| 1 | /* |
| 2 | * Copyright 2008-2009 Katholieke Universiteit Leuven |
| 3 | * |
| 4 | * Use of this software is governed by the MIT license |
| 5 | * |
| 6 | * Written by Sven Verdoolaege, K.U.Leuven, Departement |
| 7 | * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium |
| 8 | */ |
| 9 | |
| 10 | #include <isl_ctx_private.h> |
| 11 | #include <isl_map_private.h> |
| 12 | #include "isl_sample.h" |
| 13 | #include <isl/vec.h> |
| 14 | #include <isl/mat.h> |
| 15 | #include <isl_seq.h> |
| 16 | #include "isl_equalities.h" |
| 17 | #include "isl_tab.h" |
| 18 | #include "isl_basis_reduction.h" |
| 19 | #include <isl_factorization.h> |
| 20 | #include <isl_point_private.h> |
| 21 | #include <isl_options_private.h> |
| 22 | #include <isl_vec_private.h> |
| 23 | |
| 24 | #include <bset_from_bmap.c> |
| 25 | #include <set_to_map.c> |
| 26 | |
| 27 | static __isl_give isl_vec *isl_basic_set_sample_bounded( |
| 28 | __isl_take isl_basic_set *bset); |
| 29 | |
| 30 | static __isl_give isl_vec *empty_sample(__isl_take isl_basic_set *bset) |
| 31 | { |
| 32 | struct isl_vec *vec; |
| 33 | |
| 34 | vec = isl_vec_alloc(ctx: bset->ctx, size: 0); |
| 35 | isl_basic_set_free(bset); |
| 36 | return vec; |
| 37 | } |
| 38 | |
| 39 | /* Construct a zero sample of the same dimension as bset. |
| 40 | * As a special case, if bset is zero-dimensional, this |
| 41 | * function creates a zero-dimensional sample point. |
| 42 | */ |
| 43 | static __isl_give isl_vec *zero_sample(__isl_take isl_basic_set *bset) |
| 44 | { |
| 45 | isl_size dim; |
| 46 | struct isl_vec *sample; |
| 47 | |
| 48 | dim = isl_basic_set_dim(bset, type: isl_dim_all); |
| 49 | if (dim < 0) |
| 50 | goto error; |
| 51 | sample = isl_vec_alloc(ctx: bset->ctx, size: 1 + dim); |
| 52 | if (sample) { |
| 53 | isl_int_set_si(sample->el[0], 1); |
| 54 | isl_seq_clr(p: sample->el + 1, len: dim); |
| 55 | } |
| 56 | isl_basic_set_free(bset); |
| 57 | return sample; |
| 58 | error: |
| 59 | isl_basic_set_free(bset); |
| 60 | return NULL; |
| 61 | } |
| 62 | |
| 63 | static __isl_give isl_vec *interval_sample(__isl_take isl_basic_set *bset) |
| 64 | { |
| 65 | int i; |
| 66 | isl_int t; |
| 67 | struct isl_vec *sample; |
| 68 | |
| 69 | bset = isl_basic_set_simplify(bset); |
| 70 | if (!bset) |
| 71 | return NULL; |
| 72 | if (isl_basic_set_plain_is_empty(bset)) |
| 73 | return empty_sample(bset); |
| 74 | if (bset->n_eq == 0 && bset->n_ineq == 0) |
| 75 | return zero_sample(bset); |
| 76 | |
| 77 | sample = isl_vec_alloc(ctx: bset->ctx, size: 2); |
| 78 | if (!sample) |
| 79 | goto error; |
| 80 | if (!bset) |
| 81 | return NULL; |
| 82 | isl_int_set_si(sample->block.data[0], 1); |
| 83 | |
| 84 | if (bset->n_eq > 0) { |
| 85 | isl_assert(bset->ctx, bset->n_eq == 1, goto error); |
| 86 | isl_assert(bset->ctx, bset->n_ineq == 0, goto error); |
| 87 | if (isl_int_is_one(bset->eq[0][1])) |
| 88 | isl_int_neg(sample->el[1], bset->eq[0][0]); |
| 89 | else { |
| 90 | isl_assert(bset->ctx, isl_int_is_negone(bset->eq[0][1]), |
| 91 | goto error); |
| 92 | isl_int_set(sample->el[1], bset->eq[0][0]); |
| 93 | } |
| 94 | isl_basic_set_free(bset); |
| 95 | return sample; |
| 96 | } |
| 97 | |
| 98 | isl_int_init(t); |
| 99 | if (isl_int_is_one(bset->ineq[0][1])) |
| 100 | isl_int_neg(sample->block.data[1], bset->ineq[0][0]); |
| 101 | else |
| 102 | isl_int_set(sample->block.data[1], bset->ineq[0][0]); |
| 103 | for (i = 1; i < bset->n_ineq; ++i) { |
| 104 | isl_seq_inner_product(p1: sample->block.data, |
| 105 | p2: bset->ineq[i], len: 2, prod: &t); |
| 106 | if (isl_int_is_neg(t)) |
| 107 | break; |
| 108 | } |
| 109 | isl_int_clear(t); |
| 110 | if (i < bset->n_ineq) { |
| 111 | isl_vec_free(vec: sample); |
| 112 | return empty_sample(bset); |
| 113 | } |
| 114 | |
| 115 | isl_basic_set_free(bset); |
| 116 | return sample; |
| 117 | error: |
| 118 | isl_basic_set_free(bset); |
| 119 | isl_vec_free(vec: sample); |
| 120 | return NULL; |
| 121 | } |
| 122 | |
| 123 | /* Find a sample integer point, if any, in bset, which is known |
| 124 | * to have equalities. If bset contains no integer points, then |
| 125 | * return a zero-length vector. |
| 126 | * We simply remove the known equalities, compute a sample |
| 127 | * in the resulting bset, using the specified recurse function, |
| 128 | * and then transform the sample back to the original space. |
| 129 | */ |
| 130 | static __isl_give isl_vec *sample_eq(__isl_take isl_basic_set *bset, |
| 131 | __isl_give isl_vec *(*recurse)(__isl_take isl_basic_set *)) |
| 132 | { |
| 133 | struct isl_mat *T; |
| 134 | struct isl_vec *sample; |
| 135 | |
| 136 | if (!bset) |
| 137 | return NULL; |
| 138 | |
| 139 | bset = isl_basic_set_remove_equalities(bset, T: &T, NULL); |
| 140 | sample = recurse(bset); |
| 141 | if (!sample || sample->size == 0) |
| 142 | isl_mat_free(mat: T); |
| 143 | else |
| 144 | sample = isl_mat_vec_product(mat: T, vec: sample); |
| 145 | return sample; |
| 146 | } |
| 147 | |
| 148 | /* Return a matrix containing the equalities of the tableau |
| 149 | * in constraint form. The tableau is assumed to have |
| 150 | * an associated bset that has been kept up-to-date. |
| 151 | */ |
| 152 | static struct isl_mat *tab_equalities(struct isl_tab *tab) |
| 153 | { |
| 154 | int i, j; |
| 155 | int n_eq; |
| 156 | struct isl_mat *eq; |
| 157 | struct isl_basic_set *bset; |
| 158 | |
| 159 | if (!tab) |
| 160 | return NULL; |
| 161 | |
| 162 | bset = isl_tab_peek_bset(tab); |
| 163 | isl_assert(tab->mat->ctx, bset, return NULL); |
| 164 | |
| 165 | n_eq = tab->n_var - tab->n_col + tab->n_dead; |
| 166 | if (tab->empty || n_eq == 0) |
| 167 | return isl_mat_alloc(ctx: tab->mat->ctx, n_row: 0, n_col: tab->n_var); |
| 168 | if (n_eq == tab->n_var) |
| 169 | return isl_mat_identity(ctx: tab->mat->ctx, n_row: tab->n_var); |
| 170 | |
| 171 | eq = isl_mat_alloc(ctx: tab->mat->ctx, n_row: n_eq, n_col: tab->n_var); |
| 172 | if (!eq) |
| 173 | return NULL; |
| 174 | for (i = 0, j = 0; i < tab->n_con; ++i) { |
| 175 | if (tab->con[i].is_row) |
| 176 | continue; |
| 177 | if (tab->con[i].index >= 0 && tab->con[i].index >= tab->n_dead) |
| 178 | continue; |
| 179 | if (i < bset->n_eq) |
| 180 | isl_seq_cpy(dst: eq->row[j], src: bset->eq[i] + 1, len: tab->n_var); |
| 181 | else |
| 182 | isl_seq_cpy(dst: eq->row[j], |
| 183 | src: bset->ineq[i - bset->n_eq] + 1, len: tab->n_var); |
| 184 | ++j; |
| 185 | } |
| 186 | isl_assert(bset->ctx, j == n_eq, goto error); |
| 187 | return eq; |
| 188 | error: |
| 189 | isl_mat_free(mat: eq); |
| 190 | return NULL; |
| 191 | } |
| 192 | |
| 193 | /* Compute and return an initial basis for the bounded tableau "tab". |
| 194 | * |
| 195 | * If the tableau is either full-dimensional or zero-dimensional, |
| 196 | * the we simply return an identity matrix. |
| 197 | * Otherwise, we construct a basis whose first directions correspond |
| 198 | * to equalities. |
| 199 | */ |
| 200 | static struct isl_mat *initial_basis(struct isl_tab *tab) |
| 201 | { |
| 202 | int n_eq; |
| 203 | struct isl_mat *eq; |
| 204 | struct isl_mat *Q; |
| 205 | |
| 206 | tab->n_unbounded = 0; |
| 207 | tab->n_zero = n_eq = tab->n_var - tab->n_col + tab->n_dead; |
| 208 | if (tab->empty || n_eq == 0 || n_eq == tab->n_var) |
| 209 | return isl_mat_identity(ctx: tab->mat->ctx, n_row: 1 + tab->n_var); |
| 210 | |
| 211 | eq = tab_equalities(tab); |
| 212 | eq = isl_mat_left_hermite(M: eq, neg: 0, NULL, Q: &Q); |
| 213 | if (!eq) |
| 214 | return NULL; |
| 215 | isl_mat_free(mat: eq); |
| 216 | |
| 217 | Q = isl_mat_lin_to_aff(mat: Q); |
| 218 | return Q; |
| 219 | } |
| 220 | |
| 221 | /* Compute the minimum of the current ("level") basis row over "tab" |
| 222 | * and store the result in position "level" of "min". |
| 223 | * |
| 224 | * This function assumes that at least one more row and at least |
| 225 | * one more element in the constraint array are available in the tableau. |
| 226 | */ |
| 227 | static enum isl_lp_result compute_min(isl_ctx *ctx, struct isl_tab *tab, |
| 228 | __isl_keep isl_vec *min, int level) |
| 229 | { |
| 230 | return isl_tab_min(tab, f: tab->basis->row[1 + level], |
| 231 | denom: ctx->one, opt: &min->el[level], NULL, flags: 0); |
| 232 | } |
| 233 | |
| 234 | /* Compute the maximum of the current ("level") basis row over "tab" |
| 235 | * and store the result in position "level" of "max". |
| 236 | * |
| 237 | * This function assumes that at least one more row and at least |
| 238 | * one more element in the constraint array are available in the tableau. |
| 239 | */ |
| 240 | static enum isl_lp_result compute_max(isl_ctx *ctx, struct isl_tab *tab, |
| 241 | __isl_keep isl_vec *max, int level) |
| 242 | { |
| 243 | enum isl_lp_result res; |
| 244 | unsigned dim = tab->n_var; |
| 245 | |
| 246 | isl_seq_neg(dst: tab->basis->row[1 + level] + 1, |
| 247 | src: tab->basis->row[1 + level] + 1, len: dim); |
| 248 | res = isl_tab_min(tab, f: tab->basis->row[1 + level], |
| 249 | denom: ctx->one, opt: &max->el[level], NULL, flags: 0); |
| 250 | isl_seq_neg(dst: tab->basis->row[1 + level] + 1, |
| 251 | src: tab->basis->row[1 + level] + 1, len: dim); |
| 252 | isl_int_neg(max->el[level], max->el[level]); |
| 253 | |
| 254 | return res; |
| 255 | } |
| 256 | |
| 257 | /* Perform a greedy search for an integer point in the set represented |
| 258 | * by "tab", given that the minimal rational value (rounded up to the |
| 259 | * nearest integer) at "level" is smaller than the maximal rational |
| 260 | * value (rounded down to the nearest integer). |
| 261 | * |
| 262 | * Return 1 if we have found an integer point (if tab->n_unbounded > 0 |
| 263 | * then we may have only found integer values for the bounded dimensions |
| 264 | * and it is the responsibility of the caller to extend this solution |
| 265 | * to the unbounded dimensions). |
| 266 | * Return 0 if greedy search did not result in a solution. |
| 267 | * Return -1 if some error occurred. |
| 268 | * |
| 269 | * We assign a value half-way between the minimum and the maximum |
| 270 | * to the current dimension and check if the minimal value of the |
| 271 | * next dimension is still smaller than (or equal) to the maximal value. |
| 272 | * We continue this process until either |
| 273 | * - the minimal value (rounded up) is greater than the maximal value |
| 274 | * (rounded down). In this case, greedy search has failed. |
| 275 | * - we have exhausted all bounded dimensions, meaning that we have |
| 276 | * found a solution. |
| 277 | * - the sample value of the tableau is integral. |
| 278 | * - some error has occurred. |
| 279 | */ |
| 280 | static int greedy_search(isl_ctx *ctx, struct isl_tab *tab, |
| 281 | __isl_keep isl_vec *min, __isl_keep isl_vec *max, int level) |
| 282 | { |
| 283 | struct isl_tab_undo *snap; |
| 284 | enum isl_lp_result res; |
| 285 | |
| 286 | snap = isl_tab_snap(tab); |
| 287 | |
| 288 | do { |
| 289 | isl_int_add(tab->basis->row[1 + level][0], |
| 290 | min->el[level], max->el[level]); |
| 291 | isl_int_fdiv_q_ui(tab->basis->row[1 + level][0], |
| 292 | tab->basis->row[1 + level][0], 2); |
| 293 | isl_int_neg(tab->basis->row[1 + level][0], |
| 294 | tab->basis->row[1 + level][0]); |
| 295 | if (isl_tab_add_valid_eq(tab, eq: tab->basis->row[1 + level]) < 0) |
| 296 | return -1; |
| 297 | isl_int_set_si(tab->basis->row[1 + level][0], 0); |
| 298 | |
| 299 | if (++level >= tab->n_var - tab->n_unbounded) |
| 300 | return 1; |
| 301 | if (isl_tab_sample_is_integer(tab)) |
| 302 | return 1; |
| 303 | |
| 304 | res = compute_min(ctx, tab, min, level); |
| 305 | if (res == isl_lp_error) |
| 306 | return -1; |
| 307 | if (res != isl_lp_ok) |
| 308 | isl_die(ctx, isl_error_internal, |
| 309 | "expecting bounded rational solution" , |
| 310 | return -1); |
| 311 | res = compute_max(ctx, tab, max, level); |
| 312 | if (res == isl_lp_error) |
| 313 | return -1; |
| 314 | if (res != isl_lp_ok) |
| 315 | isl_die(ctx, isl_error_internal, |
| 316 | "expecting bounded rational solution" , |
| 317 | return -1); |
| 318 | } while (isl_int_le(min->el[level], max->el[level])); |
| 319 | |
| 320 | if (isl_tab_rollback(tab, snap) < 0) |
| 321 | return -1; |
| 322 | |
| 323 | return 0; |
| 324 | } |
| 325 | |
| 326 | /* Given a tableau representing a set, find and return |
| 327 | * an integer point in the set, if there is any. |
| 328 | * |
| 329 | * We perform a depth first search |
| 330 | * for an integer point, by scanning all possible values in the range |
| 331 | * attained by a basis vector, where an initial basis may have been set |
| 332 | * by the calling function. Otherwise an initial basis that exploits |
| 333 | * the equalities in the tableau is created. |
| 334 | * tab->n_zero is currently ignored and is clobbered by this function. |
| 335 | * |
| 336 | * The tableau is allowed to have unbounded direction, but then |
| 337 | * the calling function needs to set an initial basis, with the |
| 338 | * unbounded directions last and with tab->n_unbounded set |
| 339 | * to the number of unbounded directions. |
| 340 | * Furthermore, the calling functions needs to add shifted copies |
| 341 | * of all constraints involving unbounded directions to ensure |
| 342 | * that any feasible rational value in these directions can be rounded |
| 343 | * up to yield a feasible integer value. |
| 344 | * In particular, let B define the given basis x' = B x |
| 345 | * and let T be the inverse of B, i.e., X = T x'. |
| 346 | * Let a x + c >= 0 be a constraint of the set represented by the tableau, |
| 347 | * or a T x' + c >= 0 in terms of the given basis. Assume that |
| 348 | * the bounded directions have an integer value, then we can safely |
| 349 | * round up the values for the unbounded directions if we make sure |
| 350 | * that x' not only satisfies the original constraint, but also |
| 351 | * the constraint "a T x' + c + s >= 0" with s the sum of all |
| 352 | * negative values in the last n_unbounded entries of "a T". |
| 353 | * The calling function therefore needs to add the constraint |
| 354 | * a x + c + s >= 0. The current function then scans the first |
| 355 | * directions for an integer value and once those have been found, |
| 356 | * it can compute "T ceil(B x)" to yield an integer point in the set. |
| 357 | * Note that during the search, the first rows of B may be changed |
| 358 | * by a basis reduction, but the last n_unbounded rows of B remain |
| 359 | * unaltered and are also not mixed into the first rows. |
| 360 | * |
| 361 | * The search is implemented iteratively. "level" identifies the current |
| 362 | * basis vector. "init" is true if we want the first value at the current |
| 363 | * level and false if we want the next value. |
| 364 | * |
| 365 | * At the start of each level, we first check if we can find a solution |
| 366 | * using greedy search. If not, we continue with the exhaustive search. |
| 367 | * |
| 368 | * The initial basis is the identity matrix. If the range in some direction |
| 369 | * contains more than one integer value, we perform basis reduction based |
| 370 | * on the value of ctx->opt->gbr |
| 371 | * - ISL_GBR_NEVER: never perform basis reduction |
| 372 | * - ISL_GBR_ONCE: only perform basis reduction the first |
| 373 | * time such a range is encountered |
| 374 | * - ISL_GBR_ALWAYS: always perform basis reduction when |
| 375 | * such a range is encountered |
| 376 | * |
| 377 | * When ctx->opt->gbr is set to ISL_GBR_ALWAYS, then we allow the basis |
| 378 | * reduction computation to return early. That is, as soon as it |
| 379 | * finds a reasonable first direction. |
| 380 | */ |
| 381 | __isl_give isl_vec *isl_tab_sample(struct isl_tab *tab) |
| 382 | { |
| 383 | unsigned dim; |
| 384 | unsigned gbr; |
| 385 | struct isl_ctx *ctx; |
| 386 | struct isl_vec *sample; |
| 387 | struct isl_vec *min; |
| 388 | struct isl_vec *max; |
| 389 | enum isl_lp_result res; |
| 390 | int level; |
| 391 | int init; |
| 392 | int reduced; |
| 393 | struct isl_tab_undo **snap; |
| 394 | |
| 395 | if (!tab) |
| 396 | return NULL; |
| 397 | if (tab->empty) |
| 398 | return isl_vec_alloc(ctx: tab->mat->ctx, size: 0); |
| 399 | |
| 400 | if (!tab->basis) |
| 401 | tab->basis = initial_basis(tab); |
| 402 | if (!tab->basis) |
| 403 | return NULL; |
| 404 | isl_assert(tab->mat->ctx, tab->basis->n_row == tab->n_var + 1, |
| 405 | return NULL); |
| 406 | isl_assert(tab->mat->ctx, tab->basis->n_col == tab->n_var + 1, |
| 407 | return NULL); |
| 408 | |
| 409 | ctx = tab->mat->ctx; |
| 410 | dim = tab->n_var; |
| 411 | gbr = ctx->opt->gbr; |
| 412 | |
| 413 | if (tab->n_unbounded == tab->n_var) { |
| 414 | sample = isl_tab_get_sample_value(tab); |
| 415 | sample = isl_mat_vec_product(mat: isl_mat_copy(mat: tab->basis), vec: sample); |
| 416 | sample = isl_vec_ceil(vec: sample); |
| 417 | sample = isl_mat_vec_inverse_product(mat: isl_mat_copy(mat: tab->basis), |
| 418 | vec: sample); |
| 419 | return sample; |
| 420 | } |
| 421 | |
| 422 | if (isl_tab_extend_cons(tab, n_new: dim + 1) < 0) |
| 423 | return NULL; |
| 424 | |
| 425 | min = isl_vec_alloc(ctx, size: dim); |
| 426 | max = isl_vec_alloc(ctx, size: dim); |
| 427 | snap = isl_alloc_array(ctx, struct isl_tab_undo *, dim); |
| 428 | |
| 429 | if (!min || !max || !snap) |
| 430 | goto error; |
| 431 | |
| 432 | level = 0; |
| 433 | init = 1; |
| 434 | reduced = 0; |
| 435 | |
| 436 | while (level >= 0) { |
| 437 | if (init) { |
| 438 | int choice; |
| 439 | |
| 440 | res = compute_min(ctx, tab, min, level); |
| 441 | if (res == isl_lp_error) |
| 442 | goto error; |
| 443 | if (res != isl_lp_ok) |
| 444 | isl_die(ctx, isl_error_internal, |
| 445 | "expecting bounded rational solution" , |
| 446 | goto error); |
| 447 | if (isl_tab_sample_is_integer(tab)) |
| 448 | break; |
| 449 | res = compute_max(ctx, tab, max, level); |
| 450 | if (res == isl_lp_error) |
| 451 | goto error; |
| 452 | if (res != isl_lp_ok) |
| 453 | isl_die(ctx, isl_error_internal, |
| 454 | "expecting bounded rational solution" , |
| 455 | goto error); |
| 456 | if (isl_tab_sample_is_integer(tab)) |
| 457 | break; |
| 458 | choice = isl_int_lt(min->el[level], max->el[level]); |
| 459 | if (choice) { |
| 460 | int g; |
| 461 | g = greedy_search(ctx, tab, min, max, level); |
| 462 | if (g < 0) |
| 463 | goto error; |
| 464 | if (g) |
| 465 | break; |
| 466 | } |
| 467 | if (!reduced && choice && |
| 468 | ctx->opt->gbr != ISL_GBR_NEVER) { |
| 469 | unsigned gbr_only_first; |
| 470 | if (ctx->opt->gbr == ISL_GBR_ONCE) |
| 471 | ctx->opt->gbr = ISL_GBR_NEVER; |
| 472 | tab->n_zero = level; |
| 473 | gbr_only_first = ctx->opt->gbr_only_first; |
| 474 | ctx->opt->gbr_only_first = |
| 475 | ctx->opt->gbr == ISL_GBR_ALWAYS; |
| 476 | tab = isl_tab_compute_reduced_basis(tab); |
| 477 | ctx->opt->gbr_only_first = gbr_only_first; |
| 478 | if (!tab || !tab->basis) |
| 479 | goto error; |
| 480 | reduced = 1; |
| 481 | continue; |
| 482 | } |
| 483 | reduced = 0; |
| 484 | snap[level] = isl_tab_snap(tab); |
| 485 | } else |
| 486 | isl_int_add_ui(min->el[level], min->el[level], 1); |
| 487 | |
| 488 | if (isl_int_gt(min->el[level], max->el[level])) { |
| 489 | level--; |
| 490 | init = 0; |
| 491 | if (level >= 0) |
| 492 | if (isl_tab_rollback(tab, snap: snap[level]) < 0) |
| 493 | goto error; |
| 494 | continue; |
| 495 | } |
| 496 | isl_int_neg(tab->basis->row[1 + level][0], min->el[level]); |
| 497 | if (isl_tab_add_valid_eq(tab, eq: tab->basis->row[1 + level]) < 0) |
| 498 | goto error; |
| 499 | isl_int_set_si(tab->basis->row[1 + level][0], 0); |
| 500 | if (level + tab->n_unbounded < dim - 1) { |
| 501 | ++level; |
| 502 | init = 1; |
| 503 | continue; |
| 504 | } |
| 505 | break; |
| 506 | } |
| 507 | |
| 508 | if (level >= 0) { |
| 509 | sample = isl_tab_get_sample_value(tab); |
| 510 | if (!sample) |
| 511 | goto error; |
| 512 | if (tab->n_unbounded && !isl_int_is_one(sample->el[0])) { |
| 513 | sample = isl_mat_vec_product(mat: isl_mat_copy(mat: tab->basis), |
| 514 | vec: sample); |
| 515 | sample = isl_vec_ceil(vec: sample); |
| 516 | sample = isl_mat_vec_inverse_product( |
| 517 | mat: isl_mat_copy(mat: tab->basis), vec: sample); |
| 518 | } |
| 519 | } else |
| 520 | sample = isl_vec_alloc(ctx, size: 0); |
| 521 | |
| 522 | ctx->opt->gbr = gbr; |
| 523 | isl_vec_free(vec: min); |
| 524 | isl_vec_free(vec: max); |
| 525 | free(ptr: snap); |
| 526 | return sample; |
| 527 | error: |
| 528 | ctx->opt->gbr = gbr; |
| 529 | isl_vec_free(vec: min); |
| 530 | isl_vec_free(vec: max); |
| 531 | free(ptr: snap); |
| 532 | return NULL; |
| 533 | } |
| 534 | |
| 535 | static __isl_give isl_vec *sample_bounded(__isl_take isl_basic_set *bset); |
| 536 | |
| 537 | /* Internal data for factored_sample. |
| 538 | * "sample" collects the sample and may get reset to a zero-length vector |
| 539 | * signaling the absence of a sample vector. |
| 540 | * "pos" is the position of the contribution of the next factor. |
| 541 | */ |
| 542 | struct isl_factored_sample_data { |
| 543 | isl_vec *sample; |
| 544 | int pos; |
| 545 | }; |
| 546 | |
| 547 | /* isl_factorizer_every_factor_basic_set callback that extends |
| 548 | * the sample in data->sample with the contribution |
| 549 | * of the factor "bset". |
| 550 | * If "bset" turns out to be empty, then the product is empty too and |
| 551 | * no further factors need to be considered. |
| 552 | */ |
| 553 | static isl_bool factor_sample(__isl_keep isl_basic_set *bset, void *user) |
| 554 | { |
| 555 | struct isl_factored_sample_data *data = user; |
| 556 | isl_vec *sample; |
| 557 | isl_size n; |
| 558 | |
| 559 | n = isl_basic_set_dim(bset, type: isl_dim_set); |
| 560 | if (n < 0) |
| 561 | return isl_bool_error; |
| 562 | |
| 563 | sample = sample_bounded(bset: isl_basic_set_copy(bset)); |
| 564 | if (!sample) |
| 565 | return isl_bool_error; |
| 566 | if (sample->size == 0) { |
| 567 | isl_vec_free(vec: data->sample); |
| 568 | data->sample = sample; |
| 569 | return isl_bool_false; |
| 570 | } |
| 571 | isl_seq_cpy(dst: data->sample->el + data->pos, src: sample->el + 1, len: n); |
| 572 | isl_vec_free(vec: sample); |
| 573 | data->pos += n; |
| 574 | |
| 575 | return isl_bool_true; |
| 576 | } |
| 577 | |
| 578 | /* Compute a sample point of the given basic set, based on the given, |
| 579 | * non-trivial factorization. |
| 580 | */ |
| 581 | static __isl_give isl_vec *factored_sample(__isl_take isl_basic_set *bset, |
| 582 | __isl_take isl_factorizer *f) |
| 583 | { |
| 584 | struct isl_factored_sample_data data = { NULL }; |
| 585 | isl_ctx *ctx; |
| 586 | isl_size total; |
| 587 | isl_bool every; |
| 588 | |
| 589 | ctx = isl_basic_set_get_ctx(bset); |
| 590 | total = isl_basic_set_dim(bset, type: isl_dim_all); |
| 591 | if (!ctx || total < 0) |
| 592 | goto error; |
| 593 | |
| 594 | data.sample = isl_vec_alloc(ctx, size: 1 + total); |
| 595 | if (!data.sample) |
| 596 | goto error; |
| 597 | isl_int_set_si(data.sample->el[0], 1); |
| 598 | data.pos = 1; |
| 599 | |
| 600 | every = isl_factorizer_every_factor_basic_set(f, test: &factor_sample, user: &data); |
| 601 | if (every < 0) { |
| 602 | data.sample = isl_vec_free(vec: data.sample); |
| 603 | } else if (every) { |
| 604 | isl_morph *morph; |
| 605 | |
| 606 | morph = isl_morph_inverse(morph: isl_morph_copy(morph: f->morph)); |
| 607 | data.sample = isl_morph_vec(morph, vec: data.sample); |
| 608 | } |
| 609 | |
| 610 | isl_basic_set_free(bset); |
| 611 | isl_factorizer_free(f); |
| 612 | return data.sample; |
| 613 | error: |
| 614 | isl_basic_set_free(bset); |
| 615 | isl_factorizer_free(f); |
| 616 | isl_vec_free(vec: data.sample); |
| 617 | return NULL; |
| 618 | } |
| 619 | |
| 620 | /* Given a basic set that is known to be bounded, find and return |
| 621 | * an integer point in the basic set, if there is any. |
| 622 | * |
| 623 | * After handling some trivial cases, we construct a tableau |
| 624 | * and then use isl_tab_sample to find a sample, passing it |
| 625 | * the identity matrix as initial basis. |
| 626 | */ |
| 627 | static __isl_give isl_vec *sample_bounded(__isl_take isl_basic_set *bset) |
| 628 | { |
| 629 | isl_size dim; |
| 630 | struct isl_vec *sample; |
| 631 | struct isl_tab *tab = NULL; |
| 632 | isl_factorizer *f; |
| 633 | |
| 634 | if (!bset) |
| 635 | return NULL; |
| 636 | |
| 637 | if (isl_basic_set_plain_is_empty(bset)) |
| 638 | return empty_sample(bset); |
| 639 | |
| 640 | dim = isl_basic_set_dim(bset, type: isl_dim_all); |
| 641 | if (dim < 0) |
| 642 | bset = isl_basic_set_free(bset); |
| 643 | if (dim == 0) |
| 644 | return zero_sample(bset); |
| 645 | if (dim == 1) |
| 646 | return interval_sample(bset); |
| 647 | if (bset->n_eq > 0) |
| 648 | return sample_eq(bset, recurse: sample_bounded); |
| 649 | |
| 650 | f = isl_basic_set_factorizer(bset); |
| 651 | if (!f) |
| 652 | goto error; |
| 653 | if (f->n_group != 0) |
| 654 | return factored_sample(bset, f); |
| 655 | isl_factorizer_free(f); |
| 656 | |
| 657 | tab = isl_tab_from_basic_set(bset, track: 1); |
| 658 | if (tab && tab->empty) { |
| 659 | isl_tab_free(tab); |
| 660 | ISL_F_SET(bset, ISL_BASIC_SET_EMPTY); |
| 661 | sample = isl_vec_alloc(ctx: isl_basic_set_get_ctx(bset), size: 0); |
| 662 | isl_basic_set_free(bset); |
| 663 | return sample; |
| 664 | } |
| 665 | |
| 666 | if (!ISL_F_ISSET(bset, ISL_BASIC_SET_NO_IMPLICIT)) |
| 667 | if (isl_tab_detect_implicit_equalities(tab) < 0) |
| 668 | goto error; |
| 669 | |
| 670 | sample = isl_tab_sample(tab); |
| 671 | if (!sample) |
| 672 | goto error; |
| 673 | |
| 674 | if (sample->size > 0) { |
| 675 | isl_vec_free(vec: bset->sample); |
| 676 | bset->sample = isl_vec_copy(vec: sample); |
| 677 | } |
| 678 | |
| 679 | isl_basic_set_free(bset); |
| 680 | isl_tab_free(tab); |
| 681 | return sample; |
| 682 | error: |
| 683 | isl_basic_set_free(bset); |
| 684 | isl_tab_free(tab); |
| 685 | return NULL; |
| 686 | } |
| 687 | |
| 688 | /* Given a basic set "bset" and a value "sample" for the first coordinates |
| 689 | * of bset, plug in these values and drop the corresponding coordinates. |
| 690 | * |
| 691 | * We do this by computing the preimage of the transformation |
| 692 | * |
| 693 | * [ 1 0 ] |
| 694 | * x = [ s 0 ] x' |
| 695 | * [ 0 I ] |
| 696 | * |
| 697 | * where [1 s] is the sample value and I is the identity matrix of the |
| 698 | * appropriate dimension. |
| 699 | */ |
| 700 | static __isl_give isl_basic_set *plug_in(__isl_take isl_basic_set *bset, |
| 701 | __isl_take isl_vec *sample) |
| 702 | { |
| 703 | int i; |
| 704 | isl_size total; |
| 705 | struct isl_mat *T; |
| 706 | |
| 707 | total = isl_basic_set_dim(bset, type: isl_dim_all); |
| 708 | if (total < 0 || !sample) |
| 709 | goto error; |
| 710 | |
| 711 | T = isl_mat_alloc(ctx: bset->ctx, n_row: 1 + total, n_col: 1 + total - (sample->size - 1)); |
| 712 | if (!T) |
| 713 | goto error; |
| 714 | |
| 715 | for (i = 0; i < sample->size; ++i) { |
| 716 | isl_int_set(T->row[i][0], sample->el[i]); |
| 717 | isl_seq_clr(p: T->row[i] + 1, len: T->n_col - 1); |
| 718 | } |
| 719 | for (i = 0; i < T->n_col - 1; ++i) { |
| 720 | isl_seq_clr(p: T->row[sample->size + i], len: T->n_col); |
| 721 | isl_int_set_si(T->row[sample->size + i][1 + i], 1); |
| 722 | } |
| 723 | isl_vec_free(vec: sample); |
| 724 | |
| 725 | bset = isl_basic_set_preimage(bset, mat: T); |
| 726 | return bset; |
| 727 | error: |
| 728 | isl_basic_set_free(bset); |
| 729 | isl_vec_free(vec: sample); |
| 730 | return NULL; |
| 731 | } |
| 732 | |
| 733 | /* Given a basic set "bset", return any (possibly non-integer) point |
| 734 | * in the basic set. |
| 735 | */ |
| 736 | static __isl_give isl_vec *rational_sample(__isl_take isl_basic_set *bset) |
| 737 | { |
| 738 | struct isl_tab *tab; |
| 739 | struct isl_vec *sample; |
| 740 | |
| 741 | if (!bset) |
| 742 | return NULL; |
| 743 | |
| 744 | tab = isl_tab_from_basic_set(bset, track: 0); |
| 745 | sample = isl_tab_get_sample_value(tab); |
| 746 | isl_tab_free(tab); |
| 747 | |
| 748 | isl_basic_set_free(bset); |
| 749 | |
| 750 | return sample; |
| 751 | } |
| 752 | |
| 753 | /* Given a linear cone "cone" and a rational point "vec", |
| 754 | * construct a polyhedron with shifted copies of the constraints in "cone", |
| 755 | * i.e., a polyhedron with "cone" as its recession cone, such that each |
| 756 | * point x in this polyhedron is such that the unit box positioned at x |
| 757 | * lies entirely inside the affine cone 'vec + cone'. |
| 758 | * Any rational point in this polyhedron may therefore be rounded up |
| 759 | * to yield an integer point that lies inside said affine cone. |
| 760 | * |
| 761 | * Denote the constraints of cone by "<a_i, x> >= 0" and the rational |
| 762 | * point "vec" by v/d. |
| 763 | * Let b_i = <a_i, v>. Then the affine cone 'vec + cone' is given |
| 764 | * by <a_i, x> - b/d >= 0. |
| 765 | * The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone. |
| 766 | * We prefer this polyhedron over the actual affine cone because it doesn't |
| 767 | * require a scaling of the constraints. |
| 768 | * If each of the vertices of the unit cube positioned at x lies inside |
| 769 | * this polyhedron, then the whole unit cube at x lies inside the affine cone. |
| 770 | * We therefore impose that x' = x + \sum e_i, for any selection of unit |
| 771 | * vectors lies inside the polyhedron, i.e., |
| 772 | * |
| 773 | * <a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0 |
| 774 | * |
| 775 | * The most stringent of these constraints is the one that selects |
| 776 | * all negative a_i, so the polyhedron we are looking for has constraints |
| 777 | * |
| 778 | * <a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0 |
| 779 | * |
| 780 | * Note that if cone were known to have only non-negative rays |
| 781 | * (which can be accomplished by a unimodular transformation), |
| 782 | * then we would only have to check the points x' = x + e_i |
| 783 | * and we only have to add the smallest negative a_i (if any) |
| 784 | * instead of the sum of all negative a_i. |
| 785 | */ |
| 786 | static __isl_give isl_basic_set *shift_cone(__isl_take isl_basic_set *cone, |
| 787 | __isl_take isl_vec *vec) |
| 788 | { |
| 789 | int i, j, k; |
| 790 | isl_size total; |
| 791 | |
| 792 | struct isl_basic_set *shift = NULL; |
| 793 | |
| 794 | total = isl_basic_set_dim(bset: cone, type: isl_dim_all); |
| 795 | if (total < 0 || !vec) |
| 796 | goto error; |
| 797 | |
| 798 | isl_assert(cone->ctx, cone->n_eq == 0, goto error); |
| 799 | |
| 800 | shift = isl_basic_set_alloc_space(space: isl_basic_set_get_space(bset: cone), |
| 801 | extra: 0, n_eq: 0, n_ineq: cone->n_ineq); |
| 802 | |
| 803 | for (i = 0; i < cone->n_ineq; ++i) { |
| 804 | k = isl_basic_set_alloc_inequality(bset: shift); |
| 805 | if (k < 0) |
| 806 | goto error; |
| 807 | isl_seq_cpy(dst: shift->ineq[k] + 1, src: cone->ineq[i] + 1, len: total); |
| 808 | isl_seq_inner_product(p1: shift->ineq[k] + 1, p2: vec->el + 1, len: total, |
| 809 | prod: &shift->ineq[k][0]); |
| 810 | isl_int_cdiv_q(shift->ineq[k][0], |
| 811 | shift->ineq[k][0], vec->el[0]); |
| 812 | isl_int_neg(shift->ineq[k][0], shift->ineq[k][0]); |
| 813 | for (j = 0; j < total; ++j) { |
| 814 | if (isl_int_is_nonneg(shift->ineq[k][1 + j])) |
| 815 | continue; |
| 816 | isl_int_add(shift->ineq[k][0], |
| 817 | shift->ineq[k][0], shift->ineq[k][1 + j]); |
| 818 | } |
| 819 | } |
| 820 | |
| 821 | isl_basic_set_free(bset: cone); |
| 822 | isl_vec_free(vec); |
| 823 | |
| 824 | return isl_basic_set_finalize(bset: shift); |
| 825 | error: |
| 826 | isl_basic_set_free(bset: shift); |
| 827 | isl_basic_set_free(bset: cone); |
| 828 | isl_vec_free(vec); |
| 829 | return NULL; |
| 830 | } |
| 831 | |
| 832 | /* Given a rational point vec in a (transformed) basic set, |
| 833 | * such that cone is the recession cone of the original basic set, |
| 834 | * "round up" the rational point to an integer point. |
| 835 | * |
| 836 | * We first check if the rational point just happens to be integer. |
| 837 | * If not, we transform the cone in the same way as the basic set, |
| 838 | * pick a point x in this cone shifted to the rational point such that |
| 839 | * the whole unit cube at x is also inside this affine cone. |
| 840 | * Then we simply round up the coordinates of x and return the |
| 841 | * resulting integer point. |
| 842 | */ |
| 843 | static __isl_give isl_vec *round_up_in_cone(__isl_take isl_vec *vec, |
| 844 | __isl_take isl_basic_set *cone, __isl_take isl_mat *U) |
| 845 | { |
| 846 | isl_size total; |
| 847 | |
| 848 | if (!vec || !cone || !U) |
| 849 | goto error; |
| 850 | |
| 851 | isl_assert(vec->ctx, vec->size != 0, goto error); |
| 852 | if (isl_int_is_one(vec->el[0])) { |
| 853 | isl_mat_free(mat: U); |
| 854 | isl_basic_set_free(bset: cone); |
| 855 | return vec; |
| 856 | } |
| 857 | |
| 858 | total = isl_basic_set_dim(bset: cone, type: isl_dim_all); |
| 859 | if (total < 0) |
| 860 | goto error; |
| 861 | cone = isl_basic_set_preimage(bset: cone, mat: U); |
| 862 | cone = isl_basic_set_remove_dims(bset: cone, type: isl_dim_set, |
| 863 | first: 0, n: total - (vec->size - 1)); |
| 864 | |
| 865 | cone = shift_cone(cone, vec); |
| 866 | |
| 867 | vec = rational_sample(bset: cone); |
| 868 | vec = isl_vec_ceil(vec); |
| 869 | return vec; |
| 870 | error: |
| 871 | isl_mat_free(mat: U); |
| 872 | isl_vec_free(vec); |
| 873 | isl_basic_set_free(bset: cone); |
| 874 | return NULL; |
| 875 | } |
| 876 | |
| 877 | /* Concatenate two integer vectors, i.e., two vectors with denominator |
| 878 | * (stored in element 0) equal to 1. |
| 879 | */ |
| 880 | static __isl_give isl_vec *vec_concat(__isl_take isl_vec *vec1, |
| 881 | __isl_take isl_vec *vec2) |
| 882 | { |
| 883 | struct isl_vec *vec; |
| 884 | |
| 885 | if (!vec1 || !vec2) |
| 886 | goto error; |
| 887 | isl_assert(vec1->ctx, vec1->size > 0, goto error); |
| 888 | isl_assert(vec2->ctx, vec2->size > 0, goto error); |
| 889 | isl_assert(vec1->ctx, isl_int_is_one(vec1->el[0]), goto error); |
| 890 | isl_assert(vec2->ctx, isl_int_is_one(vec2->el[0]), goto error); |
| 891 | |
| 892 | vec = isl_vec_alloc(ctx: vec1->ctx, size: vec1->size + vec2->size - 1); |
| 893 | if (!vec) |
| 894 | goto error; |
| 895 | |
| 896 | isl_seq_cpy(dst: vec->el, src: vec1->el, len: vec1->size); |
| 897 | isl_seq_cpy(dst: vec->el + vec1->size, src: vec2->el + 1, len: vec2->size - 1); |
| 898 | |
| 899 | isl_vec_free(vec: vec1); |
| 900 | isl_vec_free(vec: vec2); |
| 901 | |
| 902 | return vec; |
| 903 | error: |
| 904 | isl_vec_free(vec: vec1); |
| 905 | isl_vec_free(vec: vec2); |
| 906 | return NULL; |
| 907 | } |
| 908 | |
| 909 | /* Give a basic set "bset" with recession cone "cone", compute and |
| 910 | * return an integer point in bset, if any. |
| 911 | * |
| 912 | * If the recession cone is full-dimensional, then we know that |
| 913 | * bset contains an infinite number of integer points and it is |
| 914 | * fairly easy to pick one of them. |
| 915 | * If the recession cone is not full-dimensional, then we first |
| 916 | * transform bset such that the bounded directions appear as |
| 917 | * the first dimensions of the transformed basic set. |
| 918 | * We do this by using a unimodular transformation that transforms |
| 919 | * the equalities in the recession cone to equalities on the first |
| 920 | * dimensions. |
| 921 | * |
| 922 | * The transformed set is then projected onto its bounded dimensions. |
| 923 | * Note that to compute this projection, we can simply drop all constraints |
| 924 | * involving any of the unbounded dimensions since these constraints |
| 925 | * cannot be combined to produce a constraint on the bounded dimensions. |
| 926 | * To see this, assume that there is such a combination of constraints |
| 927 | * that produces a constraint on the bounded dimensions. This means |
| 928 | * that some combination of the unbounded dimensions has both an upper |
| 929 | * bound and a lower bound in terms of the bounded dimensions, but then |
| 930 | * this combination would be a bounded direction too and would have been |
| 931 | * transformed into a bounded dimensions. |
| 932 | * |
| 933 | * We then compute a sample value in the bounded dimensions. |
| 934 | * If no such value can be found, then the original set did not contain |
| 935 | * any integer points and we are done. |
| 936 | * Otherwise, we plug in the value we found in the bounded dimensions, |
| 937 | * project out these bounded dimensions and end up with a set with |
| 938 | * a full-dimensional recession cone. |
| 939 | * A sample point in this set is computed by "rounding up" any |
| 940 | * rational point in the set. |
| 941 | * |
| 942 | * The sample points in the bounded and unbounded dimensions are |
| 943 | * then combined into a single sample point and transformed back |
| 944 | * to the original space. |
| 945 | */ |
| 946 | __isl_give isl_vec *isl_basic_set_sample_with_cone( |
| 947 | __isl_take isl_basic_set *bset, __isl_take isl_basic_set *cone) |
| 948 | { |
| 949 | isl_size total; |
| 950 | unsigned cone_dim; |
| 951 | struct isl_mat *M, *U; |
| 952 | struct isl_vec *sample; |
| 953 | struct isl_vec *cone_sample; |
| 954 | struct isl_ctx *ctx; |
| 955 | struct isl_basic_set *bounded; |
| 956 | |
| 957 | total = isl_basic_set_dim(bset: cone, type: isl_dim_all); |
| 958 | if (!bset || total < 0) |
| 959 | goto error; |
| 960 | |
| 961 | ctx = isl_basic_set_get_ctx(bset); |
| 962 | cone_dim = total - cone->n_eq; |
| 963 | |
| 964 | M = isl_mat_sub_alloc6(ctx, row: cone->eq, first_row: 0, n_row: cone->n_eq, first_col: 1, n_col: total); |
| 965 | M = isl_mat_left_hermite(M, neg: 0, U: &U, NULL); |
| 966 | if (!M) |
| 967 | goto error; |
| 968 | isl_mat_free(mat: M); |
| 969 | |
| 970 | U = isl_mat_lin_to_aff(mat: U); |
| 971 | bset = isl_basic_set_preimage(bset, mat: isl_mat_copy(mat: U)); |
| 972 | |
| 973 | bounded = isl_basic_set_copy(bset); |
| 974 | bounded = isl_basic_set_drop_constraints_involving(bset: bounded, |
| 975 | first: total - cone_dim, n: cone_dim); |
| 976 | bounded = isl_basic_set_drop_dims(bset: bounded, first: total - cone_dim, n: cone_dim); |
| 977 | sample = sample_bounded(bset: bounded); |
| 978 | if (!sample || sample->size == 0) { |
| 979 | isl_basic_set_free(bset); |
| 980 | isl_basic_set_free(bset: cone); |
| 981 | isl_mat_free(mat: U); |
| 982 | return sample; |
| 983 | } |
| 984 | bset = plug_in(bset, sample: isl_vec_copy(vec: sample)); |
| 985 | cone_sample = rational_sample(bset); |
| 986 | cone_sample = round_up_in_cone(vec: cone_sample, cone, U: isl_mat_copy(mat: U)); |
| 987 | sample = vec_concat(vec1: sample, vec2: cone_sample); |
| 988 | sample = isl_mat_vec_product(mat: U, vec: sample); |
| 989 | return sample; |
| 990 | error: |
| 991 | isl_basic_set_free(bset: cone); |
| 992 | isl_basic_set_free(bset); |
| 993 | return NULL; |
| 994 | } |
| 995 | |
| 996 | static void vec_sum_of_neg(__isl_keep isl_vec *v, isl_int *s) |
| 997 | { |
| 998 | int i; |
| 999 | |
| 1000 | isl_int_set_si(*s, 0); |
| 1001 | |
| 1002 | for (i = 0; i < v->size; ++i) |
| 1003 | if (isl_int_is_neg(v->el[i])) |
| 1004 | isl_int_add(*s, *s, v->el[i]); |
| 1005 | } |
| 1006 | |
| 1007 | /* Given a tableau "tab", a tableau "tab_cone" that corresponds |
| 1008 | * to the recession cone and the inverse of a new basis U = inv(B), |
| 1009 | * with the unbounded directions in B last, |
| 1010 | * add constraints to "tab" that ensure any rational value |
| 1011 | * in the unbounded directions can be rounded up to an integer value. |
| 1012 | * |
| 1013 | * The new basis is given by x' = B x, i.e., x = U x'. |
| 1014 | * For any rational value of the last tab->n_unbounded coordinates |
| 1015 | * in the update tableau, the value that is obtained by rounding |
| 1016 | * up this value should be contained in the original tableau. |
| 1017 | * For any constraint "a x + c >= 0", we therefore need to add |
| 1018 | * a constraint "a x + c + s >= 0", with s the sum of all negative |
| 1019 | * entries in the last elements of "a U". |
| 1020 | * |
| 1021 | * Since we are not interested in the first entries of any of the "a U", |
| 1022 | * we first drop the columns of U that correpond to bounded directions. |
| 1023 | */ |
| 1024 | static int tab_shift_cone(struct isl_tab *tab, |
| 1025 | struct isl_tab *tab_cone, struct isl_mat *U) |
| 1026 | { |
| 1027 | int i; |
| 1028 | isl_int v; |
| 1029 | struct isl_basic_set *bset = NULL; |
| 1030 | |
| 1031 | if (tab && tab->n_unbounded == 0) { |
| 1032 | isl_mat_free(mat: U); |
| 1033 | return 0; |
| 1034 | } |
| 1035 | isl_int_init(v); |
| 1036 | if (!tab || !tab_cone || !U) |
| 1037 | goto error; |
| 1038 | bset = isl_tab_peek_bset(tab: tab_cone); |
| 1039 | U = isl_mat_drop_cols(mat: U, col: 0, n: tab->n_var - tab->n_unbounded); |
| 1040 | for (i = 0; i < bset->n_ineq; ++i) { |
| 1041 | int ok; |
| 1042 | struct isl_vec *row = NULL; |
| 1043 | if (isl_tab_is_equality(tab: tab_cone, con: tab_cone->n_eq + i)) |
| 1044 | continue; |
| 1045 | row = isl_vec_alloc(ctx: bset->ctx, size: tab_cone->n_var); |
| 1046 | if (!row) |
| 1047 | goto error; |
| 1048 | isl_seq_cpy(dst: row->el, src: bset->ineq[i] + 1, len: tab_cone->n_var); |
| 1049 | row = isl_vec_mat_product(vec: row, mat: isl_mat_copy(mat: U)); |
| 1050 | if (!row) |
| 1051 | goto error; |
| 1052 | vec_sum_of_neg(v: row, s: &v); |
| 1053 | isl_vec_free(vec: row); |
| 1054 | if (isl_int_is_zero(v)) |
| 1055 | continue; |
| 1056 | if (isl_tab_extend_cons(tab, n_new: 1) < 0) |
| 1057 | goto error; |
| 1058 | isl_int_add(bset->ineq[i][0], bset->ineq[i][0], v); |
| 1059 | ok = isl_tab_add_ineq(tab, ineq: bset->ineq[i]) >= 0; |
| 1060 | isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], v); |
| 1061 | if (!ok) |
| 1062 | goto error; |
| 1063 | } |
| 1064 | |
| 1065 | isl_mat_free(mat: U); |
| 1066 | isl_int_clear(v); |
| 1067 | return 0; |
| 1068 | error: |
| 1069 | isl_mat_free(mat: U); |
| 1070 | isl_int_clear(v); |
| 1071 | return -1; |
| 1072 | } |
| 1073 | |
| 1074 | /* Compute and return an initial basis for the possibly |
| 1075 | * unbounded tableau "tab". "tab_cone" is a tableau |
| 1076 | * for the corresponding recession cone. |
| 1077 | * Additionally, add constraints to "tab" that ensure |
| 1078 | * that any rational value for the unbounded directions |
| 1079 | * can be rounded up to an integer value. |
| 1080 | * |
| 1081 | * If the tableau is bounded, i.e., if the recession cone |
| 1082 | * is zero-dimensional, then we just use inital_basis. |
| 1083 | * Otherwise, we construct a basis whose first directions |
| 1084 | * correspond to equalities, followed by bounded directions, |
| 1085 | * i.e., equalities in the recession cone. |
| 1086 | * The remaining directions are then unbounded. |
| 1087 | */ |
| 1088 | int isl_tab_set_initial_basis_with_cone(struct isl_tab *tab, |
| 1089 | struct isl_tab *tab_cone) |
| 1090 | { |
| 1091 | struct isl_mat *eq; |
| 1092 | struct isl_mat *cone_eq; |
| 1093 | struct isl_mat *U, *Q; |
| 1094 | |
| 1095 | if (!tab || !tab_cone) |
| 1096 | return -1; |
| 1097 | |
| 1098 | if (tab_cone->n_col == tab_cone->n_dead) { |
| 1099 | tab->basis = initial_basis(tab); |
| 1100 | return tab->basis ? 0 : -1; |
| 1101 | } |
| 1102 | |
| 1103 | eq = tab_equalities(tab); |
| 1104 | if (!eq) |
| 1105 | return -1; |
| 1106 | tab->n_zero = eq->n_row; |
| 1107 | cone_eq = tab_equalities(tab: tab_cone); |
| 1108 | eq = isl_mat_concat(top: eq, bot: cone_eq); |
| 1109 | if (!eq) |
| 1110 | return -1; |
| 1111 | tab->n_unbounded = tab->n_var - (eq->n_row - tab->n_zero); |
| 1112 | eq = isl_mat_left_hermite(M: eq, neg: 0, U: &U, Q: &Q); |
| 1113 | if (!eq) |
| 1114 | return -1; |
| 1115 | isl_mat_free(mat: eq); |
| 1116 | tab->basis = isl_mat_lin_to_aff(mat: Q); |
| 1117 | if (tab_shift_cone(tab, tab_cone, U) < 0) |
| 1118 | return -1; |
| 1119 | if (!tab->basis) |
| 1120 | return -1; |
| 1121 | return 0; |
| 1122 | } |
| 1123 | |
| 1124 | /* Compute and return a sample point in bset using generalized basis |
| 1125 | * reduction. We first check if the input set has a non-trivial |
| 1126 | * recession cone. If so, we perform some extra preprocessing in |
| 1127 | * sample_with_cone. Otherwise, we directly perform generalized basis |
| 1128 | * reduction. |
| 1129 | */ |
| 1130 | static __isl_give isl_vec *gbr_sample(__isl_take isl_basic_set *bset) |
| 1131 | { |
| 1132 | isl_size dim; |
| 1133 | struct isl_basic_set *cone; |
| 1134 | |
| 1135 | dim = isl_basic_set_dim(bset, type: isl_dim_all); |
| 1136 | if (dim < 0) |
| 1137 | goto error; |
| 1138 | |
| 1139 | cone = isl_basic_set_recession_cone(bset: isl_basic_set_copy(bset)); |
| 1140 | if (!cone) |
| 1141 | goto error; |
| 1142 | |
| 1143 | if (cone->n_eq < dim) |
| 1144 | return isl_basic_set_sample_with_cone(bset, cone); |
| 1145 | |
| 1146 | isl_basic_set_free(bset: cone); |
| 1147 | return sample_bounded(bset); |
| 1148 | error: |
| 1149 | isl_basic_set_free(bset); |
| 1150 | return NULL; |
| 1151 | } |
| 1152 | |
| 1153 | static __isl_give isl_vec *basic_set_sample(__isl_take isl_basic_set *bset, |
| 1154 | int bounded) |
| 1155 | { |
| 1156 | isl_size dim; |
| 1157 | if (!bset) |
| 1158 | return NULL; |
| 1159 | |
| 1160 | if (isl_basic_set_plain_is_empty(bset)) |
| 1161 | return empty_sample(bset); |
| 1162 | |
| 1163 | dim = isl_basic_set_dim(bset, type: isl_dim_set); |
| 1164 | if (dim < 0 || |
| 1165 | isl_basic_set_check_no_params(bset) < 0 || |
| 1166 | isl_basic_set_check_no_locals(bset) < 0) |
| 1167 | goto error; |
| 1168 | |
| 1169 | if (bset->sample && bset->sample->size == 1 + dim) { |
| 1170 | int contains = isl_basic_set_contains(bset, vec: bset->sample); |
| 1171 | if (contains < 0) |
| 1172 | goto error; |
| 1173 | if (contains) { |
| 1174 | struct isl_vec *sample = isl_vec_copy(vec: bset->sample); |
| 1175 | isl_basic_set_free(bset); |
| 1176 | return sample; |
| 1177 | } |
| 1178 | } |
| 1179 | isl_vec_free(vec: bset->sample); |
| 1180 | bset->sample = NULL; |
| 1181 | |
| 1182 | if (bset->n_eq > 0) |
| 1183 | return sample_eq(bset, recurse: bounded ? isl_basic_set_sample_bounded |
| 1184 | : isl_basic_set_sample_vec); |
| 1185 | if (dim == 0) |
| 1186 | return zero_sample(bset); |
| 1187 | if (dim == 1) |
| 1188 | return interval_sample(bset); |
| 1189 | |
| 1190 | return bounded ? sample_bounded(bset) : gbr_sample(bset); |
| 1191 | error: |
| 1192 | isl_basic_set_free(bset); |
| 1193 | return NULL; |
| 1194 | } |
| 1195 | |
| 1196 | __isl_give isl_vec *isl_basic_set_sample_vec(__isl_take isl_basic_set *bset) |
| 1197 | { |
| 1198 | return basic_set_sample(bset, bounded: 0); |
| 1199 | } |
| 1200 | |
| 1201 | /* Compute an integer sample in "bset", where the caller guarantees |
| 1202 | * that "bset" is bounded. |
| 1203 | */ |
| 1204 | __isl_give isl_vec *isl_basic_set_sample_bounded(__isl_take isl_basic_set *bset) |
| 1205 | { |
| 1206 | return basic_set_sample(bset, bounded: 1); |
| 1207 | } |
| 1208 | |
| 1209 | __isl_give isl_basic_set *isl_basic_set_from_vec(__isl_take isl_vec *vec) |
| 1210 | { |
| 1211 | int i; |
| 1212 | int k; |
| 1213 | struct isl_basic_set *bset = NULL; |
| 1214 | struct isl_ctx *ctx; |
| 1215 | isl_size dim; |
| 1216 | |
| 1217 | if (!vec) |
| 1218 | return NULL; |
| 1219 | ctx = vec->ctx; |
| 1220 | isl_assert(ctx, vec->size != 0, goto error); |
| 1221 | |
| 1222 | bset = isl_basic_set_alloc(ctx, nparam: 0, dim: vec->size - 1, extra: 0, n_eq: vec->size - 1, n_ineq: 0); |
| 1223 | dim = isl_basic_set_dim(bset, type: isl_dim_set); |
| 1224 | if (dim < 0) |
| 1225 | goto error; |
| 1226 | for (i = dim - 1; i >= 0; --i) { |
| 1227 | k = isl_basic_set_alloc_equality(bset); |
| 1228 | if (k < 0) |
| 1229 | goto error; |
| 1230 | isl_seq_clr(p: bset->eq[k], len: 1 + dim); |
| 1231 | isl_int_neg(bset->eq[k][0], vec->el[1 + i]); |
| 1232 | isl_int_set(bset->eq[k][1 + i], vec->el[0]); |
| 1233 | } |
| 1234 | bset->sample = vec; |
| 1235 | |
| 1236 | return bset; |
| 1237 | error: |
| 1238 | isl_basic_set_free(bset); |
| 1239 | isl_vec_free(vec); |
| 1240 | return NULL; |
| 1241 | } |
| 1242 | |
| 1243 | __isl_give isl_basic_map *isl_basic_map_sample(__isl_take isl_basic_map *bmap) |
| 1244 | { |
| 1245 | struct isl_basic_set *bset; |
| 1246 | struct isl_vec *sample_vec; |
| 1247 | |
| 1248 | bset = isl_basic_map_underlying_set(bmap: isl_basic_map_copy(bmap)); |
| 1249 | sample_vec = isl_basic_set_sample_vec(bset); |
| 1250 | if (!sample_vec) |
| 1251 | goto error; |
| 1252 | if (sample_vec->size == 0) { |
| 1253 | isl_vec_free(vec: sample_vec); |
| 1254 | return isl_basic_map_set_to_empty(bmap); |
| 1255 | } |
| 1256 | isl_vec_free(vec: bmap->sample); |
| 1257 | bmap->sample = isl_vec_copy(vec: sample_vec); |
| 1258 | bset = isl_basic_set_from_vec(vec: sample_vec); |
| 1259 | return isl_basic_map_overlying_set(bset, like: bmap); |
| 1260 | error: |
| 1261 | isl_basic_map_free(bmap); |
| 1262 | return NULL; |
| 1263 | } |
| 1264 | |
| 1265 | __isl_give isl_basic_set *isl_basic_set_sample(__isl_take isl_basic_set *bset) |
| 1266 | { |
| 1267 | return isl_basic_map_sample(bmap: bset); |
| 1268 | } |
| 1269 | |
| 1270 | __isl_give isl_basic_map *isl_map_sample(__isl_take isl_map *map) |
| 1271 | { |
| 1272 | int i; |
| 1273 | isl_basic_map *sample = NULL; |
| 1274 | |
| 1275 | if (!map) |
| 1276 | goto error; |
| 1277 | |
| 1278 | for (i = 0; i < map->n; ++i) { |
| 1279 | sample = isl_basic_map_sample(bmap: isl_basic_map_copy(bmap: map->p[i])); |
| 1280 | if (!sample) |
| 1281 | goto error; |
| 1282 | if (!ISL_F_ISSET(sample, ISL_BASIC_MAP_EMPTY)) |
| 1283 | break; |
| 1284 | isl_basic_map_free(bmap: sample); |
| 1285 | } |
| 1286 | if (i == map->n) |
| 1287 | sample = isl_basic_map_empty(space: isl_map_get_space(map)); |
| 1288 | isl_map_free(map); |
| 1289 | return sample; |
| 1290 | error: |
| 1291 | isl_map_free(map); |
| 1292 | return NULL; |
| 1293 | } |
| 1294 | |
| 1295 | __isl_give isl_basic_set *isl_set_sample(__isl_take isl_set *set) |
| 1296 | { |
| 1297 | return bset_from_bmap(bmap: isl_map_sample(map: set_to_map(set))); |
| 1298 | } |
| 1299 | |
| 1300 | __isl_give isl_point *isl_basic_set_sample_point(__isl_take isl_basic_set *bset) |
| 1301 | { |
| 1302 | isl_vec *vec; |
| 1303 | isl_space *space; |
| 1304 | |
| 1305 | space = isl_basic_set_get_space(bset); |
| 1306 | bset = isl_basic_set_underlying_set(bset); |
| 1307 | vec = isl_basic_set_sample_vec(bset); |
| 1308 | |
| 1309 | return isl_point_alloc(space, vec); |
| 1310 | } |
| 1311 | |
| 1312 | __isl_give isl_point *isl_set_sample_point(__isl_take isl_set *set) |
| 1313 | { |
| 1314 | int i; |
| 1315 | isl_point *pnt; |
| 1316 | |
| 1317 | if (!set) |
| 1318 | return NULL; |
| 1319 | |
| 1320 | for (i = 0; i < set->n; ++i) { |
| 1321 | pnt = isl_basic_set_sample_point(bset: isl_basic_set_copy(bset: set->p[i])); |
| 1322 | if (!pnt) |
| 1323 | goto error; |
| 1324 | if (!isl_point_is_void(pnt)) |
| 1325 | break; |
| 1326 | isl_point_free(pnt); |
| 1327 | } |
| 1328 | if (i == set->n) |
| 1329 | pnt = isl_point_void(space: isl_set_get_space(set)); |
| 1330 | |
| 1331 | isl_set_free(set); |
| 1332 | return pnt; |
| 1333 | error: |
| 1334 | isl_set_free(set); |
| 1335 | return NULL; |
| 1336 | } |
| 1337 | |