1 | /* |
2 | * Copyright 2008-2009 Katholieke Universiteit Leuven |
3 | * Copyright 2013 Ecole Normale Superieure |
4 | * Copyright 2014 INRIA Rocquencourt |
5 | * Copyright 2016 Sven Verdoolaege |
6 | * |
7 | * Use of this software is governed by the MIT license |
8 | * |
9 | * Written by Sven Verdoolaege, K.U.Leuven, Departement |
10 | * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium |
11 | * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France |
12 | * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, |
13 | * B.P. 105 - 78153 Le Chesnay, France |
14 | */ |
15 | |
16 | #include <isl_ctx_private.h> |
17 | #include <isl_mat_private.h> |
18 | #include <isl_vec_private.h> |
19 | #include "isl_map_private.h" |
20 | #include "isl_tab.h" |
21 | #include <isl_seq.h> |
22 | #include <isl_config.h> |
23 | |
24 | #include <bset_to_bmap.c> |
25 | #include <bset_from_bmap.c> |
26 | |
27 | /* |
28 | * The implementation of tableaus in this file was inspired by Section 8 |
29 | * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem |
30 | * prover for program checking". |
31 | */ |
32 | |
33 | struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx, |
34 | unsigned n_row, unsigned n_var, unsigned M) |
35 | { |
36 | int i; |
37 | struct isl_tab *tab; |
38 | unsigned off = 2 + M; |
39 | |
40 | tab = isl_calloc_type(ctx, struct isl_tab); |
41 | if (!tab) |
42 | return NULL; |
43 | tab->mat = isl_mat_alloc(ctx, n_row, n_col: off + n_var); |
44 | if (!tab->mat) |
45 | goto error; |
46 | tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var); |
47 | if (n_var && !tab->var) |
48 | goto error; |
49 | tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row); |
50 | if (n_row && !tab->con) |
51 | goto error; |
52 | tab->col_var = isl_alloc_array(ctx, int, n_var); |
53 | if (n_var && !tab->col_var) |
54 | goto error; |
55 | tab->row_var = isl_alloc_array(ctx, int, n_row); |
56 | if (n_row && !tab->row_var) |
57 | goto error; |
58 | for (i = 0; i < n_var; ++i) { |
59 | tab->var[i].index = i; |
60 | tab->var[i].is_row = 0; |
61 | tab->var[i].is_nonneg = 0; |
62 | tab->var[i].is_zero = 0; |
63 | tab->var[i].is_redundant = 0; |
64 | tab->var[i].frozen = 0; |
65 | tab->var[i].negated = 0; |
66 | tab->col_var[i] = i; |
67 | } |
68 | tab->n_row = 0; |
69 | tab->n_con = 0; |
70 | tab->n_eq = 0; |
71 | tab->max_con = n_row; |
72 | tab->n_col = n_var; |
73 | tab->n_var = n_var; |
74 | tab->max_var = n_var; |
75 | tab->n_param = 0; |
76 | tab->n_div = 0; |
77 | tab->n_dead = 0; |
78 | tab->n_redundant = 0; |
79 | tab->strict_redundant = 0; |
80 | tab->need_undo = 0; |
81 | tab->rational = 0; |
82 | tab->empty = 0; |
83 | tab->in_undo = 0; |
84 | tab->M = M; |
85 | tab->cone = 0; |
86 | tab->bottom.type = isl_tab_undo_bottom; |
87 | tab->bottom.next = NULL; |
88 | tab->top = &tab->bottom; |
89 | |
90 | tab->n_zero = 0; |
91 | tab->n_unbounded = 0; |
92 | tab->basis = NULL; |
93 | |
94 | return tab; |
95 | error: |
96 | isl_tab_free(tab); |
97 | return NULL; |
98 | } |
99 | |
100 | isl_ctx *isl_tab_get_ctx(struct isl_tab *tab) |
101 | { |
102 | return tab ? isl_mat_get_ctx(mat: tab->mat) : NULL; |
103 | } |
104 | |
105 | int isl_tab_extend_cons(struct isl_tab *tab, unsigned n_new) |
106 | { |
107 | unsigned off; |
108 | |
109 | if (!tab) |
110 | return -1; |
111 | |
112 | off = 2 + tab->M; |
113 | |
114 | if (tab->max_con < tab->n_con + n_new) { |
115 | struct isl_tab_var *con; |
116 | |
117 | con = isl_realloc_array(tab->mat->ctx, tab->con, |
118 | struct isl_tab_var, tab->max_con + n_new); |
119 | if (!con) |
120 | return -1; |
121 | tab->con = con; |
122 | tab->max_con += n_new; |
123 | } |
124 | if (tab->mat->n_row < tab->n_row + n_new) { |
125 | int *row_var; |
126 | |
127 | tab->mat = isl_mat_extend(mat: tab->mat, |
128 | n_row: tab->n_row + n_new, n_col: off + tab->n_col); |
129 | if (!tab->mat) |
130 | return -1; |
131 | row_var = isl_realloc_array(tab->mat->ctx, tab->row_var, |
132 | int, tab->mat->n_row); |
133 | if (!row_var) |
134 | return -1; |
135 | tab->row_var = row_var; |
136 | if (tab->row_sign) { |
137 | enum isl_tab_row_sign *s; |
138 | s = isl_realloc_array(tab->mat->ctx, tab->row_sign, |
139 | enum isl_tab_row_sign, tab->mat->n_row); |
140 | if (!s) |
141 | return -1; |
142 | tab->row_sign = s; |
143 | } |
144 | } |
145 | return 0; |
146 | } |
147 | |
148 | /* Make room for at least n_new extra variables. |
149 | * Return -1 if anything went wrong. |
150 | */ |
151 | int isl_tab_extend_vars(struct isl_tab *tab, unsigned n_new) |
152 | { |
153 | struct isl_tab_var *var; |
154 | unsigned off = 2 + tab->M; |
155 | |
156 | if (tab->max_var < tab->n_var + n_new) { |
157 | var = isl_realloc_array(tab->mat->ctx, tab->var, |
158 | struct isl_tab_var, tab->n_var + n_new); |
159 | if (!var) |
160 | return -1; |
161 | tab->var = var; |
162 | tab->max_var = tab->n_var + n_new; |
163 | } |
164 | |
165 | if (tab->mat->n_col < off + tab->n_col + n_new) { |
166 | int *p; |
167 | |
168 | tab->mat = isl_mat_extend(mat: tab->mat, |
169 | n_row: tab->mat->n_row, n_col: off + tab->n_col + n_new); |
170 | if (!tab->mat) |
171 | return -1; |
172 | p = isl_realloc_array(tab->mat->ctx, tab->col_var, |
173 | int, tab->n_col + n_new); |
174 | if (!p) |
175 | return -1; |
176 | tab->col_var = p; |
177 | } |
178 | |
179 | return 0; |
180 | } |
181 | |
182 | static void free_undo_record(struct isl_tab_undo *undo) |
183 | { |
184 | switch (undo->type) { |
185 | case isl_tab_undo_saved_basis: |
186 | free(ptr: undo->u.col_var); |
187 | break; |
188 | default:; |
189 | } |
190 | free(ptr: undo); |
191 | } |
192 | |
193 | static void free_undo(struct isl_tab *tab) |
194 | { |
195 | struct isl_tab_undo *undo, *next; |
196 | |
197 | for (undo = tab->top; undo && undo != &tab->bottom; undo = next) { |
198 | next = undo->next; |
199 | free_undo_record(undo); |
200 | } |
201 | tab->top = undo; |
202 | } |
203 | |
204 | void isl_tab_free(struct isl_tab *tab) |
205 | { |
206 | if (!tab) |
207 | return; |
208 | free_undo(tab); |
209 | isl_mat_free(mat: tab->mat); |
210 | isl_vec_free(vec: tab->dual); |
211 | isl_basic_map_free(bmap: tab->bmap); |
212 | free(ptr: tab->var); |
213 | free(ptr: tab->con); |
214 | free(ptr: tab->row_var); |
215 | free(ptr: tab->col_var); |
216 | free(ptr: tab->row_sign); |
217 | isl_mat_free(mat: tab->samples); |
218 | free(ptr: tab->sample_index); |
219 | isl_mat_free(mat: tab->basis); |
220 | free(ptr: tab); |
221 | } |
222 | |
223 | struct isl_tab *isl_tab_dup(struct isl_tab *tab) |
224 | { |
225 | int i; |
226 | struct isl_tab *dup; |
227 | unsigned off; |
228 | |
229 | if (!tab) |
230 | return NULL; |
231 | |
232 | off = 2 + tab->M; |
233 | dup = isl_calloc_type(tab->mat->ctx, struct isl_tab); |
234 | if (!dup) |
235 | return NULL; |
236 | dup->mat = isl_mat_dup(mat: tab->mat); |
237 | if (!dup->mat) |
238 | goto error; |
239 | dup->var = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_var); |
240 | if (tab->max_var && !dup->var) |
241 | goto error; |
242 | for (i = 0; i < tab->n_var; ++i) |
243 | dup->var[i] = tab->var[i]; |
244 | dup->con = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_con); |
245 | if (tab->max_con && !dup->con) |
246 | goto error; |
247 | for (i = 0; i < tab->n_con; ++i) |
248 | dup->con[i] = tab->con[i]; |
249 | dup->col_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_col - off); |
250 | if ((tab->mat->n_col - off) && !dup->col_var) |
251 | goto error; |
252 | for (i = 0; i < tab->n_col; ++i) |
253 | dup->col_var[i] = tab->col_var[i]; |
254 | dup->row_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_row); |
255 | if (tab->mat->n_row && !dup->row_var) |
256 | goto error; |
257 | for (i = 0; i < tab->n_row; ++i) |
258 | dup->row_var[i] = tab->row_var[i]; |
259 | if (tab->row_sign) { |
260 | dup->row_sign = isl_alloc_array(tab->mat->ctx, enum isl_tab_row_sign, |
261 | tab->mat->n_row); |
262 | if (tab->mat->n_row && !dup->row_sign) |
263 | goto error; |
264 | for (i = 0; i < tab->n_row; ++i) |
265 | dup->row_sign[i] = tab->row_sign[i]; |
266 | } |
267 | if (tab->samples) { |
268 | dup->samples = isl_mat_dup(mat: tab->samples); |
269 | if (!dup->samples) |
270 | goto error; |
271 | dup->sample_index = isl_alloc_array(tab->mat->ctx, int, |
272 | tab->samples->n_row); |
273 | if (tab->samples->n_row && !dup->sample_index) |
274 | goto error; |
275 | dup->n_sample = tab->n_sample; |
276 | dup->n_outside = tab->n_outside; |
277 | } |
278 | dup->n_row = tab->n_row; |
279 | dup->n_con = tab->n_con; |
280 | dup->n_eq = tab->n_eq; |
281 | dup->max_con = tab->max_con; |
282 | dup->n_col = tab->n_col; |
283 | dup->n_var = tab->n_var; |
284 | dup->max_var = tab->max_var; |
285 | dup->n_param = tab->n_param; |
286 | dup->n_div = tab->n_div; |
287 | dup->n_dead = tab->n_dead; |
288 | dup->n_redundant = tab->n_redundant; |
289 | dup->rational = tab->rational; |
290 | dup->empty = tab->empty; |
291 | dup->strict_redundant = 0; |
292 | dup->need_undo = 0; |
293 | dup->in_undo = 0; |
294 | dup->M = tab->M; |
295 | dup->cone = tab->cone; |
296 | dup->bottom.type = isl_tab_undo_bottom; |
297 | dup->bottom.next = NULL; |
298 | dup->top = &dup->bottom; |
299 | |
300 | dup->n_zero = tab->n_zero; |
301 | dup->n_unbounded = tab->n_unbounded; |
302 | dup->basis = isl_mat_dup(mat: tab->basis); |
303 | |
304 | return dup; |
305 | error: |
306 | isl_tab_free(tab: dup); |
307 | return NULL; |
308 | } |
309 | |
310 | /* Construct the coefficient matrix of the product tableau |
311 | * of two tableaus. |
312 | * mat{1,2} is the coefficient matrix of tableau {1,2} |
313 | * row{1,2} is the number of rows in tableau {1,2} |
314 | * col{1,2} is the number of columns in tableau {1,2} |
315 | * off is the offset to the coefficient column (skipping the |
316 | * denominator, the constant term and the big parameter if any) |
317 | * r{1,2} is the number of redundant rows in tableau {1,2} |
318 | * d{1,2} is the number of dead columns in tableau {1,2} |
319 | * |
320 | * The order of the rows and columns in the result is as explained |
321 | * in isl_tab_product. |
322 | */ |
323 | static __isl_give isl_mat *tab_mat_product(__isl_keep isl_mat *mat1, |
324 | __isl_keep isl_mat *mat2, unsigned row1, unsigned row2, |
325 | unsigned col1, unsigned col2, |
326 | unsigned off, unsigned r1, unsigned r2, unsigned d1, unsigned d2) |
327 | { |
328 | int i; |
329 | struct isl_mat *prod; |
330 | unsigned n; |
331 | |
332 | prod = isl_mat_alloc(ctx: mat1->ctx, n_row: mat1->n_row + mat2->n_row, |
333 | n_col: off + col1 + col2); |
334 | if (!prod) |
335 | return NULL; |
336 | |
337 | n = 0; |
338 | for (i = 0; i < r1; ++i) { |
339 | isl_seq_cpy(dst: prod->row[n + i], src: mat1->row[i], len: off + d1); |
340 | isl_seq_clr(p: prod->row[n + i] + off + d1, len: d2); |
341 | isl_seq_cpy(dst: prod->row[n + i] + off + d1 + d2, |
342 | src: mat1->row[i] + off + d1, len: col1 - d1); |
343 | isl_seq_clr(p: prod->row[n + i] + off + col1 + d1, len: col2 - d2); |
344 | } |
345 | |
346 | n += r1; |
347 | for (i = 0; i < r2; ++i) { |
348 | isl_seq_cpy(dst: prod->row[n + i], src: mat2->row[i], len: off); |
349 | isl_seq_clr(p: prod->row[n + i] + off, len: d1); |
350 | isl_seq_cpy(dst: prod->row[n + i] + off + d1, |
351 | src: mat2->row[i] + off, len: d2); |
352 | isl_seq_clr(p: prod->row[n + i] + off + d1 + d2, len: col1 - d1); |
353 | isl_seq_cpy(dst: prod->row[n + i] + off + col1 + d1, |
354 | src: mat2->row[i] + off + d2, len: col2 - d2); |
355 | } |
356 | |
357 | n += r2; |
358 | for (i = 0; i < row1 - r1; ++i) { |
359 | isl_seq_cpy(dst: prod->row[n + i], src: mat1->row[r1 + i], len: off + d1); |
360 | isl_seq_clr(p: prod->row[n + i] + off + d1, len: d2); |
361 | isl_seq_cpy(dst: prod->row[n + i] + off + d1 + d2, |
362 | src: mat1->row[r1 + i] + off + d1, len: col1 - d1); |
363 | isl_seq_clr(p: prod->row[n + i] + off + col1 + d1, len: col2 - d2); |
364 | } |
365 | |
366 | n += row1 - r1; |
367 | for (i = 0; i < row2 - r2; ++i) { |
368 | isl_seq_cpy(dst: prod->row[n + i], src: mat2->row[r2 + i], len: off); |
369 | isl_seq_clr(p: prod->row[n + i] + off, len: d1); |
370 | isl_seq_cpy(dst: prod->row[n + i] + off + d1, |
371 | src: mat2->row[r2 + i] + off, len: d2); |
372 | isl_seq_clr(p: prod->row[n + i] + off + d1 + d2, len: col1 - d1); |
373 | isl_seq_cpy(dst: prod->row[n + i] + off + col1 + d1, |
374 | src: mat2->row[r2 + i] + off + d2, len: col2 - d2); |
375 | } |
376 | |
377 | return prod; |
378 | } |
379 | |
380 | /* Update the row or column index of a variable that corresponds |
381 | * to a variable in the first input tableau. |
382 | */ |
383 | static void update_index1(struct isl_tab_var *var, |
384 | unsigned r1, unsigned r2, unsigned d1, unsigned d2) |
385 | { |
386 | if (var->index == -1) |
387 | return; |
388 | if (var->is_row && var->index >= r1) |
389 | var->index += r2; |
390 | if (!var->is_row && var->index >= d1) |
391 | var->index += d2; |
392 | } |
393 | |
394 | /* Update the row or column index of a variable that corresponds |
395 | * to a variable in the second input tableau. |
396 | */ |
397 | static void update_index2(struct isl_tab_var *var, |
398 | unsigned row1, unsigned col1, |
399 | unsigned r1, unsigned r2, unsigned d1, unsigned d2) |
400 | { |
401 | if (var->index == -1) |
402 | return; |
403 | if (var->is_row) { |
404 | if (var->index < r2) |
405 | var->index += r1; |
406 | else |
407 | var->index += row1; |
408 | } else { |
409 | if (var->index < d2) |
410 | var->index += d1; |
411 | else |
412 | var->index += col1; |
413 | } |
414 | } |
415 | |
416 | /* Create a tableau that represents the Cartesian product of the sets |
417 | * represented by tableaus tab1 and tab2. |
418 | * The order of the rows in the product is |
419 | * - redundant rows of tab1 |
420 | * - redundant rows of tab2 |
421 | * - non-redundant rows of tab1 |
422 | * - non-redundant rows of tab2 |
423 | * The order of the columns is |
424 | * - denominator |
425 | * - constant term |
426 | * - coefficient of big parameter, if any |
427 | * - dead columns of tab1 |
428 | * - dead columns of tab2 |
429 | * - live columns of tab1 |
430 | * - live columns of tab2 |
431 | * The order of the variables and the constraints is a concatenation |
432 | * of order in the two input tableaus. |
433 | */ |
434 | struct isl_tab *isl_tab_product(struct isl_tab *tab1, struct isl_tab *tab2) |
435 | { |
436 | int i; |
437 | struct isl_tab *prod; |
438 | unsigned off; |
439 | unsigned r1, r2, d1, d2; |
440 | |
441 | if (!tab1 || !tab2) |
442 | return NULL; |
443 | |
444 | isl_assert(tab1->mat->ctx, tab1->M == tab2->M, return NULL); |
445 | isl_assert(tab1->mat->ctx, tab1->rational == tab2->rational, return NULL); |
446 | isl_assert(tab1->mat->ctx, tab1->cone == tab2->cone, return NULL); |
447 | isl_assert(tab1->mat->ctx, !tab1->row_sign, return NULL); |
448 | isl_assert(tab1->mat->ctx, !tab2->row_sign, return NULL); |
449 | isl_assert(tab1->mat->ctx, tab1->n_param == 0, return NULL); |
450 | isl_assert(tab1->mat->ctx, tab2->n_param == 0, return NULL); |
451 | isl_assert(tab1->mat->ctx, tab1->n_div == 0, return NULL); |
452 | isl_assert(tab1->mat->ctx, tab2->n_div == 0, return NULL); |
453 | |
454 | off = 2 + tab1->M; |
455 | r1 = tab1->n_redundant; |
456 | r2 = tab2->n_redundant; |
457 | d1 = tab1->n_dead; |
458 | d2 = tab2->n_dead; |
459 | prod = isl_calloc_type(tab1->mat->ctx, struct isl_tab); |
460 | if (!prod) |
461 | return NULL; |
462 | prod->mat = tab_mat_product(mat1: tab1->mat, mat2: tab2->mat, |
463 | row1: tab1->n_row, row2: tab2->n_row, |
464 | col1: tab1->n_col, col2: tab2->n_col, off, r1, r2, d1, d2); |
465 | if (!prod->mat) |
466 | goto error; |
467 | prod->var = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var, |
468 | tab1->max_var + tab2->max_var); |
469 | if ((tab1->max_var + tab2->max_var) && !prod->var) |
470 | goto error; |
471 | for (i = 0; i < tab1->n_var; ++i) { |
472 | prod->var[i] = tab1->var[i]; |
473 | update_index1(var: &prod->var[i], r1, r2, d1, d2); |
474 | } |
475 | for (i = 0; i < tab2->n_var; ++i) { |
476 | prod->var[tab1->n_var + i] = tab2->var[i]; |
477 | update_index2(var: &prod->var[tab1->n_var + i], |
478 | row1: tab1->n_row, col1: tab1->n_col, |
479 | r1, r2, d1, d2); |
480 | } |
481 | prod->con = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var, |
482 | tab1->max_con + tab2->max_con); |
483 | if ((tab1->max_con + tab2->max_con) && !prod->con) |
484 | goto error; |
485 | for (i = 0; i < tab1->n_con; ++i) { |
486 | prod->con[i] = tab1->con[i]; |
487 | update_index1(var: &prod->con[i], r1, r2, d1, d2); |
488 | } |
489 | for (i = 0; i < tab2->n_con; ++i) { |
490 | prod->con[tab1->n_con + i] = tab2->con[i]; |
491 | update_index2(var: &prod->con[tab1->n_con + i], |
492 | row1: tab1->n_row, col1: tab1->n_col, |
493 | r1, r2, d1, d2); |
494 | } |
495 | prod->col_var = isl_alloc_array(tab1->mat->ctx, int, |
496 | tab1->n_col + tab2->n_col); |
497 | if ((tab1->n_col + tab2->n_col) && !prod->col_var) |
498 | goto error; |
499 | for (i = 0; i < tab1->n_col; ++i) { |
500 | int pos = i < d1 ? i : i + d2; |
501 | prod->col_var[pos] = tab1->col_var[i]; |
502 | } |
503 | for (i = 0; i < tab2->n_col; ++i) { |
504 | int pos = i < d2 ? d1 + i : tab1->n_col + i; |
505 | int t = tab2->col_var[i]; |
506 | if (t >= 0) |
507 | t += tab1->n_var; |
508 | else |
509 | t -= tab1->n_con; |
510 | prod->col_var[pos] = t; |
511 | } |
512 | prod->row_var = isl_alloc_array(tab1->mat->ctx, int, |
513 | tab1->mat->n_row + tab2->mat->n_row); |
514 | if ((tab1->mat->n_row + tab2->mat->n_row) && !prod->row_var) |
515 | goto error; |
516 | for (i = 0; i < tab1->n_row; ++i) { |
517 | int pos = i < r1 ? i : i + r2; |
518 | prod->row_var[pos] = tab1->row_var[i]; |
519 | } |
520 | for (i = 0; i < tab2->n_row; ++i) { |
521 | int pos = i < r2 ? r1 + i : tab1->n_row + i; |
522 | int t = tab2->row_var[i]; |
523 | if (t >= 0) |
524 | t += tab1->n_var; |
525 | else |
526 | t -= tab1->n_con; |
527 | prod->row_var[pos] = t; |
528 | } |
529 | prod->samples = NULL; |
530 | prod->sample_index = NULL; |
531 | prod->n_row = tab1->n_row + tab2->n_row; |
532 | prod->n_con = tab1->n_con + tab2->n_con; |
533 | prod->n_eq = 0; |
534 | prod->max_con = tab1->max_con + tab2->max_con; |
535 | prod->n_col = tab1->n_col + tab2->n_col; |
536 | prod->n_var = tab1->n_var + tab2->n_var; |
537 | prod->max_var = tab1->max_var + tab2->max_var; |
538 | prod->n_param = 0; |
539 | prod->n_div = 0; |
540 | prod->n_dead = tab1->n_dead + tab2->n_dead; |
541 | prod->n_redundant = tab1->n_redundant + tab2->n_redundant; |
542 | prod->rational = tab1->rational; |
543 | prod->empty = tab1->empty || tab2->empty; |
544 | prod->strict_redundant = tab1->strict_redundant || tab2->strict_redundant; |
545 | prod->need_undo = 0; |
546 | prod->in_undo = 0; |
547 | prod->M = tab1->M; |
548 | prod->cone = tab1->cone; |
549 | prod->bottom.type = isl_tab_undo_bottom; |
550 | prod->bottom.next = NULL; |
551 | prod->top = &prod->bottom; |
552 | |
553 | prod->n_zero = 0; |
554 | prod->n_unbounded = 0; |
555 | prod->basis = NULL; |
556 | |
557 | return prod; |
558 | error: |
559 | isl_tab_free(tab: prod); |
560 | return NULL; |
561 | } |
562 | |
563 | static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i) |
564 | { |
565 | if (i >= 0) |
566 | return &tab->var[i]; |
567 | else |
568 | return &tab->con[~i]; |
569 | } |
570 | |
571 | struct isl_tab_var *isl_tab_var_from_row(struct isl_tab *tab, int i) |
572 | { |
573 | return var_from_index(tab, i: tab->row_var[i]); |
574 | } |
575 | |
576 | static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i) |
577 | { |
578 | return var_from_index(tab, i: tab->col_var[i]); |
579 | } |
580 | |
581 | /* Check if there are any upper bounds on column variable "var", |
582 | * i.e., non-negative rows where var appears with a negative coefficient. |
583 | * Return 1 if there are no such bounds. |
584 | */ |
585 | static int max_is_manifestly_unbounded(struct isl_tab *tab, |
586 | struct isl_tab_var *var) |
587 | { |
588 | int i; |
589 | unsigned off = 2 + tab->M; |
590 | |
591 | if (var->is_row) |
592 | return 0; |
593 | for (i = tab->n_redundant; i < tab->n_row; ++i) { |
594 | if (!isl_int_is_neg(tab->mat->row[i][off + var->index])) |
595 | continue; |
596 | if (isl_tab_var_from_row(tab, i)->is_nonneg) |
597 | return 0; |
598 | } |
599 | return 1; |
600 | } |
601 | |
602 | /* Check if there are any lower bounds on column variable "var", |
603 | * i.e., non-negative rows where var appears with a positive coefficient. |
604 | * Return 1 if there are no such bounds. |
605 | */ |
606 | static int min_is_manifestly_unbounded(struct isl_tab *tab, |
607 | struct isl_tab_var *var) |
608 | { |
609 | int i; |
610 | unsigned off = 2 + tab->M; |
611 | |
612 | if (var->is_row) |
613 | return 0; |
614 | for (i = tab->n_redundant; i < tab->n_row; ++i) { |
615 | if (!isl_int_is_pos(tab->mat->row[i][off + var->index])) |
616 | continue; |
617 | if (isl_tab_var_from_row(tab, i)->is_nonneg) |
618 | return 0; |
619 | } |
620 | return 1; |
621 | } |
622 | |
623 | static int row_cmp(struct isl_tab *tab, int r1, int r2, int c, isl_int *t) |
624 | { |
625 | unsigned off = 2 + tab->M; |
626 | |
627 | if (tab->M) { |
628 | int s; |
629 | isl_int_mul(*t, tab->mat->row[r1][2], tab->mat->row[r2][off+c]); |
630 | isl_int_submul(*t, tab->mat->row[r2][2], tab->mat->row[r1][off+c]); |
631 | s = isl_int_sgn(*t); |
632 | if (s) |
633 | return s; |
634 | } |
635 | isl_int_mul(*t, tab->mat->row[r1][1], tab->mat->row[r2][off + c]); |
636 | isl_int_submul(*t, tab->mat->row[r2][1], tab->mat->row[r1][off + c]); |
637 | return isl_int_sgn(*t); |
638 | } |
639 | |
640 | /* Given the index of a column "c", return the index of a row |
641 | * that can be used to pivot the column in, with either an increase |
642 | * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable. |
643 | * If "var" is not NULL, then the row returned will be different from |
644 | * the one associated with "var". |
645 | * |
646 | * Each row in the tableau is of the form |
647 | * |
648 | * x_r = a_r0 + \sum_i a_ri x_i |
649 | * |
650 | * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn" |
651 | * impose any limit on the increase or decrease in the value of x_c |
652 | * and this bound is equal to a_r0 / |a_rc|. We are therefore looking |
653 | * for the row with the smallest (most stringent) such bound. |
654 | * Note that the common denominator of each row drops out of the fraction. |
655 | * To check if row j has a smaller bound than row r, i.e., |
656 | * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|, |
657 | * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0, |
658 | * where -sign(a_jc) is equal to "sgn". |
659 | */ |
660 | static int pivot_row(struct isl_tab *tab, |
661 | struct isl_tab_var *var, int sgn, int c) |
662 | { |
663 | int j, r, tsgn; |
664 | isl_int t; |
665 | unsigned off = 2 + tab->M; |
666 | |
667 | isl_int_init(t); |
668 | r = -1; |
669 | for (j = tab->n_redundant; j < tab->n_row; ++j) { |
670 | if (var && j == var->index) |
671 | continue; |
672 | if (!isl_tab_var_from_row(tab, i: j)->is_nonneg) |
673 | continue; |
674 | if (sgn * isl_int_sgn(tab->mat->row[j][off + c]) >= 0) |
675 | continue; |
676 | if (r < 0) { |
677 | r = j; |
678 | continue; |
679 | } |
680 | tsgn = sgn * row_cmp(tab, r1: r, r2: j, c, t: &t); |
681 | if (tsgn < 0 || (tsgn == 0 && |
682 | tab->row_var[j] < tab->row_var[r])) |
683 | r = j; |
684 | } |
685 | isl_int_clear(t); |
686 | return r; |
687 | } |
688 | |
689 | /* Find a pivot (row and col) that will increase (sgn > 0) or decrease |
690 | * (sgn < 0) the value of row variable var. |
691 | * If not NULL, then skip_var is a row variable that should be ignored |
692 | * while looking for a pivot row. It is usually equal to var. |
693 | * |
694 | * As the given row in the tableau is of the form |
695 | * |
696 | * x_r = a_r0 + \sum_i a_ri x_i |
697 | * |
698 | * we need to find a column such that the sign of a_ri is equal to "sgn" |
699 | * (such that an increase in x_i will have the desired effect) or a |
700 | * column with a variable that may attain negative values. |
701 | * If a_ri is positive, then we need to move x_i in the same direction |
702 | * to obtain the desired effect. Otherwise, x_i has to move in the |
703 | * opposite direction. |
704 | */ |
705 | static void find_pivot(struct isl_tab *tab, |
706 | struct isl_tab_var *var, struct isl_tab_var *skip_var, |
707 | int sgn, int *row, int *col) |
708 | { |
709 | int j, r, c; |
710 | isl_int *tr; |
711 | |
712 | *row = *col = -1; |
713 | |
714 | isl_assert(tab->mat->ctx, var->is_row, return); |
715 | tr = tab->mat->row[var->index] + 2 + tab->M; |
716 | |
717 | c = -1; |
718 | for (j = tab->n_dead; j < tab->n_col; ++j) { |
719 | if (isl_int_is_zero(tr[j])) |
720 | continue; |
721 | if (isl_int_sgn(tr[j]) != sgn && |
722 | var_from_col(tab, i: j)->is_nonneg) |
723 | continue; |
724 | if (c < 0 || tab->col_var[j] < tab->col_var[c]) |
725 | c = j; |
726 | } |
727 | if (c < 0) |
728 | return; |
729 | |
730 | sgn *= isl_int_sgn(tr[c]); |
731 | r = pivot_row(tab, var: skip_var, sgn, c); |
732 | *row = r < 0 ? var->index : r; |
733 | *col = c; |
734 | } |
735 | |
736 | /* Return 1 if row "row" represents an obviously redundant inequality. |
737 | * This means |
738 | * - it represents an inequality or a variable |
739 | * - that is the sum of a non-negative sample value and a positive |
740 | * combination of zero or more non-negative constraints. |
741 | */ |
742 | int isl_tab_row_is_redundant(struct isl_tab *tab, int row) |
743 | { |
744 | int i; |
745 | unsigned off = 2 + tab->M; |
746 | |
747 | if (tab->row_var[row] < 0 && !isl_tab_var_from_row(tab, i: row)->is_nonneg) |
748 | return 0; |
749 | |
750 | if (isl_int_is_neg(tab->mat->row[row][1])) |
751 | return 0; |
752 | if (tab->strict_redundant && isl_int_is_zero(tab->mat->row[row][1])) |
753 | return 0; |
754 | if (tab->M && isl_int_is_neg(tab->mat->row[row][2])) |
755 | return 0; |
756 | |
757 | for (i = tab->n_dead; i < tab->n_col; ++i) { |
758 | if (isl_int_is_zero(tab->mat->row[row][off + i])) |
759 | continue; |
760 | if (tab->col_var[i] >= 0) |
761 | return 0; |
762 | if (isl_int_is_neg(tab->mat->row[row][off + i])) |
763 | return 0; |
764 | if (!var_from_col(tab, i)->is_nonneg) |
765 | return 0; |
766 | } |
767 | return 1; |
768 | } |
769 | |
770 | static void swap_rows(struct isl_tab *tab, int row1, int row2) |
771 | { |
772 | int t; |
773 | enum isl_tab_row_sign s; |
774 | |
775 | t = tab->row_var[row1]; |
776 | tab->row_var[row1] = tab->row_var[row2]; |
777 | tab->row_var[row2] = t; |
778 | isl_tab_var_from_row(tab, i: row1)->index = row1; |
779 | isl_tab_var_from_row(tab, i: row2)->index = row2; |
780 | tab->mat = isl_mat_swap_rows(mat: tab->mat, i: row1, j: row2); |
781 | |
782 | if (!tab->row_sign) |
783 | return; |
784 | s = tab->row_sign[row1]; |
785 | tab->row_sign[row1] = tab->row_sign[row2]; |
786 | tab->row_sign[row2] = s; |
787 | } |
788 | |
789 | static isl_stat push_union(struct isl_tab *tab, |
790 | enum isl_tab_undo_type type, union isl_tab_undo_val u) WARN_UNUSED; |
791 | |
792 | /* Push record "u" onto the undo stack of "tab", provided "tab" |
793 | * keeps track of undo information. |
794 | * |
795 | * If the record cannot be pushed, then mark the undo stack as invalid |
796 | * such that a later rollback attempt will not try to undo earlier |
797 | * records without having been able to undo the current record. |
798 | */ |
799 | static isl_stat push_union(struct isl_tab *tab, |
800 | enum isl_tab_undo_type type, union isl_tab_undo_val u) |
801 | { |
802 | struct isl_tab_undo *undo; |
803 | |
804 | if (!tab) |
805 | return isl_stat_error; |
806 | if (!tab->need_undo) |
807 | return isl_stat_ok; |
808 | |
809 | undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo); |
810 | if (!undo) |
811 | goto error; |
812 | undo->type = type; |
813 | undo->u = u; |
814 | undo->next = tab->top; |
815 | tab->top = undo; |
816 | |
817 | return isl_stat_ok; |
818 | error: |
819 | free_undo(tab); |
820 | tab->top = NULL; |
821 | return isl_stat_error; |
822 | } |
823 | |
824 | isl_stat isl_tab_push_var(struct isl_tab *tab, |
825 | enum isl_tab_undo_type type, struct isl_tab_var *var) |
826 | { |
827 | union isl_tab_undo_val u; |
828 | if (var->is_row) |
829 | u.var_index = tab->row_var[var->index]; |
830 | else |
831 | u.var_index = tab->col_var[var->index]; |
832 | return push_union(tab, type, u); |
833 | } |
834 | |
835 | isl_stat isl_tab_push(struct isl_tab *tab, enum isl_tab_undo_type type) |
836 | { |
837 | union isl_tab_undo_val u = { 0 }; |
838 | return push_union(tab, type, u); |
839 | } |
840 | |
841 | /* Push a record on the undo stack describing the current basic |
842 | * variables, so that the this state can be restored during rollback. |
843 | */ |
844 | isl_stat isl_tab_push_basis(struct isl_tab *tab) |
845 | { |
846 | int i; |
847 | union isl_tab_undo_val u; |
848 | |
849 | u.col_var = isl_alloc_array(tab->mat->ctx, int, tab->n_col); |
850 | if (tab->n_col && !u.col_var) |
851 | return isl_stat_error; |
852 | for (i = 0; i < tab->n_col; ++i) |
853 | u.col_var[i] = tab->col_var[i]; |
854 | return push_union(tab, type: isl_tab_undo_saved_basis, u); |
855 | } |
856 | |
857 | isl_stat isl_tab_push_callback(struct isl_tab *tab, |
858 | struct isl_tab_callback *callback) |
859 | { |
860 | union isl_tab_undo_val u; |
861 | u.callback = callback; |
862 | return push_union(tab, type: isl_tab_undo_callback, u); |
863 | } |
864 | |
865 | struct isl_tab *isl_tab_init_samples(struct isl_tab *tab) |
866 | { |
867 | if (!tab) |
868 | return NULL; |
869 | |
870 | tab->n_sample = 0; |
871 | tab->n_outside = 0; |
872 | tab->samples = isl_mat_alloc(ctx: tab->mat->ctx, n_row: 1, n_col: 1 + tab->n_var); |
873 | if (!tab->samples) |
874 | goto error; |
875 | tab->sample_index = isl_alloc_array(tab->mat->ctx, int, 1); |
876 | if (!tab->sample_index) |
877 | goto error; |
878 | return tab; |
879 | error: |
880 | isl_tab_free(tab); |
881 | return NULL; |
882 | } |
883 | |
884 | int isl_tab_add_sample(struct isl_tab *tab, __isl_take isl_vec *sample) |
885 | { |
886 | if (!tab || !sample) |
887 | goto error; |
888 | |
889 | if (tab->n_sample + 1 > tab->samples->n_row) { |
890 | int *t = isl_realloc_array(tab->mat->ctx, |
891 | tab->sample_index, int, tab->n_sample + 1); |
892 | if (!t) |
893 | goto error; |
894 | tab->sample_index = t; |
895 | } |
896 | |
897 | tab->samples = isl_mat_extend(mat: tab->samples, |
898 | n_row: tab->n_sample + 1, n_col: tab->samples->n_col); |
899 | if (!tab->samples) |
900 | goto error; |
901 | |
902 | isl_seq_cpy(dst: tab->samples->row[tab->n_sample], src: sample->el, len: sample->size); |
903 | isl_vec_free(vec: sample); |
904 | tab->sample_index[tab->n_sample] = tab->n_sample; |
905 | tab->n_sample++; |
906 | |
907 | return 0; |
908 | error: |
909 | isl_vec_free(vec: sample); |
910 | return -1; |
911 | } |
912 | |
913 | struct isl_tab *isl_tab_drop_sample(struct isl_tab *tab, int s) |
914 | { |
915 | if (s != tab->n_outside) { |
916 | int t = tab->sample_index[tab->n_outside]; |
917 | tab->sample_index[tab->n_outside] = tab->sample_index[s]; |
918 | tab->sample_index[s] = t; |
919 | isl_mat_swap_rows(mat: tab->samples, i: tab->n_outside, j: s); |
920 | } |
921 | tab->n_outside++; |
922 | if (isl_tab_push(tab, type: isl_tab_undo_drop_sample) < 0) { |
923 | isl_tab_free(tab); |
924 | return NULL; |
925 | } |
926 | |
927 | return tab; |
928 | } |
929 | |
930 | /* Record the current number of samples so that we can remove newer |
931 | * samples during a rollback. |
932 | */ |
933 | isl_stat isl_tab_save_samples(struct isl_tab *tab) |
934 | { |
935 | union isl_tab_undo_val u; |
936 | |
937 | if (!tab) |
938 | return isl_stat_error; |
939 | |
940 | u.n = tab->n_sample; |
941 | return push_union(tab, type: isl_tab_undo_saved_samples, u); |
942 | } |
943 | |
944 | /* Mark row with index "row" as being redundant. |
945 | * If we may need to undo the operation or if the row represents |
946 | * a variable of the original problem, the row is kept, |
947 | * but no longer considered when looking for a pivot row. |
948 | * Otherwise, the row is simply removed. |
949 | * |
950 | * The row may be interchanged with some other row. If it |
951 | * is interchanged with a later row, return 1. Otherwise return 0. |
952 | * If the rows are checked in order in the calling function, |
953 | * then a return value of 1 means that the row with the given |
954 | * row number may now contain a different row that hasn't been checked yet. |
955 | */ |
956 | int isl_tab_mark_redundant(struct isl_tab *tab, int row) |
957 | { |
958 | struct isl_tab_var *var = isl_tab_var_from_row(tab, i: row); |
959 | var->is_redundant = 1; |
960 | isl_assert(tab->mat->ctx, row >= tab->n_redundant, return -1); |
961 | if (tab->preserve || tab->need_undo || tab->row_var[row] >= 0) { |
962 | if (tab->row_var[row] >= 0 && !var->is_nonneg) { |
963 | var->is_nonneg = 1; |
964 | if (isl_tab_push_var(tab, type: isl_tab_undo_nonneg, var) < 0) |
965 | return -1; |
966 | } |
967 | if (row != tab->n_redundant) |
968 | swap_rows(tab, row1: row, row2: tab->n_redundant); |
969 | tab->n_redundant++; |
970 | return isl_tab_push_var(tab, type: isl_tab_undo_redundant, var); |
971 | } else { |
972 | if (row != tab->n_row - 1) |
973 | swap_rows(tab, row1: row, row2: tab->n_row - 1); |
974 | isl_tab_var_from_row(tab, i: tab->n_row - 1)->index = -1; |
975 | tab->n_row--; |
976 | return 1; |
977 | } |
978 | } |
979 | |
980 | /* Mark "tab" as a rational tableau. |
981 | * If it wasn't marked as a rational tableau already and if we may |
982 | * need to undo changes, then arrange for the marking to be undone |
983 | * during the undo. |
984 | */ |
985 | int isl_tab_mark_rational(struct isl_tab *tab) |
986 | { |
987 | if (!tab) |
988 | return -1; |
989 | if (!tab->rational && tab->need_undo) |
990 | if (isl_tab_push(tab, type: isl_tab_undo_rational) < 0) |
991 | return -1; |
992 | tab->rational = 1; |
993 | return 0; |
994 | } |
995 | |
996 | isl_stat isl_tab_mark_empty(struct isl_tab *tab) |
997 | { |
998 | if (!tab) |
999 | return isl_stat_error; |
1000 | if (!tab->empty && tab->need_undo) |
1001 | if (isl_tab_push(tab, type: isl_tab_undo_empty) < 0) |
1002 | return isl_stat_error; |
1003 | tab->empty = 1; |
1004 | return isl_stat_ok; |
1005 | } |
1006 | |
1007 | int isl_tab_freeze_constraint(struct isl_tab *tab, int con) |
1008 | { |
1009 | struct isl_tab_var *var; |
1010 | |
1011 | if (!tab) |
1012 | return -1; |
1013 | |
1014 | var = &tab->con[con]; |
1015 | if (var->frozen) |
1016 | return 0; |
1017 | if (var->index < 0) |
1018 | return 0; |
1019 | var->frozen = 1; |
1020 | |
1021 | if (tab->need_undo) |
1022 | return isl_tab_push_var(tab, type: isl_tab_undo_freeze, var); |
1023 | |
1024 | return 0; |
1025 | } |
1026 | |
1027 | /* Update the rows signs after a pivot of "row" and "col", with "row_sgn" |
1028 | * the original sign of the pivot element. |
1029 | * We only keep track of row signs during PILP solving and in this case |
1030 | * we only pivot a row with negative sign (meaning the value is always |
1031 | * non-positive) using a positive pivot element. |
1032 | * |
1033 | * For each row j, the new value of the parametric constant is equal to |
1034 | * |
1035 | * a_j0 - a_jc a_r0/a_rc |
1036 | * |
1037 | * where a_j0 is the original parametric constant, a_rc is the pivot element, |
1038 | * a_r0 is the parametric constant of the pivot row and a_jc is the |
1039 | * pivot column entry of the row j. |
1040 | * Since a_r0 is non-positive and a_rc is positive, the sign of row j |
1041 | * remains the same if a_jc has the same sign as the row j or if |
1042 | * a_jc is zero. In all other cases, we reset the sign to "unknown". |
1043 | */ |
1044 | static void update_row_sign(struct isl_tab *tab, int row, int col, int row_sgn) |
1045 | { |
1046 | int i; |
1047 | struct isl_mat *mat = tab->mat; |
1048 | unsigned off = 2 + tab->M; |
1049 | |
1050 | if (!tab->row_sign) |
1051 | return; |
1052 | |
1053 | if (tab->row_sign[row] == 0) |
1054 | return; |
1055 | isl_assert(mat->ctx, row_sgn > 0, return); |
1056 | isl_assert(mat->ctx, tab->row_sign[row] == isl_tab_row_neg, return); |
1057 | tab->row_sign[row] = isl_tab_row_pos; |
1058 | for (i = 0; i < tab->n_row; ++i) { |
1059 | int s; |
1060 | if (i == row) |
1061 | continue; |
1062 | s = isl_int_sgn(mat->row[i][off + col]); |
1063 | if (!s) |
1064 | continue; |
1065 | if (!tab->row_sign[i]) |
1066 | continue; |
1067 | if (s < 0 && tab->row_sign[i] == isl_tab_row_neg) |
1068 | continue; |
1069 | if (s > 0 && tab->row_sign[i] == isl_tab_row_pos) |
1070 | continue; |
1071 | tab->row_sign[i] = isl_tab_row_unknown; |
1072 | } |
1073 | } |
1074 | |
1075 | /* Given a row number "row" and a column number "col", pivot the tableau |
1076 | * such that the associated variables are interchanged. |
1077 | * The given row in the tableau expresses |
1078 | * |
1079 | * x_r = a_r0 + \sum_i a_ri x_i |
1080 | * |
1081 | * or |
1082 | * |
1083 | * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc |
1084 | * |
1085 | * Substituting this equality into the other rows |
1086 | * |
1087 | * x_j = a_j0 + \sum_i a_ji x_i |
1088 | * |
1089 | * with a_jc \ne 0, we obtain |
1090 | * |
1091 | * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc |
1092 | * |
1093 | * The tableau |
1094 | * |
1095 | * n_rc/d_r n_ri/d_r |
1096 | * n_jc/d_j n_ji/d_j |
1097 | * |
1098 | * where i is any other column and j is any other row, |
1099 | * is therefore transformed into |
1100 | * |
1101 | * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| |
1102 | * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j) |
1103 | * |
1104 | * The transformation is performed along the following steps |
1105 | * |
1106 | * d_r/n_rc n_ri/n_rc |
1107 | * n_jc/d_j n_ji/d_j |
1108 | * |
1109 | * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| |
1110 | * n_jc/d_j n_ji/d_j |
1111 | * |
1112 | * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| |
1113 | * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j) |
1114 | * |
1115 | * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| |
1116 | * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j) |
1117 | * |
1118 | * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| |
1119 | * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j) |
1120 | * |
1121 | * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| |
1122 | * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j) |
1123 | * |
1124 | */ |
1125 | int isl_tab_pivot(struct isl_tab *tab, int row, int col) |
1126 | { |
1127 | int i, j; |
1128 | int sgn; |
1129 | int t; |
1130 | isl_ctx *ctx; |
1131 | struct isl_mat *mat = tab->mat; |
1132 | struct isl_tab_var *var; |
1133 | unsigned off = 2 + tab->M; |
1134 | |
1135 | ctx = isl_tab_get_ctx(tab); |
1136 | if (isl_ctx_next_operation(ctx) < 0) |
1137 | return -1; |
1138 | |
1139 | isl_int_swap(mat->row[row][0], mat->row[row][off + col]); |
1140 | sgn = isl_int_sgn(mat->row[row][0]); |
1141 | if (sgn < 0) { |
1142 | isl_int_neg(mat->row[row][0], mat->row[row][0]); |
1143 | isl_int_neg(mat->row[row][off + col], mat->row[row][off + col]); |
1144 | } else |
1145 | for (j = 0; j < off - 1 + tab->n_col; ++j) { |
1146 | if (j == off - 1 + col) |
1147 | continue; |
1148 | isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]); |
1149 | } |
1150 | if (!isl_int_is_one(mat->row[row][0])) |
1151 | isl_seq_normalize(ctx: mat->ctx, p: mat->row[row], len: off + tab->n_col); |
1152 | for (i = 0; i < tab->n_row; ++i) { |
1153 | if (i == row) |
1154 | continue; |
1155 | if (isl_int_is_zero(mat->row[i][off + col])) |
1156 | continue; |
1157 | isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]); |
1158 | for (j = 0; j < off - 1 + tab->n_col; ++j) { |
1159 | if (j == off - 1 + col) |
1160 | continue; |
1161 | isl_int_mul(mat->row[i][1 + j], |
1162 | mat->row[i][1 + j], mat->row[row][0]); |
1163 | isl_int_addmul(mat->row[i][1 + j], |
1164 | mat->row[i][off + col], mat->row[row][1 + j]); |
1165 | } |
1166 | isl_int_mul(mat->row[i][off + col], |
1167 | mat->row[i][off + col], mat->row[row][off + col]); |
1168 | if (!isl_int_is_one(mat->row[i][0])) |
1169 | isl_seq_normalize(ctx: mat->ctx, p: mat->row[i], len: off + tab->n_col); |
1170 | } |
1171 | t = tab->row_var[row]; |
1172 | tab->row_var[row] = tab->col_var[col]; |
1173 | tab->col_var[col] = t; |
1174 | var = isl_tab_var_from_row(tab, i: row); |
1175 | var->is_row = 1; |
1176 | var->index = row; |
1177 | var = var_from_col(tab, i: col); |
1178 | var->is_row = 0; |
1179 | var->index = col; |
1180 | update_row_sign(tab, row, col, row_sgn: sgn); |
1181 | if (tab->in_undo) |
1182 | return 0; |
1183 | for (i = tab->n_redundant; i < tab->n_row; ++i) { |
1184 | if (isl_int_is_zero(mat->row[i][off + col])) |
1185 | continue; |
1186 | if (!isl_tab_var_from_row(tab, i)->frozen && |
1187 | isl_tab_row_is_redundant(tab, row: i)) { |
1188 | int redo = isl_tab_mark_redundant(tab, row: i); |
1189 | if (redo < 0) |
1190 | return -1; |
1191 | if (redo) |
1192 | --i; |
1193 | } |
1194 | } |
1195 | return 0; |
1196 | } |
1197 | |
1198 | /* If "var" represents a column variable, then pivot is up (sgn > 0) |
1199 | * or down (sgn < 0) to a row. The variable is assumed not to be |
1200 | * unbounded in the specified direction. |
1201 | * If sgn = 0, then the variable is unbounded in both directions, |
1202 | * and we pivot with any row we can find. |
1203 | */ |
1204 | static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) WARN_UNUSED; |
1205 | static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) |
1206 | { |
1207 | int r; |
1208 | unsigned off = 2 + tab->M; |
1209 | |
1210 | if (var->is_row) |
1211 | return 0; |
1212 | |
1213 | if (sign == 0) { |
1214 | for (r = tab->n_redundant; r < tab->n_row; ++r) |
1215 | if (!isl_int_is_zero(tab->mat->row[r][off+var->index])) |
1216 | break; |
1217 | isl_assert(tab->mat->ctx, r < tab->n_row, return -1); |
1218 | } else { |
1219 | r = pivot_row(tab, NULL, sgn: sign, c: var->index); |
1220 | isl_assert(tab->mat->ctx, r >= 0, return -1); |
1221 | } |
1222 | |
1223 | return isl_tab_pivot(tab, row: r, col: var->index); |
1224 | } |
1225 | |
1226 | /* Check whether all variables that are marked as non-negative |
1227 | * also have a non-negative sample value. This function is not |
1228 | * called from the current code but is useful during debugging. |
1229 | */ |
1230 | static void check_table(struct isl_tab *tab) __attribute__ ((unused)); |
1231 | static void check_table(struct isl_tab *tab) |
1232 | { |
1233 | int i; |
1234 | |
1235 | if (tab->empty) |
1236 | return; |
1237 | for (i = tab->n_redundant; i < tab->n_row; ++i) { |
1238 | struct isl_tab_var *var; |
1239 | var = isl_tab_var_from_row(tab, i); |
1240 | if (!var->is_nonneg) |
1241 | continue; |
1242 | if (tab->M) { |
1243 | isl_assert(tab->mat->ctx, |
1244 | !isl_int_is_neg(tab->mat->row[i][2]), abort()); |
1245 | if (isl_int_is_pos(tab->mat->row[i][2])) |
1246 | continue; |
1247 | } |
1248 | isl_assert(tab->mat->ctx, !isl_int_is_neg(tab->mat->row[i][1]), |
1249 | abort()); |
1250 | } |
1251 | } |
1252 | |
1253 | /* Return the sign of the maximal value of "var". |
1254 | * If the sign is not negative, then on return from this function, |
1255 | * the sample value will also be non-negative. |
1256 | * |
1257 | * If "var" is manifestly unbounded wrt positive values, we are done. |
1258 | * Otherwise, we pivot the variable up to a row if needed. |
1259 | * Then we continue pivoting up until either |
1260 | * - no more up pivots can be performed |
1261 | * - the sample value is positive |
1262 | * - the variable is pivoted into a manifestly unbounded column |
1263 | */ |
1264 | static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var) |
1265 | { |
1266 | int row, col; |
1267 | |
1268 | if (max_is_manifestly_unbounded(tab, var)) |
1269 | return 1; |
1270 | if (to_row(tab, var, sign: 1) < 0) |
1271 | return -2; |
1272 | while (!isl_int_is_pos(tab->mat->row[var->index][1])) { |
1273 | find_pivot(tab, var, skip_var: var, sgn: 1, row: &row, col: &col); |
1274 | if (row == -1) |
1275 | return isl_int_sgn(tab->mat->row[var->index][1]); |
1276 | if (isl_tab_pivot(tab, row, col) < 0) |
1277 | return -2; |
1278 | if (!var->is_row) /* manifestly unbounded */ |
1279 | return 1; |
1280 | } |
1281 | return 1; |
1282 | } |
1283 | |
1284 | int isl_tab_sign_of_max(struct isl_tab *tab, int con) |
1285 | { |
1286 | struct isl_tab_var *var; |
1287 | |
1288 | if (!tab) |
1289 | return -2; |
1290 | |
1291 | var = &tab->con[con]; |
1292 | isl_assert(tab->mat->ctx, !var->is_redundant, return -2); |
1293 | isl_assert(tab->mat->ctx, !var->is_zero, return -2); |
1294 | |
1295 | return sign_of_max(tab, var); |
1296 | } |
1297 | |
1298 | static int row_is_neg(struct isl_tab *tab, int row) |
1299 | { |
1300 | if (!tab->M) |
1301 | return isl_int_is_neg(tab->mat->row[row][1]); |
1302 | if (isl_int_is_pos(tab->mat->row[row][2])) |
1303 | return 0; |
1304 | if (isl_int_is_neg(tab->mat->row[row][2])) |
1305 | return 1; |
1306 | return isl_int_is_neg(tab->mat->row[row][1]); |
1307 | } |
1308 | |
1309 | static int row_sgn(struct isl_tab *tab, int row) |
1310 | { |
1311 | if (!tab->M) |
1312 | return isl_int_sgn(tab->mat->row[row][1]); |
1313 | if (!isl_int_is_zero(tab->mat->row[row][2])) |
1314 | return isl_int_sgn(tab->mat->row[row][2]); |
1315 | else |
1316 | return isl_int_sgn(tab->mat->row[row][1]); |
1317 | } |
1318 | |
1319 | /* Perform pivots until the row variable "var" has a non-negative |
1320 | * sample value or until no more upward pivots can be performed. |
1321 | * Return the sign of the sample value after the pivots have been |
1322 | * performed. |
1323 | */ |
1324 | static int restore_row(struct isl_tab *tab, struct isl_tab_var *var) |
1325 | { |
1326 | int row, col; |
1327 | |
1328 | while (row_is_neg(tab, row: var->index)) { |
1329 | find_pivot(tab, var, skip_var: var, sgn: 1, row: &row, col: &col); |
1330 | if (row == -1) |
1331 | break; |
1332 | if (isl_tab_pivot(tab, row, col) < 0) |
1333 | return -2; |
1334 | if (!var->is_row) /* manifestly unbounded */ |
1335 | return 1; |
1336 | } |
1337 | return row_sgn(tab, row: var->index); |
1338 | } |
1339 | |
1340 | /* Perform pivots until we are sure that the row variable "var" |
1341 | * can attain non-negative values. After return from this |
1342 | * function, "var" is still a row variable, but its sample |
1343 | * value may not be non-negative, even if the function returns 1. |
1344 | */ |
1345 | static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var) |
1346 | { |
1347 | int row, col; |
1348 | |
1349 | while (isl_int_is_neg(tab->mat->row[var->index][1])) { |
1350 | find_pivot(tab, var, skip_var: var, sgn: 1, row: &row, col: &col); |
1351 | if (row == -1) |
1352 | break; |
1353 | if (row == var->index) /* manifestly unbounded */ |
1354 | return 1; |
1355 | if (isl_tab_pivot(tab, row, col) < 0) |
1356 | return -1; |
1357 | } |
1358 | return !isl_int_is_neg(tab->mat->row[var->index][1]); |
1359 | } |
1360 | |
1361 | /* Return a negative value if "var" can attain negative values. |
1362 | * Return a non-negative value otherwise. |
1363 | * |
1364 | * If "var" is manifestly unbounded wrt negative values, we are done. |
1365 | * Otherwise, if var is in a column, we can pivot it down to a row. |
1366 | * Then we continue pivoting down until either |
1367 | * - the pivot would result in a manifestly unbounded column |
1368 | * => we don't perform the pivot, but simply return -1 |
1369 | * - no more down pivots can be performed |
1370 | * - the sample value is negative |
1371 | * If the sample value becomes negative and the variable is supposed |
1372 | * to be nonnegative, then we undo the last pivot. |
1373 | * However, if the last pivot has made the pivoting variable |
1374 | * obviously redundant, then it may have moved to another row. |
1375 | * In that case we look for upward pivots until we reach a non-negative |
1376 | * value again. |
1377 | */ |
1378 | static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var) |
1379 | { |
1380 | int row, col; |
1381 | struct isl_tab_var *pivot_var = NULL; |
1382 | |
1383 | if (min_is_manifestly_unbounded(tab, var)) |
1384 | return -1; |
1385 | if (!var->is_row) { |
1386 | col = var->index; |
1387 | row = pivot_row(tab, NULL, sgn: -1, c: col); |
1388 | pivot_var = var_from_col(tab, i: col); |
1389 | if (isl_tab_pivot(tab, row, col) < 0) |
1390 | return -2; |
1391 | if (var->is_redundant) |
1392 | return 0; |
1393 | if (isl_int_is_neg(tab->mat->row[var->index][1])) { |
1394 | if (var->is_nonneg) { |
1395 | if (!pivot_var->is_redundant && |
1396 | pivot_var->index == row) { |
1397 | if (isl_tab_pivot(tab, row, col) < 0) |
1398 | return -2; |
1399 | } else |
1400 | if (restore_row(tab, var) < -1) |
1401 | return -2; |
1402 | } |
1403 | return -1; |
1404 | } |
1405 | } |
1406 | if (var->is_redundant) |
1407 | return 0; |
1408 | while (!isl_int_is_neg(tab->mat->row[var->index][1])) { |
1409 | find_pivot(tab, var, skip_var: var, sgn: -1, row: &row, col: &col); |
1410 | if (row == var->index) |
1411 | return -1; |
1412 | if (row == -1) |
1413 | return isl_int_sgn(tab->mat->row[var->index][1]); |
1414 | pivot_var = var_from_col(tab, i: col); |
1415 | if (isl_tab_pivot(tab, row, col) < 0) |
1416 | return -2; |
1417 | if (var->is_redundant) |
1418 | return 0; |
1419 | } |
1420 | if (pivot_var && var->is_nonneg) { |
1421 | /* pivot back to non-negative value */ |
1422 | if (!pivot_var->is_redundant && pivot_var->index == row) { |
1423 | if (isl_tab_pivot(tab, row, col) < 0) |
1424 | return -2; |
1425 | } else |
1426 | if (restore_row(tab, var) < -1) |
1427 | return -2; |
1428 | } |
1429 | return -1; |
1430 | } |
1431 | |
1432 | static int row_at_most_neg_one(struct isl_tab *tab, int row) |
1433 | { |
1434 | if (tab->M) { |
1435 | if (isl_int_is_pos(tab->mat->row[row][2])) |
1436 | return 0; |
1437 | if (isl_int_is_neg(tab->mat->row[row][2])) |
1438 | return 1; |
1439 | } |
1440 | return isl_int_is_neg(tab->mat->row[row][1]) && |
1441 | isl_int_abs_ge(tab->mat->row[row][1], |
1442 | tab->mat->row[row][0]); |
1443 | } |
1444 | |
1445 | /* Return 1 if "var" can attain values <= -1. |
1446 | * Return 0 otherwise. |
1447 | * |
1448 | * If the variable "var" is supposed to be non-negative (is_nonneg is set), |
1449 | * then the sample value of "var" is assumed to be non-negative when the |
1450 | * the function is called. If 1 is returned then the constraint |
1451 | * is not redundant and the sample value is made non-negative again before |
1452 | * the function returns. |
1453 | */ |
1454 | int isl_tab_min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var) |
1455 | { |
1456 | int row, col; |
1457 | struct isl_tab_var *pivot_var; |
1458 | |
1459 | if (min_is_manifestly_unbounded(tab, var)) |
1460 | return 1; |
1461 | if (!var->is_row) { |
1462 | col = var->index; |
1463 | row = pivot_row(tab, NULL, sgn: -1, c: col); |
1464 | pivot_var = var_from_col(tab, i: col); |
1465 | if (isl_tab_pivot(tab, row, col) < 0) |
1466 | return -1; |
1467 | if (var->is_redundant) |
1468 | return 0; |
1469 | if (row_at_most_neg_one(tab, row: var->index)) { |
1470 | if (var->is_nonneg) { |
1471 | if (!pivot_var->is_redundant && |
1472 | pivot_var->index == row) { |
1473 | if (isl_tab_pivot(tab, row, col) < 0) |
1474 | return -1; |
1475 | } else |
1476 | if (restore_row(tab, var) < -1) |
1477 | return -1; |
1478 | } |
1479 | return 1; |
1480 | } |
1481 | } |
1482 | if (var->is_redundant) |
1483 | return 0; |
1484 | do { |
1485 | find_pivot(tab, var, skip_var: var, sgn: -1, row: &row, col: &col); |
1486 | if (row == var->index) { |
1487 | if (var->is_nonneg && restore_row(tab, var) < -1) |
1488 | return -1; |
1489 | return 1; |
1490 | } |
1491 | if (row == -1) |
1492 | return 0; |
1493 | pivot_var = var_from_col(tab, i: col); |
1494 | if (isl_tab_pivot(tab, row, col) < 0) |
1495 | return -1; |
1496 | if (var->is_redundant) |
1497 | return 0; |
1498 | } while (!row_at_most_neg_one(tab, row: var->index)); |
1499 | if (var->is_nonneg) { |
1500 | /* pivot back to non-negative value */ |
1501 | if (!pivot_var->is_redundant && pivot_var->index == row) |
1502 | if (isl_tab_pivot(tab, row, col) < 0) |
1503 | return -1; |
1504 | if (restore_row(tab, var) < -1) |
1505 | return -1; |
1506 | } |
1507 | return 1; |
1508 | } |
1509 | |
1510 | /* Return 1 if "var" can attain values >= 1. |
1511 | * Return 0 otherwise. |
1512 | */ |
1513 | static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var) |
1514 | { |
1515 | int row, col; |
1516 | isl_int *r; |
1517 | |
1518 | if (max_is_manifestly_unbounded(tab, var)) |
1519 | return 1; |
1520 | if (to_row(tab, var, sign: 1) < 0) |
1521 | return -1; |
1522 | r = tab->mat->row[var->index]; |
1523 | while (isl_int_lt(r[1], r[0])) { |
1524 | find_pivot(tab, var, skip_var: var, sgn: 1, row: &row, col: &col); |
1525 | if (row == -1) |
1526 | return isl_int_ge(r[1], r[0]); |
1527 | if (row == var->index) /* manifestly unbounded */ |
1528 | return 1; |
1529 | if (isl_tab_pivot(tab, row, col) < 0) |
1530 | return -1; |
1531 | } |
1532 | return 1; |
1533 | } |
1534 | |
1535 | static void swap_cols(struct isl_tab *tab, int col1, int col2) |
1536 | { |
1537 | int t; |
1538 | unsigned off = 2 + tab->M; |
1539 | t = tab->col_var[col1]; |
1540 | tab->col_var[col1] = tab->col_var[col2]; |
1541 | tab->col_var[col2] = t; |
1542 | var_from_col(tab, i: col1)->index = col1; |
1543 | var_from_col(tab, i: col2)->index = col2; |
1544 | tab->mat = isl_mat_swap_cols(mat: tab->mat, i: off + col1, j: off + col2); |
1545 | } |
1546 | |
1547 | /* Mark column with index "col" as representing a zero variable. |
1548 | * If we may need to undo the operation the column is kept, |
1549 | * but no longer considered. |
1550 | * Otherwise, the column is simply removed. |
1551 | * |
1552 | * The column may be interchanged with some other column. If it |
1553 | * is interchanged with a later column, return 1. Otherwise return 0. |
1554 | * If the columns are checked in order in the calling function, |
1555 | * then a return value of 1 means that the column with the given |
1556 | * column number may now contain a different column that |
1557 | * hasn't been checked yet. |
1558 | */ |
1559 | int isl_tab_kill_col(struct isl_tab *tab, int col) |
1560 | { |
1561 | var_from_col(tab, i: col)->is_zero = 1; |
1562 | if (tab->need_undo) { |
1563 | if (isl_tab_push_var(tab, type: isl_tab_undo_zero, |
1564 | var: var_from_col(tab, i: col)) < 0) |
1565 | return -1; |
1566 | if (col != tab->n_dead) |
1567 | swap_cols(tab, col1: col, col2: tab->n_dead); |
1568 | tab->n_dead++; |
1569 | return 0; |
1570 | } else { |
1571 | if (col != tab->n_col - 1) |
1572 | swap_cols(tab, col1: col, col2: tab->n_col - 1); |
1573 | var_from_col(tab, i: tab->n_col - 1)->index = -1; |
1574 | tab->n_col--; |
1575 | return 1; |
1576 | } |
1577 | } |
1578 | |
1579 | static int row_is_manifestly_non_integral(struct isl_tab *tab, int row) |
1580 | { |
1581 | unsigned off = 2 + tab->M; |
1582 | |
1583 | if (tab->M && !isl_int_eq(tab->mat->row[row][2], |
1584 | tab->mat->row[row][0])) |
1585 | return 0; |
1586 | if (isl_seq_first_non_zero(p: tab->mat->row[row] + off + tab->n_dead, |
1587 | len: tab->n_col - tab->n_dead) != -1) |
1588 | return 0; |
1589 | |
1590 | return !isl_int_is_divisible_by(tab->mat->row[row][1], |
1591 | tab->mat->row[row][0]); |
1592 | } |
1593 | |
1594 | /* For integer tableaus, check if any of the coordinates are stuck |
1595 | * at a non-integral value. |
1596 | */ |
1597 | static int tab_is_manifestly_empty(struct isl_tab *tab) |
1598 | { |
1599 | int i; |
1600 | |
1601 | if (tab->empty) |
1602 | return 1; |
1603 | if (tab->rational) |
1604 | return 0; |
1605 | |
1606 | for (i = 0; i < tab->n_var; ++i) { |
1607 | if (!tab->var[i].is_row) |
1608 | continue; |
1609 | if (row_is_manifestly_non_integral(tab, row: tab->var[i].index)) |
1610 | return 1; |
1611 | } |
1612 | |
1613 | return 0; |
1614 | } |
1615 | |
1616 | /* Row variable "var" is non-negative and cannot attain any values |
1617 | * larger than zero. This means that the coefficients of the unrestricted |
1618 | * column variables are zero and that the coefficients of the non-negative |
1619 | * column variables are zero or negative. |
1620 | * Each of the non-negative variables with a negative coefficient can |
1621 | * then also be written as the negative sum of non-negative variables |
1622 | * and must therefore also be zero. |
1623 | * |
1624 | * If "temp_var" is set, then "var" is a temporary variable that |
1625 | * will be removed after this function returns and for which |
1626 | * no information is recorded on the undo stack. |
1627 | * Do not add any undo records involving this variable in this case |
1628 | * since the variable will have been removed before any future undo |
1629 | * operations. Also avoid marking the variable as redundant, |
1630 | * since that either adds an undo record or needlessly removes the row |
1631 | * (the caller will take care of removing the row). |
1632 | */ |
1633 | static isl_stat close_row(struct isl_tab *tab, struct isl_tab_var *var, |
1634 | int temp_var) WARN_UNUSED; |
1635 | static isl_stat close_row(struct isl_tab *tab, struct isl_tab_var *var, |
1636 | int temp_var) |
1637 | { |
1638 | int j; |
1639 | struct isl_mat *mat = tab->mat; |
1640 | unsigned off = 2 + tab->M; |
1641 | |
1642 | if (!var->is_nonneg) |
1643 | isl_die(isl_tab_get_ctx(tab), isl_error_internal, |
1644 | "expecting non-negative variable" , |
1645 | return isl_stat_error); |
1646 | var->is_zero = 1; |
1647 | if (!temp_var && tab->need_undo) |
1648 | if (isl_tab_push_var(tab, type: isl_tab_undo_zero, var) < 0) |
1649 | return isl_stat_error; |
1650 | for (j = tab->n_dead; j < tab->n_col; ++j) { |
1651 | int recheck; |
1652 | if (isl_int_is_zero(mat->row[var->index][off + j])) |
1653 | continue; |
1654 | if (isl_int_is_pos(mat->row[var->index][off + j])) |
1655 | isl_die(isl_tab_get_ctx(tab), isl_error_internal, |
1656 | "row cannot have positive coefficients" , |
1657 | return isl_stat_error); |
1658 | recheck = isl_tab_kill_col(tab, col: j); |
1659 | if (recheck < 0) |
1660 | return isl_stat_error; |
1661 | if (recheck) |
1662 | --j; |
1663 | } |
1664 | if (!temp_var && isl_tab_mark_redundant(tab, row: var->index) < 0) |
1665 | return isl_stat_error; |
1666 | if (tab_is_manifestly_empty(tab) && isl_tab_mark_empty(tab) < 0) |
1667 | return isl_stat_error; |
1668 | return isl_stat_ok; |
1669 | } |
1670 | |
1671 | /* Add a constraint to the tableau and allocate a row for it. |
1672 | * Return the index into the constraint array "con". |
1673 | * |
1674 | * This function assumes that at least one more row and at least |
1675 | * one more element in the constraint array are available in the tableau. |
1676 | */ |
1677 | int isl_tab_allocate_con(struct isl_tab *tab) |
1678 | { |
1679 | int r; |
1680 | |
1681 | isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1); |
1682 | isl_assert(tab->mat->ctx, tab->n_con < tab->max_con, return -1); |
1683 | |
1684 | r = tab->n_con; |
1685 | tab->con[r].index = tab->n_row; |
1686 | tab->con[r].is_row = 1; |
1687 | tab->con[r].is_nonneg = 0; |
1688 | tab->con[r].is_zero = 0; |
1689 | tab->con[r].is_redundant = 0; |
1690 | tab->con[r].frozen = 0; |
1691 | tab->con[r].negated = 0; |
1692 | tab->row_var[tab->n_row] = ~r; |
1693 | |
1694 | tab->n_row++; |
1695 | tab->n_con++; |
1696 | if (isl_tab_push_var(tab, type: isl_tab_undo_allocate, var: &tab->con[r]) < 0) |
1697 | return -1; |
1698 | |
1699 | return r; |
1700 | } |
1701 | |
1702 | /* Move the entries in tab->var up one position, starting at "first", |
1703 | * creating room for an extra entry at position "first". |
1704 | * Since some of the entries of tab->row_var and tab->col_var contain |
1705 | * indices into this array, they have to be updated accordingly. |
1706 | */ |
1707 | static int var_insert_entry(struct isl_tab *tab, int first) |
1708 | { |
1709 | int i; |
1710 | |
1711 | if (tab->n_var >= tab->max_var) |
1712 | isl_die(isl_tab_get_ctx(tab), isl_error_internal, |
1713 | "not enough room for new variable" , return -1); |
1714 | if (first > tab->n_var) |
1715 | isl_die(isl_tab_get_ctx(tab), isl_error_internal, |
1716 | "invalid initial position" , return -1); |
1717 | |
1718 | for (i = tab->n_var - 1; i >= first; --i) { |
1719 | tab->var[i + 1] = tab->var[i]; |
1720 | if (tab->var[i + 1].is_row) |
1721 | tab->row_var[tab->var[i + 1].index]++; |
1722 | else |
1723 | tab->col_var[tab->var[i + 1].index]++; |
1724 | } |
1725 | |
1726 | tab->n_var++; |
1727 | |
1728 | return 0; |
1729 | } |
1730 | |
1731 | /* Drop the entry at position "first" in tab->var, moving all |
1732 | * subsequent entries down. |
1733 | * Since some of the entries of tab->row_var and tab->col_var contain |
1734 | * indices into this array, they have to be updated accordingly. |
1735 | */ |
1736 | static int var_drop_entry(struct isl_tab *tab, int first) |
1737 | { |
1738 | int i; |
1739 | |
1740 | if (first >= tab->n_var) |
1741 | isl_die(isl_tab_get_ctx(tab), isl_error_internal, |
1742 | "invalid initial position" , return -1); |
1743 | |
1744 | tab->n_var--; |
1745 | |
1746 | for (i = first; i < tab->n_var; ++i) { |
1747 | tab->var[i] = tab->var[i + 1]; |
1748 | if (tab->var[i + 1].is_row) |
1749 | tab->row_var[tab->var[i].index]--; |
1750 | else |
1751 | tab->col_var[tab->var[i].index]--; |
1752 | } |
1753 | |
1754 | return 0; |
1755 | } |
1756 | |
1757 | /* Add a variable to the tableau at position "r" and allocate a column for it. |
1758 | * Return the index into the variable array "var", i.e., "r", |
1759 | * or -1 on error. |
1760 | */ |
1761 | int isl_tab_insert_var(struct isl_tab *tab, int r) |
1762 | { |
1763 | int i; |
1764 | unsigned off = 2 + tab->M; |
1765 | |
1766 | isl_assert(tab->mat->ctx, tab->n_col < tab->mat->n_col, return -1); |
1767 | |
1768 | if (var_insert_entry(tab, first: r) < 0) |
1769 | return -1; |
1770 | |
1771 | tab->var[r].index = tab->n_col; |
1772 | tab->var[r].is_row = 0; |
1773 | tab->var[r].is_nonneg = 0; |
1774 | tab->var[r].is_zero = 0; |
1775 | tab->var[r].is_redundant = 0; |
1776 | tab->var[r].frozen = 0; |
1777 | tab->var[r].negated = 0; |
1778 | tab->col_var[tab->n_col] = r; |
1779 | |
1780 | for (i = 0; i < tab->n_row; ++i) |
1781 | isl_int_set_si(tab->mat->row[i][off + tab->n_col], 0); |
1782 | |
1783 | tab->n_col++; |
1784 | if (isl_tab_push_var(tab, type: isl_tab_undo_allocate, var: &tab->var[r]) < 0) |
1785 | return -1; |
1786 | |
1787 | return r; |
1788 | } |
1789 | |
1790 | /* Add a row to the tableau. The row is given as an affine combination |
1791 | * of the original variables and needs to be expressed in terms of the |
1792 | * column variables. |
1793 | * |
1794 | * This function assumes that at least one more row and at least |
1795 | * one more element in the constraint array are available in the tableau. |
1796 | * |
1797 | * We add each term in turn. |
1798 | * If r = n/d_r is the current sum and we need to add k x, then |
1799 | * if x is a column variable, we increase the numerator of |
1800 | * this column by k d_r |
1801 | * if x = f/d_x is a row variable, then the new representation of r is |
1802 | * |
1803 | * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f |
1804 | * --- + --- = ------------------- = ------------------- |
1805 | * d_r d_r d_r d_x/g m |
1806 | * |
1807 | * with g the gcd of d_r and d_x and m the lcm of d_r and d_x. |
1808 | * |
1809 | * If tab->M is set, then, internally, each variable x is represented |
1810 | * as x' - M. We then also need no subtract k d_r from the coefficient of M. |
1811 | */ |
1812 | int isl_tab_add_row(struct isl_tab *tab, isl_int *line) |
1813 | { |
1814 | int i; |
1815 | int r; |
1816 | isl_int *row; |
1817 | isl_int a, b; |
1818 | unsigned off = 2 + tab->M; |
1819 | |
1820 | r = isl_tab_allocate_con(tab); |
1821 | if (r < 0) |
1822 | return -1; |
1823 | |
1824 | isl_int_init(a); |
1825 | isl_int_init(b); |
1826 | row = tab->mat->row[tab->con[r].index]; |
1827 | isl_int_set_si(row[0], 1); |
1828 | isl_int_set(row[1], line[0]); |
1829 | isl_seq_clr(p: row + 2, len: tab->M + tab->n_col); |
1830 | for (i = 0; i < tab->n_var; ++i) { |
1831 | if (tab->var[i].is_zero) |
1832 | continue; |
1833 | if (tab->var[i].is_row) { |
1834 | isl_int_lcm(a, |
1835 | row[0], tab->mat->row[tab->var[i].index][0]); |
1836 | isl_int_swap(a, row[0]); |
1837 | isl_int_divexact(a, row[0], a); |
1838 | isl_int_divexact(b, |
1839 | row[0], tab->mat->row[tab->var[i].index][0]); |
1840 | isl_int_mul(b, b, line[1 + i]); |
1841 | isl_seq_combine(dst: row + 1, m1: a, src1: row + 1, |
1842 | m2: b, src2: tab->mat->row[tab->var[i].index] + 1, |
1843 | len: 1 + tab->M + tab->n_col); |
1844 | } else |
1845 | isl_int_addmul(row[off + tab->var[i].index], |
1846 | line[1 + i], row[0]); |
1847 | if (tab->M && i >= tab->n_param && i < tab->n_var - tab->n_div) |
1848 | isl_int_submul(row[2], line[1 + i], row[0]); |
1849 | } |
1850 | isl_seq_normalize(ctx: tab->mat->ctx, p: row, len: off + tab->n_col); |
1851 | isl_int_clear(a); |
1852 | isl_int_clear(b); |
1853 | |
1854 | if (tab->row_sign) |
1855 | tab->row_sign[tab->con[r].index] = isl_tab_row_unknown; |
1856 | |
1857 | return r; |
1858 | } |
1859 | |
1860 | static isl_stat drop_row(struct isl_tab *tab, int row) |
1861 | { |
1862 | isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1, |
1863 | return isl_stat_error); |
1864 | if (row != tab->n_row - 1) |
1865 | swap_rows(tab, row1: row, row2: tab->n_row - 1); |
1866 | tab->n_row--; |
1867 | tab->n_con--; |
1868 | return isl_stat_ok; |
1869 | } |
1870 | |
1871 | /* Drop the variable in column "col" along with the column. |
1872 | * The column is removed first because it may need to be moved |
1873 | * into the last position and this process requires |
1874 | * the contents of the col_var array in a state |
1875 | * before the removal of the variable. |
1876 | */ |
1877 | static isl_stat drop_col(struct isl_tab *tab, int col) |
1878 | { |
1879 | int var; |
1880 | |
1881 | var = tab->col_var[col]; |
1882 | if (col != tab->n_col - 1) |
1883 | swap_cols(tab, col1: col, col2: tab->n_col - 1); |
1884 | tab->n_col--; |
1885 | if (var_drop_entry(tab, first: var) < 0) |
1886 | return isl_stat_error; |
1887 | return isl_stat_ok; |
1888 | } |
1889 | |
1890 | /* Add inequality "ineq" and check if it conflicts with the |
1891 | * previously added constraints or if it is obviously redundant. |
1892 | * |
1893 | * This function assumes that at least one more row and at least |
1894 | * one more element in the constraint array are available in the tableau. |
1895 | */ |
1896 | isl_stat isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq) |
1897 | { |
1898 | int r; |
1899 | int sgn; |
1900 | isl_int cst; |
1901 | |
1902 | if (!tab) |
1903 | return isl_stat_error; |
1904 | if (tab->bmap) { |
1905 | struct isl_basic_map *bmap = tab->bmap; |
1906 | |
1907 | isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, |
1908 | return isl_stat_error); |
1909 | isl_assert(tab->mat->ctx, |
1910 | tab->n_con == bmap->n_eq + bmap->n_ineq, |
1911 | return isl_stat_error); |
1912 | tab->bmap = isl_basic_map_add_ineq(bmap: tab->bmap, ineq); |
1913 | if (isl_tab_push(tab, type: isl_tab_undo_bmap_ineq) < 0) |
1914 | return isl_stat_error; |
1915 | if (!tab->bmap) |
1916 | return isl_stat_error; |
1917 | } |
1918 | if (tab->cone) { |
1919 | isl_int_init(cst); |
1920 | isl_int_set_si(cst, 0); |
1921 | isl_int_swap(ineq[0], cst); |
1922 | } |
1923 | r = isl_tab_add_row(tab, line: ineq); |
1924 | if (tab->cone) { |
1925 | isl_int_swap(ineq[0], cst); |
1926 | isl_int_clear(cst); |
1927 | } |
1928 | if (r < 0) |
1929 | return isl_stat_error; |
1930 | tab->con[r].is_nonneg = 1; |
1931 | if (isl_tab_push_var(tab, type: isl_tab_undo_nonneg, var: &tab->con[r]) < 0) |
1932 | return isl_stat_error; |
1933 | if (isl_tab_row_is_redundant(tab, row: tab->con[r].index)) { |
1934 | if (isl_tab_mark_redundant(tab, row: tab->con[r].index) < 0) |
1935 | return isl_stat_error; |
1936 | return isl_stat_ok; |
1937 | } |
1938 | |
1939 | sgn = restore_row(tab, var: &tab->con[r]); |
1940 | if (sgn < -1) |
1941 | return isl_stat_error; |
1942 | if (sgn < 0) |
1943 | return isl_tab_mark_empty(tab); |
1944 | if (tab->con[r].is_row && isl_tab_row_is_redundant(tab, row: tab->con[r].index)) |
1945 | if (isl_tab_mark_redundant(tab, row: tab->con[r].index) < 0) |
1946 | return isl_stat_error; |
1947 | return isl_stat_ok; |
1948 | } |
1949 | |
1950 | /* Pivot a non-negative variable down until it reaches the value zero |
1951 | * and then pivot the variable into a column position. |
1952 | */ |
1953 | static int to_col(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED; |
1954 | static int to_col(struct isl_tab *tab, struct isl_tab_var *var) |
1955 | { |
1956 | int i; |
1957 | int row, col; |
1958 | unsigned off = 2 + tab->M; |
1959 | |
1960 | if (!var->is_row) |
1961 | return 0; |
1962 | |
1963 | while (isl_int_is_pos(tab->mat->row[var->index][1])) { |
1964 | find_pivot(tab, var, NULL, sgn: -1, row: &row, col: &col); |
1965 | isl_assert(tab->mat->ctx, row != -1, return -1); |
1966 | if (isl_tab_pivot(tab, row, col) < 0) |
1967 | return -1; |
1968 | if (!var->is_row) |
1969 | return 0; |
1970 | } |
1971 | |
1972 | for (i = tab->n_dead; i < tab->n_col; ++i) |
1973 | if (!isl_int_is_zero(tab->mat->row[var->index][off + i])) |
1974 | break; |
1975 | |
1976 | isl_assert(tab->mat->ctx, i < tab->n_col, return -1); |
1977 | if (isl_tab_pivot(tab, row: var->index, col: i) < 0) |
1978 | return -1; |
1979 | |
1980 | return 0; |
1981 | } |
1982 | |
1983 | /* We assume Gaussian elimination has been performed on the equalities. |
1984 | * The equalities can therefore never conflict. |
1985 | * Adding the equalities is currently only really useful for a later call |
1986 | * to isl_tab_ineq_type. |
1987 | * |
1988 | * This function assumes that at least one more row and at least |
1989 | * one more element in the constraint array are available in the tableau. |
1990 | */ |
1991 | static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq) |
1992 | { |
1993 | int i; |
1994 | int r; |
1995 | |
1996 | if (!tab) |
1997 | return NULL; |
1998 | r = isl_tab_add_row(tab, line: eq); |
1999 | if (r < 0) |
2000 | goto error; |
2001 | |
2002 | r = tab->con[r].index; |
2003 | i = isl_seq_first_non_zero(p: tab->mat->row[r] + 2 + tab->M + tab->n_dead, |
2004 | len: tab->n_col - tab->n_dead); |
2005 | isl_assert(tab->mat->ctx, i >= 0, goto error); |
2006 | i += tab->n_dead; |
2007 | if (isl_tab_pivot(tab, row: r, col: i) < 0) |
2008 | goto error; |
2009 | if (isl_tab_kill_col(tab, col: i) < 0) |
2010 | goto error; |
2011 | tab->n_eq++; |
2012 | |
2013 | return tab; |
2014 | error: |
2015 | isl_tab_free(tab); |
2016 | return NULL; |
2017 | } |
2018 | |
2019 | /* Does the sample value of row "row" of "tab" involve the big parameter, |
2020 | * if any? |
2021 | */ |
2022 | static int row_is_big(struct isl_tab *tab, int row) |
2023 | { |
2024 | return tab->M && !isl_int_is_zero(tab->mat->row[row][2]); |
2025 | } |
2026 | |
2027 | static int row_is_manifestly_zero(struct isl_tab *tab, int row) |
2028 | { |
2029 | unsigned off = 2 + tab->M; |
2030 | |
2031 | if (!isl_int_is_zero(tab->mat->row[row][1])) |
2032 | return 0; |
2033 | if (row_is_big(tab, row)) |
2034 | return 0; |
2035 | return isl_seq_first_non_zero(p: tab->mat->row[row] + off + tab->n_dead, |
2036 | len: tab->n_col - tab->n_dead) == -1; |
2037 | } |
2038 | |
2039 | /* Add an equality that is known to be valid for the given tableau. |
2040 | * |
2041 | * This function assumes that at least one more row and at least |
2042 | * one more element in the constraint array are available in the tableau. |
2043 | */ |
2044 | int isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq) |
2045 | { |
2046 | struct isl_tab_var *var; |
2047 | int r; |
2048 | |
2049 | if (!tab) |
2050 | return -1; |
2051 | r = isl_tab_add_row(tab, line: eq); |
2052 | if (r < 0) |
2053 | return -1; |
2054 | |
2055 | var = &tab->con[r]; |
2056 | r = var->index; |
2057 | if (row_is_manifestly_zero(tab, row: r)) { |
2058 | var->is_zero = 1; |
2059 | if (isl_tab_mark_redundant(tab, row: r) < 0) |
2060 | return -1; |
2061 | return 0; |
2062 | } |
2063 | |
2064 | if (isl_int_is_neg(tab->mat->row[r][1])) { |
2065 | isl_seq_neg(dst: tab->mat->row[r] + 1, src: tab->mat->row[r] + 1, |
2066 | len: 1 + tab->n_col); |
2067 | var->negated = 1; |
2068 | } |
2069 | var->is_nonneg = 1; |
2070 | if (to_col(tab, var) < 0) |
2071 | return -1; |
2072 | var->is_nonneg = 0; |
2073 | if (isl_tab_kill_col(tab, col: var->index) < 0) |
2074 | return -1; |
2075 | |
2076 | return 0; |
2077 | } |
2078 | |
2079 | /* Add a zero row to "tab" and return the corresponding index |
2080 | * in the constraint array. |
2081 | * |
2082 | * This function assumes that at least one more row and at least |
2083 | * one more element in the constraint array are available in the tableau. |
2084 | */ |
2085 | static int add_zero_row(struct isl_tab *tab) |
2086 | { |
2087 | int r; |
2088 | isl_int *row; |
2089 | |
2090 | r = isl_tab_allocate_con(tab); |
2091 | if (r < 0) |
2092 | return -1; |
2093 | |
2094 | row = tab->mat->row[tab->con[r].index]; |
2095 | isl_seq_clr(p: row + 1, len: 1 + tab->M + tab->n_col); |
2096 | isl_int_set_si(row[0], 1); |
2097 | |
2098 | return r; |
2099 | } |
2100 | |
2101 | /* Add equality "eq" and check if it conflicts with the |
2102 | * previously added constraints or if it is obviously redundant. |
2103 | * |
2104 | * This function assumes that at least one more row and at least |
2105 | * one more element in the constraint array are available in the tableau. |
2106 | * If tab->bmap is set, then two rows are needed instead of one. |
2107 | */ |
2108 | isl_stat isl_tab_add_eq(struct isl_tab *tab, isl_int *eq) |
2109 | { |
2110 | struct isl_tab_undo *snap = NULL; |
2111 | struct isl_tab_var *var; |
2112 | int r; |
2113 | int row; |
2114 | int sgn; |
2115 | isl_int cst; |
2116 | |
2117 | if (!tab) |
2118 | return isl_stat_error; |
2119 | isl_assert(tab->mat->ctx, !tab->M, return isl_stat_error); |
2120 | |
2121 | if (tab->need_undo) |
2122 | snap = isl_tab_snap(tab); |
2123 | |
2124 | if (tab->cone) { |
2125 | isl_int_init(cst); |
2126 | isl_int_set_si(cst, 0); |
2127 | isl_int_swap(eq[0], cst); |
2128 | } |
2129 | r = isl_tab_add_row(tab, line: eq); |
2130 | if (tab->cone) { |
2131 | isl_int_swap(eq[0], cst); |
2132 | isl_int_clear(cst); |
2133 | } |
2134 | if (r < 0) |
2135 | return isl_stat_error; |
2136 | |
2137 | var = &tab->con[r]; |
2138 | row = var->index; |
2139 | if (row_is_manifestly_zero(tab, row)) { |
2140 | if (snap) |
2141 | return isl_tab_rollback(tab, snap); |
2142 | return drop_row(tab, row); |
2143 | } |
2144 | |
2145 | if (tab->bmap) { |
2146 | tab->bmap = isl_basic_map_add_ineq(bmap: tab->bmap, ineq: eq); |
2147 | if (isl_tab_push(tab, type: isl_tab_undo_bmap_ineq) < 0) |
2148 | return isl_stat_error; |
2149 | isl_seq_neg(dst: eq, src: eq, len: 1 + tab->n_var); |
2150 | tab->bmap = isl_basic_map_add_ineq(bmap: tab->bmap, ineq: eq); |
2151 | isl_seq_neg(dst: eq, src: eq, len: 1 + tab->n_var); |
2152 | if (isl_tab_push(tab, type: isl_tab_undo_bmap_ineq) < 0) |
2153 | return isl_stat_error; |
2154 | if (!tab->bmap) |
2155 | return isl_stat_error; |
2156 | if (add_zero_row(tab) < 0) |
2157 | return isl_stat_error; |
2158 | } |
2159 | |
2160 | sgn = isl_int_sgn(tab->mat->row[row][1]); |
2161 | |
2162 | if (sgn > 0) { |
2163 | isl_seq_neg(dst: tab->mat->row[row] + 1, src: tab->mat->row[row] + 1, |
2164 | len: 1 + tab->n_col); |
2165 | var->negated = 1; |
2166 | sgn = -1; |
2167 | } |
2168 | |
2169 | if (sgn < 0) { |
2170 | sgn = sign_of_max(tab, var); |
2171 | if (sgn < -1) |
2172 | return isl_stat_error; |
2173 | if (sgn < 0) { |
2174 | if (isl_tab_mark_empty(tab) < 0) |
2175 | return isl_stat_error; |
2176 | return isl_stat_ok; |
2177 | } |
2178 | } |
2179 | |
2180 | var->is_nonneg = 1; |
2181 | if (to_col(tab, var) < 0) |
2182 | return isl_stat_error; |
2183 | var->is_nonneg = 0; |
2184 | if (isl_tab_kill_col(tab, col: var->index) < 0) |
2185 | return isl_stat_error; |
2186 | |
2187 | return isl_stat_ok; |
2188 | } |
2189 | |
2190 | /* Construct and return an inequality that expresses an upper bound |
2191 | * on the given div. |
2192 | * In particular, if the div is given by |
2193 | * |
2194 | * d = floor(e/m) |
2195 | * |
2196 | * then the inequality expresses |
2197 | * |
2198 | * m d <= e |
2199 | */ |
2200 | static __isl_give isl_vec *ineq_for_div(__isl_keep isl_basic_map *bmap, |
2201 | unsigned div) |
2202 | { |
2203 | isl_size total; |
2204 | unsigned div_pos; |
2205 | struct isl_vec *ineq; |
2206 | |
2207 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
2208 | if (total < 0) |
2209 | return NULL; |
2210 | |
2211 | div_pos = 1 + total - bmap->n_div + div; |
2212 | |
2213 | ineq = isl_vec_alloc(ctx: bmap->ctx, size: 1 + total); |
2214 | if (!ineq) |
2215 | return NULL; |
2216 | |
2217 | isl_seq_cpy(dst: ineq->el, src: bmap->div[div] + 1, len: 1 + total); |
2218 | isl_int_neg(ineq->el[div_pos], bmap->div[div][0]); |
2219 | return ineq; |
2220 | } |
2221 | |
2222 | /* For a div d = floor(f/m), add the constraints |
2223 | * |
2224 | * f - m d >= 0 |
2225 | * -(f-(m-1)) + m d >= 0 |
2226 | * |
2227 | * Note that the second constraint is the negation of |
2228 | * |
2229 | * f - m d >= m |
2230 | * |
2231 | * If add_ineq is not NULL, then this function is used |
2232 | * instead of isl_tab_add_ineq to effectively add the inequalities. |
2233 | * |
2234 | * This function assumes that at least two more rows and at least |
2235 | * two more elements in the constraint array are available in the tableau. |
2236 | */ |
2237 | static isl_stat add_div_constraints(struct isl_tab *tab, unsigned div, |
2238 | isl_stat (*add_ineq)(void *user, isl_int *), void *user) |
2239 | { |
2240 | isl_size total; |
2241 | unsigned div_pos; |
2242 | struct isl_vec *ineq; |
2243 | |
2244 | total = isl_basic_map_dim(bmap: tab->bmap, type: isl_dim_all); |
2245 | if (total < 0) |
2246 | return isl_stat_error; |
2247 | div_pos = 1 + total - tab->bmap->n_div + div; |
2248 | |
2249 | ineq = ineq_for_div(bmap: tab->bmap, div); |
2250 | if (!ineq) |
2251 | goto error; |
2252 | |
2253 | if (add_ineq) { |
2254 | if (add_ineq(user, ineq->el) < 0) |
2255 | goto error; |
2256 | } else { |
2257 | if (isl_tab_add_ineq(tab, ineq: ineq->el) < 0) |
2258 | goto error; |
2259 | } |
2260 | |
2261 | isl_seq_neg(dst: ineq->el, src: tab->bmap->div[div] + 1, len: 1 + total); |
2262 | isl_int_set(ineq->el[div_pos], tab->bmap->div[div][0]); |
2263 | isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]); |
2264 | isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); |
2265 | |
2266 | if (add_ineq) { |
2267 | if (add_ineq(user, ineq->el) < 0) |
2268 | goto error; |
2269 | } else { |
2270 | if (isl_tab_add_ineq(tab, ineq: ineq->el) < 0) |
2271 | goto error; |
2272 | } |
2273 | |
2274 | isl_vec_free(vec: ineq); |
2275 | |
2276 | return isl_stat_ok; |
2277 | error: |
2278 | isl_vec_free(vec: ineq); |
2279 | return isl_stat_error; |
2280 | } |
2281 | |
2282 | /* Check whether the div described by "div" is obviously non-negative. |
2283 | * If we are using a big parameter, then we will encode the div |
2284 | * as div' = M + div, which is always non-negative. |
2285 | * Otherwise, we check whether div is a non-negative affine combination |
2286 | * of non-negative variables. |
2287 | */ |
2288 | static int div_is_nonneg(struct isl_tab *tab, __isl_keep isl_vec *div) |
2289 | { |
2290 | int i; |
2291 | |
2292 | if (tab->M) |
2293 | return 1; |
2294 | |
2295 | if (isl_int_is_neg(div->el[1])) |
2296 | return 0; |
2297 | |
2298 | for (i = 0; i < tab->n_var; ++i) { |
2299 | if (isl_int_is_neg(div->el[2 + i])) |
2300 | return 0; |
2301 | if (isl_int_is_zero(div->el[2 + i])) |
2302 | continue; |
2303 | if (!tab->var[i].is_nonneg) |
2304 | return 0; |
2305 | } |
2306 | |
2307 | return 1; |
2308 | } |
2309 | |
2310 | /* Insert an extra div, prescribed by "div", to the tableau and |
2311 | * the associated bmap (which is assumed to be non-NULL). |
2312 | * The extra integer division is inserted at (tableau) position "pos". |
2313 | * Return "pos" or -1 if an error occurred. |
2314 | * |
2315 | * If add_ineq is not NULL, then this function is used instead |
2316 | * of isl_tab_add_ineq to add the div constraints. |
2317 | * This complication is needed because the code in isl_tab_pip |
2318 | * wants to perform some extra processing when an inequality |
2319 | * is added to the tableau. |
2320 | */ |
2321 | int isl_tab_insert_div(struct isl_tab *tab, int pos, __isl_keep isl_vec *div, |
2322 | isl_stat (*add_ineq)(void *user, isl_int *), void *user) |
2323 | { |
2324 | int r; |
2325 | int nonneg; |
2326 | isl_size n_div; |
2327 | int o_div; |
2328 | |
2329 | if (!tab || !div) |
2330 | return -1; |
2331 | |
2332 | if (div->size != 1 + 1 + tab->n_var) |
2333 | isl_die(isl_tab_get_ctx(tab), isl_error_invalid, |
2334 | "unexpected size" , return -1); |
2335 | |
2336 | n_div = isl_basic_map_dim(bmap: tab->bmap, type: isl_dim_div); |
2337 | if (n_div < 0) |
2338 | return -1; |
2339 | o_div = tab->n_var - n_div; |
2340 | if (pos < o_div || pos > tab->n_var) |
2341 | isl_die(isl_tab_get_ctx(tab), isl_error_invalid, |
2342 | "invalid position" , return -1); |
2343 | |
2344 | nonneg = div_is_nonneg(tab, div); |
2345 | |
2346 | if (isl_tab_extend_cons(tab, n_new: 3) < 0) |
2347 | return -1; |
2348 | if (isl_tab_extend_vars(tab, n_new: 1) < 0) |
2349 | return -1; |
2350 | r = isl_tab_insert_var(tab, r: pos); |
2351 | if (r < 0) |
2352 | return -1; |
2353 | |
2354 | if (nonneg) |
2355 | tab->var[r].is_nonneg = 1; |
2356 | |
2357 | tab->bmap = isl_basic_map_insert_div(bmap: tab->bmap, pos: pos - o_div, div); |
2358 | if (!tab->bmap) |
2359 | return -1; |
2360 | if (isl_tab_push_var(tab, type: isl_tab_undo_bmap_div, var: &tab->var[r]) < 0) |
2361 | return -1; |
2362 | |
2363 | if (add_div_constraints(tab, div: pos - o_div, add_ineq, user) < 0) |
2364 | return -1; |
2365 | |
2366 | return r; |
2367 | } |
2368 | |
2369 | /* Add an extra div, prescribed by "div", to the tableau and |
2370 | * the associated bmap (which is assumed to be non-NULL). |
2371 | */ |
2372 | int isl_tab_add_div(struct isl_tab *tab, __isl_keep isl_vec *div) |
2373 | { |
2374 | if (!tab) |
2375 | return -1; |
2376 | return isl_tab_insert_div(tab, pos: tab->n_var, div, NULL, NULL); |
2377 | } |
2378 | |
2379 | /* If "track" is set, then we want to keep track of all constraints in tab |
2380 | * in its bmap field. This field is initialized from a copy of "bmap", |
2381 | * so we need to make sure that all constraints in "bmap" also appear |
2382 | * in the constructed tab. |
2383 | */ |
2384 | __isl_give struct isl_tab *isl_tab_from_basic_map( |
2385 | __isl_keep isl_basic_map *bmap, int track) |
2386 | { |
2387 | int i; |
2388 | struct isl_tab *tab; |
2389 | isl_size total; |
2390 | |
2391 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
2392 | if (total < 0) |
2393 | return NULL; |
2394 | tab = isl_tab_alloc(ctx: bmap->ctx, n_row: total + bmap->n_ineq + 1, n_var: total, M: 0); |
2395 | if (!tab) |
2396 | return NULL; |
2397 | tab->preserve = track; |
2398 | tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL); |
2399 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) { |
2400 | if (isl_tab_mark_empty(tab) < 0) |
2401 | goto error; |
2402 | goto done; |
2403 | } |
2404 | for (i = 0; i < bmap->n_eq; ++i) { |
2405 | tab = add_eq(tab, eq: bmap->eq[i]); |
2406 | if (!tab) |
2407 | return tab; |
2408 | } |
2409 | for (i = 0; i < bmap->n_ineq; ++i) { |
2410 | if (isl_tab_add_ineq(tab, ineq: bmap->ineq[i]) < 0) |
2411 | goto error; |
2412 | if (tab->empty) |
2413 | goto done; |
2414 | } |
2415 | done: |
2416 | if (track && isl_tab_track_bmap(tab, bmap: isl_basic_map_copy(bmap)) < 0) |
2417 | goto error; |
2418 | return tab; |
2419 | error: |
2420 | isl_tab_free(tab); |
2421 | return NULL; |
2422 | } |
2423 | |
2424 | __isl_give struct isl_tab *isl_tab_from_basic_set( |
2425 | __isl_keep isl_basic_set *bset, int track) |
2426 | { |
2427 | return isl_tab_from_basic_map(bmap: bset, track); |
2428 | } |
2429 | |
2430 | /* Construct a tableau corresponding to the recession cone of "bset". |
2431 | */ |
2432 | struct isl_tab *isl_tab_from_recession_cone(__isl_keep isl_basic_set *bset, |
2433 | int parametric) |
2434 | { |
2435 | isl_int cst; |
2436 | int i; |
2437 | struct isl_tab *tab; |
2438 | isl_size offset = 0; |
2439 | isl_size total; |
2440 | |
2441 | total = isl_basic_set_dim(bset, type: isl_dim_all); |
2442 | if (parametric) |
2443 | offset = isl_basic_set_dim(bset, type: isl_dim_param); |
2444 | if (total < 0 || offset < 0) |
2445 | return NULL; |
2446 | tab = isl_tab_alloc(ctx: bset->ctx, n_row: bset->n_eq + bset->n_ineq, |
2447 | n_var: total - offset, M: 0); |
2448 | if (!tab) |
2449 | return NULL; |
2450 | tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL); |
2451 | tab->cone = 1; |
2452 | |
2453 | isl_int_init(cst); |
2454 | isl_int_set_si(cst, 0); |
2455 | for (i = 0; i < bset->n_eq; ++i) { |
2456 | isl_int_swap(bset->eq[i][offset], cst); |
2457 | if (offset > 0) { |
2458 | if (isl_tab_add_eq(tab, eq: bset->eq[i] + offset) < 0) |
2459 | goto error; |
2460 | } else |
2461 | tab = add_eq(tab, eq: bset->eq[i]); |
2462 | isl_int_swap(bset->eq[i][offset], cst); |
2463 | if (!tab) |
2464 | goto done; |
2465 | } |
2466 | for (i = 0; i < bset->n_ineq; ++i) { |
2467 | int r; |
2468 | isl_int_swap(bset->ineq[i][offset], cst); |
2469 | r = isl_tab_add_row(tab, line: bset->ineq[i] + offset); |
2470 | isl_int_swap(bset->ineq[i][offset], cst); |
2471 | if (r < 0) |
2472 | goto error; |
2473 | tab->con[r].is_nonneg = 1; |
2474 | if (isl_tab_push_var(tab, type: isl_tab_undo_nonneg, var: &tab->con[r]) < 0) |
2475 | goto error; |
2476 | } |
2477 | done: |
2478 | isl_int_clear(cst); |
2479 | return tab; |
2480 | error: |
2481 | isl_int_clear(cst); |
2482 | isl_tab_free(tab); |
2483 | return NULL; |
2484 | } |
2485 | |
2486 | /* Assuming "tab" is the tableau of a cone, check if the cone is |
2487 | * bounded, i.e., if it is empty or only contains the origin. |
2488 | */ |
2489 | isl_bool isl_tab_cone_is_bounded(struct isl_tab *tab) |
2490 | { |
2491 | int i; |
2492 | |
2493 | if (!tab) |
2494 | return isl_bool_error; |
2495 | if (tab->empty) |
2496 | return isl_bool_true; |
2497 | if (tab->n_dead == tab->n_col) |
2498 | return isl_bool_true; |
2499 | |
2500 | for (;;) { |
2501 | for (i = tab->n_redundant; i < tab->n_row; ++i) { |
2502 | struct isl_tab_var *var; |
2503 | int sgn; |
2504 | var = isl_tab_var_from_row(tab, i); |
2505 | if (!var->is_nonneg) |
2506 | continue; |
2507 | sgn = sign_of_max(tab, var); |
2508 | if (sgn < -1) |
2509 | return isl_bool_error; |
2510 | if (sgn != 0) |
2511 | return isl_bool_false; |
2512 | if (close_row(tab, var, temp_var: 0) < 0) |
2513 | return isl_bool_error; |
2514 | break; |
2515 | } |
2516 | if (tab->n_dead == tab->n_col) |
2517 | return isl_bool_true; |
2518 | if (i == tab->n_row) |
2519 | return isl_bool_false; |
2520 | } |
2521 | } |
2522 | |
2523 | int isl_tab_sample_is_integer(struct isl_tab *tab) |
2524 | { |
2525 | int i; |
2526 | |
2527 | if (!tab) |
2528 | return -1; |
2529 | |
2530 | for (i = 0; i < tab->n_var; ++i) { |
2531 | int row; |
2532 | if (!tab->var[i].is_row) |
2533 | continue; |
2534 | row = tab->var[i].index; |
2535 | if (!isl_int_is_divisible_by(tab->mat->row[row][1], |
2536 | tab->mat->row[row][0])) |
2537 | return 0; |
2538 | } |
2539 | return 1; |
2540 | } |
2541 | |
2542 | static struct isl_vec *(struct isl_tab *tab) |
2543 | { |
2544 | int i; |
2545 | struct isl_vec *vec; |
2546 | |
2547 | vec = isl_vec_alloc(ctx: tab->mat->ctx, size: 1 + tab->n_var); |
2548 | if (!vec) |
2549 | return NULL; |
2550 | |
2551 | isl_int_set_si(vec->block.data[0], 1); |
2552 | for (i = 0; i < tab->n_var; ++i) { |
2553 | if (!tab->var[i].is_row) |
2554 | isl_int_set_si(vec->block.data[1 + i], 0); |
2555 | else { |
2556 | int row = tab->var[i].index; |
2557 | isl_int_divexact(vec->block.data[1 + i], |
2558 | tab->mat->row[row][1], tab->mat->row[row][0]); |
2559 | } |
2560 | } |
2561 | |
2562 | return vec; |
2563 | } |
2564 | |
2565 | __isl_give isl_vec *isl_tab_get_sample_value(struct isl_tab *tab) |
2566 | { |
2567 | int i; |
2568 | struct isl_vec *vec; |
2569 | isl_int m; |
2570 | |
2571 | if (!tab) |
2572 | return NULL; |
2573 | |
2574 | vec = isl_vec_alloc(ctx: tab->mat->ctx, size: 1 + tab->n_var); |
2575 | if (!vec) |
2576 | return NULL; |
2577 | |
2578 | isl_int_init(m); |
2579 | |
2580 | isl_int_set_si(vec->block.data[0], 1); |
2581 | for (i = 0; i < tab->n_var; ++i) { |
2582 | int row; |
2583 | if (!tab->var[i].is_row) { |
2584 | isl_int_set_si(vec->block.data[1 + i], 0); |
2585 | continue; |
2586 | } |
2587 | row = tab->var[i].index; |
2588 | isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]); |
2589 | isl_int_divexact(m, tab->mat->row[row][0], m); |
2590 | isl_seq_scale(dst: vec->block.data, src: vec->block.data, f: m, len: 1 + i); |
2591 | isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]); |
2592 | isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]); |
2593 | } |
2594 | vec = isl_vec_normalize(vec); |
2595 | |
2596 | isl_int_clear(m); |
2597 | return vec; |
2598 | } |
2599 | |
2600 | /* Store the sample value of "var" of "tab" rounded up (if sgn > 0) |
2601 | * or down (if sgn < 0) to the nearest integer in *v. |
2602 | */ |
2603 | static void get_rounded_sample_value(struct isl_tab *tab, |
2604 | struct isl_tab_var *var, int sgn, isl_int *v) |
2605 | { |
2606 | if (!var->is_row) |
2607 | isl_int_set_si(*v, 0); |
2608 | else if (sgn > 0) |
2609 | isl_int_cdiv_q(*v, tab->mat->row[var->index][1], |
2610 | tab->mat->row[var->index][0]); |
2611 | else |
2612 | isl_int_fdiv_q(*v, tab->mat->row[var->index][1], |
2613 | tab->mat->row[var->index][0]); |
2614 | } |
2615 | |
2616 | /* Update "bmap" based on the results of the tableau "tab". |
2617 | * In particular, implicit equalities are made explicit, redundant constraints |
2618 | * are removed and if the sample value happens to be integer, it is stored |
2619 | * in "bmap" (unless "bmap" already had an integer sample). |
2620 | * |
2621 | * The tableau is assumed to have been created from "bmap" using |
2622 | * isl_tab_from_basic_map. |
2623 | */ |
2624 | __isl_give isl_basic_map *isl_basic_map_update_from_tab( |
2625 | __isl_take isl_basic_map *bmap, struct isl_tab *tab) |
2626 | { |
2627 | int i; |
2628 | unsigned n_eq; |
2629 | |
2630 | if (!bmap) |
2631 | return NULL; |
2632 | if (!tab) |
2633 | return bmap; |
2634 | |
2635 | n_eq = tab->n_eq; |
2636 | if (tab->empty) |
2637 | bmap = isl_basic_map_set_to_empty(bmap); |
2638 | else |
2639 | for (i = bmap->n_ineq - 1; i >= 0; --i) { |
2640 | if (isl_tab_is_equality(tab, con: n_eq + i)) |
2641 | isl_basic_map_inequality_to_equality(bmap, pos: i); |
2642 | else if (isl_tab_is_redundant(tab, con: n_eq + i)) |
2643 | isl_basic_map_drop_inequality(bmap, pos: i); |
2644 | } |
2645 | if (bmap->n_eq != n_eq) |
2646 | bmap = isl_basic_map_gauss(bmap, NULL); |
2647 | if (!tab->rational && |
2648 | bmap && !bmap->sample && isl_tab_sample_is_integer(tab)) |
2649 | bmap->sample = extract_integer_sample(tab); |
2650 | return bmap; |
2651 | } |
2652 | |
2653 | __isl_give isl_basic_set *isl_basic_set_update_from_tab( |
2654 | __isl_take isl_basic_set *bset, struct isl_tab *tab) |
2655 | { |
2656 | return bset_from_bmap(bmap: isl_basic_map_update_from_tab(bmap: bset_to_bmap(bset), |
2657 | tab)); |
2658 | } |
2659 | |
2660 | /* Drop the last constraint added to "tab" in position "r". |
2661 | * The constraint is expected to have remained in a row. |
2662 | */ |
2663 | static isl_stat drop_last_con_in_row(struct isl_tab *tab, int r) |
2664 | { |
2665 | if (!tab->con[r].is_row) |
2666 | isl_die(isl_tab_get_ctx(tab), isl_error_internal, |
2667 | "row unexpectedly moved to column" , |
2668 | return isl_stat_error); |
2669 | if (r + 1 != tab->n_con) |
2670 | isl_die(isl_tab_get_ctx(tab), isl_error_internal, |
2671 | "additional constraints added" , return isl_stat_error); |
2672 | if (drop_row(tab, row: tab->con[r].index) < 0) |
2673 | return isl_stat_error; |
2674 | |
2675 | return isl_stat_ok; |
2676 | } |
2677 | |
2678 | /* Given a non-negative variable "var", temporarily add a new non-negative |
2679 | * variable that is the opposite of "var", ensuring that "var" can only attain |
2680 | * the value zero. The new variable is removed again before this function |
2681 | * returns. However, the effect of forcing "var" to be zero remains. |
2682 | * If var = n/d is a row variable, then the new variable = -n/d. |
2683 | * If var is a column variables, then the new variable = -var. |
2684 | * If the new variable cannot attain non-negative values, then |
2685 | * the resulting tableau is empty. |
2686 | * Otherwise, we know the value will be zero and we close the row. |
2687 | */ |
2688 | static isl_stat cut_to_hyperplane(struct isl_tab *tab, struct isl_tab_var *var) |
2689 | { |
2690 | unsigned r; |
2691 | isl_int *row; |
2692 | int sgn; |
2693 | unsigned off = 2 + tab->M; |
2694 | |
2695 | if (var->is_zero) |
2696 | return isl_stat_ok; |
2697 | if (var->is_redundant || !var->is_nonneg) |
2698 | isl_die(isl_tab_get_ctx(tab), isl_error_invalid, |
2699 | "expecting non-redundant non-negative variable" , |
2700 | return isl_stat_error); |
2701 | |
2702 | if (isl_tab_extend_cons(tab, n_new: 1) < 0) |
2703 | return isl_stat_error; |
2704 | |
2705 | r = tab->n_con; |
2706 | tab->con[r].index = tab->n_row; |
2707 | tab->con[r].is_row = 1; |
2708 | tab->con[r].is_nonneg = 0; |
2709 | tab->con[r].is_zero = 0; |
2710 | tab->con[r].is_redundant = 0; |
2711 | tab->con[r].frozen = 0; |
2712 | tab->con[r].negated = 0; |
2713 | tab->row_var[tab->n_row] = ~r; |
2714 | row = tab->mat->row[tab->n_row]; |
2715 | |
2716 | if (var->is_row) { |
2717 | isl_int_set(row[0], tab->mat->row[var->index][0]); |
2718 | isl_seq_neg(dst: row + 1, |
2719 | src: tab->mat->row[var->index] + 1, len: 1 + tab->n_col); |
2720 | } else { |
2721 | isl_int_set_si(row[0], 1); |
2722 | isl_seq_clr(p: row + 1, len: 1 + tab->n_col); |
2723 | isl_int_set_si(row[off + var->index], -1); |
2724 | } |
2725 | |
2726 | tab->n_row++; |
2727 | tab->n_con++; |
2728 | |
2729 | sgn = sign_of_max(tab, var: &tab->con[r]); |
2730 | if (sgn < -1) |
2731 | return isl_stat_error; |
2732 | if (sgn < 0) { |
2733 | if (drop_last_con_in_row(tab, r) < 0) |
2734 | return isl_stat_error; |
2735 | if (isl_tab_mark_empty(tab) < 0) |
2736 | return isl_stat_error; |
2737 | return isl_stat_ok; |
2738 | } |
2739 | tab->con[r].is_nonneg = 1; |
2740 | /* sgn == 0 */ |
2741 | if (close_row(tab, var: &tab->con[r], temp_var: 1) < 0) |
2742 | return isl_stat_error; |
2743 | if (drop_last_con_in_row(tab, r) < 0) |
2744 | return isl_stat_error; |
2745 | |
2746 | return isl_stat_ok; |
2747 | } |
2748 | |
2749 | /* Check that "con" is a valid constraint position for "tab". |
2750 | */ |
2751 | static isl_stat isl_tab_check_con(struct isl_tab *tab, int con) |
2752 | { |
2753 | if (!tab) |
2754 | return isl_stat_error; |
2755 | if (con < 0 || con >= tab->n_con) |
2756 | isl_die(isl_tab_get_ctx(tab), isl_error_invalid, |
2757 | "position out of bounds" , return isl_stat_error); |
2758 | return isl_stat_ok; |
2759 | } |
2760 | |
2761 | /* Given a tableau "tab" and an inequality constraint "con" of the tableau, |
2762 | * relax the inequality by one. That is, the inequality r >= 0 is replaced |
2763 | * by r' = r + 1 >= 0. |
2764 | * If r is a row variable, we simply increase the constant term by one |
2765 | * (taking into account the denominator). |
2766 | * If r is a column variable, then we need to modify each row that |
2767 | * refers to r = r' - 1 by substituting this equality, effectively |
2768 | * subtracting the coefficient of the column from the constant. |
2769 | * We should only do this if the minimum is manifestly unbounded, |
2770 | * however. Otherwise, we may end up with negative sample values |
2771 | * for non-negative variables. |
2772 | * So, if r is a column variable with a minimum that is not |
2773 | * manifestly unbounded, then we need to move it to a row. |
2774 | * However, the sample value of this row may be negative, |
2775 | * even after the relaxation, so we need to restore it. |
2776 | * We therefore prefer to pivot a column up to a row, if possible. |
2777 | */ |
2778 | int isl_tab_relax(struct isl_tab *tab, int con) |
2779 | { |
2780 | struct isl_tab_var *var; |
2781 | |
2782 | if (!tab) |
2783 | return -1; |
2784 | |
2785 | var = &tab->con[con]; |
2786 | |
2787 | if (var->is_row && (var->index < 0 || var->index < tab->n_redundant)) |
2788 | isl_die(tab->mat->ctx, isl_error_invalid, |
2789 | "cannot relax redundant constraint" , return -1); |
2790 | if (!var->is_row && (var->index < 0 || var->index < tab->n_dead)) |
2791 | isl_die(tab->mat->ctx, isl_error_invalid, |
2792 | "cannot relax dead constraint" , return -1); |
2793 | |
2794 | if (!var->is_row && !max_is_manifestly_unbounded(tab, var)) |
2795 | if (to_row(tab, var, sign: 1) < 0) |
2796 | return -1; |
2797 | if (!var->is_row && !min_is_manifestly_unbounded(tab, var)) |
2798 | if (to_row(tab, var, sign: -1) < 0) |
2799 | return -1; |
2800 | |
2801 | if (var->is_row) { |
2802 | isl_int_add(tab->mat->row[var->index][1], |
2803 | tab->mat->row[var->index][1], tab->mat->row[var->index][0]); |
2804 | if (restore_row(tab, var) < 0) |
2805 | return -1; |
2806 | } else { |
2807 | int i; |
2808 | unsigned off = 2 + tab->M; |
2809 | |
2810 | for (i = 0; i < tab->n_row; ++i) { |
2811 | if (isl_int_is_zero(tab->mat->row[i][off + var->index])) |
2812 | continue; |
2813 | isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1], |
2814 | tab->mat->row[i][off + var->index]); |
2815 | } |
2816 | |
2817 | } |
2818 | |
2819 | if (isl_tab_push_var(tab, type: isl_tab_undo_relax, var) < 0) |
2820 | return -1; |
2821 | |
2822 | return 0; |
2823 | } |
2824 | |
2825 | /* Replace the variable v at position "pos" in the tableau "tab" |
2826 | * by v' = v + shift. |
2827 | * |
2828 | * If the variable is in a column, then we first check if we can |
2829 | * simply plug in v = v' - shift. The effect on a row with |
2830 | * coefficient f/d for variable v is that the constant term c/d |
2831 | * is replaced by (c - f * shift)/d. If shift is positive and |
2832 | * f is negative for each row that needs to remain non-negative, |
2833 | * then this is clearly safe. In other words, if the minimum of v |
2834 | * is manifestly unbounded, then we can keep v in a column position. |
2835 | * Otherwise, we can pivot it down to a row. |
2836 | * Similarly, if shift is negative, we need to check if the maximum |
2837 | * of is manifestly unbounded. |
2838 | * |
2839 | * If the variable is in a row (from the start or after pivoting), |
2840 | * then the constant term c/d is replaced by (c + d * shift)/d. |
2841 | */ |
2842 | int isl_tab_shift_var(struct isl_tab *tab, int pos, isl_int shift) |
2843 | { |
2844 | struct isl_tab_var *var; |
2845 | |
2846 | if (!tab) |
2847 | return -1; |
2848 | if (isl_int_is_zero(shift)) |
2849 | return 0; |
2850 | |
2851 | var = &tab->var[pos]; |
2852 | if (!var->is_row) { |
2853 | if (isl_int_is_neg(shift)) { |
2854 | if (!max_is_manifestly_unbounded(tab, var)) |
2855 | if (to_row(tab, var, sign: 1) < 0) |
2856 | return -1; |
2857 | } else { |
2858 | if (!min_is_manifestly_unbounded(tab, var)) |
2859 | if (to_row(tab, var, sign: -1) < 0) |
2860 | return -1; |
2861 | } |
2862 | } |
2863 | |
2864 | if (var->is_row) { |
2865 | isl_int_addmul(tab->mat->row[var->index][1], |
2866 | shift, tab->mat->row[var->index][0]); |
2867 | } else { |
2868 | int i; |
2869 | unsigned off = 2 + tab->M; |
2870 | |
2871 | for (i = 0; i < tab->n_row; ++i) { |
2872 | if (isl_int_is_zero(tab->mat->row[i][off + var->index])) |
2873 | continue; |
2874 | isl_int_submul(tab->mat->row[i][1], |
2875 | shift, tab->mat->row[i][off + var->index]); |
2876 | } |
2877 | |
2878 | } |
2879 | |
2880 | return 0; |
2881 | } |
2882 | |
2883 | /* Remove the sign constraint from constraint "con". |
2884 | * |
2885 | * If the constraint variable was originally marked non-negative, |
2886 | * then we make sure we mark it non-negative again during rollback. |
2887 | */ |
2888 | int isl_tab_unrestrict(struct isl_tab *tab, int con) |
2889 | { |
2890 | struct isl_tab_var *var; |
2891 | |
2892 | if (!tab) |
2893 | return -1; |
2894 | |
2895 | var = &tab->con[con]; |
2896 | if (!var->is_nonneg) |
2897 | return 0; |
2898 | |
2899 | var->is_nonneg = 0; |
2900 | if (isl_tab_push_var(tab, type: isl_tab_undo_unrestrict, var) < 0) |
2901 | return -1; |
2902 | |
2903 | return 0; |
2904 | } |
2905 | |
2906 | int isl_tab_select_facet(struct isl_tab *tab, int con) |
2907 | { |
2908 | if (!tab) |
2909 | return -1; |
2910 | |
2911 | return cut_to_hyperplane(tab, var: &tab->con[con]); |
2912 | } |
2913 | |
2914 | static int may_be_equality(struct isl_tab *tab, int row) |
2915 | { |
2916 | return tab->rational ? isl_int_is_zero(tab->mat->row[row][1]) |
2917 | : isl_int_lt(tab->mat->row[row][1], |
2918 | tab->mat->row[row][0]); |
2919 | } |
2920 | |
2921 | /* Return an isl_tab_var that has been marked or NULL if no such |
2922 | * variable can be found. |
2923 | * The marked field has only been set for variables that |
2924 | * appear in non-redundant rows or non-dead columns. |
2925 | * |
2926 | * Pick the last constraint variable that is marked and |
2927 | * that appears in either a non-redundant row or a non-dead columns. |
2928 | * Since the returned variable is tested for being a redundant constraint or |
2929 | * an implicit equality, there is no need to return any tab variable that |
2930 | * corresponds to a variable. |
2931 | */ |
2932 | static struct isl_tab_var *select_marked(struct isl_tab *tab) |
2933 | { |
2934 | int i; |
2935 | struct isl_tab_var *var; |
2936 | |
2937 | for (i = tab->n_con - 1; i >= 0; --i) { |
2938 | var = &tab->con[i]; |
2939 | if (var->index < 0) |
2940 | continue; |
2941 | if (var->is_row && var->index < tab->n_redundant) |
2942 | continue; |
2943 | if (!var->is_row && var->index < tab->n_dead) |
2944 | continue; |
2945 | if (var->marked) |
2946 | return var; |
2947 | } |
2948 | |
2949 | return NULL; |
2950 | } |
2951 | |
2952 | /* Check for (near) equalities among the constraints. |
2953 | * A constraint is an equality if it is non-negative and if |
2954 | * its maximal value is either |
2955 | * - zero (in case of rational tableaus), or |
2956 | * - strictly less than 1 (in case of integer tableaus) |
2957 | * |
2958 | * We first mark all non-redundant and non-dead variables that |
2959 | * are not frozen and not obviously not an equality. |
2960 | * Then we iterate over all marked variables if they can attain |
2961 | * any values larger than zero or at least one. |
2962 | * If the maximal value is zero, we mark any column variables |
2963 | * that appear in the row as being zero and mark the row as being redundant. |
2964 | * Otherwise, if the maximal value is strictly less than one (and the |
2965 | * tableau is integer), then we restrict the value to being zero |
2966 | * by adding an opposite non-negative variable. |
2967 | * The order in which the variables are considered is not important. |
2968 | */ |
2969 | int isl_tab_detect_implicit_equalities(struct isl_tab *tab) |
2970 | { |
2971 | int i; |
2972 | unsigned n_marked; |
2973 | |
2974 | if (!tab) |
2975 | return -1; |
2976 | if (tab->empty) |
2977 | return 0; |
2978 | if (tab->n_dead == tab->n_col) |
2979 | return 0; |
2980 | |
2981 | n_marked = 0; |
2982 | for (i = tab->n_redundant; i < tab->n_row; ++i) { |
2983 | struct isl_tab_var *var = isl_tab_var_from_row(tab, i); |
2984 | var->marked = !var->frozen && var->is_nonneg && |
2985 | may_be_equality(tab, row: i); |
2986 | if (var->marked) |
2987 | n_marked++; |
2988 | } |
2989 | for (i = tab->n_dead; i < tab->n_col; ++i) { |
2990 | struct isl_tab_var *var = var_from_col(tab, i); |
2991 | var->marked = !var->frozen && var->is_nonneg; |
2992 | if (var->marked) |
2993 | n_marked++; |
2994 | } |
2995 | while (n_marked) { |
2996 | struct isl_tab_var *var; |
2997 | int sgn; |
2998 | var = select_marked(tab); |
2999 | if (!var) |
3000 | break; |
3001 | var->marked = 0; |
3002 | n_marked--; |
3003 | sgn = sign_of_max(tab, var); |
3004 | if (sgn < 0) |
3005 | return -1; |
3006 | if (sgn == 0) { |
3007 | if (close_row(tab, var, temp_var: 0) < 0) |
3008 | return -1; |
3009 | } else if (!tab->rational && !at_least_one(tab, var)) { |
3010 | if (cut_to_hyperplane(tab, var) < 0) |
3011 | return -1; |
3012 | return isl_tab_detect_implicit_equalities(tab); |
3013 | } |
3014 | for (i = tab->n_redundant; i < tab->n_row; ++i) { |
3015 | var = isl_tab_var_from_row(tab, i); |
3016 | if (!var->marked) |
3017 | continue; |
3018 | if (may_be_equality(tab, row: i)) |
3019 | continue; |
3020 | var->marked = 0; |
3021 | n_marked--; |
3022 | } |
3023 | } |
3024 | |
3025 | return 0; |
3026 | } |
3027 | |
3028 | /* Update the element of row_var or col_var that corresponds to |
3029 | * constraint tab->con[i] to a move from position "old" to position "i". |
3030 | */ |
3031 | static int update_con_after_move(struct isl_tab *tab, int i, int old) |
3032 | { |
3033 | int *p; |
3034 | int index; |
3035 | |
3036 | index = tab->con[i].index; |
3037 | if (index == -1) |
3038 | return 0; |
3039 | p = tab->con[i].is_row ? tab->row_var : tab->col_var; |
3040 | if (p[index] != ~old) |
3041 | isl_die(tab->mat->ctx, isl_error_internal, |
3042 | "broken internal state" , return -1); |
3043 | p[index] = ~i; |
3044 | |
3045 | return 0; |
3046 | } |
3047 | |
3048 | /* Interchange constraints "con1" and "con2" in "tab". |
3049 | * In particular, interchange the contents of these entries in tab->con. |
3050 | * Since tab->col_var and tab->row_var point back into this array, |
3051 | * they need to be updated accordingly. |
3052 | */ |
3053 | isl_stat isl_tab_swap_constraints(struct isl_tab *tab, int con1, int con2) |
3054 | { |
3055 | struct isl_tab_var var; |
3056 | |
3057 | if (isl_tab_check_con(tab, con: con1) < 0 || |
3058 | isl_tab_check_con(tab, con: con2) < 0) |
3059 | return isl_stat_error; |
3060 | |
3061 | var = tab->con[con1]; |
3062 | tab->con[con1] = tab->con[con2]; |
3063 | if (update_con_after_move(tab, i: con1, old: con2) < 0) |
3064 | return isl_stat_error; |
3065 | tab->con[con2] = var; |
3066 | if (update_con_after_move(tab, i: con2, old: con1) < 0) |
3067 | return isl_stat_error; |
3068 | |
3069 | return isl_stat_ok; |
3070 | } |
3071 | |
3072 | /* Rotate the "n" constraints starting at "first" to the right, |
3073 | * putting the last constraint in the position of the first constraint. |
3074 | */ |
3075 | static int rotate_constraints(struct isl_tab *tab, int first, int n) |
3076 | { |
3077 | int i, last; |
3078 | struct isl_tab_var var; |
3079 | |
3080 | if (n <= 1) |
3081 | return 0; |
3082 | |
3083 | last = first + n - 1; |
3084 | var = tab->con[last]; |
3085 | for (i = last; i > first; --i) { |
3086 | tab->con[i] = tab->con[i - 1]; |
3087 | if (update_con_after_move(tab, i, old: i - 1) < 0) |
3088 | return -1; |
3089 | } |
3090 | tab->con[first] = var; |
3091 | if (update_con_after_move(tab, i: first, old: last) < 0) |
3092 | return -1; |
3093 | |
3094 | return 0; |
3095 | } |
3096 | |
3097 | /* Drop the "n" entries starting at position "first" in tab->con, moving all |
3098 | * subsequent entries down. |
3099 | * Since some of the entries of tab->row_var and tab->col_var contain |
3100 | * indices into this array, they have to be updated accordingly. |
3101 | */ |
3102 | static isl_stat con_drop_entries(struct isl_tab *tab, |
3103 | unsigned first, unsigned n) |
3104 | { |
3105 | int i; |
3106 | |
3107 | if (first + n > tab->n_con || first + n < first) |
3108 | isl_die(isl_tab_get_ctx(tab), isl_error_internal, |
3109 | "invalid range" , return isl_stat_error); |
3110 | |
3111 | tab->n_con -= n; |
3112 | |
3113 | for (i = first; i < tab->n_con; ++i) { |
3114 | tab->con[i] = tab->con[i + n]; |
3115 | if (update_con_after_move(tab, i, old: i + n) < 0) |
3116 | return isl_stat_error; |
3117 | } |
3118 | |
3119 | return isl_stat_ok; |
3120 | } |
3121 | |
3122 | /* isl_basic_map_gauss5 callback that gets called when |
3123 | * two (equality) constraints "a" and "b" get interchanged |
3124 | * in the basic map. Perform the same interchange in "tab". |
3125 | */ |
3126 | static isl_stat swap_eq(unsigned a, unsigned b, void *user) |
3127 | { |
3128 | struct isl_tab *tab = user; |
3129 | |
3130 | return isl_tab_swap_constraints(tab, con1: a, con2: b); |
3131 | } |
3132 | |
3133 | /* isl_basic_map_gauss5 callback that gets called when |
3134 | * the final "n" equality constraints get removed. |
3135 | * As a special case, if "n" is equal to the total number |
3136 | * of equality constraints, then this means the basic map |
3137 | * turned out to be empty. |
3138 | * Drop the same number of equality constraints from "tab" or |
3139 | * mark it empty in the special case. |
3140 | */ |
3141 | static isl_stat drop_eq(unsigned n, void *user) |
3142 | { |
3143 | struct isl_tab *tab = user; |
3144 | |
3145 | if (tab->n_eq == n) |
3146 | return isl_tab_mark_empty(tab); |
3147 | |
3148 | tab->n_eq -= n; |
3149 | return con_drop_entries(tab, first: tab->n_eq, n); |
3150 | } |
3151 | |
3152 | /* If "bmap" has more than a single reference, then call |
3153 | * isl_basic_map_gauss on it, updating "tab" accordingly. |
3154 | */ |
3155 | static __isl_give isl_basic_map *gauss_if_shared(__isl_take isl_basic_map *bmap, |
3156 | struct isl_tab *tab) |
3157 | { |
3158 | isl_bool single; |
3159 | |
3160 | single = isl_basic_map_has_single_reference(bmap); |
3161 | if (single < 0) |
3162 | return isl_basic_map_free(bmap); |
3163 | if (single) |
3164 | return bmap; |
3165 | return isl_basic_map_gauss5(bmap, NULL, swap: &swap_eq, drop: &drop_eq, user: tab); |
3166 | } |
3167 | |
3168 | /* Make the equalities that are implicit in "bmap" but that have been |
3169 | * detected in the corresponding "tab" explicit in "bmap" and update |
3170 | * "tab" to reflect the new order of the constraints. |
3171 | * |
3172 | * In particular, if inequality i is an implicit equality then |
3173 | * isl_basic_map_inequality_to_equality will move the inequality |
3174 | * in front of the other equality and it will move the last inequality |
3175 | * in the position of inequality i. |
3176 | * In the tableau, the inequalities of "bmap" are stored after the equalities |
3177 | * and so the original order |
3178 | * |
3179 | * E E E E E A A A I B B B B L |
3180 | * |
3181 | * is changed into |
3182 | * |
3183 | * I E E E E E A A A L B B B B |
3184 | * |
3185 | * where I is the implicit equality, the E are equalities, |
3186 | * the A inequalities before I, the B inequalities after I and |
3187 | * L the last inequality. |
3188 | * We therefore need to rotate to the right two sets of constraints, |
3189 | * those up to and including I and those after I. |
3190 | * |
3191 | * If "tab" contains any constraints that are not in "bmap" then they |
3192 | * appear after those in "bmap" and they should be left untouched. |
3193 | * |
3194 | * Note that this function only calls isl_basic_map_gauss |
3195 | * (in case some equality constraints got detected) |
3196 | * if "bmap" has more than one reference. |
3197 | * If it only has a single reference, then it is left in a temporary state, |
3198 | * because the caller may require this state. |
3199 | * Calling isl_basic_map_gauss is then the responsibility of the caller. |
3200 | */ |
3201 | __isl_give isl_basic_map *isl_tab_make_equalities_explicit(struct isl_tab *tab, |
3202 | __isl_take isl_basic_map *bmap) |
3203 | { |
3204 | int i; |
3205 | unsigned n_eq; |
3206 | |
3207 | if (!tab || !bmap) |
3208 | return isl_basic_map_free(bmap); |
3209 | if (tab->empty) |
3210 | return bmap; |
3211 | |
3212 | n_eq = tab->n_eq; |
3213 | for (i = bmap->n_ineq - 1; i >= 0; --i) { |
3214 | if (!isl_tab_is_equality(tab, con: bmap->n_eq + i)) |
3215 | continue; |
3216 | isl_basic_map_inequality_to_equality(bmap, pos: i); |
3217 | if (rotate_constraints(tab, first: 0, n: tab->n_eq + i + 1) < 0) |
3218 | return isl_basic_map_free(bmap); |
3219 | if (rotate_constraints(tab, first: tab->n_eq + i + 1, |
3220 | n: bmap->n_ineq - i) < 0) |
3221 | return isl_basic_map_free(bmap); |
3222 | tab->n_eq++; |
3223 | } |
3224 | |
3225 | if (n_eq != tab->n_eq) |
3226 | bmap = gauss_if_shared(bmap, tab); |
3227 | |
3228 | return bmap; |
3229 | } |
3230 | |
3231 | static int con_is_redundant(struct isl_tab *tab, struct isl_tab_var *var) |
3232 | { |
3233 | if (!tab) |
3234 | return -1; |
3235 | if (tab->rational) { |
3236 | int sgn = sign_of_min(tab, var); |
3237 | if (sgn < -1) |
3238 | return -1; |
3239 | return sgn >= 0; |
3240 | } else { |
3241 | int irred = isl_tab_min_at_most_neg_one(tab, var); |
3242 | if (irred < 0) |
3243 | return -1; |
3244 | return !irred; |
3245 | } |
3246 | } |
3247 | |
3248 | /* Check for (near) redundant constraints. |
3249 | * A constraint is redundant if it is non-negative and if |
3250 | * its minimal value (temporarily ignoring the non-negativity) is either |
3251 | * - zero (in case of rational tableaus), or |
3252 | * - strictly larger than -1 (in case of integer tableaus) |
3253 | * |
3254 | * We first mark all non-redundant and non-dead variables that |
3255 | * are not frozen and not obviously negatively unbounded. |
3256 | * Then we iterate over all marked variables if they can attain |
3257 | * any values smaller than zero or at most negative one. |
3258 | * If not, we mark the row as being redundant (assuming it hasn't |
3259 | * been detected as being obviously redundant in the mean time). |
3260 | */ |
3261 | int isl_tab_detect_redundant(struct isl_tab *tab) |
3262 | { |
3263 | int i; |
3264 | unsigned n_marked; |
3265 | |
3266 | if (!tab) |
3267 | return -1; |
3268 | if (tab->empty) |
3269 | return 0; |
3270 | if (tab->n_redundant == tab->n_row) |
3271 | return 0; |
3272 | |
3273 | n_marked = 0; |
3274 | for (i = tab->n_redundant; i < tab->n_row; ++i) { |
3275 | struct isl_tab_var *var = isl_tab_var_from_row(tab, i); |
3276 | var->marked = !var->frozen && var->is_nonneg; |
3277 | if (var->marked) |
3278 | n_marked++; |
3279 | } |
3280 | for (i = tab->n_dead; i < tab->n_col; ++i) { |
3281 | struct isl_tab_var *var = var_from_col(tab, i); |
3282 | var->marked = !var->frozen && var->is_nonneg && |
3283 | !min_is_manifestly_unbounded(tab, var); |
3284 | if (var->marked) |
3285 | n_marked++; |
3286 | } |
3287 | while (n_marked) { |
3288 | struct isl_tab_var *var; |
3289 | int red; |
3290 | var = select_marked(tab); |
3291 | if (!var) |
3292 | break; |
3293 | var->marked = 0; |
3294 | n_marked--; |
3295 | red = con_is_redundant(tab, var); |
3296 | if (red < 0) |
3297 | return -1; |
3298 | if (red && !var->is_redundant) |
3299 | if (isl_tab_mark_redundant(tab, row: var->index) < 0) |
3300 | return -1; |
3301 | for (i = tab->n_dead; i < tab->n_col; ++i) { |
3302 | var = var_from_col(tab, i); |
3303 | if (!var->marked) |
3304 | continue; |
3305 | if (!min_is_manifestly_unbounded(tab, var)) |
3306 | continue; |
3307 | var->marked = 0; |
3308 | n_marked--; |
3309 | } |
3310 | } |
3311 | |
3312 | return 0; |
3313 | } |
3314 | |
3315 | int isl_tab_is_equality(struct isl_tab *tab, int con) |
3316 | { |
3317 | int row; |
3318 | unsigned off; |
3319 | |
3320 | if (!tab) |
3321 | return -1; |
3322 | if (tab->con[con].is_zero) |
3323 | return 1; |
3324 | if (tab->con[con].is_redundant) |
3325 | return 0; |
3326 | if (!tab->con[con].is_row) |
3327 | return tab->con[con].index < tab->n_dead; |
3328 | |
3329 | row = tab->con[con].index; |
3330 | |
3331 | off = 2 + tab->M; |
3332 | return isl_int_is_zero(tab->mat->row[row][1]) && |
3333 | !row_is_big(tab, row) && |
3334 | isl_seq_first_non_zero(p: tab->mat->row[row] + off + tab->n_dead, |
3335 | len: tab->n_col - tab->n_dead) == -1; |
3336 | } |
3337 | |
3338 | /* Return the minimal value of the affine expression "f" with denominator |
3339 | * "denom" in *opt, *opt_denom, assuming the tableau is not empty and |
3340 | * the expression cannot attain arbitrarily small values. |
3341 | * If opt_denom is NULL, then *opt is rounded up to the nearest integer. |
3342 | * The return value reflects the nature of the result (empty, unbounded, |
3343 | * minimal value returned in *opt). |
3344 | * |
3345 | * This function assumes that at least one more row and at least |
3346 | * one more element in the constraint array are available in the tableau. |
3347 | */ |
3348 | enum isl_lp_result isl_tab_min(struct isl_tab *tab, |
3349 | isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom, |
3350 | unsigned flags) |
3351 | { |
3352 | int r; |
3353 | enum isl_lp_result res = isl_lp_ok; |
3354 | struct isl_tab_var *var; |
3355 | struct isl_tab_undo *snap; |
3356 | |
3357 | if (!tab) |
3358 | return isl_lp_error; |
3359 | |
3360 | if (tab->empty) |
3361 | return isl_lp_empty; |
3362 | |
3363 | snap = isl_tab_snap(tab); |
3364 | r = isl_tab_add_row(tab, line: f); |
3365 | if (r < 0) |
3366 | return isl_lp_error; |
3367 | var = &tab->con[r]; |
3368 | for (;;) { |
3369 | int row, col; |
3370 | find_pivot(tab, var, skip_var: var, sgn: -1, row: &row, col: &col); |
3371 | if (row == var->index) { |
3372 | res = isl_lp_unbounded; |
3373 | break; |
3374 | } |
3375 | if (row == -1) |
3376 | break; |
3377 | if (isl_tab_pivot(tab, row, col) < 0) |
3378 | return isl_lp_error; |
3379 | } |
3380 | isl_int_mul(tab->mat->row[var->index][0], |
3381 | tab->mat->row[var->index][0], denom); |
3382 | if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) { |
3383 | int i; |
3384 | |
3385 | isl_vec_free(vec: tab->dual); |
3386 | tab->dual = isl_vec_alloc(ctx: tab->mat->ctx, size: 1 + tab->n_con); |
3387 | if (!tab->dual) |
3388 | return isl_lp_error; |
3389 | isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]); |
3390 | for (i = 0; i < tab->n_con; ++i) { |
3391 | int pos; |
3392 | if (tab->con[i].is_row) { |
3393 | isl_int_set_si(tab->dual->el[1 + i], 0); |
3394 | continue; |
3395 | } |
3396 | pos = 2 + tab->M + tab->con[i].index; |
3397 | if (tab->con[i].negated) |
3398 | isl_int_neg(tab->dual->el[1 + i], |
3399 | tab->mat->row[var->index][pos]); |
3400 | else |
3401 | isl_int_set(tab->dual->el[1 + i], |
3402 | tab->mat->row[var->index][pos]); |
3403 | } |
3404 | } |
3405 | if (opt && res == isl_lp_ok) { |
3406 | if (opt_denom) { |
3407 | isl_int_set(*opt, tab->mat->row[var->index][1]); |
3408 | isl_int_set(*opt_denom, tab->mat->row[var->index][0]); |
3409 | } else |
3410 | get_rounded_sample_value(tab, var, sgn: 1, v: opt); |
3411 | } |
3412 | if (isl_tab_rollback(tab, snap) < 0) |
3413 | return isl_lp_error; |
3414 | return res; |
3415 | } |
3416 | |
3417 | /* Is the constraint at position "con" marked as being redundant? |
3418 | * If it is marked as representing an equality, then it is not |
3419 | * considered to be redundant. |
3420 | * Note that isl_tab_mark_redundant marks both the isl_tab_var as |
3421 | * redundant and moves the corresponding row into the first |
3422 | * tab->n_redundant positions (or removes the row, assigning it index -1), |
3423 | * so the final test is actually redundant itself. |
3424 | */ |
3425 | int isl_tab_is_redundant(struct isl_tab *tab, int con) |
3426 | { |
3427 | if (isl_tab_check_con(tab, con) < 0) |
3428 | return -1; |
3429 | if (tab->con[con].is_zero) |
3430 | return 0; |
3431 | if (tab->con[con].is_redundant) |
3432 | return 1; |
3433 | return tab->con[con].is_row && tab->con[con].index < tab->n_redundant; |
3434 | } |
3435 | |
3436 | /* Is variable "var" of "tab" fixed to a constant value by its row |
3437 | * in the tableau? |
3438 | * If so and if "value" is not NULL, then store this constant value |
3439 | * in "value". |
3440 | * |
3441 | * That is, is it a row variable that only has non-zero coefficients |
3442 | * for dead columns? |
3443 | */ |
3444 | static isl_bool is_constant(struct isl_tab *tab, struct isl_tab_var *var, |
3445 | isl_int *value) |
3446 | { |
3447 | unsigned off = 2 + tab->M; |
3448 | isl_mat *mat = tab->mat; |
3449 | int n; |
3450 | int row; |
3451 | int pos; |
3452 | |
3453 | if (!var->is_row) |
3454 | return isl_bool_false; |
3455 | row = var->index; |
3456 | if (row_is_big(tab, row)) |
3457 | return isl_bool_false; |
3458 | n = tab->n_col - tab->n_dead; |
3459 | pos = isl_seq_first_non_zero(p: mat->row[row] + off + tab->n_dead, len: n); |
3460 | if (pos != -1) |
3461 | return isl_bool_false; |
3462 | if (value) |
3463 | isl_int_divexact(*value, mat->row[row][1], mat->row[row][0]); |
3464 | return isl_bool_true; |
3465 | } |
3466 | |
3467 | /* Has the variable "var' of "tab" reached a value that is greater than |
3468 | * or equal (if sgn > 0) or smaller than or equal (if sgn < 0) to "target"? |
3469 | * "tmp" has been initialized by the caller and can be used |
3470 | * to perform local computations. |
3471 | * |
3472 | * If the sample value involves the big parameter, then any value |
3473 | * is reached. |
3474 | * Otherwise check if n/d >= t, i.e., n >= d * t (if sgn > 0) |
3475 | * or n/d <= t, i.e., n <= d * t (if sgn < 0). |
3476 | */ |
3477 | static int reached(struct isl_tab *tab, struct isl_tab_var *var, int sgn, |
3478 | isl_int target, isl_int *tmp) |
3479 | { |
3480 | if (row_is_big(tab, row: var->index)) |
3481 | return 1; |
3482 | isl_int_mul(*tmp, tab->mat->row[var->index][0], target); |
3483 | if (sgn > 0) |
3484 | return isl_int_ge(tab->mat->row[var->index][1], *tmp); |
3485 | else |
3486 | return isl_int_le(tab->mat->row[var->index][1], *tmp); |
3487 | } |
3488 | |
3489 | /* Can variable "var" of "tab" attain the value "target" by |
3490 | * pivoting up (if sgn > 0) or down (if sgn < 0)? |
3491 | * If not, then pivot up [down] to the greatest [smallest] |
3492 | * rational value. |
3493 | * "tmp" has been initialized by the caller and can be used |
3494 | * to perform local computations. |
3495 | * |
3496 | * If the variable is manifestly unbounded in the desired direction, |
3497 | * then it can attain any value. |
3498 | * Otherwise, it can be moved to a row. |
3499 | * Continue pivoting until the target is reached. |
3500 | * If no more pivoting can be performed, the maximal [minimal] |
3501 | * rational value has been reached and the target cannot be reached. |
3502 | * If the variable would be pivoted into a manifestly unbounded column, |
3503 | * then the target can be reached. |
3504 | */ |
3505 | static isl_bool var_reaches(struct isl_tab *tab, struct isl_tab_var *var, |
3506 | int sgn, isl_int target, isl_int *tmp) |
3507 | { |
3508 | int row, col; |
3509 | |
3510 | if (sgn < 0 && min_is_manifestly_unbounded(tab, var)) |
3511 | return isl_bool_true; |
3512 | if (sgn > 0 && max_is_manifestly_unbounded(tab, var)) |
3513 | return isl_bool_true; |
3514 | if (to_row(tab, var, sign: sgn) < 0) |
3515 | return isl_bool_error; |
3516 | while (!reached(tab, var, sgn, target, tmp)) { |
3517 | find_pivot(tab, var, skip_var: var, sgn, row: &row, col: &col); |
3518 | if (row == -1) |
3519 | return isl_bool_false; |
3520 | if (row == var->index) |
3521 | return isl_bool_true; |
3522 | if (isl_tab_pivot(tab, row, col) < 0) |
3523 | return isl_bool_error; |
3524 | } |
3525 | |
3526 | return isl_bool_true; |
3527 | } |
3528 | |
3529 | /* Check if variable "var" of "tab" can only attain a single (integer) |
3530 | * value, and, if so, add an equality constraint to fix the variable |
3531 | * to this single value and store the result in "target". |
3532 | * "target" and "tmp" have been initialized by the caller. |
3533 | * |
3534 | * Given the current sample value, round it down and check |
3535 | * whether it is possible to attain a strictly smaller integer value. |
3536 | * If so, the variable is not restricted to a single integer value. |
3537 | * Otherwise, the search stops at the smallest rational value. |
3538 | * Round up this value and check whether it is possible to attain |
3539 | * a strictly greater integer value. |
3540 | * If so, the variable is not restricted to a single integer value. |
3541 | * Otherwise, the search stops at the greatest rational value. |
3542 | * If rounding down this value yields a value that is different |
3543 | * from rounding up the smallest rational value, then the variable |
3544 | * cannot attain any integer value. Mark the tableau empty. |
3545 | * Otherwise, add an equality constraint that fixes the variable |
3546 | * to the single integer value found. |
3547 | */ |
3548 | static isl_bool detect_constant_with_tmp(struct isl_tab *tab, |
3549 | struct isl_tab_var *var, isl_int *target, isl_int *tmp) |
3550 | { |
3551 | isl_bool reached; |
3552 | isl_vec *eq; |
3553 | int pos; |
3554 | isl_stat r; |
3555 | |
3556 | get_rounded_sample_value(tab, var, sgn: -1, v: target); |
3557 | isl_int_sub_ui(*target, *target, 1); |
3558 | reached = var_reaches(tab, var, sgn: -1, target: *target, tmp); |
3559 | if (reached < 0 || reached) |
3560 | return isl_bool_not(b: reached); |
3561 | get_rounded_sample_value(tab, var, sgn: 1, v: target); |
3562 | isl_int_add_ui(*target, *target, 1); |
3563 | reached = var_reaches(tab, var, sgn: 1, target: *target, tmp); |
3564 | if (reached < 0 || reached) |
3565 | return isl_bool_not(b: reached); |
3566 | get_rounded_sample_value(tab, var, sgn: -1, v: tmp); |
3567 | isl_int_sub_ui(*target, *target, 1); |
3568 | if (isl_int_ne(*target, *tmp)) { |
3569 | if (isl_tab_mark_empty(tab) < 0) |
3570 | return isl_bool_error; |
3571 | return isl_bool_false; |
3572 | } |
3573 | |
3574 | if (isl_tab_extend_cons(tab, n_new: 1) < 0) |
3575 | return isl_bool_error; |
3576 | eq = isl_vec_alloc(ctx: isl_tab_get_ctx(tab), size: 1 + tab->n_var); |
3577 | if (!eq) |
3578 | return isl_bool_error; |
3579 | pos = var - tab->var; |
3580 | isl_seq_clr(p: eq->el + 1, len: tab->n_var); |
3581 | isl_int_set_si(eq->el[1 + pos], -1); |
3582 | isl_int_set(eq->el[0], *target); |
3583 | r = isl_tab_add_eq(tab, eq: eq->el); |
3584 | isl_vec_free(vec: eq); |
3585 | |
3586 | return r < 0 ? isl_bool_error : isl_bool_true; |
3587 | } |
3588 | |
3589 | /* Check if variable "var" of "tab" can only attain a single (integer) |
3590 | * value, and, if so, add an equality constraint to fix the variable |
3591 | * to this single value and store the result in "value" (if "value" |
3592 | * is not NULL). |
3593 | * |
3594 | * If the current sample value involves the big parameter, |
3595 | * then the variable cannot have a fixed integer value. |
3596 | * If the variable is already fixed to a single value by its row, then |
3597 | * there is no need to add another equality constraint. |
3598 | * |
3599 | * Otherwise, allocate some temporary variables and continue |
3600 | * with detect_constant_with_tmp. |
3601 | */ |
3602 | static isl_bool get_constant(struct isl_tab *tab, struct isl_tab_var *var, |
3603 | isl_int *value) |
3604 | { |
3605 | isl_int target, tmp; |
3606 | isl_bool is_cst; |
3607 | |
3608 | if (var->is_row && row_is_big(tab, row: var->index)) |
3609 | return isl_bool_false; |
3610 | is_cst = is_constant(tab, var, value); |
3611 | if (is_cst < 0 || is_cst) |
3612 | return is_cst; |
3613 | |
3614 | if (!value) |
3615 | isl_int_init(target); |
3616 | isl_int_init(tmp); |
3617 | |
3618 | is_cst = detect_constant_with_tmp(tab, var, |
3619 | target: value ? value : &target, tmp: &tmp); |
3620 | |
3621 | isl_int_clear(tmp); |
3622 | if (!value) |
3623 | isl_int_clear(target); |
3624 | |
3625 | return is_cst; |
3626 | } |
3627 | |
3628 | /* Check if variable "var" of "tab" can only attain a single (integer) |
3629 | * value, and, if so, add an equality constraint to fix the variable |
3630 | * to this single value and store the result in "value" (if "value" |
3631 | * is not NULL). |
3632 | * |
3633 | * For rational tableaus, nothing needs to be done. |
3634 | */ |
3635 | isl_bool isl_tab_is_constant(struct isl_tab *tab, int var, isl_int *value) |
3636 | { |
3637 | if (!tab) |
3638 | return isl_bool_error; |
3639 | if (var < 0 || var >= tab->n_var) |
3640 | isl_die(isl_tab_get_ctx(tab), isl_error_invalid, |
3641 | "position out of bounds" , return isl_bool_error); |
3642 | if (tab->rational) |
3643 | return isl_bool_false; |
3644 | |
3645 | return get_constant(tab, var: &tab->var[var], value); |
3646 | } |
3647 | |
3648 | /* Check if any of the variables of "tab" can only attain a single (integer) |
3649 | * value, and, if so, add equality constraints to fix those variables |
3650 | * to these single values. |
3651 | * |
3652 | * For rational tableaus, nothing needs to be done. |
3653 | */ |
3654 | isl_stat isl_tab_detect_constants(struct isl_tab *tab) |
3655 | { |
3656 | int i; |
3657 | |
3658 | if (!tab) |
3659 | return isl_stat_error; |
3660 | if (tab->rational) |
3661 | return isl_stat_ok; |
3662 | |
3663 | for (i = 0; i < tab->n_var; ++i) { |
3664 | if (get_constant(tab, var: &tab->var[i], NULL) < 0) |
3665 | return isl_stat_error; |
3666 | } |
3667 | |
3668 | return isl_stat_ok; |
3669 | } |
3670 | |
3671 | /* Take a snapshot of the tableau that can be restored by a call to |
3672 | * isl_tab_rollback. |
3673 | */ |
3674 | struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab) |
3675 | { |
3676 | if (!tab) |
3677 | return NULL; |
3678 | tab->need_undo = 1; |
3679 | return tab->top; |
3680 | } |
3681 | |
3682 | /* Does "tab" need to keep track of undo information? |
3683 | * That is, was a snapshot taken that may need to be restored? |
3684 | */ |
3685 | isl_bool isl_tab_need_undo(struct isl_tab *tab) |
3686 | { |
3687 | if (!tab) |
3688 | return isl_bool_error; |
3689 | |
3690 | return isl_bool_ok(b: tab->need_undo); |
3691 | } |
3692 | |
3693 | /* Remove all tracking of undo information from "tab", invalidating |
3694 | * any snapshots that may have been taken of the tableau. |
3695 | * Since all snapshots have been invalidated, there is also |
3696 | * no need to start keeping track of undo information again. |
3697 | */ |
3698 | void isl_tab_clear_undo(struct isl_tab *tab) |
3699 | { |
3700 | if (!tab) |
3701 | return; |
3702 | |
3703 | free_undo(tab); |
3704 | tab->need_undo = 0; |
3705 | } |
3706 | |
3707 | /* Undo the operation performed by isl_tab_relax. |
3708 | */ |
3709 | static isl_stat unrelax(struct isl_tab *tab, struct isl_tab_var *var) |
3710 | WARN_UNUSED; |
3711 | static isl_stat unrelax(struct isl_tab *tab, struct isl_tab_var *var) |
3712 | { |
3713 | unsigned off = 2 + tab->M; |
3714 | |
3715 | if (!var->is_row && !max_is_manifestly_unbounded(tab, var)) |
3716 | if (to_row(tab, var, sign: 1) < 0) |
3717 | return isl_stat_error; |
3718 | |
3719 | if (var->is_row) { |
3720 | isl_int_sub(tab->mat->row[var->index][1], |
3721 | tab->mat->row[var->index][1], tab->mat->row[var->index][0]); |
3722 | if (var->is_nonneg) { |
3723 | int sgn = restore_row(tab, var); |
3724 | isl_assert(tab->mat->ctx, sgn >= 0, |
3725 | return isl_stat_error); |
3726 | } |
3727 | } else { |
3728 | int i; |
3729 | |
3730 | for (i = 0; i < tab->n_row; ++i) { |
3731 | if (isl_int_is_zero(tab->mat->row[i][off + var->index])) |
3732 | continue; |
3733 | isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1], |
3734 | tab->mat->row[i][off + var->index]); |
3735 | } |
3736 | |
3737 | } |
3738 | |
3739 | return isl_stat_ok; |
3740 | } |
3741 | |
3742 | /* Undo the operation performed by isl_tab_unrestrict. |
3743 | * |
3744 | * In particular, mark the variable as being non-negative and make |
3745 | * sure the sample value respects this constraint. |
3746 | */ |
3747 | static isl_stat ununrestrict(struct isl_tab *tab, struct isl_tab_var *var) |
3748 | { |
3749 | var->is_nonneg = 1; |
3750 | |
3751 | if (var->is_row && restore_row(tab, var) < -1) |
3752 | return isl_stat_error; |
3753 | |
3754 | return isl_stat_ok; |
3755 | } |
3756 | |
3757 | /* Unmark the last redundant row in "tab" as being redundant. |
3758 | * This undoes part of the modifications performed by isl_tab_mark_redundant. |
3759 | * In particular, remove the redundant mark and make |
3760 | * sure the sample value respects the constraint again. |
3761 | * A variable that is marked non-negative by isl_tab_mark_redundant |
3762 | * is covered by a separate undo record. |
3763 | */ |
3764 | static isl_stat restore_last_redundant(struct isl_tab *tab) |
3765 | { |
3766 | struct isl_tab_var *var; |
3767 | |
3768 | if (tab->n_redundant < 1) |
3769 | isl_die(isl_tab_get_ctx(tab), isl_error_internal, |
3770 | "no redundant rows" , return isl_stat_error); |
3771 | |
3772 | var = isl_tab_var_from_row(tab, i: tab->n_redundant - 1); |
3773 | var->is_redundant = 0; |
3774 | tab->n_redundant--; |
3775 | restore_row(tab, var); |
3776 | |
3777 | return isl_stat_ok; |
3778 | } |
3779 | |
3780 | static isl_stat perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo) |
3781 | WARN_UNUSED; |
3782 | static isl_stat perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo) |
3783 | { |
3784 | struct isl_tab_var *var = var_from_index(tab, i: undo->u.var_index); |
3785 | switch (undo->type) { |
3786 | case isl_tab_undo_nonneg: |
3787 | var->is_nonneg = 0; |
3788 | break; |
3789 | case isl_tab_undo_redundant: |
3790 | if (!var->is_row || var->index != tab->n_redundant - 1) |
3791 | isl_die(isl_tab_get_ctx(tab), isl_error_internal, |
3792 | "not undoing last redundant row" , |
3793 | return isl_stat_error); |
3794 | return restore_last_redundant(tab); |
3795 | case isl_tab_undo_freeze: |
3796 | var->frozen = 0; |
3797 | break; |
3798 | case isl_tab_undo_zero: |
3799 | var->is_zero = 0; |
3800 | if (!var->is_row) |
3801 | tab->n_dead--; |
3802 | break; |
3803 | case isl_tab_undo_allocate: |
3804 | if (undo->u.var_index >= 0) { |
3805 | isl_assert(tab->mat->ctx, !var->is_row, |
3806 | return isl_stat_error); |
3807 | return drop_col(tab, col: var->index); |
3808 | } |
3809 | if (!var->is_row) { |
3810 | if (!max_is_manifestly_unbounded(tab, var)) { |
3811 | if (to_row(tab, var, sign: 1) < 0) |
3812 | return isl_stat_error; |
3813 | } else if (!min_is_manifestly_unbounded(tab, var)) { |
3814 | if (to_row(tab, var, sign: -1) < 0) |
3815 | return isl_stat_error; |
3816 | } else |
3817 | if (to_row(tab, var, sign: 0) < 0) |
3818 | return isl_stat_error; |
3819 | } |
3820 | return drop_row(tab, row: var->index); |
3821 | case isl_tab_undo_relax: |
3822 | return unrelax(tab, var); |
3823 | case isl_tab_undo_unrestrict: |
3824 | return ununrestrict(tab, var); |
3825 | default: |
3826 | isl_die(tab->mat->ctx, isl_error_internal, |
3827 | "perform_undo_var called on invalid undo record" , |
3828 | return isl_stat_error); |
3829 | } |
3830 | |
3831 | return isl_stat_ok; |
3832 | } |
3833 | |
3834 | /* Restore all rows that have been marked redundant by isl_tab_mark_redundant |
3835 | * and that have been preserved in the tableau. |
3836 | * Note that isl_tab_mark_redundant may also have marked some variables |
3837 | * as being non-negative before marking them redundant. These need |
3838 | * to be removed as well as otherwise some constraints could end up |
3839 | * getting marked redundant with respect to the variable. |
3840 | */ |
3841 | isl_stat isl_tab_restore_redundant(struct isl_tab *tab) |
3842 | { |
3843 | if (!tab) |
3844 | return isl_stat_error; |
3845 | |
3846 | if (tab->need_undo) |
3847 | isl_die(isl_tab_get_ctx(tab), isl_error_invalid, |
3848 | "manually restoring redundant constraints " |
3849 | "interferes with undo history" , |
3850 | return isl_stat_error); |
3851 | |
3852 | while (tab->n_redundant > 0) { |
3853 | if (tab->row_var[tab->n_redundant - 1] >= 0) { |
3854 | struct isl_tab_var *var; |
3855 | |
3856 | var = isl_tab_var_from_row(tab, i: tab->n_redundant - 1); |
3857 | var->is_nonneg = 0; |
3858 | } |
3859 | restore_last_redundant(tab); |
3860 | } |
3861 | return isl_stat_ok; |
3862 | } |
3863 | |
3864 | /* Undo the addition of an integer division to the basic map representation |
3865 | * of "tab" in position "pos". |
3866 | */ |
3867 | static isl_stat drop_bmap_div(struct isl_tab *tab, int pos) |
3868 | { |
3869 | int off; |
3870 | isl_size n_div; |
3871 | |
3872 | n_div = isl_basic_map_dim(bmap: tab->bmap, type: isl_dim_div); |
3873 | if (n_div < 0) |
3874 | return isl_stat_error; |
3875 | off = tab->n_var - n_div; |
3876 | tab->bmap = isl_basic_map_drop_div(bmap: tab->bmap, div: pos - off); |
3877 | if (!tab->bmap) |
3878 | return isl_stat_error; |
3879 | if (tab->samples) { |
3880 | tab->samples = isl_mat_drop_cols(mat: tab->samples, col: 1 + pos, n: 1); |
3881 | if (!tab->samples) |
3882 | return isl_stat_error; |
3883 | } |
3884 | |
3885 | return isl_stat_ok; |
3886 | } |
3887 | |
3888 | /* Restore the tableau to the state where the basic variables |
3889 | * are those in "col_var". |
3890 | * We first construct a list of variables that are currently in |
3891 | * the basis, but shouldn't. Then we iterate over all variables |
3892 | * that should be in the basis and for each one that is currently |
3893 | * not in the basis, we exchange it with one of the elements of the |
3894 | * list constructed before. |
3895 | * We can always find an appropriate variable to pivot with because |
3896 | * the current basis is mapped to the old basis by a non-singular |
3897 | * matrix and so we can never end up with a zero row. |
3898 | */ |
3899 | static int restore_basis(struct isl_tab *tab, int *col_var) |
3900 | { |
3901 | int i, j; |
3902 | int = 0; |
3903 | int * = NULL; /* current columns that contain bad stuff */ |
3904 | unsigned off = 2 + tab->M; |
3905 | |
3906 | extra = isl_alloc_array(tab->mat->ctx, int, tab->n_col); |
3907 | if (tab->n_col && !extra) |
3908 | goto error; |
3909 | for (i = 0; i < tab->n_col; ++i) { |
3910 | for (j = 0; j < tab->n_col; ++j) |
3911 | if (tab->col_var[i] == col_var[j]) |
3912 | break; |
3913 | if (j < tab->n_col) |
3914 | continue; |
3915 | extra[n_extra++] = i; |
3916 | } |
3917 | for (i = 0; i < tab->n_col && n_extra > 0; ++i) { |
3918 | struct isl_tab_var *var; |
3919 | int row; |
3920 | |
3921 | for (j = 0; j < tab->n_col; ++j) |
3922 | if (col_var[i] == tab->col_var[j]) |
3923 | break; |
3924 | if (j < tab->n_col) |
3925 | continue; |
3926 | var = var_from_index(tab, i: col_var[i]); |
3927 | row = var->index; |
3928 | for (j = 0; j < n_extra; ++j) |
3929 | if (!isl_int_is_zero(tab->mat->row[row][off+extra[j]])) |
3930 | break; |
3931 | isl_assert(tab->mat->ctx, j < n_extra, goto error); |
3932 | if (isl_tab_pivot(tab, row, col: extra[j]) < 0) |
3933 | goto error; |
3934 | extra[j] = extra[--n_extra]; |
3935 | } |
3936 | |
3937 | free(ptr: extra); |
3938 | return 0; |
3939 | error: |
3940 | free(ptr: extra); |
3941 | return -1; |
3942 | } |
3943 | |
3944 | /* Remove all samples with index n or greater, i.e., those samples |
3945 | * that were added since we saved this number of samples in |
3946 | * isl_tab_save_samples. |
3947 | */ |
3948 | static void drop_samples_since(struct isl_tab *tab, int n) |
3949 | { |
3950 | int i; |
3951 | |
3952 | for (i = tab->n_sample - 1; i >= 0 && tab->n_sample > n; --i) { |
3953 | if (tab->sample_index[i] < n) |
3954 | continue; |
3955 | |
3956 | if (i != tab->n_sample - 1) { |
3957 | int t = tab->sample_index[tab->n_sample-1]; |
3958 | tab->sample_index[tab->n_sample-1] = tab->sample_index[i]; |
3959 | tab->sample_index[i] = t; |
3960 | isl_mat_swap_rows(mat: tab->samples, i: tab->n_sample-1, j: i); |
3961 | } |
3962 | tab->n_sample--; |
3963 | } |
3964 | } |
3965 | |
3966 | static isl_stat perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo) |
3967 | WARN_UNUSED; |
3968 | static isl_stat perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo) |
3969 | { |
3970 | switch (undo->type) { |
3971 | case isl_tab_undo_rational: |
3972 | tab->rational = 0; |
3973 | break; |
3974 | case isl_tab_undo_empty: |
3975 | tab->empty = 0; |
3976 | break; |
3977 | case isl_tab_undo_nonneg: |
3978 | case isl_tab_undo_redundant: |
3979 | case isl_tab_undo_freeze: |
3980 | case isl_tab_undo_zero: |
3981 | case isl_tab_undo_allocate: |
3982 | case isl_tab_undo_relax: |
3983 | case isl_tab_undo_unrestrict: |
3984 | return perform_undo_var(tab, undo); |
3985 | case isl_tab_undo_bmap_eq: |
3986 | tab->bmap = isl_basic_map_free_equality(bmap: tab->bmap, n: 1); |
3987 | return tab->bmap ? isl_stat_ok : isl_stat_error; |
3988 | case isl_tab_undo_bmap_ineq: |
3989 | tab->bmap = isl_basic_map_free_inequality(bmap: tab->bmap, n: 1); |
3990 | return tab->bmap ? isl_stat_ok : isl_stat_error; |
3991 | case isl_tab_undo_bmap_div: |
3992 | return drop_bmap_div(tab, pos: undo->u.var_index); |
3993 | case isl_tab_undo_saved_basis: |
3994 | if (restore_basis(tab, col_var: undo->u.col_var) < 0) |
3995 | return isl_stat_error; |
3996 | break; |
3997 | case isl_tab_undo_drop_sample: |
3998 | tab->n_outside--; |
3999 | break; |
4000 | case isl_tab_undo_saved_samples: |
4001 | drop_samples_since(tab, n: undo->u.n); |
4002 | break; |
4003 | case isl_tab_undo_callback: |
4004 | return undo->u.callback->run(undo->u.callback); |
4005 | default: |
4006 | isl_assert(tab->mat->ctx, 0, return isl_stat_error); |
4007 | } |
4008 | return isl_stat_ok; |
4009 | } |
4010 | |
4011 | /* Return the tableau to the state it was in when the snapshot "snap" |
4012 | * was taken. |
4013 | */ |
4014 | isl_stat isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap) |
4015 | { |
4016 | struct isl_tab_undo *undo, *next; |
4017 | |
4018 | if (!tab) |
4019 | return isl_stat_error; |
4020 | |
4021 | tab->in_undo = 1; |
4022 | for (undo = tab->top; undo && undo != &tab->bottom; undo = next) { |
4023 | next = undo->next; |
4024 | if (undo == snap) |
4025 | break; |
4026 | if (perform_undo(tab, undo) < 0) { |
4027 | tab->top = undo; |
4028 | free_undo(tab); |
4029 | tab->in_undo = 0; |
4030 | return isl_stat_error; |
4031 | } |
4032 | free_undo_record(undo); |
4033 | } |
4034 | tab->in_undo = 0; |
4035 | tab->top = undo; |
4036 | if (!undo) |
4037 | return isl_stat_error; |
4038 | return isl_stat_ok; |
4039 | } |
4040 | |
4041 | /* The given row "row" represents an inequality violated by all |
4042 | * points in the tableau. Check for some special cases of such |
4043 | * separating constraints. |
4044 | * In particular, if the row has been reduced to the constant -1, |
4045 | * then we know the inequality is adjacent (but opposite) to |
4046 | * an equality in the tableau. |
4047 | * If the row has been reduced to r = c*(-1 -r'), with r' an inequality |
4048 | * of the tableau and c a positive constant, then the inequality |
4049 | * is adjacent (but opposite) to the inequality r'. |
4050 | */ |
4051 | static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row) |
4052 | { |
4053 | int pos; |
4054 | unsigned off = 2 + tab->M; |
4055 | |
4056 | if (tab->rational) |
4057 | return isl_ineq_separate; |
4058 | |
4059 | if (!isl_int_is_one(tab->mat->row[row][0])) |
4060 | return isl_ineq_separate; |
4061 | |
4062 | pos = isl_seq_first_non_zero(p: tab->mat->row[row] + off + tab->n_dead, |
4063 | len: tab->n_col - tab->n_dead); |
4064 | if (pos == -1) { |
4065 | if (isl_int_is_negone(tab->mat->row[row][1])) |
4066 | return isl_ineq_adj_eq; |
4067 | else |
4068 | return isl_ineq_separate; |
4069 | } |
4070 | |
4071 | if (!isl_int_eq(tab->mat->row[row][1], |
4072 | tab->mat->row[row][off + tab->n_dead + pos])) |
4073 | return isl_ineq_separate; |
4074 | |
4075 | pos = isl_seq_first_non_zero( |
4076 | p: tab->mat->row[row] + off + tab->n_dead + pos + 1, |
4077 | len: tab->n_col - tab->n_dead - pos - 1); |
4078 | |
4079 | return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate; |
4080 | } |
4081 | |
4082 | /* Check the effect of inequality "ineq" on the tableau "tab". |
4083 | * The result may be |
4084 | * isl_ineq_redundant: satisfied by all points in the tableau |
4085 | * isl_ineq_separate: satisfied by no point in the tableau |
4086 | * isl_ineq_cut: satisfied by some by not all points |
4087 | * isl_ineq_adj_eq: adjacent to an equality |
4088 | * isl_ineq_adj_ineq: adjacent to an inequality. |
4089 | */ |
4090 | enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq) |
4091 | { |
4092 | enum isl_ineq_type type = isl_ineq_error; |
4093 | struct isl_tab_undo *snap = NULL; |
4094 | int con; |
4095 | int row; |
4096 | |
4097 | if (!tab) |
4098 | return isl_ineq_error; |
4099 | |
4100 | if (isl_tab_extend_cons(tab, n_new: 1) < 0) |
4101 | return isl_ineq_error; |
4102 | |
4103 | snap = isl_tab_snap(tab); |
4104 | |
4105 | con = isl_tab_add_row(tab, line: ineq); |
4106 | if (con < 0) |
4107 | goto error; |
4108 | |
4109 | row = tab->con[con].index; |
4110 | if (isl_tab_row_is_redundant(tab, row)) |
4111 | type = isl_ineq_redundant; |
4112 | else if (isl_int_is_neg(tab->mat->row[row][1]) && |
4113 | (tab->rational || |
4114 | isl_int_abs_ge(tab->mat->row[row][1], |
4115 | tab->mat->row[row][0]))) { |
4116 | int nonneg = at_least_zero(tab, var: &tab->con[con]); |
4117 | if (nonneg < 0) |
4118 | goto error; |
4119 | if (nonneg) |
4120 | type = isl_ineq_cut; |
4121 | else |
4122 | type = separation_type(tab, row); |
4123 | } else { |
4124 | int red = con_is_redundant(tab, var: &tab->con[con]); |
4125 | if (red < 0) |
4126 | goto error; |
4127 | if (!red) |
4128 | type = isl_ineq_cut; |
4129 | else |
4130 | type = isl_ineq_redundant; |
4131 | } |
4132 | |
4133 | if (isl_tab_rollback(tab, snap)) |
4134 | return isl_ineq_error; |
4135 | return type; |
4136 | error: |
4137 | return isl_ineq_error; |
4138 | } |
4139 | |
4140 | isl_stat isl_tab_track_bmap(struct isl_tab *tab, __isl_take isl_basic_map *bmap) |
4141 | { |
4142 | bmap = isl_basic_map_cow(bmap); |
4143 | if (!tab || !bmap) |
4144 | goto error; |
4145 | |
4146 | if (tab->empty) { |
4147 | bmap = isl_basic_map_set_to_empty(bmap); |
4148 | if (!bmap) |
4149 | goto error; |
4150 | tab->bmap = bmap; |
4151 | return isl_stat_ok; |
4152 | } |
4153 | |
4154 | isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, goto error); |
4155 | isl_assert(tab->mat->ctx, |
4156 | tab->n_con == bmap->n_eq + bmap->n_ineq, goto error); |
4157 | |
4158 | tab->bmap = bmap; |
4159 | |
4160 | return isl_stat_ok; |
4161 | error: |
4162 | isl_basic_map_free(bmap); |
4163 | return isl_stat_error; |
4164 | } |
4165 | |
4166 | isl_stat isl_tab_track_bset(struct isl_tab *tab, __isl_take isl_basic_set *bset) |
4167 | { |
4168 | return isl_tab_track_bmap(tab, bmap: bset_to_bmap(bset)); |
4169 | } |
4170 | |
4171 | __isl_keep isl_basic_set *isl_tab_peek_bset(struct isl_tab *tab) |
4172 | { |
4173 | if (!tab) |
4174 | return NULL; |
4175 | |
4176 | return bset_from_bmap(bmap: tab->bmap); |
4177 | } |
4178 | |
4179 | static void isl_tab_print_internal(__isl_keep struct isl_tab *tab, |
4180 | FILE *out, int indent) |
4181 | { |
4182 | unsigned r, c; |
4183 | int i; |
4184 | |
4185 | if (!tab) { |
4186 | fprintf(stream: out, format: "%*snull tab\n" , indent, "" ); |
4187 | return; |
4188 | } |
4189 | fprintf(stream: out, format: "%*sn_redundant: %d, n_dead: %d" , indent, "" , |
4190 | tab->n_redundant, tab->n_dead); |
4191 | if (tab->rational) |
4192 | fprintf(stream: out, format: ", rational" ); |
4193 | if (tab->empty) |
4194 | fprintf(stream: out, format: ", empty" ); |
4195 | fprintf(stream: out, format: "\n" ); |
4196 | fprintf(stream: out, format: "%*s[" , indent, "" ); |
4197 | for (i = 0; i < tab->n_var; ++i) { |
4198 | if (i) |
4199 | fprintf(stream: out, format: (i == tab->n_param || |
4200 | i == tab->n_var - tab->n_div) ? "; " |
4201 | : ", " ); |
4202 | fprintf(stream: out, format: "%c%d%s" , tab->var[i].is_row ? 'r' : 'c', |
4203 | tab->var[i].index, |
4204 | tab->var[i].is_zero ? " [=0]" : |
4205 | tab->var[i].is_redundant ? " [R]" : "" ); |
4206 | } |
4207 | fprintf(stream: out, format: "]\n" ); |
4208 | fprintf(stream: out, format: "%*s[" , indent, "" ); |
4209 | for (i = 0; i < tab->n_con; ++i) { |
4210 | if (i) |
4211 | fprintf(stream: out, format: ", " ); |
4212 | fprintf(stream: out, format: "%c%d%s" , tab->con[i].is_row ? 'r' : 'c', |
4213 | tab->con[i].index, |
4214 | tab->con[i].is_zero ? " [=0]" : |
4215 | tab->con[i].is_redundant ? " [R]" : "" ); |
4216 | } |
4217 | fprintf(stream: out, format: "]\n" ); |
4218 | fprintf(stream: out, format: "%*s[" , indent, "" ); |
4219 | for (i = 0; i < tab->n_row; ++i) { |
4220 | const char *sign = "" ; |
4221 | if (i) |
4222 | fprintf(stream: out, format: ", " ); |
4223 | if (tab->row_sign) { |
4224 | if (tab->row_sign[i] == isl_tab_row_unknown) |
4225 | sign = "?" ; |
4226 | else if (tab->row_sign[i] == isl_tab_row_neg) |
4227 | sign = "-" ; |
4228 | else if (tab->row_sign[i] == isl_tab_row_pos) |
4229 | sign = "+" ; |
4230 | else |
4231 | sign = "+-" ; |
4232 | } |
4233 | fprintf(stream: out, format: "r%d: %d%s%s" , i, tab->row_var[i], |
4234 | isl_tab_var_from_row(tab, i)->is_nonneg ? " [>=0]" : "" , sign); |
4235 | } |
4236 | fprintf(stream: out, format: "]\n" ); |
4237 | fprintf(stream: out, format: "%*s[" , indent, "" ); |
4238 | for (i = 0; i < tab->n_col; ++i) { |
4239 | if (i) |
4240 | fprintf(stream: out, format: ", " ); |
4241 | fprintf(stream: out, format: "c%d: %d%s" , i, tab->col_var[i], |
4242 | var_from_col(tab, i)->is_nonneg ? " [>=0]" : "" ); |
4243 | } |
4244 | fprintf(stream: out, format: "]\n" ); |
4245 | r = tab->mat->n_row; |
4246 | tab->mat->n_row = tab->n_row; |
4247 | c = tab->mat->n_col; |
4248 | tab->mat->n_col = 2 + tab->M + tab->n_col; |
4249 | isl_mat_print_internal(mat: tab->mat, out, indent); |
4250 | tab->mat->n_row = r; |
4251 | tab->mat->n_col = c; |
4252 | if (tab->bmap) |
4253 | isl_basic_map_print_internal(bmap: tab->bmap, out, indent); |
4254 | } |
4255 | |
4256 | void isl_tab_dump(__isl_keep struct isl_tab *tab) |
4257 | { |
4258 | isl_tab_print_internal(tab, stderr, indent: 0); |
4259 | } |
4260 | |