first position and is replaced |
| 5352 | * by floor(c/g). If any common factor is removed and if this results |
| 5353 | * in a tightening of the constraint, then set *tightened. |
| 5354 | */ |
| 5355 | static __isl_give isl_vec *normalize_constraint(__isl_take isl_vec *v, |
| 5356 | int *tightened) |
| 5357 | { |
| 5358 | isl_ctx *ctx; |
| 5359 | |
| 5360 | if (!v) |
| 5361 | return NULL; |
| 5362 | ctx = isl_vec_get_ctx(vec: v); |
| 5363 | isl_seq_gcd(p: v->el + 1, len: v->size - 1, gcd: &ctx->normalize_gcd); |
| 5364 | if (isl_int_is_zero(ctx->normalize_gcd)) |
| 5365 | return v; |
| 5366 | if (isl_int_is_one(ctx->normalize_gcd)) |
| 5367 | return v; |
| 5368 | v = isl_vec_cow(vec: v); |
| 5369 | if (!v) |
| 5370 | return NULL; |
| 5371 | if (tightened && !isl_int_is_divisible_by(v->el[0], ctx->normalize_gcd)) |
| 5372 | *tightened = 1; |
| 5373 | isl_int_fdiv_q(v->el[0], v->el[0], ctx->normalize_gcd); |
| 5374 | isl_seq_scale_down(dst: v->el + 1, src: v->el + 1, f: ctx->normalize_gcd, |
| 5375 | len: v->size - 1); |
| 5376 | return v; |
| 5377 | } |
| 5378 | |
| 5379 | /* If "bmap" is an integer set that satisfies any equality involving |
| 5380 | * more than 2 variables and/or has coefficients different from -1 and 1, |
| 5381 | * then use variable compression to reduce the coefficients by removing |
| 5382 | * any (hidden) common factor. |
| 5383 | * In particular, apply the variable compression to each constraint, |
| 5384 | * factor out any common factor in the non-constant coefficients and |
| 5385 | * then apply the inverse of the compression. |
| 5386 | * At the end, we mark the basic map as having reduced constants. |
| 5387 | * If this flag is still set on the next invocation of this function, |
| 5388 | * then we skip the computation. |
| 5389 | * |
| 5390 | * Removing a common factor may result in a tightening of some of |
| 5391 | * the constraints. If this happens, then we may end up with two |
| 5392 | * opposite inequalities that can be replaced by an equality. |
| 5393 | * We therefore call isl_basic_map_detect_inequality_pairs, |
| 5394 | * which checks for such pairs of inequalities as well as eliminate_divs_eq |
| 5395 | * and isl_basic_map_gauss if such a pair was found. |
| 5396 | * |
| 5397 | * Tightening may also result in some other constraints becoming |
| 5398 | * (rationally) redundant with respect to the tightened constraint |
| 5399 | * (in combination with other constraints). The basic map may |
| 5400 | * therefore no longer be assumed to have no redundant constraints. |
| 5401 | * |
| 5402 | * Note that this function may leave the result in an inconsistent state. |
| 5403 | * In particular, the constraints may not be gaussed. |
| 5404 | * Unfortunately, isl_map_coalesce actually depends on this inconsistent state |
| 5405 | * for some of the test cases to pass successfully. |
| 5406 | * Any potential modification of the representation is therefore only |
| 5407 | * performed on a single copy of the basic map. |
| 5408 | */ |
| 5409 | __isl_give isl_basic_map *isl_basic_map_reduce_coefficients( |
| 5410 | __isl_take isl_basic_map *bmap) |
| 5411 | { |
| 5412 | isl_size total; |
| 5413 | isl_bool multi; |
| 5414 | isl_ctx *ctx; |
| 5415 | isl_vec *v; |
| 5416 | isl_mat *eq, *T, *T2; |
| 5417 | int i; |
| 5418 | int tightened; |
| 5419 | |
| 5420 | if (!bmap) |
| 5421 | return NULL; |
| 5422 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS)) |
| 5423 | return bmap; |
| 5424 | if (isl_basic_map_is_rational(bmap)) |
| 5425 | return bmap; |
| 5426 | if (bmap->n_eq == 0) |
| 5427 | return bmap; |
| 5428 | multi = has_multiple_var_equality(bmap); |
| 5429 | if (multi < 0) |
| 5430 | return isl_basic_map_free(bmap); |
| 5431 | if (!multi) |
| 5432 | return bmap; |
| 5433 | |
| 5434 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 5435 | if (total < 0) |
| 5436 | return isl_basic_map_free(bmap); |
| 5437 | ctx = isl_basic_map_get_ctx(bmap); |
| 5438 | v = isl_vec_alloc(ctx, size: 1 + total); |
| 5439 | if (!v) |
| 5440 | return isl_basic_map_free(bmap); |
| 5441 | |
| 5442 | eq = isl_mat_sub_alloc6(ctx, row: bmap->eq, first_row: 0, n_row: bmap->n_eq, first_col: 0, n_col: 1 + total); |
| 5443 | T = isl_mat_variable_compression(B: eq, T2: &T2); |
| 5444 | if (!T || !T2) |
| 5445 | goto error; |
| 5446 | if (T->n_col == 0) { |
| 5447 | isl_mat_free(mat: T); |
| 5448 | isl_mat_free(mat: T2); |
| 5449 | isl_vec_free(vec: v); |
| 5450 | return isl_basic_map_set_to_empty(bmap); |
| 5451 | } |
| 5452 | |
| 5453 | bmap = isl_basic_map_cow(bmap); |
| 5454 | if (!bmap) |
| 5455 | goto error; |
| 5456 | |
| 5457 | tightened = 0; |
| 5458 | for (i = 0; i < bmap->n_ineq; ++i) { |
| 5459 | isl_seq_cpy(dst: v->el, src: bmap->ineq[i], len: 1 + total); |
| 5460 | v = isl_vec_mat_product(vec: v, mat: isl_mat_copy(mat: T)); |
| 5461 | v = normalize_constraint(v, tightened: &tightened); |
| 5462 | v = isl_vec_mat_product(vec: v, mat: isl_mat_copy(mat: T2)); |
| 5463 | if (!v) |
| 5464 | goto error; |
| 5465 | isl_seq_cpy(dst: bmap->ineq[i], src: v->el, len: 1 + total); |
| 5466 | } |
| 5467 | |
| 5468 | isl_mat_free(mat: T); |
| 5469 | isl_mat_free(mat: T2); |
| 5470 | isl_vec_free(vec: v); |
| 5471 | |
| 5472 | ISL_F_SET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS); |
| 5473 | |
| 5474 | if (tightened) { |
| 5475 | int progress = 0; |
| 5476 | |
| 5477 | ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT); |
| 5478 | bmap = isl_basic_map_detect_inequality_pairs(bmap, progress: &progress); |
| 5479 | if (progress) { |
| 5480 | bmap = eliminate_divs_eq(bmap, progress: &progress); |
| 5481 | bmap = isl_basic_map_gauss(bmap, NULL); |
| 5482 | } |
| 5483 | } |
| 5484 | |
| 5485 | return bmap; |
| 5486 | error: |
| 5487 | isl_mat_free(mat: T); |
| 5488 | isl_mat_free(mat: T2); |
| 5489 | isl_vec_free(vec: v); |
| 5490 | return isl_basic_map_free(bmap); |
| 5491 | } |
| 5492 | |
| 5493 | /* Shift the integer division at position "div" of "bmap" |
| 5494 | * by "shift" times the variable at position "pos". |
| 5495 | * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0 |
| 5496 | * corresponds to the constant term. |
| 5497 | * |
| 5498 | * That is, if the integer division has the form |
| 5499 | * |
| 5500 | * floor(f(x)/d) |
| 5501 | * |
| 5502 | * then replace it by |
| 5503 | * |
| 5504 | * floor((f(x) + shift * d * x_pos)/d) - shift * x_pos |
| 5505 | */ |
| 5506 | __isl_give isl_basic_map *isl_basic_map_shift_div( |
| 5507 | __isl_take isl_basic_map *bmap, int div, int pos, isl_int shift) |
| 5508 | { |
| 5509 | int i; |
| 5510 | isl_size total, n_div; |
| 5511 | |
| 5512 | if (isl_int_is_zero(shift)) |
| 5513 | return bmap; |
| 5514 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 5515 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
| 5516 | total -= n_div; |
| 5517 | if (total < 0 || n_div < 0) |
| 5518 | return isl_basic_map_free(bmap); |
| 5519 | |
| 5520 | isl_int_addmul(bmap->div[div][1 + pos], shift, bmap->div[div][0]); |
| 5521 | |
| 5522 | for (i = 0; i < bmap->n_eq; ++i) { |
| 5523 | if (isl_int_is_zero(bmap->eq[i][1 + total + div])) |
| 5524 | continue; |
| 5525 | isl_int_submul(bmap->eq[i][pos], |
| 5526 | shift, bmap->eq[i][1 + total + div]); |
| 5527 | } |
| 5528 | for (i = 0; i < bmap->n_ineq; ++i) { |
| 5529 | if (isl_int_is_zero(bmap->ineq[i][1 + total + div])) |
| 5530 | continue; |
| 5531 | isl_int_submul(bmap->ineq[i][pos], |
| 5532 | shift, bmap->ineq[i][1 + total + div]); |
| 5533 | } |
| 5534 | for (i = 0; i < bmap->n_div; ++i) { |
| 5535 | if (isl_int_is_zero(bmap->div[i][0])) |
| 5536 | continue; |
| 5537 | if (isl_int_is_zero(bmap->div[i][1 + 1 + total + div])) |
| 5538 | continue; |
| 5539 | isl_int_submul(bmap->div[i][1 + pos], |
| 5540 | shift, bmap->div[i][1 + 1 + total + div]); |
| 5541 | } |
| 5542 | |
| 5543 | return bmap; |
| 5544 | } |
| 5545 | |