| 1 | /* |
| 2 | * Copyright 2008-2009 Katholieke Universiteit Leuven |
| 3 | * Copyright 2013 Ecole Normale Superieure |
| 4 | * Copyright 2014 INRIA Rocquencourt |
| 5 | * Copyright 2016 Sven Verdoolaege |
| 6 | * |
| 7 | * Use of this software is governed by the MIT license |
| 8 | * |
| 9 | * Written by Sven Verdoolaege, K.U.Leuven, Departement |
| 10 | * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium |
| 11 | * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France |
| 12 | * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, |
| 13 | * B.P. 105 - 78153 Le Chesnay, France |
| 14 | */ |
| 15 | |
| 16 | #include <isl_ctx_private.h> |
| 17 | #include <isl_mat_private.h> |
| 18 | #include <isl_vec_private.h> |
| 19 | #include "isl_map_private.h" |
| 20 | #include "isl_tab.h" |
| 21 | #include <isl_seq.h> |
| 22 | #include <isl_config.h> |
| 23 | |
| 24 | #include <bset_to_bmap.c> |
| 25 | #include <bset_from_bmap.c> |
| 26 | |
| 27 | /* |
| 28 | * The implementation of tableaus in this file was inspired by Section 8 |
| 29 | * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem |
| 30 | * prover for program checking". |
| 31 | */ |
| 32 | |
| 33 | struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx, |
| 34 | unsigned n_row, unsigned n_var, unsigned M) |
| 35 | { |
| 36 | int i; |
| 37 | struct isl_tab *tab; |
| 38 | unsigned off = 2 + M; |
| 39 | |
| 40 | tab = isl_calloc_type(ctx, struct isl_tab); |
| 41 | if (!tab) |
| 42 | return NULL; |
| 43 | tab->mat = isl_mat_alloc(ctx, n_row, n_col: off + n_var); |
| 44 | if (!tab->mat) |
| 45 | goto error; |
| 46 | tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var); |
| 47 | if (n_var && !tab->var) |
| 48 | goto error; |
| 49 | tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row); |
| 50 | if (n_row && !tab->con) |
| 51 | goto error; |
| 52 | tab->col_var = isl_alloc_array(ctx, int, n_var); |
| 53 | if (n_var && !tab->col_var) |
| 54 | goto error; |
| 55 | tab->row_var = isl_alloc_array(ctx, int, n_row); |
| 56 | if (n_row && !tab->row_var) |
| 57 | goto error; |
| 58 | for (i = 0; i < n_var; ++i) { |
| 59 | tab->var[i].index = i; |
| 60 | tab->var[i].is_row = 0; |
| 61 | tab->var[i].is_nonneg = 0; |
| 62 | tab->var[i].is_zero = 0; |
| 63 | tab->var[i].is_redundant = 0; |
| 64 | tab->var[i].frozen = 0; |
| 65 | tab->var[i].negated = 0; |
| 66 | tab->col_var[i] = i; |
| 67 | } |
| 68 | tab->n_row = 0; |
| 69 | tab->n_con = 0; |
| 70 | tab->n_eq = 0; |
| 71 | tab->max_con = n_row; |
| 72 | tab->n_col = n_var; |
| 73 | tab->n_var = n_var; |
| 74 | tab->max_var = n_var; |
| 75 | tab->n_param = 0; |
| 76 | tab->n_div = 0; |
| 77 | tab->n_dead = 0; |
| 78 | tab->n_redundant = 0; |
| 79 | tab->strict_redundant = 0; |
| 80 | tab->need_undo = 0; |
| 81 | tab->rational = 0; |
| 82 | tab->empty = 0; |
| 83 | tab->in_undo = 0; |
| 84 | tab->M = M; |
| 85 | tab->cone = 0; |
| 86 | tab->bottom.type = isl_tab_undo_bottom; |
| 87 | tab->bottom.next = NULL; |
| 88 | tab->top = &tab->bottom; |
| 89 | |
| 90 | tab->n_zero = 0; |
| 91 | tab->n_unbounded = 0; |
| 92 | tab->basis = NULL; |
| 93 | |
| 94 | return tab; |
| 95 | error: |
| 96 | isl_tab_free(tab); |
| 97 | return NULL; |
| 98 | } |
| 99 | |
| 100 | isl_ctx *isl_tab_get_ctx(struct isl_tab *tab) |
| 101 | { |
| 102 | return tab ? isl_mat_get_ctx(mat: tab->mat) : NULL; |
| 103 | } |
| 104 | |
| 105 | int isl_tab_extend_cons(struct isl_tab *tab, unsigned n_new) |
| 106 | { |
| 107 | unsigned off; |
| 108 | |
| 109 | if (!tab) |
| 110 | return -1; |
| 111 | |
| 112 | off = 2 + tab->M; |
| 113 | |
| 114 | if (tab->max_con < tab->n_con + n_new) { |
| 115 | struct isl_tab_var *con; |
| 116 | |
| 117 | con = isl_realloc_array(tab->mat->ctx, tab->con, |
| 118 | struct isl_tab_var, tab->max_con + n_new); |
| 119 | if (!con) |
| 120 | return -1; |
| 121 | tab->con = con; |
| 122 | tab->max_con += n_new; |
| 123 | } |
| 124 | if (tab->mat->n_row < tab->n_row + n_new) { |
| 125 | int *row_var; |
| 126 | |
| 127 | tab->mat = isl_mat_extend(mat: tab->mat, |
| 128 | n_row: tab->n_row + n_new, n_col: off + tab->n_col); |
| 129 | if (!tab->mat) |
| 130 | return -1; |
| 131 | row_var = isl_realloc_array(tab->mat->ctx, tab->row_var, |
| 132 | int, tab->mat->n_row); |
| 133 | if (!row_var) |
| 134 | return -1; |
| 135 | tab->row_var = row_var; |
| 136 | if (tab->row_sign) { |
| 137 | enum isl_tab_row_sign *s; |
| 138 | s = isl_realloc_array(tab->mat->ctx, tab->row_sign, |
| 139 | enum isl_tab_row_sign, tab->mat->n_row); |
| 140 | if (!s) |
| 141 | return -1; |
| 142 | tab->row_sign = s; |
| 143 | } |
| 144 | } |
| 145 | return 0; |
| 146 | } |
| 147 | |
| 148 | /* Make room for at least n_new extra variables. |
| 149 | * Return -1 if anything went wrong. |
| 150 | */ |
| 151 | int isl_tab_extend_vars(struct isl_tab *tab, unsigned n_new) |
| 152 | { |
| 153 | struct isl_tab_var *var; |
| 154 | unsigned off = 2 + tab->M; |
| 155 | |
| 156 | if (tab->max_var < tab->n_var + n_new) { |
| 157 | var = isl_realloc_array(tab->mat->ctx, tab->var, |
| 158 | struct isl_tab_var, tab->n_var + n_new); |
| 159 | if (!var) |
| 160 | return -1; |
| 161 | tab->var = var; |
| 162 | tab->max_var = tab->n_var + n_new; |
| 163 | } |
| 164 | |
| 165 | if (tab->mat->n_col < off + tab->n_col + n_new) { |
| 166 | int *p; |
| 167 | |
| 168 | tab->mat = isl_mat_extend(mat: tab->mat, |
| 169 | n_row: tab->mat->n_row, n_col: off + tab->n_col + n_new); |
| 170 | if (!tab->mat) |
| 171 | return -1; |
| 172 | p = isl_realloc_array(tab->mat->ctx, tab->col_var, |
| 173 | int, tab->n_col + n_new); |
| 174 | if (!p) |
| 175 | return -1; |
| 176 | tab->col_var = p; |
| 177 | } |
| 178 | |
| 179 | return 0; |
| 180 | } |
| 181 | |
| 182 | static void free_undo_record(struct isl_tab_undo *undo) |
| 183 | { |
| 184 | switch (undo->type) { |
| 185 | case isl_tab_undo_saved_basis: |
| 186 | free(ptr: undo->u.col_var); |
| 187 | break; |
| 188 | default:; |
| 189 | } |
| 190 | free(ptr: undo); |
| 191 | } |
| 192 | |
| 193 | static void free_undo(struct isl_tab *tab) |
| 194 | { |
| 195 | struct isl_tab_undo *undo, *next; |
| 196 | |
| 197 | for (undo = tab->top; undo && undo != &tab->bottom; undo = next) { |
| 198 | next = undo->next; |
| 199 | free_undo_record(undo); |
| 200 | } |
| 201 | tab->top = undo; |
| 202 | } |
| 203 | |
| 204 | void isl_tab_free(struct isl_tab *tab) |
| 205 | { |
| 206 | if (!tab) |
| 207 | return; |
| 208 | free_undo(tab); |
| 209 | isl_mat_free(mat: tab->mat); |
| 210 | isl_vec_free(vec: tab->dual); |
| 211 | isl_basic_map_free(bmap: tab->bmap); |
| 212 | free(ptr: tab->var); |
| 213 | free(ptr: tab->con); |
| 214 | free(ptr: tab->row_var); |
| 215 | free(ptr: tab->col_var); |
| 216 | free(ptr: tab->row_sign); |
| 217 | isl_mat_free(mat: tab->samples); |
| 218 | free(ptr: tab->sample_index); |
| 219 | isl_mat_free(mat: tab->basis); |
| 220 | free(ptr: tab); |
| 221 | } |
| 222 | |
| 223 | struct isl_tab *isl_tab_dup(struct isl_tab *tab) |
| 224 | { |
| 225 | int i; |
| 226 | struct isl_tab *dup; |
| 227 | unsigned off; |
| 228 | |
| 229 | if (!tab) |
| 230 | return NULL; |
| 231 | |
| 232 | off = 2 + tab->M; |
| 233 | dup = isl_calloc_type(tab->mat->ctx, struct isl_tab); |
| 234 | if (!dup) |
| 235 | return NULL; |
| 236 | dup->mat = isl_mat_dup(mat: tab->mat); |
| 237 | if (!dup->mat) |
| 238 | goto error; |
| 239 | dup->var = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_var); |
| 240 | if (tab->max_var && !dup->var) |
| 241 | goto error; |
| 242 | for (i = 0; i < tab->n_var; ++i) |
| 243 | dup->var[i] = tab->var[i]; |
| 244 | dup->con = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_con); |
| 245 | if (tab->max_con && !dup->con) |
| 246 | goto error; |
| 247 | for (i = 0; i < tab->n_con; ++i) |
| 248 | dup->con[i] = tab->con[i]; |
| 249 | dup->col_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_col - off); |
| 250 | if ((tab->mat->n_col - off) && !dup->col_var) |
| 251 | goto error; |
| 252 | for (i = 0; i < tab->n_col; ++i) |
| 253 | dup->col_var[i] = tab->col_var[i]; |
| 254 | dup->row_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_row); |
| 255 | if (tab->mat->n_row && !dup->row_var) |
| 256 | goto error; |
| 257 | for (i = 0; i < tab->n_row; ++i) |
| 258 | dup->row_var[i] = tab->row_var[i]; |
| 259 | if (tab->row_sign) { |
| 260 | dup->row_sign = isl_alloc_array(tab->mat->ctx, enum isl_tab_row_sign, |
| 261 | tab->mat->n_row); |
| 262 | if (tab->mat->n_row && !dup->row_sign) |
| 263 | goto error; |
| 264 | for (i = 0; i < tab->n_row; ++i) |
| 265 | dup->row_sign[i] = tab->row_sign[i]; |
| 266 | } |
| 267 | if (tab->samples) { |
| 268 | dup->samples = isl_mat_dup(mat: tab->samples); |
| 269 | if (!dup->samples) |
| 270 | goto error; |
| 271 | dup->sample_index = isl_alloc_array(tab->mat->ctx, int, |
| 272 | tab->samples->n_row); |
| 273 | if (tab->samples->n_row && !dup->sample_index) |
| 274 | goto error; |
| 275 | dup->n_sample = tab->n_sample; |
| 276 | dup->n_outside = tab->n_outside; |
| 277 | } |
| 278 | dup->n_row = tab->n_row; |
| 279 | dup->n_con = tab->n_con; |
| 280 | dup->n_eq = tab->n_eq; |
| 281 | dup->max_con = tab->max_con; |
| 282 | dup->n_col = tab->n_col; |
| 283 | dup->n_var = tab->n_var; |
| 284 | dup->max_var = tab->max_var; |
| 285 | dup->n_param = tab->n_param; |
| 286 | dup->n_div = tab->n_div; |
| 287 | dup->n_dead = tab->n_dead; |
| 288 | dup->n_redundant = tab->n_redundant; |
| 289 | dup->rational = tab->rational; |
| 290 | dup->empty = tab->empty; |
| 291 | dup->strict_redundant = 0; |
| 292 | dup->need_undo = 0; |
| 293 | dup->in_undo = 0; |
| 294 | dup->M = tab->M; |
| 295 | dup->cone = tab->cone; |
| 296 | dup->bottom.type = isl_tab_undo_bottom; |
| 297 | dup->bottom.next = NULL; |
| 298 | dup->top = &dup->bottom; |
| 299 | |
| 300 | dup->n_zero = tab->n_zero; |
| 301 | dup->n_unbounded = tab->n_unbounded; |
| 302 | dup->basis = isl_mat_dup(mat: tab->basis); |
| 303 | |
| 304 | return dup; |
| 305 | error: |
| 306 | isl_tab_free(tab: dup); |
| 307 | return NULL; |
| 308 | } |
| 309 | |
| 310 | /* Construct the coefficient matrix of the product tableau |
| 311 | * of two tableaus. |
| 312 | * mat{1,2} is the coefficient matrix of tableau {1,2} |
| 313 | * row{1,2} is the number of rows in tableau {1,2} |
| 314 | * col{1,2} is the number of columns in tableau {1,2} |
| 315 | * off is the offset to the coefficient column (skipping the |
| 316 | * denominator, the constant term and the big parameter if any) |
| 317 | * r{1,2} is the number of redundant rows in tableau {1,2} |
| 318 | * d{1,2} is the number of dead columns in tableau {1,2} |
| 319 | * |
| 320 | * The order of the rows and columns in the result is as explained |
| 321 | * in isl_tab_product. |
| 322 | */ |
| 323 | static __isl_give isl_mat *tab_mat_product(__isl_keep isl_mat *mat1, |
| 324 | __isl_keep isl_mat *mat2, unsigned row1, unsigned row2, |
| 325 | unsigned col1, unsigned col2, |
| 326 | unsigned off, unsigned r1, unsigned r2, unsigned d1, unsigned d2) |
| 327 | { |
| 328 | int i; |
| 329 | struct isl_mat *prod; |
| 330 | unsigned n; |
| 331 | |
| 332 | prod = isl_mat_alloc(ctx: mat1->ctx, n_row: mat1->n_row + mat2->n_row, |
| 333 | n_col: off + col1 + col2); |
| 334 | if (!prod) |
| 335 | return NULL; |
| 336 | |
| 337 | n = 0; |
| 338 | for (i = 0; i < r1; ++i) { |
| 339 | isl_seq_cpy(dst: prod->row[n + i], src: mat1->row[i], len: off + d1); |
| 340 | isl_seq_clr(p: prod->row[n + i] + off + d1, len: d2); |
| 341 | isl_seq_cpy(dst: prod->row[n + i] + off + d1 + d2, |
| 342 | src: mat1->row[i] + off + d1, len: col1 - d1); |
| 343 | isl_seq_clr(p: prod->row[n + i] + off + col1 + d1, len: col2 - d2); |
| 344 | } |
| 345 | |
| 346 | n += r1; |
| 347 | for (i = 0; i < r2; ++i) { |
| 348 | isl_seq_cpy(dst: prod->row[n + i], src: mat2->row[i], len: off); |
| 349 | isl_seq_clr(p: prod->row[n + i] + off, len: d1); |
| 350 | isl_seq_cpy(dst: prod->row[n + i] + off + d1, |
| 351 | src: mat2->row[i] + off, len: d2); |
| 352 | isl_seq_clr(p: prod->row[n + i] + off + d1 + d2, len: col1 - d1); |
| 353 | isl_seq_cpy(dst: prod->row[n + i] + off + col1 + d1, |
| 354 | src: mat2->row[i] + off + d2, len: col2 - d2); |
| 355 | } |
| 356 | |
| 357 | n += r2; |
| 358 | for (i = 0; i < row1 - r1; ++i) { |
| 359 | isl_seq_cpy(dst: prod->row[n + i], src: mat1->row[r1 + i], len: off + d1); |
| 360 | isl_seq_clr(p: prod->row[n + i] + off + d1, len: d2); |
| 361 | isl_seq_cpy(dst: prod->row[n + i] + off + d1 + d2, |
| 362 | src: mat1->row[r1 + i] + off + d1, len: col1 - d1); |
| 363 | isl_seq_clr(p: prod->row[n + i] + off + col1 + d1, len: col2 - d2); |
| 364 | } |
| 365 | |
| 366 | n += row1 - r1; |
| 367 | for (i = 0; i < row2 - r2; ++i) { |
| 368 | isl_seq_cpy(dst: prod->row[n + i], src: mat2->row[r2 + i], len: off); |
| 369 | isl_seq_clr(p: prod->row[n + i] + off, len: d1); |
| 370 | isl_seq_cpy(dst: prod->row[n + i] + off + d1, |
| 371 | src: mat2->row[r2 + i] + off, len: d2); |
| 372 | isl_seq_clr(p: prod->row[n + i] + off + d1 + d2, len: col1 - d1); |
| 373 | isl_seq_cpy(dst: prod->row[n + i] + off + col1 + d1, |
| 374 | src: mat2->row[r2 + i] + off + d2, len: col2 - d2); |
| 375 | } |
| 376 | |
| 377 | return prod; |
| 378 | } |
| 379 | |
| 380 | /* Update the row or column index of a variable that corresponds |
| 381 | * to a variable in the first input tableau. |
| 382 | */ |
| 383 | static void update_index1(struct isl_tab_var *var, |
| 384 | unsigned r1, unsigned r2, unsigned d1, unsigned d2) |
| 385 | { |
| 386 | if (var->index == -1) |
| 387 | return; |
| 388 | if (var->is_row && var->index >= r1) |
| 389 | var->index += r2; |
| 390 | if (!var->is_row && var->index >= d1) |
| 391 | var->index += d2; |
| 392 | } |
| 393 | |
| 394 | /* Update the row or column index of a variable that corresponds |
| 395 | * to a variable in the second input tableau. |
| 396 | */ |
| 397 | static void update_index2(struct isl_tab_var *var, |
| 398 | unsigned row1, unsigned col1, |
| 399 | unsigned r1, unsigned r2, unsigned d1, unsigned d2) |
| 400 | { |
| 401 | if (var->index == -1) |
| 402 | return; |
| 403 | if (var->is_row) { |
| 404 | if (var->index < r2) |
| 405 | var->index += r1; |
| 406 | else |
| 407 | var->index += row1; |
| 408 | } else { |
| 409 | if (var->index < d2) |
| 410 | var->index += d1; |
| 411 | else |
| 412 | var->index += col1; |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | /* Create a tableau that represents the Cartesian product of the sets |
| 417 | * represented by tableaus tab1 and tab2. |
| 418 | * The order of the rows in the product is |
| 419 | * - redundant rows of tab1 |
| 420 | * - redundant rows of tab2 |
| 421 | * - non-redundant rows of tab1 |
| 422 | * - non-redundant rows of tab2 |
| 423 | * The order of the columns is |
| 424 | * - denominator |
| 425 | * - constant term |
| 426 | * - coefficient of big parameter, if any |
| 427 | * - dead columns of tab1 |
| 428 | * - dead columns of tab2 |
| 429 | * - live columns of tab1 |
| 430 | * - live columns of tab2 |
| 431 | * The order of the variables and the constraints is a concatenation |
| 432 | * of order in the two input tableaus. |
| 433 | */ |
| 434 | struct isl_tab *isl_tab_product(struct isl_tab *tab1, struct isl_tab *tab2) |
| 435 | { |
| 436 | int i; |
| 437 | struct isl_tab *prod; |
| 438 | unsigned off; |
| 439 | unsigned r1, r2, d1, d2; |
| 440 | |
| 441 | if (!tab1 || !tab2) |
| 442 | return NULL; |
| 443 | |
| 444 | isl_assert(tab1->mat->ctx, tab1->M == tab2->M, return NULL); |
| 445 | isl_assert(tab1->mat->ctx, tab1->rational == tab2->rational, return NULL); |
| 446 | isl_assert(tab1->mat->ctx, tab1->cone == tab2->cone, return NULL); |
| 447 | isl_assert(tab1->mat->ctx, !tab1->row_sign, return NULL); |
| 448 | isl_assert(tab1->mat->ctx, !tab2->row_sign, return NULL); |
| 449 | isl_assert(tab1->mat->ctx, tab1->n_param == 0, return NULL); |
| 450 | isl_assert(tab1->mat->ctx, tab2->n_param == 0, return NULL); |
| 451 | isl_assert(tab1->mat->ctx, tab1->n_div == 0, return NULL); |
| 452 | isl_assert(tab1->mat->ctx, tab2->n_div == 0, return NULL); |
| 453 | |
| 454 | off = 2 + tab1->M; |
| 455 | r1 = tab1->n_redundant; |
| 456 | r2 = tab2->n_redundant; |
| 457 | d1 = tab1->n_dead; |
| 458 | d2 = tab2->n_dead; |
| 459 | prod = isl_calloc_type(tab1->mat->ctx, struct isl_tab); |
| 460 | if (!prod) |
| 461 | return NULL; |
| 462 | prod->mat = tab_mat_product(mat1: tab1->mat, mat2: tab2->mat, |
| 463 | row1: tab1->n_row, row2: tab2->n_row, |
| 464 | col1: tab1->n_col, col2: tab2->n_col, off, r1, r2, d1, d2); |
| 465 | if (!prod->mat) |
| 466 | goto error; |
| 467 | prod->var = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var, |
| 468 | tab1->max_var + tab2->max_var); |
| 469 | if ((tab1->max_var + tab2->max_var) && !prod->var) |
| 470 | goto error; |
| 471 | for (i = 0; i < tab1->n_var; ++i) { |
| 472 | prod->var[i] = tab1->var[i]; |
| 473 | update_index1(var: &prod->var[i], r1, r2, d1, d2); |
| 474 | } |
| 475 | for (i = 0; i < tab2->n_var; ++i) { |
| 476 | prod->var[tab1->n_var + i] = tab2->var[i]; |
| 477 | update_index2(var: &prod->var[tab1->n_var + i], |
| 478 | row1: tab1->n_row, col1: tab1->n_col, |
| 479 | r1, r2, d1, d2); |
| 480 | } |
| 481 | prod->con = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var, |
| 482 | tab1->max_con + tab2->max_con); |
| 483 | if ((tab1->max_con + tab2->max_con) && !prod->con) |
| 484 | goto error; |
| 485 | for (i = 0; i < tab1->n_con; ++i) { |
| 486 | prod->con[i] = tab1->con[i]; |
| 487 | update_index1(var: &prod->con[i], r1, r2, d1, d2); |
| 488 | } |
| 489 | for (i = 0; i < tab2->n_con; ++i) { |
| 490 | prod->con[tab1->n_con + i] = tab2->con[i]; |
| 491 | update_index2(var: &prod->con[tab1->n_con + i], |
| 492 | row1: tab1->n_row, col1: tab1->n_col, |
| 493 | r1, r2, d1, d2); |
| 494 | } |
| 495 | prod->col_var = isl_alloc_array(tab1->mat->ctx, int, |
| 496 | tab1->n_col + tab2->n_col); |
| 497 | if ((tab1->n_col + tab2->n_col) && !prod->col_var) |
| 498 | goto error; |
| 499 | for (i = 0; i < tab1->n_col; ++i) { |
| 500 | int pos = i < d1 ? i : i + d2; |
| 501 | prod->col_var[pos] = tab1->col_var[i]; |
| 502 | } |
| 503 | for (i = 0; i < tab2->n_col; ++i) { |
| 504 | int pos = i < d2 ? d1 + i : tab1->n_col + i; |
| 505 | int t = tab2->col_var[i]; |
| 506 | if (t >= 0) |
| 507 | t += tab1->n_var; |
| 508 | else |
| 509 | t -= tab1->n_con; |
| 510 | prod->col_var[pos] = t; |
| 511 | } |
| 512 | prod->row_var = isl_alloc_array(tab1->mat->ctx, int, |
| 513 | tab1->mat->n_row + tab2->mat->n_row); |
| 514 | if ((tab1->mat->n_row + tab2->mat->n_row) && !prod->row_var) |
| 515 | goto error; |
| 516 | for (i = 0; i < tab1->n_row; ++i) { |
| 517 | int pos = i < r1 ? i : i + r2; |
| 518 | prod->row_var[pos] = tab1->row_var[i]; |
| 519 | } |
| 520 | for (i = 0; i < tab2->n_row; ++i) { |
| 521 | int pos = i < r2 ? r1 + i : tab1->n_row + i; |
| 522 | int t = tab2->row_var[i]; |
| 523 | if (t >= 0) |
| 524 | t += tab1->n_var; |
| 525 | else |
| 526 | t -= tab1->n_con; |
| 527 | prod->row_var[pos] = t; |
| 528 | } |
| 529 | prod->samples = NULL; |
| 530 | prod->sample_index = NULL; |
| 531 | prod->n_row = tab1->n_row + tab2->n_row; |
| 532 | prod->n_con = tab1->n_con + tab2->n_con; |
| 533 | prod->n_eq = 0; |
| 534 | prod->max_con = tab1->max_con + tab2->max_con; |
| 535 | prod->n_col = tab1->n_col + tab2->n_col; |
| 536 | prod->n_var = tab1->n_var + tab2->n_var; |
| 537 | prod->max_var = tab1->max_var + tab2->max_var; |
| 538 | prod->n_param = 0; |
| 539 | prod->n_div = 0; |
| 540 | prod->n_dead = tab1->n_dead + tab2->n_dead; |
| 541 | prod->n_redundant = tab1->n_redundant + tab2->n_redundant; |
| 542 | prod->rational = tab1->rational; |
| 543 | prod->empty = tab1->empty || tab2->empty; |
| 544 | prod->strict_redundant = tab1->strict_redundant || tab2->strict_redundant; |
| 545 | prod->need_undo = 0; |
| 546 | prod->in_undo = 0; |
| 547 | prod->M = tab1->M; |
| 548 | prod->cone = tab1->cone; |
| 549 | prod->bottom.type = isl_tab_undo_bottom; |
| 550 | prod->bottom.next = NULL; |
| 551 | prod->top = &prod->bottom; |
| 552 | |
| 553 | prod->n_zero = 0; |
| 554 | prod->n_unbounded = 0; |
| 555 | prod->basis = NULL; |
| 556 | |
| 557 | return prod; |
| 558 | error: |
| 559 | isl_tab_free(tab: prod); |
| 560 | return NULL; |
| 561 | } |
| 562 | |
| 563 | static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i) |
| 564 | { |
| 565 | if (i >= 0) |
| 566 | return &tab->var[i]; |
| 567 | else |
| 568 | return &tab->con[~i]; |
| 569 | } |
| 570 | |
| 571 | struct isl_tab_var *isl_tab_var_from_row(struct isl_tab *tab, int i) |
| 572 | { |
| 573 | return var_from_index(tab, i: tab->row_var[i]); |
| 574 | } |
| 575 | |
| 576 | static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i) |
| 577 | { |
| 578 | return var_from_index(tab, i: tab->col_var[i]); |
| 579 | } |
| 580 | |
| 581 | /* Check if there are any upper bounds on column variable "var", |
| 582 | * i.e., non-negative rows where var appears with a negative coefficient. |
| 583 | * Return 1 if there are no such bounds. |
| 584 | */ |
| 585 | static int max_is_manifestly_unbounded(struct isl_tab *tab, |
| 586 | struct isl_tab_var *var) |
| 587 | { |
| 588 | int i; |
| 589 | unsigned off = 2 + tab->M; |
| 590 | |
| 591 | if (var->is_row) |
| 592 | return 0; |
| 593 | for (i = tab->n_redundant; i < tab->n_row; ++i) { |
| 594 | if (!isl_int_is_neg(tab->mat->row[i][off + var->index])) |
| 595 | continue; |
| 596 | if (isl_tab_var_from_row(tab, i)->is_nonneg) |
| 597 | return 0; |
| 598 | } |
| 599 | return 1; |
| 600 | } |
| 601 | |
| 602 | /* Check if there are any lower bounds on column variable "var", |
| 603 | * i.e., non-negative rows where var appears with a positive coefficient. |
| 604 | * Return 1 if there are no such bounds. |
| 605 | */ |
| 606 | static int min_is_manifestly_unbounded(struct isl_tab *tab, |
| 607 | struct isl_tab_var *var) |
| 608 | { |
| 609 | int i; |
| 610 | unsigned off = 2 + tab->M; |
| 611 | |
| 612 | if (var->is_row) |
| 613 | return 0; |
| 614 | for (i = tab->n_redundant; i < tab->n_row; ++i) { |
| 615 | if (!isl_int_is_pos(tab->mat->row[i][off + var->index])) |
| 616 | continue; |
| 617 | if (isl_tab_var_from_row(tab, i)->is_nonneg) |
| 618 | return 0; |
| 619 | } |
| 620 | return 1; |
| 621 | } |
| 622 | |
| 623 | static int row_cmp(struct isl_tab *tab, int r1, int r2, int c, isl_int *t) |
| 624 | { |
| 625 | unsigned off = 2 + tab->M; |
| 626 | |
| 627 | if (tab->M) { |
| 628 | int s; |
| 629 | isl_int_mul(*t, tab->mat->row[r1][2], tab->mat->row[r2][off+c]); |
| 630 | isl_int_submul(*t, tab->mat->row[r2][2], tab->mat->row[r1][off+c]); |
| 631 | s = isl_int_sgn(*t); |
| 632 | if (s) |
| 633 | return s; |
| 634 | } |
| 635 | isl_int_mul(*t, tab->mat->row[r1][1], tab->mat->row[r2][off + c]); |
| 636 | isl_int_submul(*t, tab->mat->row[r2][1], tab->mat->row[r1][off + c]); |
| 637 | return isl_int_sgn(*t); |
| 638 | } |
| 639 | |
| 640 | /* Given the index of a column "c", return the index of a row |
| 641 | * that can be used to pivot the column in, with either an increase |
| 642 | * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable. |
| 643 | * If "var" is not NULL, then the row returned will be different from |
| 644 | * the one associated with "var". |
| 645 | * |
| 646 | * Each row in the tableau is of the form |
| 647 | * |
| 648 | * x_r = a_r0 + \sum_i a_ri x_i |
| 649 | * |
| 650 | * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn" |
| 651 | * impose any limit on the increase or decrease in the value of x_c |
| 652 | * and this bound is equal to a_r0 / |a_rc|. We are therefore looking |
| 653 | * for the row with the smallest (most stringent) such bound. |
| 654 | * Note that the common denominator of each row drops out of the fraction. |
| 655 | * To check if row j has a smaller bound than row r, i.e., |
| 656 | * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|, |
| 657 | * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0, |
| 658 | * where -sign(a_jc) is equal to "sgn". |
| 659 | */ |
| 660 | static int pivot_row(struct isl_tab *tab, |
| 661 | struct isl_tab_var *var, int sgn, int c) |
| 662 | { |
| 663 | int j, r, tsgn; |
| 664 | isl_int t; |
| 665 | unsigned off = 2 + tab->M; |
| 666 | |
| 667 | isl_int_init(t); |
| 668 | r = -1; |
| 669 | for (j = tab->n_redundant; j < tab->n_row; ++j) { |
| 670 | if (var && j == var->index) |
| 671 | continue; |
| 672 | if (!isl_tab_var_from_row(tab, i: j)->is_nonneg) |
| 673 | continue; |
| 674 | if (sgn * isl_int_sgn(tab->mat->row[j][off + c]) >= 0) |
| 675 | continue; |
| 676 | if (r < 0) { |
| 677 | r = j; |
| 678 | continue; |
| 679 | } |
| 680 | tsgn = sgn * row_cmp(tab, r1: r, r2: j, c, t: &t); |
| 681 | if (tsgn < 0 || (tsgn == 0 && |
| 682 | tab->row_var[j] < tab->row_var[r])) |
| 683 | r = j; |
| 684 | } |
| 685 | isl_int_clear(t); |
| 686 | return r; |
| 687 | } |
| 688 | |
| 689 | /* Find a pivot (row and col) that will increase (sgn > 0) or decrease |
| 690 | * (sgn < 0) the value of row variable var. |
| 691 | * If not NULL, then skip_var is a row variable that should be ignored |
| 692 | * while looking for a pivot row. It is usually equal to var. |
| 693 | * |
| 694 | * As the given row in the tableau is of the form |
| 695 | * |
| 696 | * x_r = a_r0 + \sum_i a_ri x_i |
| 697 | * |
| 698 | * we need to find a column such that the sign of a_ri is equal to "sgn" |
| 699 | * (such that an increase in x_i will have the desired effect) or a |
| 700 | * column with a variable that may attain negative values. |
| 701 | * If a_ri is positive, then we need to move x_i in the same direction |
| 702 | * to obtain the desired effect. Otherwise, x_i has to move in the |
| 703 | * opposite direction. |
| 704 | */ |
| 705 | static void find_pivot(struct isl_tab *tab, |
| 706 | struct isl_tab_var *var, struct isl_tab_var *skip_var, |
| 707 | int sgn, int *row, int *col) |
| 708 | { |
| 709 | int j, r, c; |
| 710 | isl_int *tr; |
| 711 | |
| 712 | *row = *col = -1; |
| 713 | |
| 714 | isl_assert(tab->mat->ctx, var->is_row, return); |
| 715 | tr = tab->mat->row[var->index] + 2 + tab->M; |
| 716 | |
| 717 | c = -1; |
| 718 | for (j = tab->n_dead; j < tab->n_col; ++j) { |
| 719 | if (isl_int_is_zero(tr[j])) |
| 720 | continue; |
| 721 | if (isl_int_sgn(tr[j]) != sgn && |
| 722 | var_from_col(tab, i: j)->is_nonneg) |
| 723 | continue; |
| 724 | if (c < 0 || tab->col_var[j] < tab->col_var[c]) |
| 725 | c = j; |
| 726 | } |
| 727 | if (c < 0) |
| 728 | return; |
| 729 | |
| 730 | sgn *= isl_int_sgn(tr[c]); |
| 731 | r = pivot_row(tab, var: skip_var, sgn, c); |
| 732 | *row = r < 0 ? var->index : r; |
| 733 | *col = c; |
| 734 | } |
| 735 | |
| 736 | /* Return 1 if row "row" represents an obviously redundant inequality. |
| 737 | * This means |
| 738 | * - it represents an inequality or a variable |
| 739 | * - that is the sum of a non-negative sample value and a positive |
| 740 | * combination of zero or more non-negative constraints. |
| 741 | */ |
| 742 | int isl_tab_row_is_redundant(struct isl_tab *tab, int row) |
| 743 | { |
| 744 | int i; |
| 745 | unsigned off = 2 + tab->M; |
| 746 | |
| 747 | if (tab->row_var[row] < 0 && !isl_tab_var_from_row(tab, i: row)->is_nonneg) |
| 748 | return 0; |
| 749 | |
| 750 | if (isl_int_is_neg(tab->mat->row[row][1])) |
| 751 | return 0; |
| 752 | if (tab->strict_redundant && isl_int_is_zero(tab->mat->row[row][1])) |
| 753 | return 0; |
| 754 | if (tab->M && isl_int_is_neg(tab->mat->row[row][2])) |
| 755 | return 0; |
| 756 | |
| 757 | for (i = tab->n_dead; i < tab->n_col; ++i) { |
| 758 | if (isl_int_is_zero(tab->mat->row[row][off + i])) |
| 759 | continue; |
| 760 | if (tab->col_var[i] >= 0) |
| 761 | return 0; |
| 762 | if (isl_int_is_neg(tab->mat->row[row][off + i])) |
| 763 | return 0; |
| 764 | if (!var_from_col(tab, i)->is_nonneg) |
| 765 | return 0; |
| 766 | } |
| 767 | return 1; |
| 768 | } |
| 769 | |
| 770 | static void swap_rows(struct isl_tab *tab, int row1, int row2) |
| 771 | { |
| 772 | int t; |
| 773 | enum isl_tab_row_sign s; |
| 774 | |
| 775 | t = tab->row_var[row1]; |
| 776 | tab->row_var[row1] = tab->row_var[row2]; |
| 777 | tab->row_var[row2] = t; |
| 778 | isl_tab_var_from_row(tab, i: row1)->index = row1; |
| 779 | isl_tab_var_from_row(tab, i: row2)->index = row2; |
| 780 | tab->mat = isl_mat_swap_rows(mat: tab->mat, i: row1, j: row2); |
| 781 | |
| 782 | if (!tab->row_sign) |
| 783 | return; |
| 784 | s = tab->row_sign[row1]; |
| 785 | tab->row_sign[row1] = tab->row_sign[row2]; |
| 786 | tab->row_sign[row2] = s; |
| 787 | } |
| 788 | |
| 789 | static isl_stat push_union(struct isl_tab *tab, |
| 790 | enum isl_tab_undo_type type, union isl_tab_undo_val u) WARN_UNUSED; |
| 791 | |
| 792 | /* Push record "u" onto the undo stack of "tab", provided "tab" |
| 793 | * keeps track of undo information. |
| 794 | * |
| 795 | * If the record cannot be pushed, then mark the undo stack as invalid |
| 796 | * such that a later rollback attempt will not try to undo earlier |
| 797 | * records without having been able to undo the current record. |
| 798 | */ |
| 799 | static isl_stat push_union(struct isl_tab *tab, |
| 800 | enum isl_tab_undo_type type, union isl_tab_undo_val u) |
| 801 | { |
| 802 | struct isl_tab_undo *undo; |
| 803 | |
| 804 | if (!tab) |
| 805 | return isl_stat_error; |
| 806 | if (!tab->need_undo) |
| 807 | return isl_stat_ok; |
| 808 | |
| 809 | undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo); |
| 810 | if (!undo) |
| 811 | goto error; |
| 812 | undo->type = type; |
| 813 | undo->u = u; |
| 814 | undo->next = tab->top; |
| 815 | tab->top = undo; |
| 816 | |
| 817 | return isl_stat_ok; |
| 818 | error: |
| 819 | free_undo(tab); |
| 820 | tab->top = NULL; |
| 821 | return isl_stat_error; |
| 822 | } |
| 823 | |
| 824 | isl_stat isl_tab_push_var(struct isl_tab *tab, |
| 825 | enum isl_tab_undo_type type, struct isl_tab_var *var) |
| 826 | { |
| 827 | union isl_tab_undo_val u; |
| 828 | if (var->is_row) |
| 829 | u.var_index = tab->row_var[var->index]; |
| 830 | else |
| 831 | u.var_index = tab->col_var[var->index]; |
| 832 | return push_union(tab, type, u); |
| 833 | } |
| 834 | |
| 835 | isl_stat isl_tab_push(struct isl_tab *tab, enum isl_tab_undo_type type) |
| 836 | { |
| 837 | union isl_tab_undo_val u = { 0 }; |
| 838 | return push_union(tab, type, u); |
| 839 | } |
| 840 | |
| 841 | /* Push a record on the undo stack describing the current basic |
| 842 | * variables, so that the this state can be restored during rollback. |
| 843 | */ |
| 844 | isl_stat isl_tab_push_basis(struct isl_tab *tab) |
| 845 | { |
| 846 | int i; |
| 847 | union isl_tab_undo_val u; |
| 848 | |
| 849 | u.col_var = isl_alloc_array(tab->mat->ctx, int, tab->n_col); |
| 850 | if (tab->n_col && !u.col_var) |
| 851 | return isl_stat_error; |
| 852 | for (i = 0; i < tab->n_col; ++i) |
| 853 | u.col_var[i] = tab->col_var[i]; |
| 854 | return push_union(tab, type: isl_tab_undo_saved_basis, u); |
| 855 | } |
| 856 | |
| 857 | isl_stat isl_tab_push_callback(struct isl_tab *tab, |
| 858 | struct isl_tab_callback *callback) |
| 859 | { |
| 860 | union isl_tab_undo_val u; |
| 861 | u.callback = callback; |
| 862 | return push_union(tab, type: isl_tab_undo_callback, u); |
| 863 | } |
| 864 | |
| 865 | struct isl_tab *isl_tab_init_samples(struct isl_tab *tab) |
| 866 | { |
| 867 | if (!tab) |
| 868 | return NULL; |
| 869 | |
| 870 | tab->n_sample = 0; |
| 871 | tab->n_outside = 0; |
| 872 | tab->samples = isl_mat_alloc(ctx: tab->mat->ctx, n_row: 1, n_col: 1 + tab->n_var); |
| 873 | if (!tab->samples) |
| 874 | goto error; |
| 875 | tab->sample_index = isl_alloc_array(tab->mat->ctx, int, 1); |
| 876 | if (!tab->sample_index) |
| 877 | goto error; |
| 878 | return tab; |
| 879 | error: |
| 880 | isl_tab_free(tab); |
| 881 | return NULL; |
| 882 | } |
| 883 | |
| 884 | int isl_tab_add_sample(struct isl_tab *tab, __isl_take isl_vec *sample) |
| 885 | { |
| 886 | if (!tab || !sample) |
| 887 | goto error; |
| 888 | |
| 889 | if (tab->n_sample + 1 > tab->samples->n_row) { |
| 890 | int *t = isl_realloc_array(tab->mat->ctx, |
| 891 | tab->sample_index, int, tab->n_sample + 1); |
| 892 | if (!t) |
| 893 | goto error; |
| 894 | tab->sample_index = t; |
| 895 | } |
| 896 | |
| 897 | tab->samples = isl_mat_extend(mat: tab->samples, |
| 898 | n_row: tab->n_sample + 1, n_col: tab->samples->n_col); |
| 899 | if (!tab->samples) |
| 900 | goto error; |
| 901 | |
| 902 | isl_seq_cpy(dst: tab->samples->row[tab->n_sample], src: sample->el, len: sample->size); |
| 903 | isl_vec_free(vec: sample); |
| 904 | tab->sample_index[tab->n_sample] = tab->n_sample; |
| 905 | tab->n_sample++; |
| 906 | |
| 907 | return 0; |
| 908 | error: |
| 909 | isl_vec_free(vec: sample); |
| 910 | return -1; |
| 911 | } |
| 912 | |
| 913 | struct isl_tab *isl_tab_drop_sample(struct isl_tab *tab, int s) |
| 914 | { |
| 915 | if (s != tab->n_outside) { |
| 916 | int t = tab->sample_index[tab->n_outside]; |
| 917 | tab->sample_index[tab->n_outside] = tab->sample_index[s]; |
| 918 | tab->sample_index[s] = t; |
| 919 | isl_mat_swap_rows(mat: tab->samples, i: tab->n_outside, j: s); |
| 920 | } |
| 921 | tab->n_outside++; |
| 922 | if (isl_tab_push(tab, type: isl_tab_undo_drop_sample) < 0) { |
| 923 | isl_tab_free(tab); |
| 924 | return NULL; |
| 925 | } |
| 926 | |
| 927 | return tab; |
| 928 | } |
| 929 | |
| 930 | /* Record the current number of samples so that we can remove newer |
| 931 | * samples during a rollback. |
| 932 | */ |
| 933 | isl_stat isl_tab_save_samples(struct isl_tab *tab) |
| 934 | { |
| 935 | union isl_tab_undo_val u; |
| 936 | |
| 937 | if (!tab) |
| 938 | return isl_stat_error; |
| 939 | |
| 940 | u.n = tab->n_sample; |
| 941 | return push_union(tab, type: isl_tab_undo_saved_samples, u); |
| 942 | } |
| 943 | |
| 944 | /* Mark row with index "row" as being redundant. |
| 945 | * If we may need to undo the operation or if the row represents |
| 946 | * a variable of the original problem, the row is kept, |
| 947 | * but no longer considered when looking for a pivot row. |
| 948 | * Otherwise, the row is simply removed. |
| 949 | * |
| 950 | * The row may be interchanged with some other row. If it |
| 951 | * is interchanged with a later row, return 1. Otherwise return 0. |
| 952 | * If the rows are checked in order in the calling function, |
| 953 | * then a return value of 1 means that the row with the given |
| 954 | * row number may now contain a different row that hasn't been checked yet. |
| 955 | */ |
| 956 | int isl_tab_mark_redundant(struct isl_tab *tab, int row) |
| 957 | { |
| 958 | struct isl_tab_var *var = isl_tab_var_from_row(tab, i: row); |
| 959 | var->is_redundant = 1; |
| 960 | isl_assert(tab->mat->ctx, row >= tab->n_redundant, return -1); |
| 961 | if (tab->preserve || tab->need_undo || tab->row_var[row] >= 0) { |
| 962 | if (tab->row_var[row] >= 0 && !var->is_nonneg) { |
| 963 | var->is_nonneg = 1; |
| 964 | if (isl_tab_push_var(tab, type: isl_tab_undo_nonneg, var) < 0) |
| 965 | return -1; |
| 966 | } |
| 967 | if (row != tab->n_redundant) |
| 968 | swap_rows(tab, row1: row, row2: tab->n_redundant); |
| 969 | tab->n_redundant++; |
| 970 | return isl_tab_push_var(tab, type: isl_tab_undo_redundant, var); |
| 971 | } else { |
| 972 | if (row != tab->n_row - 1) |
| 973 | swap_rows(tab, row1: row, row2: tab->n_row - 1); |
| 974 | isl_tab_var_from_row(tab, i: tab->n_row - 1)->index = -1; |
| 975 | tab->n_row--; |
| 976 | return 1; |
| 977 | } |
| 978 | } |
| 979 | |
| 980 | /* Mark "tab" as a rational tableau. |
| 981 | * If it wasn't marked as a rational tableau already and if we may |
| 982 | * need to undo changes, then arrange for the marking to be undone |
| 983 | * during the undo. |
| 984 | */ |
| 985 | int isl_tab_mark_rational(struct isl_tab *tab) |
| 986 | { |
| 987 | if (!tab) |
| 988 | return -1; |
| 989 | if (!tab->rational && tab->need_undo) |
| 990 | if (isl_tab_push(tab, type: isl_tab_undo_rational) < 0) |
| 991 | return -1; |
| 992 | tab->rational = 1; |
| 993 | return 0; |
| 994 | } |
| 995 | |
| 996 | isl_stat isl_tab_mark_empty(struct isl_tab *tab) |
| 997 | { |
| 998 | if (!tab) |
| 999 | return isl_stat_error; |
| 1000 | if (!tab->empty && tab->need_undo) |
| 1001 | if (isl_tab_push(tab, type: isl_tab_undo_empty) < 0) |
| 1002 | return isl_stat_error; |
| 1003 | tab->empty = 1; |
| 1004 | return isl_stat_ok; |
| 1005 | } |
| 1006 | |
| 1007 | int isl_tab_freeze_constraint(struct isl_tab *tab, int con) |
| 1008 | { |
| 1009 | struct isl_tab_var *var; |
| 1010 | |
| 1011 | if (!tab) |
| 1012 | return -1; |
| 1013 | |
| 1014 | var = &tab->con[con]; |
| 1015 | if (var->frozen) |
| 1016 | return 0; |
| 1017 | if (var->index < 0) |
| 1018 | return 0; |
| 1019 | var->frozen = 1; |
| 1020 | |
| 1021 | if (tab->need_undo) |
| 1022 | return isl_tab_push_var(tab, type: isl_tab_undo_freeze, var); |
| 1023 | |
| 1024 | return 0; |
| 1025 | } |
| 1026 | |
| 1027 | /* Update the rows signs after a pivot of "row" and "col", with "row_sgn" |
| 1028 | * the original sign of the pivot element. |
| 1029 | * We only keep track of row signs during PILP solving and in this case |
| 1030 | * we only pivot a row with negative sign (meaning the value is always |
| 1031 | * non-positive) using a positive pivot element. |
| 1032 | * |
| 1033 | * For each row j, the new value of the parametric constant is equal to |
| 1034 | * |
| 1035 | * a_j0 - a_jc a_r0/a_rc |
| 1036 | * |
| 1037 | * where a_j0 is the original parametric constant, a_rc is the pivot element, |
| 1038 | * a_r0 is the parametric constant of the pivot row and a_jc is the |
| 1039 | * pivot column entry of the row j. |
| 1040 | * Since a_r0 is non-positive and a_rc is positive, the sign of row j |
| 1041 | * remains the same if a_jc has the same sign as the row j or if |
| 1042 | * a_jc is zero. In all other cases, we reset the sign to "unknown". |
| 1043 | */ |
| 1044 | static void update_row_sign(struct isl_tab *tab, int row, int col, int row_sgn) |
| 1045 | { |
| 1046 | int i; |
| 1047 | struct isl_mat *mat = tab->mat; |
| 1048 | unsigned off = 2 + tab->M; |
| 1049 | |
| 1050 | if (!tab->row_sign) |
| 1051 | return; |
| 1052 | |
| 1053 | if (tab->row_sign[row] == 0) |
| 1054 | return; |
| 1055 | isl_assert(mat->ctx, row_sgn > 0, return); |
| 1056 | isl_assert(mat->ctx, tab->row_sign[row] == isl_tab_row_neg, return); |
| 1057 | tab->row_sign[row] = isl_tab_row_pos; |
| 1058 | for (i = 0; i < tab->n_row; ++i) { |
| 1059 | int s; |
| 1060 | if (i == row) |
| 1061 | continue; |
| 1062 | s = isl_int_sgn(mat->row[i][off + col]); |
| 1063 | if (!s) |
| 1064 | continue; |
| 1065 | if (!tab->row_sign[i]) |
| 1066 | continue; |
| 1067 | if (s < 0 && tab->row_sign[i] == isl_tab_row_neg) |
| 1068 | continue; |
| 1069 | if (s > 0 && tab->row_sign[i] == isl_tab_row_pos) |
| 1070 | continue; |
| 1071 | tab->row_sign[i] = isl_tab_row_unknown; |
| 1072 | } |
| 1073 | } |
| 1074 | |
| 1075 | /* Given a row number "row" and a column number "col", pivot the tableau |
| 1076 | * such that the associated variables are interchanged. |
| 1077 | * The given row in the tableau expresses |
| 1078 | * |
| 1079 | * x_r = a_r0 + \sum_i a_ri x_i |
| 1080 | * |
| 1081 | * or |
| 1082 | * |
| 1083 | * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc |
| 1084 | * |
| 1085 | * Substituting this equality into the other rows |
| 1086 | * |
| 1087 | * x_j = a_j0 + \sum_i a_ji x_i |
| 1088 | * |
| 1089 | * with a_jc \ne 0, we obtain |
| 1090 | * |
| 1091 | * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc |
| 1092 | * |
| 1093 | * The tableau |
| 1094 | * |
| 1095 | * n_rc/d_r n_ri/d_r |
| 1096 | * n_jc/d_j n_ji/d_j |
| 1097 | * |
| 1098 | * where i is any other column and j is any other row, |
| 1099 | * is therefore transformed into |
| 1100 | * |
| 1101 | * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| |
| 1102 | * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j) |
| 1103 | * |
| 1104 | * The transformation is performed along the following steps |
| 1105 | * |
| 1106 | * d_r/n_rc n_ri/n_rc |
| 1107 | * n_jc/d_j n_ji/d_j |
| 1108 | * |
| 1109 | * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| |
| 1110 | * n_jc/d_j n_ji/d_j |
| 1111 | * |
| 1112 | * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| |
| 1113 | * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j) |
| 1114 | * |
| 1115 | * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| |
| 1116 | * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j) |
| 1117 | * |
| 1118 | * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| |
| 1119 | * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j) |
| 1120 | * |
| 1121 | * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| |
| 1122 | * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j) |
| 1123 | * |
| 1124 | */ |
| 1125 | int isl_tab_pivot(struct isl_tab *tab, int row, int col) |
| 1126 | { |
| 1127 | int i, j; |
| 1128 | int sgn; |
| 1129 | int t; |
| 1130 | isl_ctx *ctx; |
| 1131 | struct isl_mat *mat = tab->mat; |
| 1132 | struct isl_tab_var *var; |
| 1133 | unsigned off = 2 + tab->M; |
| 1134 | |
| 1135 | ctx = isl_tab_get_ctx(tab); |
| 1136 | if (isl_ctx_next_operation(ctx) < 0) |
| 1137 | return -1; |
| 1138 | |
| 1139 | isl_int_swap(mat->row[row][0], mat->row[row][off + col]); |
| 1140 | sgn = isl_int_sgn(mat->row[row][0]); |
| 1141 | if (sgn < 0) { |
| 1142 | isl_int_neg(mat->row[row][0], mat->row[row][0]); |
| 1143 | isl_int_neg(mat->row[row][off + col], mat->row[row][off + col]); |
| 1144 | } else |
| 1145 | for (j = 0; j < off - 1 + tab->n_col; ++j) { |
| 1146 | if (j == off - 1 + col) |
| 1147 | continue; |
| 1148 | isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]); |
| 1149 | } |
| 1150 | if (!isl_int_is_one(mat->row[row][0])) |
| 1151 | isl_seq_normalize(ctx: mat->ctx, p: mat->row[row], len: off + tab->n_col); |
| 1152 | for (i = 0; i < tab->n_row; ++i) { |
| 1153 | if (i == row) |
| 1154 | continue; |
| 1155 | if (isl_int_is_zero(mat->row[i][off + col])) |
| 1156 | continue; |
| 1157 | isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]); |
| 1158 | for (j = 0; j < off - 1 + tab->n_col; ++j) { |
| 1159 | if (j == off - 1 + col) |
| 1160 | continue; |
| 1161 | isl_int_mul(mat->row[i][1 + j], |
| 1162 | mat->row[i][1 + j], mat->row[row][0]); |
| 1163 | isl_int_addmul(mat->row[i][1 + j], |
| 1164 | mat->row[i][off + col], mat->row[row][1 + j]); |
| 1165 | } |
| 1166 | isl_int_mul(mat->row[i][off + col], |
| 1167 | mat->row[i][off + col], mat->row[row][off + col]); |
| 1168 | if (!isl_int_is_one(mat->row[i][0])) |
| 1169 | isl_seq_normalize(ctx: mat->ctx, p: mat->row[i], len: off + tab->n_col); |
| 1170 | } |
| 1171 | t = tab->row_var[row]; |
| 1172 | tab->row_var[row] = tab->col_var[col]; |
| 1173 | tab->col_var[col] = t; |
| 1174 | var = isl_tab_var_from_row(tab, i: row); |
| 1175 | var->is_row = 1; |
| 1176 | var->index = row; |
| 1177 | var = var_from_col(tab, i: col); |
| 1178 | var->is_row = 0; |
| 1179 | var->index = col; |
| 1180 | update_row_sign(tab, row, col, row_sgn: sgn); |
| 1181 | if (tab->in_undo) |
| 1182 | return 0; |
| 1183 | for (i = tab->n_redundant; i < tab->n_row; ++i) { |
| 1184 | if (isl_int_is_zero(mat->row[i][off + col])) |
| 1185 | continue; |
| 1186 | if (!isl_tab_var_from_row(tab, i)->frozen && |
| 1187 | isl_tab_row_is_redundant(tab, row: i)) { |
| 1188 | int redo = isl_tab_mark_redundant(tab, row: i); |
| 1189 | if (redo < 0) |
| 1190 | return -1; |
| 1191 | if (redo) |
| 1192 | --i; |
| 1193 | } |
| 1194 | } |
| 1195 | return 0; |
| 1196 | } |
| 1197 | |
| 1198 | /* If "var" represents a column variable, then pivot is up (sgn > 0) |
| 1199 | * or down (sgn < 0) to a row. The variable is assumed not to be |
| 1200 | * unbounded in the specified direction. |
| 1201 | * If sgn = 0, then the variable is unbounded in both directions, |
| 1202 | * and we pivot with any row we can find. |
| 1203 | */ |
| 1204 | static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) WARN_UNUSED; |
| 1205 | static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) |
| 1206 | { |
| 1207 | int r; |
| 1208 | unsigned off = 2 + tab->M; |
| 1209 | |
| 1210 | if (var->is_row) |
| 1211 | return 0; |
| 1212 | |
| 1213 | if (sign == 0) { |
| 1214 | for (r = tab->n_redundant; r < tab->n_row; ++r) |
| 1215 | if (!isl_int_is_zero(tab->mat->row[r][off+var->index])) |
| 1216 | break; |
| 1217 | isl_assert(tab->mat->ctx, r < tab->n_row, return -1); |
| 1218 | } else { |
| 1219 | r = pivot_row(tab, NULL, sgn: sign, c: var->index); |
| 1220 | isl_assert(tab->mat->ctx, r >= 0, return -1); |
| 1221 | } |
| 1222 | |
| 1223 | return isl_tab_pivot(tab, row: r, col: var->index); |
| 1224 | } |
| 1225 | |
| 1226 | /* Check whether all variables that are marked as non-negative |
| 1227 | * also have a non-negative sample value. This function is not |
| 1228 | * called from the current code but is useful during debugging. |
| 1229 | */ |
| 1230 | static void check_table(struct isl_tab *tab) __attribute__ ((unused)); |
| 1231 | static void check_table(struct isl_tab *tab) |
| 1232 | { |
| 1233 | int i; |
| 1234 | |
| 1235 | if (tab->empty) |
| 1236 | return; |
| 1237 | for (i = tab->n_redundant; i < tab->n_row; ++i) { |
| 1238 | struct isl_tab_var *var; |
| 1239 | var = isl_tab_var_from_row(tab, i); |
| 1240 | if (!var->is_nonneg) |
| 1241 | continue; |
| 1242 | if (tab->M) { |
| 1243 | isl_assert(tab->mat->ctx, |
| 1244 | !isl_int_is_neg(tab->mat->row[i][2]), abort()); |
| 1245 | if (isl_int_is_pos(tab->mat->row[i][2])) |
| 1246 | continue; |
| 1247 | } |
| 1248 | isl_assert(tab->mat->ctx, !isl_int_is_neg(tab->mat->row[i][1]), |
| 1249 | abort()); |
| 1250 | } |
| 1251 | } |
| 1252 | |
| 1253 | /* Return the sign of the maximal value of "var". |
| 1254 | * If the sign is not negative, then on return from this function, |
| 1255 | * the sample value will also be non-negative. |
| 1256 | * |
| 1257 | * If "var" is manifestly unbounded wrt positive values, we are done. |
| 1258 | * Otherwise, we pivot the variable up to a row if needed. |
| 1259 | * Then we continue pivoting up until either |
| 1260 | * - no more up pivots can be performed |
| 1261 | * - the sample value is positive |
| 1262 | * - the variable is pivoted into a manifestly unbounded column |
| 1263 | */ |
| 1264 | static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var) |
| 1265 | { |
| 1266 | int row, col; |
| 1267 | |
| 1268 | if (max_is_manifestly_unbounded(tab, var)) |
| 1269 | return 1; |
| 1270 | if (to_row(tab, var, sign: 1) < 0) |
| 1271 | return -2; |
| 1272 | while (!isl_int_is_pos(tab->mat->row[var->index][1])) { |
| 1273 | find_pivot(tab, var, skip_var: var, sgn: 1, row: &row, col: &col); |
| 1274 | if (row == -1) |
| 1275 | return isl_int_sgn(tab->mat->row[var->index][1]); |
| 1276 | if (isl_tab_pivot(tab, row, col) < 0) |
| 1277 | return -2; |
| 1278 | if (!var->is_row) /* manifestly unbounded */ |
| 1279 | return 1; |
| 1280 | } |
| 1281 | return 1; |
| 1282 | } |
| 1283 | |
| 1284 | int isl_tab_sign_of_max(struct isl_tab *tab, int con) |
| 1285 | { |
| 1286 | struct isl_tab_var *var; |
| 1287 | |
| 1288 | if (!tab) |
| 1289 | return -2; |
| 1290 | |
| 1291 | var = &tab->con[con]; |
| 1292 | isl_assert(tab->mat->ctx, !var->is_redundant, return -2); |
| 1293 | isl_assert(tab->mat->ctx, !var->is_zero, return -2); |
| 1294 | |
| 1295 | return sign_of_max(tab, var); |
| 1296 | } |
| 1297 | |
| 1298 | static int row_is_neg(struct isl_tab *tab, int row) |
| 1299 | { |
| 1300 | if (!tab->M) |
| 1301 | return isl_int_is_neg(tab->mat->row[row][1]); |
| 1302 | if (isl_int_is_pos(tab->mat->row[row][2])) |
| 1303 | return 0; |
| 1304 | if (isl_int_is_neg(tab->mat->row[row][2])) |
| 1305 | return 1; |
| 1306 | return isl_int_is_neg(tab->mat->row[row][1]); |
| 1307 | } |
| 1308 | |
| 1309 | static int row_sgn(struct isl_tab *tab, int row) |
| 1310 | { |
| 1311 | if (!tab->M) |
| 1312 | return isl_int_sgn(tab->mat->row[row][1]); |
| 1313 | if (!isl_int_is_zero(tab->mat->row[row][2])) |
| 1314 | return isl_int_sgn(tab->mat->row[row][2]); |
| 1315 | else |
| 1316 | return isl_int_sgn(tab->mat->row[row][1]); |
| 1317 | } |
| 1318 | |
| 1319 | /* Perform pivots until the row variable "var" has a non-negative |
| 1320 | * sample value or until no more upward pivots can be performed. |
| 1321 | * Return the sign of the sample value after the pivots have been |
| 1322 | * performed. |
| 1323 | */ |
| 1324 | static int restore_row(struct isl_tab *tab, struct isl_tab_var *var) |
| 1325 | { |
| 1326 | int row, col; |
| 1327 | |
| 1328 | while (row_is_neg(tab, row: var->index)) { |
| 1329 | find_pivot(tab, var, skip_var: var, sgn: 1, row: &row, col: &col); |
| 1330 | if (row == -1) |
| 1331 | break; |
| 1332 | if (isl_tab_pivot(tab, row, col) < 0) |
| 1333 | return -2; |
| 1334 | if (!var->is_row) /* manifestly unbounded */ |
| 1335 | return 1; |
| 1336 | } |
| 1337 | return row_sgn(tab, row: var->index); |
| 1338 | } |
| 1339 | |
| 1340 | /* Perform pivots until we are sure that the row variable "var" |
| 1341 | * can attain non-negative values. After return from this |
| 1342 | * function, "var" is still a row variable, but its sample |
| 1343 | * value may not be non-negative, even if the function returns 1. |
| 1344 | */ |
| 1345 | static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var) |
| 1346 | { |
| 1347 | int row, col; |
| 1348 | |
| 1349 | while (isl_int_is_neg(tab->mat->row[var->index][1])) { |
| 1350 | find_pivot(tab, var, skip_var: var, sgn: 1, row: &row, col: &col); |
| 1351 | if (row == -1) |
| 1352 | break; |
| 1353 | if (row == var->index) /* manifestly unbounded */ |
| 1354 | return 1; |
| 1355 | if (isl_tab_pivot(tab, row, col) < 0) |
| 1356 | return -1; |
| 1357 | } |
| 1358 | return !isl_int_is_neg(tab->mat->row[var->index][1]); |
| 1359 | } |
| 1360 | |
| 1361 | /* Return a negative value if "var" can attain negative values. |
| 1362 | * Return a non-negative value otherwise. |
| 1363 | * |
| 1364 | * If "var" is manifestly unbounded wrt negative values, we are done. |
| 1365 | * Otherwise, if var is in a column, we can pivot it down to a row. |
| 1366 | * Then we continue pivoting down until either |
| 1367 | * - the pivot would result in a manifestly unbounded column |
| 1368 | * => we don't perform the pivot, but simply return -1 |
| 1369 | * - no more down pivots can be performed |
| 1370 | * - the sample value is negative |
| 1371 | * If the sample value becomes negative and the variable is supposed |
| 1372 | * to be nonnegative, then we undo the last pivot. |
| 1373 | * However, if the last pivot has made the pivoting variable |
| 1374 | * obviously redundant, then it may have moved to another row. |
| 1375 | * In that case we look for upward pivots until we reach a non-negative |
| 1376 | * value again. |
| 1377 | */ |
| 1378 | static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var) |
| 1379 | { |
| 1380 | int row, col; |
| 1381 | struct isl_tab_var *pivot_var = NULL; |
| 1382 | |
| 1383 | if (min_is_manifestly_unbounded(tab, var)) |
| 1384 | return -1; |
| 1385 | if (!var->is_row) { |
| 1386 | col = var->index; |
| 1387 | row = pivot_row(tab, NULL, sgn: -1, c: col); |
| 1388 | pivot_var = var_from_col(tab, i: col); |
| 1389 | if (isl_tab_pivot(tab, row, col) < 0) |
| 1390 | return -2; |
| 1391 | if (var->is_redundant) |
| 1392 | return 0; |
| 1393 | if (isl_int_is_neg(tab->mat->row[var->index][1])) { |
| 1394 | if (var->is_nonneg) { |
| 1395 | if (!pivot_var->is_redundant && |
| 1396 | pivot_var->index == row) { |
| 1397 | if (isl_tab_pivot(tab, row, col) < 0) |
| 1398 | return -2; |
| 1399 | } else |
| 1400 | if (restore_row(tab, var) < -1) |
| 1401 | return -2; |
| 1402 | } |
| 1403 | return -1; |
| 1404 | } |
| 1405 | } |
| 1406 | if (var->is_redundant) |
| 1407 | return 0; |
| 1408 | while (!isl_int_is_neg(tab->mat->row[var->index][1])) { |
| 1409 | find_pivot(tab, var, skip_var: var, sgn: -1, row: &row, col: &col); |
| 1410 | if (row == var->index) |
| 1411 | return -1; |
| 1412 | if (row == -1) |
| 1413 | return isl_int_sgn(tab->mat->row[var->index][1]); |
| 1414 | pivot_var = var_from_col(tab, i: col); |
| 1415 | if (isl_tab_pivot(tab, row, col) < 0) |
| 1416 | return -2; |
| 1417 | if (var->is_redundant) |
| 1418 | return 0; |
| 1419 | } |
| 1420 | if (pivot_var && var->is_nonneg) { |
| 1421 | /* pivot back to non-negative value */ |
| 1422 | if (!pivot_var->is_redundant && pivot_var->index == row) { |
| 1423 | if (isl_tab_pivot(tab, row, col) < 0) |
| 1424 | return -2; |
| 1425 | } else |
| 1426 | if (restore_row(tab, var) < -1) |
| 1427 | return -2; |
| 1428 | } |
| 1429 | return -1; |
| 1430 | } |
| 1431 | |
| 1432 | static int row_at_most_neg_one(struct isl_tab *tab, int row) |
| 1433 | { |
| 1434 | if (tab->M) { |
| 1435 | if (isl_int_is_pos(tab->mat->row[row][2])) |
| 1436 | return 0; |
| 1437 | if (isl_int_is_neg(tab->mat->row[row][2])) |
| 1438 | return 1; |
| 1439 | } |
| 1440 | return isl_int_is_neg(tab->mat->row[row][1]) && |
| 1441 | isl_int_abs_ge(tab->mat->row[row][1], |
| 1442 | tab->mat->row[row][0]); |
| 1443 | } |
| 1444 | |
| 1445 | /* Return 1 if "var" can attain values <= -1. |
| 1446 | * Return 0 otherwise. |
| 1447 | * |
| 1448 | * If the variable "var" is supposed to be non-negative (is_nonneg is set), |
| 1449 | * then the sample value of "var" is assumed to be non-negative when the |
| 1450 | * the function is called. If 1 is returned then the constraint |
| 1451 | * is not redundant and the sample value is made non-negative again before |
| 1452 | * the function returns. |
| 1453 | */ |
| 1454 | int isl_tab_min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var) |
| 1455 | { |
| 1456 | int row, col; |
| 1457 | struct isl_tab_var *pivot_var; |
| 1458 | |
| 1459 | if (min_is_manifestly_unbounded(tab, var)) |
| 1460 | return 1; |
| 1461 | if (!var->is_row) { |
| 1462 | col = var->index; |
| 1463 | row = pivot_row(tab, NULL, sgn: -1, c: col); |
| 1464 | pivot_var = var_from_col(tab, i: col); |
| 1465 | if (isl_tab_pivot(tab, row, col) < 0) |
| 1466 | return -1; |
| 1467 | if (var->is_redundant) |
| 1468 | return 0; |
| 1469 | if (row_at_most_neg_one(tab, row: var->index)) { |
| 1470 | if (var->is_nonneg) { |
| 1471 | if (!pivot_var->is_redundant && |
| 1472 | pivot_var->index == row) { |
| 1473 | if (isl_tab_pivot(tab, row, col) < 0) |
| 1474 | return -1; |
| 1475 | } else |
| 1476 | if (restore_row(tab, var) < -1) |
| 1477 | return -1; |
| 1478 | } |
| 1479 | return 1; |
| 1480 | } |
| 1481 | } |
| 1482 | if (var->is_redundant) |
| 1483 | return 0; |
| 1484 | do { |
| 1485 | find_pivot(tab, var, skip_var: var, sgn: -1, row: &row, col: &col); |
| 1486 | if (row == var->index) { |
| 1487 | if (var->is_nonneg && restore_row(tab, var) < -1) |
| 1488 | return -1; |
| 1489 | return 1; |
| 1490 | } |
| 1491 | if (row == -1) |
| 1492 | return 0; |
| 1493 | pivot_var = var_from_col(tab, i: col); |
| 1494 | if (isl_tab_pivot(tab, row, col) < 0) |
| 1495 | return -1; |
| 1496 | if (var->is_redundant) |
| 1497 | return 0; |
| 1498 | } while (!row_at_most_neg_one(tab, row: var->index)); |
| 1499 | if (var->is_nonneg) { |
| 1500 | /* pivot back to non-negative value */ |
| 1501 | if (!pivot_var->is_redundant && pivot_var->index == row) |
| 1502 | if (isl_tab_pivot(tab, row, col) < 0) |
| 1503 | return -1; |
| 1504 | if (restore_row(tab, var) < -1) |
| 1505 | return -1; |
| 1506 | } |
| 1507 | return 1; |
| 1508 | } |
| 1509 | |
| 1510 | /* Return 1 if "var" can attain values >= 1. |
| 1511 | * Return 0 otherwise. |
| 1512 | */ |
| 1513 | static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var) |
| 1514 | { |
| 1515 | int row, col; |
| 1516 | isl_int *r; |
| 1517 | |
| 1518 | if (max_is_manifestly_unbounded(tab, var)) |
| 1519 | return 1; |
| 1520 | if (to_row(tab, var, sign: 1) < 0) |
| 1521 | return -1; |
| 1522 | r = tab->mat->row[var->index]; |
| 1523 | while (isl_int_lt(r[1], r[0])) { |
| 1524 | find_pivot(tab, var, skip_var: var, sgn: 1, row: &row, col: &col); |
| 1525 | if (row == -1) |
| 1526 | return isl_int_ge(r[1], r[0]); |
| 1527 | if (row == var->index) /* manifestly unbounded */ |
| 1528 | return 1; |
| 1529 | if (isl_tab_pivot(tab, row, col) < 0) |
| 1530 | return -1; |
| 1531 | } |
| 1532 | return 1; |
| 1533 | } |
| 1534 | |
| 1535 | static void swap_cols(struct isl_tab *tab, int col1, int col2) |
| 1536 | { |
| 1537 | int t; |
| 1538 | unsigned off = 2 + tab->M; |
| 1539 | t = tab->col_var[col1]; |
| 1540 | tab->col_var[col1] = tab->col_var[col2]; |
| 1541 | tab->col_var[col2] = t; |
| 1542 | var_from_col(tab, i: col1)->index = col1; |
| 1543 | var_from_col(tab, i: col2)->index = col2; |
| 1544 | tab->mat = isl_mat_swap_cols(mat: tab->mat, i: off + col1, j: off + col2); |
| 1545 | } |
| 1546 | |
| 1547 | /* Mark column with index "col" as representing a zero variable. |
| 1548 | * If we may need to undo the operation the column is kept, |
| 1549 | * but no longer considered. |
| 1550 | * Otherwise, the column is simply removed. |
| 1551 | * |
| 1552 | * The column may be interchanged with some other column. If it |
| 1553 | * is interchanged with a later column, return 1. Otherwise return 0. |
| 1554 | * If the columns are checked in order in the calling function, |
| 1555 | * then a return value of 1 means that the column with the given |
| 1556 | * column number may now contain a different column that |
| 1557 | * hasn't been checked yet. |
| 1558 | */ |
| 1559 | int isl_tab_kill_col(struct isl_tab *tab, int col) |
| 1560 | { |
| 1561 | var_from_col(tab, i: col)->is_zero = 1; |
| 1562 | if (tab->need_undo) { |
| 1563 | if (isl_tab_push_var(tab, type: isl_tab_undo_zero, |
| 1564 | var: var_from_col(tab, i: col)) < 0) |
| 1565 | return -1; |
| 1566 | if (col != tab->n_dead) |
| 1567 | swap_cols(tab, col1: col, col2: tab->n_dead); |
| 1568 | tab->n_dead++; |
| 1569 | return 0; |
| 1570 | } else { |
| 1571 | if (col != tab->n_col - 1) |
| 1572 | swap_cols(tab, col1: col, col2: tab->n_col - 1); |
| 1573 | var_from_col(tab, i: tab->n_col - 1)->index = -1; |
| 1574 | tab->n_col--; |
| 1575 | return 1; |
| 1576 | } |
| 1577 | } |
| 1578 | |
| 1579 | static int row_is_manifestly_non_integral(struct isl_tab *tab, int row) |
| 1580 | { |
| 1581 | unsigned off = 2 + tab->M; |
| 1582 | |
| 1583 | if (tab->M && !isl_int_eq(tab->mat->row[row][2], |
| 1584 | tab->mat->row[row][0])) |
| 1585 | return 0; |
| 1586 | if (isl_seq_first_non_zero(p: tab->mat->row[row] + off + tab->n_dead, |
| 1587 | len: tab->n_col - tab->n_dead) != -1) |
| 1588 | return 0; |
| 1589 | |
| 1590 | return !isl_int_is_divisible_by(tab->mat->row[row][1], |
| 1591 | tab->mat->row[row][0]); |
| 1592 | } |
| 1593 | |
| 1594 | /* For integer tableaus, check if any of the coordinates are stuck |
| 1595 | * at a non-integral value. |
| 1596 | */ |
| 1597 | static int tab_is_manifestly_empty(struct isl_tab *tab) |
| 1598 | { |
| 1599 | int i; |
| 1600 | |
| 1601 | if (tab->empty) |
| 1602 | return 1; |
| 1603 | if (tab->rational) |
| 1604 | return 0; |
| 1605 | |
| 1606 | for (i = 0; i < tab->n_var; ++i) { |
| 1607 | if (!tab->var[i].is_row) |
| 1608 | continue; |
| 1609 | if (row_is_manifestly_non_integral(tab, row: tab->var[i].index)) |
| 1610 | return 1; |
| 1611 | } |
| 1612 | |
| 1613 | return 0; |
| 1614 | } |
| 1615 | |
| 1616 | /* Row variable "var" is non-negative and cannot attain any values |
| 1617 | * larger than zero. This means that the coefficients of the unrestricted |
| 1618 | * column variables are zero and that the coefficients of the non-negative |
| 1619 | * column variables are zero or negative. |
| 1620 | * Each of the non-negative variables with a negative coefficient can |
| 1621 | * then also be written as the negative sum of non-negative variables |
| 1622 | * and must therefore also be zero. |
| 1623 | * |
| 1624 | * If "temp_var" is set, then "var" is a temporary variable that |
| 1625 | * will be removed after this function returns and for which |
| 1626 | * no information is recorded on the undo stack. |
| 1627 | * Do not add any undo records involving this variable in this case |
| 1628 | * since the variable will have been removed before any future undo |
| 1629 | * operations. Also avoid marking the variable as redundant, |
| 1630 | * since that either adds an undo record or needlessly removes the row |
| 1631 | * (the caller will take care of removing the row). |
| 1632 | */ |
| 1633 | static isl_stat close_row(struct isl_tab *tab, struct isl_tab_var *var, |
| 1634 | int temp_var) WARN_UNUSED; |
| 1635 | static isl_stat close_row(struct isl_tab *tab, struct isl_tab_var *var, |
| 1636 | int temp_var) |
| 1637 | { |
| 1638 | int j; |
| 1639 | struct isl_mat *mat = tab->mat; |
| 1640 | unsigned off = 2 + tab->M; |
| 1641 | |
| 1642 | if (!var->is_nonneg) |
| 1643 | isl_die(isl_tab_get_ctx(tab), isl_error_internal, |
| 1644 | "expecting non-negative variable" , |
| 1645 | return isl_stat_error); |
| 1646 | var->is_zero = 1; |
| 1647 | if (!temp_var && tab->need_undo) |
| 1648 | if (isl_tab_push_var(tab, type: isl_tab_undo_zero, var) < 0) |
| 1649 | return isl_stat_error; |
| 1650 | for (j = tab->n_dead; j < tab->n_col; ++j) { |
| 1651 | int recheck; |
| 1652 | if (isl_int_is_zero(mat->row[var->index][off + j])) |
| 1653 | continue; |
| 1654 | if (isl_int_is_pos(mat->row[var->index][off + j])) |
| 1655 | isl_die(isl_tab_get_ctx(tab), isl_error_internal, |
| 1656 | "row cannot have positive coefficients" , |
| 1657 | return isl_stat_error); |
| 1658 | recheck = isl_tab_kill_col(tab, col: j); |
| 1659 | if (recheck < 0) |
| 1660 | return isl_stat_error; |
| 1661 | if (recheck) |
| 1662 | --j; |
| 1663 | } |
| 1664 | if (!temp_var && isl_tab_mark_redundant(tab, row: var->index) < 0) |
| 1665 | return isl_stat_error; |
| 1666 | if (tab_is_manifestly_empty(tab) && isl_tab_mark_empty(tab) < 0) |
| 1667 | return isl_stat_error; |
| 1668 | return isl_stat_ok; |
| 1669 | } |
| 1670 | |
| 1671 | /* Add a constraint to the tableau and allocate a row for it. |
| 1672 | * Return the index into the constraint array "con". |
| 1673 | * |
| 1674 | * This function assumes that at least one more row and at least |
| 1675 | * one more element in the constraint array are available in the tableau. |
| 1676 | */ |
| 1677 | int isl_tab_allocate_con(struct isl_tab *tab) |
| 1678 | { |
| 1679 | int r; |
| 1680 | |
| 1681 | isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1); |
| 1682 | isl_assert(tab->mat->ctx, tab->n_con < tab->max_con, return -1); |
| 1683 | |
| 1684 | r = tab->n_con; |
| 1685 | tab->con[r].index = tab->n_row; |
| 1686 | tab->con[r].is_row = 1; |
| 1687 | tab->con[r].is_nonneg = 0; |
| 1688 | tab->con[r].is_zero = 0; |
| 1689 | tab->con[r].is_redundant = 0; |
| 1690 | tab->con[r].frozen = 0; |
| 1691 | tab->con[r].negated = 0; |
| 1692 | tab->row_var[tab->n_row] = ~r; |
| 1693 | |
| 1694 | tab->n_row++; |
| 1695 | tab->n_con++; |
| 1696 | if (isl_tab_push_var(tab, type: isl_tab_undo_allocate, var: &tab->con[r]) < 0) |
| 1697 | return -1; |
| 1698 | |
| 1699 | return r; |
| 1700 | } |
| 1701 | |
| 1702 | /* Move the entries in tab->var up one position, starting at "first", |
| 1703 | * creating room for an extra entry at position "first". |
| 1704 | * Since some of the entries of tab->row_var and tab->col_var contain |
| 1705 | * indices into this array, they have to be updated accordingly. |
| 1706 | */ |
| 1707 | static int var_insert_entry(struct isl_tab *tab, int first) |
| 1708 | { |
| 1709 | int i; |
| 1710 | |
| 1711 | if (tab->n_var >= tab->max_var) |
| 1712 | isl_die(isl_tab_get_ctx(tab), isl_error_internal, |
| 1713 | "not enough room for new variable" , return -1); |
| 1714 | if (first > tab->n_var) |
| 1715 | isl_die(isl_tab_get_ctx(tab), isl_error_internal, |
| 1716 | "invalid initial position" , return -1); |
| 1717 | |
| 1718 | for (i = tab->n_var - 1; i >= first; --i) { |
| 1719 | tab->var[i + 1] = tab->var[i]; |
| 1720 | if (tab->var[i + 1].is_row) |
| 1721 | tab->row_var[tab->var[i + 1].index]++; |
| 1722 | else |
| 1723 | tab->col_var[tab->var[i + 1].index]++; |
| 1724 | } |
| 1725 | |
| 1726 | tab->n_var++; |
| 1727 | |
| 1728 | return 0; |
| 1729 | } |
| 1730 | |
| 1731 | /* Drop the entry at position "first" in tab->var, moving all |
| 1732 | * subsequent entries down. |
| 1733 | * Since some of the entries of tab->row_var and tab->col_var contain |
| 1734 | * indices into this array, they have to be updated accordingly. |
| 1735 | */ |
| 1736 | static int var_drop_entry(struct isl_tab *tab, int first) |
| 1737 | { |
| 1738 | int i; |
| 1739 | |
| 1740 | if (first >= tab->n_var) |
| 1741 | isl_die(isl_tab_get_ctx(tab), isl_error_internal, |
| 1742 | "invalid initial position" , return -1); |
| 1743 | |
| 1744 | tab->n_var--; |
| 1745 | |
| 1746 | for (i = first; i < tab->n_var; ++i) { |
| 1747 | tab->var[i] = tab->var[i + 1]; |
| 1748 | if (tab->var[i + 1].is_row) |
| 1749 | tab->row_var[tab->var[i].index]--; |
| 1750 | else |
| 1751 | tab->col_var[tab->var[i].index]--; |
| 1752 | } |
| 1753 | |
| 1754 | return 0; |
| 1755 | } |
| 1756 | |
| 1757 | /* Add a variable to the tableau at position "r" and allocate a column for it. |
| 1758 | * Return the index into the variable array "var", i.e., "r", |
| 1759 | * or -1 on error. |
| 1760 | */ |
| 1761 | int isl_tab_insert_var(struct isl_tab *tab, int r) |
| 1762 | { |
| 1763 | int i; |
| 1764 | unsigned off = 2 + tab->M; |
| 1765 | |
| 1766 | isl_assert(tab->mat->ctx, tab->n_col < tab->mat->n_col, return -1); |
| 1767 | |
| 1768 | if (var_insert_entry(tab, first: r) < 0) |
| 1769 | return -1; |
| 1770 | |
| 1771 | tab->var[r].index = tab->n_col; |
| 1772 | tab->var[r].is_row = 0; |
| 1773 | tab->var[r].is_nonneg = 0; |
| 1774 | tab->var[r].is_zero = 0; |
| 1775 | tab->var[r].is_redundant = 0; |
| 1776 | tab->var[r].frozen = 0; |
| 1777 | tab->var[r].negated = 0; |
| 1778 | tab->col_var[tab->n_col] = r; |
| 1779 | |
| 1780 | for (i = 0; i < tab->n_row; ++i) |
| 1781 | isl_int_set_si(tab->mat->row[i][off + tab->n_col], 0); |
| 1782 | |
| 1783 | tab->n_col++; |
| 1784 | if (isl_tab_push_var(tab, type: isl_tab_undo_allocate, var: &tab->var[r]) < 0) |
| 1785 | return -1; |
| 1786 | |
| 1787 | return r; |
| 1788 | } |
| 1789 | |
| 1790 | /* Add a row to the tableau. The row is given as an affine combination |
| 1791 | * of the original variables and needs to be expressed in terms of the |
| 1792 | * column variables. |
| 1793 | * |
| 1794 | * This function assumes that at least one more row and at least |
| 1795 | * one more element in the constraint array are available in the tableau. |
| 1796 | * |
| 1797 | * We add each term in turn. |
| 1798 | * If r = n/d_r is the current sum and we need to add k x, then |
| 1799 | * if x is a column variable, we increase the numerator of |
| 1800 | * this column by k d_r |
| 1801 | * if x = f/d_x is a row variable, then the new representation of r is |
| 1802 | * |
| 1803 | * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f |
| 1804 | * --- + --- = ------------------- = ------------------- |
| 1805 | * d_r d_r d_r d_x/g m |
| 1806 | * |
| 1807 | * with g the gcd of d_r and d_x and m the lcm of d_r and d_x. |
| 1808 | * |
| 1809 | * If tab->M is set, then, internally, each variable x is represented |
| 1810 | * as x' - M. We then also need no subtract k d_r from the coefficient of M. |
| 1811 | */ |
| 1812 | int isl_tab_add_row(struct isl_tab *tab, isl_int *line) |
| 1813 | { |
| 1814 | int i; |
| 1815 | int r; |
| 1816 | isl_int *row; |
| 1817 | isl_int a, b; |
| 1818 | unsigned off = 2 + tab->M; |
| 1819 | |
| 1820 | r = isl_tab_allocate_con(tab); |
| 1821 | if (r < 0) |
| 1822 | return -1; |
| 1823 | |
| 1824 | isl_int_init(a); |
| 1825 | isl_int_init(b); |
| 1826 | row = tab->mat->row[tab->con[r].index]; |
| 1827 | isl_int_set_si(row[0], 1); |
| 1828 | isl_int_set(row[1], line[0]); |
| 1829 | isl_seq_clr(p: row + 2, len: tab->M + tab->n_col); |
| 1830 | for (i = 0; i < tab->n_var; ++i) { |
| 1831 | if (tab->var[i].is_zero) |
| 1832 | continue; |
| 1833 | if (tab->var[i].is_row) { |
| 1834 | isl_int_lcm(a, |
| 1835 | row[0], tab->mat->row[tab->var[i].index][0]); |
| 1836 | isl_int_swap(a, row[0]); |
| 1837 | isl_int_divexact(a, row[0], a); |
| 1838 | isl_int_divexact(b, |
| 1839 | row[0], tab->mat->row[tab->var[i].index][0]); |
| 1840 | isl_int_mul(b, b, line[1 + i]); |
| 1841 | isl_seq_combine(dst: row + 1, m1: a, src1: row + 1, |
| 1842 | m2: b, src2: tab->mat->row[tab->var[i].index] + 1, |
| 1843 | len: 1 + tab->M + tab->n_col); |
| 1844 | } else |
| 1845 | isl_int_addmul(row[off + tab->var[i].index], |
| 1846 | line[1 + i], row[0]); |
| 1847 | if (tab->M && i >= tab->n_param && i < tab->n_var - tab->n_div) |
| 1848 | isl_int_submul(row[2], line[1 + i], row[0]); |
| 1849 | } |
| 1850 | isl_seq_normalize(ctx: tab->mat->ctx, p: row, len: off + tab->n_col); |
| 1851 | isl_int_clear(a); |
| 1852 | isl_int_clear(b); |
| 1853 | |
| 1854 | if (tab->row_sign) |
| 1855 | tab->row_sign[tab->con[r].index] = isl_tab_row_unknown; |
| 1856 | |
| 1857 | return r; |
| 1858 | } |
| 1859 | |
| 1860 | static isl_stat drop_row(struct isl_tab *tab, int row) |
| 1861 | { |
| 1862 | isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1, |
| 1863 | return isl_stat_error); |
| 1864 | if (row != tab->n_row - 1) |
| 1865 | swap_rows(tab, row1: row, row2: tab->n_row - 1); |
| 1866 | tab->n_row--; |
| 1867 | tab->n_con--; |
| 1868 | return isl_stat_ok; |
| 1869 | } |
| 1870 | |
| 1871 | /* Drop the variable in column "col" along with the column. |
| 1872 | * The column is removed first because it may need to be moved |
| 1873 | * into the last position and this process requires |
| 1874 | * the contents of the col_var array in a state |
| 1875 | * before the removal of the variable. |
| 1876 | */ |
| 1877 | static isl_stat drop_col(struct isl_tab *tab, int col) |
| 1878 | { |
| 1879 | int var; |
| 1880 | |
| 1881 | var = tab->col_var[col]; |
| 1882 | if (col != tab->n_col - 1) |
| 1883 | swap_cols(tab, col1: col, col2: tab->n_col - 1); |
| 1884 | tab->n_col--; |
| 1885 | if (var_drop_entry(tab, first: var) < 0) |
| 1886 | return isl_stat_error; |
| 1887 | return isl_stat_ok; |
| 1888 | } |
| 1889 | |
| 1890 | /* Add inequality "ineq" and check if it conflicts with the |
| 1891 | * previously added constraints or if it is obviously redundant. |
| 1892 | * |
| 1893 | * This function assumes that at least one more row and at least |
| 1894 | * one more element in the constraint array are available in the tableau. |
| 1895 | */ |
| 1896 | isl_stat isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq) |
| 1897 | { |
| 1898 | int r; |
| 1899 | int sgn; |
| 1900 | isl_int cst; |
| 1901 | |
| 1902 | if (!tab) |
| 1903 | return isl_stat_error; |
| 1904 | if (tab->bmap) { |
| 1905 | struct isl_basic_map *bmap = tab->bmap; |
| 1906 | |
| 1907 | isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, |
| 1908 | return isl_stat_error); |
| 1909 | isl_assert(tab->mat->ctx, |
| 1910 | tab->n_con == bmap->n_eq + bmap->n_ineq, |
| 1911 | return isl_stat_error); |
| 1912 | tab->bmap = isl_basic_map_add_ineq(bmap: tab->bmap, ineq); |
| 1913 | if (isl_tab_push(tab, type: isl_tab_undo_bmap_ineq) < 0) |
| 1914 | return isl_stat_error; |
| 1915 | if (!tab->bmap) |
| 1916 | return isl_stat_error; |
| 1917 | } |
| 1918 | if (tab->cone) { |
| 1919 | isl_int_init(cst); |
| 1920 | isl_int_set_si(cst, 0); |
| 1921 | isl_int_swap(ineq[0], cst); |
| 1922 | } |
| 1923 | r = isl_tab_add_row(tab, line: ineq); |
| 1924 | if (tab->cone) { |
| 1925 | isl_int_swap(ineq[0], cst); |
| 1926 | isl_int_clear(cst); |
| 1927 | } |
| 1928 | if (r < 0) |
| 1929 | return isl_stat_error; |
| 1930 | tab->con[r].is_nonneg = 1; |
| 1931 | if (isl_tab_push_var(tab, type: isl_tab_undo_nonneg, var: &tab->con[r]) < 0) |
| 1932 | return isl_stat_error; |
| 1933 | if (isl_tab_row_is_redundant(tab, row: tab->con[r].index)) { |
| 1934 | if (isl_tab_mark_redundant(tab, row: tab->con[r].index) < 0) |
| 1935 | return isl_stat_error; |
| 1936 | return isl_stat_ok; |
| 1937 | } |
| 1938 | |
| 1939 | sgn = restore_row(tab, var: &tab->con[r]); |
| 1940 | if (sgn < -1) |
| 1941 | return isl_stat_error; |
| 1942 | if (sgn < 0) |
| 1943 | return isl_tab_mark_empty(tab); |
| 1944 | if (tab->con[r].is_row && isl_tab_row_is_redundant(tab, row: tab->con[r].index)) |
| 1945 | if (isl_tab_mark_redundant(tab, row: tab->con[r].index) < 0) |
| 1946 | return isl_stat_error; |
| 1947 | return isl_stat_ok; |
| 1948 | } |
| 1949 | |
| 1950 | /* Pivot a non-negative variable down until it reaches the value zero |
| 1951 | * and then pivot the variable into a column position. |
| 1952 | */ |
| 1953 | static int to_col(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED; |
| 1954 | static int to_col(struct isl_tab *tab, struct isl_tab_var *var) |
| 1955 | { |
| 1956 | int i; |
| 1957 | int row, col; |
| 1958 | unsigned off = 2 + tab->M; |
| 1959 | |
| 1960 | if (!var->is_row) |
| 1961 | return 0; |
| 1962 | |
| 1963 | while (isl_int_is_pos(tab->mat->row[var->index][1])) { |
| 1964 | find_pivot(tab, var, NULL, sgn: -1, row: &row, col: &col); |
| 1965 | isl_assert(tab->mat->ctx, row != -1, return -1); |
| 1966 | if (isl_tab_pivot(tab, row, col) < 0) |
| 1967 | return -1; |
| 1968 | if (!var->is_row) |
| 1969 | return 0; |
| 1970 | } |
| 1971 | |
| 1972 | for (i = tab->n_dead; i < tab->n_col; ++i) |
| 1973 | if (!isl_int_is_zero(tab->mat->row[var->index][off + i])) |
| 1974 | break; |
| 1975 | |
| 1976 | isl_assert(tab->mat->ctx, i < tab->n_col, return -1); |
| 1977 | if (isl_tab_pivot(tab, row: var->index, col: i) < 0) |
| 1978 | return -1; |
| 1979 | |
| 1980 | return 0; |
| 1981 | } |
| 1982 | |
| 1983 | /* We assume Gaussian elimination has been performed on the equalities. |
| 1984 | * The equalities can therefore never conflict. |
| 1985 | * Adding the equalities is currently only really useful for a later call |
| 1986 | * to isl_tab_ineq_type. |
| 1987 | * |
| 1988 | * This function assumes that at least one more row and at least |
| 1989 | * one more element in the constraint array are available in the tableau. |
| 1990 | */ |
| 1991 | static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq) |
| 1992 | { |
| 1993 | int i; |
| 1994 | int r; |
| 1995 | |
| 1996 | if (!tab) |
| 1997 | return NULL; |
| 1998 | r = isl_tab_add_row(tab, line: eq); |
| 1999 | if (r < 0) |
| 2000 | goto error; |
| 2001 | |
| 2002 | r = tab->con[r].index; |
| 2003 | i = isl_seq_first_non_zero(p: tab->mat->row[r] + 2 + tab->M + tab->n_dead, |
| 2004 | len: tab->n_col - tab->n_dead); |
| 2005 | isl_assert(tab->mat->ctx, i >= 0, goto error); |
| 2006 | i += tab->n_dead; |
| 2007 | if (isl_tab_pivot(tab, row: r, col: i) < 0) |
| 2008 | goto error; |
| 2009 | if (isl_tab_kill_col(tab, col: i) < 0) |
| 2010 | goto error; |
| 2011 | tab->n_eq++; |
| 2012 | |
| 2013 | return tab; |
| 2014 | error: |
| 2015 | isl_tab_free(tab); |
| 2016 | return NULL; |
| 2017 | } |
| 2018 | |
| 2019 | /* Does the sample value of row "row" of "tab" involve the big parameter, |
| 2020 | * if any? |
| 2021 | */ |
| 2022 | static int row_is_big(struct isl_tab *tab, int row) |
| 2023 | { |
| 2024 | return tab->M && !isl_int_is_zero(tab->mat->row[row][2]); |
| 2025 | } |
| 2026 | |
| 2027 | static int row_is_manifestly_zero(struct isl_tab *tab, int row) |
| 2028 | { |
| 2029 | unsigned off = 2 + tab->M; |
| 2030 | |
| 2031 | if (!isl_int_is_zero(tab->mat->row[row][1])) |
| 2032 | return 0; |
| 2033 | if (row_is_big(tab, row)) |
| 2034 | return 0; |
| 2035 | return isl_seq_first_non_zero(p: tab->mat->row[row] + off + tab->n_dead, |
| 2036 | len: tab->n_col - tab->n_dead) == -1; |
| 2037 | } |
| 2038 | |
| 2039 | /* Add an equality that is known to be valid for the given tableau. |
| 2040 | * |
| 2041 | * This function assumes that at least one more row and at least |
| 2042 | * one more element in the constraint array are available in the tableau. |
| 2043 | */ |
| 2044 | int isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq) |
| 2045 | { |
| 2046 | struct isl_tab_var *var; |
| 2047 | int r; |
| 2048 | |
| 2049 | if (!tab) |
| 2050 | return -1; |
| 2051 | r = isl_tab_add_row(tab, line: eq); |
| 2052 | if (r < 0) |
| 2053 | return -1; |
| 2054 | |
| 2055 | var = &tab->con[r]; |
| 2056 | r = var->index; |
| 2057 | if (row_is_manifestly_zero(tab, row: r)) { |
| 2058 | var->is_zero = 1; |
| 2059 | if (isl_tab_mark_redundant(tab, row: r) < 0) |
| 2060 | return -1; |
| 2061 | return 0; |
| 2062 | } |
| 2063 | |
| 2064 | if (isl_int_is_neg(tab->mat->row[r][1])) { |
| 2065 | isl_seq_neg(dst: tab->mat->row[r] + 1, src: tab->mat->row[r] + 1, |
| 2066 | len: 1 + tab->n_col); |
| 2067 | var->negated = 1; |
| 2068 | } |
| 2069 | var->is_nonneg = 1; |
| 2070 | if (to_col(tab, var) < 0) |
| 2071 | return -1; |
| 2072 | var->is_nonneg = 0; |
| 2073 | if (isl_tab_kill_col(tab, col: var->index) < 0) |
| 2074 | return -1; |
| 2075 | |
| 2076 | return 0; |
| 2077 | } |
| 2078 | |
| 2079 | /* Add a zero row to "tab" and return the corresponding index |
| 2080 | * in the constraint array. |
| 2081 | * |
| 2082 | * This function assumes that at least one more row and at least |
| 2083 | * one more element in the constraint array are available in the tableau. |
| 2084 | */ |
| 2085 | static int add_zero_row(struct isl_tab *tab) |
| 2086 | { |
| 2087 | int r; |
| 2088 | isl_int *row; |
| 2089 | |
| 2090 | r = isl_tab_allocate_con(tab); |
| 2091 | if (r < 0) |
| 2092 | return -1; |
| 2093 | |
| 2094 | row = tab->mat->row[tab->con[r].index]; |
| 2095 | isl_seq_clr(p: row + 1, len: 1 + tab->M + tab->n_col); |
| 2096 | isl_int_set_si(row[0], 1); |
| 2097 | |
| 2098 | return r; |
| 2099 | } |
| 2100 | |
| 2101 | /* Add equality "eq" and check if it conflicts with the |
| 2102 | * previously added constraints or if it is obviously redundant. |
| 2103 | * |
| 2104 | * This function assumes that at least one more row and at least |
| 2105 | * one more element in the constraint array are available in the tableau. |
| 2106 | * If tab->bmap is set, then two rows are needed instead of one. |
| 2107 | */ |
| 2108 | isl_stat isl_tab_add_eq(struct isl_tab *tab, isl_int *eq) |
| 2109 | { |
| 2110 | struct isl_tab_undo *snap = NULL; |
| 2111 | struct isl_tab_var *var; |
| 2112 | int r; |
| 2113 | int row; |
| 2114 | int sgn; |
| 2115 | isl_int cst; |
| 2116 | |
| 2117 | if (!tab) |
| 2118 | return isl_stat_error; |
| 2119 | isl_assert(tab->mat->ctx, !tab->M, return isl_stat_error); |
| 2120 | |
| 2121 | if (tab->need_undo) |
| 2122 | snap = isl_tab_snap(tab); |
| 2123 | |
| 2124 | if (tab->cone) { |
| 2125 | isl_int_init(cst); |
| 2126 | isl_int_set_si(cst, 0); |
| 2127 | isl_int_swap(eq[0], cst); |
| 2128 | } |
| 2129 | r = isl_tab_add_row(tab, line: eq); |
| 2130 | if (tab->cone) { |
| 2131 | isl_int_swap(eq[0], cst); |
| 2132 | isl_int_clear(cst); |
| 2133 | } |
| 2134 | if (r < 0) |
| 2135 | return isl_stat_error; |
| 2136 | |
| 2137 | var = &tab->con[r]; |
| 2138 | row = var->index; |
| 2139 | if (row_is_manifestly_zero(tab, row)) { |
| 2140 | if (snap) |
| 2141 | return isl_tab_rollback(tab, snap); |
| 2142 | return drop_row(tab, row); |
| 2143 | } |
| 2144 | |
| 2145 | if (tab->bmap) { |
| 2146 | tab->bmap = isl_basic_map_add_ineq(bmap: tab->bmap, ineq: eq); |
| 2147 | if (isl_tab_push(tab, type: isl_tab_undo_bmap_ineq) < 0) |
| 2148 | return isl_stat_error; |
| 2149 | isl_seq_neg(dst: eq, src: eq, len: 1 + tab->n_var); |
| 2150 | tab->bmap = isl_basic_map_add_ineq(bmap: tab->bmap, ineq: eq); |
| 2151 | isl_seq_neg(dst: eq, src: eq, len: 1 + tab->n_var); |
| 2152 | if (isl_tab_push(tab, type: isl_tab_undo_bmap_ineq) < 0) |
| 2153 | return isl_stat_error; |
| 2154 | if (!tab->bmap) |
| 2155 | return isl_stat_error; |
| 2156 | if (add_zero_row(tab) < 0) |
| 2157 | return isl_stat_error; |
| 2158 | } |
| 2159 | |
| 2160 | sgn = isl_int_sgn(tab->mat->row[row][1]); |
| 2161 | |
| 2162 | if (sgn > 0) { |
| 2163 | isl_seq_neg(dst: tab->mat->row[row] + 1, src: tab->mat->row[row] + 1, |
| 2164 | len: 1 + tab->n_col); |
| 2165 | var->negated = 1; |
| 2166 | sgn = -1; |
| 2167 | } |
| 2168 | |
| 2169 | if (sgn < 0) { |
| 2170 | sgn = sign_of_max(tab, var); |
| 2171 | if (sgn < -1) |
| 2172 | return isl_stat_error; |
| 2173 | if (sgn < 0) { |
| 2174 | if (isl_tab_mark_empty(tab) < 0) |
| 2175 | return isl_stat_error; |
| 2176 | return isl_stat_ok; |
| 2177 | } |
| 2178 | } |
| 2179 | |
| 2180 | var->is_nonneg = 1; |
| 2181 | if (to_col(tab, var) < 0) |
| 2182 | return isl_stat_error; |
| 2183 | var->is_nonneg = 0; |
| 2184 | if (isl_tab_kill_col(tab, col: var->index) < 0) |
| 2185 | return isl_stat_error; |
| 2186 | |
| 2187 | return isl_stat_ok; |
| 2188 | } |
| 2189 | |
| 2190 | /* Construct and return an inequality that expresses an upper bound |
| 2191 | * on the given div. |
| 2192 | * In particular, if the div is given by |
| 2193 | * |
| 2194 | * d = floor(e/m) |
| 2195 | * |
| 2196 | * then the inequality expresses |
| 2197 | * |
| 2198 | * m d <= e |
| 2199 | */ |
| 2200 | static __isl_give isl_vec *ineq_for_div(__isl_keep isl_basic_map *bmap, |
| 2201 | unsigned div) |
| 2202 | { |
| 2203 | isl_size total; |
| 2204 | unsigned div_pos; |
| 2205 | struct isl_vec *ineq; |
| 2206 | |
| 2207 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 2208 | if (total < 0) |
| 2209 | return NULL; |
| 2210 | |
| 2211 | div_pos = 1 + total - bmap->n_div + div; |
| 2212 | |
| 2213 | ineq = isl_vec_alloc(ctx: bmap->ctx, size: 1 + total); |
| 2214 | if (!ineq) |
| 2215 | return NULL; |
| 2216 | |
| 2217 | isl_seq_cpy(dst: ineq->el, src: bmap->div[div] + 1, len: 1 + total); |
| 2218 | isl_int_neg(ineq->el[div_pos], bmap->div[div][0]); |
| 2219 | return ineq; |
| 2220 | } |
| 2221 | |
| 2222 | /* For a div d = floor(f/m), add the constraints |
| 2223 | * |
| 2224 | * f - m d >= 0 |
| 2225 | * -(f-(m-1)) + m d >= 0 |
| 2226 | * |
| 2227 | * Note that the second constraint is the negation of |
| 2228 | * |
| 2229 | * f - m d >= m |
| 2230 | * |
| 2231 | * If add_ineq is not NULL, then this function is used |
| 2232 | * instead of isl_tab_add_ineq to effectively add the inequalities. |
| 2233 | * |
| 2234 | * This function assumes that at least two more rows and at least |
| 2235 | * two more elements in the constraint array are available in the tableau. |
| 2236 | */ |
| 2237 | static isl_stat add_div_constraints(struct isl_tab *tab, unsigned div, |
| 2238 | isl_stat (*add_ineq)(void *user, isl_int *), void *user) |
| 2239 | { |
| 2240 | isl_size total; |
| 2241 | unsigned div_pos; |
| 2242 | struct isl_vec *ineq; |
| 2243 | |
| 2244 | total = isl_basic_map_dim(bmap: tab->bmap, type: isl_dim_all); |
| 2245 | if (total < 0) |
| 2246 | return isl_stat_error; |
| 2247 | div_pos = 1 + total - tab->bmap->n_div + div; |
| 2248 | |
| 2249 | ineq = ineq_for_div(bmap: tab->bmap, div); |
| 2250 | if (!ineq) |
| 2251 | goto error; |
| 2252 | |
| 2253 | if (add_ineq) { |
| 2254 | if (add_ineq(user, ineq->el) < 0) |
| 2255 | goto error; |
| 2256 | } else { |
| 2257 | if (isl_tab_add_ineq(tab, ineq: ineq->el) < 0) |
| 2258 | goto error; |
| 2259 | } |
| 2260 | |
| 2261 | isl_seq_neg(dst: ineq->el, src: tab->bmap->div[div] + 1, len: 1 + total); |
| 2262 | isl_int_set(ineq->el[div_pos], tab->bmap->div[div][0]); |
| 2263 | isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]); |
| 2264 | isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); |
| 2265 | |
| 2266 | if (add_ineq) { |
| 2267 | if (add_ineq(user, ineq->el) < 0) |
| 2268 | goto error; |
| 2269 | } else { |
| 2270 | if (isl_tab_add_ineq(tab, ineq: ineq->el) < 0) |
| 2271 | goto error; |
| 2272 | } |
| 2273 | |
| 2274 | isl_vec_free(vec: ineq); |
| 2275 | |
| 2276 | return isl_stat_ok; |
| 2277 | error: |
| 2278 | isl_vec_free(vec: ineq); |
| 2279 | return isl_stat_error; |
| 2280 | } |
| 2281 | |
| 2282 | /* Check whether the div described by "div" is obviously non-negative. |
| 2283 | * If we are using a big parameter, then we will encode the div |
| 2284 | * as div' = M + div, which is always non-negative. |
| 2285 | * Otherwise, we check whether div is a non-negative affine combination |
| 2286 | * of non-negative variables. |
| 2287 | */ |
| 2288 | static int div_is_nonneg(struct isl_tab *tab, __isl_keep isl_vec *div) |
| 2289 | { |
| 2290 | int i; |
| 2291 | |
| 2292 | if (tab->M) |
| 2293 | return 1; |
| 2294 | |
| 2295 | if (isl_int_is_neg(div->el[1])) |
| 2296 | return 0; |
| 2297 | |
| 2298 | for (i = 0; i < tab->n_var; ++i) { |
| 2299 | if (isl_int_is_neg(div->el[2 + i])) |
| 2300 | return 0; |
| 2301 | if (isl_int_is_zero(div->el[2 + i])) |
| 2302 | continue; |
| 2303 | if (!tab->var[i].is_nonneg) |
| 2304 | return 0; |
| 2305 | } |
| 2306 | |
| 2307 | return 1; |
| 2308 | } |
| 2309 | |
| 2310 | /* Insert an extra div, prescribed by "div", to the tableau and |
| 2311 | * the associated bmap (which is assumed to be non-NULL). |
| 2312 | * The extra integer division is inserted at (tableau) position "pos". |
| 2313 | * Return "pos" or -1 if an error occurred. |
| 2314 | * |
| 2315 | * If add_ineq is not NULL, then this function is used instead |
| 2316 | * of isl_tab_add_ineq to add the div constraints. |
| 2317 | * This complication is needed because the code in isl_tab_pip |
| 2318 | * wants to perform some extra processing when an inequality |
| 2319 | * is added to the tableau. |
| 2320 | */ |
| 2321 | int isl_tab_insert_div(struct isl_tab *tab, int pos, __isl_keep isl_vec *div, |
| 2322 | isl_stat (*add_ineq)(void *user, isl_int *), void *user) |
| 2323 | { |
| 2324 | int r; |
| 2325 | int nonneg; |
| 2326 | isl_size n_div; |
| 2327 | int o_div; |
| 2328 | |
| 2329 | if (!tab || !div) |
| 2330 | return -1; |
| 2331 | |
| 2332 | if (div->size != 1 + 1 + tab->n_var) |
| 2333 | isl_die(isl_tab_get_ctx(tab), isl_error_invalid, |
| 2334 | "unexpected size" , return -1); |
| 2335 | |
| 2336 | n_div = isl_basic_map_dim(bmap: tab->bmap, type: isl_dim_div); |
| 2337 | if (n_div < 0) |
| 2338 | return -1; |
| 2339 | o_div = tab->n_var - n_div; |
| 2340 | if (pos < o_div || pos > tab->n_var) |
| 2341 | isl_die(isl_tab_get_ctx(tab), isl_error_invalid, |
| 2342 | "invalid position" , return -1); |
| 2343 | |
| 2344 | nonneg = div_is_nonneg(tab, div); |
| 2345 | |
| 2346 | if (isl_tab_extend_cons(tab, n_new: 3) < 0) |
| 2347 | return -1; |
| 2348 | if (isl_tab_extend_vars(tab, n_new: 1) < 0) |
| 2349 | return -1; |
| 2350 | r = isl_tab_insert_var(tab, r: pos); |
| 2351 | if (r < 0) |
| 2352 | return -1; |
| 2353 | |
| 2354 | if (nonneg) |
| 2355 | tab->var[r].is_nonneg = 1; |
| 2356 | |
| 2357 | tab->bmap = isl_basic_map_insert_div(bmap: tab->bmap, pos: pos - o_div, div); |
| 2358 | if (!tab->bmap) |
| 2359 | return -1; |
| 2360 | if (isl_tab_push_var(tab, type: isl_tab_undo_bmap_div, var: &tab->var[r]) < 0) |
| 2361 | return -1; |
| 2362 | |
| 2363 | if (add_div_constraints(tab, div: pos - o_div, add_ineq, user) < 0) |
| 2364 | return -1; |
| 2365 | |
| 2366 | return r; |
| 2367 | } |
| 2368 | |
| 2369 | /* Add an extra div, prescribed by "div", to the tableau and |
| 2370 | * the associated bmap (which is assumed to be non-NULL). |
| 2371 | */ |
| 2372 | int isl_tab_add_div(struct isl_tab *tab, __isl_keep isl_vec *div) |
| 2373 | { |
| 2374 | if (!tab) |
| 2375 | return -1; |
| 2376 | return isl_tab_insert_div(tab, pos: tab->n_var, div, NULL, NULL); |
| 2377 | } |
| 2378 | |
| 2379 | /* If "track" is set, then we want to keep track of all constraints in tab |
| 2380 | * in its bmap field. This field is initialized from a copy of "bmap", |
| 2381 | * so we need to make sure that all constraints in "bmap" also appear |
| 2382 | * in the constructed tab. |
| 2383 | */ |
| 2384 | __isl_give struct isl_tab *isl_tab_from_basic_map( |
| 2385 | __isl_keep isl_basic_map *bmap, int track) |
| 2386 | { |
| 2387 | int i; |
| 2388 | struct isl_tab *tab; |
| 2389 | isl_size total; |
| 2390 | |
| 2391 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 2392 | if (total < 0) |
| 2393 | return NULL; |
| 2394 | tab = isl_tab_alloc(ctx: bmap->ctx, n_row: total + bmap->n_ineq + 1, n_var: total, M: 0); |
| 2395 | if (!tab) |
| 2396 | return NULL; |
| 2397 | tab->preserve = track; |
| 2398 | tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL); |
| 2399 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) { |
| 2400 | if (isl_tab_mark_empty(tab) < 0) |
| 2401 | goto error; |
| 2402 | goto done; |
| 2403 | } |
| 2404 | for (i = 0; i < bmap->n_eq; ++i) { |
| 2405 | tab = add_eq(tab, eq: bmap->eq[i]); |
| 2406 | if (!tab) |
| 2407 | return tab; |
| 2408 | } |
| 2409 | for (i = 0; i < bmap->n_ineq; ++i) { |
| 2410 | if (isl_tab_add_ineq(tab, ineq: bmap->ineq[i]) < 0) |
| 2411 | goto error; |
| 2412 | if (tab->empty) |
| 2413 | goto done; |
| 2414 | } |
| 2415 | done: |
| 2416 | if (track && isl_tab_track_bmap(tab, bmap: isl_basic_map_copy(bmap)) < 0) |
| 2417 | goto error; |
| 2418 | return tab; |
| 2419 | error: |
| 2420 | isl_tab_free(tab); |
| 2421 | return NULL; |
| 2422 | } |
| 2423 | |
| 2424 | __isl_give struct isl_tab *isl_tab_from_basic_set( |
| 2425 | __isl_keep isl_basic_set *bset, int track) |
| 2426 | { |
| 2427 | return isl_tab_from_basic_map(bmap: bset, track); |
| 2428 | } |
| 2429 | |
| 2430 | /* Construct a tableau corresponding to the recession cone of "bset". |
| 2431 | */ |
| 2432 | struct isl_tab *isl_tab_from_recession_cone(__isl_keep isl_basic_set *bset, |
| 2433 | int parametric) |
| 2434 | { |
| 2435 | isl_int cst; |
| 2436 | int i; |
| 2437 | struct isl_tab *tab; |
| 2438 | isl_size offset = 0; |
| 2439 | isl_size total; |
| 2440 | |
| 2441 | total = isl_basic_set_dim(bset, type: isl_dim_all); |
| 2442 | if (parametric) |
| 2443 | offset = isl_basic_set_dim(bset, type: isl_dim_param); |
| 2444 | if (total < 0 || offset < 0) |
| 2445 | return NULL; |
| 2446 | tab = isl_tab_alloc(ctx: bset->ctx, n_row: bset->n_eq + bset->n_ineq, |
| 2447 | n_var: total - offset, M: 0); |
| 2448 | if (!tab) |
| 2449 | return NULL; |
| 2450 | tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL); |
| 2451 | tab->cone = 1; |
| 2452 | |
| 2453 | isl_int_init(cst); |
| 2454 | isl_int_set_si(cst, 0); |
| 2455 | for (i = 0; i < bset->n_eq; ++i) { |
| 2456 | isl_int_swap(bset->eq[i][offset], cst); |
| 2457 | if (offset > 0) { |
| 2458 | if (isl_tab_add_eq(tab, eq: bset->eq[i] + offset) < 0) |
| 2459 | goto error; |
| 2460 | } else |
| 2461 | tab = add_eq(tab, eq: bset->eq[i]); |
| 2462 | isl_int_swap(bset->eq[i][offset], cst); |
| 2463 | if (!tab) |
| 2464 | goto done; |
| 2465 | } |
| 2466 | for (i = 0; i < bset->n_ineq; ++i) { |
| 2467 | int r; |
| 2468 | isl_int_swap(bset->ineq[i][offset], cst); |
| 2469 | r = isl_tab_add_row(tab, line: bset->ineq[i] + offset); |
| 2470 | isl_int_swap(bset->ineq[i][offset], cst); |
| 2471 | if (r < 0) |
| 2472 | goto error; |
| 2473 | tab->con[r].is_nonneg = 1; |
| 2474 | if (isl_tab_push_var(tab, type: isl_tab_undo_nonneg, var: &tab->con[r]) < 0) |
| 2475 | goto error; |
| 2476 | } |
| 2477 | done: |
| 2478 | isl_int_clear(cst); |
| 2479 | return tab; |
| 2480 | error: |
| 2481 | isl_int_clear(cst); |
| 2482 | isl_tab_free(tab); |
| 2483 | return NULL; |
| 2484 | } |
| 2485 | |
| 2486 | /* Assuming "tab" is the tableau of a cone, check if the cone is |
| 2487 | * bounded, i.e., if it is empty or only contains the origin. |
| 2488 | */ |
| 2489 | isl_bool isl_tab_cone_is_bounded(struct isl_tab *tab) |
| 2490 | { |
| 2491 | int i; |
| 2492 | |
| 2493 | if (!tab) |
| 2494 | return isl_bool_error; |
| 2495 | if (tab->empty) |
| 2496 | return isl_bool_true; |
| 2497 | if (tab->n_dead == tab->n_col) |
| 2498 | return isl_bool_true; |
| 2499 | |
| 2500 | for (;;) { |
| 2501 | for (i = tab->n_redundant; i < tab->n_row; ++i) { |
| 2502 | struct isl_tab_var *var; |
| 2503 | int sgn; |
| 2504 | var = isl_tab_var_from_row(tab, i); |
| 2505 | if (!var->is_nonneg) |
| 2506 | continue; |
| 2507 | sgn = sign_of_max(tab, var); |
| 2508 | if (sgn < -1) |
| 2509 | return isl_bool_error; |
| 2510 | if (sgn != 0) |
| 2511 | return isl_bool_false; |
| 2512 | if (close_row(tab, var, temp_var: 0) < 0) |
| 2513 | return isl_bool_error; |
| 2514 | break; |
| 2515 | } |
| 2516 | if (tab->n_dead == tab->n_col) |
| 2517 | return isl_bool_true; |
| 2518 | if (i == tab->n_row) |
| 2519 | return isl_bool_false; |
| 2520 | } |
| 2521 | } |
| 2522 | |
| 2523 | int isl_tab_sample_is_integer(struct isl_tab *tab) |
| 2524 | { |
| 2525 | int i; |
| 2526 | |
| 2527 | if (!tab) |
| 2528 | return -1; |
| 2529 | |
| 2530 | for (i = 0; i < tab->n_var; ++i) { |
| 2531 | int row; |
| 2532 | if (!tab->var[i].is_row) |
| 2533 | continue; |
| 2534 | row = tab->var[i].index; |
| 2535 | if (!isl_int_is_divisible_by(tab->mat->row[row][1], |
| 2536 | tab->mat->row[row][0])) |
| 2537 | return 0; |
| 2538 | } |
| 2539 | return 1; |
| 2540 | } |
| 2541 | |
| 2542 | static struct isl_vec *(struct isl_tab *tab) |
| 2543 | { |
| 2544 | int i; |
| 2545 | struct isl_vec *vec; |
| 2546 | |
| 2547 | vec = isl_vec_alloc(ctx: tab->mat->ctx, size: 1 + tab->n_var); |
| 2548 | if (!vec) |
| 2549 | return NULL; |
| 2550 | |
| 2551 | isl_int_set_si(vec->block.data[0], 1); |
| 2552 | for (i = 0; i < tab->n_var; ++i) { |
| 2553 | if (!tab->var[i].is_row) |
| 2554 | isl_int_set_si(vec->block.data[1 + i], 0); |
| 2555 | else { |
| 2556 | int row = tab->var[i].index; |
| 2557 | isl_int_divexact(vec->block.data[1 + i], |
| 2558 | tab->mat->row[row][1], tab->mat->row[row][0]); |
| 2559 | } |
| 2560 | } |
| 2561 | |
| 2562 | return vec; |
| 2563 | } |
| 2564 | |
| 2565 | __isl_give isl_vec *isl_tab_get_sample_value(struct isl_tab *tab) |
| 2566 | { |
| 2567 | int i; |
| 2568 | struct isl_vec *vec; |
| 2569 | isl_int m; |
| 2570 | |
| 2571 | if (!tab) |
| 2572 | return NULL; |
| 2573 | |
| 2574 | vec = isl_vec_alloc(ctx: tab->mat->ctx, size: 1 + tab->n_var); |
| 2575 | if (!vec) |
| 2576 | return NULL; |
| 2577 | |
| 2578 | isl_int_init(m); |
| 2579 | |
| 2580 | isl_int_set_si(vec->block.data[0], 1); |
| 2581 | for (i = 0; i < tab->n_var; ++i) { |
| 2582 | int row; |
| 2583 | if (!tab->var[i].is_row) { |
| 2584 | isl_int_set_si(vec->block.data[1 + i], 0); |
| 2585 | continue; |
| 2586 | } |
| 2587 | row = tab->var[i].index; |
| 2588 | isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]); |
| 2589 | isl_int_divexact(m, tab->mat->row[row][0], m); |
| 2590 | isl_seq_scale(dst: vec->block.data, src: vec->block.data, f: m, len: 1 + i); |
| 2591 | isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]); |
| 2592 | isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]); |
| 2593 | } |
| 2594 | vec = isl_vec_normalize(vec); |
| 2595 | |
| 2596 | isl_int_clear(m); |
| 2597 | return vec; |
| 2598 | } |
| 2599 | |
| 2600 | /* Store the sample value of "var" of "tab" rounded up (if sgn > 0) |
| 2601 | * or down (if sgn < 0) to the nearest integer in *v. |
| 2602 | */ |
| 2603 | static void get_rounded_sample_value(struct isl_tab *tab, |
| 2604 | struct isl_tab_var *var, int sgn, isl_int *v) |
| 2605 | { |
| 2606 | if (!var->is_row) |
| 2607 | isl_int_set_si(*v, 0); |
| 2608 | else if (sgn > 0) |
| 2609 | isl_int_cdiv_q(*v, tab->mat->row[var->index][1], |
| 2610 | tab->mat->row[var->index][0]); |
| 2611 | else |
| 2612 | isl_int_fdiv_q(*v, tab->mat->row[var->index][1], |
| 2613 | tab->mat->row[var->index][0]); |
| 2614 | } |
| 2615 | |
| 2616 | /* Update "bmap" based on the results of the tableau "tab". |
| 2617 | * In particular, implicit equalities are made explicit, redundant constraints |
| 2618 | * are removed and if the sample value happens to be integer, it is stored |
| 2619 | * in "bmap" (unless "bmap" already had an integer sample). |
| 2620 | * |
| 2621 | * The tableau is assumed to have been created from "bmap" using |
| 2622 | * isl_tab_from_basic_map. |
| 2623 | */ |
| 2624 | __isl_give isl_basic_map *isl_basic_map_update_from_tab( |
| 2625 | __isl_take isl_basic_map *bmap, struct isl_tab *tab) |
| 2626 | { |
| 2627 | int i; |
| 2628 | unsigned n_eq; |
| 2629 | |
| 2630 | if (!bmap) |
| 2631 | return NULL; |
| 2632 | if (!tab) |
| 2633 | return bmap; |
| 2634 | |
| 2635 | n_eq = tab->n_eq; |
| 2636 | if (tab->empty) |
| 2637 | bmap = isl_basic_map_set_to_empty(bmap); |
| 2638 | else |
| 2639 | for (i = bmap->n_ineq - 1; i >= 0; --i) { |
| 2640 | if (isl_tab_is_equality(tab, con: n_eq + i)) |
| 2641 | isl_basic_map_inequality_to_equality(bmap, pos: i); |
| 2642 | else if (isl_tab_is_redundant(tab, con: n_eq + i)) |
| 2643 | isl_basic_map_drop_inequality(bmap, pos: i); |
| 2644 | } |
| 2645 | if (bmap->n_eq != n_eq) |
| 2646 | bmap = isl_basic_map_gauss(bmap, NULL); |
| 2647 | if (!tab->rational && |
| 2648 | bmap && !bmap->sample && isl_tab_sample_is_integer(tab)) |
| 2649 | bmap->sample = extract_integer_sample(tab); |
| 2650 | return bmap; |
| 2651 | } |
| 2652 | |
| 2653 | __isl_give isl_basic_set *isl_basic_set_update_from_tab( |
| 2654 | __isl_take isl_basic_set *bset, struct isl_tab *tab) |
| 2655 | { |
| 2656 | return bset_from_bmap(bmap: isl_basic_map_update_from_tab(bmap: bset_to_bmap(bset), |
| 2657 | tab)); |
| 2658 | } |
| 2659 | |
| 2660 | /* Drop the last constraint added to "tab" in position "r". |
| 2661 | * The constraint is expected to have remained in a row. |
| 2662 | */ |
| 2663 | static isl_stat drop_last_con_in_row(struct isl_tab *tab, int r) |
| 2664 | { |
| 2665 | if (!tab->con[r].is_row) |
| 2666 | isl_die(isl_tab_get_ctx(tab), isl_error_internal, |
| 2667 | "row unexpectedly moved to column" , |
| 2668 | return isl_stat_error); |
| 2669 | if (r + 1 != tab->n_con) |
| 2670 | isl_die(isl_tab_get_ctx(tab), isl_error_internal, |
| 2671 | "additional constraints added" , return isl_stat_error); |
| 2672 | if (drop_row(tab, row: tab->con[r].index) < 0) |
| 2673 | return isl_stat_error; |
| 2674 | |
| 2675 | return isl_stat_ok; |
| 2676 | } |
| 2677 | |
| 2678 | /* Given a non-negative variable "var", temporarily add a new non-negative |
| 2679 | * variable that is the opposite of "var", ensuring that "var" can only attain |
| 2680 | * the value zero. The new variable is removed again before this function |
| 2681 | * returns. However, the effect of forcing "var" to be zero remains. |
| 2682 | * If var = n/d is a row variable, then the new variable = -n/d. |
| 2683 | * If var is a column variables, then the new variable = -var. |
| 2684 | * If the new variable cannot attain non-negative values, then |
| 2685 | * the resulting tableau is empty. |
| 2686 | * Otherwise, we know the value will be zero and we close the row. |
| 2687 | */ |
| 2688 | static isl_stat cut_to_hyperplane(struct isl_tab *tab, struct isl_tab_var *var) |
| 2689 | { |
| 2690 | unsigned r; |
| 2691 | isl_int *row; |
| 2692 | int sgn; |
| 2693 | unsigned off = 2 + tab->M; |
| 2694 | |
| 2695 | if (var->is_zero) |
| 2696 | return isl_stat_ok; |
| 2697 | if (var->is_redundant || !var->is_nonneg) |
| 2698 | isl_die(isl_tab_get_ctx(tab), isl_error_invalid, |
| 2699 | "expecting non-redundant non-negative variable" , |
| 2700 | return isl_stat_error); |
| 2701 | |
| 2702 | if (isl_tab_extend_cons(tab, n_new: 1) < 0) |
| 2703 | return isl_stat_error; |
| 2704 | |
| 2705 | r = tab->n_con; |
| 2706 | tab->con[r].index = tab->n_row; |
| 2707 | tab->con[r].is_row = 1; |
| 2708 | tab->con[r].is_nonneg = 0; |
| 2709 | tab->con[r].is_zero = 0; |
| 2710 | tab->con[r].is_redundant = 0; |
| 2711 | tab->con[r].frozen = 0; |
| 2712 | tab->con[r].negated = 0; |
| 2713 | tab->row_var[tab->n_row] = ~r; |
| 2714 | row = tab->mat->row[tab->n_row]; |
| 2715 | |
| 2716 | if (var->is_row) { |
| 2717 | isl_int_set(row[0], tab->mat->row[var->index][0]); |
| 2718 | isl_seq_neg(dst: row + 1, |
| 2719 | src: tab->mat->row[var->index] + 1, len: 1 + tab->n_col); |
| 2720 | } else { |
| 2721 | isl_int_set_si(row[0], 1); |
| 2722 | isl_seq_clr(p: row + 1, len: 1 + tab->n_col); |
| 2723 | isl_int_set_si(row[off + var->index], -1); |
| 2724 | } |
| 2725 | |
| 2726 | tab->n_row++; |
| 2727 | tab->n_con++; |
| 2728 | |
| 2729 | sgn = sign_of_max(tab, var: &tab->con[r]); |
| 2730 | if (sgn < -1) |
| 2731 | return isl_stat_error; |
| 2732 | if (sgn < 0) { |
| 2733 | if (drop_last_con_in_row(tab, r) < 0) |
| 2734 | return isl_stat_error; |
| 2735 | if (isl_tab_mark_empty(tab) < 0) |
| 2736 | return isl_stat_error; |
| 2737 | return isl_stat_ok; |
| 2738 | } |
| 2739 | tab->con[r].is_nonneg = 1; |
| 2740 | /* sgn == 0 */ |
| 2741 | if (close_row(tab, var: &tab->con[r], temp_var: 1) < 0) |
| 2742 | return isl_stat_error; |
| 2743 | if (drop_last_con_in_row(tab, r) < 0) |
| 2744 | return isl_stat_error; |
| 2745 | |
| 2746 | return isl_stat_ok; |
| 2747 | } |
| 2748 | |
| 2749 | /* Check that "con" is a valid constraint position for "tab". |
| 2750 | */ |
| 2751 | static isl_stat isl_tab_check_con(struct isl_tab *tab, int con) |
| 2752 | { |
| 2753 | if (!tab) |
| 2754 | return isl_stat_error; |
| 2755 | if (con < 0 || con >= tab->n_con) |
| 2756 | isl_die(isl_tab_get_ctx(tab), isl_error_invalid, |
| 2757 | "position out of bounds" , return isl_stat_error); |
| 2758 | return isl_stat_ok; |
| 2759 | } |
| 2760 | |
| 2761 | /* Given a tableau "tab" and an inequality constraint "con" of the tableau, |
| 2762 | * relax the inequality by one. That is, the inequality r >= 0 is replaced |
| 2763 | * by r' = r + 1 >= 0. |
| 2764 | * If r is a row variable, we simply increase the constant term by one |
| 2765 | * (taking into account the denominator). |
| 2766 | * If r is a column variable, then we need to modify each row that |
| 2767 | * refers to r = r' - 1 by substituting this equality, effectively |
| 2768 | * subtracting the coefficient of the column from the constant. |
| 2769 | * We should only do this if the minimum is manifestly unbounded, |
| 2770 | * however. Otherwise, we may end up with negative sample values |
| 2771 | * for non-negative variables. |
| 2772 | * So, if r is a column variable with a minimum that is not |
| 2773 | * manifestly unbounded, then we need to move it to a row. |
| 2774 | * However, the sample value of this row may be negative, |
| 2775 | * even after the relaxation, so we need to restore it. |
| 2776 | * We therefore prefer to pivot a column up to a row, if possible. |
| 2777 | */ |
| 2778 | int isl_tab_relax(struct isl_tab *tab, int con) |
| 2779 | { |
| 2780 | struct isl_tab_var *var; |
| 2781 | |
| 2782 | if (!tab) |
| 2783 | return -1; |
| 2784 | |
| 2785 | var = &tab->con[con]; |
| 2786 | |
| 2787 | if (var->is_row && (var->index < 0 || var->index < tab->n_redundant)) |
| 2788 | isl_die(tab->mat->ctx, isl_error_invalid, |
| 2789 | "cannot relax redundant constraint" , return -1); |
| 2790 | if (!var->is_row && (var->index < 0 || var->index < tab->n_dead)) |
| 2791 | isl_die(tab->mat->ctx, isl_error_invalid, |
| 2792 | "cannot relax dead constraint" , return -1); |
| 2793 | |
| 2794 | if (!var->is_row && !max_is_manifestly_unbounded(tab, var)) |
| 2795 | if (to_row(tab, var, sign: 1) < 0) |
| 2796 | return -1; |
| 2797 | if (!var->is_row && !min_is_manifestly_unbounded(tab, var)) |
| 2798 | if (to_row(tab, var, sign: -1) < 0) |
| 2799 | return -1; |
| 2800 | |
| 2801 | if (var->is_row) { |
| 2802 | isl_int_add(tab->mat->row[var->index][1], |
| 2803 | tab->mat->row[var->index][1], tab->mat->row[var->index][0]); |
| 2804 | if (restore_row(tab, var) < 0) |
| 2805 | return -1; |
| 2806 | } else { |
| 2807 | int i; |
| 2808 | unsigned off = 2 + tab->M; |
| 2809 | |
| 2810 | for (i = 0; i < tab->n_row; ++i) { |
| 2811 | if (isl_int_is_zero(tab->mat->row[i][off + var->index])) |
| 2812 | continue; |
| 2813 | isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1], |
| 2814 | tab->mat->row[i][off + var->index]); |
| 2815 | } |
| 2816 | |
| 2817 | } |
| 2818 | |
| 2819 | if (isl_tab_push_var(tab, type: isl_tab_undo_relax, var) < 0) |
| 2820 | return -1; |
| 2821 | |
| 2822 | return 0; |
| 2823 | } |
| 2824 | |
| 2825 | /* Replace the variable v at position "pos" in the tableau "tab" |
| 2826 | * by v' = v + shift. |
| 2827 | * |
| 2828 | * If the variable is in a column, then we first check if we can |
| 2829 | * simply plug in v = v' - shift. The effect on a row with |
| 2830 | * coefficient f/d for variable v is that the constant term c/d |
| 2831 | * is replaced by (c - f * shift)/d. If shift is positive and |
| 2832 | * f is negative for each row that needs to remain non-negative, |
| 2833 | * then this is clearly safe. In other words, if the minimum of v |
| 2834 | * is manifestly unbounded, then we can keep v in a column position. |
| 2835 | * Otherwise, we can pivot it down to a row. |
| 2836 | * Similarly, if shift is negative, we need to check if the maximum |
| 2837 | * of is manifestly unbounded. |
| 2838 | * |
| 2839 | * If the variable is in a row (from the start or after pivoting), |
| 2840 | * then the constant term c/d is replaced by (c + d * shift)/d. |
| 2841 | */ |
| 2842 | int isl_tab_shift_var(struct isl_tab *tab, int pos, isl_int shift) |
| 2843 | { |
| 2844 | struct isl_tab_var *var; |
| 2845 | |
| 2846 | if (!tab) |
| 2847 | return -1; |
| 2848 | if (isl_int_is_zero(shift)) |
| 2849 | return 0; |
| 2850 | |
| 2851 | var = &tab->var[pos]; |
| 2852 | if (!var->is_row) { |
| 2853 | if (isl_int_is_neg(shift)) { |
| 2854 | if (!max_is_manifestly_unbounded(tab, var)) |
| 2855 | if (to_row(tab, var, sign: 1) < 0) |
| 2856 | return -1; |
| 2857 | } else { |
| 2858 | if (!min_is_manifestly_unbounded(tab, var)) |
| 2859 | if (to_row(tab, var, sign: -1) < 0) |
| 2860 | return -1; |
| 2861 | } |
| 2862 | } |
| 2863 | |
| 2864 | if (var->is_row) { |
| 2865 | isl_int_addmul(tab->mat->row[var->index][1], |
| 2866 | shift, tab->mat->row[var->index][0]); |
| 2867 | } else { |
| 2868 | int i; |
| 2869 | unsigned off = 2 + tab->M; |
| 2870 | |
| 2871 | for (i = 0; i < tab->n_row; ++i) { |
| 2872 | if (isl_int_is_zero(tab->mat->row[i][off + var->index])) |
| 2873 | continue; |
| 2874 | isl_int_submul(tab->mat->row[i][1], |
| 2875 | shift, tab->mat->row[i][off + var->index]); |
| 2876 | } |
| 2877 | |
| 2878 | } |
| 2879 | |
| 2880 | return 0; |
| 2881 | } |
| 2882 | |
| 2883 | /* Remove the sign constraint from constraint "con". |
| 2884 | * |
| 2885 | * If the constraint variable was originally marked non-negative, |
| 2886 | * then we make sure we mark it non-negative again during rollback. |
| 2887 | */ |
| 2888 | int isl_tab_unrestrict(struct isl_tab *tab, int con) |
| 2889 | { |
| 2890 | struct isl_tab_var *var; |
| 2891 | |
| 2892 | if (!tab) |
| 2893 | return -1; |
| 2894 | |
| 2895 | var = &tab->con[con]; |
| 2896 | if (!var->is_nonneg) |
| 2897 | return 0; |
| 2898 | |
| 2899 | var->is_nonneg = 0; |
| 2900 | if (isl_tab_push_var(tab, type: isl_tab_undo_unrestrict, var) < 0) |
| 2901 | return -1; |
| 2902 | |
| 2903 | return 0; |
| 2904 | } |
| 2905 | |
| 2906 | int isl_tab_select_facet(struct isl_tab *tab, int con) |
| 2907 | { |
| 2908 | if (!tab) |
| 2909 | return -1; |
| 2910 | |
| 2911 | return cut_to_hyperplane(tab, var: &tab->con[con]); |
| 2912 | } |
| 2913 | |
| 2914 | static int may_be_equality(struct isl_tab *tab, int row) |
| 2915 | { |
| 2916 | return tab->rational ? isl_int_is_zero(tab->mat->row[row][1]) |
| 2917 | : isl_int_lt(tab->mat->row[row][1], |
| 2918 | tab->mat->row[row][0]); |
| 2919 | } |
| 2920 | |
| 2921 | /* Return an isl_tab_var that has been marked or NULL if no such |
| 2922 | * variable can be found. |
| 2923 | * The marked field has only been set for variables that |
| 2924 | * appear in non-redundant rows or non-dead columns. |
| 2925 | * |
| 2926 | * Pick the last constraint variable that is marked and |
| 2927 | * that appears in either a non-redundant row or a non-dead columns. |
| 2928 | * Since the returned variable is tested for being a redundant constraint or |
| 2929 | * an implicit equality, there is no need to return any tab variable that |
| 2930 | * corresponds to a variable. |
| 2931 | */ |
| 2932 | static struct isl_tab_var *select_marked(struct isl_tab *tab) |
| 2933 | { |
| 2934 | int i; |
| 2935 | struct isl_tab_var *var; |
| 2936 | |
| 2937 | for (i = tab->n_con - 1; i >= 0; --i) { |
| 2938 | var = &tab->con[i]; |
| 2939 | if (var->index < 0) |
| 2940 | continue; |
| 2941 | if (var->is_row && var->index < tab->n_redundant) |
| 2942 | continue; |
| 2943 | if (!var->is_row && var->index < tab->n_dead) |
| 2944 | continue; |
| 2945 | if (var->marked) |
| 2946 | return var; |
| 2947 | } |
| 2948 | |
| 2949 | return NULL; |
| 2950 | } |
| 2951 | |
| 2952 | /* Check for (near) equalities among the constraints. |
| 2953 | * A constraint is an equality if it is non-negative and if |
| 2954 | * its maximal value is either |
| 2955 | * - zero (in case of rational tableaus), or |
| 2956 | * - strictly less than 1 (in case of integer tableaus) |
| 2957 | * |
| 2958 | * We first mark all non-redundant and non-dead variables that |
| 2959 | * are not frozen and not obviously not an equality. |
| 2960 | * Then we iterate over all marked variables if they can attain |
| 2961 | * any values larger than zero or at least one. |
| 2962 | * If the maximal value is zero, we mark any column variables |
| 2963 | * that appear in the row as being zero and mark the row as being redundant. |
| 2964 | * Otherwise, if the maximal value is strictly less than one (and the |
| 2965 | * tableau is integer), then we restrict the value to being zero |
| 2966 | * by adding an opposite non-negative variable. |
| 2967 | * The order in which the variables are considered is not important. |
| 2968 | */ |
| 2969 | int isl_tab_detect_implicit_equalities(struct isl_tab *tab) |
| 2970 | { |
| 2971 | int i; |
| 2972 | unsigned n_marked; |
| 2973 | |
| 2974 | if (!tab) |
| 2975 | return -1; |
| 2976 | if (tab->empty) |
| 2977 | return 0; |
| 2978 | if (tab->n_dead == tab->n_col) |
| 2979 | return 0; |
| 2980 | |
| 2981 | n_marked = 0; |
| 2982 | for (i = tab->n_redundant; i < tab->n_row; ++i) { |
| 2983 | struct isl_tab_var *var = isl_tab_var_from_row(tab, i); |
| 2984 | var->marked = !var->frozen && var->is_nonneg && |
| 2985 | may_be_equality(tab, row: i); |
| 2986 | if (var->marked) |
| 2987 | n_marked++; |
| 2988 | } |
| 2989 | for (i = tab->n_dead; i < tab->n_col; ++i) { |
| 2990 | struct isl_tab_var *var = var_from_col(tab, i); |
| 2991 | var->marked = !var->frozen && var->is_nonneg; |
| 2992 | if (var->marked) |
| 2993 | n_marked++; |
| 2994 | } |
| 2995 | while (n_marked) { |
| 2996 | struct isl_tab_var *var; |
| 2997 | int sgn; |
| 2998 | var = select_marked(tab); |
| 2999 | if (!var) |
| 3000 | break; |
| 3001 | var->marked = 0; |
| 3002 | n_marked--; |
| 3003 | sgn = sign_of_max(tab, var); |
| 3004 | if (sgn < 0) |
| 3005 | return -1; |
| 3006 | if (sgn == 0) { |
| 3007 | if (close_row(tab, var, temp_var: 0) < 0) |
| 3008 | return -1; |
| 3009 | } else if (!tab->rational && !at_least_one(tab, var)) { |
| 3010 | if (cut_to_hyperplane(tab, var) < 0) |
| 3011 | return -1; |
| 3012 | return isl_tab_detect_implicit_equalities(tab); |
| 3013 | } |
| 3014 | for (i = tab->n_redundant; i < tab->n_row; ++i) { |
| 3015 | var = isl_tab_var_from_row(tab, i); |
| 3016 | if (!var->marked) |
| 3017 | continue; |
| 3018 | if (may_be_equality(tab, row: i)) |
| 3019 | continue; |
| 3020 | var->marked = 0; |
| 3021 | n_marked--; |
| 3022 | } |
| 3023 | } |
| 3024 | |
| 3025 | return 0; |
| 3026 | } |
| 3027 | |
| 3028 | /* Update the element of row_var or col_var that corresponds to |
| 3029 | * constraint tab->con[i] to a move from position "old" to position "i". |
| 3030 | */ |
| 3031 | static int update_con_after_move(struct isl_tab *tab, int i, int old) |
| 3032 | { |
| 3033 | int *p; |
| 3034 | int index; |
| 3035 | |
| 3036 | index = tab->con[i].index; |
| 3037 | if (index == -1) |
| 3038 | return 0; |
| 3039 | p = tab->con[i].is_row ? tab->row_var : tab->col_var; |
| 3040 | if (p[index] != ~old) |
| 3041 | isl_die(tab->mat->ctx, isl_error_internal, |
| 3042 | "broken internal state" , return -1); |
| 3043 | p[index] = ~i; |
| 3044 | |
| 3045 | return 0; |
| 3046 | } |
| 3047 | |
| 3048 | /* Interchange constraints "con1" and "con2" in "tab". |
| 3049 | * In particular, interchange the contents of these entries in tab->con. |
| 3050 | * Since tab->col_var and tab->row_var point back into this array, |
| 3051 | * they need to be updated accordingly. |
| 3052 | */ |
| 3053 | isl_stat isl_tab_swap_constraints(struct isl_tab *tab, int con1, int con2) |
| 3054 | { |
| 3055 | struct isl_tab_var var; |
| 3056 | |
| 3057 | if (isl_tab_check_con(tab, con: con1) < 0 || |
| 3058 | isl_tab_check_con(tab, con: con2) < 0) |
| 3059 | return isl_stat_error; |
| 3060 | |
| 3061 | var = tab->con[con1]; |
| 3062 | tab->con[con1] = tab->con[con2]; |
| 3063 | if (update_con_after_move(tab, i: con1, old: con2) < 0) |
| 3064 | return isl_stat_error; |
| 3065 | tab->con[con2] = var; |
| 3066 | if (update_con_after_move(tab, i: con2, old: con1) < 0) |
| 3067 | return isl_stat_error; |
| 3068 | |
| 3069 | return isl_stat_ok; |
| 3070 | } |
| 3071 | |
| 3072 | /* Rotate the "n" constraints starting at "first" to the right, |
| 3073 | * putting the last constraint in the position of the first constraint. |
| 3074 | */ |
| 3075 | static int rotate_constraints(struct isl_tab *tab, int first, int n) |
| 3076 | { |
| 3077 | int i, last; |
| 3078 | struct isl_tab_var var; |
| 3079 | |
| 3080 | if (n <= 1) |
| 3081 | return 0; |
| 3082 | |
| 3083 | last = first + n - 1; |
| 3084 | var = tab->con[last]; |
| 3085 | for (i = last; i > first; --i) { |
| 3086 | tab->con[i] = tab->con[i - 1]; |
| 3087 | if (update_con_after_move(tab, i, old: i - 1) < 0) |
| 3088 | return -1; |
| 3089 | } |
| 3090 | tab->con[first] = var; |
| 3091 | if (update_con_after_move(tab, i: first, old: last) < 0) |
| 3092 | return -1; |
| 3093 | |
| 3094 | return 0; |
| 3095 | } |
| 3096 | |
| 3097 | /* Drop the "n" entries starting at position "first" in tab->con, moving all |
| 3098 | * subsequent entries down. |
| 3099 | * Since some of the entries of tab->row_var and tab->col_var contain |
| 3100 | * indices into this array, they have to be updated accordingly. |
| 3101 | */ |
| 3102 | static isl_stat con_drop_entries(struct isl_tab *tab, |
| 3103 | unsigned first, unsigned n) |
| 3104 | { |
| 3105 | int i; |
| 3106 | |
| 3107 | if (first + n > tab->n_con || first + n < first) |
| 3108 | isl_die(isl_tab_get_ctx(tab), isl_error_internal, |
| 3109 | "invalid range" , return isl_stat_error); |
| 3110 | |
| 3111 | tab->n_con -= n; |
| 3112 | |
| 3113 | for (i = first; i < tab->n_con; ++i) { |
| 3114 | tab->con[i] = tab->con[i + n]; |
| 3115 | if (update_con_after_move(tab, i, old: i + n) < 0) |
| 3116 | return isl_stat_error; |
| 3117 | } |
| 3118 | |
| 3119 | return isl_stat_ok; |
| 3120 | } |
| 3121 | |
| 3122 | /* isl_basic_map_gauss5 callback that gets called when |
| 3123 | * two (equality) constraints "a" and "b" get interchanged |
| 3124 | * in the basic map. Perform the same interchange in "tab". |
| 3125 | */ |
| 3126 | static isl_stat swap_eq(unsigned a, unsigned b, void *user) |
| 3127 | { |
| 3128 | struct isl_tab *tab = user; |
| 3129 | |
| 3130 | return isl_tab_swap_constraints(tab, con1: a, con2: b); |
| 3131 | } |
| 3132 | |
| 3133 | /* isl_basic_map_gauss5 callback that gets called when |
| 3134 | * the final "n" equality constraints get removed. |
| 3135 | * As a special case, if "n" is equal to the total number |
| 3136 | * of equality constraints, then this means the basic map |
| 3137 | * turned out to be empty. |
| 3138 | * Drop the same number of equality constraints from "tab" or |
| 3139 | * mark it empty in the special case. |
| 3140 | */ |
| 3141 | static isl_stat drop_eq(unsigned n, void *user) |
| 3142 | { |
| 3143 | struct isl_tab *tab = user; |
| 3144 | |
| 3145 | if (tab->n_eq == n) |
| 3146 | return isl_tab_mark_empty(tab); |
| 3147 | |
| 3148 | tab->n_eq -= n; |
| 3149 | return con_drop_entries(tab, first: tab->n_eq, n); |
| 3150 | } |
| 3151 | |
| 3152 | /* If "bmap" has more than a single reference, then call |
| 3153 | * isl_basic_map_gauss on it, updating "tab" accordingly. |
| 3154 | */ |
| 3155 | static __isl_give isl_basic_map *gauss_if_shared(__isl_take isl_basic_map *bmap, |
| 3156 | struct isl_tab *tab) |
| 3157 | { |
| 3158 | isl_bool single; |
| 3159 | |
| 3160 | single = isl_basic_map_has_single_reference(bmap); |
| 3161 | if (single < 0) |
| 3162 | return isl_basic_map_free(bmap); |
| 3163 | if (single) |
| 3164 | return bmap; |
| 3165 | return isl_basic_map_gauss5(bmap, NULL, swap: &swap_eq, drop: &drop_eq, user: tab); |
| 3166 | } |
| 3167 | |
| 3168 | /* Make the equalities that are implicit in "bmap" but that have been |
| 3169 | * detected in the corresponding "tab" explicit in "bmap" and update |
| 3170 | * "tab" to reflect the new order of the constraints. |
| 3171 | * |
| 3172 | * In particular, if inequality i is an implicit equality then |
| 3173 | * isl_basic_map_inequality_to_equality will move the inequality |
| 3174 | * in front of the other equality and it will move the last inequality |
| 3175 | * in the position of inequality i. |
| 3176 | * In the tableau, the inequalities of "bmap" are stored after the equalities |
| 3177 | * and so the original order |
| 3178 | * |
| 3179 | * E E E E E A A A I B B B B L |
| 3180 | * |
| 3181 | * is changed into |
| 3182 | * |
| 3183 | * I E E E E E A A A L B B B B |
| 3184 | * |
| 3185 | * where I is the implicit equality, the E are equalities, |
| 3186 | * the A inequalities before I, the B inequalities after I and |
| 3187 | * L the last inequality. |
| 3188 | * We therefore need to rotate to the right two sets of constraints, |
| 3189 | * those up to and including I and those after I. |
| 3190 | * |
| 3191 | * If "tab" contains any constraints that are not in "bmap" then they |
| 3192 | * appear after those in "bmap" and they should be left untouched. |
| 3193 | * |
| 3194 | * Note that this function only calls isl_basic_map_gauss |
| 3195 | * (in case some equality constraints got detected) |
| 3196 | * if "bmap" has more than one reference. |
| 3197 | * If it only has a single reference, then it is left in a temporary state, |
| 3198 | * because the caller may require this state. |
| 3199 | * Calling isl_basic_map_gauss is then the responsibility of the caller. |
| 3200 | */ |
| 3201 | __isl_give isl_basic_map *isl_tab_make_equalities_explicit(struct isl_tab *tab, |
| 3202 | __isl_take isl_basic_map *bmap) |
| 3203 | { |
| 3204 | int i; |
| 3205 | unsigned n_eq; |
| 3206 | |
| 3207 | if (!tab || !bmap) |
| 3208 | return isl_basic_map_free(bmap); |
| 3209 | if (tab->empty) |
| 3210 | return bmap; |
| 3211 | |
| 3212 | n_eq = tab->n_eq; |
| 3213 | for (i = bmap->n_ineq - 1; i >= 0; --i) { |
| 3214 | if (!isl_tab_is_equality(tab, con: bmap->n_eq + i)) |
| 3215 | continue; |
| 3216 | isl_basic_map_inequality_to_equality(bmap, pos: i); |
| 3217 | if (rotate_constraints(tab, first: 0, n: tab->n_eq + i + 1) < 0) |
| 3218 | return isl_basic_map_free(bmap); |
| 3219 | if (rotate_constraints(tab, first: tab->n_eq + i + 1, |
| 3220 | n: bmap->n_ineq - i) < 0) |
| 3221 | return isl_basic_map_free(bmap); |
| 3222 | tab->n_eq++; |
| 3223 | } |
| 3224 | |
| 3225 | if (n_eq != tab->n_eq) |
| 3226 | bmap = gauss_if_shared(bmap, tab); |
| 3227 | |
| 3228 | return bmap; |
| 3229 | } |
| 3230 | |
| 3231 | static int con_is_redundant(struct isl_tab *tab, struct isl_tab_var *var) |
| 3232 | { |
| 3233 | if (!tab) |
| 3234 | return -1; |
| 3235 | if (tab->rational) { |
| 3236 | int sgn = sign_of_min(tab, var); |
| 3237 | if (sgn < -1) |
| 3238 | return -1; |
| 3239 | return sgn >= 0; |
| 3240 | } else { |
| 3241 | int irred = isl_tab_min_at_most_neg_one(tab, var); |
| 3242 | if (irred < 0) |
| 3243 | return -1; |
| 3244 | return !irred; |
| 3245 | } |
| 3246 | } |
| 3247 | |
| 3248 | /* Check for (near) redundant constraints. |
| 3249 | * A constraint is redundant if it is non-negative and if |
| 3250 | * its minimal value (temporarily ignoring the non-negativity) is either |
| 3251 | * - zero (in case of rational tableaus), or |
| 3252 | * - strictly larger than -1 (in case of integer tableaus) |
| 3253 | * |
| 3254 | * We first mark all non-redundant and non-dead variables that |
| 3255 | * are not frozen and not obviously negatively unbounded. |
| 3256 | * Then we iterate over all marked variables if they can attain |
| 3257 | * any values smaller than zero or at most negative one. |
| 3258 | * If not, we mark the row as being redundant (assuming it hasn't |
| 3259 | * been detected as being obviously redundant in the mean time). |
| 3260 | */ |
| 3261 | int isl_tab_detect_redundant(struct isl_tab *tab) |
| 3262 | { |
| 3263 | int i; |
| 3264 | unsigned n_marked; |
| 3265 | |
| 3266 | if (!tab) |
| 3267 | return -1; |
| 3268 | if (tab->empty) |
| 3269 | return 0; |
| 3270 | if (tab->n_redundant == tab->n_row) |
| 3271 | return 0; |
| 3272 | |
| 3273 | n_marked = 0; |
| 3274 | for (i = tab->n_redundant; i < tab->n_row; ++i) { |
| 3275 | struct isl_tab_var *var = isl_tab_var_from_row(tab, i); |
| 3276 | var->marked = !var->frozen && var->is_nonneg; |
| 3277 | if (var->marked) |
| 3278 | n_marked++; |
| 3279 | } |
| 3280 | for (i = tab->n_dead; i < tab->n_col; ++i) { |
| 3281 | struct isl_tab_var *var = var_from_col(tab, i); |
| 3282 | var->marked = !var->frozen && var->is_nonneg && |
| 3283 | !min_is_manifestly_unbounded(tab, var); |
| 3284 | if (var->marked) |
| 3285 | n_marked++; |
| 3286 | } |
| 3287 | while (n_marked) { |
| 3288 | struct isl_tab_var *var; |
| 3289 | int red; |
| 3290 | var = select_marked(tab); |
| 3291 | if (!var) |
| 3292 | break; |
| 3293 | var->marked = 0; |
| 3294 | n_marked--; |
| 3295 | red = con_is_redundant(tab, var); |
| 3296 | if (red < 0) |
| 3297 | return -1; |
| 3298 | if (red && !var->is_redundant) |
| 3299 | if (isl_tab_mark_redundant(tab, row: var->index) < 0) |
| 3300 | return -1; |
| 3301 | for (i = tab->n_dead; i < tab->n_col; ++i) { |
| 3302 | var = var_from_col(tab, i); |
| 3303 | if (!var->marked) |
| 3304 | continue; |
| 3305 | if (!min_is_manifestly_unbounded(tab, var)) |
| 3306 | continue; |
| 3307 | var->marked = 0; |
| 3308 | n_marked--; |
| 3309 | } |
| 3310 | } |
| 3311 | |
| 3312 | return 0; |
| 3313 | } |
| 3314 | |
| 3315 | int isl_tab_is_equality(struct isl_tab *tab, int con) |
| 3316 | { |
| 3317 | int row; |
| 3318 | unsigned off; |
| 3319 | |
| 3320 | if (!tab) |
| 3321 | return -1; |
| 3322 | if (tab->con[con].is_zero) |
| 3323 | return 1; |
| 3324 | if (tab->con[con].is_redundant) |
| 3325 | return 0; |
| 3326 | if (!tab->con[con].is_row) |
| 3327 | return tab->con[con].index < tab->n_dead; |
| 3328 | |
| 3329 | row = tab->con[con].index; |
| 3330 | |
| 3331 | off = 2 + tab->M; |
| 3332 | return isl_int_is_zero(tab->mat->row[row][1]) && |
| 3333 | !row_is_big(tab, row) && |
| 3334 | isl_seq_first_non_zero(p: tab->mat->row[row] + off + tab->n_dead, |
| 3335 | len: tab->n_col - tab->n_dead) == -1; |
| 3336 | } |
| 3337 | |
| 3338 | /* Return the minimal value of the affine expression "f" with denominator |
| 3339 | * "denom" in *opt, *opt_denom, assuming the tableau is not empty and |
| 3340 | * the expression cannot attain arbitrarily small values. |
| 3341 | * If opt_denom is NULL, then *opt is rounded up to the nearest integer. |
| 3342 | * The return value reflects the nature of the result (empty, unbounded, |
| 3343 | * minimal value returned in *opt). |
| 3344 | * |
| 3345 | * This function assumes that at least one more row and at least |
| 3346 | * one more element in the constraint array are available in the tableau. |
| 3347 | */ |
| 3348 | enum isl_lp_result isl_tab_min(struct isl_tab *tab, |
| 3349 | isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom, |
| 3350 | unsigned flags) |
| 3351 | { |
| 3352 | int r; |
| 3353 | enum isl_lp_result res = isl_lp_ok; |
| 3354 | struct isl_tab_var *var; |
| 3355 | struct isl_tab_undo *snap; |
| 3356 | |
| 3357 | if (!tab) |
| 3358 | return isl_lp_error; |
| 3359 | |
| 3360 | if (tab->empty) |
| 3361 | return isl_lp_empty; |
| 3362 | |
| 3363 | snap = isl_tab_snap(tab); |
| 3364 | r = isl_tab_add_row(tab, line: f); |
| 3365 | if (r < 0) |
| 3366 | return isl_lp_error; |
| 3367 | var = &tab->con[r]; |
| 3368 | for (;;) { |
| 3369 | int row, col; |
| 3370 | find_pivot(tab, var, skip_var: var, sgn: -1, row: &row, col: &col); |
| 3371 | if (row == var->index) { |
| 3372 | res = isl_lp_unbounded; |
| 3373 | break; |
| 3374 | } |
| 3375 | if (row == -1) |
| 3376 | break; |
| 3377 | if (isl_tab_pivot(tab, row, col) < 0) |
| 3378 | return isl_lp_error; |
| 3379 | } |
| 3380 | isl_int_mul(tab->mat->row[var->index][0], |
| 3381 | tab->mat->row[var->index][0], denom); |
| 3382 | if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) { |
| 3383 | int i; |
| 3384 | |
| 3385 | isl_vec_free(vec: tab->dual); |
| 3386 | tab->dual = isl_vec_alloc(ctx: tab->mat->ctx, size: 1 + tab->n_con); |
| 3387 | if (!tab->dual) |
| 3388 | return isl_lp_error; |
| 3389 | isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]); |
| 3390 | for (i = 0; i < tab->n_con; ++i) { |
| 3391 | int pos; |
| 3392 | if (tab->con[i].is_row) { |
| 3393 | isl_int_set_si(tab->dual->el[1 + i], 0); |
| 3394 | continue; |
| 3395 | } |
| 3396 | pos = 2 + tab->M + tab->con[i].index; |
| 3397 | if (tab->con[i].negated) |
| 3398 | isl_int_neg(tab->dual->el[1 + i], |
| 3399 | tab->mat->row[var->index][pos]); |
| 3400 | else |
| 3401 | isl_int_set(tab->dual->el[1 + i], |
| 3402 | tab->mat->row[var->index][pos]); |
| 3403 | } |
| 3404 | } |
| 3405 | if (opt && res == isl_lp_ok) { |
| 3406 | if (opt_denom) { |
| 3407 | isl_int_set(*opt, tab->mat->row[var->index][1]); |
| 3408 | isl_int_set(*opt_denom, tab->mat->row[var->index][0]); |
| 3409 | } else |
| 3410 | get_rounded_sample_value(tab, var, sgn: 1, v: opt); |
| 3411 | } |
| 3412 | if (isl_tab_rollback(tab, snap) < 0) |
| 3413 | return isl_lp_error; |
| 3414 | return res; |
| 3415 | } |
| 3416 | |
| 3417 | /* Is the constraint at position "con" marked as being redundant? |
| 3418 | * If it is marked as representing an equality, then it is not |
| 3419 | * considered to be redundant. |
| 3420 | * Note that isl_tab_mark_redundant marks both the isl_tab_var as |
| 3421 | * redundant and moves the corresponding row into the first |
| 3422 | * tab->n_redundant positions (or removes the row, assigning it index -1), |
| 3423 | * so the final test is actually redundant itself. |
| 3424 | */ |
| 3425 | int isl_tab_is_redundant(struct isl_tab *tab, int con) |
| 3426 | { |
| 3427 | if (isl_tab_check_con(tab, con) < 0) |
| 3428 | return -1; |
| 3429 | if (tab->con[con].is_zero) |
| 3430 | return 0; |
| 3431 | if (tab->con[con].is_redundant) |
| 3432 | return 1; |
| 3433 | return tab->con[con].is_row && tab->con[con].index < tab->n_redundant; |
| 3434 | } |
| 3435 | |
| 3436 | /* Is variable "var" of "tab" fixed to a constant value by its row |
| 3437 | * in the tableau? |
| 3438 | * If so and if "value" is not NULL, then store this constant value |
| 3439 | * in "value". |
| 3440 | * |
| 3441 | * That is, is it a row variable that only has non-zero coefficients |
| 3442 | * for dead columns? |
| 3443 | */ |
| 3444 | static isl_bool is_constant(struct isl_tab *tab, struct isl_tab_var *var, |
| 3445 | isl_int *value) |
| 3446 | { |
| 3447 | unsigned off = 2 + tab->M; |
| 3448 | isl_mat *mat = tab->mat; |
| 3449 | int n; |
| 3450 | int row; |
| 3451 | int pos; |
| 3452 | |
| 3453 | if (!var->is_row) |
| 3454 | return isl_bool_false; |
| 3455 | row = var->index; |
| 3456 | if (row_is_big(tab, row)) |
| 3457 | return isl_bool_false; |
| 3458 | n = tab->n_col - tab->n_dead; |
| 3459 | pos = isl_seq_first_non_zero(p: mat->row[row] + off + tab->n_dead, len: n); |
| 3460 | if (pos != -1) |
| 3461 | return isl_bool_false; |
| 3462 | if (value) |
| 3463 | isl_int_divexact(*value, mat->row[row][1], mat->row[row][0]); |
| 3464 | return isl_bool_true; |
| 3465 | } |
| 3466 | |
| 3467 | /* Has the variable "var' of "tab" reached a value that is greater than |
| 3468 | * or equal (if sgn > 0) or smaller than or equal (if sgn < 0) to "target"? |
| 3469 | * "tmp" has been initialized by the caller and can be used |
| 3470 | * to perform local computations. |
| 3471 | * |
| 3472 | * If the sample value involves the big parameter, then any value |
| 3473 | * is reached. |
| 3474 | * Otherwise check if n/d >= t, i.e., n >= d * t (if sgn > 0) |
| 3475 | * or n/d <= t, i.e., n <= d * t (if sgn < 0). |
| 3476 | */ |
| 3477 | static int reached(struct isl_tab *tab, struct isl_tab_var *var, int sgn, |
| 3478 | isl_int target, isl_int *tmp) |
| 3479 | { |
| 3480 | if (row_is_big(tab, row: var->index)) |
| 3481 | return 1; |
| 3482 | isl_int_mul(*tmp, tab->mat->row[var->index][0], target); |
| 3483 | if (sgn > 0) |
| 3484 | return isl_int_ge(tab->mat->row[var->index][1], *tmp); |
| 3485 | else |
| 3486 | return isl_int_le(tab->mat->row[var->index][1], *tmp); |
| 3487 | } |
| 3488 | |
| 3489 | /* Can variable "var" of "tab" attain the value "target" by |
| 3490 | * pivoting up (if sgn > 0) or down (if sgn < 0)? |
| 3491 | * If not, then pivot up [down] to the greatest [smallest] |
| 3492 | * rational value. |
| 3493 | * "tmp" has been initialized by the caller and can be used |
| 3494 | * to perform local computations. |
| 3495 | * |
| 3496 | * If the variable is manifestly unbounded in the desired direction, |
| 3497 | * then it can attain any value. |
| 3498 | * Otherwise, it can be moved to a row. |
| 3499 | * Continue pivoting until the target is reached. |
| 3500 | * If no more pivoting can be performed, the maximal [minimal] |
| 3501 | * rational value has been reached and the target cannot be reached. |
| 3502 | * If the variable would be pivoted into a manifestly unbounded column, |
| 3503 | * then the target can be reached. |
| 3504 | */ |
| 3505 | static isl_bool var_reaches(struct isl_tab *tab, struct isl_tab_var *var, |
| 3506 | int sgn, isl_int target, isl_int *tmp) |
| 3507 | { |
| 3508 | int row, col; |
| 3509 | |
| 3510 | if (sgn < 0 && min_is_manifestly_unbounded(tab, var)) |
| 3511 | return isl_bool_true; |
| 3512 | if (sgn > 0 && max_is_manifestly_unbounded(tab, var)) |
| 3513 | return isl_bool_true; |
| 3514 | if (to_row(tab, var, sign: sgn) < 0) |
| 3515 | return isl_bool_error; |
| 3516 | while (!reached(tab, var, sgn, target, tmp)) { |
| 3517 | find_pivot(tab, var, skip_var: var, sgn, row: &row, col: &col); |
| 3518 | if (row == -1) |
| 3519 | return isl_bool_false; |
| 3520 | if (row == var->index) |
| 3521 | return isl_bool_true; |
| 3522 | if (isl_tab_pivot(tab, row, col) < 0) |
| 3523 | return isl_bool_error; |
| 3524 | } |
| 3525 | |
| 3526 | return isl_bool_true; |
| 3527 | } |
| 3528 | |
| 3529 | /* Check if variable "var" of "tab" can only attain a single (integer) |
| 3530 | * value, and, if so, add an equality constraint to fix the variable |
| 3531 | * to this single value and store the result in "target". |
| 3532 | * "target" and "tmp" have been initialized by the caller. |
| 3533 | * |
| 3534 | * Given the current sample value, round it down and check |
| 3535 | * whether it is possible to attain a strictly smaller integer value. |
| 3536 | * If so, the variable is not restricted to a single integer value. |
| 3537 | * Otherwise, the search stops at the smallest rational value. |
| 3538 | * Round up this value and check whether it is possible to attain |
| 3539 | * a strictly greater integer value. |
| 3540 | * If so, the variable is not restricted to a single integer value. |
| 3541 | * Otherwise, the search stops at the greatest rational value. |
| 3542 | * If rounding down this value yields a value that is different |
| 3543 | * from rounding up the smallest rational value, then the variable |
| 3544 | * cannot attain any integer value. Mark the tableau empty. |
| 3545 | * Otherwise, add an equality constraint that fixes the variable |
| 3546 | * to the single integer value found. |
| 3547 | */ |
| 3548 | static isl_bool detect_constant_with_tmp(struct isl_tab *tab, |
| 3549 | struct isl_tab_var *var, isl_int *target, isl_int *tmp) |
| 3550 | { |
| 3551 | isl_bool reached; |
| 3552 | isl_vec *eq; |
| 3553 | int pos; |
| 3554 | isl_stat r; |
| 3555 | |
| 3556 | get_rounded_sample_value(tab, var, sgn: -1, v: target); |
| 3557 | isl_int_sub_ui(*target, *target, 1); |
| 3558 | reached = var_reaches(tab, var, sgn: -1, target: *target, tmp); |
| 3559 | if (reached < 0 || reached) |
| 3560 | return isl_bool_not(b: reached); |
| 3561 | get_rounded_sample_value(tab, var, sgn: 1, v: target); |
| 3562 | isl_int_add_ui(*target, *target, 1); |
| 3563 | reached = var_reaches(tab, var, sgn: 1, target: *target, tmp); |
| 3564 | if (reached < 0 || reached) |
| 3565 | return isl_bool_not(b: reached); |
| 3566 | get_rounded_sample_value(tab, var, sgn: -1, v: tmp); |
| 3567 | isl_int_sub_ui(*target, *target, 1); |
| 3568 | if (isl_int_ne(*target, *tmp)) { |
| 3569 | if (isl_tab_mark_empty(tab) < 0) |
| 3570 | return isl_bool_error; |
| 3571 | return isl_bool_false; |
| 3572 | } |
| 3573 | |
| 3574 | if (isl_tab_extend_cons(tab, n_new: 1) < 0) |
| 3575 | return isl_bool_error; |
| 3576 | eq = isl_vec_alloc(ctx: isl_tab_get_ctx(tab), size: 1 + tab->n_var); |
| 3577 | if (!eq) |
| 3578 | return isl_bool_error; |
| 3579 | pos = var - tab->var; |
| 3580 | isl_seq_clr(p: eq->el + 1, len: tab->n_var); |
| 3581 | isl_int_set_si(eq->el[1 + pos], -1); |
| 3582 | isl_int_set(eq->el[0], *target); |
| 3583 | r = isl_tab_add_eq(tab, eq: eq->el); |
| 3584 | isl_vec_free(vec: eq); |
| 3585 | |
| 3586 | return r < 0 ? isl_bool_error : isl_bool_true; |
| 3587 | } |
| 3588 | |
| 3589 | /* Check if variable "var" of "tab" can only attain a single (integer) |
| 3590 | * value, and, if so, add an equality constraint to fix the variable |
| 3591 | * to this single value and store the result in "value" (if "value" |
| 3592 | * is not NULL). |
| 3593 | * |
| 3594 | * If the current sample value involves the big parameter, |
| 3595 | * then the variable cannot have a fixed integer value. |
| 3596 | * If the variable is already fixed to a single value by its row, then |
| 3597 | * there is no need to add another equality constraint. |
| 3598 | * |
| 3599 | * Otherwise, allocate some temporary variables and continue |
| 3600 | * with detect_constant_with_tmp. |
| 3601 | */ |
| 3602 | static isl_bool get_constant(struct isl_tab *tab, struct isl_tab_var *var, |
| 3603 | isl_int *value) |
| 3604 | { |
| 3605 | isl_int target, tmp; |
| 3606 | isl_bool is_cst; |
| 3607 | |
| 3608 | if (var->is_row && row_is_big(tab, row: var->index)) |
| 3609 | return isl_bool_false; |
| 3610 | is_cst = is_constant(tab, var, value); |
| 3611 | if (is_cst < 0 || is_cst) |
| 3612 | return is_cst; |
| 3613 | |
| 3614 | if (!value) |
| 3615 | isl_int_init(target); |
| 3616 | isl_int_init(tmp); |
| 3617 | |
| 3618 | is_cst = detect_constant_with_tmp(tab, var, |
| 3619 | target: value ? value : &target, tmp: &tmp); |
| 3620 | |
| 3621 | isl_int_clear(tmp); |
| 3622 | if (!value) |
| 3623 | isl_int_clear(target); |
| 3624 | |
| 3625 | return is_cst; |
| 3626 | } |
| 3627 | |
| 3628 | /* Check if variable "var" of "tab" can only attain a single (integer) |
| 3629 | * value, and, if so, add an equality constraint to fix the variable |
| 3630 | * to this single value and store the result in "value" (if "value" |
| 3631 | * is not NULL). |
| 3632 | * |
| 3633 | * For rational tableaus, nothing needs to be done. |
| 3634 | */ |
| 3635 | isl_bool isl_tab_is_constant(struct isl_tab *tab, int var, isl_int *value) |
| 3636 | { |
| 3637 | if (!tab) |
| 3638 | return isl_bool_error; |
| 3639 | if (var < 0 || var >= tab->n_var) |
| 3640 | isl_die(isl_tab_get_ctx(tab), isl_error_invalid, |
| 3641 | "position out of bounds" , return isl_bool_error); |
| 3642 | if (tab->rational) |
| 3643 | return isl_bool_false; |
| 3644 | |
| 3645 | return get_constant(tab, var: &tab->var[var], value); |
| 3646 | } |
| 3647 | |
| 3648 | /* Check if any of the variables of "tab" can only attain a single (integer) |
| 3649 | * value, and, if so, add equality constraints to fix those variables |
| 3650 | * to these single values. |
| 3651 | * |
| 3652 | * For rational tableaus, nothing needs to be done. |
| 3653 | */ |
| 3654 | isl_stat isl_tab_detect_constants(struct isl_tab *tab) |
| 3655 | { |
| 3656 | int i; |
| 3657 | |
| 3658 | if (!tab) |
| 3659 | return isl_stat_error; |
| 3660 | if (tab->rational) |
| 3661 | return isl_stat_ok; |
| 3662 | |
| 3663 | for (i = 0; i < tab->n_var; ++i) { |
| 3664 | if (get_constant(tab, var: &tab->var[i], NULL) < 0) |
| 3665 | return isl_stat_error; |
| 3666 | } |
| 3667 | |
| 3668 | return isl_stat_ok; |
| 3669 | } |
| 3670 | |
| 3671 | /* Take a snapshot of the tableau that can be restored by a call to |
| 3672 | * isl_tab_rollback. |
| 3673 | */ |
| 3674 | struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab) |
| 3675 | { |
| 3676 | if (!tab) |
| 3677 | return NULL; |
| 3678 | tab->need_undo = 1; |
| 3679 | return tab->top; |
| 3680 | } |
| 3681 | |
| 3682 | /* Does "tab" need to keep track of undo information? |
| 3683 | * That is, was a snapshot taken that may need to be restored? |
| 3684 | */ |
| 3685 | isl_bool isl_tab_need_undo(struct isl_tab *tab) |
| 3686 | { |
| 3687 | if (!tab) |
| 3688 | return isl_bool_error; |
| 3689 | |
| 3690 | return isl_bool_ok(b: tab->need_undo); |
| 3691 | } |
| 3692 | |
| 3693 | /* Remove all tracking of undo information from "tab", invalidating |
| 3694 | * any snapshots that may have been taken of the tableau. |
| 3695 | * Since all snapshots have been invalidated, there is also |
| 3696 | * no need to start keeping track of undo information again. |
| 3697 | */ |
| 3698 | void isl_tab_clear_undo(struct isl_tab *tab) |
| 3699 | { |
| 3700 | if (!tab) |
| 3701 | return; |
| 3702 | |
| 3703 | free_undo(tab); |
| 3704 | tab->need_undo = 0; |
| 3705 | } |
| 3706 | |
| 3707 | /* Undo the operation performed by isl_tab_relax. |
| 3708 | */ |
| 3709 | static isl_stat unrelax(struct isl_tab *tab, struct isl_tab_var *var) |
| 3710 | WARN_UNUSED; |
| 3711 | static isl_stat unrelax(struct isl_tab *tab, struct isl_tab_var *var) |
| 3712 | { |
| 3713 | unsigned off = 2 + tab->M; |
| 3714 | |
| 3715 | if (!var->is_row && !max_is_manifestly_unbounded(tab, var)) |
| 3716 | if (to_row(tab, var, sign: 1) < 0) |
| 3717 | return isl_stat_error; |
| 3718 | |
| 3719 | if (var->is_row) { |
| 3720 | isl_int_sub(tab->mat->row[var->index][1], |
| 3721 | tab->mat->row[var->index][1], tab->mat->row[var->index][0]); |
| 3722 | if (var->is_nonneg) { |
| 3723 | int sgn = restore_row(tab, var); |
| 3724 | isl_assert(tab->mat->ctx, sgn >= 0, |
| 3725 | return isl_stat_error); |
| 3726 | } |
| 3727 | } else { |
| 3728 | int i; |
| 3729 | |
| 3730 | for (i = 0; i < tab->n_row; ++i) { |
| 3731 | if (isl_int_is_zero(tab->mat->row[i][off + var->index])) |
| 3732 | continue; |
| 3733 | isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1], |
| 3734 | tab->mat->row[i][off + var->index]); |
| 3735 | } |
| 3736 | |
| 3737 | } |
| 3738 | |
| 3739 | return isl_stat_ok; |
| 3740 | } |
| 3741 | |
| 3742 | /* Undo the operation performed by isl_tab_unrestrict. |
| 3743 | * |
| 3744 | * In particular, mark the variable as being non-negative and make |
| 3745 | * sure the sample value respects this constraint. |
| 3746 | */ |
| 3747 | static isl_stat ununrestrict(struct isl_tab *tab, struct isl_tab_var *var) |
| 3748 | { |
| 3749 | var->is_nonneg = 1; |
| 3750 | |
| 3751 | if (var->is_row && restore_row(tab, var) < -1) |
| 3752 | return isl_stat_error; |
| 3753 | |
| 3754 | return isl_stat_ok; |
| 3755 | } |
| 3756 | |
| 3757 | /* Unmark the last redundant row in "tab" as being redundant. |
| 3758 | * This undoes part of the modifications performed by isl_tab_mark_redundant. |
| 3759 | * In particular, remove the redundant mark and make |
| 3760 | * sure the sample value respects the constraint again. |
| 3761 | * A variable that is marked non-negative by isl_tab_mark_redundant |
| 3762 | * is covered by a separate undo record. |
| 3763 | */ |
| 3764 | static isl_stat restore_last_redundant(struct isl_tab *tab) |
| 3765 | { |
| 3766 | struct isl_tab_var *var; |
| 3767 | |
| 3768 | if (tab->n_redundant < 1) |
| 3769 | isl_die(isl_tab_get_ctx(tab), isl_error_internal, |
| 3770 | "no redundant rows" , return isl_stat_error); |
| 3771 | |
| 3772 | var = isl_tab_var_from_row(tab, i: tab->n_redundant - 1); |
| 3773 | var->is_redundant = 0; |
| 3774 | tab->n_redundant--; |
| 3775 | restore_row(tab, var); |
| 3776 | |
| 3777 | return isl_stat_ok; |
| 3778 | } |
| 3779 | |
| 3780 | static isl_stat perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo) |
| 3781 | WARN_UNUSED; |
| 3782 | static isl_stat perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo) |
| 3783 | { |
| 3784 | struct isl_tab_var *var = var_from_index(tab, i: undo->u.var_index); |
| 3785 | switch (undo->type) { |
| 3786 | case isl_tab_undo_nonneg: |
| 3787 | var->is_nonneg = 0; |
| 3788 | break; |
| 3789 | case isl_tab_undo_redundant: |
| 3790 | if (!var->is_row || var->index != tab->n_redundant - 1) |
| 3791 | isl_die(isl_tab_get_ctx(tab), isl_error_internal, |
| 3792 | "not undoing last redundant row" , |
| 3793 | return isl_stat_error); |
| 3794 | return restore_last_redundant(tab); |
| 3795 | case isl_tab_undo_freeze: |
| 3796 | var->frozen = 0; |
| 3797 | break; |
| 3798 | case isl_tab_undo_zero: |
| 3799 | var->is_zero = 0; |
| 3800 | if (!var->is_row) |
| 3801 | tab->n_dead--; |
| 3802 | break; |
| 3803 | case isl_tab_undo_allocate: |
| 3804 | if (undo->u.var_index >= 0) { |
| 3805 | isl_assert(tab->mat->ctx, !var->is_row, |
| 3806 | return isl_stat_error); |
| 3807 | return drop_col(tab, col: var->index); |
| 3808 | } |
| 3809 | if (!var->is_row) { |
| 3810 | if (!max_is_manifestly_unbounded(tab, var)) { |
| 3811 | if (to_row(tab, var, sign: 1) < 0) |
| 3812 | return isl_stat_error; |
| 3813 | } else if (!min_is_manifestly_unbounded(tab, var)) { |
| 3814 | if (to_row(tab, var, sign: -1) < 0) |
| 3815 | return isl_stat_error; |
| 3816 | } else |
| 3817 | if (to_row(tab, var, sign: 0) < 0) |
| 3818 | return isl_stat_error; |
| 3819 | } |
| 3820 | return drop_row(tab, row: var->index); |
| 3821 | case isl_tab_undo_relax: |
| 3822 | return unrelax(tab, var); |
| 3823 | case isl_tab_undo_unrestrict: |
| 3824 | return ununrestrict(tab, var); |
| 3825 | default: |
| 3826 | isl_die(tab->mat->ctx, isl_error_internal, |
| 3827 | "perform_undo_var called on invalid undo record" , |
| 3828 | return isl_stat_error); |
| 3829 | } |
| 3830 | |
| 3831 | return isl_stat_ok; |
| 3832 | } |
| 3833 | |
| 3834 | /* Restore all rows that have been marked redundant by isl_tab_mark_redundant |
| 3835 | * and that have been preserved in the tableau. |
| 3836 | * Note that isl_tab_mark_redundant may also have marked some variables |
| 3837 | * as being non-negative before marking them redundant. These need |
| 3838 | * to be removed as well as otherwise some constraints could end up |
| 3839 | * getting marked redundant with respect to the variable. |
| 3840 | */ |
| 3841 | isl_stat isl_tab_restore_redundant(struct isl_tab *tab) |
| 3842 | { |
| 3843 | if (!tab) |
| 3844 | return isl_stat_error; |
| 3845 | |
| 3846 | if (tab->need_undo) |
| 3847 | isl_die(isl_tab_get_ctx(tab), isl_error_invalid, |
| 3848 | "manually restoring redundant constraints " |
| 3849 | "interferes with undo history" , |
| 3850 | return isl_stat_error); |
| 3851 | |
| 3852 | while (tab->n_redundant > 0) { |
| 3853 | if (tab->row_var[tab->n_redundant - 1] >= 0) { |
| 3854 | struct isl_tab_var *var; |
| 3855 | |
| 3856 | var = isl_tab_var_from_row(tab, i: tab->n_redundant - 1); |
| 3857 | var->is_nonneg = 0; |
| 3858 | } |
| 3859 | restore_last_redundant(tab); |
| 3860 | } |
| 3861 | return isl_stat_ok; |
| 3862 | } |
| 3863 | |
| 3864 | /* Undo the addition of an integer division to the basic map representation |
| 3865 | * of "tab" in position "pos". |
| 3866 | */ |
| 3867 | static isl_stat drop_bmap_div(struct isl_tab *tab, int pos) |
| 3868 | { |
| 3869 | int off; |
| 3870 | isl_size n_div; |
| 3871 | |
| 3872 | n_div = isl_basic_map_dim(bmap: tab->bmap, type: isl_dim_div); |
| 3873 | if (n_div < 0) |
| 3874 | return isl_stat_error; |
| 3875 | off = tab->n_var - n_div; |
| 3876 | tab->bmap = isl_basic_map_drop_div(bmap: tab->bmap, div: pos - off); |
| 3877 | if (!tab->bmap) |
| 3878 | return isl_stat_error; |
| 3879 | if (tab->samples) { |
| 3880 | tab->samples = isl_mat_drop_cols(mat: tab->samples, col: 1 + pos, n: 1); |
| 3881 | if (!tab->samples) |
| 3882 | return isl_stat_error; |
| 3883 | } |
| 3884 | |
| 3885 | return isl_stat_ok; |
| 3886 | } |
| 3887 | |
| 3888 | /* Restore the tableau to the state where the basic variables |
| 3889 | * are those in "col_var". |
| 3890 | * We first construct a list of variables that are currently in |
| 3891 | * the basis, but shouldn't. Then we iterate over all variables |
| 3892 | * that should be in the basis and for each one that is currently |
| 3893 | * not in the basis, we exchange it with one of the elements of the |
| 3894 | * list constructed before. |
| 3895 | * We can always find an appropriate variable to pivot with because |
| 3896 | * the current basis is mapped to the old basis by a non-singular |
| 3897 | * matrix and so we can never end up with a zero row. |
| 3898 | */ |
| 3899 | static int restore_basis(struct isl_tab *tab, int *col_var) |
| 3900 | { |
| 3901 | int i, j; |
| 3902 | int = 0; |
| 3903 | int * = NULL; /* current columns that contain bad stuff */ |
| 3904 | unsigned off = 2 + tab->M; |
| 3905 | |
| 3906 | extra = isl_alloc_array(tab->mat->ctx, int, tab->n_col); |
| 3907 | if (tab->n_col && !extra) |
| 3908 | goto error; |
| 3909 | for (i = 0; i < tab->n_col; ++i) { |
| 3910 | for (j = 0; j < tab->n_col; ++j) |
| 3911 | if (tab->col_var[i] == col_var[j]) |
| 3912 | break; |
| 3913 | if (j < tab->n_col) |
| 3914 | continue; |
| 3915 | extra[n_extra++] = i; |
| 3916 | } |
| 3917 | for (i = 0; i < tab->n_col && n_extra > 0; ++i) { |
| 3918 | struct isl_tab_var *var; |
| 3919 | int row; |
| 3920 | |
| 3921 | for (j = 0; j < tab->n_col; ++j) |
| 3922 | if (col_var[i] == tab->col_var[j]) |
| 3923 | break; |
| 3924 | if (j < tab->n_col) |
| 3925 | continue; |
| 3926 | var = var_from_index(tab, i: col_var[i]); |
| 3927 | row = var->index; |
| 3928 | for (j = 0; j < n_extra; ++j) |
| 3929 | if (!isl_int_is_zero(tab->mat->row[row][off+extra[j]])) |
| 3930 | break; |
| 3931 | isl_assert(tab->mat->ctx, j < n_extra, goto error); |
| 3932 | if (isl_tab_pivot(tab, row, col: extra[j]) < 0) |
| 3933 | goto error; |
| 3934 | extra[j] = extra[--n_extra]; |
| 3935 | } |
| 3936 | |
| 3937 | free(ptr: extra); |
| 3938 | return 0; |
| 3939 | error: |
| 3940 | free(ptr: extra); |
| 3941 | return -1; |
| 3942 | } |
| 3943 | |
| 3944 | /* Remove all samples with index n or greater, i.e., those samples |
| 3945 | * that were added since we saved this number of samples in |
| 3946 | * isl_tab_save_samples. |
| 3947 | */ |
| 3948 | static void drop_samples_since(struct isl_tab *tab, int n) |
| 3949 | { |
| 3950 | int i; |
| 3951 | |
| 3952 | for (i = tab->n_sample - 1; i >= 0 && tab->n_sample > n; --i) { |
| 3953 | if (tab->sample_index[i] < n) |
| 3954 | continue; |
| 3955 | |
| 3956 | if (i != tab->n_sample - 1) { |
| 3957 | int t = tab->sample_index[tab->n_sample-1]; |
| 3958 | tab->sample_index[tab->n_sample-1] = tab->sample_index[i]; |
| 3959 | tab->sample_index[i] = t; |
| 3960 | isl_mat_swap_rows(mat: tab->samples, i: tab->n_sample-1, j: i); |
| 3961 | } |
| 3962 | tab->n_sample--; |
| 3963 | } |
| 3964 | } |
| 3965 | |
| 3966 | static isl_stat perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo) |
| 3967 | WARN_UNUSED; |
| 3968 | static isl_stat perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo) |
| 3969 | { |
| 3970 | switch (undo->type) { |
| 3971 | case isl_tab_undo_rational: |
| 3972 | tab->rational = 0; |
| 3973 | break; |
| 3974 | case isl_tab_undo_empty: |
| 3975 | tab->empty = 0; |
| 3976 | break; |
| 3977 | case isl_tab_undo_nonneg: |
| 3978 | case isl_tab_undo_redundant: |
| 3979 | case isl_tab_undo_freeze: |
| 3980 | case isl_tab_undo_zero: |
| 3981 | case isl_tab_undo_allocate: |
| 3982 | case isl_tab_undo_relax: |
| 3983 | case isl_tab_undo_unrestrict: |
| 3984 | return perform_undo_var(tab, undo); |
| 3985 | case isl_tab_undo_bmap_eq: |
| 3986 | tab->bmap = isl_basic_map_free_equality(bmap: tab->bmap, n: 1); |
| 3987 | return tab->bmap ? isl_stat_ok : isl_stat_error; |
| 3988 | case isl_tab_undo_bmap_ineq: |
| 3989 | tab->bmap = isl_basic_map_free_inequality(bmap: tab->bmap, n: 1); |
| 3990 | return tab->bmap ? isl_stat_ok : isl_stat_error; |
| 3991 | case isl_tab_undo_bmap_div: |
| 3992 | return drop_bmap_div(tab, pos: undo->u.var_index); |
| 3993 | case isl_tab_undo_saved_basis: |
| 3994 | if (restore_basis(tab, col_var: undo->u.col_var) < 0) |
| 3995 | return isl_stat_error; |
| 3996 | break; |
| 3997 | case isl_tab_undo_drop_sample: |
| 3998 | tab->n_outside--; |
| 3999 | break; |
| 4000 | case isl_tab_undo_saved_samples: |
| 4001 | drop_samples_since(tab, n: undo->u.n); |
| 4002 | break; |
| 4003 | case isl_tab_undo_callback: |
| 4004 | return undo->u.callback->run(undo->u.callback); |
| 4005 | default: |
| 4006 | isl_assert(tab->mat->ctx, 0, return isl_stat_error); |
| 4007 | } |
| 4008 | return isl_stat_ok; |
| 4009 | } |
| 4010 | |
| 4011 | /* Return the tableau to the state it was in when the snapshot "snap" |
| 4012 | * was taken. |
| 4013 | */ |
| 4014 | isl_stat isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap) |
| 4015 | { |
| 4016 | struct isl_tab_undo *undo, *next; |
| 4017 | |
| 4018 | if (!tab) |
| 4019 | return isl_stat_error; |
| 4020 | |
| 4021 | tab->in_undo = 1; |
| 4022 | for (undo = tab->top; undo && undo != &tab->bottom; undo = next) { |
| 4023 | next = undo->next; |
| 4024 | if (undo == snap) |
| 4025 | break; |
| 4026 | if (perform_undo(tab, undo) < 0) { |
| 4027 | tab->top = undo; |
| 4028 | free_undo(tab); |
| 4029 | tab->in_undo = 0; |
| 4030 | return isl_stat_error; |
| 4031 | } |
| 4032 | free_undo_record(undo); |
| 4033 | } |
| 4034 | tab->in_undo = 0; |
| 4035 | tab->top = undo; |
| 4036 | if (!undo) |
| 4037 | return isl_stat_error; |
| 4038 | return isl_stat_ok; |
| 4039 | } |
| 4040 | |
| 4041 | /* The given row "row" represents an inequality violated by all |
| 4042 | * points in the tableau. Check for some special cases of such |
| 4043 | * separating constraints. |
| 4044 | * In particular, if the row has been reduced to the constant -1, |
| 4045 | * then we know the inequality is adjacent (but opposite) to |
| 4046 | * an equality in the tableau. |
| 4047 | * If the row has been reduced to r = c*(-1 -r'), with r' an inequality |
| 4048 | * of the tableau and c a positive constant, then the inequality |
| 4049 | * is adjacent (but opposite) to the inequality r'. |
| 4050 | */ |
| 4051 | static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row) |
| 4052 | { |
| 4053 | int pos; |
| 4054 | unsigned off = 2 + tab->M; |
| 4055 | |
| 4056 | if (tab->rational) |
| 4057 | return isl_ineq_separate; |
| 4058 | |
| 4059 | if (!isl_int_is_one(tab->mat->row[row][0])) |
| 4060 | return isl_ineq_separate; |
| 4061 | |
| 4062 | pos = isl_seq_first_non_zero(p: tab->mat->row[row] + off + tab->n_dead, |
| 4063 | len: tab->n_col - tab->n_dead); |
| 4064 | if (pos == -1) { |
| 4065 | if (isl_int_is_negone(tab->mat->row[row][1])) |
| 4066 | return isl_ineq_adj_eq; |
| 4067 | else |
| 4068 | return isl_ineq_separate; |
| 4069 | } |
| 4070 | |
| 4071 | if (!isl_int_eq(tab->mat->row[row][1], |
| 4072 | tab->mat->row[row][off + tab->n_dead + pos])) |
| 4073 | return isl_ineq_separate; |
| 4074 | |
| 4075 | pos = isl_seq_first_non_zero( |
| 4076 | p: tab->mat->row[row] + off + tab->n_dead + pos + 1, |
| 4077 | len: tab->n_col - tab->n_dead - pos - 1); |
| 4078 | |
| 4079 | return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate; |
| 4080 | } |
| 4081 | |
| 4082 | /* Check the effect of inequality "ineq" on the tableau "tab". |
| 4083 | * The result may be |
| 4084 | * isl_ineq_redundant: satisfied by all points in the tableau |
| 4085 | * isl_ineq_separate: satisfied by no point in the tableau |
| 4086 | * isl_ineq_cut: satisfied by some by not all points |
| 4087 | * isl_ineq_adj_eq: adjacent to an equality |
| 4088 | * isl_ineq_adj_ineq: adjacent to an inequality. |
| 4089 | */ |
| 4090 | enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq) |
| 4091 | { |
| 4092 | enum isl_ineq_type type = isl_ineq_error; |
| 4093 | struct isl_tab_undo *snap = NULL; |
| 4094 | int con; |
| 4095 | int row; |
| 4096 | |
| 4097 | if (!tab) |
| 4098 | return isl_ineq_error; |
| 4099 | |
| 4100 | if (isl_tab_extend_cons(tab, n_new: 1) < 0) |
| 4101 | return isl_ineq_error; |
| 4102 | |
| 4103 | snap = isl_tab_snap(tab); |
| 4104 | |
| 4105 | con = isl_tab_add_row(tab, line: ineq); |
| 4106 | if (con < 0) |
| 4107 | goto error; |
| 4108 | |
| 4109 | row = tab->con[con].index; |
| 4110 | if (isl_tab_row_is_redundant(tab, row)) |
| 4111 | type = isl_ineq_redundant; |
| 4112 | else if (isl_int_is_neg(tab->mat->row[row][1]) && |
| 4113 | (tab->rational || |
| 4114 | isl_int_abs_ge(tab->mat->row[row][1], |
| 4115 | tab->mat->row[row][0]))) { |
| 4116 | int nonneg = at_least_zero(tab, var: &tab->con[con]); |
| 4117 | if (nonneg < 0) |
| 4118 | goto error; |
| 4119 | if (nonneg) |
| 4120 | type = isl_ineq_cut; |
| 4121 | else |
| 4122 | type = separation_type(tab, row); |
| 4123 | } else { |
| 4124 | int red = con_is_redundant(tab, var: &tab->con[con]); |
| 4125 | if (red < 0) |
| 4126 | goto error; |
| 4127 | if (!red) |
| 4128 | type = isl_ineq_cut; |
| 4129 | else |
| 4130 | type = isl_ineq_redundant; |
| 4131 | } |
| 4132 | |
| 4133 | if (isl_tab_rollback(tab, snap)) |
| 4134 | return isl_ineq_error; |
| 4135 | return type; |
| 4136 | error: |
| 4137 | return isl_ineq_error; |
| 4138 | } |
| 4139 | |
| 4140 | isl_stat isl_tab_track_bmap(struct isl_tab *tab, __isl_take isl_basic_map *bmap) |
| 4141 | { |
| 4142 | bmap = isl_basic_map_cow(bmap); |
| 4143 | if (!tab || !bmap) |
| 4144 | goto error; |
| 4145 | |
| 4146 | if (tab->empty) { |
| 4147 | bmap = isl_basic_map_set_to_empty(bmap); |
| 4148 | if (!bmap) |
| 4149 | goto error; |
| 4150 | tab->bmap = bmap; |
| 4151 | return isl_stat_ok; |
| 4152 | } |
| 4153 | |
| 4154 | isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, goto error); |
| 4155 | isl_assert(tab->mat->ctx, |
| 4156 | tab->n_con == bmap->n_eq + bmap->n_ineq, goto error); |
| 4157 | |
| 4158 | tab->bmap = bmap; |
| 4159 | |
| 4160 | return isl_stat_ok; |
| 4161 | error: |
| 4162 | isl_basic_map_free(bmap); |
| 4163 | return isl_stat_error; |
| 4164 | } |
| 4165 | |
| 4166 | isl_stat isl_tab_track_bset(struct isl_tab *tab, __isl_take isl_basic_set *bset) |
| 4167 | { |
| 4168 | return isl_tab_track_bmap(tab, bmap: bset_to_bmap(bset)); |
| 4169 | } |
| 4170 | |
| 4171 | __isl_keep isl_basic_set *isl_tab_peek_bset(struct isl_tab *tab) |
| 4172 | { |
| 4173 | if (!tab) |
| 4174 | return NULL; |
| 4175 | |
| 4176 | return bset_from_bmap(bmap: tab->bmap); |
| 4177 | } |
| 4178 | |
| 4179 | static void isl_tab_print_internal(__isl_keep struct isl_tab *tab, |
| 4180 | FILE *out, int indent) |
| 4181 | { |
| 4182 | unsigned r, c; |
| 4183 | int i; |
| 4184 | |
| 4185 | if (!tab) { |
| 4186 | fprintf(stream: out, format: "%*snull tab\n" , indent, "" ); |
| 4187 | return; |
| 4188 | } |
| 4189 | fprintf(stream: out, format: "%*sn_redundant: %d, n_dead: %d" , indent, "" , |
| 4190 | tab->n_redundant, tab->n_dead); |
| 4191 | if (tab->rational) |
| 4192 | fprintf(stream: out, format: ", rational" ); |
| 4193 | if (tab->empty) |
| 4194 | fprintf(stream: out, format: ", empty" ); |
| 4195 | fprintf(stream: out, format: "\n" ); |
| 4196 | fprintf(stream: out, format: "%*s[" , indent, "" ); |
| 4197 | for (i = 0; i < tab->n_var; ++i) { |
| 4198 | if (i) |
| 4199 | fprintf(stream: out, format: (i == tab->n_param || |
| 4200 | i == tab->n_var - tab->n_div) ? "; " |
| 4201 | : ", " ); |
| 4202 | fprintf(stream: out, format: "%c%d%s" , tab->var[i].is_row ? 'r' : 'c', |
| 4203 | tab->var[i].index, |
| 4204 | tab->var[i].is_zero ? " [=0]" : |
| 4205 | tab->var[i].is_redundant ? " [R]" : "" ); |
| 4206 | } |
| 4207 | fprintf(stream: out, format: "]\n" ); |
| 4208 | fprintf(stream: out, format: "%*s[" , indent, "" ); |
| 4209 | for (i = 0; i < tab->n_con; ++i) { |
| 4210 | if (i) |
| 4211 | fprintf(stream: out, format: ", " ); |
| 4212 | fprintf(stream: out, format: "%c%d%s" , tab->con[i].is_row ? 'r' : 'c', |
| 4213 | tab->con[i].index, |
| 4214 | tab->con[i].is_zero ? " [=0]" : |
| 4215 | tab->con[i].is_redundant ? " [R]" : "" ); |
| 4216 | } |
| 4217 | fprintf(stream: out, format: "]\n" ); |
| 4218 | fprintf(stream: out, format: "%*s[" , indent, "" ); |
| 4219 | for (i = 0; i < tab->n_row; ++i) { |
| 4220 | const char *sign = "" ; |
| 4221 | if (i) |
| 4222 | fprintf(stream: out, format: ", " ); |
| 4223 | if (tab->row_sign) { |
| 4224 | if (tab->row_sign[i] == isl_tab_row_unknown) |
| 4225 | sign = "?" ; |
| 4226 | else if (tab->row_sign[i] == isl_tab_row_neg) |
| 4227 | sign = "-" ; |
| 4228 | else if (tab->row_sign[i] == isl_tab_row_pos) |
| 4229 | sign = "+" ; |
| 4230 | else |
| 4231 | sign = "+-" ; |
| 4232 | } |
| 4233 | fprintf(stream: out, format: "r%d: %d%s%s" , i, tab->row_var[i], |
| 4234 | isl_tab_var_from_row(tab, i)->is_nonneg ? " [>=0]" : "" , sign); |
| 4235 | } |
| 4236 | fprintf(stream: out, format: "]\n" ); |
| 4237 | fprintf(stream: out, format: "%*s[" , indent, "" ); |
| 4238 | for (i = 0; i < tab->n_col; ++i) { |
| 4239 | if (i) |
| 4240 | fprintf(stream: out, format: ", " ); |
| 4241 | fprintf(stream: out, format: "c%d: %d%s" , i, tab->col_var[i], |
| 4242 | var_from_col(tab, i)->is_nonneg ? " [>=0]" : "" ); |
| 4243 | } |
| 4244 | fprintf(stream: out, format: "]\n" ); |
| 4245 | r = tab->mat->n_row; |
| 4246 | tab->mat->n_row = tab->n_row; |
| 4247 | c = tab->mat->n_col; |
| 4248 | tab->mat->n_col = 2 + tab->M + tab->n_col; |
| 4249 | isl_mat_print_internal(mat: tab->mat, out, indent); |
| 4250 | tab->mat->n_row = r; |
| 4251 | tab->mat->n_col = c; |
| 4252 | if (tab->bmap) |
| 4253 | isl_basic_map_print_internal(bmap: tab->bmap, out, indent); |
| 4254 | } |
| 4255 | |
| 4256 | void isl_tab_dump(__isl_keep struct isl_tab *tab) |
| 4257 | { |
| 4258 | isl_tab_print_internal(tab, stderr, indent: 0); |
| 4259 | } |
| 4260 | |