1/*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
6 * Copyright 2017 Sven Verdoolaege
7 *
8 * Use of this software is governed by the MIT license
9 *
10 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
11 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 * 91893 Orsay, France
13 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
15 * CS 42112, 75589 Paris Cedex 12, France
16 */
17
18#include <isl_ctx_private.h>
19#include <isl_map_private.h>
20#include <isl_space_private.h>
21#include <isl_aff_private.h>
22#include <isl/hash.h>
23#include <isl/id.h>
24#include <isl/constraint.h>
25#include <isl/schedule.h>
26#include <isl_schedule_constraints.h>
27#include <isl/schedule_node.h>
28#include <isl_mat_private.h>
29#include <isl_vec_private.h>
30#include <isl/set.h>
31#include <isl_union_set_private.h>
32#include <isl_seq.h>
33#include <isl_tab.h>
34#include <isl_dim_map.h>
35#include <isl/map_to_basic_set.h>
36#include <isl_sort.h>
37#include <isl_options_private.h>
38#include <isl_tarjan.h>
39#include <isl_morph.h>
40#include <isl/ilp.h>
41#include <isl_val_private.h>
42
43#include "isl_scheduler.h"
44#include "isl_scheduler_clustering.h"
45
46/*
47 * The scheduling algorithm implemented in this file was inspired by
48 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
49 * Parallelization and Locality Optimization in the Polyhedral Model".
50 *
51 * For a detailed description of the variant implemented in isl,
52 * see Verdoolaege and Janssens, "Scheduling for PPCG" (2017).
53 */
54
55
56static isl_bool node_has_tuples(const void *entry, const void *val)
57{
58 struct isl_sched_node *node = (struct isl_sched_node *)entry;
59 isl_space *space = (isl_space *) val;
60
61 return isl_space_has_equal_tuples(space1: node->space, space2: space);
62}
63
64int isl_sched_node_scc_exactly(struct isl_sched_node *node, int scc)
65{
66 return node->scc == scc;
67}
68
69static int node_scc_at_most(struct isl_sched_node *node, int scc)
70{
71 return node->scc <= scc;
72}
73
74static int node_scc_at_least(struct isl_sched_node *node, int scc)
75{
76 return node->scc >= scc;
77}
78
79/* Is "edge" marked as being of type "type"?
80 */
81int isl_sched_edge_has_type(struct isl_sched_edge *edge,
82 enum isl_edge_type type)
83{
84 return ISL_FL_ISSET(edge->types, 1 << type);
85}
86
87/* Mark "edge" as being of type "type".
88 */
89static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
90{
91 ISL_FL_SET(edge->types, 1 << type);
92}
93
94/* No longer mark "edge" as being of type "type"?
95 */
96static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
97{
98 ISL_FL_CLR(edge->types, 1 << type);
99}
100
101/* Is "edge" marked as a validity edge?
102 */
103static int is_validity(struct isl_sched_edge *edge)
104{
105 return isl_sched_edge_has_type(edge, type: isl_edge_validity);
106}
107
108/* Mark "edge" as a validity edge.
109 */
110static void set_validity(struct isl_sched_edge *edge)
111{
112 set_type(edge, type: isl_edge_validity);
113}
114
115/* Is "edge" marked as a proximity edge?
116 */
117int isl_sched_edge_is_proximity(struct isl_sched_edge *edge)
118{
119 return isl_sched_edge_has_type(edge, type: isl_edge_proximity);
120}
121
122/* Is "edge" marked as a local edge?
123 */
124static int is_local(struct isl_sched_edge *edge)
125{
126 return isl_sched_edge_has_type(edge, type: isl_edge_local);
127}
128
129/* Mark "edge" as a local edge.
130 */
131static void set_local(struct isl_sched_edge *edge)
132{
133 set_type(edge, type: isl_edge_local);
134}
135
136/* No longer mark "edge" as a local edge.
137 */
138static void clear_local(struct isl_sched_edge *edge)
139{
140 clear_type(edge, type: isl_edge_local);
141}
142
143/* Is "edge" marked as a coincidence edge?
144 */
145static int is_coincidence(struct isl_sched_edge *edge)
146{
147 return isl_sched_edge_has_type(edge, type: isl_edge_coincidence);
148}
149
150/* Is "edge" marked as a condition edge?
151 */
152int isl_sched_edge_is_condition(struct isl_sched_edge *edge)
153{
154 return isl_sched_edge_has_type(edge, type: isl_edge_condition);
155}
156
157/* Is "edge" marked as a conditional validity edge?
158 */
159int isl_sched_edge_is_conditional_validity(struct isl_sched_edge *edge)
160{
161 return isl_sched_edge_has_type(edge, type: isl_edge_conditional_validity);
162}
163
164/* Is "edge" of a type that can appear multiple times between
165 * the same pair of nodes?
166 *
167 * Condition edges and conditional validity edges may have tagged
168 * dependence relations, in which case an edge is added for each
169 * pair of tags.
170 */
171static int is_multi_edge_type(struct isl_sched_edge *edge)
172{
173 return isl_sched_edge_is_condition(edge) ||
174 isl_sched_edge_is_conditional_validity(edge);
175}
176
177/* Initialize node_table based on the list of nodes.
178 */
179static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
180{
181 int i;
182
183 graph->node_table = isl_hash_table_alloc(ctx, min_size: graph->n);
184 if (!graph->node_table)
185 return -1;
186
187 for (i = 0; i < graph->n; ++i) {
188 struct isl_hash_table_entry *entry;
189 uint32_t hash;
190
191 hash = isl_space_get_tuple_hash(space: graph->node[i].space);
192 entry = isl_hash_table_find(ctx, table: graph->node_table, key_hash: hash,
193 eq: &node_has_tuples,
194 val: graph->node[i].space, reserve: 1);
195 if (!entry)
196 return -1;
197 entry->data = &graph->node[i];
198 }
199
200 return 0;
201}
202
203/* Return a pointer to the node that lives within the given space,
204 * an invalid node if there is no such node, or NULL in case of error.
205 */
206struct isl_sched_node *isl_sched_graph_find_node(isl_ctx *ctx,
207 struct isl_sched_graph *graph, __isl_keep isl_space *space)
208{
209 struct isl_hash_table_entry *entry;
210 uint32_t hash;
211
212 if (!space)
213 return NULL;
214
215 hash = isl_space_get_tuple_hash(space);
216 entry = isl_hash_table_find(ctx, table: graph->node_table, key_hash: hash,
217 eq: &node_has_tuples, val: space, reserve: 0);
218 if (!entry)
219 return NULL;
220 if (entry == isl_hash_table_entry_none)
221 return graph->node + graph->n;
222
223 return entry->data;
224}
225
226/* Is "node" a node in "graph"?
227 */
228int isl_sched_graph_is_node(struct isl_sched_graph *graph,
229 struct isl_sched_node *node)
230{
231 return node && node >= &graph->node[0] && node < &graph->node[graph->n];
232}
233
234static isl_bool edge_has_src_and_dst(const void *entry, const void *val)
235{
236 const struct isl_sched_edge *edge = entry;
237 const struct isl_sched_edge *temp = val;
238
239 return isl_bool_ok(b: edge->src == temp->src && edge->dst == temp->dst);
240}
241
242/* Add the given edge to graph->edge_table[type].
243 */
244static isl_stat graph_edge_table_add(isl_ctx *ctx,
245 struct isl_sched_graph *graph, enum isl_edge_type type,
246 struct isl_sched_edge *edge)
247{
248 struct isl_hash_table_entry *entry;
249 uint32_t hash;
250
251 hash = isl_hash_init();
252 hash = isl_hash_builtin(hash, edge->src);
253 hash = isl_hash_builtin(hash, edge->dst);
254 entry = isl_hash_table_find(ctx, table: graph->edge_table[type], key_hash: hash,
255 eq: &edge_has_src_and_dst, val: edge, reserve: 1);
256 if (!entry)
257 return isl_stat_error;
258 entry->data = edge;
259
260 return isl_stat_ok;
261}
262
263/* Add "edge" to all relevant edge tables.
264 * That is, for every type of the edge, add it to the corresponding table.
265 */
266static isl_stat graph_edge_tables_add(isl_ctx *ctx,
267 struct isl_sched_graph *graph, struct isl_sched_edge *edge)
268{
269 enum isl_edge_type t;
270
271 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
272 if (!isl_sched_edge_has_type(edge, type: t))
273 continue;
274 if (graph_edge_table_add(ctx, graph, type: t, edge) < 0)
275 return isl_stat_error;
276 }
277
278 return isl_stat_ok;
279}
280
281/* Allocate the edge_tables based on the maximal number of edges of
282 * each type.
283 */
284static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
285{
286 int i;
287
288 for (i = 0; i <= isl_edge_last; ++i) {
289 graph->edge_table[i] = isl_hash_table_alloc(ctx,
290 min_size: graph->max_edge[i]);
291 if (!graph->edge_table[i])
292 return -1;
293 }
294
295 return 0;
296}
297
298/* If graph->edge_table[type] contains an edge from the given source
299 * to the given destination, then return the hash table entry of this edge.
300 * Otherwise, return NULL.
301 */
302static struct isl_hash_table_entry *graph_find_edge_entry(
303 struct isl_sched_graph *graph,
304 enum isl_edge_type type,
305 struct isl_sched_node *src, struct isl_sched_node *dst)
306{
307 isl_ctx *ctx = isl_space_get_ctx(space: src->space);
308 uint32_t hash;
309 struct isl_sched_edge temp = { .src = src, .dst = dst };
310
311 hash = isl_hash_init();
312 hash = isl_hash_builtin(hash, temp.src);
313 hash = isl_hash_builtin(hash, temp.dst);
314 return isl_hash_table_find(ctx, table: graph->edge_table[type], key_hash: hash,
315 eq: &edge_has_src_and_dst, val: &temp, reserve: 0);
316}
317
318
319/* If graph->edge_table[type] contains an edge from the given source
320 * to the given destination, then return this edge.
321 * Return "none" if no such edge can be found.
322 * Return NULL on error.
323 */
324static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
325 enum isl_edge_type type,
326 struct isl_sched_node *src, struct isl_sched_node *dst,
327 struct isl_sched_edge *none)
328{
329 struct isl_hash_table_entry *entry;
330
331 entry = graph_find_edge_entry(graph, type, src, dst);
332 if (!entry)
333 return NULL;
334 if (entry == isl_hash_table_entry_none)
335 return none;
336
337 return entry->data;
338}
339
340/* Check whether the dependence graph has an edge of the given type
341 * between the given two nodes.
342 */
343static isl_bool graph_has_edge(struct isl_sched_graph *graph,
344 enum isl_edge_type type,
345 struct isl_sched_node *src, struct isl_sched_node *dst)
346{
347 struct isl_sched_edge dummy;
348 struct isl_sched_edge *edge;
349 isl_bool empty;
350
351 edge = graph_find_edge(graph, type, src, dst, none: &dummy);
352 if (!edge)
353 return isl_bool_error;
354 if (edge == &dummy)
355 return isl_bool_false;
356
357 empty = isl_map_plain_is_empty(map: edge->map);
358
359 return isl_bool_not(b: empty);
360}
361
362/* Look for any edge with the same src, dst and map fields as "model".
363 *
364 * Return the matching edge if one can be found.
365 * Return "model" if no matching edge is found.
366 * Return NULL on error.
367 */
368static struct isl_sched_edge *graph_find_matching_edge(
369 struct isl_sched_graph *graph, struct isl_sched_edge *model)
370{
371 enum isl_edge_type i;
372 struct isl_sched_edge *edge;
373
374 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
375 int is_equal;
376
377 edge = graph_find_edge(graph, type: i, src: model->src, dst: model->dst, none: model);
378 if (!edge)
379 return NULL;
380 if (edge == model)
381 continue;
382 is_equal = isl_map_plain_is_equal(map1: model->map, map2: edge->map);
383 if (is_equal < 0)
384 return NULL;
385 if (is_equal)
386 return edge;
387 }
388
389 return model;
390}
391
392/* Remove the given edge from all the edge_tables that refer to it.
393 */
394static isl_stat graph_remove_edge(struct isl_sched_graph *graph,
395 struct isl_sched_edge *edge)
396{
397 isl_ctx *ctx = isl_map_get_ctx(map: edge->map);
398 enum isl_edge_type i;
399
400 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
401 struct isl_hash_table_entry *entry;
402
403 entry = graph_find_edge_entry(graph, type: i, src: edge->src, dst: edge->dst);
404 if (!entry)
405 return isl_stat_error;
406 if (entry == isl_hash_table_entry_none)
407 continue;
408 if (entry->data != edge)
409 continue;
410 isl_hash_table_remove(ctx, table: graph->edge_table[i], entry);
411 }
412
413 return isl_stat_ok;
414}
415
416/* Check whether the dependence graph has any edge
417 * between the given two nodes.
418 */
419static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
420 struct isl_sched_node *src, struct isl_sched_node *dst)
421{
422 enum isl_edge_type i;
423 isl_bool r;
424
425 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
426 r = graph_has_edge(graph, type: i, src, dst);
427 if (r < 0 || r)
428 return r;
429 }
430
431 return r;
432}
433
434/* Check whether the dependence graph has a validity edge
435 * between the given two nodes.
436 *
437 * Conditional validity edges are essentially validity edges that
438 * can be ignored if the corresponding condition edges are iteration private.
439 * Here, we are only checking for the presence of validity
440 * edges, so we need to consider the conditional validity edges too.
441 * In particular, this function is used during the detection
442 * of strongly connected components and we cannot ignore
443 * conditional validity edges during this detection.
444 */
445isl_bool isl_sched_graph_has_validity_edge(struct isl_sched_graph *graph,
446 struct isl_sched_node *src, struct isl_sched_node *dst)
447{
448 isl_bool r;
449
450 r = graph_has_edge(graph, type: isl_edge_validity, src, dst);
451 if (r < 0 || r)
452 return r;
453
454 return graph_has_edge(graph, type: isl_edge_conditional_validity, src, dst);
455}
456
457/* Perform all the required memory allocations for a schedule graph "graph"
458 * with "n_node" nodes and "n_edge" edge and initialize the corresponding
459 * fields.
460 */
461static isl_stat graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
462 int n_node, int n_edge)
463{
464 int i;
465
466 graph->n = n_node;
467 graph->n_edge = n_edge;
468 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
469 graph->sorted = isl_calloc_array(ctx, int, graph->n);
470 graph->region = isl_alloc_array(ctx,
471 struct isl_trivial_region, graph->n);
472 graph->edge = isl_calloc_array(ctx,
473 struct isl_sched_edge, graph->n_edge);
474
475 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, min_size: 2 * n_edge);
476 graph->intra_hmap_param = isl_map_to_basic_set_alloc(ctx, min_size: 2 * n_edge);
477 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, min_size: 2 * n_edge);
478
479 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
480 !graph->sorted)
481 return isl_stat_error;
482
483 for(i = 0; i < graph->n; ++i)
484 graph->sorted[i] = i;
485
486 return isl_stat_ok;
487}
488
489/* Free the memory associated to node "node" in "graph".
490 * The "coincident" field is shared by nodes in a graph and its subgraph.
491 * It therefore only needs to be freed for the original dependence graph,
492 * i.e., one that is not the result of splitting.
493 */
494static void clear_node(struct isl_sched_graph *graph,
495 struct isl_sched_node *node)
496{
497 isl_space_free(space: node->space);
498 isl_set_free(set: node->hull);
499 isl_multi_aff_free(multi: node->compress);
500 isl_pw_multi_aff_free(pma: node->decompress);
501 isl_mat_free(mat: node->sched);
502 isl_map_free(map: node->sched_map);
503 isl_mat_free(mat: node->indep);
504 isl_mat_free(mat: node->vmap);
505 if (graph->root == graph)
506 free(ptr: node->coincident);
507 isl_multi_val_free(multi: node->sizes);
508 isl_basic_set_free(bset: node->bounds);
509 isl_vec_free(vec: node->max);
510}
511
512void isl_sched_graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
513{
514 int i;
515
516 isl_map_to_basic_set_free(hmap: graph->intra_hmap);
517 isl_map_to_basic_set_free(hmap: graph->intra_hmap_param);
518 isl_map_to_basic_set_free(hmap: graph->inter_hmap);
519
520 if (graph->node)
521 for (i = 0; i < graph->n; ++i)
522 clear_node(graph, node: &graph->node[i]);
523 free(ptr: graph->node);
524 free(ptr: graph->sorted);
525 if (graph->edge)
526 for (i = 0; i < graph->n_edge; ++i) {
527 isl_map_free(map: graph->edge[i].map);
528 isl_union_map_free(umap: graph->edge[i].tagged_condition);
529 isl_union_map_free(umap: graph->edge[i].tagged_validity);
530 }
531 free(ptr: graph->edge);
532 free(ptr: graph->region);
533 for (i = 0; i <= isl_edge_last; ++i)
534 isl_hash_table_free(ctx, table: graph->edge_table[i]);
535 isl_hash_table_free(ctx, table: graph->node_table);
536 isl_basic_set_free(bset: graph->lp);
537}
538
539/* For each "set" on which this function is called, increment
540 * graph->n by one and update graph->maxvar.
541 */
542static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
543{
544 struct isl_sched_graph *graph = user;
545 isl_size nvar = isl_set_dim(set, type: isl_dim_set);
546
547 graph->n++;
548 if (nvar > graph->maxvar)
549 graph->maxvar = nvar;
550
551 isl_set_free(set);
552
553 if (nvar < 0)
554 return isl_stat_error;
555 return isl_stat_ok;
556}
557
558/* Compute the number of rows that should be allocated for the schedule.
559 * In particular, we need one row for each variable or one row
560 * for each basic map in the dependences.
561 * Note that it is practically impossible to exhaust both
562 * the number of dependences and the number of variables.
563 */
564static isl_stat compute_max_row(struct isl_sched_graph *graph,
565 __isl_keep isl_schedule_constraints *sc)
566{
567 int n_edge;
568 isl_stat r;
569 isl_union_set *domain;
570
571 graph->n = 0;
572 graph->maxvar = 0;
573 domain = isl_schedule_constraints_get_domain(sc);
574 r = isl_union_set_foreach_set(uset: domain, fn: &init_n_maxvar, user: graph);
575 isl_union_set_free(uset: domain);
576 if (r < 0)
577 return isl_stat_error;
578 n_edge = isl_schedule_constraints_n_basic_map(sc);
579 if (n_edge < 0)
580 return isl_stat_error;
581 graph->max_row = n_edge + graph->maxvar;
582
583 return isl_stat_ok;
584}
585
586/* Does "bset" have any defining equalities for its set variables?
587 */
588static isl_bool has_any_defining_equality(__isl_keep isl_basic_set *bset)
589{
590 int i;
591 isl_size n;
592
593 n = isl_basic_set_dim(bset, type: isl_dim_set);
594 if (n < 0)
595 return isl_bool_error;
596
597 for (i = 0; i < n; ++i) {
598 isl_bool has;
599
600 has = isl_basic_set_has_defining_equality(bset, type: isl_dim_set, pos: i,
601 NULL);
602 if (has < 0 || has)
603 return has;
604 }
605
606 return isl_bool_false;
607}
608
609/* Set the entries of node->max to the value of the schedule_max_coefficient
610 * option, if set.
611 */
612static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
613{
614 int max;
615
616 max = isl_options_get_schedule_max_coefficient(ctx);
617 if (max == -1)
618 return isl_stat_ok;
619
620 node->max = isl_vec_alloc(ctx, size: node->nvar);
621 node->max = isl_vec_set_si(vec: node->max, v: max);
622 if (!node->max)
623 return isl_stat_error;
624
625 return isl_stat_ok;
626}
627
628/* Set the entries of node->max to the minimum of the schedule_max_coefficient
629 * option (if set) and half of the minimum of the sizes in the other
630 * dimensions. Round up when computing the half such that
631 * if the minimum of the sizes is one, half of the size is taken to be one
632 * rather than zero.
633 * If the global minimum is unbounded (i.e., if both
634 * the schedule_max_coefficient is not set and the sizes in the other
635 * dimensions are unbounded), then store a negative value.
636 * If the schedule coefficient is close to the size of the instance set
637 * in another dimension, then the schedule may represent a loop
638 * coalescing transformation (especially if the coefficient
639 * in that other dimension is one). Forcing the coefficient to be
640 * smaller than or equal to half the minimal size should avoid this
641 * situation.
642 */
643static isl_stat compute_max_coefficient(isl_ctx *ctx,
644 struct isl_sched_node *node)
645{
646 int max;
647 int i, j;
648 isl_vec *v;
649
650 max = isl_options_get_schedule_max_coefficient(ctx);
651 v = isl_vec_alloc(ctx, size: node->nvar);
652 if (!v)
653 return isl_stat_error;
654
655 for (i = 0; i < node->nvar; ++i) {
656 isl_int_set_si(v->el[i], max);
657 isl_int_mul_si(v->el[i], v->el[i], 2);
658 }
659
660 for (i = 0; i < node->nvar; ++i) {
661 isl_val *size;
662
663 size = isl_multi_val_get_val(multi: node->sizes, pos: i);
664 if (!size)
665 goto error;
666 if (!isl_val_is_int(v: size)) {
667 isl_val_free(v: size);
668 continue;
669 }
670 for (j = 0; j < node->nvar; ++j) {
671 if (j == i)
672 continue;
673 if (isl_int_is_neg(v->el[j]) ||
674 isl_int_gt(v->el[j], size->n))
675 isl_int_set(v->el[j], size->n);
676 }
677 isl_val_free(v: size);
678 }
679
680 for (i = 0; i < node->nvar; ++i)
681 isl_int_cdiv_q_ui(v->el[i], v->el[i], 2);
682
683 node->max = v;
684 return isl_stat_ok;
685error:
686 isl_vec_free(vec: v);
687 return isl_stat_error;
688}
689
690/* Construct an identifier for node "node", which will represent "set".
691 * The name of the identifier is either "compressed" or
692 * "compressed_<name>", with <name> the name of the space of "set".
693 * The user pointer of the identifier points to "node".
694 */
695static __isl_give isl_id *construct_compressed_id(__isl_keep isl_set *set,
696 struct isl_sched_node *node)
697{
698 isl_bool has_name;
699 isl_ctx *ctx;
700 isl_id *id;
701 isl_printer *p;
702 const char *name;
703 char *id_name;
704
705 has_name = isl_set_has_tuple_name(set);
706 if (has_name < 0)
707 return NULL;
708
709 ctx = isl_set_get_ctx(set);
710 if (!has_name)
711 return isl_id_alloc(ctx, name: "compressed", user: node);
712
713 p = isl_printer_to_str(ctx);
714 name = isl_set_get_tuple_name(set);
715 p = isl_printer_print_str(p, s: "compressed_");
716 p = isl_printer_print_str(p, s: name);
717 id_name = isl_printer_get_str(printer: p);
718 isl_printer_free(printer: p);
719
720 id = isl_id_alloc(ctx, name: id_name, user: node);
721 free(ptr: id_name);
722
723 return id;
724}
725
726/* Construct a map that isolates the variable in position "pos" in "set".
727 *
728 * That is, construct
729 *
730 * [i_0, ..., i_pos-1, i_pos+1, ...] -> [i_pos]
731 */
732static __isl_give isl_map *isolate(__isl_take isl_set *set, int pos)
733{
734 isl_map *map;
735
736 map = isl_set_project_onto_map(set, type: isl_dim_set, first: pos, n: 1);
737 map = isl_map_project_out(map, type: isl_dim_in, first: pos, n: 1);
738 return map;
739}
740
741/* Compute and return the size of "set" in dimension "dim".
742 * The size is taken to be the difference in values for that variable
743 * for fixed values of the other variables.
744 * This assumes that "set" is convex.
745 * In particular, the variable is first isolated from the other variables
746 * in the range of a map
747 *
748 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
749 *
750 * and then duplicated
751 *
752 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
753 *
754 * The shared variables are then projected out and the maximal value
755 * of i_dim' - i_dim is computed.
756 */
757static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
758{
759 isl_map *map;
760 isl_local_space *ls;
761 isl_aff *obj;
762 isl_val *v;
763
764 map = isolate(set, pos: dim);
765 map = isl_map_range_product(map1: map, map2: isl_map_copy(map));
766 map = isl_set_unwrap(set: isl_map_range(map));
767 set = isl_map_deltas(map);
768 ls = isl_local_space_from_space(space: isl_set_get_space(set));
769 obj = isl_aff_var_on_domain(ls, type: isl_dim_set, pos: 0);
770 v = isl_set_max_val(set, obj);
771 isl_aff_free(aff: obj);
772 isl_set_free(set);
773
774 return v;
775}
776
777/* Perform a compression on "node" where "hull" represents the constraints
778 * that were used to derive the compression, while "compress" and
779 * "decompress" map the original space to the compressed space and
780 * vice versa.
781 *
782 * If "node" was not compressed already, then simply store
783 * the compression information.
784 * Otherwise the "original" space is actually the result
785 * of a previous compression, which is then combined
786 * with the present compression.
787 *
788 * The dimensionality of the compressed domain is also adjusted.
789 * Other information, such as the sizes and the maximal coefficient values,
790 * has not been computed yet and therefore does not need to be adjusted.
791 */
792static isl_stat compress_node(struct isl_sched_node *node,
793 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
794 __isl_take isl_pw_multi_aff *decompress)
795{
796 node->nvar = isl_multi_aff_dim(multi: compress, type: isl_dim_out);
797 if (!node->compressed) {
798 node->compressed = 1;
799 node->hull = hull;
800 node->compress = compress;
801 node->decompress = decompress;
802 } else {
803 hull = isl_set_preimage_multi_aff(set: hull,
804 ma: isl_multi_aff_copy(multi: node->compress));
805 node->hull = isl_set_intersect(set1: node->hull, set2: hull);
806 node->compress = isl_multi_aff_pullback_multi_aff(
807 ma1: compress, ma2: node->compress);
808 node->decompress = isl_pw_multi_aff_pullback_pw_multi_aff(
809 pma1: node->decompress, pma2: decompress);
810 }
811
812 if (!node->hull || !node->compress || !node->decompress)
813 return isl_stat_error;
814
815 return isl_stat_ok;
816}
817
818/* Given that dimension "pos" in "set" has a fixed value
819 * in terms of the other dimensions, (further) compress "node"
820 * by projecting out this dimension.
821 * "set" may be the result of a previous compression.
822 * "uncompressed" is the original domain (without compression).
823 *
824 * The compression function simply projects out the dimension.
825 * The decompression function adds back the dimension
826 * in the right position as an expression of the other dimensions
827 * derived from "set".
828 * As in extract_node, the compressed space has an identifier
829 * that references "node" such that each compressed space is unique and
830 * such that the node can be recovered from the compressed space.
831 *
832 * The constraint removed through the compression is added to the "hull"
833 * such that only edges that relate to the original domains
834 * are taken into account.
835 * In particular, it is obtained by composing compression and decompression and
836 * taking the relation among the variables in the range.
837 */
838static isl_stat project_out_fixed(struct isl_sched_node *node,
839 __isl_keep isl_set *uncompressed, __isl_take isl_set *set, int pos)
840{
841 isl_id *id;
842 isl_space *space;
843 isl_set *domain;
844 isl_map *map;
845 isl_multi_aff *compress;
846 isl_pw_multi_aff *decompress, *pma;
847 isl_multi_pw_aff *mpa;
848 isl_set *hull;
849
850 map = isolate(set: isl_set_copy(set), pos);
851 pma = isl_pw_multi_aff_from_map(map);
852 domain = isl_pw_multi_aff_domain(pma: isl_pw_multi_aff_copy(pma));
853 pma = isl_pw_multi_aff_gist(pma, set: domain);
854 space = isl_pw_multi_aff_get_domain_space(pma);
855 mpa = isl_multi_pw_aff_identity(space: isl_space_map_from_set(space));
856 mpa = isl_multi_pw_aff_range_splice(multi1: mpa, pos,
857 multi2: isl_multi_pw_aff_from_pw_multi_aff(pma));
858 decompress = isl_pw_multi_aff_from_multi_pw_aff(mpa);
859 space = isl_set_get_space(set);
860 compress = isl_multi_aff_project_out_map(space, type: isl_dim_set, first: pos, n: 1);
861 id = construct_compressed_id(set: uncompressed, node);
862 compress = isl_multi_aff_set_tuple_id(multi: compress, type: isl_dim_out, id);
863 space = isl_space_reverse(space: isl_multi_aff_get_space(multi: compress));
864 decompress = isl_pw_multi_aff_reset_space(pwmaff: decompress, space);
865 pma = isl_pw_multi_aff_pullback_multi_aff(
866 pma: isl_pw_multi_aff_copy(pma: decompress), ma: isl_multi_aff_copy(multi: compress));
867 hull = isl_map_range(map: isl_map_from_pw_multi_aff(pma));
868
869 isl_set_free(set);
870
871 return compress_node(node, hull, compress, decompress);
872}
873
874/* Compute the size of the compressed domain in each dimension and
875 * store the results in node->sizes.
876 * "uncompressed" is the original domain (without compression).
877 *
878 * First compress the domain if needed and then compute the size
879 * in each direction.
880 * If the domain is not convex, then the sizes are computed
881 * on a convex superset in order to avoid picking up sizes
882 * that are valid for the individual disjuncts, but not for
883 * the domain as a whole.
884 *
885 * If any of the sizes turns out to be zero, then this means
886 * that this dimension has a fixed value in terms of
887 * the other dimensions. Perform an (extra) compression
888 * to remove this dimension.
889 */
890static isl_stat compute_sizes(struct isl_sched_node *node,
891 __isl_keep isl_set *uncompressed)
892{
893 int j;
894 isl_size n;
895 isl_multi_val *mv;
896 isl_set *set = isl_set_copy(set: uncompressed);
897
898 if (node->compressed)
899 set = isl_set_preimage_pw_multi_aff(set,
900 pma: isl_pw_multi_aff_copy(pma: node->decompress));
901 set = isl_set_from_basic_set(bset: isl_set_simple_hull(set));
902 mv = isl_multi_val_zero(space: isl_set_get_space(set));
903 n = isl_set_dim(set, type: isl_dim_set);
904 if (n < 0)
905 mv = isl_multi_val_free(multi: mv);
906 for (j = 0; j < n; ++j) {
907 isl_bool is_zero;
908 isl_val *v;
909
910 v = compute_size(set: isl_set_copy(set), dim: j);
911 is_zero = isl_val_is_zero(v);
912 mv = isl_multi_val_set_val(multi: mv, pos: j, el: v);
913 if (is_zero >= 0 && is_zero) {
914 isl_multi_val_free(multi: mv);
915 if (project_out_fixed(node, uncompressed, set, pos: j) < 0)
916 return isl_stat_error;
917 return compute_sizes(node, uncompressed);
918 }
919 }
920 node->sizes = mv;
921 isl_set_free(set);
922 if (!node->sizes)
923 return isl_stat_error;
924 return isl_stat_ok;
925}
926
927/* Compute the size of the instance set "set" of "node", after compression,
928 * as well as bounds on the corresponding coefficients, if needed.
929 *
930 * The sizes are needed when the schedule_treat_coalescing option is set.
931 * The bounds are needed when the schedule_treat_coalescing option or
932 * the schedule_max_coefficient option is set.
933 *
934 * If the schedule_treat_coalescing option is not set, then at most
935 * the bounds need to be set and this is done in set_max_coefficient.
936 * Otherwise, compute the size of the compressed domain
937 * in each direction and store the results in node->size.
938 * Finally, set the bounds on the coefficients based on the sizes
939 * and the schedule_max_coefficient option in compute_max_coefficient.
940 */
941static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
942 __isl_take isl_set *set)
943{
944 isl_stat r;
945
946 if (!isl_options_get_schedule_treat_coalescing(ctx)) {
947 isl_set_free(set);
948 return set_max_coefficient(ctx, node);
949 }
950
951 r = compute_sizes(node, uncompressed: set);
952 isl_set_free(set);
953 if (r < 0)
954 return isl_stat_error;
955 return compute_max_coefficient(ctx, node);
956}
957
958/* Add a new node to the graph representing the given instance set.
959 * "nvar" is the (possibly compressed) number of variables and
960 * may be smaller than then number of set variables in "set"
961 * if "compressed" is set.
962 * If "compressed" is set, then "hull" represents the constraints
963 * that were used to derive the compression, while "compress" and
964 * "decompress" map the original space to the compressed space and
965 * vice versa.
966 * If "compressed" is not set, then "hull", "compress" and "decompress"
967 * should be NULL.
968 *
969 * Compute the size of the instance set and bounds on the coefficients,
970 * if needed.
971 */
972static isl_stat add_node(struct isl_sched_graph *graph,
973 __isl_take isl_set *set, int nvar, int compressed,
974 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
975 __isl_take isl_pw_multi_aff *decompress)
976{
977 isl_size nparam;
978 isl_ctx *ctx;
979 isl_mat *sched;
980 isl_space *space;
981 int *coincident;
982 struct isl_sched_node *node;
983
984 nparam = isl_set_dim(set, type: isl_dim_param);
985 if (nparam < 0)
986 goto error;
987
988 ctx = isl_set_get_ctx(set);
989 if (!ctx->opt->schedule_parametric)
990 nparam = 0;
991 sched = isl_mat_alloc(ctx, n_row: 0, n_col: 1 + nparam + nvar);
992 node = &graph->node[graph->n];
993 graph->n++;
994 space = isl_set_get_space(set);
995 node->space = space;
996 node->nvar = nvar;
997 node->nparam = nparam;
998 node->sched = sched;
999 node->sched_map = NULL;
1000 coincident = isl_calloc_array(ctx, int, graph->max_row);
1001 node->coincident = coincident;
1002 node->compressed = compressed;
1003 node->hull = hull;
1004 node->compress = compress;
1005 node->decompress = decompress;
1006 if (compute_sizes_and_max(ctx, node, set) < 0)
1007 return isl_stat_error;
1008
1009 if (!space || !sched || (graph->max_row && !coincident))
1010 return isl_stat_error;
1011 if (compressed && (!hull || !compress || !decompress))
1012 return isl_stat_error;
1013
1014 return isl_stat_ok;
1015error:
1016 isl_set_free(set);
1017 isl_set_free(set: hull);
1018 isl_multi_aff_free(multi: compress);
1019 isl_pw_multi_aff_free(pma: decompress);
1020 return isl_stat_error;
1021}
1022
1023/* Add a new node to the graph representing the given set.
1024 *
1025 * If any of the set variables is defined by an equality, then
1026 * we perform variable compression such that we can perform
1027 * the scheduling on the compressed domain.
1028 * In this case, an identifier is used that references the new node
1029 * such that each compressed space is unique and
1030 * such that the node can be recovered from the compressed space.
1031 */
1032static isl_stat extract_node(__isl_take isl_set *set, void *user)
1033{
1034 isl_size nvar;
1035 isl_bool has_equality;
1036 isl_id *id;
1037 isl_basic_set *hull;
1038 isl_set *hull_set;
1039 isl_morph *morph;
1040 isl_multi_aff *compress, *decompress_ma;
1041 isl_pw_multi_aff *decompress;
1042 struct isl_sched_graph *graph = user;
1043
1044 hull = isl_set_affine_hull(set: isl_set_copy(set));
1045 hull = isl_basic_set_remove_divs(bset: hull);
1046 nvar = isl_set_dim(set, type: isl_dim_set);
1047 has_equality = has_any_defining_equality(bset: hull);
1048
1049 if (nvar < 0 || has_equality < 0)
1050 goto error;
1051 if (!has_equality) {
1052 isl_basic_set_free(bset: hull);
1053 return add_node(graph, set, nvar, compressed: 0, NULL, NULL, NULL);
1054 }
1055
1056 id = construct_compressed_id(set, node: &graph->node[graph->n]);
1057 morph = isl_basic_set_variable_compression_with_id(bset: hull, id);
1058 isl_id_free(id);
1059 nvar = isl_morph_ran_dim(morph, type: isl_dim_set);
1060 if (nvar < 0)
1061 set = isl_set_free(set);
1062 compress = isl_morph_get_var_multi_aff(morph);
1063 morph = isl_morph_inverse(morph);
1064 decompress_ma = isl_morph_get_var_multi_aff(morph);
1065 decompress = isl_pw_multi_aff_from_multi_aff(ma: decompress_ma);
1066 isl_morph_free(morph);
1067
1068 hull_set = isl_set_from_basic_set(bset: hull);
1069 return add_node(graph, set, nvar, compressed: 1, hull: hull_set, compress, decompress);
1070error:
1071 isl_basic_set_free(bset: hull);
1072 isl_set_free(set);
1073 return isl_stat_error;
1074}
1075
1076struct isl_extract_edge_data {
1077 enum isl_edge_type type;
1078 struct isl_sched_graph *graph;
1079};
1080
1081/* Merge edge2 into edge1, freeing the contents of edge2.
1082 * Return 0 on success and -1 on failure.
1083 *
1084 * edge1 and edge2 are assumed to have the same value for the map field.
1085 */
1086static int merge_edge(struct isl_sched_edge *edge1,
1087 struct isl_sched_edge *edge2)
1088{
1089 edge1->types |= edge2->types;
1090 isl_map_free(map: edge2->map);
1091
1092 if (isl_sched_edge_is_condition(edge: edge2)) {
1093 if (!edge1->tagged_condition)
1094 edge1->tagged_condition = edge2->tagged_condition;
1095 else
1096 edge1->tagged_condition =
1097 isl_union_map_union(umap1: edge1->tagged_condition,
1098 umap2: edge2->tagged_condition);
1099 }
1100
1101 if (isl_sched_edge_is_conditional_validity(edge: edge2)) {
1102 if (!edge1->tagged_validity)
1103 edge1->tagged_validity = edge2->tagged_validity;
1104 else
1105 edge1->tagged_validity =
1106 isl_union_map_union(umap1: edge1->tagged_validity,
1107 umap2: edge2->tagged_validity);
1108 }
1109
1110 if (isl_sched_edge_is_condition(edge: edge2) && !edge1->tagged_condition)
1111 return -1;
1112 if (isl_sched_edge_is_conditional_validity(edge: edge2) &&
1113 !edge1->tagged_validity)
1114 return -1;
1115
1116 return 0;
1117}
1118
1119/* Insert dummy tags in domain and range of "map".
1120 *
1121 * In particular, if "map" is of the form
1122 *
1123 * A -> B
1124 *
1125 * then return
1126 *
1127 * [A -> dummy_tag] -> [B -> dummy_tag]
1128 *
1129 * where the dummy_tags are identical and equal to any dummy tags
1130 * introduced by any other call to this function.
1131 */
1132static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
1133{
1134 static char dummy;
1135 isl_ctx *ctx;
1136 isl_id *id;
1137 isl_space *space;
1138 isl_set *domain, *range;
1139
1140 ctx = isl_map_get_ctx(map);
1141
1142 id = isl_id_alloc(ctx, NULL, user: &dummy);
1143 space = isl_space_params(space: isl_map_get_space(map));
1144 space = isl_space_set_from_params(space);
1145 space = isl_space_set_tuple_id(space, type: isl_dim_set, id);
1146 space = isl_space_map_from_set(space);
1147
1148 domain = isl_map_wrap(map);
1149 range = isl_map_wrap(map: isl_map_universe(space));
1150 map = isl_map_from_domain_and_range(domain, range);
1151 map = isl_map_zip(map);
1152
1153 return map;
1154}
1155
1156/* Given that at least one of "src" or "dst" is compressed, return
1157 * a map between the spaces of these nodes restricted to the affine
1158 * hull that was used in the compression.
1159 */
1160static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1161 struct isl_sched_node *dst)
1162{
1163 isl_set *dom, *ran;
1164
1165 if (src->compressed)
1166 dom = isl_set_copy(set: src->hull);
1167 else
1168 dom = isl_set_universe(space: isl_space_copy(space: src->space));
1169 if (dst->compressed)
1170 ran = isl_set_copy(set: dst->hull);
1171 else
1172 ran = isl_set_universe(space: isl_space_copy(space: dst->space));
1173
1174 return isl_map_from_domain_and_range(domain: dom, range: ran);
1175}
1176
1177/* Intersect the domains of the nested relations in domain and range
1178 * of "tagged" with "map".
1179 */
1180static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1181 __isl_keep isl_map *map)
1182{
1183 isl_set *set;
1184
1185 tagged = isl_map_zip(map: tagged);
1186 set = isl_map_wrap(map: isl_map_copy(map));
1187 tagged = isl_map_intersect_domain(map: tagged, set);
1188 tagged = isl_map_zip(map: tagged);
1189 return tagged;
1190}
1191
1192/* Return a pointer to the node that lives in the domain space of "map",
1193 * an invalid node if there is no such node, or NULL in case of error.
1194 */
1195static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
1196 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1197{
1198 struct isl_sched_node *node;
1199 isl_space *space;
1200
1201 space = isl_space_domain(space: isl_map_get_space(map));
1202 node = isl_sched_graph_find_node(ctx, graph, space);
1203 isl_space_free(space);
1204
1205 return node;
1206}
1207
1208/* Return a pointer to the node that lives in the range space of "map",
1209 * an invalid node if there is no such node, or NULL in case of error.
1210 */
1211static struct isl_sched_node *find_range_node(isl_ctx *ctx,
1212 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1213{
1214 struct isl_sched_node *node;
1215 isl_space *space;
1216
1217 space = isl_space_range(space: isl_map_get_space(map));
1218 node = isl_sched_graph_find_node(ctx, graph, space);
1219 isl_space_free(space);
1220
1221 return node;
1222}
1223
1224/* Refrain from adding a new edge based on "map".
1225 * Instead, just free the map.
1226 * "tagged" is either a copy of "map" with additional tags or NULL.
1227 */
1228static isl_stat skip_edge(__isl_take isl_map *map, __isl_take isl_map *tagged)
1229{
1230 isl_map_free(map);
1231 isl_map_free(map: tagged);
1232
1233 return isl_stat_ok;
1234}
1235
1236/* Add a new edge to the graph based on the given map
1237 * and add it to data->graph->edge_table[data->type].
1238 * If a dependence relation of a given type happens to be identical
1239 * to one of the dependence relations of a type that was added before,
1240 * then we don't create a new edge, but instead mark the original edge
1241 * as also representing a dependence of the current type.
1242 *
1243 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1244 * may be specified as "tagged" dependence relations. That is, "map"
1245 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1246 * the dependence on iterations and a and b are tags.
1247 * edge->map is set to the relation containing the elements i -> j,
1248 * while edge->tagged_condition and edge->tagged_validity contain
1249 * the union of all the "map" relations
1250 * for which extract_edge is called that result in the same edge->map.
1251 *
1252 * If the source or the destination node is compressed, then
1253 * intersect both "map" and "tagged" with the constraints that
1254 * were used to construct the compression.
1255 * This ensures that there are no schedule constraints defined
1256 * outside of these domains, while the scheduler no longer has
1257 * any control over those outside parts.
1258 */
1259static isl_stat extract_edge(__isl_take isl_map *map, void *user)
1260{
1261 isl_bool empty;
1262 isl_ctx *ctx = isl_map_get_ctx(map);
1263 struct isl_extract_edge_data *data = user;
1264 struct isl_sched_graph *graph = data->graph;
1265 struct isl_sched_node *src, *dst;
1266 struct isl_sched_edge *edge;
1267 isl_map *tagged = NULL;
1268
1269 if (data->type == isl_edge_condition ||
1270 data->type == isl_edge_conditional_validity) {
1271 if (isl_map_can_zip(map)) {
1272 tagged = isl_map_copy(map);
1273 map = isl_set_unwrap(set: isl_map_domain(bmap: isl_map_zip(map)));
1274 } else {
1275 tagged = insert_dummy_tags(map: isl_map_copy(map));
1276 }
1277 }
1278
1279 src = find_domain_node(ctx, graph, map);
1280 dst = find_range_node(ctx, graph, map);
1281
1282 if (!src || !dst)
1283 goto error;
1284 if (!isl_sched_graph_is_node(graph, node: src) ||
1285 !isl_sched_graph_is_node(graph, node: dst))
1286 return skip_edge(map, tagged);
1287
1288 if (src->compressed || dst->compressed) {
1289 isl_map *hull;
1290 hull = extract_hull(src, dst);
1291 if (tagged)
1292 tagged = map_intersect_domains(tagged, map: hull);
1293 map = isl_map_intersect(map1: map, map2: hull);
1294 }
1295
1296 empty = isl_map_plain_is_empty(map);
1297 if (empty < 0)
1298 goto error;
1299 if (empty)
1300 return skip_edge(map, tagged);
1301
1302 graph->edge[graph->n_edge].src = src;
1303 graph->edge[graph->n_edge].dst = dst;
1304 graph->edge[graph->n_edge].map = map;
1305 graph->edge[graph->n_edge].types = 0;
1306 graph->edge[graph->n_edge].tagged_condition = NULL;
1307 graph->edge[graph->n_edge].tagged_validity = NULL;
1308 set_type(edge: &graph->edge[graph->n_edge], type: data->type);
1309 if (data->type == isl_edge_condition)
1310 graph->edge[graph->n_edge].tagged_condition =
1311 isl_union_map_from_map(map: tagged);
1312 if (data->type == isl_edge_conditional_validity)
1313 graph->edge[graph->n_edge].tagged_validity =
1314 isl_union_map_from_map(map: tagged);
1315
1316 edge = graph_find_matching_edge(graph, model: &graph->edge[graph->n_edge]);
1317 if (!edge) {
1318 graph->n_edge++;
1319 return isl_stat_error;
1320 }
1321 if (edge == &graph->edge[graph->n_edge])
1322 return graph_edge_table_add(ctx, graph, type: data->type,
1323 edge: &graph->edge[graph->n_edge++]);
1324
1325 if (merge_edge(edge1: edge, edge2: &graph->edge[graph->n_edge]) < 0)
1326 return isl_stat_error;
1327
1328 return graph_edge_table_add(ctx, graph, type: data->type, edge);
1329error:
1330 isl_map_free(map);
1331 isl_map_free(map: tagged);
1332 return isl_stat_error;
1333}
1334
1335/* Initialize the schedule graph "graph" from the schedule constraints "sc".
1336 *
1337 * The context is included in the domain before the nodes of
1338 * the graphs are extracted in order to be able to exploit
1339 * any possible additional equalities.
1340 * Note that this intersection is only performed locally here.
1341 */
1342isl_stat isl_sched_graph_init(struct isl_sched_graph *graph,
1343 __isl_keep isl_schedule_constraints *sc)
1344{
1345 isl_ctx *ctx;
1346 isl_union_set *domain;
1347 isl_union_map *c;
1348 struct isl_extract_edge_data data;
1349 enum isl_edge_type i;
1350 isl_stat r;
1351 isl_size n;
1352
1353 if (!sc)
1354 return isl_stat_error;
1355
1356 ctx = isl_schedule_constraints_get_ctx(sc);
1357
1358 domain = isl_schedule_constraints_get_domain(sc);
1359 n = isl_union_set_n_set(uset: domain);
1360 graph->n = n;
1361 isl_union_set_free(uset: domain);
1362 if (n < 0)
1363 return isl_stat_error;
1364
1365 n = isl_schedule_constraints_n_map(sc);
1366 if (n < 0 || graph_alloc(ctx, graph, n_node: graph->n, n_edge: n) < 0)
1367 return isl_stat_error;
1368
1369 if (compute_max_row(graph, sc) < 0)
1370 return isl_stat_error;
1371 graph->root = graph;
1372 graph->n = 0;
1373 domain = isl_schedule_constraints_get_domain(sc);
1374 domain = isl_union_set_intersect_params(uset: domain,
1375 set: isl_schedule_constraints_get_context(sc));
1376 r = isl_union_set_foreach_set(uset: domain, fn: &extract_node, user: graph);
1377 isl_union_set_free(uset: domain);
1378 if (r < 0)
1379 return isl_stat_error;
1380 if (graph_init_table(ctx, graph) < 0)
1381 return isl_stat_error;
1382 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1383 isl_size n;
1384
1385 c = isl_schedule_constraints_get(sc, type: i);
1386 n = isl_union_map_n_map(umap: c);
1387 graph->max_edge[i] = n;
1388 isl_union_map_free(umap: c);
1389 if (n < 0)
1390 return isl_stat_error;
1391 }
1392 if (graph_init_edge_tables(ctx, graph) < 0)
1393 return isl_stat_error;
1394 graph->n_edge = 0;
1395 data.graph = graph;
1396 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1397 isl_stat r;
1398
1399 data.type = i;
1400 c = isl_schedule_constraints_get(sc, type: i);
1401 r = isl_union_map_foreach_map(umap: c, fn: &extract_edge, user: &data);
1402 isl_union_map_free(umap: c);
1403 if (r < 0)
1404 return isl_stat_error;
1405 }
1406
1407 return isl_stat_ok;
1408}
1409
1410/* Check whether there is any dependence from node[j] to node[i]
1411 * or from node[i] to node[j].
1412 */
1413static isl_bool node_follows_weak(int i, int j, void *user)
1414{
1415 isl_bool f;
1416 struct isl_sched_graph *graph = user;
1417
1418 f = graph_has_any_edge(graph, src: &graph->node[j], dst: &graph->node[i]);
1419 if (f < 0 || f)
1420 return f;
1421 return graph_has_any_edge(graph, src: &graph->node[i], dst: &graph->node[j]);
1422}
1423
1424/* Check whether there is a (conditional) validity dependence from node[j]
1425 * to node[i], forcing node[i] to follow node[j].
1426 */
1427static isl_bool node_follows_strong(int i, int j, void *user)
1428{
1429 struct isl_sched_graph *graph = user;
1430
1431 return isl_sched_graph_has_validity_edge(graph, src: &graph->node[j],
1432 dst: &graph->node[i]);
1433}
1434
1435/* Use Tarjan's algorithm for computing the strongly connected components
1436 * in the dependence graph only considering those edges defined by "follows".
1437 */
1438isl_stat isl_sched_graph_detect_ccs(isl_ctx *ctx,
1439 struct isl_sched_graph *graph,
1440 isl_bool (*follows)(int i, int j, void *user))
1441{
1442 int i, n;
1443 struct isl_tarjan_graph *g = NULL;
1444
1445 g = isl_tarjan_graph_init(ctx, len: graph->n, follows, user: graph);
1446 if (!g)
1447 return isl_stat_error;
1448
1449 graph->scc = 0;
1450 i = 0;
1451 n = graph->n;
1452 while (n) {
1453 while (g->order[i] != -1) {
1454 graph->node[g->order[i]].scc = graph->scc;
1455 --n;
1456 ++i;
1457 }
1458 ++i;
1459 graph->scc++;
1460 }
1461
1462 isl_tarjan_graph_free(g);
1463
1464 return isl_stat_ok;
1465}
1466
1467/* Apply Tarjan's algorithm to detect the strongly connected components
1468 * in the dependence graph.
1469 * Only consider the (conditional) validity dependences and clear "weak".
1470 */
1471static isl_stat detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1472{
1473 graph->weak = 0;
1474 return isl_sched_graph_detect_ccs(ctx, graph, follows: &node_follows_strong);
1475}
1476
1477/* Apply Tarjan's algorithm to detect the (weakly) connected components
1478 * in the dependence graph.
1479 * Consider all dependences and set "weak".
1480 */
1481static isl_stat detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1482{
1483 graph->weak = 1;
1484 return isl_sched_graph_detect_ccs(ctx, graph, follows: &node_follows_weak);
1485}
1486
1487static int cmp_scc(const void *a, const void *b, void *data)
1488{
1489 struct isl_sched_graph *graph = data;
1490 const int *i1 = a;
1491 const int *i2 = b;
1492
1493 return graph->node[*i1].scc - graph->node[*i2].scc;
1494}
1495
1496/* Sort the elements of graph->sorted according to the corresponding SCCs.
1497 */
1498static int sort_sccs(struct isl_sched_graph *graph)
1499{
1500 return isl_sort(pbase: graph->sorted, total_elems: graph->n, size: sizeof(int), cmp: &cmp_scc, arg: graph);
1501}
1502
1503/* Return a non-parametric set in the compressed space of "node" that is
1504 * bounded by the size in each direction
1505 *
1506 * { [x] : -S_i <= x_i <= S_i }
1507 *
1508 * If S_i is infinity in direction i, then there are no constraints
1509 * in that direction.
1510 *
1511 * Cache the result in node->bounds.
1512 */
1513static __isl_give isl_basic_set *get_size_bounds(struct isl_sched_node *node)
1514{
1515 isl_space *space;
1516 isl_basic_set *bounds;
1517 int i;
1518
1519 if (node->bounds)
1520 return isl_basic_set_copy(bset: node->bounds);
1521
1522 if (node->compressed)
1523 space = isl_pw_multi_aff_get_domain_space(pma: node->decompress);
1524 else
1525 space = isl_space_copy(space: node->space);
1526 space = isl_space_drop_all_params(space);
1527 bounds = isl_basic_set_universe(space);
1528
1529 for (i = 0; i < node->nvar; ++i) {
1530 isl_val *size;
1531
1532 size = isl_multi_val_get_val(multi: node->sizes, pos: i);
1533 if (!size)
1534 return isl_basic_set_free(bset: bounds);
1535 if (!isl_val_is_int(v: size)) {
1536 isl_val_free(v: size);
1537 continue;
1538 }
1539 bounds = isl_basic_set_upper_bound_val(bset: bounds, type: isl_dim_set, pos: i,
1540 value: isl_val_copy(v: size));
1541 bounds = isl_basic_set_lower_bound_val(bset: bounds, type: isl_dim_set, pos: i,
1542 value: isl_val_neg(v: size));
1543 }
1544
1545 node->bounds = isl_basic_set_copy(bset: bounds);
1546 return bounds;
1547}
1548
1549/* Compress the dependence relation "map", if needed, i.e.,
1550 * when the source node "src" and/or the destination node "dst"
1551 * has been compressed.
1552 */
1553static __isl_give isl_map *compress(__isl_take isl_map *map,
1554 struct isl_sched_node *src, struct isl_sched_node *dst)
1555{
1556 if (src->compressed)
1557 map = isl_map_preimage_domain_pw_multi_aff(map,
1558 pma: isl_pw_multi_aff_copy(pma: src->decompress));
1559 if (dst->compressed)
1560 map = isl_map_preimage_range_pw_multi_aff(map,
1561 pma: isl_pw_multi_aff_copy(pma: dst->decompress));
1562 return map;
1563}
1564
1565/* Drop some constraints from "delta" that could be exploited
1566 * to construct loop coalescing schedules.
1567 * In particular, drop those constraint that bound the difference
1568 * to the size of the domain.
1569 * First project out the parameters to improve the effectiveness.
1570 */
1571static __isl_give isl_set *drop_coalescing_constraints(
1572 __isl_take isl_set *delta, struct isl_sched_node *node)
1573{
1574 isl_size nparam;
1575 isl_basic_set *bounds;
1576
1577 nparam = isl_set_dim(set: delta, type: isl_dim_param);
1578 if (nparam < 0)
1579 return isl_set_free(set: delta);
1580
1581 bounds = get_size_bounds(node);
1582
1583 delta = isl_set_project_out(set: delta, type: isl_dim_param, first: 0, n: nparam);
1584 delta = isl_set_remove_divs(set: delta);
1585 delta = isl_set_plain_gist_basic_set(set: delta, context: bounds);
1586 return delta;
1587}
1588
1589/* Given a dependence relation R from "node" to itself,
1590 * construct the set of coefficients of valid constraints for elements
1591 * in that dependence relation.
1592 * In particular, the result contains tuples of coefficients
1593 * c_0, c_n, c_x such that
1594 *
1595 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1596 *
1597 * or, equivalently,
1598 *
1599 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1600 *
1601 * We choose here to compute the dual of delta R.
1602 * Alternatively, we could have computed the dual of R, resulting
1603 * in a set of tuples c_0, c_n, c_x, c_y, and then
1604 * plugged in (c_0, c_n, c_x, -c_x).
1605 *
1606 * If "need_param" is set, then the resulting coefficients effectively
1607 * include coefficients for the parameters c_n. Otherwise, they may
1608 * have been projected out already.
1609 * Since the constraints may be different for these two cases,
1610 * they are stored in separate caches.
1611 * In particular, if no parameter coefficients are required and
1612 * the schedule_treat_coalescing option is set, then the parameters
1613 * are projected out and some constraints that could be exploited
1614 * to construct coalescing schedules are removed before the dual
1615 * is computed.
1616 *
1617 * If "node" has been compressed, then the dependence relation
1618 * is also compressed before the set of coefficients is computed.
1619 */
1620static __isl_give isl_basic_set *intra_coefficients(
1621 struct isl_sched_graph *graph, struct isl_sched_node *node,
1622 __isl_take isl_map *map, int need_param)
1623{
1624 isl_ctx *ctx;
1625 isl_set *delta;
1626 isl_map *key;
1627 isl_basic_set *coef;
1628 isl_maybe_isl_basic_set m;
1629 isl_map_to_basic_set **hmap = &graph->intra_hmap;
1630 int treat;
1631
1632 if (!map)
1633 return NULL;
1634
1635 ctx = isl_map_get_ctx(map);
1636 treat = !need_param && isl_options_get_schedule_treat_coalescing(ctx);
1637 if (!treat)
1638 hmap = &graph->intra_hmap_param;
1639 m = isl_map_to_basic_set_try_get(hmap: *hmap, key: map);
1640 if (m.valid < 0 || m.valid) {
1641 isl_map_free(map);
1642 return m.value;
1643 }
1644
1645 key = isl_map_copy(map);
1646 map = compress(map, src: node, dst: node);
1647 delta = isl_map_deltas(map);
1648 if (treat)
1649 delta = drop_coalescing_constraints(delta, node);
1650 delta = isl_set_remove_divs(set: delta);
1651 coef = isl_set_coefficients(set: delta);
1652 *hmap = isl_map_to_basic_set_set(hmap: *hmap, key, val: isl_basic_set_copy(bset: coef));
1653
1654 return coef;
1655}
1656
1657/* Given a dependence relation R, construct the set of coefficients
1658 * of valid constraints for elements in that dependence relation.
1659 * In particular, the result contains tuples of coefficients
1660 * c_0, c_n, c_x, c_y such that
1661 *
1662 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1663 *
1664 * If the source or destination nodes of "edge" have been compressed,
1665 * then the dependence relation is also compressed before
1666 * the set of coefficients is computed.
1667 */
1668static __isl_give isl_basic_set *inter_coefficients(
1669 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1670 __isl_take isl_map *map)
1671{
1672 isl_set *set;
1673 isl_map *key;
1674 isl_basic_set *coef;
1675 isl_maybe_isl_basic_set m;
1676
1677 m = isl_map_to_basic_set_try_get(hmap: graph->inter_hmap, key: map);
1678 if (m.valid < 0 || m.valid) {
1679 isl_map_free(map);
1680 return m.value;
1681 }
1682
1683 key = isl_map_copy(map);
1684 map = compress(map, src: edge->src, dst: edge->dst);
1685 set = isl_map_wrap(map: isl_map_remove_divs(map));
1686 coef = isl_set_coefficients(set);
1687 graph->inter_hmap = isl_map_to_basic_set_set(hmap: graph->inter_hmap, key,
1688 val: isl_basic_set_copy(bset: coef));
1689
1690 return coef;
1691}
1692
1693/* Return the position of the coefficients of the variables in
1694 * the coefficients constraints "coef".
1695 *
1696 * The space of "coef" is of the form
1697 *
1698 * { coefficients[[cst, params] -> S] }
1699 *
1700 * Return the position of S.
1701 */
1702static isl_size coef_var_offset(__isl_keep isl_basic_set *coef)
1703{
1704 isl_size offset;
1705 isl_space *space;
1706
1707 space = isl_space_unwrap(space: isl_basic_set_get_space(bset: coef));
1708 offset = isl_space_dim(space, type: isl_dim_in);
1709 isl_space_free(space);
1710
1711 return offset;
1712}
1713
1714/* Return the offset of the coefficient of the constant term of "node"
1715 * within the (I)LP.
1716 *
1717 * Within each node, the coefficients have the following order:
1718 * - positive and negative parts of c_i_x
1719 * - c_i_n (if parametric)
1720 * - c_i_0
1721 */
1722static int node_cst_coef_offset(struct isl_sched_node *node)
1723{
1724 return node->start + 2 * node->nvar + node->nparam;
1725}
1726
1727/* Return the offset of the coefficients of the parameters of "node"
1728 * within the (I)LP.
1729 *
1730 * Within each node, the coefficients have the following order:
1731 * - positive and negative parts of c_i_x
1732 * - c_i_n (if parametric)
1733 * - c_i_0
1734 */
1735static int node_par_coef_offset(struct isl_sched_node *node)
1736{
1737 return node->start + 2 * node->nvar;
1738}
1739
1740/* Return the offset of the coefficients of the variables of "node"
1741 * within the (I)LP.
1742 *
1743 * Within each node, the coefficients have the following order:
1744 * - positive and negative parts of c_i_x
1745 * - c_i_n (if parametric)
1746 * - c_i_0
1747 */
1748static int node_var_coef_offset(struct isl_sched_node *node)
1749{
1750 return node->start;
1751}
1752
1753/* Return the position of the pair of variables encoding
1754 * coefficient "i" of "node".
1755 *
1756 * The order of these variable pairs is the opposite of
1757 * that of the coefficients, with 2 variables per coefficient.
1758 */
1759static int node_var_coef_pos(struct isl_sched_node *node, int i)
1760{
1761 return node_var_coef_offset(node) + 2 * (node->nvar - 1 - i);
1762}
1763
1764/* Construct an isl_dim_map for mapping constraints on coefficients
1765 * for "node" to the corresponding positions in graph->lp.
1766 * "offset" is the offset of the coefficients for the variables
1767 * in the input constraints.
1768 * "s" is the sign of the mapping.
1769 *
1770 * The input constraints are given in terms of the coefficients
1771 * (c_0, c_x) or (c_0, c_n, c_x).
1772 * The mapping produced by this function essentially plugs in
1773 * (0, c_i_x^+ - c_i_x^-) if s = 1 and
1774 * (0, -c_i_x^+ + c_i_x^-) if s = -1 or
1775 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1776 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1777 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1778 * Furthermore, the order of these pairs is the opposite of that
1779 * of the corresponding coefficients.
1780 *
1781 * The caller can extend the mapping to also map the other coefficients
1782 * (and therefore not plug in 0).
1783 */
1784static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
1785 struct isl_sched_graph *graph, struct isl_sched_node *node,
1786 int offset, int s)
1787{
1788 int pos;
1789 isl_size total;
1790 isl_dim_map *dim_map;
1791
1792 total = isl_basic_set_dim(bset: graph->lp, type: isl_dim_all);
1793 if (!node || total < 0)
1794 return NULL;
1795
1796 pos = node_var_coef_pos(node, i: 0);
1797 dim_map = isl_dim_map_alloc(ctx, len: total);
1798 isl_dim_map_range(dim_map, dst_pos: pos, dst_stride: -2, src_pos: offset, src_stride: 1, n: node->nvar, sign: -s);
1799 isl_dim_map_range(dim_map, dst_pos: pos + 1, dst_stride: -2, src_pos: offset, src_stride: 1, n: node->nvar, sign: s);
1800
1801 return dim_map;
1802}
1803
1804/* Construct an isl_dim_map for mapping constraints on coefficients
1805 * for "src" (node i) and "dst" (node j) to the corresponding positions
1806 * in graph->lp.
1807 * "offset" is the offset of the coefficients for the variables of "src"
1808 * in the input constraints.
1809 * "s" is the sign of the mapping.
1810 *
1811 * The input constraints are given in terms of the coefficients
1812 * (c_0, c_n, c_x, c_y).
1813 * The mapping produced by this function essentially plugs in
1814 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1815 * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
1816 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1817 * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
1818 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1819 * Furthermore, the order of these pairs is the opposite of that
1820 * of the corresponding coefficients.
1821 *
1822 * The caller can further extend the mapping.
1823 */
1824static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
1825 struct isl_sched_graph *graph, struct isl_sched_node *src,
1826 struct isl_sched_node *dst, int offset, int s)
1827{
1828 int pos;
1829 isl_size total;
1830 isl_dim_map *dim_map;
1831
1832 total = isl_basic_set_dim(bset: graph->lp, type: isl_dim_all);
1833 if (!src || !dst || total < 0)
1834 return NULL;
1835
1836 dim_map = isl_dim_map_alloc(ctx, len: total);
1837
1838 pos = node_cst_coef_offset(node: dst);
1839 isl_dim_map_range(dim_map, dst_pos: pos, dst_stride: 0, src_pos: 0, src_stride: 0, n: 1, sign: s);
1840 pos = node_par_coef_offset(node: dst);
1841 isl_dim_map_range(dim_map, dst_pos: pos, dst_stride: 1, src_pos: 1, src_stride: 1, n: dst->nparam, sign: s);
1842 pos = node_var_coef_pos(node: dst, i: 0);
1843 isl_dim_map_range(dim_map, dst_pos: pos, dst_stride: -2, src_pos: offset + src->nvar, src_stride: 1,
1844 n: dst->nvar, sign: -s);
1845 isl_dim_map_range(dim_map, dst_pos: pos + 1, dst_stride: -2, src_pos: offset + src->nvar, src_stride: 1,
1846 n: dst->nvar, sign: s);
1847
1848 pos = node_cst_coef_offset(node: src);
1849 isl_dim_map_range(dim_map, dst_pos: pos, dst_stride: 0, src_pos: 0, src_stride: 0, n: 1, sign: -s);
1850 pos = node_par_coef_offset(node: src);
1851 isl_dim_map_range(dim_map, dst_pos: pos, dst_stride: 1, src_pos: 1, src_stride: 1, n: src->nparam, sign: -s);
1852 pos = node_var_coef_pos(node: src, i: 0);
1853 isl_dim_map_range(dim_map, dst_pos: pos, dst_stride: -2, src_pos: offset, src_stride: 1, n: src->nvar, sign: s);
1854 isl_dim_map_range(dim_map, dst_pos: pos + 1, dst_stride: -2, src_pos: offset, src_stride: 1, n: src->nvar, sign: -s);
1855
1856 return dim_map;
1857}
1858
1859/* Add the constraints from "src" to "dst" using "dim_map",
1860 * after making sure there is enough room in "dst" for the extra constraints.
1861 */
1862static __isl_give isl_basic_set *add_constraints_dim_map(
1863 __isl_take isl_basic_set *dst, __isl_take isl_basic_set *src,
1864 __isl_take isl_dim_map *dim_map)
1865{
1866 isl_size n_eq, n_ineq;
1867
1868 n_eq = isl_basic_set_n_equality(bset: src);
1869 n_ineq = isl_basic_set_n_inequality(bset: src);
1870 if (n_eq < 0 || n_ineq < 0)
1871 dst = isl_basic_set_free(bset: dst);
1872 dst = isl_basic_set_extend_constraints(base: dst, n_eq, n_ineq);
1873 dst = isl_basic_set_add_constraints_dim_map(dst, src, dim_map);
1874 return dst;
1875}
1876
1877/* Add constraints to graph->lp that force validity for the given
1878 * dependence from a node i to itself.
1879 * That is, add constraints that enforce
1880 *
1881 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1882 * = c_i_x (y - x) >= 0
1883 *
1884 * for each (x,y) in R.
1885 * We obtain general constraints on coefficients (c_0, c_x)
1886 * of valid constraints for (y - x) and then plug in (0, c_i_x^+ - c_i_x^-),
1887 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1888 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1889 * Note that the result of intra_coefficients may also contain
1890 * parameter coefficients c_n, in which case 0 is plugged in for them as well.
1891 */
1892static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
1893 struct isl_sched_edge *edge)
1894{
1895 isl_size offset;
1896 isl_map *map = isl_map_copy(map: edge->map);
1897 isl_ctx *ctx = isl_map_get_ctx(map);
1898 isl_dim_map *dim_map;
1899 isl_basic_set *coef;
1900 struct isl_sched_node *node = edge->src;
1901
1902 coef = intra_coefficients(graph, node, map, need_param: 0);
1903
1904 offset = coef_var_offset(coef);
1905 if (offset < 0)
1906 coef = isl_basic_set_free(bset: coef);
1907 if (!coef)
1908 return isl_stat_error;
1909
1910 dim_map = intra_dim_map(ctx, graph, node, offset, s: 1);
1911 graph->lp = add_constraints_dim_map(dst: graph->lp, src: coef, dim_map);
1912
1913 return isl_stat_ok;
1914}
1915
1916/* Add constraints to graph->lp that force validity for the given
1917 * dependence from node i to node j.
1918 * That is, add constraints that enforce
1919 *
1920 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1921 *
1922 * for each (x,y) in R.
1923 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1924 * of valid constraints for R and then plug in
1925 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
1926 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1927 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1928 */
1929static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
1930 struct isl_sched_edge *edge)
1931{
1932 isl_size offset;
1933 isl_map *map;
1934 isl_ctx *ctx;
1935 isl_dim_map *dim_map;
1936 isl_basic_set *coef;
1937 struct isl_sched_node *src = edge->src;
1938 struct isl_sched_node *dst = edge->dst;
1939
1940 if (!graph->lp)
1941 return isl_stat_error;
1942
1943 map = isl_map_copy(map: edge->map);
1944 ctx = isl_map_get_ctx(map);
1945 coef = inter_coefficients(graph, edge, map);
1946
1947 offset = coef_var_offset(coef);
1948 if (offset < 0)
1949 coef = isl_basic_set_free(bset: coef);
1950 if (!coef)
1951 return isl_stat_error;
1952
1953 dim_map = inter_dim_map(ctx, graph, src, dst, offset, s: 1);
1954
1955 edge->start = graph->lp->n_ineq;
1956 graph->lp = add_constraints_dim_map(dst: graph->lp, src: coef, dim_map);
1957 if (!graph->lp)
1958 return isl_stat_error;
1959 edge->end = graph->lp->n_ineq;
1960
1961 return isl_stat_ok;
1962}
1963
1964/* Add constraints to graph->lp that bound the dependence distance for the given
1965 * dependence from a node i to itself.
1966 * If s = 1, we add the constraint
1967 *
1968 * c_i_x (y - x) <= m_0 + m_n n
1969 *
1970 * or
1971 *
1972 * -c_i_x (y - x) + m_0 + m_n n >= 0
1973 *
1974 * for each (x,y) in R.
1975 * If s = -1, we add the constraint
1976 *
1977 * -c_i_x (y - x) <= m_0 + m_n n
1978 *
1979 * or
1980 *
1981 * c_i_x (y - x) + m_0 + m_n n >= 0
1982 *
1983 * for each (x,y) in R.
1984 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1985 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1986 * with each coefficient (except m_0) represented as a pair of non-negative
1987 * coefficients.
1988 *
1989 *
1990 * If "local" is set, then we add constraints
1991 *
1992 * c_i_x (y - x) <= 0
1993 *
1994 * or
1995 *
1996 * -c_i_x (y - x) <= 0
1997 *
1998 * instead, forcing the dependence distance to be (less than or) equal to 0.
1999 * That is, we plug in (0, 0, -s * c_i_x),
2000 * intra_coefficients is not required to have c_n in its result when
2001 * "local" is set. If they are missing, then (0, -s * c_i_x) is plugged in.
2002 * Note that dependences marked local are treated as validity constraints
2003 * by add_all_validity_constraints and therefore also have
2004 * their distances bounded by 0 from below.
2005 */
2006static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
2007 struct isl_sched_edge *edge, int s, int local)
2008{
2009 isl_size offset;
2010 isl_size nparam;
2011 isl_map *map = isl_map_copy(map: edge->map);
2012 isl_ctx *ctx = isl_map_get_ctx(map);
2013 isl_dim_map *dim_map;
2014 isl_basic_set *coef;
2015 struct isl_sched_node *node = edge->src;
2016
2017 coef = intra_coefficients(graph, node, map, need_param: !local);
2018 nparam = isl_space_dim(space: node->space, type: isl_dim_param);
2019
2020 offset = coef_var_offset(coef);
2021 if (nparam < 0 || offset < 0)
2022 coef = isl_basic_set_free(bset: coef);
2023 if (!coef)
2024 return isl_stat_error;
2025
2026 dim_map = intra_dim_map(ctx, graph, node, offset, s: -s);
2027
2028 if (!local) {
2029 isl_dim_map_range(dim_map, dst_pos: 1, dst_stride: 0, src_pos: 0, src_stride: 0, n: 1, sign: 1);
2030 isl_dim_map_range(dim_map, dst_pos: 4, dst_stride: 2, src_pos: 1, src_stride: 1, n: nparam, sign: -1);
2031 isl_dim_map_range(dim_map, dst_pos: 5, dst_stride: 2, src_pos: 1, src_stride: 1, n: nparam, sign: 1);
2032 }
2033 graph->lp = add_constraints_dim_map(dst: graph->lp, src: coef, dim_map);
2034
2035 return isl_stat_ok;
2036}
2037
2038/* Add constraints to graph->lp that bound the dependence distance for the given
2039 * dependence from node i to node j.
2040 * If s = 1, we add the constraint
2041 *
2042 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
2043 * <= m_0 + m_n n
2044 *
2045 * or
2046 *
2047 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
2048 * m_0 + m_n n >= 0
2049 *
2050 * for each (x,y) in R.
2051 * If s = -1, we add the constraint
2052 *
2053 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
2054 * <= m_0 + m_n n
2055 *
2056 * or
2057 *
2058 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
2059 * m_0 + m_n n >= 0
2060 *
2061 * for each (x,y) in R.
2062 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
2063 * of valid constraints for R and then plug in
2064 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
2065 * s*c_i_x, -s*c_j_x)
2066 * with each coefficient (except m_0, c_*_0 and c_*_n)
2067 * represented as a pair of non-negative coefficients.
2068 *
2069 *
2070 * If "local" is set (and s = 1), then we add constraints
2071 *
2072 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
2073 *
2074 * or
2075 *
2076 * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
2077 *
2078 * instead, forcing the dependence distance to be (less than or) equal to 0.
2079 * That is, we plug in
2080 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
2081 * Note that dependences marked local are treated as validity constraints
2082 * by add_all_validity_constraints and therefore also have
2083 * their distances bounded by 0 from below.
2084 */
2085static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
2086 struct isl_sched_edge *edge, int s, int local)
2087{
2088 isl_size offset;
2089 isl_size nparam;
2090 isl_map *map = isl_map_copy(map: edge->map);
2091 isl_ctx *ctx = isl_map_get_ctx(map);
2092 isl_dim_map *dim_map;
2093 isl_basic_set *coef;
2094 struct isl_sched_node *src = edge->src;
2095 struct isl_sched_node *dst = edge->dst;
2096
2097 coef = inter_coefficients(graph, edge, map);
2098 nparam = isl_space_dim(space: src->space, type: isl_dim_param);
2099
2100 offset = coef_var_offset(coef);
2101 if (nparam < 0 || offset < 0)
2102 coef = isl_basic_set_free(bset: coef);
2103 if (!coef)
2104 return isl_stat_error;
2105
2106 dim_map = inter_dim_map(ctx, graph, src, dst, offset, s: -s);
2107
2108 if (!local) {
2109 isl_dim_map_range(dim_map, dst_pos: 1, dst_stride: 0, src_pos: 0, src_stride: 0, n: 1, sign: 1);
2110 isl_dim_map_range(dim_map, dst_pos: 4, dst_stride: 2, src_pos: 1, src_stride: 1, n: nparam, sign: -1);
2111 isl_dim_map_range(dim_map, dst_pos: 5, dst_stride: 2, src_pos: 1, src_stride: 1, n: nparam, sign: 1);
2112 }
2113
2114 graph->lp = add_constraints_dim_map(dst: graph->lp, src: coef, dim_map);
2115
2116 return isl_stat_ok;
2117}
2118
2119/* Should the distance over "edge" be forced to zero?
2120 * That is, is it marked as a local edge?
2121 * If "use_coincidence" is set, then coincidence edges are treated
2122 * as local edges.
2123 */
2124static int force_zero(struct isl_sched_edge *edge, int use_coincidence)
2125{
2126 return is_local(edge) || (use_coincidence && is_coincidence(edge));
2127}
2128
2129/* Add all validity constraints to graph->lp.
2130 *
2131 * An edge that is forced to be local needs to have its dependence
2132 * distances equal to zero. We take care of bounding them by 0 from below
2133 * here. add_all_proximity_constraints takes care of bounding them by 0
2134 * from above.
2135 *
2136 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2137 * Otherwise, we ignore them.
2138 */
2139static int add_all_validity_constraints(struct isl_sched_graph *graph,
2140 int use_coincidence)
2141{
2142 int i;
2143
2144 for (i = 0; i < graph->n_edge; ++i) {
2145 struct isl_sched_edge *edge = &graph->edge[i];
2146 int zero;
2147
2148 zero = force_zero(edge, use_coincidence);
2149 if (!is_validity(edge) && !zero)
2150 continue;
2151 if (edge->src != edge->dst)
2152 continue;
2153 if (add_intra_validity_constraints(graph, edge) < 0)
2154 return -1;
2155 }
2156
2157 for (i = 0; i < graph->n_edge; ++i) {
2158 struct isl_sched_edge *edge = &graph->edge[i];
2159 int zero;
2160
2161 zero = force_zero(edge, use_coincidence);
2162 if (!is_validity(edge) && !zero)
2163 continue;
2164 if (edge->src == edge->dst)
2165 continue;
2166 if (add_inter_validity_constraints(graph, edge) < 0)
2167 return -1;
2168 }
2169
2170 return 0;
2171}
2172
2173/* Add constraints to graph->lp that bound the dependence distance
2174 * for all dependence relations.
2175 * If a given proximity dependence is identical to a validity
2176 * dependence, then the dependence distance is already bounded
2177 * from below (by zero), so we only need to bound the distance
2178 * from above. (This includes the case of "local" dependences
2179 * which are treated as validity dependence by add_all_validity_constraints.)
2180 * Otherwise, we need to bound the distance both from above and from below.
2181 *
2182 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2183 * Otherwise, we ignore them.
2184 */
2185static int add_all_proximity_constraints(struct isl_sched_graph *graph,
2186 int use_coincidence)
2187{
2188 int i;
2189
2190 for (i = 0; i < graph->n_edge; ++i) {
2191 struct isl_sched_edge *edge = &graph->edge[i];
2192 int zero;
2193
2194 zero = force_zero(edge, use_coincidence);
2195 if (!isl_sched_edge_is_proximity(edge) && !zero)
2196 continue;
2197 if (edge->src == edge->dst &&
2198 add_intra_proximity_constraints(graph, edge, s: 1, local: zero) < 0)
2199 return -1;
2200 if (edge->src != edge->dst &&
2201 add_inter_proximity_constraints(graph, edge, s: 1, local: zero) < 0)
2202 return -1;
2203 if (is_validity(edge) || zero)
2204 continue;
2205 if (edge->src == edge->dst &&
2206 add_intra_proximity_constraints(graph, edge, s: -1, local: 0) < 0)
2207 return -1;
2208 if (edge->src != edge->dst &&
2209 add_inter_proximity_constraints(graph, edge, s: -1, local: 0) < 0)
2210 return -1;
2211 }
2212
2213 return 0;
2214}
2215
2216/* Normalize the rows of "indep" such that all rows are lexicographically
2217 * positive and such that each row contains as many final zeros as possible,
2218 * given the choice for the previous rows.
2219 * Do this by performing elementary row operations.
2220 */
2221static __isl_give isl_mat *normalize_independent(__isl_take isl_mat *indep)
2222{
2223 indep = isl_mat_reverse_gauss(mat: indep);
2224 indep = isl_mat_lexnonneg_rows(mat: indep);
2225 return indep;
2226}
2227
2228/* Extract the linear part of the current schedule for node "node".
2229 */
2230static __isl_give isl_mat *extract_linear_schedule(struct isl_sched_node *node)
2231{
2232 isl_size n_row = isl_mat_rows(mat: node->sched);
2233
2234 if (n_row < 0)
2235 return NULL;
2236 return isl_mat_sub_alloc(mat: node->sched, first_row: 0, n_row,
2237 first_col: 1 + node->nparam, n_col: node->nvar);
2238}
2239
2240/* Compute a basis for the rows in the linear part of the schedule
2241 * and extend this basis to a full basis. The remaining rows
2242 * can then be used to force linear independence from the rows
2243 * in the schedule.
2244 *
2245 * In particular, given the schedule rows S, we compute
2246 *
2247 * S = H Q
2248 * S U = H
2249 *
2250 * with H the Hermite normal form of S. That is, all but the
2251 * first rank columns of H are zero and so each row in S is
2252 * a linear combination of the first rank rows of Q.
2253 * The matrix Q can be used as a variable transformation
2254 * that isolates the directions of S in the first rank rows.
2255 * Transposing S U = H yields
2256 *
2257 * U^T S^T = H^T
2258 *
2259 * with all but the first rank rows of H^T zero.
2260 * The last rows of U^T are therefore linear combinations
2261 * of schedule coefficients that are all zero on schedule
2262 * coefficients that are linearly dependent on the rows of S.
2263 * At least one of these combinations is non-zero on
2264 * linearly independent schedule coefficients.
2265 * The rows are normalized to involve as few of the last
2266 * coefficients as possible and to have a positive initial value.
2267 */
2268isl_stat isl_sched_node_update_vmap(struct isl_sched_node *node)
2269{
2270 isl_mat *H, *U, *Q;
2271
2272 H = extract_linear_schedule(node);
2273
2274 H = isl_mat_left_hermite(M: H, neg: 0, U: &U, Q: &Q);
2275 isl_mat_free(mat: node->indep);
2276 isl_mat_free(mat: node->vmap);
2277 node->vmap = Q;
2278 node->indep = isl_mat_transpose(mat: U);
2279 node->rank = isl_mat_initial_non_zero_cols(mat: H);
2280 node->indep = isl_mat_drop_rows(mat: node->indep, row: 0, n: node->rank);
2281 node->indep = normalize_independent(indep: node->indep);
2282 isl_mat_free(mat: H);
2283
2284 if (!node->indep || !node->vmap || node->rank < 0)
2285 return isl_stat_error;
2286 return isl_stat_ok;
2287}
2288
2289/* Is "edge" marked as a validity or a conditional validity edge?
2290 */
2291static int is_any_validity(struct isl_sched_edge *edge)
2292{
2293 return is_validity(edge) ||
2294 isl_sched_edge_is_conditional_validity(edge);
2295}
2296
2297/* How many times should we count the constraints in "edge"?
2298 *
2299 * We count as follows
2300 * validity -> 1 (>= 0)
2301 * validity+proximity -> 2 (>= 0 and upper bound)
2302 * proximity -> 2 (lower and upper bound)
2303 * local(+any) -> 2 (>= 0 and <= 0)
2304 *
2305 * If an edge is only marked conditional_validity then it counts
2306 * as zero since it is only checked afterwards.
2307 *
2308 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2309 * Otherwise, we ignore them.
2310 */
2311static int edge_multiplicity(struct isl_sched_edge *edge, int use_coincidence)
2312{
2313 if (isl_sched_edge_is_proximity(edge) ||
2314 force_zero(edge, use_coincidence))
2315 return 2;
2316 if (is_validity(edge))
2317 return 1;
2318 return 0;
2319}
2320
2321/* How many times should the constraints in "edge" be counted
2322 * as a parametric intra-node constraint?
2323 *
2324 * Only proximity edges that are not forced zero need
2325 * coefficient constraints that include coefficients for parameters.
2326 * If the edge is also a validity edge, then only
2327 * an upper bound is introduced. Otherwise, both lower and upper bounds
2328 * are introduced.
2329 */
2330static int parametric_intra_edge_multiplicity(struct isl_sched_edge *edge,
2331 int use_coincidence)
2332{
2333 if (edge->src != edge->dst)
2334 return 0;
2335 if (!isl_sched_edge_is_proximity(edge))
2336 return 0;
2337 if (force_zero(edge, use_coincidence))
2338 return 0;
2339 if (is_validity(edge))
2340 return 1;
2341 else
2342 return 2;
2343}
2344
2345/* Add "f" times the number of equality and inequality constraints of "bset"
2346 * to "n_eq" and "n_ineq" and free "bset".
2347 */
2348static isl_stat update_count(__isl_take isl_basic_set *bset,
2349 int f, int *n_eq, int *n_ineq)
2350{
2351 isl_size eq, ineq;
2352
2353 eq = isl_basic_set_n_equality(bset);
2354 ineq = isl_basic_set_n_inequality(bset);
2355 isl_basic_set_free(bset);
2356
2357 if (eq < 0 || ineq < 0)
2358 return isl_stat_error;
2359
2360 *n_eq += eq;
2361 *n_ineq += ineq;
2362
2363 return isl_stat_ok;
2364}
2365
2366/* Count the number of equality and inequality constraints
2367 * that will be added for the given map.
2368 *
2369 * The edges that require parameter coefficients are counted separately.
2370 *
2371 * "use_coincidence" is set if we should take into account coincidence edges.
2372 */
2373static isl_stat count_map_constraints(struct isl_sched_graph *graph,
2374 struct isl_sched_edge *edge, __isl_take isl_map *map,
2375 int *n_eq, int *n_ineq, int use_coincidence)
2376{
2377 isl_map *copy;
2378 isl_basic_set *coef;
2379 int f = edge_multiplicity(edge, use_coincidence);
2380 int fp = parametric_intra_edge_multiplicity(edge, use_coincidence);
2381
2382 if (f == 0) {
2383 isl_map_free(map);
2384 return isl_stat_ok;
2385 }
2386
2387 if (edge->src != edge->dst) {
2388 coef = inter_coefficients(graph, edge, map);
2389 return update_count(bset: coef, f, n_eq, n_ineq);
2390 }
2391
2392 if (fp > 0) {
2393 copy = isl_map_copy(map);
2394 coef = intra_coefficients(graph, node: edge->src, map: copy, need_param: 1);
2395 if (update_count(bset: coef, f: fp, n_eq, n_ineq) < 0)
2396 goto error;
2397 }
2398
2399 if (f > fp) {
2400 copy = isl_map_copy(map);
2401 coef = intra_coefficients(graph, node: edge->src, map: copy, need_param: 0);
2402 if (update_count(bset: coef, f: f - fp, n_eq, n_ineq) < 0)
2403 goto error;
2404 }
2405
2406 isl_map_free(map);
2407 return isl_stat_ok;
2408error:
2409 isl_map_free(map);
2410 return isl_stat_error;
2411}
2412
2413/* Count the number of equality and inequality constraints
2414 * that will be added to the main lp problem.
2415 * We count as follows
2416 * validity -> 1 (>= 0)
2417 * validity+proximity -> 2 (>= 0 and upper bound)
2418 * proximity -> 2 (lower and upper bound)
2419 * local(+any) -> 2 (>= 0 and <= 0)
2420 *
2421 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2422 * Otherwise, we ignore them.
2423 */
2424static int count_constraints(struct isl_sched_graph *graph,
2425 int *n_eq, int *n_ineq, int use_coincidence)
2426{
2427 int i;
2428
2429 *n_eq = *n_ineq = 0;
2430 for (i = 0; i < graph->n_edge; ++i) {
2431 struct isl_sched_edge *edge = &graph->edge[i];
2432 isl_map *map = isl_map_copy(map: edge->map);
2433
2434 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
2435 use_coincidence) < 0)
2436 return -1;
2437 }
2438
2439 return 0;
2440}
2441
2442/* Count the number of constraints that will be added by
2443 * add_bound_constant_constraints to bound the values of the constant terms
2444 * and increment *n_eq and *n_ineq accordingly.
2445 *
2446 * In practice, add_bound_constant_constraints only adds inequalities.
2447 */
2448static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
2449 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2450{
2451 if (isl_options_get_schedule_max_constant_term(ctx) == -1)
2452 return isl_stat_ok;
2453
2454 *n_ineq += graph->n;
2455
2456 return isl_stat_ok;
2457}
2458
2459/* Add constraints to bound the values of the constant terms in the schedule,
2460 * if requested by the user.
2461 *
2462 * The maximal value of the constant terms is defined by the option
2463 * "schedule_max_constant_term".
2464 */
2465static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
2466 struct isl_sched_graph *graph)
2467{
2468 int i, k;
2469 int max;
2470 isl_size total;
2471
2472 max = isl_options_get_schedule_max_constant_term(ctx);
2473 if (max == -1)
2474 return isl_stat_ok;
2475
2476 total = isl_basic_set_dim(bset: graph->lp, type: isl_dim_set);
2477 if (total < 0)
2478 return isl_stat_error;
2479
2480 for (i = 0; i < graph->n; ++i) {
2481 struct isl_sched_node *node = &graph->node[i];
2482 int pos;
2483
2484 k = isl_basic_set_alloc_inequality(bset: graph->lp);
2485 if (k < 0)
2486 return isl_stat_error;
2487 isl_seq_clr(p: graph->lp->ineq[k], len: 1 + total);
2488 pos = node_cst_coef_offset(node);
2489 isl_int_set_si(graph->lp->ineq[k][1 + pos], -1);
2490 isl_int_set_si(graph->lp->ineq[k][0], max);
2491 }
2492
2493 return isl_stat_ok;
2494}
2495
2496/* Count the number of constraints that will be added by
2497 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2498 * accordingly.
2499 *
2500 * In practice, add_bound_coefficient_constraints only adds inequalities.
2501 */
2502static int count_bound_coefficient_constraints(isl_ctx *ctx,
2503 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2504{
2505 int i;
2506
2507 if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
2508 !isl_options_get_schedule_treat_coalescing(ctx))
2509 return 0;
2510
2511 for (i = 0; i < graph->n; ++i)
2512 *n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;
2513
2514 return 0;
2515}
2516
2517/* Add constraints to graph->lp that bound the values of
2518 * the parameter schedule coefficients of "node" to "max" and
2519 * the variable schedule coefficients to the corresponding entry
2520 * in node->max.
2521 * In either case, a negative value means that no bound needs to be imposed.
2522 *
2523 * For parameter coefficients, this amounts to adding a constraint
2524 *
2525 * c_n <= max
2526 *
2527 * i.e.,
2528 *
2529 * -c_n + max >= 0
2530 *
2531 * The variables coefficients are, however, not represented directly.
2532 * Instead, the variable coefficients c_x are written as differences
2533 * c_x = c_x^+ - c_x^-.
2534 * That is,
2535 *
2536 * -max_i <= c_x_i <= max_i
2537 *
2538 * is encoded as
2539 *
2540 * -max_i <= c_x_i^+ - c_x_i^- <= max_i
2541 *
2542 * or
2543 *
2544 * -(c_x_i^+ - c_x_i^-) + max_i >= 0
2545 * c_x_i^+ - c_x_i^- + max_i >= 0
2546 */
2547static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
2548 struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
2549{
2550 int i, j, k;
2551 isl_size total;
2552 isl_vec *ineq;
2553
2554 total = isl_basic_set_dim(bset: graph->lp, type: isl_dim_set);
2555 if (total < 0)
2556 return isl_stat_error;
2557
2558 for (j = 0; j < node->nparam; ++j) {
2559 int dim;
2560
2561 if (max < 0)
2562 continue;
2563
2564 k = isl_basic_set_alloc_inequality(bset: graph->lp);
2565 if (k < 0)
2566 return isl_stat_error;
2567 dim = 1 + node_par_coef_offset(node) + j;
2568 isl_seq_clr(p: graph->lp->ineq[k], len: 1 + total);
2569 isl_int_set_si(graph->lp->ineq[k][dim], -1);
2570 isl_int_set_si(graph->lp->ineq[k][0], max);
2571 }
2572
2573 ineq = isl_vec_alloc(ctx, size: 1 + total);
2574 ineq = isl_vec_clr(vec: ineq);
2575 if (!ineq)
2576 return isl_stat_error;
2577 for (i = 0; i < node->nvar; ++i) {
2578 int pos = 1 + node_var_coef_pos(node, i);
2579
2580 if (isl_int_is_neg(node->max->el[i]))
2581 continue;
2582
2583 isl_int_set_si(ineq->el[pos], 1);
2584 isl_int_set_si(ineq->el[pos + 1], -1);
2585 isl_int_set(ineq->el[0], node->max->el[i]);
2586
2587 k = isl_basic_set_alloc_inequality(bset: graph->lp);
2588 if (k < 0)
2589 goto error;
2590 isl_seq_cpy(dst: graph->lp->ineq[k], src: ineq->el, len: 1 + total);
2591
2592 isl_seq_neg(dst: ineq->el + pos, src: ineq->el + pos, len: 2);
2593 k = isl_basic_set_alloc_inequality(bset: graph->lp);
2594 if (k < 0)
2595 goto error;
2596 isl_seq_cpy(dst: graph->lp->ineq[k], src: ineq->el, len: 1 + total);
2597
2598 isl_seq_clr(p: ineq->el + pos, len: 2);
2599 }
2600 isl_vec_free(vec: ineq);
2601
2602 return isl_stat_ok;
2603error:
2604 isl_vec_free(vec: ineq);
2605 return isl_stat_error;
2606}
2607
2608/* Add constraints that bound the values of the variable and parameter
2609 * coefficients of the schedule.
2610 *
2611 * The maximal value of the coefficients is defined by the option
2612 * 'schedule_max_coefficient' and the entries in node->max.
2613 * These latter entries are only set if either the schedule_max_coefficient
2614 * option or the schedule_treat_coalescing option is set.
2615 */
2616static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
2617 struct isl_sched_graph *graph)
2618{
2619 int i;
2620 int max;
2621
2622 max = isl_options_get_schedule_max_coefficient(ctx);
2623
2624 if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
2625 return isl_stat_ok;
2626
2627 for (i = 0; i < graph->n; ++i) {
2628 struct isl_sched_node *node = &graph->node[i];
2629
2630 if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
2631 return isl_stat_error;
2632 }
2633
2634 return isl_stat_ok;
2635}
2636
2637/* Add a constraint to graph->lp that equates the value at position
2638 * "sum_pos" to the sum of the "n" values starting at "first".
2639 */
2640static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
2641 int sum_pos, int first, int n)
2642{
2643 int i, k;
2644 isl_size total;
2645
2646 total = isl_basic_set_dim(bset: graph->lp, type: isl_dim_set);
2647 if (total < 0)
2648 return isl_stat_error;
2649
2650 k = isl_basic_set_alloc_equality(bset: graph->lp);
2651 if (k < 0)
2652 return isl_stat_error;
2653 isl_seq_clr(p: graph->lp->eq[k], len: 1 + total);
2654 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2655 for (i = 0; i < n; ++i)
2656 isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);
2657
2658 return isl_stat_ok;
2659}
2660
2661/* Add a constraint to graph->lp that equates the value at position
2662 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2663 */
2664static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
2665 int sum_pos)
2666{
2667 int i, j, k;
2668 isl_size total;
2669
2670 total = isl_basic_set_dim(bset: graph->lp, type: isl_dim_set);
2671 if (total < 0)
2672 return isl_stat_error;
2673
2674 k = isl_basic_set_alloc_equality(bset: graph->lp);
2675 if (k < 0)
2676 return isl_stat_error;
2677 isl_seq_clr(p: graph->lp->eq[k], len: 1 + total);
2678 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2679 for (i = 0; i < graph->n; ++i) {
2680 int pos = 1 + node_par_coef_offset(node: &graph->node[i]);
2681
2682 for (j = 0; j < graph->node[i].nparam; ++j)
2683 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2684 }
2685
2686 return isl_stat_ok;
2687}
2688
2689/* Add a constraint to graph->lp that equates the value at position
2690 * "sum_pos" to the sum of the variable coefficients of all nodes.
2691 */
2692static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
2693 int sum_pos)
2694{
2695 int i, j, k;
2696 isl_size total;
2697
2698 total = isl_basic_set_dim(bset: graph->lp, type: isl_dim_set);
2699 if (total < 0)
2700 return isl_stat_error;
2701
2702 k = isl_basic_set_alloc_equality(bset: graph->lp);
2703 if (k < 0)
2704 return isl_stat_error;
2705 isl_seq_clr(p: graph->lp->eq[k], len: 1 + total);
2706 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2707 for (i = 0; i < graph->n; ++i) {
2708 struct isl_sched_node *node = &graph->node[i];
2709 int pos = 1 + node_var_coef_offset(node);
2710
2711 for (j = 0; j < 2 * node->nvar; ++j)
2712 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2713 }
2714
2715 return isl_stat_ok;
2716}
2717
2718/* Construct an ILP problem for finding schedule coefficients
2719 * that result in non-negative, but small dependence distances
2720 * over all dependences.
2721 * In particular, the dependence distances over proximity edges
2722 * are bounded by m_0 + m_n n and we compute schedule coefficients
2723 * with small values (preferably zero) of m_n and m_0.
2724 *
2725 * All variables of the ILP are non-negative. The actual coefficients
2726 * may be negative, so each coefficient is represented as the difference
2727 * of two non-negative variables. The negative part always appears
2728 * immediately before the positive part.
2729 * Other than that, the variables have the following order
2730 *
2731 * - sum of positive and negative parts of m_n coefficients
2732 * - m_0
2733 * - sum of all c_n coefficients
2734 * (unconstrained when computing non-parametric schedules)
2735 * - sum of positive and negative parts of all c_x coefficients
2736 * - positive and negative parts of m_n coefficients
2737 * - for each node
2738 * - positive and negative parts of c_i_x, in opposite order
2739 * - c_i_n (if parametric)
2740 * - c_i_0
2741 *
2742 * The constraints are those from the edges plus two or three equalities
2743 * to express the sums.
2744 *
2745 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2746 * Otherwise, we ignore them.
2747 */
2748static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
2749 int use_coincidence)
2750{
2751 int i;
2752 isl_size nparam;
2753 unsigned total;
2754 isl_space *space;
2755 int parametric;
2756 int param_pos;
2757 int n_eq, n_ineq;
2758
2759 parametric = ctx->opt->schedule_parametric;
2760 nparam = isl_space_dim(space: graph->node[0].space, type: isl_dim_param);
2761 if (nparam < 0)
2762 return isl_stat_error;
2763 param_pos = 4;
2764 total = param_pos + 2 * nparam;
2765 for (i = 0; i < graph->n; ++i) {
2766 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2767 if (isl_sched_node_update_vmap(node) < 0)
2768 return isl_stat_error;
2769 node->start = total;
2770 total += 1 + node->nparam + 2 * node->nvar;
2771 }
2772
2773 if (count_constraints(graph, n_eq: &n_eq, n_ineq: &n_ineq, use_coincidence) < 0)
2774 return isl_stat_error;
2775 if (count_bound_constant_constraints(ctx, graph, n_eq: &n_eq, n_ineq: &n_ineq) < 0)
2776 return isl_stat_error;
2777 if (count_bound_coefficient_constraints(ctx, graph, n_eq: &n_eq, n_ineq: &n_ineq) < 0)
2778 return isl_stat_error;
2779
2780 space = isl_space_set_alloc(ctx, nparam: 0, dim: total);
2781 isl_basic_set_free(bset: graph->lp);
2782 n_eq += 2 + parametric;
2783
2784 graph->lp = isl_basic_set_alloc_space(space, extra: 0, n_eq, n_ineq);
2785
2786 if (add_sum_constraint(graph, sum_pos: 0, first: param_pos, n: 2 * nparam) < 0)
2787 return isl_stat_error;
2788 if (parametric && add_param_sum_constraint(graph, sum_pos: 2) < 0)
2789 return isl_stat_error;
2790 if (add_var_sum_constraint(graph, sum_pos: 3) < 0)
2791 return isl_stat_error;
2792 if (add_bound_constant_constraints(ctx, graph) < 0)
2793 return isl_stat_error;
2794 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2795 return isl_stat_error;
2796 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2797 return isl_stat_error;
2798 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2799 return isl_stat_error;
2800
2801 return isl_stat_ok;
2802}
2803
2804/* Analyze the conflicting constraint found by
2805 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2806 * constraint of one of the edges between distinct nodes, living, moreover
2807 * in distinct SCCs, then record the source and sink SCC as this may
2808 * be a good place to cut between SCCs.
2809 */
2810static int check_conflict(int con, void *user)
2811{
2812 int i;
2813 struct isl_sched_graph *graph = user;
2814
2815 if (graph->src_scc >= 0)
2816 return 0;
2817
2818 con -= graph->lp->n_eq;
2819
2820 if (con >= graph->lp->n_ineq)
2821 return 0;
2822
2823 for (i = 0; i < graph->n_edge; ++i) {
2824 if (!is_validity(edge: &graph->edge[i]))
2825 continue;
2826 if (graph->edge[i].src == graph->edge[i].dst)
2827 continue;
2828 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2829 continue;
2830 if (graph->edge[i].start > con)
2831 continue;
2832 if (graph->edge[i].end <= con)
2833 continue;
2834 graph->src_scc = graph->edge[i].src->scc;
2835 graph->dst_scc = graph->edge[i].dst->scc;
2836 }
2837
2838 return 0;
2839}
2840
2841/* Check whether the next schedule row of the given node needs to be
2842 * non-trivial. Lower-dimensional domains may have some trivial rows,
2843 * but as soon as the number of remaining required non-trivial rows
2844 * is as large as the number or remaining rows to be computed,
2845 * all remaining rows need to be non-trivial.
2846 */
2847static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2848{
2849 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2850}
2851
2852/* Construct a non-triviality region with triviality directions
2853 * corresponding to the rows of "indep".
2854 * The rows of "indep" are expressed in terms of the schedule coefficients c_i,
2855 * while the triviality directions are expressed in terms of
2856 * pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
2857 * before c^+_i. Furthermore,
2858 * the pairs of non-negative variables representing the coefficients
2859 * are stored in the opposite order.
2860 */
2861static __isl_give isl_mat *construct_trivial(__isl_keep isl_mat *indep)
2862{
2863 isl_ctx *ctx;
2864 isl_mat *mat;
2865 int i, j;
2866 isl_size n, n_var;
2867
2868 n = isl_mat_rows(mat: indep);
2869 n_var = isl_mat_cols(mat: indep);
2870 if (n < 0 || n_var < 0)
2871 return NULL;
2872
2873 ctx = isl_mat_get_ctx(mat: indep);
2874 mat = isl_mat_alloc(ctx, n_row: n, n_col: 2 * n_var);
2875 if (!mat)
2876 return NULL;
2877 for (i = 0; i < n; ++i) {
2878 for (j = 0; j < n_var; ++j) {
2879 int nj = n_var - 1 - j;
2880 isl_int_neg(mat->row[i][2 * nj], indep->row[i][j]);
2881 isl_int_set(mat->row[i][2 * nj + 1], indep->row[i][j]);
2882 }
2883 }
2884
2885 return mat;
2886}
2887
2888/* Solve the ILP problem constructed in setup_lp.
2889 * For each node such that all the remaining rows of its schedule
2890 * need to be non-trivial, we construct a non-triviality region.
2891 * This region imposes that the next row is independent of previous rows.
2892 * In particular, the non-triviality region enforces that at least
2893 * one of the linear combinations in the rows of node->indep is non-zero.
2894 */
2895static __isl_give isl_vec *solve_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2896{
2897 int i;
2898 isl_vec *sol;
2899 isl_basic_set *lp;
2900
2901 for (i = 0; i < graph->n; ++i) {
2902 struct isl_sched_node *node = &graph->node[i];
2903 isl_mat *trivial;
2904
2905 graph->region[i].pos = node_var_coef_offset(node);
2906 if (needs_row(graph, node))
2907 trivial = construct_trivial(indep: node->indep);
2908 else
2909 trivial = isl_mat_zero(ctx, n_row: 0, n_col: 0);
2910 graph->region[i].trivial = trivial;
2911 }
2912 lp = isl_basic_set_copy(bset: graph->lp);
2913 sol = isl_tab_basic_set_non_trivial_lexmin(bset: lp, n_op: 2, n_region: graph->n,
2914 region: graph->region, conflict: &check_conflict, user: graph);
2915 for (i = 0; i < graph->n; ++i)
2916 isl_mat_free(mat: graph->region[i].trivial);
2917 return sol;
2918}
2919
2920/* Extract the coefficients for the variables of "node" from "sol".
2921 *
2922 * Each schedule coefficient c_i_x is represented as the difference
2923 * between two non-negative variables c_i_x^+ - c_i_x^-.
2924 * The c_i_x^- appear before their c_i_x^+ counterpart.
2925 * Furthermore, the order of these pairs is the opposite of that
2926 * of the corresponding coefficients.
2927 *
2928 * Return c_i_x = c_i_x^+ - c_i_x^-
2929 */
2930static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
2931 __isl_keep isl_vec *sol)
2932{
2933 int i;
2934 int pos;
2935 isl_vec *csol;
2936
2937 if (!sol)
2938 return NULL;
2939 csol = isl_vec_alloc(ctx: isl_vec_get_ctx(vec: sol), size: node->nvar);
2940 if (!csol)
2941 return NULL;
2942
2943 pos = 1 + node_var_coef_offset(node);
2944 for (i = 0; i < node->nvar; ++i)
2945 isl_int_sub(csol->el[node->nvar - 1 - i],
2946 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
2947
2948 return csol;
2949}
2950
2951/* Update the schedules of all nodes based on the given solution
2952 * of the LP problem.
2953 * The new row is added to the current band.
2954 * All possibly negative coefficients are encoded as a difference
2955 * of two non-negative variables, so we need to perform the subtraction
2956 * here.
2957 *
2958 * If coincident is set, then the caller guarantees that the new
2959 * row satisfies the coincidence constraints.
2960 */
2961static int update_schedule(struct isl_sched_graph *graph,
2962 __isl_take isl_vec *sol, int coincident)
2963{
2964 int i, j;
2965 isl_vec *csol = NULL;
2966
2967 if (!sol)
2968 goto error;
2969 if (sol->size == 0)
2970 isl_die(sol->ctx, isl_error_internal,
2971 "no solution found", goto error);
2972 if (graph->n_total_row >= graph->max_row)
2973 isl_die(sol->ctx, isl_error_internal,
2974 "too many schedule rows", goto error);
2975
2976 for (i = 0; i < graph->n; ++i) {
2977 struct isl_sched_node *node = &graph->node[i];
2978 int pos;
2979 isl_size row = isl_mat_rows(mat: node->sched);
2980
2981 isl_vec_free(vec: csol);
2982 csol = extract_var_coef(node, sol);
2983 if (row < 0 || !csol)
2984 goto error;
2985
2986 isl_map_free(map: node->sched_map);
2987 node->sched_map = NULL;
2988 node->sched = isl_mat_add_rows(mat: node->sched, n: 1);
2989 if (!node->sched)
2990 goto error;
2991 pos = node_cst_coef_offset(node);
2992 node->sched = isl_mat_set_element(mat: node->sched,
2993 row, col: 0, v: sol->el[1 + pos]);
2994 pos = node_par_coef_offset(node);
2995 for (j = 0; j < node->nparam; ++j)
2996 node->sched = isl_mat_set_element(mat: node->sched,
2997 row, col: 1 + j, v: sol->el[1 + pos + j]);
2998 for (j = 0; j < node->nvar; ++j)
2999 node->sched = isl_mat_set_element(mat: node->sched,
3000 row, col: 1 + node->nparam + j, v: csol->el[j]);
3001 node->coincident[graph->n_total_row] = coincident;
3002 }
3003 isl_vec_free(vec: sol);
3004 isl_vec_free(vec: csol);
3005
3006 graph->n_row++;
3007 graph->n_total_row++;
3008
3009 return 0;
3010error:
3011 isl_vec_free(vec: sol);
3012 isl_vec_free(vec: csol);
3013 return -1;
3014}
3015
3016/* Convert row "row" of node->sched into an isl_aff living in "ls"
3017 * and return this isl_aff.
3018 */
3019static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
3020 struct isl_sched_node *node, int row)
3021{
3022 int j;
3023 isl_int v;
3024 isl_aff *aff;
3025
3026 isl_int_init(v);
3027
3028 aff = isl_aff_zero_on_domain(ls);
3029 if (isl_mat_get_element(mat: node->sched, row, col: 0, v: &v) < 0)
3030 goto error;
3031 aff = isl_aff_set_constant(aff, v);
3032 for (j = 0; j < node->nparam; ++j) {
3033 if (isl_mat_get_element(mat: node->sched, row, col: 1 + j, v: &v) < 0)
3034 goto error;
3035 aff = isl_aff_set_coefficient(aff, type: isl_dim_param, pos: j, v);
3036 }
3037 for (j = 0; j < node->nvar; ++j) {
3038 if (isl_mat_get_element(mat: node->sched, row,
3039 col: 1 + node->nparam + j, v: &v) < 0)
3040 goto error;
3041 aff = isl_aff_set_coefficient(aff, type: isl_dim_in, pos: j, v);
3042 }
3043
3044 isl_int_clear(v);
3045
3046 return aff;
3047error:
3048 isl_int_clear(v);
3049 isl_aff_free(aff);
3050 return NULL;
3051}
3052
3053/* Convert the "n" rows starting at "first" of node->sched into a multi_aff
3054 * and return this multi_aff.
3055 *
3056 * The result is defined over the uncompressed node domain.
3057 */
3058__isl_give isl_multi_aff *isl_sched_node_extract_partial_schedule_multi_aff(
3059 struct isl_sched_node *node, int first, int n)
3060{
3061 int i;
3062 isl_space *space;
3063 isl_local_space *ls;
3064 isl_aff *aff;
3065 isl_multi_aff *ma;
3066 isl_size nrow;
3067
3068 if (!node)
3069 return NULL;
3070 nrow = isl_mat_rows(mat: node->sched);
3071 if (nrow < 0)
3072 return NULL;
3073 if (node->compressed)
3074 space = isl_pw_multi_aff_get_domain_space(pma: node->decompress);
3075 else
3076 space = isl_space_copy(space: node->space);
3077 ls = isl_local_space_from_space(space: isl_space_copy(space));
3078 space = isl_space_from_domain(space);
3079 space = isl_space_add_dims(space, type: isl_dim_out, n);
3080 ma = isl_multi_aff_zero(space);
3081
3082 for (i = first; i < first + n; ++i) {
3083 aff = extract_schedule_row(ls: isl_local_space_copy(ls), node, row: i);
3084 ma = isl_multi_aff_set_aff(multi: ma, pos: i - first, el: aff);
3085 }
3086
3087 isl_local_space_free(ls);
3088
3089 if (node->compressed)
3090 ma = isl_multi_aff_pullback_multi_aff(ma1: ma,
3091 ma2: isl_multi_aff_copy(multi: node->compress));
3092
3093 return ma;
3094}
3095
3096/* Convert node->sched into a multi_aff and return this multi_aff.
3097 *
3098 * The result is defined over the uncompressed node domain.
3099 */
3100static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
3101 struct isl_sched_node *node)
3102{
3103 isl_size nrow;
3104
3105 nrow = isl_mat_rows(mat: node->sched);
3106 if (nrow < 0)
3107 return NULL;
3108 return isl_sched_node_extract_partial_schedule_multi_aff(node, first: 0, n: nrow);
3109}
3110
3111/* Convert node->sched into a map and return this map.
3112 *
3113 * The result is cached in node->sched_map, which needs to be released
3114 * whenever node->sched is updated.
3115 * It is defined over the uncompressed node domain.
3116 */
3117static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
3118{
3119 if (!node->sched_map) {
3120 isl_multi_aff *ma;
3121
3122 ma = node_extract_schedule_multi_aff(node);
3123 node->sched_map = isl_map_from_multi_aff(maff: ma);
3124 }
3125
3126 return isl_map_copy(map: node->sched_map);
3127}
3128
3129/* Construct a map that can be used to update a dependence relation
3130 * based on the current schedule.
3131 * That is, construct a map expressing that source and sink
3132 * are executed within the same iteration of the current schedule.
3133 * This map can then be intersected with the dependence relation.
3134 * This is not the most efficient way, but this shouldn't be a critical
3135 * operation.
3136 */
3137static __isl_give isl_map *specializer(struct isl_sched_node *src,
3138 struct isl_sched_node *dst)
3139{
3140 isl_map *src_sched, *dst_sched;
3141
3142 src_sched = node_extract_schedule(node: src);
3143 dst_sched = node_extract_schedule(node: dst);
3144 return isl_map_apply_range(map1: src_sched, map2: isl_map_reverse(map: dst_sched));
3145}
3146
3147/* Intersect the domains of the nested relations in domain and range
3148 * of "umap" with "map".
3149 */
3150static __isl_give isl_union_map *intersect_domains(
3151 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
3152{
3153 isl_union_set *uset;
3154
3155 umap = isl_union_map_zip(umap);
3156 uset = isl_union_set_from_set(set: isl_map_wrap(map: isl_map_copy(map)));
3157 umap = isl_union_map_intersect_domain(umap, uset);
3158 umap = isl_union_map_zip(umap);
3159 return umap;
3160}
3161
3162/* Update the dependence relation of the given edge based
3163 * on the current schedule.
3164 * If the dependence is carried completely by the current schedule, then
3165 * it is removed from the edge_tables. It is kept in the list of edges
3166 * as otherwise all edge_tables would have to be recomputed.
3167 *
3168 * If the edge is of a type that can appear multiple times
3169 * between the same pair of nodes, then it is added to
3170 * the edge table (again). This prevents the situation
3171 * where none of these edges is referenced from the edge table
3172 * because the one that was referenced turned out to be empty and
3173 * was therefore removed from the table.
3174 */
3175static isl_stat update_edge(isl_ctx *ctx, struct isl_sched_graph *graph,
3176 struct isl_sched_edge *edge)
3177{
3178 int empty;
3179 isl_map *id;
3180
3181 id = specializer(src: edge->src, dst: edge->dst);
3182 edge->map = isl_map_intersect(map1: edge->map, map2: isl_map_copy(map: id));
3183 if (!edge->map)
3184 goto error;
3185
3186 if (edge->tagged_condition) {
3187 edge->tagged_condition =
3188 intersect_domains(umap: edge->tagged_condition, map: id);
3189 if (!edge->tagged_condition)
3190 goto error;
3191 }
3192 if (edge->tagged_validity) {
3193 edge->tagged_validity =
3194 intersect_domains(umap: edge->tagged_validity, map: id);
3195 if (!edge->tagged_validity)
3196 goto error;
3197 }
3198
3199 empty = isl_map_plain_is_empty(map: edge->map);
3200 if (empty < 0)
3201 goto error;
3202 if (empty) {
3203 if (graph_remove_edge(graph, edge) < 0)
3204 goto error;
3205 } else if (is_multi_edge_type(edge)) {
3206 if (graph_edge_tables_add(ctx, graph, edge) < 0)
3207 goto error;
3208 }
3209
3210 isl_map_free(map: id);
3211 return isl_stat_ok;
3212error:
3213 isl_map_free(map: id);
3214 return isl_stat_error;
3215}
3216
3217/* Does the domain of "umap" intersect "uset"?
3218 */
3219static int domain_intersects(__isl_keep isl_union_map *umap,
3220 __isl_keep isl_union_set *uset)
3221{
3222 int empty;
3223
3224 umap = isl_union_map_copy(umap);
3225 umap = isl_union_map_intersect_domain(umap, uset: isl_union_set_copy(uset));
3226 empty = isl_union_map_is_empty(umap);
3227 isl_union_map_free(umap);
3228
3229 return empty < 0 ? -1 : !empty;
3230}
3231
3232/* Does the range of "umap" intersect "uset"?
3233 */
3234static int range_intersects(__isl_keep isl_union_map *umap,
3235 __isl_keep isl_union_set *uset)
3236{
3237 int empty;
3238
3239 umap = isl_union_map_copy(umap);
3240 umap = isl_union_map_intersect_range(umap, uset: isl_union_set_copy(uset));
3241 empty = isl_union_map_is_empty(umap);
3242 isl_union_map_free(umap);
3243
3244 return empty < 0 ? -1 : !empty;
3245}
3246
3247/* Are the condition dependences of "edge" local with respect to
3248 * the current schedule?
3249 *
3250 * That is, are domain and range of the condition dependences mapped
3251 * to the same point?
3252 *
3253 * In other words, is the condition false?
3254 */
3255static int is_condition_false(struct isl_sched_edge *edge)
3256{
3257 isl_union_map *umap;
3258 isl_map *map, *sched, *test;
3259 int empty, local;
3260
3261 empty = isl_union_map_is_empty(umap: edge->tagged_condition);
3262 if (empty < 0 || empty)
3263 return empty;
3264
3265 umap = isl_union_map_copy(umap: edge->tagged_condition);
3266 umap = isl_union_map_zip(umap);
3267 umap = isl_union_set_unwrap(uset: isl_union_map_domain(umap));
3268 map = isl_map_from_union_map(umap);
3269
3270 sched = node_extract_schedule(node: edge->src);
3271 map = isl_map_apply_domain(map1: map, map2: sched);
3272 sched = node_extract_schedule(node: edge->dst);
3273 map = isl_map_apply_range(map1: map, map2: sched);
3274
3275 test = isl_map_identity(space: isl_map_get_space(map));
3276 local = isl_map_is_subset(map1: map, map2: test);
3277 isl_map_free(map);
3278 isl_map_free(map: test);
3279
3280 return local;
3281}
3282
3283/* For each conditional validity constraint that is adjacent
3284 * to a condition with domain in condition_source or range in condition_sink,
3285 * turn it into an unconditional validity constraint.
3286 */
3287static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
3288 __isl_take isl_union_set *condition_source,
3289 __isl_take isl_union_set *condition_sink)
3290{
3291 int i;
3292
3293 condition_source = isl_union_set_coalesce(uset: condition_source);
3294 condition_sink = isl_union_set_coalesce(uset: condition_sink);
3295
3296 for (i = 0; i < graph->n_edge; ++i) {
3297 int adjacent;
3298 isl_union_map *validity;
3299
3300 if (!isl_sched_edge_is_conditional_validity(edge: &graph->edge[i]))
3301 continue;
3302 if (is_validity(edge: &graph->edge[i]))
3303 continue;
3304
3305 validity = graph->edge[i].tagged_validity;
3306 adjacent = domain_intersects(umap: validity, uset: condition_sink);
3307 if (adjacent >= 0 && !adjacent)
3308 adjacent = range_intersects(umap: validity, uset: condition_source);
3309 if (adjacent < 0)
3310 goto error;
3311 if (!adjacent)
3312 continue;
3313
3314 set_validity(&graph->edge[i]);
3315 }
3316
3317 isl_union_set_free(uset: condition_source);
3318 isl_union_set_free(uset: condition_sink);
3319 return 0;
3320error:
3321 isl_union_set_free(uset: condition_source);
3322 isl_union_set_free(uset: condition_sink);
3323 return -1;
3324}
3325
3326/* Update the dependence relations of all edges based on the current schedule
3327 * and enforce conditional validity constraints that are adjacent
3328 * to satisfied condition constraints.
3329 *
3330 * First check if any of the condition constraints are satisfied
3331 * (i.e., not local to the outer schedule) and keep track of
3332 * their domain and range.
3333 * Then update all dependence relations (which removes the non-local
3334 * constraints).
3335 * Finally, if any condition constraints turned out to be satisfied,
3336 * then turn all adjacent conditional validity constraints into
3337 * unconditional validity constraints.
3338 */
3339static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
3340{
3341 int i;
3342 int any = 0;
3343 isl_union_set *source, *sink;
3344
3345 source = isl_union_set_empty(space: isl_space_params_alloc(ctx, nparam: 0));
3346 sink = isl_union_set_empty(space: isl_space_params_alloc(ctx, nparam: 0));
3347 for (i = 0; i < graph->n_edge; ++i) {
3348 int local;
3349 isl_union_set *uset;
3350 isl_union_map *umap;
3351
3352 if (!isl_sched_edge_is_condition(edge: &graph->edge[i]))
3353 continue;
3354 if (is_local(edge: &graph->edge[i]))
3355 continue;
3356 local = is_condition_false(edge: &graph->edge[i]);
3357 if (local < 0)
3358 goto error;
3359 if (local)
3360 continue;
3361
3362 any = 1;
3363
3364 umap = isl_union_map_copy(umap: graph->edge[i].tagged_condition);
3365 uset = isl_union_map_domain(umap);
3366 source = isl_union_set_union(uset1: source, uset2: uset);
3367
3368 umap = isl_union_map_copy(umap: graph->edge[i].tagged_condition);
3369 uset = isl_union_map_range(umap);
3370 sink = isl_union_set_union(uset1: sink, uset2: uset);
3371 }
3372
3373 for (i = 0; i < graph->n_edge; ++i) {
3374 if (update_edge(ctx, graph, edge: &graph->edge[i]) < 0)
3375 goto error;
3376 }
3377
3378 if (any)
3379 return unconditionalize_adjacent_validity(graph, condition_source: source, condition_sink: sink);
3380
3381 isl_union_set_free(uset: source);
3382 isl_union_set_free(uset: sink);
3383 return 0;
3384error:
3385 isl_union_set_free(uset: source);
3386 isl_union_set_free(uset: sink);
3387 return -1;
3388}
3389
3390static void next_band(struct isl_sched_graph *graph)
3391{
3392 graph->band_start = graph->n_total_row;
3393}
3394
3395/* Return the union of the universe domains of the nodes in "graph"
3396 * that satisfy "pred".
3397 */
3398static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
3399 struct isl_sched_graph *graph,
3400 int (*pred)(struct isl_sched_node *node, int data), int data)
3401{
3402 int i;
3403 isl_set *set;
3404 isl_union_set *dom;
3405
3406 for (i = 0; i < graph->n; ++i)
3407 if (pred(&graph->node[i], data))
3408 break;
3409
3410 if (i >= graph->n)
3411 isl_die(ctx, isl_error_internal,
3412 "empty component", return NULL);
3413
3414 set = isl_set_universe(space: isl_space_copy(space: graph->node[i].space));
3415 dom = isl_union_set_from_set(set);
3416
3417 for (i = i + 1; i < graph->n; ++i) {
3418 if (!pred(&graph->node[i], data))
3419 continue;
3420 set = isl_set_universe(space: isl_space_copy(space: graph->node[i].space));
3421 dom = isl_union_set_union(uset1: dom, uset2: isl_union_set_from_set(set));
3422 }
3423
3424 return dom;
3425}
3426
3427/* Return a union of universe domains corresponding to the nodes
3428 * in the SCC with index "scc".
3429 */
3430__isl_give isl_union_set *isl_sched_graph_extract_scc(isl_ctx *ctx,
3431 struct isl_sched_graph *graph, int scc)
3432{
3433 return isl_sched_graph_domain(ctx, graph,
3434 pred: &isl_sched_node_scc_exactly, data: scc);
3435}
3436
3437/* Return a list of unions of universe domains, where each element
3438 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3439 */
3440__isl_give isl_union_set_list *isl_sched_graph_extract_sccs(isl_ctx *ctx,
3441 struct isl_sched_graph *graph)
3442{
3443 int i;
3444 isl_union_set_list *filters;
3445
3446 filters = isl_union_set_list_alloc(ctx, n: graph->scc);
3447 for (i = 0; i < graph->scc; ++i) {
3448 isl_union_set *dom;
3449
3450 dom = isl_sched_graph_extract_scc(ctx, graph, scc: i);
3451 filters = isl_union_set_list_add(list: filters, el: dom);
3452 }
3453
3454 return filters;
3455}
3456
3457/* Return a list of two unions of universe domains, one for the SCCs up
3458 * to and including graph->src_scc and another for the other SCCs.
3459 */
3460static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
3461 struct isl_sched_graph *graph)
3462{
3463 isl_union_set *dom;
3464 isl_union_set_list *filters;
3465
3466 filters = isl_union_set_list_alloc(ctx, n: 2);
3467 dom = isl_sched_graph_domain(ctx, graph,
3468 pred: &node_scc_at_most, data: graph->src_scc);
3469 filters = isl_union_set_list_add(list: filters, el: dom);
3470 dom = isl_sched_graph_domain(ctx, graph,
3471 pred: &node_scc_at_least, data: graph->src_scc + 1);
3472 filters = isl_union_set_list_add(list: filters, el: dom);
3473
3474 return filters;
3475}
3476
3477/* Copy nodes that satisfy node_pred from the src dependence graph
3478 * to the dst dependence graph.
3479 */
3480static isl_stat copy_nodes(struct isl_sched_graph *dst,
3481 struct isl_sched_graph *src,
3482 int (*node_pred)(struct isl_sched_node *node, int data), int data)
3483{
3484 int i;
3485
3486 dst->n = 0;
3487 for (i = 0; i < src->n; ++i) {
3488 int j;
3489
3490 if (!node_pred(&src->node[i], data))
3491 continue;
3492
3493 j = dst->n;
3494 dst->node[j].space = isl_space_copy(space: src->node[i].space);
3495 dst->node[j].compressed = src->node[i].compressed;
3496 dst->node[j].hull = isl_set_copy(set: src->node[i].hull);
3497 dst->node[j].compress =
3498 isl_multi_aff_copy(multi: src->node[i].compress);
3499 dst->node[j].decompress =
3500 isl_pw_multi_aff_copy(pma: src->node[i].decompress);
3501 dst->node[j].nvar = src->node[i].nvar;
3502 dst->node[j].nparam = src->node[i].nparam;
3503 dst->node[j].sched = isl_mat_copy(mat: src->node[i].sched);
3504 dst->node[j].sched_map = isl_map_copy(map: src->node[i].sched_map);
3505 dst->node[j].coincident = src->node[i].coincident;
3506 dst->node[j].sizes = isl_multi_val_copy(multi: src->node[i].sizes);
3507 dst->node[j].bounds = isl_basic_set_copy(bset: src->node[i].bounds);
3508 dst->node[j].max = isl_vec_copy(vec: src->node[i].max);
3509 dst->n++;
3510
3511 if (!dst->node[j].space || !dst->node[j].sched)
3512 return isl_stat_error;
3513 if (dst->node[j].compressed &&
3514 (!dst->node[j].hull || !dst->node[j].compress ||
3515 !dst->node[j].decompress))
3516 return isl_stat_error;
3517 }
3518
3519 return isl_stat_ok;
3520}
3521
3522/* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3523 * to the dst dependence graph.
3524 * If the source or destination node of the edge is not in the destination
3525 * graph, then it must be a backward proximity edge and it should simply
3526 * be ignored.
3527 */
3528static isl_stat copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
3529 struct isl_sched_graph *src,
3530 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
3531{
3532 int i;
3533
3534 dst->n_edge = 0;
3535 for (i = 0; i < src->n_edge; ++i) {
3536 struct isl_sched_edge *edge = &src->edge[i];
3537 isl_map *map;
3538 isl_union_map *tagged_condition;
3539 isl_union_map *tagged_validity;
3540 struct isl_sched_node *dst_src, *dst_dst;
3541
3542 if (!edge_pred(edge, data))
3543 continue;
3544
3545 if (isl_map_plain_is_empty(map: edge->map))
3546 continue;
3547
3548 dst_src = isl_sched_graph_find_node(ctx, graph: dst, space: edge->src->space);
3549 dst_dst = isl_sched_graph_find_node(ctx, graph: dst, space: edge->dst->space);
3550 if (!dst_src || !dst_dst)
3551 return isl_stat_error;
3552 if (!isl_sched_graph_is_node(graph: dst, node: dst_src) ||
3553 !isl_sched_graph_is_node(graph: dst, node: dst_dst)) {
3554 if (is_validity(edge) ||
3555 isl_sched_edge_is_conditional_validity(edge))
3556 isl_die(ctx, isl_error_internal,
3557 "backward (conditional) validity edge",
3558 return isl_stat_error);
3559 continue;
3560 }
3561
3562 map = isl_map_copy(map: edge->map);
3563 tagged_condition = isl_union_map_copy(umap: edge->tagged_condition);
3564 tagged_validity = isl_union_map_copy(umap: edge->tagged_validity);
3565
3566 dst->edge[dst->n_edge].src = dst_src;
3567 dst->edge[dst->n_edge].dst = dst_dst;
3568 dst->edge[dst->n_edge].map = map;
3569 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
3570 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
3571 dst->edge[dst->n_edge].types = edge->types;
3572 dst->n_edge++;
3573
3574 if (edge->tagged_condition && !tagged_condition)
3575 return isl_stat_error;
3576 if (edge->tagged_validity && !tagged_validity)
3577 return isl_stat_error;
3578
3579 if (graph_edge_tables_add(ctx, graph: dst,
3580 edge: &dst->edge[dst->n_edge - 1]) < 0)
3581 return isl_stat_error;
3582 }
3583
3584 return isl_stat_ok;
3585}
3586
3587/* Compute the maximal number of variables over all nodes.
3588 * This is the maximal number of linearly independent schedule
3589 * rows that we need to compute.
3590 * Just in case we end up in a part of the dependence graph
3591 * with only lower-dimensional domains, we make sure we will
3592 * compute the required amount of extra linearly independent rows.
3593 */
3594isl_stat isl_sched_graph_compute_maxvar(struct isl_sched_graph *graph)
3595{
3596 int i;
3597
3598 graph->maxvar = 0;
3599 for (i = 0; i < graph->n; ++i) {
3600 struct isl_sched_node *node = &graph->node[i];
3601 int nvar;
3602
3603 if (isl_sched_node_update_vmap(node) < 0)
3604 return isl_stat_error;
3605 nvar = node->nvar + graph->n_row - node->rank;
3606 if (nvar > graph->maxvar)
3607 graph->maxvar = nvar;
3608 }
3609
3610 return isl_stat_ok;
3611}
3612
3613/* Extract the subgraph of "graph" that consists of the nodes satisfying
3614 * "node_pred" and the edges satisfying "edge_pred" and store
3615 * the result in "sub".
3616 */
3617isl_stat isl_sched_graph_extract_sub_graph(isl_ctx *ctx,
3618 struct isl_sched_graph *graph,
3619 int (*node_pred)(struct isl_sched_node *node, int data),
3620 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3621 int data, struct isl_sched_graph *sub)
3622{
3623 int i, n = 0, n_edge = 0;
3624 int t;
3625
3626 for (i = 0; i < graph->n; ++i)
3627 if (node_pred(&graph->node[i], data))
3628 ++n;
3629 for (i = 0; i < graph->n_edge; ++i)
3630 if (edge_pred(&graph->edge[i], data))
3631 ++n_edge;
3632 if (graph_alloc(ctx, graph: sub, n_node: n, n_edge) < 0)
3633 return isl_stat_error;
3634 sub->root = graph->root;
3635 if (copy_nodes(dst: sub, src: graph, node_pred, data) < 0)
3636 return isl_stat_error;
3637 if (graph_init_table(ctx, graph: sub) < 0)
3638 return isl_stat_error;
3639 for (t = 0; t <= isl_edge_last; ++t)
3640 sub->max_edge[t] = graph->max_edge[t];
3641 if (graph_init_edge_tables(ctx, graph: sub) < 0)
3642 return isl_stat_error;
3643 if (copy_edges(ctx, dst: sub, src: graph, edge_pred, data) < 0)
3644 return isl_stat_error;
3645 sub->n_row = graph->n_row;
3646 sub->max_row = graph->max_row;
3647 sub->n_total_row = graph->n_total_row;
3648 sub->band_start = graph->band_start;
3649
3650 return isl_stat_ok;
3651}
3652
3653static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
3654 struct isl_sched_graph *graph);
3655static __isl_give isl_schedule_node *compute_schedule_wcc(
3656 isl_schedule_node *node, struct isl_sched_graph *graph);
3657
3658/* Compute a schedule for a subgraph of "graph". In particular, for
3659 * the graph composed of nodes that satisfy node_pred and edges that
3660 * that satisfy edge_pred.
3661 * If the subgraph is known to consist of a single component, then wcc should
3662 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3663 * Otherwise, we call compute_schedule, which will check whether the subgraph
3664 * is connected.
3665 *
3666 * The schedule is inserted at "node" and the updated schedule node
3667 * is returned.
3668 */
3669static __isl_give isl_schedule_node *compute_sub_schedule(
3670 __isl_take isl_schedule_node *node, isl_ctx *ctx,
3671 struct isl_sched_graph *graph,
3672 int (*node_pred)(struct isl_sched_node *node, int data),
3673 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3674 int data, int wcc)
3675{
3676 struct isl_sched_graph split = { 0 };
3677
3678 if (isl_sched_graph_extract_sub_graph(ctx, graph, node_pred, edge_pred,
3679 data, sub: &split) < 0)
3680 goto error;
3681
3682 if (wcc)
3683 node = compute_schedule_wcc(node, graph: &split);
3684 else
3685 node = compute_schedule(node, graph: &split);
3686
3687 isl_sched_graph_free(ctx, graph: &split);
3688 return node;
3689error:
3690 isl_sched_graph_free(ctx, graph: &split);
3691 return isl_schedule_node_free(node);
3692}
3693
3694int isl_sched_edge_scc_exactly(struct isl_sched_edge *edge, int scc)
3695{
3696 return edge->src->scc == scc && edge->dst->scc == scc;
3697}
3698
3699static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
3700{
3701 return edge->dst->scc <= scc;
3702}
3703
3704static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
3705{
3706 return edge->src->scc >= scc;
3707}
3708
3709/* Reset the current band by dropping all its schedule rows.
3710 */
3711static isl_stat reset_band(struct isl_sched_graph *graph)
3712{
3713 int i;
3714 int drop;
3715
3716 drop = graph->n_total_row - graph->band_start;
3717 graph->n_total_row -= drop;
3718 graph->n_row -= drop;
3719
3720 for (i = 0; i < graph->n; ++i) {
3721 struct isl_sched_node *node = &graph->node[i];
3722
3723 isl_map_free(map: node->sched_map);
3724 node->sched_map = NULL;
3725
3726 node->sched = isl_mat_drop_rows(mat: node->sched,
3727 row: graph->band_start, n: drop);
3728
3729 if (!node->sched)
3730 return isl_stat_error;
3731 }
3732
3733 return isl_stat_ok;
3734}
3735
3736/* Split the current graph into two parts and compute a schedule for each
3737 * part individually. In particular, one part consists of all SCCs up
3738 * to and including graph->src_scc, while the other part contains the other
3739 * SCCs. The split is enforced by a sequence node inserted at position "node"
3740 * in the schedule tree. Return the updated schedule node.
3741 * If either of these two parts consists of a sequence, then it is spliced
3742 * into the sequence containing the two parts.
3743 *
3744 * The current band is reset. It would be possible to reuse
3745 * the previously computed rows as the first rows in the next
3746 * band, but recomputing them may result in better rows as we are looking
3747 * at a smaller part of the dependence graph.
3748 */
3749static __isl_give isl_schedule_node *compute_split_schedule(
3750 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3751{
3752 isl_ctx *ctx;
3753 isl_union_set_list *filters;
3754
3755 if (!node)
3756 return NULL;
3757
3758 if (reset_band(graph) < 0)
3759 return isl_schedule_node_free(node);
3760
3761 next_band(graph);
3762
3763 ctx = isl_schedule_node_get_ctx(node);
3764 filters = extract_split(ctx, graph);
3765 node = isl_schedule_node_insert_sequence(node, filters);
3766 node = isl_schedule_node_grandchild(node, pos1: 1, pos2: 0);
3767
3768 node = compute_sub_schedule(node, ctx, graph,
3769 node_pred: &node_scc_at_least, edge_pred: &edge_src_scc_at_least,
3770 data: graph->src_scc + 1, wcc: 0);
3771 node = isl_schedule_node_grandparent(node);
3772 node = isl_schedule_node_grandchild(node, pos1: 0, pos2: 0);
3773 node = compute_sub_schedule(node, ctx, graph,
3774 node_pred: &node_scc_at_most, edge_pred: &edge_dst_scc_at_most,
3775 data: graph->src_scc, wcc: 0);
3776 node = isl_schedule_node_grandparent(node);
3777
3778 node = isl_schedule_node_sequence_splice_children(node);
3779
3780 return node;
3781}
3782
3783/* Insert a band node at position "node" in the schedule tree corresponding
3784 * to the current band in "graph". Mark the band node permutable
3785 * if "permutable" is set.
3786 * The partial schedules and the coincidence property are extracted
3787 * from the graph nodes.
3788 * Return the updated schedule node.
3789 */
3790static __isl_give isl_schedule_node *insert_current_band(
3791 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3792 int permutable)
3793{
3794 int i;
3795 int start, end, n;
3796 isl_multi_aff *ma;
3797 isl_multi_pw_aff *mpa;
3798 isl_multi_union_pw_aff *mupa;
3799
3800 if (!node)
3801 return NULL;
3802
3803 if (graph->n < 1)
3804 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
3805 "graph should have at least one node",
3806 return isl_schedule_node_free(node));
3807
3808 start = graph->band_start;
3809 end = graph->n_total_row;
3810 n = end - start;
3811
3812 ma = isl_sched_node_extract_partial_schedule_multi_aff(node: &graph->node[0],
3813 first: start, n);
3814 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3815 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3816
3817 for (i = 1; i < graph->n; ++i) {
3818 isl_multi_union_pw_aff *mupa_i;
3819
3820 ma = isl_sched_node_extract_partial_schedule_multi_aff(
3821 node: &graph->node[i], first: start, n);
3822 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3823 mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3824 mupa = isl_multi_union_pw_aff_union_add(mupa1: mupa, mupa2: mupa_i);
3825 }
3826 node = isl_schedule_node_insert_partial_schedule(node, schedule: mupa);
3827
3828 for (i = 0; i < n; ++i)
3829 node = isl_schedule_node_band_member_set_coincident(node, pos: i,
3830 coincident: graph->node[0].coincident[start + i]);
3831 node = isl_schedule_node_band_set_permutable(node, permutable);
3832
3833 return node;
3834}
3835
3836/* Update the dependence relations based on the current schedule,
3837 * add the current band to "node" and then continue with the computation
3838 * of the next band.
3839 * Return the updated schedule node.
3840 */
3841static __isl_give isl_schedule_node *compute_next_band(
3842 __isl_take isl_schedule_node *node,
3843 struct isl_sched_graph *graph, int permutable)
3844{
3845 isl_ctx *ctx;
3846
3847 if (!node)
3848 return NULL;
3849
3850 ctx = isl_schedule_node_get_ctx(node);
3851 if (update_edges(ctx, graph) < 0)
3852 return isl_schedule_node_free(node);
3853 node = insert_current_band(node, graph, permutable);
3854 next_band(graph);
3855
3856 node = isl_schedule_node_child(node, pos: 0);
3857 node = compute_schedule(node, graph);
3858 node = isl_schedule_node_parent(node);
3859
3860 return node;
3861}
3862
3863/* Add the constraints "coef" derived from an edge from "node" to itself
3864 * to graph->lp in order to respect the dependences and to try and carry them.
3865 * "pos" is the sequence number of the edge that needs to be carried.
3866 * "coef" represents general constraints on coefficients (c_0, c_x)
3867 * of valid constraints for (y - x) with x and y instances of the node.
3868 *
3869 * The constraints added to graph->lp need to enforce
3870 *
3871 * (c_j_0 + c_j_x y) - (c_j_0 + c_j_x x)
3872 * = c_j_x (y - x) >= e_i
3873 *
3874 * for each (x,y) in the dependence relation of the edge.
3875 * That is, (-e_i, c_j_x) needs to be plugged in for (c_0, c_x),
3876 * taking into account that each coefficient in c_j_x is represented
3877 * as a pair of non-negative coefficients.
3878 */
3879static isl_stat add_intra_constraints(struct isl_sched_graph *graph,
3880 struct isl_sched_node *node, __isl_take isl_basic_set *coef, int pos)
3881{
3882 isl_size offset;
3883 isl_ctx *ctx;
3884 isl_dim_map *dim_map;
3885
3886 offset = coef_var_offset(coef);
3887 if (offset < 0)
3888 coef = isl_basic_set_free(bset: coef);
3889 if (!coef)
3890 return isl_stat_error;
3891
3892 ctx = isl_basic_set_get_ctx(bset: coef);
3893 dim_map = intra_dim_map(ctx, graph, node, offset, s: 1);
3894 isl_dim_map_range(dim_map, dst_pos: 3 + pos, dst_stride: 0, src_pos: 0, src_stride: 0, n: 1, sign: -1);
3895 graph->lp = add_constraints_dim_map(dst: graph->lp, src: coef, dim_map);
3896
3897 return isl_stat_ok;
3898}
3899
3900/* Add the constraints "coef" derived from an edge from "src" to "dst"
3901 * to graph->lp in order to respect the dependences and to try and carry them.
3902 * "pos" is the sequence number of the edge that needs to be carried or
3903 * -1 if no attempt should be made to carry the dependences.
3904 * "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
3905 * of valid constraints for (x, y) with x and y instances of "src" and "dst".
3906 *
3907 * The constraints added to graph->lp need to enforce
3908 *
3909 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3910 *
3911 * for each (x,y) in the dependence relation of the edge or
3912 *
3913 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= 0
3914 *
3915 * if pos is -1.
3916 * That is,
3917 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3918 * or
3919 * (c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3920 * needs to be plugged in for (c_0, c_n, c_x, c_y),
3921 * taking into account that each coefficient in c_j_x and c_k_x is represented
3922 * as a pair of non-negative coefficients.
3923 */
3924static isl_stat add_inter_constraints(struct isl_sched_graph *graph,
3925 struct isl_sched_node *src, struct isl_sched_node *dst,
3926 __isl_take isl_basic_set *coef, int pos)
3927{
3928 isl_size offset;
3929 isl_ctx *ctx;
3930 isl_dim_map *dim_map;
3931
3932 offset = coef_var_offset(coef);
3933 if (offset < 0)
3934 coef = isl_basic_set_free(bset: coef);
3935 if (!coef)
3936 return isl_stat_error;
3937
3938 ctx = isl_basic_set_get_ctx(bset: coef);
3939 dim_map = inter_dim_map(ctx, graph, src, dst, offset, s: 1);
3940 if (pos >= 0)
3941 isl_dim_map_range(dim_map, dst_pos: 3 + pos, dst_stride: 0, src_pos: 0, src_stride: 0, n: 1, sign: -1);
3942 graph->lp = add_constraints_dim_map(dst: graph->lp, src: coef, dim_map);
3943
3944 return isl_stat_ok;
3945}
3946
3947/* Data structure for keeping track of the data needed
3948 * to exploit non-trivial lineality spaces.
3949 *
3950 * "any_non_trivial" is true if there are any non-trivial lineality spaces.
3951 * If "any_non_trivial" is not true, then "equivalent" and "mask" may be NULL.
3952 * "equivalent" connects instances to other instances on the same line(s).
3953 * "mask" contains the domain spaces of "equivalent".
3954 * Any instance set not in "mask" does not have a non-trivial lineality space.
3955 */
3956struct isl_exploit_lineality_data {
3957 isl_bool any_non_trivial;
3958 isl_union_map *equivalent;
3959 isl_union_set *mask;
3960};
3961
3962/* Data structure collecting information used during the construction
3963 * of an LP for carrying dependences.
3964 *
3965 * "intra" is a sequence of coefficient constraints for intra-node edges.
3966 * "inter" is a sequence of coefficient constraints for inter-node edges.
3967 * "lineality" contains data used to exploit non-trivial lineality spaces.
3968 */
3969struct isl_carry {
3970 isl_basic_set_list *intra;
3971 isl_basic_set_list *inter;
3972 struct isl_exploit_lineality_data lineality;
3973};
3974
3975/* Free all the data stored in "carry".
3976 */
3977static void isl_carry_clear(struct isl_carry *carry)
3978{
3979 isl_basic_set_list_free(list: carry->intra);
3980 isl_basic_set_list_free(list: carry->inter);
3981 isl_union_map_free(umap: carry->lineality.equivalent);
3982 isl_union_set_free(uset: carry->lineality.mask);
3983}
3984
3985/* Return a pointer to the node in "graph" that lives in "space".
3986 * If the requested node has been compressed, then "space"
3987 * corresponds to the compressed space.
3988 * The graph is assumed to have such a node.
3989 * Return NULL in case of error.
3990 *
3991 * First try and see if "space" is the space of an uncompressed node.
3992 * If so, return that node.
3993 * Otherwise, "space" was constructed by construct_compressed_id and
3994 * contains a user pointer pointing to the node in the tuple id.
3995 * However, this node belongs to the original dependence graph.
3996 * If "graph" is a subgraph of this original dependence graph,
3997 * then the node with the same space still needs to be looked up
3998 * in the current graph.
3999 */
4000static struct isl_sched_node *graph_find_compressed_node(isl_ctx *ctx,
4001 struct isl_sched_graph *graph, __isl_keep isl_space *space)
4002{
4003 isl_id *id;
4004 struct isl_sched_node *node;
4005
4006 if (!space)
4007 return NULL;
4008
4009 node = isl_sched_graph_find_node(ctx, graph, space);
4010 if (!node)
4011 return NULL;
4012 if (isl_sched_graph_is_node(graph, node))
4013 return node;
4014
4015 id = isl_space_get_tuple_id(space, type: isl_dim_set);
4016 node = isl_id_get_user(id);
4017 isl_id_free(id);
4018
4019 if (!node)
4020 return NULL;
4021
4022 if (!isl_sched_graph_is_node(graph: graph->root, node))
4023 isl_die(ctx, isl_error_internal,
4024 "space points to invalid node", return NULL);
4025 if (graph != graph->root)
4026 node = isl_sched_graph_find_node(ctx, graph, space: node->space);
4027 if (!isl_sched_graph_is_node(graph, node))
4028 isl_die(ctx, isl_error_internal,
4029 "unable to find node", return NULL);
4030
4031 return node;
4032}
4033
4034/* Internal data structure for add_all_constraints.
4035 *
4036 * "graph" is the schedule constraint graph for which an LP problem
4037 * is being constructed.
4038 * "carry_inter" indicates whether inter-node edges should be carried.
4039 * "pos" is the position of the next edge that needs to be carried.
4040 */
4041struct isl_add_all_constraints_data {
4042 isl_ctx *ctx;
4043 struct isl_sched_graph *graph;
4044 int carry_inter;
4045 int pos;
4046};
4047
4048/* Add the constraints "coef" derived from an edge from a node to itself
4049 * to data->graph->lp in order to respect the dependences and
4050 * to try and carry them.
4051 *
4052 * The space of "coef" is of the form
4053 *
4054 * coefficients[[c_cst] -> S[c_x]]
4055 *
4056 * with S[c_x] the (compressed) space of the node.
4057 * Extract the node from the space and call add_intra_constraints.
4058 */
4059static isl_stat lp_add_intra(__isl_take isl_basic_set *coef, void *user)
4060{
4061 struct isl_add_all_constraints_data *data = user;
4062 isl_space *space;
4063 struct isl_sched_node *node;
4064
4065 space = isl_basic_set_get_space(bset: coef);
4066 space = isl_space_range(space: isl_space_unwrap(space));
4067 node = graph_find_compressed_node(ctx: data->ctx, graph: data->graph, space);
4068 isl_space_free(space);
4069 return add_intra_constraints(graph: data->graph, node, coef, pos: data->pos++);
4070}
4071
4072/* Add the constraints "coef" derived from an edge from a node j
4073 * to a node k to data->graph->lp in order to respect the dependences and
4074 * to try and carry them (provided data->carry_inter is set).
4075 *
4076 * The space of "coef" is of the form
4077 *
4078 * coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
4079 *
4080 * with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
4081 * Extract the nodes from the space and call add_inter_constraints.
4082 */
4083static isl_stat lp_add_inter(__isl_take isl_basic_set *coef, void *user)
4084{
4085 struct isl_add_all_constraints_data *data = user;
4086 isl_space *space, *dom;
4087 struct isl_sched_node *src, *dst;
4088 int pos;
4089
4090 space = isl_basic_set_get_space(bset: coef);
4091 space = isl_space_unwrap(space: isl_space_range(space: isl_space_unwrap(space)));
4092 dom = isl_space_domain(space: isl_space_copy(space));
4093 src = graph_find_compressed_node(ctx: data->ctx, graph: data->graph, space: dom);
4094 isl_space_free(space: dom);
4095 space = isl_space_range(space);
4096 dst = graph_find_compressed_node(ctx: data->ctx, graph: data->graph, space);
4097 isl_space_free(space);
4098
4099 pos = data->carry_inter ? data->pos++ : -1;
4100 return add_inter_constraints(graph: data->graph, src, dst, coef, pos);
4101}
4102
4103/* Add constraints to graph->lp that force all (conditional) validity
4104 * dependences to be respected and attempt to carry them.
4105 * "intra" is the sequence of coefficient constraints for intra-node edges.
4106 * "inter" is the sequence of coefficient constraints for inter-node edges.
4107 * "carry_inter" indicates whether inter-node edges should be carried or
4108 * only respected.
4109 */
4110static isl_stat add_all_constraints(isl_ctx *ctx, struct isl_sched_graph *graph,
4111 __isl_keep isl_basic_set_list *intra,
4112 __isl_keep isl_basic_set_list *inter, int carry_inter)
4113{
4114 struct isl_add_all_constraints_data data = { ctx, graph, carry_inter };
4115
4116 data.pos = 0;
4117 if (isl_basic_set_list_foreach(list: intra, fn: &lp_add_intra, user: &data) < 0)
4118 return isl_stat_error;
4119 if (isl_basic_set_list_foreach(list: inter, fn: &lp_add_inter, user: &data) < 0)
4120 return isl_stat_error;
4121 return isl_stat_ok;
4122}
4123
4124/* Internal data structure for count_all_constraints
4125 * for keeping track of the number of equality and inequality constraints.
4126 */
4127struct isl_sched_count {
4128 int n_eq;
4129 int n_ineq;
4130};
4131
4132/* Add the number of equality and inequality constraints of "bset"
4133 * to data->n_eq and data->n_ineq.
4134 */
4135static isl_stat bset_update_count(__isl_take isl_basic_set *bset, void *user)
4136{
4137 struct isl_sched_count *data = user;
4138
4139 return update_count(bset, f: 1, n_eq: &data->n_eq, n_ineq: &data->n_ineq);
4140}
4141
4142/* Count the number of equality and inequality constraints
4143 * that will be added to the carry_lp problem.
4144 * We count each edge exactly once.
4145 * "intra" is the sequence of coefficient constraints for intra-node edges.
4146 * "inter" is the sequence of coefficient constraints for inter-node edges.
4147 */
4148static isl_stat count_all_constraints(__isl_keep isl_basic_set_list *intra,
4149 __isl_keep isl_basic_set_list *inter, int *n_eq, int *n_ineq)
4150{
4151 struct isl_sched_count data;
4152
4153 data.n_eq = data.n_ineq = 0;
4154 if (isl_basic_set_list_foreach(list: inter, fn: &bset_update_count, user: &data) < 0)
4155 return isl_stat_error;
4156 if (isl_basic_set_list_foreach(list: intra, fn: &bset_update_count, user: &data) < 0)
4157 return isl_stat_error;
4158
4159 *n_eq = data.n_eq;
4160 *n_ineq = data.n_ineq;
4161
4162 return isl_stat_ok;
4163}
4164
4165/* Construct an LP problem for finding schedule coefficients
4166 * such that the schedule carries as many validity dependences as possible.
4167 * In particular, for each dependence i, we bound the dependence distance
4168 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
4169 * of all e_i's. Dependences with e_i = 0 in the solution are simply
4170 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
4171 * "intra" is the sequence of coefficient constraints for intra-node edges.
4172 * "inter" is the sequence of coefficient constraints for inter-node edges.
4173 * "n_edge" is the total number of edges.
4174 * "carry_inter" indicates whether inter-node edges should be carried or
4175 * only respected. That is, if "carry_inter" is not set, then
4176 * no e_i variables are introduced for the inter-node edges.
4177 *
4178 * All variables of the LP are non-negative. The actual coefficients
4179 * may be negative, so each coefficient is represented as the difference
4180 * of two non-negative variables. The negative part always appears
4181 * immediately before the positive part.
4182 * Other than that, the variables have the following order
4183 *
4184 * - sum of (1 - e_i) over all edges
4185 * - sum of all c_n coefficients
4186 * (unconstrained when computing non-parametric schedules)
4187 * - sum of positive and negative parts of all c_x coefficients
4188 * - for each edge
4189 * - e_i
4190 * - for each node
4191 * - positive and negative parts of c_i_x, in opposite order
4192 * - c_i_n (if parametric)
4193 * - c_i_0
4194 *
4195 * The constraints are those from the (validity) edges plus three equalities
4196 * to express the sums and n_edge inequalities to express e_i <= 1.
4197 */
4198static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
4199 int n_edge, __isl_keep isl_basic_set_list *intra,
4200 __isl_keep isl_basic_set_list *inter, int carry_inter)
4201{
4202 int i;
4203 int k;
4204 isl_space *space;
4205 unsigned total;
4206 int n_eq, n_ineq;
4207
4208 total = 3 + n_edge;
4209 for (i = 0; i < graph->n; ++i) {
4210 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
4211 node->start = total;
4212 total += 1 + node->nparam + 2 * node->nvar;
4213 }
4214
4215 if (count_all_constraints(intra, inter, n_eq: &n_eq, n_ineq: &n_ineq) < 0)
4216 return isl_stat_error;
4217
4218 space = isl_space_set_alloc(ctx, nparam: 0, dim: total);
4219 isl_basic_set_free(bset: graph->lp);
4220 n_eq += 3;
4221 n_ineq += n_edge;
4222 graph->lp = isl_basic_set_alloc_space(space, extra: 0, n_eq, n_ineq);
4223 graph->lp = isl_basic_set_set_rational(bset: graph->lp);
4224
4225 k = isl_basic_set_alloc_equality(bset: graph->lp);
4226 if (k < 0)
4227 return isl_stat_error;
4228 isl_seq_clr(p: graph->lp->eq[k], len: 1 + total);
4229 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
4230 isl_int_set_si(graph->lp->eq[k][1], 1);
4231 for (i = 0; i < n_edge; ++i)
4232 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
4233
4234 if (add_param_sum_constraint(graph, sum_pos: 1) < 0)
4235 return isl_stat_error;
4236 if (add_var_sum_constraint(graph, sum_pos: 2) < 0)
4237 return isl_stat_error;
4238
4239 for (i = 0; i < n_edge; ++i) {
4240 k = isl_basic_set_alloc_inequality(bset: graph->lp);
4241 if (k < 0)
4242 return isl_stat_error;
4243 isl_seq_clr(p: graph->lp->ineq[k], len: 1 + total);
4244 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
4245 isl_int_set_si(graph->lp->ineq[k][0], 1);
4246 }
4247
4248 if (add_all_constraints(ctx, graph, intra, inter, carry_inter) < 0)
4249 return isl_stat_error;
4250
4251 return isl_stat_ok;
4252}
4253
4254static __isl_give isl_schedule_node *compute_component_schedule(
4255 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4256 int wcc);
4257
4258/* If the schedule_split_scaled option is set and if the linear
4259 * parts of the scheduling rows for all nodes in the graphs have
4260 * a non-trivial common divisor, then remove this
4261 * common divisor from the linear part.
4262 * Otherwise, insert a band node directly and continue with
4263 * the construction of the schedule.
4264 *
4265 * If a non-trivial common divisor is found, then
4266 * the linear part is reduced and the remainder is ignored.
4267 * The pieces of the graph that are assigned different remainders
4268 * form (groups of) strongly connected components within
4269 * the scaled down band. If needed, they can therefore
4270 * be ordered along this remainder in a sequence node.
4271 * However, this ordering is not enforced here in order to allow
4272 * the scheduler to combine some of the strongly connected components.
4273 */
4274static __isl_give isl_schedule_node *split_scaled(
4275 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4276{
4277 int i;
4278 int row;
4279 isl_ctx *ctx;
4280 isl_int gcd, gcd_i;
4281 isl_size n_row;
4282
4283 if (!node)
4284 return NULL;
4285
4286 ctx = isl_schedule_node_get_ctx(node);
4287 if (!ctx->opt->schedule_split_scaled)
4288 return compute_next_band(node, graph, permutable: 0);
4289 if (graph->n <= 1)
4290 return compute_next_band(node, graph, permutable: 0);
4291 n_row = isl_mat_rows(mat: graph->node[0].sched);
4292 if (n_row < 0)
4293 return isl_schedule_node_free(node);
4294
4295 isl_int_init(gcd);
4296 isl_int_init(gcd_i);
4297
4298 isl_int_set_si(gcd, 0);
4299
4300 row = n_row - 1;
4301
4302 for (i = 0; i < graph->n; ++i) {
4303 struct isl_sched_node *node = &graph->node[i];
4304 isl_size cols = isl_mat_cols(mat: node->sched);
4305
4306 if (cols < 0)
4307 break;
4308 isl_seq_gcd(p: node->sched->row[row] + 1, len: cols - 1, gcd: &gcd_i);
4309 isl_int_gcd(gcd, gcd, gcd_i);
4310 }
4311
4312 isl_int_clear(gcd_i);
4313 if (i < graph->n)
4314 goto error;
4315
4316 if (isl_int_cmp_si(gcd, 1) <= 0) {
4317 isl_int_clear(gcd);
4318 return compute_next_band(node, graph, permutable: 0);
4319 }
4320
4321 for (i = 0; i < graph->n; ++i) {
4322 struct isl_sched_node *node = &graph->node[i];
4323
4324 isl_int_fdiv_q(node->sched->row[row][0],
4325 node->sched->row[row][0], gcd);
4326 isl_int_mul(node->sched->row[row][0],
4327 node->sched->row[row][0], gcd);
4328 node->sched = isl_mat_scale_down_row(mat: node->sched, row, m: gcd);
4329 if (!node->sched)
4330 goto error;
4331 }
4332
4333 isl_int_clear(gcd);
4334
4335 return compute_next_band(node, graph, permutable: 0);
4336error:
4337 isl_int_clear(gcd);
4338 return isl_schedule_node_free(node);
4339}
4340
4341/* Is the schedule row "sol" trivial on node "node"?
4342 * That is, is the solution zero on the dimensions linearly independent of
4343 * the previously found solutions?
4344 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
4345 *
4346 * Each coefficient is represented as the difference between
4347 * two non-negative values in "sol".
4348 * We construct the schedule row s and check if it is linearly
4349 * independent of previously computed schedule rows
4350 * by computing T s, with T the linear combinations that are zero
4351 * on linearly dependent schedule rows.
4352 * If the result consists of all zeros, then the solution is trivial.
4353 */
4354static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
4355{
4356 int trivial;
4357 isl_vec *node_sol;
4358
4359 if (!sol)
4360 return -1;
4361 if (node->nvar == node->rank)
4362 return 0;
4363
4364 node_sol = extract_var_coef(node, sol);
4365 node_sol = isl_mat_vec_product(mat: isl_mat_copy(mat: node->indep), vec: node_sol);
4366 if (!node_sol)
4367 return -1;
4368
4369 trivial = isl_seq_first_non_zero(p: node_sol->el,
4370 len: node->nvar - node->rank) == -1;
4371
4372 isl_vec_free(vec: node_sol);
4373
4374 return trivial;
4375}
4376
4377/* Is the schedule row "sol" trivial on any node where it should
4378 * not be trivial?
4379 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
4380 */
4381static int is_any_trivial(struct isl_sched_graph *graph,
4382 __isl_keep isl_vec *sol)
4383{
4384 int i;
4385
4386 for (i = 0; i < graph->n; ++i) {
4387 struct isl_sched_node *node = &graph->node[i];
4388 int trivial;
4389
4390 if (!needs_row(graph, node))
4391 continue;
4392 trivial = is_trivial(node, sol);
4393 if (trivial < 0 || trivial)
4394 return trivial;
4395 }
4396
4397 return 0;
4398}
4399
4400/* Does the schedule represented by "sol" perform loop coalescing on "node"?
4401 * If so, return the position of the coalesced dimension.
4402 * Otherwise, return node->nvar or -1 on error.
4403 *
4404 * In particular, look for pairs of coefficients c_i and c_j such that
4405 * |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|.
4406 * If any such pair is found, then return i.
4407 * If size_i is infinity, then no check on c_i needs to be performed.
4408 */
4409static int find_node_coalescing(struct isl_sched_node *node,
4410 __isl_keep isl_vec *sol)
4411{
4412 int i, j;
4413 isl_int max;
4414 isl_vec *csol;
4415
4416 if (node->nvar <= 1)
4417 return node->nvar;
4418
4419 csol = extract_var_coef(node, sol);
4420 if (!csol)
4421 return -1;
4422 isl_int_init(max);
4423 for (i = 0; i < node->nvar; ++i) {
4424 isl_val *v;
4425
4426 if (isl_int_is_zero(csol->el[i]))
4427 continue;
4428 v = isl_multi_val_get_val(multi: node->sizes, pos: i);
4429 if (!v)
4430 goto error;
4431 if (!isl_val_is_int(v)) {
4432 isl_val_free(v);
4433 continue;
4434 }
4435 v = isl_val_div_ui(v1: v, v2: 2);
4436 v = isl_val_ceil(v);
4437 if (!v)
4438 goto error;
4439 isl_int_mul(max, v->n, csol->el[i]);
4440 isl_val_free(v);
4441
4442 for (j = 0; j < node->nvar; ++j) {
4443 if (j == i)
4444 continue;
4445 if (isl_int_abs_gt(csol->el[j], max))
4446 break;
4447 }
4448 if (j < node->nvar)
4449 break;
4450 }
4451
4452 isl_int_clear(max);
4453 isl_vec_free(vec: csol);
4454 return i;
4455error:
4456 isl_int_clear(max);
4457 isl_vec_free(vec: csol);
4458 return -1;
4459}
4460
4461/* Force the schedule coefficient at position "pos" of "node" to be zero
4462 * in "tl".
4463 * The coefficient is encoded as the difference between two non-negative
4464 * variables. Force these two variables to have the same value.
4465 */
4466static __isl_give isl_tab_lexmin *zero_out_node_coef(
4467 __isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
4468{
4469 int dim;
4470 isl_ctx *ctx;
4471 isl_vec *eq;
4472
4473 ctx = isl_space_get_ctx(space: node->space);
4474 dim = isl_tab_lexmin_dim(tl);
4475 if (dim < 0)
4476 return isl_tab_lexmin_free(tl);
4477 eq = isl_vec_alloc(ctx, size: 1 + dim);
4478 eq = isl_vec_clr(vec: eq);
4479 if (!eq)
4480 return isl_tab_lexmin_free(tl);
4481
4482 pos = 1 + node_var_coef_pos(node, i: pos);
4483 isl_int_set_si(eq->el[pos], 1);
4484 isl_int_set_si(eq->el[pos + 1], -1);
4485 tl = isl_tab_lexmin_add_eq(tl, eq: eq->el);
4486 isl_vec_free(vec: eq);
4487
4488 return tl;
4489}
4490
4491/* Return the lexicographically smallest rational point in the basic set
4492 * from which "tl" was constructed, double checking that this input set
4493 * was not empty.
4494 */
4495static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
4496{
4497 isl_vec *sol;
4498
4499 sol = isl_tab_lexmin_get_solution(tl);
4500 if (!sol)
4501 return NULL;
4502 if (sol->size == 0)
4503 isl_die(isl_vec_get_ctx(sol), isl_error_internal,
4504 "error in schedule construction",
4505 return isl_vec_free(sol));
4506 return sol;
4507}
4508
4509/* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4510 * carry any of the "n_edge" groups of dependences?
4511 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4512 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4513 * by the edge are carried by the solution.
4514 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4515 * one of those is carried.
4516 *
4517 * Note that despite the fact that the problem is solved using a rational
4518 * solver, the solution is guaranteed to be integral.
4519 * Specifically, the dependence distance lower bounds e_i (and therefore
4520 * also their sum) are integers. See Lemma 5 of [1].
4521 *
4522 * Any potential denominator of the sum is cleared by this function.
4523 * The denominator is not relevant for any of the other elements
4524 * in the solution.
4525 *
4526 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4527 * Problem, Part II: Multi-Dimensional Time.
4528 * In Intl. Journal of Parallel Programming, 1992.
4529 */
4530static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
4531{
4532 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
4533 isl_int_set_si(sol->el[0], 1);
4534 return isl_int_cmp_si(sol->el[1], n_edge) < 0;
4535}
4536
4537/* Return the lexicographically smallest rational point in "lp",
4538 * assuming that all variables are non-negative and performing some
4539 * additional sanity checks.
4540 * If "want_integral" is set, then compute the lexicographically smallest
4541 * integer point instead.
4542 * In particular, "lp" should not be empty by construction.
4543 * Double check that this is the case.
4544 * If dependences are not carried for any of the "n_edge" edges,
4545 * then return an empty vector.
4546 *
4547 * If the schedule_treat_coalescing option is set and
4548 * if the computed schedule performs loop coalescing on a given node,
4549 * i.e., if it is of the form
4550 *
4551 * c_i i + c_j j + ...
4552 *
4553 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4554 * to cut out this solution. Repeat this process until no more loop
4555 * coalescing occurs or until no more dependences can be carried.
4556 * In the latter case, revert to the previously computed solution.
4557 *
4558 * If the caller requests an integral solution and if coalescing should
4559 * be treated, then perform the coalescing treatment first as
4560 * an integral solution computed before coalescing treatment
4561 * would carry the same number of edges and would therefore probably
4562 * also be coalescing.
4563 *
4564 * To allow the coalescing treatment to be performed first,
4565 * the initial solution is allowed to be rational and it is only
4566 * cut out (if needed) in the next iteration, if no coalescing measures
4567 * were taken.
4568 */
4569static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
4570 __isl_take isl_basic_set *lp, int n_edge, int want_integral)
4571{
4572 int i, pos, cut;
4573 isl_ctx *ctx;
4574 isl_tab_lexmin *tl;
4575 isl_vec *sol = NULL, *prev;
4576 int treat_coalescing;
4577 int try_again;
4578
4579 if (!lp)
4580 return NULL;
4581 ctx = isl_basic_set_get_ctx(bset: lp);
4582 treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
4583 tl = isl_tab_lexmin_from_basic_set(bset: lp);
4584
4585 cut = 0;
4586 do {
4587 int integral;
4588
4589 try_again = 0;
4590 if (cut)
4591 tl = isl_tab_lexmin_cut_to_integer(tl);
4592 prev = sol;
4593 sol = non_empty_solution(tl);
4594 if (!sol)
4595 goto error;
4596
4597 integral = isl_int_is_one(sol->el[0]);
4598 if (!carries_dependences(sol, n_edge)) {
4599 if (!prev)
4600 prev = isl_vec_alloc(ctx, size: 0);
4601 isl_vec_free(vec: sol);
4602 sol = prev;
4603 break;
4604 }
4605 prev = isl_vec_free(vec: prev);
4606 cut = want_integral && !integral;
4607 if (cut)
4608 try_again = 1;
4609 if (!treat_coalescing)
4610 continue;
4611 for (i = 0; i < graph->n; ++i) {
4612 struct isl_sched_node *node = &graph->node[i];
4613
4614 pos = find_node_coalescing(node, sol);
4615 if (pos < 0)
4616 goto error;
4617 if (pos < node->nvar)
4618 break;
4619 }
4620 if (i < graph->n) {
4621 try_again = 1;
4622 tl = zero_out_node_coef(tl, node: &graph->node[i], pos);
4623 cut = 0;
4624 }
4625 } while (try_again);
4626
4627 isl_tab_lexmin_free(tl);
4628
4629 return sol;
4630error:
4631 isl_tab_lexmin_free(tl);
4632 isl_vec_free(vec: prev);
4633 isl_vec_free(vec: sol);
4634 return NULL;
4635}
4636
4637/* If "edge" is an edge from a node to itself, then add the corresponding
4638 * dependence relation to "umap".
4639 * If "node" has been compressed, then the dependence relation
4640 * is also compressed first.
4641 */
4642static __isl_give isl_union_map *add_intra(__isl_take isl_union_map *umap,
4643 struct isl_sched_edge *edge)
4644{
4645 isl_map *map;
4646 struct isl_sched_node *node = edge->src;
4647
4648 if (edge->src != edge->dst)
4649 return umap;
4650
4651 map = isl_map_copy(map: edge->map);
4652 map = compress(map, src: node, dst: node);
4653 umap = isl_union_map_add_map(umap, map);
4654 return umap;
4655}
4656
4657/* If "edge" is an edge from a node to another node, then add the corresponding
4658 * dependence relation to "umap".
4659 * If the source or destination nodes of "edge" have been compressed,
4660 * then the dependence relation is also compressed first.
4661 */
4662static __isl_give isl_union_map *add_inter(__isl_take isl_union_map *umap,
4663 struct isl_sched_edge *edge)
4664{
4665 isl_map *map;
4666
4667 if (edge->src == edge->dst)
4668 return umap;
4669
4670 map = isl_map_copy(map: edge->map);
4671 map = compress(map, src: edge->src, dst: edge->dst);
4672 umap = isl_union_map_add_map(umap, map);
4673 return umap;
4674}
4675
4676/* Internal data structure used by union_drop_coalescing_constraints
4677 * to collect bounds on all relevant statements.
4678 *
4679 * "graph" is the schedule constraint graph for which an LP problem
4680 * is being constructed.
4681 * "bounds" collects the bounds.
4682 */
4683struct isl_collect_bounds_data {
4684 isl_ctx *ctx;
4685 struct isl_sched_graph *graph;
4686 isl_union_set *bounds;
4687};
4688
4689/* Add the size bounds for the node with instance deltas in "set"
4690 * to data->bounds.
4691 */
4692static isl_stat collect_bounds(__isl_take isl_set *set, void *user)
4693{
4694 struct isl_collect_bounds_data *data = user;
4695 struct isl_sched_node *node;
4696 isl_space *space;
4697 isl_set *bounds;
4698
4699 space = isl_set_get_space(set);
4700 isl_set_free(set);
4701
4702 node = graph_find_compressed_node(ctx: data->ctx, graph: data->graph, space);
4703 isl_space_free(space);
4704
4705 bounds = isl_set_from_basic_set(bset: get_size_bounds(node));
4706 data->bounds = isl_union_set_add_set(uset: data->bounds, set: bounds);
4707
4708 return isl_stat_ok;
4709}
4710
4711/* Drop some constraints from "delta" that could be exploited
4712 * to construct loop coalescing schedules.
4713 * In particular, drop those constraint that bound the difference
4714 * to the size of the domain.
4715 * Do this for each set/node in "delta" separately.
4716 * The parameters are assumed to have been projected out by the caller.
4717 */
4718static __isl_give isl_union_set *union_drop_coalescing_constraints(isl_ctx *ctx,
4719 struct isl_sched_graph *graph, __isl_take isl_union_set *delta)
4720{
4721 struct isl_collect_bounds_data data = { ctx, graph };
4722
4723 data.bounds = isl_union_set_empty(space: isl_space_params_alloc(ctx, nparam: 0));
4724 if (isl_union_set_foreach_set(uset: delta, fn: &collect_bounds, user: &data) < 0)
4725 data.bounds = isl_union_set_free(uset: data.bounds);
4726 delta = isl_union_set_plain_gist(uset: delta, context: data.bounds);
4727
4728 return delta;
4729}
4730
4731/* Given a non-trivial lineality space "lineality", add the corresponding
4732 * universe set to data->mask and add a map from elements to
4733 * other elements along the lines in "lineality" to data->equivalent.
4734 * If this is the first time this function gets called
4735 * (data->any_non_trivial is still false), then set data->any_non_trivial and
4736 * initialize data->mask and data->equivalent.
4737 *
4738 * In particular, if the lineality space is defined by equality constraints
4739 *
4740 * E x = 0
4741 *
4742 * then construct an affine mapping
4743 *
4744 * f : x -> E x
4745 *
4746 * and compute the equivalence relation of having the same image under f:
4747 *
4748 * { x -> x' : E x = E x' }
4749 */
4750static isl_stat add_non_trivial_lineality(__isl_take isl_basic_set *lineality,
4751 struct isl_exploit_lineality_data *data)
4752{
4753 isl_mat *eq;
4754 isl_space *space;
4755 isl_set *univ;
4756 isl_multi_aff *ma;
4757 isl_multi_pw_aff *mpa;
4758 isl_map *map;
4759 isl_size n;
4760
4761 if (isl_basic_set_check_no_locals(bset: lineality) < 0)
4762 goto error;
4763
4764 space = isl_basic_set_get_space(bset: lineality);
4765 if (!data->any_non_trivial) {
4766 data->equivalent = isl_union_map_empty(space: isl_space_copy(space));
4767 data->mask = isl_union_set_empty(space: isl_space_copy(space));
4768 }
4769 data->any_non_trivial = isl_bool_true;
4770
4771 univ = isl_set_universe(space: isl_space_copy(space));
4772 data->mask = isl_union_set_add_set(uset: data->mask, set: univ);
4773
4774 eq = isl_basic_set_extract_equalities(bset: lineality);
4775 n = isl_mat_rows(mat: eq);
4776 if (n < 0)
4777 space = isl_space_free(space);
4778 eq = isl_mat_insert_zero_rows(mat: eq, row: 0, n: 1);
4779 eq = isl_mat_set_element_si(mat: eq, row: 0, col: 0, v: 1);
4780 space = isl_space_from_domain(space);
4781 space = isl_space_add_dims(space, type: isl_dim_out, n);
4782 ma = isl_multi_aff_from_aff_mat(space, mat: eq);
4783 mpa = isl_multi_pw_aff_from_multi_aff(ma);
4784 map = isl_multi_pw_aff_eq_map(mpa1: mpa, mpa2: isl_multi_pw_aff_copy(multi: mpa));
4785 data->equivalent = isl_union_map_add_map(umap: data->equivalent, map);
4786
4787 isl_basic_set_free(bset: lineality);
4788 return isl_stat_ok;
4789error:
4790 isl_basic_set_free(bset: lineality);
4791 return isl_stat_error;
4792}
4793
4794/* Check if the lineality space "set" is non-trivial (i.e., is not just
4795 * the origin or, in other words, satisfies a number of equality constraints
4796 * that is smaller than the dimension of the set).
4797 * If so, extend data->mask and data->equivalent accordingly.
4798 *
4799 * The input should not have any local variables already, but
4800 * isl_set_remove_divs is called to make sure it does not.
4801 */
4802static isl_stat add_lineality(__isl_take isl_set *set, void *user)
4803{
4804 struct isl_exploit_lineality_data *data = user;
4805 isl_basic_set *hull;
4806 isl_size dim;
4807 isl_size n_eq;
4808
4809 set = isl_set_remove_divs(set);
4810 hull = isl_set_unshifted_simple_hull(set);
4811 dim = isl_basic_set_dim(bset: hull, type: isl_dim_set);
4812 n_eq = isl_basic_set_n_equality(bset: hull);
4813 if (dim < 0 || n_eq < 0)
4814 goto error;
4815 if (dim != n_eq)
4816 return add_non_trivial_lineality(lineality: hull, data);
4817 isl_basic_set_free(bset: hull);
4818 return isl_stat_ok;
4819error:
4820 isl_basic_set_free(bset: hull);
4821 return isl_stat_error;
4822}
4823
4824/* Check if the difference set on intra-node schedule constraints "intra"
4825 * has any non-trivial lineality space.
4826 * If so, then extend the difference set to a difference set
4827 * on equivalent elements. That is, if "intra" is
4828 *
4829 * { y - x : (x,y) \in V }
4830 *
4831 * and elements are equivalent if they have the same image under f,
4832 * then return
4833 *
4834 * { y' - x' : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4835 *
4836 * or, since f is linear,
4837 *
4838 * { y' - x' : (x,y) \in V and f(y - x) = f(y' - x') }
4839 *
4840 * The results of the search for non-trivial lineality spaces is stored
4841 * in "data".
4842 */
4843static __isl_give isl_union_set *exploit_intra_lineality(
4844 __isl_take isl_union_set *intra,
4845 struct isl_exploit_lineality_data *data)
4846{
4847 isl_union_set *lineality;
4848 isl_union_set *uset;
4849
4850 data->any_non_trivial = isl_bool_false;
4851 lineality = isl_union_set_copy(uset: intra);
4852 lineality = isl_union_set_combined_lineality_space(uset: lineality);
4853 if (isl_union_set_foreach_set(uset: lineality, fn: &add_lineality, user: data) < 0)
4854 data->any_non_trivial = isl_bool_error;
4855 isl_union_set_free(uset: lineality);
4856
4857 if (data->any_non_trivial < 0)
4858 return isl_union_set_free(uset: intra);
4859 if (!data->any_non_trivial)
4860 return intra;
4861
4862 uset = isl_union_set_copy(uset: intra);
4863 intra = isl_union_set_subtract(uset1: intra, uset2: isl_union_set_copy(uset: data->mask));
4864 uset = isl_union_set_apply(uset, umap: isl_union_map_copy(umap: data->equivalent));
4865 intra = isl_union_set_union(uset1: intra, uset2: uset);
4866
4867 intra = isl_union_set_remove_divs(bset: intra);
4868
4869 return intra;
4870}
4871
4872/* If the difference set on intra-node schedule constraints was found to have
4873 * any non-trivial lineality space by exploit_intra_lineality,
4874 * as recorded in "data", then extend the inter-node
4875 * schedule constraints "inter" to schedule constraints on equivalent elements.
4876 * That is, if "inter" is V and
4877 * elements are equivalent if they have the same image under f, then return
4878 *
4879 * { (x', y') : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4880 */
4881static __isl_give isl_union_map *exploit_inter_lineality(
4882 __isl_take isl_union_map *inter,
4883 struct isl_exploit_lineality_data *data)
4884{
4885 isl_union_map *umap;
4886
4887 if (data->any_non_trivial < 0)
4888 return isl_union_map_free(umap: inter);
4889 if (!data->any_non_trivial)
4890 return inter;
4891
4892 umap = isl_union_map_copy(umap: inter);
4893 inter = isl_union_map_subtract_range(umap: inter,
4894 dom: isl_union_set_copy(uset: data->mask));
4895 umap = isl_union_map_apply_range(umap1: umap,
4896 umap2: isl_union_map_copy(umap: data->equivalent));
4897 inter = isl_union_map_union(umap1: inter, umap2: umap);
4898 umap = isl_union_map_copy(umap: inter);
4899 inter = isl_union_map_subtract_domain(umap: inter,
4900 dom: isl_union_set_copy(uset: data->mask));
4901 umap = isl_union_map_apply_range(umap1: isl_union_map_copy(umap: data->equivalent),
4902 umap2: umap);
4903 inter = isl_union_map_union(umap1: inter, umap2: umap);
4904
4905 inter = isl_union_map_remove_divs(bmap: inter);
4906
4907 return inter;
4908}
4909
4910/* For each (conditional) validity edge in "graph",
4911 * add the corresponding dependence relation using "add"
4912 * to a collection of dependence relations and return the result.
4913 * If "coincidence" is set, then coincidence edges are considered as well.
4914 */
4915static __isl_give isl_union_map *collect_validity(struct isl_sched_graph *graph,
4916 __isl_give isl_union_map *(*add)(__isl_take isl_union_map *umap,
4917 struct isl_sched_edge *edge), int coincidence)
4918{
4919 int i;
4920 isl_space *space;
4921 isl_union_map *umap;
4922
4923 space = isl_space_copy(space: graph->node[0].space);
4924 umap = isl_union_map_empty(space);
4925
4926 for (i = 0; i < graph->n_edge; ++i) {
4927 struct isl_sched_edge *edge = &graph->edge[i];
4928
4929 if (!is_any_validity(edge) &&
4930 (!coincidence || !is_coincidence(edge)))
4931 continue;
4932
4933 umap = add(umap, edge);
4934 }
4935
4936 return umap;
4937}
4938
4939/* For each dependence relation on a (conditional) validity edge
4940 * from a node to itself,
4941 * construct the set of coefficients of valid constraints for elements
4942 * in that dependence relation and collect the results.
4943 * If "coincidence" is set, then coincidence edges are considered as well.
4944 *
4945 * In particular, for each dependence relation R, constraints
4946 * on coefficients (c_0, c_x) are constructed such that
4947 *
4948 * c_0 + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
4949 *
4950 * If the schedule_treat_coalescing option is set, then some constraints
4951 * that could be exploited to construct coalescing schedules
4952 * are removed before the dual is computed, but after the parameters
4953 * have been projected out.
4954 * The entire computation is essentially the same as that performed
4955 * by intra_coefficients, except that it operates on multiple
4956 * edges together and that the parameters are always projected out.
4957 *
4958 * Additionally, exploit any non-trivial lineality space
4959 * in the difference set after removing coalescing constraints and
4960 * store the results of the non-trivial lineality space detection in "data".
4961 * The procedure is currently run unconditionally, but it is unlikely
4962 * to find any non-trivial lineality spaces if no coalescing constraints
4963 * have been removed.
4964 *
4965 * Note that if a dependence relation is a union of basic maps,
4966 * then each basic map needs to be treated individually as it may only
4967 * be possible to carry the dependences expressed by some of those
4968 * basic maps and not all of them.
4969 * The collected validity constraints are therefore not coalesced and
4970 * it is assumed that they are not coalesced automatically.
4971 * Duplicate basic maps can be removed, however.
4972 * In particular, if the same basic map appears as a disjunct
4973 * in multiple edges, then it only needs to be carried once.
4974 */
4975static __isl_give isl_basic_set_list *collect_intra_validity(isl_ctx *ctx,
4976 struct isl_sched_graph *graph, int coincidence,
4977 struct isl_exploit_lineality_data *data)
4978{
4979 isl_union_map *intra;
4980 isl_union_set *delta;
4981 isl_basic_set_list *list;
4982
4983 intra = collect_validity(graph, add: &add_intra, coincidence);
4984 delta = isl_union_map_deltas(umap: intra);
4985 delta = isl_union_set_project_out_all_params(uset: delta);
4986 delta = isl_union_set_remove_divs(bset: delta);
4987 if (isl_options_get_schedule_treat_coalescing(ctx))
4988 delta = union_drop_coalescing_constraints(ctx, graph, delta);
4989 delta = exploit_intra_lineality(intra: delta, data);
4990 list = isl_union_set_get_basic_set_list(uset: delta);
4991 isl_union_set_free(uset: delta);
4992
4993 return isl_basic_set_list_coefficients(list);
4994}
4995
4996/* For each dependence relation on a (conditional) validity edge
4997 * from a node to some other node,
4998 * construct the set of coefficients of valid constraints for elements
4999 * in that dependence relation and collect the results.
5000 * If "coincidence" is set, then coincidence edges are considered as well.
5001 *
5002 * In particular, for each dependence relation R, constraints
5003 * on coefficients (c_0, c_n, c_x, c_y) are constructed such that
5004 *
5005 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
5006 *
5007 * This computation is essentially the same as that performed
5008 * by inter_coefficients, except that it operates on multiple
5009 * edges together.
5010 *
5011 * Additionally, exploit any non-trivial lineality space
5012 * that may have been discovered by collect_intra_validity
5013 * (as stored in "data").
5014 *
5015 * Note that if a dependence relation is a union of basic maps,
5016 * then each basic map needs to be treated individually as it may only
5017 * be possible to carry the dependences expressed by some of those
5018 * basic maps and not all of them.
5019 * The collected validity constraints are therefore not coalesced and
5020 * it is assumed that they are not coalesced automatically.
5021 * Duplicate basic maps can be removed, however.
5022 * In particular, if the same basic map appears as a disjunct
5023 * in multiple edges, then it only needs to be carried once.
5024 */
5025static __isl_give isl_basic_set_list *collect_inter_validity(
5026 struct isl_sched_graph *graph, int coincidence,
5027 struct isl_exploit_lineality_data *data)
5028{
5029 isl_union_map *inter;
5030 isl_union_set *wrap;
5031 isl_basic_set_list *list;
5032
5033 inter = collect_validity(graph, add: &add_inter, coincidence);
5034 inter = exploit_inter_lineality(inter, data);
5035 inter = isl_union_map_remove_divs(bmap: inter);
5036 wrap = isl_union_map_wrap(umap: inter);
5037 list = isl_union_set_get_basic_set_list(uset: wrap);
5038 isl_union_set_free(uset: wrap);
5039 return isl_basic_set_list_coefficients(list);
5040}
5041
5042/* Construct an LP problem for finding schedule coefficients
5043 * such that the schedule carries as many of the "n_edge" groups of
5044 * dependences as possible based on the corresponding coefficient
5045 * constraints and return the lexicographically smallest non-trivial solution.
5046 * "intra" is the sequence of coefficient constraints for intra-node edges.
5047 * "inter" is the sequence of coefficient constraints for inter-node edges.
5048 * If "want_integral" is set, then compute an integral solution
5049 * for the coefficients rather than using the numerators
5050 * of a rational solution.
5051 * "carry_inter" indicates whether inter-node edges should be carried or
5052 * only respected.
5053 *
5054 * If none of the "n_edge" groups can be carried
5055 * then return an empty vector.
5056 */
5057static __isl_give isl_vec *compute_carrying_sol_coef(isl_ctx *ctx,
5058 struct isl_sched_graph *graph, int n_edge,
5059 __isl_keep isl_basic_set_list *intra,
5060 __isl_keep isl_basic_set_list *inter, int want_integral,
5061 int carry_inter)
5062{
5063 isl_basic_set *lp;
5064
5065 if (setup_carry_lp(ctx, graph, n_edge, intra, inter, carry_inter) < 0)
5066 return NULL;
5067
5068 lp = isl_basic_set_copy(bset: graph->lp);
5069 return non_neg_lexmin(graph, lp, n_edge, want_integral);
5070}
5071
5072/* Construct an LP problem for finding schedule coefficients
5073 * such that the schedule carries as many of the validity dependences
5074 * as possible and
5075 * return the lexicographically smallest non-trivial solution.
5076 * If "fallback" is set, then the carrying is performed as a fallback
5077 * for the Pluto-like scheduler.
5078 * If "coincidence" is set, then try and carry coincidence edges as well.
5079 *
5080 * The variable "n_edge" stores the number of groups that should be carried.
5081 * If none of the "n_edge" groups can be carried
5082 * then return an empty vector.
5083 * If, moreover, "n_edge" is zero, then the LP problem does not even
5084 * need to be constructed.
5085 *
5086 * If a fallback solution is being computed, then compute an integral solution
5087 * for the coefficients rather than using the numerators
5088 * of a rational solution.
5089 *
5090 * If a fallback solution is being computed, if there are any intra-node
5091 * dependences, and if requested by the user, then first try
5092 * to only carry those intra-node dependences.
5093 * If this fails to carry any dependences, then try again
5094 * with the inter-node dependences included.
5095 */
5096static __isl_give isl_vec *compute_carrying_sol(isl_ctx *ctx,
5097 struct isl_sched_graph *graph, int fallback, int coincidence)
5098{
5099 isl_size n_intra, n_inter;
5100 int n_edge;
5101 struct isl_carry carry = { 0 };
5102 isl_vec *sol;
5103
5104 carry.intra = collect_intra_validity(ctx, graph, coincidence,
5105 data: &carry.lineality);
5106 carry.inter = collect_inter_validity(graph, coincidence,
5107 data: &carry.lineality);
5108 n_intra = isl_basic_set_list_n_basic_set(list: carry.intra);
5109 n_inter = isl_basic_set_list_n_basic_set(list: carry.inter);
5110 if (n_intra < 0 || n_inter < 0)
5111 goto error;
5112
5113 if (fallback && n_intra > 0 &&
5114 isl_options_get_schedule_carry_self_first(ctx)) {
5115 sol = compute_carrying_sol_coef(ctx, graph, n_edge: n_intra,
5116 intra: carry.intra, inter: carry.inter, want_integral: fallback, carry_inter: 0);
5117 if (!sol || sol->size != 0 || n_inter == 0) {
5118 isl_carry_clear(carry: &carry);
5119 return sol;
5120 }
5121 isl_vec_free(vec: sol);
5122 }
5123
5124 n_edge = n_intra + n_inter;
5125 if (n_edge == 0) {
5126 isl_carry_clear(carry: &carry);
5127 return isl_vec_alloc(ctx, size: 0);
5128 }
5129
5130 sol = compute_carrying_sol_coef(ctx, graph, n_edge,
5131 intra: carry.intra, inter: carry.inter, want_integral: fallback, carry_inter: 1);
5132 isl_carry_clear(carry: &carry);
5133 return sol;
5134error:
5135 isl_carry_clear(carry: &carry);
5136 return NULL;
5137}
5138
5139/* Construct a schedule row for each node such that as many validity dependences
5140 * as possible are carried and then continue with the next band.
5141 * If "fallback" is set, then the carrying is performed as a fallback
5142 * for the Pluto-like scheduler.
5143 * If "coincidence" is set, then try and carry coincidence edges as well.
5144 *
5145 * If there are no validity dependences, then no dependence can be carried and
5146 * the procedure is guaranteed to fail. If there is more than one component,
5147 * then try computing a schedule on each component separately
5148 * to prevent or at least postpone this failure.
5149 *
5150 * If a schedule row is computed, then check that dependences are carried
5151 * for at least one of the edges.
5152 *
5153 * If the computed schedule row turns out to be trivial on one or
5154 * more nodes where it should not be trivial, then we throw it away
5155 * and try again on each component separately.
5156 *
5157 * If there is only one component, then we accept the schedule row anyway,
5158 * but we do not consider it as a complete row and therefore do not
5159 * increment graph->n_row. Note that the ranks of the nodes that
5160 * do get a non-trivial schedule part will get updated regardless and
5161 * graph->maxvar is computed based on these ranks. The test for
5162 * whether more schedule rows are required in compute_schedule_wcc
5163 * is therefore not affected.
5164 *
5165 * Insert a band corresponding to the schedule row at position "node"
5166 * of the schedule tree and continue with the construction of the schedule.
5167 * This insertion and the continued construction is performed by split_scaled
5168 * after optionally checking for non-trivial common divisors.
5169 */
5170static __isl_give isl_schedule_node *carry(__isl_take isl_schedule_node *node,
5171 struct isl_sched_graph *graph, int fallback, int coincidence)
5172{
5173 int trivial;
5174 isl_ctx *ctx;
5175 isl_vec *sol;
5176
5177 if (!node)
5178 return NULL;
5179
5180 ctx = isl_schedule_node_get_ctx(node);
5181 sol = compute_carrying_sol(ctx, graph, fallback, coincidence);
5182 if (!sol)
5183 return isl_schedule_node_free(node);
5184 if (sol->size == 0) {
5185 isl_vec_free(vec: sol);
5186 if (graph->scc > 1)
5187 return compute_component_schedule(node, graph, wcc: 1);
5188 isl_die(ctx, isl_error_unknown, "unable to carry dependences",
5189 return isl_schedule_node_free(node));
5190 }
5191
5192 trivial = is_any_trivial(graph, sol);
5193 if (trivial < 0) {
5194 sol = isl_vec_free(vec: sol);
5195 } else if (trivial && graph->scc > 1) {
5196 isl_vec_free(vec: sol);
5197 return compute_component_schedule(node, graph, wcc: 1);
5198 }
5199
5200 if (update_schedule(graph, sol, coincident: 0) < 0)
5201 return isl_schedule_node_free(node);
5202 if (trivial)
5203 graph->n_row--;
5204
5205 return split_scaled(node, graph);
5206}
5207
5208/* Construct a schedule row for each node such that as many validity dependences
5209 * as possible are carried and then continue with the next band.
5210 * Do so as a fallback for the Pluto-like scheduler.
5211 * If "coincidence" is set, then try and carry coincidence edges as well.
5212 */
5213static __isl_give isl_schedule_node *carry_fallback(
5214 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5215 int coincidence)
5216{
5217 return carry(node, graph, fallback: 1, coincidence);
5218}
5219
5220/* Construct a schedule row for each node such that as many validity dependences
5221 * as possible are carried and then continue with the next band.
5222 * Do so for the case where the Feautrier scheduler was selected
5223 * by the user.
5224 */
5225static __isl_give isl_schedule_node *carry_feautrier(
5226 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5227{
5228 return carry(node, graph, fallback: 0, coincidence: 0);
5229}
5230
5231/* Construct a schedule row for each node such that as many validity dependences
5232 * as possible are carried and then continue with the next band.
5233 * Do so as a fallback for the Pluto-like scheduler.
5234 */
5235static __isl_give isl_schedule_node *carry_dependences(
5236 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5237{
5238 return carry_fallback(node, graph, coincidence: 0);
5239}
5240
5241/* Construct a schedule row for each node such that as many validity or
5242 * coincidence dependences as possible are carried and
5243 * then continue with the next band.
5244 * Do so as a fallback for the Pluto-like scheduler.
5245 */
5246static __isl_give isl_schedule_node *carry_coincidence(
5247 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5248{
5249 return carry_fallback(node, graph, coincidence: 1);
5250}
5251
5252/* Topologically sort statements mapped to the same schedule iteration
5253 * and add insert a sequence node in front of "node"
5254 * corresponding to this order.
5255 * If "initialized" is set, then it may be assumed that
5256 * isl_sched_graph_compute_maxvar
5257 * has been called on the current band. Otherwise, call
5258 * isl_sched_graph_compute_maxvar if and before carry_dependences gets called.
5259 *
5260 * If it turns out to be impossible to sort the statements apart,
5261 * because different dependences impose different orderings
5262 * on the statements, then we extend the schedule such that
5263 * it carries at least one more dependence.
5264 */
5265static __isl_give isl_schedule_node *sort_statements(
5266 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5267 int initialized)
5268{
5269 isl_ctx *ctx;
5270 isl_union_set_list *filters;
5271
5272 if (!node)
5273 return NULL;
5274
5275 ctx = isl_schedule_node_get_ctx(node);
5276 if (graph->n < 1)
5277 isl_die(ctx, isl_error_internal,
5278 "graph should have at least one node",
5279 return isl_schedule_node_free(node));
5280
5281 if (graph->n == 1)
5282 return node;
5283
5284 if (update_edges(ctx, graph) < 0)
5285 return isl_schedule_node_free(node);
5286
5287 if (graph->n_edge == 0)
5288 return node;
5289
5290 if (detect_sccs(ctx, graph) < 0)
5291 return isl_schedule_node_free(node);
5292
5293 next_band(graph);
5294 if (graph->scc < graph->n) {
5295 if (!initialized && isl_sched_graph_compute_maxvar(graph) < 0)
5296 return isl_schedule_node_free(node);
5297 return carry_dependences(node, graph);
5298 }
5299
5300 filters = isl_sched_graph_extract_sccs(ctx, graph);
5301 node = isl_schedule_node_insert_sequence(node, filters);
5302
5303 return node;
5304}
5305
5306/* Are there any (non-empty) (conditional) validity edges in the graph?
5307 */
5308static int has_validity_edges(struct isl_sched_graph *graph)
5309{
5310 int i;
5311
5312 for (i = 0; i < graph->n_edge; ++i) {
5313 int empty;
5314
5315 empty = isl_map_plain_is_empty(map: graph->edge[i].map);
5316 if (empty < 0)
5317 return -1;
5318 if (empty)
5319 continue;
5320 if (is_any_validity(edge: &graph->edge[i]))
5321 return 1;
5322 }
5323
5324 return 0;
5325}
5326
5327/* Should we apply a Feautrier step?
5328 * That is, did the user request the Feautrier algorithm and are
5329 * there any validity dependences (left)?
5330 */
5331static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
5332{
5333 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
5334 return 0;
5335
5336 return has_validity_edges(graph);
5337}
5338
5339/* Compute a schedule for a connected dependence graph using Feautrier's
5340 * multi-dimensional scheduling algorithm and return the updated schedule node.
5341 *
5342 * The original algorithm is described in [1].
5343 * The main idea is to minimize the number of scheduling dimensions, by
5344 * trying to satisfy as many dependences as possible per scheduling dimension.
5345 *
5346 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
5347 * Problem, Part II: Multi-Dimensional Time.
5348 * In Intl. Journal of Parallel Programming, 1992.
5349 */
5350static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
5351 isl_schedule_node *node, struct isl_sched_graph *graph)
5352{
5353 return carry_feautrier(node, graph);
5354}
5355
5356/* Turn off the "local" bit on all (condition) edges.
5357 */
5358static void clear_local_edges(struct isl_sched_graph *graph)
5359{
5360 int i;
5361
5362 for (i = 0; i < graph->n_edge; ++i)
5363 if (isl_sched_edge_is_condition(edge: &graph->edge[i]))
5364 clear_local(edge: &graph->edge[i]);
5365}
5366
5367/* Does "graph" have both condition and conditional validity edges?
5368 */
5369static int need_condition_check(struct isl_sched_graph *graph)
5370{
5371 int i;
5372 int any_condition = 0;
5373 int any_conditional_validity = 0;
5374
5375 for (i = 0; i < graph->n_edge; ++i) {
5376 if (isl_sched_edge_is_condition(edge: &graph->edge[i]))
5377 any_condition = 1;
5378 if (isl_sched_edge_is_conditional_validity(edge: &graph->edge[i]))
5379 any_conditional_validity = 1;
5380 }
5381
5382 return any_condition && any_conditional_validity;
5383}
5384
5385/* Does "graph" contain any coincidence edge?
5386 */
5387static int has_any_coincidence(struct isl_sched_graph *graph)
5388{
5389 int i;
5390
5391 for (i = 0; i < graph->n_edge; ++i)
5392 if (is_coincidence(edge: &graph->edge[i]))
5393 return 1;
5394
5395 return 0;
5396}
5397
5398/* Extract the final schedule row as a map with the iteration domain
5399 * of "node" as domain.
5400 */
5401static __isl_give isl_map *final_row(struct isl_sched_node *node)
5402{
5403 isl_multi_aff *ma;
5404 isl_size n_row;
5405
5406 n_row = isl_mat_rows(mat: node->sched);
5407 if (n_row < 0)
5408 return NULL;
5409 ma = isl_sched_node_extract_partial_schedule_multi_aff(node,
5410 first: n_row - 1, n: 1);
5411 return isl_map_from_multi_aff(maff: ma);
5412}
5413
5414/* Is the conditional validity dependence in the edge with index "edge_index"
5415 * violated by the latest (i.e., final) row of the schedule?
5416 * That is, is i scheduled after j
5417 * for any conditional validity dependence i -> j?
5418 */
5419static int is_violated(struct isl_sched_graph *graph, int edge_index)
5420{
5421 isl_map *src_sched, *dst_sched, *map;
5422 struct isl_sched_edge *edge = &graph->edge[edge_index];
5423 int empty;
5424
5425 src_sched = final_row(node: edge->src);
5426 dst_sched = final_row(node: edge->dst);
5427 map = isl_map_copy(map: edge->map);
5428 map = isl_map_apply_domain(map1: map, map2: src_sched);
5429 map = isl_map_apply_range(map1: map, map2: dst_sched);
5430 map = isl_map_order_gt(map, type1: isl_dim_in, pos1: 0, type2: isl_dim_out, pos2: 0);
5431 empty = isl_map_is_empty(map);
5432 isl_map_free(map);
5433
5434 if (empty < 0)
5435 return -1;
5436
5437 return !empty;
5438}
5439
5440/* Does "graph" have any satisfied condition edges that
5441 * are adjacent to the conditional validity constraint with
5442 * domain "conditional_source" and range "conditional_sink"?
5443 *
5444 * A satisfied condition is one that is not local.
5445 * If a condition was forced to be local already (i.e., marked as local)
5446 * then there is no need to check if it is in fact local.
5447 *
5448 * Additionally, mark all adjacent condition edges found as local.
5449 */
5450static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
5451 __isl_keep isl_union_set *conditional_source,
5452 __isl_keep isl_union_set *conditional_sink)
5453{
5454 int i;
5455 int any = 0;
5456
5457 for (i = 0; i < graph->n_edge; ++i) {
5458 int adjacent, local;
5459 isl_union_map *condition;
5460
5461 if (!isl_sched_edge_is_condition(edge: &graph->edge[i]))
5462 continue;
5463 if (is_local(edge: &graph->edge[i]))
5464 continue;
5465
5466 condition = graph->edge[i].tagged_condition;
5467 adjacent = domain_intersects(umap: condition, uset: conditional_sink);
5468 if (adjacent >= 0 && !adjacent)
5469 adjacent = range_intersects(umap: condition,
5470 uset: conditional_source);
5471 if (adjacent < 0)
5472 return -1;
5473 if (!adjacent)
5474 continue;
5475
5476 set_local(&graph->edge[i]);
5477
5478 local = is_condition_false(edge: &graph->edge[i]);
5479 if (local < 0)
5480 return -1;
5481 if (!local)
5482 any = 1;
5483 }
5484
5485 return any;
5486}
5487
5488/* Are there any violated conditional validity dependences with
5489 * adjacent condition dependences that are not local with respect
5490 * to the current schedule?
5491 * That is, is the conditional validity constraint violated?
5492 *
5493 * Additionally, mark all those adjacent condition dependences as local.
5494 * We also mark those adjacent condition dependences that were not marked
5495 * as local before, but just happened to be local already. This ensures
5496 * that they remain local if the schedule is recomputed.
5497 *
5498 * We first collect domain and range of all violated conditional validity
5499 * dependences and then check if there are any adjacent non-local
5500 * condition dependences.
5501 */
5502static int has_violated_conditional_constraint(isl_ctx *ctx,
5503 struct isl_sched_graph *graph)
5504{
5505 int i;
5506 int any = 0;
5507 isl_union_set *source, *sink;
5508
5509 source = isl_union_set_empty(space: isl_space_params_alloc(ctx, nparam: 0));
5510 sink = isl_union_set_empty(space: isl_space_params_alloc(ctx, nparam: 0));
5511 for (i = 0; i < graph->n_edge; ++i) {
5512 isl_union_set *uset;
5513 isl_union_map *umap;
5514 int violated;
5515
5516 if (!isl_sched_edge_is_conditional_validity(edge: &graph->edge[i]))
5517 continue;
5518
5519 violated = is_violated(graph, edge_index: i);
5520 if (violated < 0)
5521 goto error;
5522 if (!violated)
5523 continue;
5524
5525 any = 1;
5526
5527 umap = isl_union_map_copy(umap: graph->edge[i].tagged_validity);
5528 uset = isl_union_map_domain(umap);
5529 source = isl_union_set_union(uset1: source, uset2: uset);
5530 source = isl_union_set_coalesce(uset: source);
5531
5532 umap = isl_union_map_copy(umap: graph->edge[i].tagged_validity);
5533 uset = isl_union_map_range(umap);
5534 sink = isl_union_set_union(uset1: sink, uset2: uset);
5535 sink = isl_union_set_coalesce(uset: sink);
5536 }
5537
5538 if (any)
5539 any = has_adjacent_true_conditions(graph, conditional_source: source, conditional_sink: sink);
5540
5541 isl_union_set_free(uset: source);
5542 isl_union_set_free(uset: sink);
5543 return any;
5544error:
5545 isl_union_set_free(uset: source);
5546 isl_union_set_free(uset: sink);
5547 return -1;
5548}
5549
5550/* Examine the current band (the rows between graph->band_start and
5551 * graph->n_total_row), deciding whether to drop it or add it to "node"
5552 * and then continue with the computation of the next band, if any.
5553 * If "initialized" is set, then it may be assumed that
5554 * isl_sched_graph_compute_maxvar
5555 * has been called on the current band. Otherwise, call
5556 * isl_sched_graph_compute_maxvar if and before carry_dependences gets called.
5557 *
5558 * The caller keeps looking for a new row as long as
5559 * graph->n_row < graph->maxvar. If the latest attempt to find
5560 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
5561 * then we either
5562 * - split between SCCs and start over (assuming we found an interesting
5563 * pair of SCCs between which to split)
5564 * - continue with the next band (assuming the current band has at least
5565 * one row)
5566 * - if there is more than one SCC left, then split along all SCCs
5567 * - if outer coincidence needs to be enforced, then try to carry as many
5568 * validity or coincidence dependences as possible and
5569 * continue with the next band
5570 * - try to carry as many validity dependences as possible and
5571 * continue with the next band
5572 * In each case, we first insert a band node in the schedule tree
5573 * if any rows have been computed.
5574 *
5575 * If the caller managed to complete the schedule and the current band
5576 * is empty, then finish off by topologically
5577 * sorting the statements based on the remaining dependences.
5578 * If, on the other hand, the current band has at least one row,
5579 * then continue with the next band. Note that this next band
5580 * will necessarily be empty, but the graph may still be split up
5581 * into weakly connected components before arriving back here.
5582 */
5583__isl_give isl_schedule_node *isl_schedule_node_compute_finish_band(
5584 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5585 int initialized)
5586{
5587 int empty;
5588
5589 if (!node)
5590 return NULL;
5591
5592 empty = graph->n_total_row == graph->band_start;
5593 if (graph->n_row < graph->maxvar) {
5594 isl_ctx *ctx;
5595
5596 ctx = isl_schedule_node_get_ctx(node);
5597 if (!ctx->opt->schedule_maximize_band_depth && !empty)
5598 return compute_next_band(node, graph, permutable: 1);
5599 if (graph->src_scc >= 0)
5600 return compute_split_schedule(node, graph);
5601 if (!empty)
5602 return compute_next_band(node, graph, permutable: 1);
5603 if (graph->scc > 1)
5604 return compute_component_schedule(node, graph, wcc: 1);
5605 if (!initialized && isl_sched_graph_compute_maxvar(graph) < 0)
5606 return isl_schedule_node_free(node);
5607 if (isl_options_get_schedule_outer_coincidence(ctx))
5608 return carry_coincidence(node, graph);
5609 return carry_dependences(node, graph);
5610 }
5611
5612 if (!empty)
5613 return compute_next_band(node, graph, permutable: 1);
5614 return sort_statements(node, graph, initialized);
5615}
5616
5617/* Construct a band of schedule rows for a connected dependence graph.
5618 * The caller is responsible for determining the strongly connected
5619 * components and calling isl_sched_graph_compute_maxvar first.
5620 *
5621 * We try to find a sequence of as many schedule rows as possible that result
5622 * in non-negative dependence distances (independent of the previous rows
5623 * in the sequence, i.e., such that the sequence is tilable), with as
5624 * many of the initial rows as possible satisfying the coincidence constraints.
5625 * The computation stops if we can't find any more rows or if we have found
5626 * all the rows we wanted to find.
5627 *
5628 * If ctx->opt->schedule_outer_coincidence is set, then we force the
5629 * outermost dimension to satisfy the coincidence constraints. If this
5630 * turns out to be impossible, we fall back on the general scheme above
5631 * and try to carry as many dependences as possible.
5632 *
5633 * If "graph" contains both condition and conditional validity dependences,
5634 * then we need to check that that the conditional schedule constraint
5635 * is satisfied, i.e., there are no violated conditional validity dependences
5636 * that are adjacent to any non-local condition dependences.
5637 * If there are, then we mark all those adjacent condition dependences
5638 * as local and recompute the current band. Those dependences that
5639 * are marked local will then be forced to be local.
5640 * The initial computation is performed with no dependences marked as local.
5641 * If we are lucky, then there will be no violated conditional validity
5642 * dependences adjacent to any non-local condition dependences.
5643 * Otherwise, we mark some additional condition dependences as local and
5644 * recompute. We continue this process until there are no violations left or
5645 * until we are no longer able to compute a schedule.
5646 * Since there are only a finite number of dependences,
5647 * there will only be a finite number of iterations.
5648 */
5649isl_stat isl_schedule_node_compute_wcc_band(isl_ctx *ctx,
5650 struct isl_sched_graph *graph)
5651{
5652 int has_coincidence;
5653 int use_coincidence;
5654 int force_coincidence = 0;
5655 int check_conditional;
5656
5657 if (sort_sccs(graph) < 0)
5658 return isl_stat_error;
5659
5660 clear_local_edges(graph);
5661 check_conditional = need_condition_check(graph);
5662 has_coincidence = has_any_coincidence(graph);
5663
5664 if (ctx->opt->schedule_outer_coincidence)
5665 force_coincidence = 1;
5666
5667 use_coincidence = has_coincidence;
5668 while (graph->n_row < graph->maxvar) {
5669 isl_vec *sol;
5670 int violated;
5671 int coincident;
5672
5673 graph->src_scc = -1;
5674 graph->dst_scc = -1;
5675
5676 if (setup_lp(ctx, graph, use_coincidence) < 0)
5677 return isl_stat_error;
5678 sol = solve_lp(ctx, graph);
5679 if (!sol)
5680 return isl_stat_error;
5681 if (sol->size == 0) {
5682 int empty = graph->n_total_row == graph->band_start;
5683
5684 isl_vec_free(vec: sol);
5685 if (use_coincidence && (!force_coincidence || !empty)) {
5686 use_coincidence = 0;
5687 continue;
5688 }
5689 return isl_stat_ok;
5690 }
5691 coincident = !has_coincidence || use_coincidence;
5692 if (update_schedule(graph, sol, coincident) < 0)
5693 return isl_stat_error;
5694
5695 if (!check_conditional)
5696 continue;
5697 violated = has_violated_conditional_constraint(ctx, graph);
5698 if (violated < 0)
5699 return isl_stat_error;
5700 if (!violated)
5701 continue;
5702 if (reset_band(graph) < 0)
5703 return isl_stat_error;
5704 use_coincidence = has_coincidence;
5705 }
5706
5707 return isl_stat_ok;
5708}
5709
5710/* Compute a schedule for a connected dependence graph by considering
5711 * the graph as a whole and return the updated schedule node.
5712 *
5713 * The actual schedule rows of the current band are computed by
5714 * isl_schedule_node_compute_wcc_band. isl_schedule_node_compute_finish_band
5715 * takes care of integrating the band into "node" and continuing
5716 * the computation.
5717 */
5718static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
5719 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5720{
5721 isl_ctx *ctx;
5722
5723 if (!node)
5724 return NULL;
5725
5726 ctx = isl_schedule_node_get_ctx(node);
5727 if (isl_schedule_node_compute_wcc_band(ctx, graph) < 0)
5728 return isl_schedule_node_free(node);
5729
5730 return isl_schedule_node_compute_finish_band(node, graph, initialized: 1);
5731}
5732
5733/* Compute a schedule for a connected dependence graph and return
5734 * the updated schedule node.
5735 *
5736 * If Feautrier's algorithm is selected, we first recursively try to satisfy
5737 * as many validity dependences as possible. When all validity dependences
5738 * are satisfied we extend the schedule to a full-dimensional schedule.
5739 *
5740 * Call compute_schedule_wcc_whole or isl_schedule_node_compute_wcc_clustering
5741 * depending on whether the user has selected the option to try and
5742 * compute a schedule for the entire (weakly connected) component first.
5743 * If there is only a single strongly connected component (SCC), then
5744 * there is no point in trying to combine SCCs
5745 * in isl_schedule_node_compute_wcc_clustering, so compute_schedule_wcc_whole
5746 * is called instead.
5747 */
5748static __isl_give isl_schedule_node *compute_schedule_wcc(
5749 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5750{
5751 isl_ctx *ctx;
5752
5753 if (!node)
5754 return NULL;
5755
5756 ctx = isl_schedule_node_get_ctx(node);
5757 if (detect_sccs(ctx, graph) < 0)
5758 return isl_schedule_node_free(node);
5759
5760 if (isl_sched_graph_compute_maxvar(graph) < 0)
5761 return isl_schedule_node_free(node);
5762
5763 if (need_feautrier_step(ctx, graph))
5764 return compute_schedule_wcc_feautrier(node, graph);
5765
5766 if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
5767 return compute_schedule_wcc_whole(node, graph);
5768 else
5769 return isl_schedule_node_compute_wcc_clustering(node, graph);
5770}
5771
5772/* Compute a schedule for each group of nodes identified by node->scc
5773 * separately and then combine them in a sequence node (or as set node
5774 * if graph->weak is set) inserted at position "node" of the schedule tree.
5775 * Return the updated schedule node.
5776 *
5777 * If "wcc" is set then each of the groups belongs to a single
5778 * weakly connected component in the dependence graph so that
5779 * there is no need for compute_sub_schedule to look for weakly
5780 * connected components.
5781 *
5782 * If a set node would be introduced and if the number of components
5783 * is equal to the number of nodes, then check if the schedule
5784 * is already complete. If so, a redundant set node would be introduced
5785 * (without any further descendants) stating that the statements
5786 * can be executed in arbitrary order, which is also expressed
5787 * by the absence of any node. Refrain from inserting any nodes
5788 * in this case and simply return.
5789 */
5790static __isl_give isl_schedule_node *compute_component_schedule(
5791 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5792 int wcc)
5793{
5794 int component;
5795 isl_ctx *ctx;
5796 isl_union_set_list *filters;
5797
5798 if (!node)
5799 return NULL;
5800
5801 if (graph->weak && graph->scc == graph->n) {
5802 if (isl_sched_graph_compute_maxvar(graph) < 0)
5803 return isl_schedule_node_free(node);
5804 if (graph->n_row >= graph->maxvar)
5805 return node;
5806 }
5807
5808 ctx = isl_schedule_node_get_ctx(node);
5809 filters = isl_sched_graph_extract_sccs(ctx, graph);
5810 if (graph->weak)
5811 node = isl_schedule_node_insert_set(node, filters);
5812 else
5813 node = isl_schedule_node_insert_sequence(node, filters);
5814
5815 for (component = 0; component < graph->scc; ++component) {
5816 node = isl_schedule_node_grandchild(node, pos1: component, pos2: 0);
5817 node = compute_sub_schedule(node, ctx, graph,
5818 node_pred: &isl_sched_node_scc_exactly,
5819 edge_pred: &isl_sched_edge_scc_exactly,
5820 data: component, wcc);
5821 node = isl_schedule_node_grandparent(node);
5822 }
5823
5824 return node;
5825}
5826
5827/* Compute a schedule for the given dependence graph and insert it at "node".
5828 * Return the updated schedule node.
5829 *
5830 * We first check if the graph is connected (through validity and conditional
5831 * validity dependences) and, if not, compute a schedule
5832 * for each component separately.
5833 * If the schedule_serialize_sccs option is set, then we check for strongly
5834 * connected components instead and compute a separate schedule for
5835 * each such strongly connected component.
5836 */
5837static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
5838 struct isl_sched_graph *graph)
5839{
5840 isl_ctx *ctx;
5841
5842 if (!node)
5843 return NULL;
5844
5845 ctx = isl_schedule_node_get_ctx(node);
5846 if (isl_options_get_schedule_serialize_sccs(ctx)) {
5847 if (detect_sccs(ctx, graph) < 0)
5848 return isl_schedule_node_free(node);
5849 } else {
5850 if (detect_wccs(ctx, graph) < 0)
5851 return isl_schedule_node_free(node);
5852 }
5853
5854 if (graph->scc > 1)
5855 return compute_component_schedule(node, graph, wcc: 1);
5856
5857 return compute_schedule_wcc(node, graph);
5858}
5859
5860/* Compute a schedule on sc->domain that respects the given schedule
5861 * constraints.
5862 *
5863 * In particular, the schedule respects all the validity dependences.
5864 * If the default isl scheduling algorithm is used, it tries to minimize
5865 * the dependence distances over the proximity dependences.
5866 * If Feautrier's scheduling algorithm is used, the proximity dependence
5867 * distances are only minimized during the extension to a full-dimensional
5868 * schedule.
5869 *
5870 * If there are any condition and conditional validity dependences,
5871 * then the conditional validity dependences may be violated inside
5872 * a tilable band, provided they have no adjacent non-local
5873 * condition dependences.
5874 */
5875__isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
5876 __isl_take isl_schedule_constraints *sc)
5877{
5878 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
5879 struct isl_sched_graph graph = { 0 };
5880 isl_schedule *sched;
5881 isl_schedule_node *node;
5882 isl_union_set *domain;
5883 isl_size n;
5884
5885 sc = isl_schedule_constraints_align_params(sc);
5886
5887 domain = isl_schedule_constraints_get_domain(sc);
5888 n = isl_union_set_n_set(uset: domain);
5889 if (n == 0) {
5890 isl_schedule_constraints_free(sc);
5891 return isl_schedule_from_domain(domain);
5892 }
5893
5894 if (n < 0 || isl_sched_graph_init(graph: &graph, sc) < 0)
5895 domain = isl_union_set_free(uset: domain);
5896
5897 node = isl_schedule_node_from_domain(domain);
5898 node = isl_schedule_node_child(node, pos: 0);
5899 if (graph.n > 0)
5900 node = compute_schedule(node, graph: &graph);
5901 sched = isl_schedule_node_get_schedule(node);
5902 isl_schedule_node_free(node);
5903
5904 isl_sched_graph_free(ctx, graph: &graph);
5905 isl_schedule_constraints_free(sc);
5906
5907 return sched;
5908}
5909
5910/* Compute a schedule for the given union of domains that respects
5911 * all the validity dependences and minimizes
5912 * the dependence distances over the proximity dependences.
5913 *
5914 * This function is kept for backward compatibility.
5915 */
5916__isl_give isl_schedule *isl_union_set_compute_schedule(
5917 __isl_take isl_union_set *domain,
5918 __isl_take isl_union_map *validity,
5919 __isl_take isl_union_map *proximity)
5920{
5921 isl_schedule_constraints *sc;
5922
5923 sc = isl_schedule_constraints_on_domain(domain);
5924 sc = isl_schedule_constraints_set_validity(sc, validity);
5925 sc = isl_schedule_constraints_set_proximity(sc, proximity);
5926
5927 return isl_schedule_constraints_compute_schedule(sc);
5928}
5929

source code of polly/lib/External/isl/isl_scheduler.c