1 | /* |
2 | * Copyright 2008-2009 Katholieke Universiteit Leuven |
3 | * Copyright 2010 INRIA Saclay |
4 | * Copyright 2016-2017 Sven Verdoolaege |
5 | * |
6 | * Use of this software is governed by the MIT license |
7 | * |
8 | * Written by Sven Verdoolaege, K.U.Leuven, Departement |
9 | * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium |
10 | * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, |
11 | * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France |
12 | */ |
13 | |
14 | #include <isl_ctx_private.h> |
15 | #include "isl_map_private.h" |
16 | #include <isl_seq.h> |
17 | #include "isl_tab.h" |
18 | #include "isl_sample.h" |
19 | #include <isl_mat_private.h> |
20 | #include <isl_vec_private.h> |
21 | #include <isl_aff_private.h> |
22 | #include <isl_constraint_private.h> |
23 | #include <isl_options_private.h> |
24 | #include <isl_config.h> |
25 | |
26 | #include <bset_to_bmap.c> |
27 | |
28 | /* |
29 | * The implementation of parametric integer linear programming in this file |
30 | * was inspired by the paper "Parametric Integer Programming" and the |
31 | * report "Solving systems of affine (in)equalities" by Paul Feautrier |
32 | * (and others). |
33 | * |
34 | * The strategy used for obtaining a feasible solution is different |
35 | * from the one used in isl_tab.c. In particular, in isl_tab.c, |
36 | * upon finding a constraint that is not yet satisfied, we pivot |
37 | * in a row that increases the constant term of the row holding the |
38 | * constraint, making sure the sample solution remains feasible |
39 | * for all the constraints it already satisfied. |
40 | * Here, we always pivot in the row holding the constraint, |
41 | * choosing a column that induces the lexicographically smallest |
42 | * increment to the sample solution. |
43 | * |
44 | * By starting out from a sample value that is lexicographically |
45 | * smaller than any integer point in the problem space, the first |
46 | * feasible integer sample point we find will also be the lexicographically |
47 | * smallest. If all variables can be assumed to be non-negative, |
48 | * then the initial sample value may be chosen equal to zero. |
49 | * However, we will not make this assumption. Instead, we apply |
50 | * the "big parameter" trick. Any variable x is then not directly |
51 | * used in the tableau, but instead it is represented by another |
52 | * variable x' = M + x, where M is an arbitrarily large (positive) |
53 | * value. x' is therefore always non-negative, whatever the value of x. |
54 | * Taking as initial sample value x' = 0 corresponds to x = -M, |
55 | * which is always smaller than any possible value of x. |
56 | * |
57 | * The big parameter trick is used in the main tableau and |
58 | * also in the context tableau if isl_context_lex is used. |
59 | * In this case, each tableaus has its own big parameter. |
60 | * Before doing any real work, we check if all the parameters |
61 | * happen to be non-negative. If so, we drop the column corresponding |
62 | * to M from the initial context tableau. |
63 | * If isl_context_gbr is used, then the big parameter trick is only |
64 | * used in the main tableau. |
65 | */ |
66 | |
67 | struct isl_context; |
68 | struct isl_context_op { |
69 | /* detect nonnegative parameters in context and mark them in tab */ |
70 | struct isl_tab *(*detect_nonnegative_parameters)( |
71 | struct isl_context *context, struct isl_tab *tab); |
72 | /* return temporary reference to basic set representation of context */ |
73 | struct isl_basic_set *(*peek_basic_set)(struct isl_context *context); |
74 | /* return temporary reference to tableau representation of context */ |
75 | struct isl_tab *(*peek_tab)(struct isl_context *context); |
76 | /* add equality; check is 1 if eq may not be valid; |
77 | * update is 1 if we may want to call ineq_sign on context later. |
78 | */ |
79 | void (*add_eq)(struct isl_context *context, isl_int *eq, |
80 | int check, int update); |
81 | /* add inequality; check is 1 if ineq may not be valid; |
82 | * update is 1 if we may want to call ineq_sign on context later. |
83 | */ |
84 | void (*add_ineq)(struct isl_context *context, isl_int *ineq, |
85 | int check, int update); |
86 | /* check sign of ineq based on previous information. |
87 | * strict is 1 if saturation should be treated as a positive sign. |
88 | */ |
89 | enum isl_tab_row_sign (*ineq_sign)(struct isl_context *context, |
90 | isl_int *ineq, int strict); |
91 | /* check if inequality maintains feasibility */ |
92 | int (*test_ineq)(struct isl_context *context, isl_int *ineq); |
93 | /* return index of a div that corresponds to "div" */ |
94 | int (*get_div)(struct isl_context *context, struct isl_tab *tab, |
95 | struct isl_vec *div); |
96 | /* insert div "div" to context at "pos" and return non-negativity */ |
97 | isl_bool (*insert_div)(struct isl_context *context, int pos, |
98 | __isl_keep isl_vec *div); |
99 | int (*detect_equalities)(struct isl_context *context, |
100 | struct isl_tab *tab); |
101 | /* return row index of "best" split */ |
102 | int (*best_split)(struct isl_context *context, struct isl_tab *tab); |
103 | /* check if context has already been determined to be empty */ |
104 | int (*is_empty)(struct isl_context *context); |
105 | /* check if context is still usable */ |
106 | int (*is_ok)(struct isl_context *context); |
107 | /* save a copy/snapshot of context */ |
108 | void *(*save)(struct isl_context *context); |
109 | /* restore saved context */ |
110 | void (*restore)(struct isl_context *context, void *); |
111 | /* discard saved context */ |
112 | void (*discard)(void *); |
113 | /* invalidate context */ |
114 | void (*invalidate)(struct isl_context *context); |
115 | /* free context */ |
116 | __isl_null struct isl_context *(*free)(struct isl_context *context); |
117 | }; |
118 | |
119 | /* Shared parts of context representation. |
120 | * |
121 | * "n_unknown" is the number of final unknown integer divisions |
122 | * in the input domain. |
123 | */ |
124 | struct isl_context { |
125 | struct isl_context_op *op; |
126 | int n_unknown; |
127 | }; |
128 | |
129 | struct isl_context_lex { |
130 | struct isl_context context; |
131 | struct isl_tab *tab; |
132 | }; |
133 | |
134 | /* A stack (linked list) of solutions of subtrees of the search space. |
135 | * |
136 | * "ma" describes the solution as a function of "dom". |
137 | * In particular, the domain space of "ma" is equal to the space of "dom". |
138 | * |
139 | * If "ma" is NULL, then there is no solution on "dom". |
140 | */ |
141 | struct isl_partial_sol { |
142 | int level; |
143 | struct isl_basic_set *dom; |
144 | isl_multi_aff *ma; |
145 | |
146 | struct isl_partial_sol *next; |
147 | }; |
148 | |
149 | struct isl_sol; |
150 | struct isl_sol_callback { |
151 | struct isl_tab_callback callback; |
152 | struct isl_sol *sol; |
153 | }; |
154 | |
155 | /* isl_sol is an interface for constructing a solution to |
156 | * a parametric integer linear programming problem. |
157 | * Every time the algorithm reaches a state where a solution |
158 | * can be read off from the tableau, the function "add" is called |
159 | * on the isl_sol passed to find_solutions_main. In a state where |
160 | * the tableau is empty, "add_empty" is called instead. |
161 | * "free" is called to free the implementation specific fields, if any. |
162 | * |
163 | * "error" is set if some error has occurred. This flag invalidates |
164 | * the remainder of the data structure. |
165 | * If "rational" is set, then a rational optimization is being performed. |
166 | * "level" is the current level in the tree with nodes for each |
167 | * split in the context. |
168 | * If "max" is set, then a maximization problem is being solved, rather than |
169 | * a minimization problem, which means that the variables in the |
170 | * tableau have value "M - x" rather than "M + x". |
171 | * "n_out" is the number of output dimensions in the input. |
172 | * "space" is the space in which the solution (and also the input) lives. |
173 | * |
174 | * The context tableau is owned by isl_sol and is updated incrementally. |
175 | * |
176 | * There are currently two implementations of this interface, |
177 | * isl_sol_map, which simply collects the solutions in an isl_map |
178 | * and (optionally) the parts of the context where there is no solution |
179 | * in an isl_set, and |
180 | * isl_sol_pma, which collects an isl_pw_multi_aff instead. |
181 | */ |
182 | struct isl_sol { |
183 | int error; |
184 | int rational; |
185 | int level; |
186 | int max; |
187 | isl_size n_out; |
188 | isl_space *space; |
189 | struct isl_context *context; |
190 | struct isl_partial_sol *partial; |
191 | void (*add)(struct isl_sol *sol, |
192 | __isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma); |
193 | void (*add_empty)(struct isl_sol *sol, struct isl_basic_set *bset); |
194 | void (*free)(struct isl_sol *sol); |
195 | struct isl_sol_callback dec_level; |
196 | }; |
197 | |
198 | static void sol_free(struct isl_sol *sol) |
199 | { |
200 | struct isl_partial_sol *partial, *next; |
201 | if (!sol) |
202 | return; |
203 | for (partial = sol->partial; partial; partial = next) { |
204 | next = partial->next; |
205 | isl_basic_set_free(bset: partial->dom); |
206 | isl_multi_aff_free(multi: partial->ma); |
207 | free(ptr: partial); |
208 | } |
209 | isl_space_free(space: sol->space); |
210 | if (sol->context) |
211 | sol->context->op->free(sol->context); |
212 | sol->free(sol); |
213 | free(ptr: sol); |
214 | } |
215 | |
216 | /* Push a partial solution represented by a domain and function "ma" |
217 | * onto the stack of partial solutions. |
218 | * If "ma" is NULL, then "dom" represents a part of the domain |
219 | * with no solution. |
220 | */ |
221 | static void sol_push_sol(struct isl_sol *sol, |
222 | __isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma) |
223 | { |
224 | struct isl_partial_sol *partial; |
225 | |
226 | if (sol->error || !dom) |
227 | goto error; |
228 | |
229 | partial = isl_alloc_type(dom->ctx, struct isl_partial_sol); |
230 | if (!partial) |
231 | goto error; |
232 | |
233 | partial->level = sol->level; |
234 | partial->dom = dom; |
235 | partial->ma = ma; |
236 | partial->next = sol->partial; |
237 | |
238 | sol->partial = partial; |
239 | |
240 | return; |
241 | error: |
242 | isl_basic_set_free(bset: dom); |
243 | isl_multi_aff_free(multi: ma); |
244 | sol->error = 1; |
245 | } |
246 | |
247 | /* Check that the final columns of "M", starting at "first", are zero. |
248 | */ |
249 | static isl_stat check_final_columns_are_zero(__isl_keep isl_mat *M, |
250 | unsigned first) |
251 | { |
252 | int i; |
253 | isl_size rows, cols; |
254 | unsigned n; |
255 | |
256 | rows = isl_mat_rows(mat: M); |
257 | cols = isl_mat_cols(mat: M); |
258 | if (rows < 0 || cols < 0) |
259 | return isl_stat_error; |
260 | n = cols - first; |
261 | for (i = 0; i < rows; ++i) |
262 | if (isl_seq_first_non_zero(p: M->row[i] + first, len: n) != -1) |
263 | isl_die(isl_mat_get_ctx(M), isl_error_internal, |
264 | "final columns should be zero" , |
265 | return isl_stat_error); |
266 | return isl_stat_ok; |
267 | } |
268 | |
269 | /* Set the affine expressions in "ma" according to the rows in "M", which |
270 | * are defined over the local space "ls". |
271 | * The matrix "M" may have extra (zero) columns beyond the number |
272 | * of variables in "ls". |
273 | */ |
274 | static __isl_give isl_multi_aff *set_from_affine_matrix( |
275 | __isl_take isl_multi_aff *ma, __isl_take isl_local_space *ls, |
276 | __isl_take isl_mat *M) |
277 | { |
278 | int i; |
279 | isl_size dim; |
280 | isl_aff *aff; |
281 | |
282 | dim = isl_local_space_dim(ls, type: isl_dim_all); |
283 | if (!ma || dim < 0 || !M) |
284 | goto error; |
285 | |
286 | if (check_final_columns_are_zero(M, first: 1 + dim) < 0) |
287 | goto error; |
288 | for (i = 1; i < M->n_row; ++i) { |
289 | aff = isl_aff_alloc(ls: isl_local_space_copy(ls)); |
290 | if (aff) { |
291 | isl_int_set(aff->v->el[0], M->row[0][0]); |
292 | isl_seq_cpy(dst: aff->v->el + 1, src: M->row[i], len: 1 + dim); |
293 | } |
294 | aff = isl_aff_normalize(aff); |
295 | ma = isl_multi_aff_set_aff(multi: ma, pos: i - 1, el: aff); |
296 | } |
297 | isl_local_space_free(ls); |
298 | isl_mat_free(mat: M); |
299 | |
300 | return ma; |
301 | error: |
302 | isl_local_space_free(ls); |
303 | isl_mat_free(mat: M); |
304 | isl_multi_aff_free(multi: ma); |
305 | return NULL; |
306 | } |
307 | |
308 | /* Push a partial solution represented by a domain and mapping M |
309 | * onto the stack of partial solutions. |
310 | * |
311 | * The affine matrix "M" maps the dimensions of the context |
312 | * to the output variables. Convert it into an isl_multi_aff and |
313 | * then call sol_push_sol. |
314 | * |
315 | * Note that the description of the initial context may have involved |
316 | * existentially quantified variables, in which case they also appear |
317 | * in "dom". These need to be removed before creating the affine |
318 | * expression because an affine expression cannot be defined in terms |
319 | * of existentially quantified variables without a known representation. |
320 | * Since newly added integer divisions are inserted before these |
321 | * existentially quantified variables, they are still in the final |
322 | * positions and the corresponding final columns of "M" are zero |
323 | * because align_context_divs adds the existentially quantified |
324 | * variables of the context to the main tableau without any constraints and |
325 | * any equality constraints that are added later on can only serve |
326 | * to eliminate these existentially quantified variables. |
327 | */ |
328 | static void sol_push_sol_mat(struct isl_sol *sol, |
329 | __isl_take isl_basic_set *dom, __isl_take isl_mat *M) |
330 | { |
331 | isl_local_space *ls; |
332 | isl_multi_aff *ma; |
333 | isl_size n_div; |
334 | int n_known; |
335 | |
336 | n_div = isl_basic_set_dim(bset: dom, type: isl_dim_div); |
337 | if (n_div < 0) |
338 | goto error; |
339 | n_known = n_div - sol->context->n_unknown; |
340 | |
341 | ma = isl_multi_aff_alloc(space: isl_space_copy(space: sol->space)); |
342 | ls = isl_basic_set_get_local_space(bset: dom); |
343 | ls = isl_local_space_drop_dims(ls, type: isl_dim_div, |
344 | first: n_known, n: n_div - n_known); |
345 | ma = set_from_affine_matrix(ma, ls, M); |
346 | |
347 | if (!ma) |
348 | dom = isl_basic_set_free(bset: dom); |
349 | sol_push_sol(sol, dom, ma); |
350 | return; |
351 | error: |
352 | isl_basic_set_free(bset: dom); |
353 | isl_mat_free(mat: M); |
354 | sol_push_sol(sol, NULL, NULL); |
355 | } |
356 | |
357 | /* Pop one partial solution from the partial solution stack and |
358 | * pass it on to sol->add or sol->add_empty. |
359 | */ |
360 | static void sol_pop_one(struct isl_sol *sol) |
361 | { |
362 | struct isl_partial_sol *partial; |
363 | |
364 | partial = sol->partial; |
365 | sol->partial = partial->next; |
366 | |
367 | if (partial->ma) |
368 | sol->add(sol, partial->dom, partial->ma); |
369 | else |
370 | sol->add_empty(sol, partial->dom); |
371 | free(ptr: partial); |
372 | } |
373 | |
374 | /* Return a fresh copy of the domain represented by the context tableau. |
375 | */ |
376 | static struct isl_basic_set *sol_domain(struct isl_sol *sol) |
377 | { |
378 | struct isl_basic_set *bset; |
379 | |
380 | if (sol->error) |
381 | return NULL; |
382 | |
383 | bset = isl_basic_set_dup(bset: sol->context->op->peek_basic_set(sol->context)); |
384 | bset = isl_basic_set_update_from_tab(bset, |
385 | tab: sol->context->op->peek_tab(sol->context)); |
386 | |
387 | return bset; |
388 | } |
389 | |
390 | /* Check whether two partial solutions have the same affine expressions. |
391 | */ |
392 | static isl_bool same_solution(struct isl_partial_sol *s1, |
393 | struct isl_partial_sol *s2) |
394 | { |
395 | if (!s1->ma != !s2->ma) |
396 | return isl_bool_false; |
397 | if (!s1->ma) |
398 | return isl_bool_true; |
399 | |
400 | return isl_multi_aff_plain_is_equal(multi1: s1->ma, multi2: s2->ma); |
401 | } |
402 | |
403 | /* Swap the initial two partial solutions in "sol". |
404 | * |
405 | * That is, go from |
406 | * |
407 | * sol->partial = p1; p1->next = p2; p2->next = p3 |
408 | * |
409 | * to |
410 | * |
411 | * sol->partial = p2; p2->next = p1; p1->next = p3 |
412 | */ |
413 | static void swap_initial(struct isl_sol *sol) |
414 | { |
415 | struct isl_partial_sol *partial; |
416 | |
417 | partial = sol->partial; |
418 | sol->partial = partial->next; |
419 | partial->next = partial->next->next; |
420 | sol->partial->next = partial; |
421 | } |
422 | |
423 | /* Combine the initial two partial solution of "sol" into |
424 | * a partial solution with the current context domain of "sol" and |
425 | * the function description of the second partial solution in the list. |
426 | * The level of the new partial solution is set to the current level. |
427 | * |
428 | * That is, the first two partial solutions (D1,M1) and (D2,M2) are |
429 | * replaced by (D,M2), where D is the domain of "sol", which is assumed |
430 | * to be the union of D1 and D2, while M1 is assumed to be equal to M2 |
431 | * (at least on D1). |
432 | */ |
433 | static isl_stat combine_initial_into_second(struct isl_sol *sol) |
434 | { |
435 | struct isl_partial_sol *partial; |
436 | isl_basic_set *bset; |
437 | |
438 | partial = sol->partial; |
439 | |
440 | bset = sol_domain(sol); |
441 | isl_basic_set_free(bset: partial->next->dom); |
442 | partial->next->dom = bset; |
443 | partial->next->level = sol->level; |
444 | |
445 | if (!bset) |
446 | return isl_stat_error; |
447 | |
448 | sol->partial = partial->next; |
449 | isl_basic_set_free(bset: partial->dom); |
450 | isl_multi_aff_free(multi: partial->ma); |
451 | free(ptr: partial); |
452 | |
453 | return isl_stat_ok; |
454 | } |
455 | |
456 | /* Are "ma1" and "ma2" equal to each other on "dom"? |
457 | * |
458 | * Combine "ma1" and "ma2" with "dom" and check if the results are the same. |
459 | * "dom" may have existentially quantified variables. Eliminate them first |
460 | * as otherwise they would have to be eliminated twice, in a more complicated |
461 | * context. |
462 | */ |
463 | static isl_bool equal_on_domain(__isl_keep isl_multi_aff *ma1, |
464 | __isl_keep isl_multi_aff *ma2, __isl_keep isl_basic_set *dom) |
465 | { |
466 | isl_set *set; |
467 | isl_pw_multi_aff *pma1, *pma2; |
468 | isl_bool equal; |
469 | |
470 | set = isl_basic_set_compute_divs(bset: isl_basic_set_copy(bset: dom)); |
471 | pma1 = isl_pw_multi_aff_alloc(set: isl_set_copy(set), |
472 | maff: isl_multi_aff_copy(multi: ma1)); |
473 | pma2 = isl_pw_multi_aff_alloc(set, maff: isl_multi_aff_copy(multi: ma2)); |
474 | equal = isl_pw_multi_aff_is_equal(pma1, pma2); |
475 | isl_pw_multi_aff_free(pma: pma1); |
476 | isl_pw_multi_aff_free(pma: pma2); |
477 | |
478 | return equal; |
479 | } |
480 | |
481 | /* The initial two partial solutions of "sol" are known to be at |
482 | * the same level. |
483 | * If they represent the same solution (on different parts of the domain), |
484 | * then combine them into a single solution at the current level. |
485 | * Otherwise, pop them both. |
486 | * |
487 | * Even if the two partial solution are not obviously the same, |
488 | * one may still be a simplification of the other over its own domain. |
489 | * Also check if the two sets of affine functions are equal when |
490 | * restricted to one of the domains. If so, combine the two |
491 | * using the set of affine functions on the other domain. |
492 | * That is, for two partial solutions (D1,M1) and (D2,M2), |
493 | * if M1 = M2 on D1, then the pair of partial solutions can |
494 | * be replaced by (D1+D2,M2) and similarly when M1 = M2 on D2. |
495 | */ |
496 | static isl_stat combine_initial_if_equal(struct isl_sol *sol) |
497 | { |
498 | struct isl_partial_sol *partial; |
499 | isl_bool same; |
500 | |
501 | partial = sol->partial; |
502 | |
503 | same = same_solution(s1: partial, s2: partial->next); |
504 | if (same < 0) |
505 | return isl_stat_error; |
506 | if (same) |
507 | return combine_initial_into_second(sol); |
508 | if (partial->ma && partial->next->ma) { |
509 | same = equal_on_domain(ma1: partial->ma, ma2: partial->next->ma, |
510 | dom: partial->dom); |
511 | if (same < 0) |
512 | return isl_stat_error; |
513 | if (same) |
514 | return combine_initial_into_second(sol); |
515 | same = equal_on_domain(ma1: partial->ma, ma2: partial->next->ma, |
516 | dom: partial->next->dom); |
517 | if (same) { |
518 | swap_initial(sol); |
519 | return combine_initial_into_second(sol); |
520 | } |
521 | } |
522 | |
523 | sol_pop_one(sol); |
524 | sol_pop_one(sol); |
525 | |
526 | return isl_stat_ok; |
527 | } |
528 | |
529 | /* Pop all solutions from the partial solution stack that were pushed onto |
530 | * the stack at levels that are deeper than the current level. |
531 | * If the two topmost elements on the stack have the same level |
532 | * and represent the same solution, then their domains are combined. |
533 | * This combined domain is the same as the current context domain |
534 | * as sol_pop is called each time we move back to a higher level. |
535 | * If the outer level (0) has been reached, then all partial solutions |
536 | * at the current level are also popped off. |
537 | */ |
538 | static void sol_pop(struct isl_sol *sol) |
539 | { |
540 | struct isl_partial_sol *partial; |
541 | |
542 | if (sol->error) |
543 | return; |
544 | |
545 | partial = sol->partial; |
546 | if (!partial) |
547 | return; |
548 | |
549 | if (partial->level == 0 && sol->level == 0) { |
550 | for (partial = sol->partial; partial; partial = sol->partial) |
551 | sol_pop_one(sol); |
552 | return; |
553 | } |
554 | |
555 | if (partial->level <= sol->level) |
556 | return; |
557 | |
558 | if (partial->next && partial->next->level == partial->level) { |
559 | if (combine_initial_if_equal(sol) < 0) |
560 | goto error; |
561 | } else |
562 | sol_pop_one(sol); |
563 | |
564 | if (sol->level == 0) { |
565 | for (partial = sol->partial; partial; partial = sol->partial) |
566 | sol_pop_one(sol); |
567 | return; |
568 | } |
569 | |
570 | if (0) |
571 | error: sol->error = 1; |
572 | } |
573 | |
574 | static void sol_dec_level(struct isl_sol *sol) |
575 | { |
576 | if (sol->error) |
577 | return; |
578 | |
579 | sol->level--; |
580 | |
581 | sol_pop(sol); |
582 | } |
583 | |
584 | static isl_stat sol_dec_level_wrap(struct isl_tab_callback *cb) |
585 | { |
586 | struct isl_sol_callback *callback = (struct isl_sol_callback *)cb; |
587 | |
588 | sol_dec_level(sol: callback->sol); |
589 | |
590 | return callback->sol->error ? isl_stat_error : isl_stat_ok; |
591 | } |
592 | |
593 | /* Move down to next level and push callback onto context tableau |
594 | * to decrease the level again when it gets rolled back across |
595 | * the current state. That is, dec_level will be called with |
596 | * the context tableau in the same state as it is when inc_level |
597 | * is called. |
598 | */ |
599 | static void sol_inc_level(struct isl_sol *sol) |
600 | { |
601 | struct isl_tab *tab; |
602 | |
603 | if (sol->error) |
604 | return; |
605 | |
606 | sol->level++; |
607 | tab = sol->context->op->peek_tab(sol->context); |
608 | if (isl_tab_push_callback(tab, callback: &sol->dec_level.callback) < 0) |
609 | sol->error = 1; |
610 | } |
611 | |
612 | static void scale_rows(struct isl_mat *mat, isl_int m, int n_row) |
613 | { |
614 | int i; |
615 | |
616 | if (isl_int_is_one(m)) |
617 | return; |
618 | |
619 | for (i = 0; i < n_row; ++i) |
620 | isl_seq_scale(dst: mat->row[i], src: mat->row[i], f: m, len: mat->n_col); |
621 | } |
622 | |
623 | /* Add the solution identified by the tableau and the context tableau. |
624 | * |
625 | * The layout of the variables is as follows. |
626 | * tab->n_var is equal to the total number of variables in the input |
627 | * map (including divs that were copied from the context) |
628 | * + the number of extra divs constructed |
629 | * Of these, the first tab->n_param and the last tab->n_div variables |
630 | * correspond to the variables in the context, i.e., |
631 | * tab->n_param + tab->n_div = context_tab->n_var |
632 | * tab->n_param is equal to the number of parameters and input |
633 | * dimensions in the input map |
634 | * tab->n_div is equal to the number of divs in the context |
635 | * |
636 | * If there is no solution, then call add_empty with a basic set |
637 | * that corresponds to the context tableau. (If add_empty is NULL, |
638 | * then do nothing). |
639 | * |
640 | * If there is a solution, then first construct a matrix that maps |
641 | * all dimensions of the context to the output variables, i.e., |
642 | * the output dimensions in the input map. |
643 | * The divs in the input map (if any) that do not correspond to any |
644 | * div in the context do not appear in the solution. |
645 | * The algorithm will make sure that they have an integer value, |
646 | * but these values themselves are of no interest. |
647 | * We have to be careful not to drop or rearrange any divs in the |
648 | * context because that would change the meaning of the matrix. |
649 | * |
650 | * To extract the value of the output variables, it should be noted |
651 | * that we always use a big parameter M in the main tableau and so |
652 | * the variable stored in this tableau is not an output variable x itself, but |
653 | * x' = M + x (in case of minimization) |
654 | * or |
655 | * x' = M - x (in case of maximization) |
656 | * If x' appears in a column, then its optimal value is zero, |
657 | * which means that the optimal value of x is an unbounded number |
658 | * (-M for minimization and M for maximization). |
659 | * We currently assume that the output dimensions in the original map |
660 | * are bounded, so this cannot occur. |
661 | * Similarly, when x' appears in a row, then the coefficient of M in that |
662 | * row is necessarily 1. |
663 | * If the row in the tableau represents |
664 | * d x' = c + d M + e(y) |
665 | * then, in case of minimization, the corresponding row in the matrix |
666 | * will be |
667 | * a c + a e(y) |
668 | * with a d = m, the (updated) common denominator of the matrix. |
669 | * In case of maximization, the row will be |
670 | * -a c - a e(y) |
671 | */ |
672 | static void sol_add(struct isl_sol *sol, struct isl_tab *tab) |
673 | { |
674 | struct isl_basic_set *bset = NULL; |
675 | struct isl_mat *mat = NULL; |
676 | unsigned off; |
677 | int row; |
678 | isl_int m; |
679 | |
680 | if (sol->error || !tab) |
681 | goto error; |
682 | |
683 | if (tab->empty && !sol->add_empty) |
684 | return; |
685 | if (sol->context->op->is_empty(sol->context)) |
686 | return; |
687 | |
688 | bset = sol_domain(sol); |
689 | |
690 | if (tab->empty) { |
691 | sol_push_sol(sol, dom: bset, NULL); |
692 | return; |
693 | } |
694 | |
695 | off = 2 + tab->M; |
696 | |
697 | mat = isl_mat_alloc(ctx: tab->mat->ctx, n_row: 1 + sol->n_out, |
698 | n_col: 1 + tab->n_param + tab->n_div); |
699 | if (!mat) |
700 | goto error; |
701 | |
702 | isl_int_init(m); |
703 | |
704 | isl_seq_clr(p: mat->row[0] + 1, len: mat->n_col - 1); |
705 | isl_int_set_si(mat->row[0][0], 1); |
706 | for (row = 0; row < sol->n_out; ++row) { |
707 | int i = tab->n_param + row; |
708 | int r, j; |
709 | |
710 | isl_seq_clr(p: mat->row[1 + row], len: mat->n_col); |
711 | if (!tab->var[i].is_row) { |
712 | if (tab->M) |
713 | isl_die(mat->ctx, isl_error_invalid, |
714 | "unbounded optimum" , goto error2); |
715 | continue; |
716 | } |
717 | |
718 | r = tab->var[i].index; |
719 | if (tab->M && |
720 | isl_int_ne(tab->mat->row[r][2], tab->mat->row[r][0])) |
721 | isl_die(mat->ctx, isl_error_invalid, |
722 | "unbounded optimum" , goto error2); |
723 | isl_int_gcd(m, mat->row[0][0], tab->mat->row[r][0]); |
724 | isl_int_divexact(m, tab->mat->row[r][0], m); |
725 | scale_rows(mat, m, n_row: 1 + row); |
726 | isl_int_divexact(m, mat->row[0][0], tab->mat->row[r][0]); |
727 | isl_int_mul(mat->row[1 + row][0], m, tab->mat->row[r][1]); |
728 | for (j = 0; j < tab->n_param; ++j) { |
729 | int col; |
730 | if (tab->var[j].is_row) |
731 | continue; |
732 | col = tab->var[j].index; |
733 | isl_int_mul(mat->row[1 + row][1 + j], m, |
734 | tab->mat->row[r][off + col]); |
735 | } |
736 | for (j = 0; j < tab->n_div; ++j) { |
737 | int col; |
738 | if (tab->var[tab->n_var - tab->n_div+j].is_row) |
739 | continue; |
740 | col = tab->var[tab->n_var - tab->n_div+j].index; |
741 | isl_int_mul(mat->row[1 + row][1 + tab->n_param + j], m, |
742 | tab->mat->row[r][off + col]); |
743 | } |
744 | if (sol->max) |
745 | isl_seq_neg(dst: mat->row[1 + row], src: mat->row[1 + row], |
746 | len: mat->n_col); |
747 | } |
748 | |
749 | isl_int_clear(m); |
750 | |
751 | sol_push_sol_mat(sol, dom: bset, M: mat); |
752 | return; |
753 | error2: |
754 | isl_int_clear(m); |
755 | error: |
756 | isl_basic_set_free(bset); |
757 | isl_mat_free(mat); |
758 | sol->error = 1; |
759 | } |
760 | |
761 | struct isl_sol_map { |
762 | struct isl_sol sol; |
763 | struct isl_map *map; |
764 | struct isl_set *empty; |
765 | }; |
766 | |
767 | static void sol_map_free(struct isl_sol *sol) |
768 | { |
769 | struct isl_sol_map *sol_map = (struct isl_sol_map *) sol; |
770 | isl_map_free(map: sol_map->map); |
771 | isl_set_free(set: sol_map->empty); |
772 | } |
773 | |
774 | /* This function is called for parts of the context where there is |
775 | * no solution, with "bset" corresponding to the context tableau. |
776 | * Simply add the basic set to the set "empty". |
777 | */ |
778 | static void sol_map_add_empty(struct isl_sol_map *sol, |
779 | struct isl_basic_set *bset) |
780 | { |
781 | if (!bset || !sol->empty) |
782 | goto error; |
783 | |
784 | sol->empty = isl_set_grow(set: sol->empty, n: 1); |
785 | bset = isl_basic_set_simplify(bset); |
786 | bset = isl_basic_set_finalize(bset); |
787 | sol->empty = isl_set_add_basic_set(set: sol->empty, bset: isl_basic_set_copy(bset)); |
788 | if (!sol->empty) |
789 | goto error; |
790 | isl_basic_set_free(bset); |
791 | return; |
792 | error: |
793 | isl_basic_set_free(bset); |
794 | sol->sol.error = 1; |
795 | } |
796 | |
797 | static void sol_map_add_empty_wrap(struct isl_sol *sol, |
798 | struct isl_basic_set *bset) |
799 | { |
800 | sol_map_add_empty(sol: (struct isl_sol_map *)sol, bset); |
801 | } |
802 | |
803 | /* Given a basic set "dom" that represents the context and a tuple of |
804 | * affine expressions "ma" defined over this domain, construct a basic map |
805 | * that expresses this function on the domain. |
806 | */ |
807 | static void sol_map_add(struct isl_sol_map *sol, |
808 | __isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma) |
809 | { |
810 | isl_basic_map *bmap; |
811 | |
812 | if (sol->sol.error || !dom || !ma) |
813 | goto error; |
814 | |
815 | bmap = isl_basic_map_from_multi_aff2(maff: ma, rational: sol->sol.rational); |
816 | bmap = isl_basic_map_intersect_domain(bmap, bset: dom); |
817 | sol->map = isl_map_grow(map: sol->map, n: 1); |
818 | sol->map = isl_map_add_basic_map(map: sol->map, bmap); |
819 | if (!sol->map) |
820 | sol->sol.error = 1; |
821 | return; |
822 | error: |
823 | isl_basic_set_free(bset: dom); |
824 | isl_multi_aff_free(multi: ma); |
825 | sol->sol.error = 1; |
826 | } |
827 | |
828 | static void sol_map_add_wrap(struct isl_sol *sol, |
829 | __isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma) |
830 | { |
831 | sol_map_add(sol: (struct isl_sol_map *)sol, dom, ma); |
832 | } |
833 | |
834 | |
835 | /* Store the "parametric constant" of row "row" of tableau "tab" in "line", |
836 | * i.e., the constant term and the coefficients of all variables that |
837 | * appear in the context tableau. |
838 | * Note that the coefficient of the big parameter M is NOT copied. |
839 | * The context tableau may not have a big parameter and even when it |
840 | * does, it is a different big parameter. |
841 | */ |
842 | static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line) |
843 | { |
844 | int i; |
845 | unsigned off = 2 + tab->M; |
846 | |
847 | isl_int_set(line[0], tab->mat->row[row][1]); |
848 | for (i = 0; i < tab->n_param; ++i) { |
849 | if (tab->var[i].is_row) |
850 | isl_int_set_si(line[1 + i], 0); |
851 | else { |
852 | int col = tab->var[i].index; |
853 | isl_int_set(line[1 + i], tab->mat->row[row][off + col]); |
854 | } |
855 | } |
856 | for (i = 0; i < tab->n_div; ++i) { |
857 | if (tab->var[tab->n_var - tab->n_div + i].is_row) |
858 | isl_int_set_si(line[1 + tab->n_param + i], 0); |
859 | else { |
860 | int col = tab->var[tab->n_var - tab->n_div + i].index; |
861 | isl_int_set(line[1 + tab->n_param + i], |
862 | tab->mat->row[row][off + col]); |
863 | } |
864 | } |
865 | } |
866 | |
867 | /* Check if rows "row1" and "row2" have identical "parametric constants", |
868 | * as explained above. |
869 | * In this case, we also insist that the coefficients of the big parameter |
870 | * be the same as the values of the constants will only be the same |
871 | * if these coefficients are also the same. |
872 | */ |
873 | static int identical_parameter_line(struct isl_tab *tab, int row1, int row2) |
874 | { |
875 | int i; |
876 | unsigned off = 2 + tab->M; |
877 | |
878 | if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1])) |
879 | return 0; |
880 | |
881 | if (tab->M && isl_int_ne(tab->mat->row[row1][2], |
882 | tab->mat->row[row2][2])) |
883 | return 0; |
884 | |
885 | for (i = 0; i < tab->n_param + tab->n_div; ++i) { |
886 | int pos = i < tab->n_param ? i : |
887 | tab->n_var - tab->n_div + i - tab->n_param; |
888 | int col; |
889 | |
890 | if (tab->var[pos].is_row) |
891 | continue; |
892 | col = tab->var[pos].index; |
893 | if (isl_int_ne(tab->mat->row[row1][off + col], |
894 | tab->mat->row[row2][off + col])) |
895 | return 0; |
896 | } |
897 | return 1; |
898 | } |
899 | |
900 | /* Return an inequality that expresses that the "parametric constant" |
901 | * should be non-negative. |
902 | * This function is only called when the coefficient of the big parameter |
903 | * is equal to zero. |
904 | */ |
905 | static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row) |
906 | { |
907 | struct isl_vec *ineq; |
908 | |
909 | ineq = isl_vec_alloc(ctx: tab->mat->ctx, size: 1 + tab->n_param + tab->n_div); |
910 | if (!ineq) |
911 | return NULL; |
912 | |
913 | get_row_parameter_line(tab, row, line: ineq->el); |
914 | if (ineq) |
915 | ineq = isl_vec_normalize(vec: ineq); |
916 | |
917 | return ineq; |
918 | } |
919 | |
920 | /* Normalize a div expression of the form |
921 | * |
922 | * [(g*f(x) + c)/(g * m)] |
923 | * |
924 | * with c the constant term and f(x) the remaining coefficients, to |
925 | * |
926 | * [(f(x) + [c/g])/m] |
927 | */ |
928 | static void normalize_div(__isl_keep isl_vec *div) |
929 | { |
930 | isl_ctx *ctx = isl_vec_get_ctx(vec: div); |
931 | int len = div->size - 2; |
932 | |
933 | isl_seq_gcd(p: div->el + 2, len, gcd: &ctx->normalize_gcd); |
934 | isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, div->el[0]); |
935 | |
936 | if (isl_int_is_one(ctx->normalize_gcd)) |
937 | return; |
938 | |
939 | isl_int_divexact(div->el[0], div->el[0], ctx->normalize_gcd); |
940 | isl_int_fdiv_q(div->el[1], div->el[1], ctx->normalize_gcd); |
941 | isl_seq_scale_down(dst: div->el + 2, src: div->el + 2, f: ctx->normalize_gcd, len); |
942 | } |
943 | |
944 | /* Return an integer division for use in a parametric cut based |
945 | * on the given row. |
946 | * In particular, let the parametric constant of the row be |
947 | * |
948 | * \sum_i a_i y_i |
949 | * |
950 | * where y_0 = 1, but none of the y_i corresponds to the big parameter M. |
951 | * The div returned is equal to |
952 | * |
953 | * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d) |
954 | */ |
955 | static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row) |
956 | { |
957 | struct isl_vec *div; |
958 | |
959 | div = isl_vec_alloc(ctx: tab->mat->ctx, size: 1 + 1 + tab->n_param + tab->n_div); |
960 | if (!div) |
961 | return NULL; |
962 | |
963 | isl_int_set(div->el[0], tab->mat->row[row][0]); |
964 | get_row_parameter_line(tab, row, line: div->el + 1); |
965 | isl_seq_neg(dst: div->el + 1, src: div->el + 1, len: div->size - 1); |
966 | normalize_div(div); |
967 | isl_seq_fdiv_r(dst: div->el + 1, src: div->el + 1, m: div->el[0], len: div->size - 1); |
968 | |
969 | return div; |
970 | } |
971 | |
972 | /* Return an integer division for use in transferring an integrality constraint |
973 | * to the context. |
974 | * In particular, let the parametric constant of the row be |
975 | * |
976 | * \sum_i a_i y_i |
977 | * |
978 | * where y_0 = 1, but none of the y_i corresponds to the big parameter M. |
979 | * The the returned div is equal to |
980 | * |
981 | * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d) |
982 | */ |
983 | static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row) |
984 | { |
985 | struct isl_vec *div; |
986 | |
987 | div = isl_vec_alloc(ctx: tab->mat->ctx, size: 1 + 1 + tab->n_param + tab->n_div); |
988 | if (!div) |
989 | return NULL; |
990 | |
991 | isl_int_set(div->el[0], tab->mat->row[row][0]); |
992 | get_row_parameter_line(tab, row, line: div->el + 1); |
993 | normalize_div(div); |
994 | isl_seq_fdiv_r(dst: div->el + 1, src: div->el + 1, m: div->el[0], len: div->size - 1); |
995 | |
996 | return div; |
997 | } |
998 | |
999 | /* Construct and return an inequality that expresses an upper bound |
1000 | * on the given div. |
1001 | * In particular, if the div is given by |
1002 | * |
1003 | * d = floor(e/m) |
1004 | * |
1005 | * then the inequality expresses |
1006 | * |
1007 | * m d <= e |
1008 | */ |
1009 | static __isl_give isl_vec *ineq_for_div(__isl_keep isl_basic_set *bset, |
1010 | unsigned div) |
1011 | { |
1012 | isl_size total; |
1013 | unsigned div_pos; |
1014 | struct isl_vec *ineq; |
1015 | |
1016 | total = isl_basic_set_dim(bset, type: isl_dim_all); |
1017 | if (total < 0) |
1018 | return NULL; |
1019 | |
1020 | div_pos = 1 + total - bset->n_div + div; |
1021 | |
1022 | ineq = isl_vec_alloc(ctx: bset->ctx, size: 1 + total); |
1023 | if (!ineq) |
1024 | return NULL; |
1025 | |
1026 | isl_seq_cpy(dst: ineq->el, src: bset->div[div] + 1, len: 1 + total); |
1027 | isl_int_neg(ineq->el[div_pos], bset->div[div][0]); |
1028 | return ineq; |
1029 | } |
1030 | |
1031 | /* Given a row in the tableau and a div that was created |
1032 | * using get_row_split_div and that has been constrained to equality, i.e., |
1033 | * |
1034 | * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i |
1035 | * |
1036 | * replace the expression "\sum_i {a_i} y_i" in the row by d, |
1037 | * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d. |
1038 | * The coefficients of the non-parameters in the tableau have been |
1039 | * verified to be integral. We can therefore simply replace coefficient b |
1040 | * by floor(b). For the coefficients of the parameters we have |
1041 | * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have |
1042 | * floor(b) = b. |
1043 | */ |
1044 | static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div) |
1045 | { |
1046 | isl_seq_fdiv_q(dst: tab->mat->row[row] + 1, src: tab->mat->row[row] + 1, |
1047 | m: tab->mat->row[row][0], len: 1 + tab->M + tab->n_col); |
1048 | |
1049 | isl_int_set_si(tab->mat->row[row][0], 1); |
1050 | |
1051 | if (tab->var[tab->n_var - tab->n_div + div].is_row) { |
1052 | int drow = tab->var[tab->n_var - tab->n_div + div].index; |
1053 | |
1054 | isl_assert(tab->mat->ctx, |
1055 | isl_int_is_one(tab->mat->row[drow][0]), goto error); |
1056 | isl_seq_combine(dst: tab->mat->row[row] + 1, |
1057 | m1: tab->mat->ctx->one, src1: tab->mat->row[row] + 1, |
1058 | m2: tab->mat->ctx->one, src2: tab->mat->row[drow] + 1, |
1059 | len: 1 + tab->M + tab->n_col); |
1060 | } else { |
1061 | int dcol = tab->var[tab->n_var - tab->n_div + div].index; |
1062 | |
1063 | isl_int_add_ui(tab->mat->row[row][2 + tab->M + dcol], |
1064 | tab->mat->row[row][2 + tab->M + dcol], 1); |
1065 | } |
1066 | |
1067 | return tab; |
1068 | error: |
1069 | isl_tab_free(tab); |
1070 | return NULL; |
1071 | } |
1072 | |
1073 | /* Check if the (parametric) constant of the given row is obviously |
1074 | * negative, meaning that we don't need to consult the context tableau. |
1075 | * If there is a big parameter and its coefficient is non-zero, |
1076 | * then this coefficient determines the outcome. |
1077 | * Otherwise, we check whether the constant is negative and |
1078 | * all non-zero coefficients of parameters are negative and |
1079 | * belong to non-negative parameters. |
1080 | */ |
1081 | static int is_obviously_neg(struct isl_tab *tab, int row) |
1082 | { |
1083 | int i; |
1084 | int col; |
1085 | unsigned off = 2 + tab->M; |
1086 | |
1087 | if (tab->M) { |
1088 | if (isl_int_is_pos(tab->mat->row[row][2])) |
1089 | return 0; |
1090 | if (isl_int_is_neg(tab->mat->row[row][2])) |
1091 | return 1; |
1092 | } |
1093 | |
1094 | if (isl_int_is_nonneg(tab->mat->row[row][1])) |
1095 | return 0; |
1096 | for (i = 0; i < tab->n_param; ++i) { |
1097 | /* Eliminated parameter */ |
1098 | if (tab->var[i].is_row) |
1099 | continue; |
1100 | col = tab->var[i].index; |
1101 | if (isl_int_is_zero(tab->mat->row[row][off + col])) |
1102 | continue; |
1103 | if (!tab->var[i].is_nonneg) |
1104 | return 0; |
1105 | if (isl_int_is_pos(tab->mat->row[row][off + col])) |
1106 | return 0; |
1107 | } |
1108 | for (i = 0; i < tab->n_div; ++i) { |
1109 | if (tab->var[tab->n_var - tab->n_div + i].is_row) |
1110 | continue; |
1111 | col = tab->var[tab->n_var - tab->n_div + i].index; |
1112 | if (isl_int_is_zero(tab->mat->row[row][off + col])) |
1113 | continue; |
1114 | if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg) |
1115 | return 0; |
1116 | if (isl_int_is_pos(tab->mat->row[row][off + col])) |
1117 | return 0; |
1118 | } |
1119 | return 1; |
1120 | } |
1121 | |
1122 | /* Check if the (parametric) constant of the given row is obviously |
1123 | * non-negative, meaning that we don't need to consult the context tableau. |
1124 | * If there is a big parameter and its coefficient is non-zero, |
1125 | * then this coefficient determines the outcome. |
1126 | * Otherwise, we check whether the constant is non-negative and |
1127 | * all non-zero coefficients of parameters are positive and |
1128 | * belong to non-negative parameters. |
1129 | */ |
1130 | static int is_obviously_nonneg(struct isl_tab *tab, int row) |
1131 | { |
1132 | int i; |
1133 | int col; |
1134 | unsigned off = 2 + tab->M; |
1135 | |
1136 | if (tab->M) { |
1137 | if (isl_int_is_pos(tab->mat->row[row][2])) |
1138 | return 1; |
1139 | if (isl_int_is_neg(tab->mat->row[row][2])) |
1140 | return 0; |
1141 | } |
1142 | |
1143 | if (isl_int_is_neg(tab->mat->row[row][1])) |
1144 | return 0; |
1145 | for (i = 0; i < tab->n_param; ++i) { |
1146 | /* Eliminated parameter */ |
1147 | if (tab->var[i].is_row) |
1148 | continue; |
1149 | col = tab->var[i].index; |
1150 | if (isl_int_is_zero(tab->mat->row[row][off + col])) |
1151 | continue; |
1152 | if (!tab->var[i].is_nonneg) |
1153 | return 0; |
1154 | if (isl_int_is_neg(tab->mat->row[row][off + col])) |
1155 | return 0; |
1156 | } |
1157 | for (i = 0; i < tab->n_div; ++i) { |
1158 | if (tab->var[tab->n_var - tab->n_div + i].is_row) |
1159 | continue; |
1160 | col = tab->var[tab->n_var - tab->n_div + i].index; |
1161 | if (isl_int_is_zero(tab->mat->row[row][off + col])) |
1162 | continue; |
1163 | if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg) |
1164 | return 0; |
1165 | if (isl_int_is_neg(tab->mat->row[row][off + col])) |
1166 | return 0; |
1167 | } |
1168 | return 1; |
1169 | } |
1170 | |
1171 | /* Given a row r and two columns, return the column that would |
1172 | * lead to the lexicographically smallest increment in the sample |
1173 | * solution when leaving the basis in favor of the row. |
1174 | * Pivoting with column c will increment the sample value by a non-negative |
1175 | * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c |
1176 | * corresponding to the non-parametric variables. |
1177 | * If variable v appears in a column c_v, then a_{v,c} = 1 iff c = c_v, |
1178 | * with all other entries in this virtual row equal to zero. |
1179 | * If variable v appears in a row, then a_{v,c} is the element in column c |
1180 | * of that row. |
1181 | * |
1182 | * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}. |
1183 | * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e., |
1184 | * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal |
1185 | * increment. Otherwise, it's c2. |
1186 | */ |
1187 | static int lexmin_col_pair(struct isl_tab *tab, |
1188 | int row, int col1, int col2, isl_int tmp) |
1189 | { |
1190 | int i; |
1191 | isl_int *tr; |
1192 | |
1193 | tr = tab->mat->row[row] + 2 + tab->M; |
1194 | |
1195 | for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) { |
1196 | int s1, s2; |
1197 | isl_int *r; |
1198 | |
1199 | if (!tab->var[i].is_row) { |
1200 | if (tab->var[i].index == col1) |
1201 | return col2; |
1202 | if (tab->var[i].index == col2) |
1203 | return col1; |
1204 | continue; |
1205 | } |
1206 | |
1207 | if (tab->var[i].index == row) |
1208 | continue; |
1209 | |
1210 | r = tab->mat->row[tab->var[i].index] + 2 + tab->M; |
1211 | s1 = isl_int_sgn(r[col1]); |
1212 | s2 = isl_int_sgn(r[col2]); |
1213 | if (s1 == 0 && s2 == 0) |
1214 | continue; |
1215 | if (s1 < s2) |
1216 | return col1; |
1217 | if (s2 < s1) |
1218 | return col2; |
1219 | |
1220 | isl_int_mul(tmp, r[col2], tr[col1]); |
1221 | isl_int_submul(tmp, r[col1], tr[col2]); |
1222 | if (isl_int_is_pos(tmp)) |
1223 | return col1; |
1224 | if (isl_int_is_neg(tmp)) |
1225 | return col2; |
1226 | } |
1227 | return -1; |
1228 | } |
1229 | |
1230 | /* Does the index into the tab->var or tab->con array "index" |
1231 | * correspond to a variable in the context tableau? |
1232 | * In particular, it needs to be an index into the tab->var array and |
1233 | * it needs to refer to either one of the first tab->n_param variables or |
1234 | * one of the last tab->n_div variables. |
1235 | */ |
1236 | static int is_parameter_var(struct isl_tab *tab, int index) |
1237 | { |
1238 | if (index < 0) |
1239 | return 0; |
1240 | if (index < tab->n_param) |
1241 | return 1; |
1242 | if (index >= tab->n_var - tab->n_div) |
1243 | return 1; |
1244 | return 0; |
1245 | } |
1246 | |
1247 | /* Does column "col" of "tab" refer to a variable in the context tableau? |
1248 | */ |
1249 | static int col_is_parameter_var(struct isl_tab *tab, int col) |
1250 | { |
1251 | return is_parameter_var(tab, index: tab->col_var[col]); |
1252 | } |
1253 | |
1254 | /* Does row "row" of "tab" refer to a variable in the context tableau? |
1255 | */ |
1256 | static int row_is_parameter_var(struct isl_tab *tab, int row) |
1257 | { |
1258 | return is_parameter_var(tab, index: tab->row_var[row]); |
1259 | } |
1260 | |
1261 | /* Given a row in the tableau, find and return the column that would |
1262 | * result in the lexicographically smallest, but positive, increment |
1263 | * in the sample point. |
1264 | * If there is no such column, then return tab->n_col. |
1265 | * If anything goes wrong, return -1. |
1266 | */ |
1267 | static int lexmin_pivot_col(struct isl_tab *tab, int row) |
1268 | { |
1269 | int j; |
1270 | int col = tab->n_col; |
1271 | isl_int *tr; |
1272 | isl_int tmp; |
1273 | |
1274 | tr = tab->mat->row[row] + 2 + tab->M; |
1275 | |
1276 | isl_int_init(tmp); |
1277 | |
1278 | for (j = tab->n_dead; j < tab->n_col; ++j) { |
1279 | if (col_is_parameter_var(tab, col: j)) |
1280 | continue; |
1281 | |
1282 | if (!isl_int_is_pos(tr[j])) |
1283 | continue; |
1284 | |
1285 | if (col == tab->n_col) |
1286 | col = j; |
1287 | else |
1288 | col = lexmin_col_pair(tab, row, col1: col, col2: j, tmp); |
1289 | isl_assert(tab->mat->ctx, col >= 0, goto error); |
1290 | } |
1291 | |
1292 | isl_int_clear(tmp); |
1293 | return col; |
1294 | error: |
1295 | isl_int_clear(tmp); |
1296 | return -1; |
1297 | } |
1298 | |
1299 | /* Return the first known violated constraint, i.e., a non-negative |
1300 | * constraint that currently has an either obviously negative value |
1301 | * or a previously determined to be negative value. |
1302 | * |
1303 | * If any constraint has a negative coefficient for the big parameter, |
1304 | * if any, then we return one of these first. |
1305 | */ |
1306 | static int first_neg(struct isl_tab *tab) |
1307 | { |
1308 | int row; |
1309 | |
1310 | if (tab->M) |
1311 | for (row = tab->n_redundant; row < tab->n_row; ++row) { |
1312 | if (!isl_tab_var_from_row(tab, i: row)->is_nonneg) |
1313 | continue; |
1314 | if (!isl_int_is_neg(tab->mat->row[row][2])) |
1315 | continue; |
1316 | if (tab->row_sign) |
1317 | tab->row_sign[row] = isl_tab_row_neg; |
1318 | return row; |
1319 | } |
1320 | for (row = tab->n_redundant; row < tab->n_row; ++row) { |
1321 | if (!isl_tab_var_from_row(tab, i: row)->is_nonneg) |
1322 | continue; |
1323 | if (tab->row_sign) { |
1324 | if (tab->row_sign[row] == 0 && |
1325 | is_obviously_neg(tab, row)) |
1326 | tab->row_sign[row] = isl_tab_row_neg; |
1327 | if (tab->row_sign[row] != isl_tab_row_neg) |
1328 | continue; |
1329 | } else if (!is_obviously_neg(tab, row)) |
1330 | continue; |
1331 | return row; |
1332 | } |
1333 | return -1; |
1334 | } |
1335 | |
1336 | /* Check whether the invariant that all columns are lexico-positive |
1337 | * is satisfied. This function is not called from the current code |
1338 | * but is useful during debugging. |
1339 | */ |
1340 | static void check_lexpos(struct isl_tab *tab) __attribute__ ((unused)); |
1341 | static void check_lexpos(struct isl_tab *tab) |
1342 | { |
1343 | unsigned off = 2 + tab->M; |
1344 | int col; |
1345 | int var; |
1346 | int row; |
1347 | |
1348 | for (col = tab->n_dead; col < tab->n_col; ++col) { |
1349 | if (col_is_parameter_var(tab, col)) |
1350 | continue; |
1351 | for (var = tab->n_param; var < tab->n_var - tab->n_div; ++var) { |
1352 | if (!tab->var[var].is_row) { |
1353 | if (tab->var[var].index == col) |
1354 | break; |
1355 | else |
1356 | continue; |
1357 | } |
1358 | row = tab->var[var].index; |
1359 | if (isl_int_is_zero(tab->mat->row[row][off + col])) |
1360 | continue; |
1361 | if (isl_int_is_pos(tab->mat->row[row][off + col])) |
1362 | break; |
1363 | fprintf(stderr, format: "lexneg column %d (row %d)\n" , |
1364 | col, row); |
1365 | } |
1366 | if (var >= tab->n_var - tab->n_div) |
1367 | fprintf(stderr, format: "zero column %d\n" , col); |
1368 | } |
1369 | } |
1370 | |
1371 | /* Report to the caller that the given constraint is part of an encountered |
1372 | * conflict. |
1373 | */ |
1374 | static int report_conflicting_constraint(struct isl_tab *tab, int con) |
1375 | { |
1376 | return tab->conflict(con, tab->conflict_user); |
1377 | } |
1378 | |
1379 | /* Given a conflicting row in the tableau, report all constraints |
1380 | * involved in the row to the caller. That is, the row itself |
1381 | * (if it represents a constraint) and all constraint columns with |
1382 | * non-zero (and therefore negative) coefficients. |
1383 | */ |
1384 | static int report_conflict(struct isl_tab *tab, int row) |
1385 | { |
1386 | int j; |
1387 | isl_int *tr; |
1388 | |
1389 | if (!tab->conflict) |
1390 | return 0; |
1391 | |
1392 | if (tab->row_var[row] < 0 && |
1393 | report_conflicting_constraint(tab, con: ~tab->row_var[row]) < 0) |
1394 | return -1; |
1395 | |
1396 | tr = tab->mat->row[row] + 2 + tab->M; |
1397 | |
1398 | for (j = tab->n_dead; j < tab->n_col; ++j) { |
1399 | if (col_is_parameter_var(tab, col: j)) |
1400 | continue; |
1401 | |
1402 | if (!isl_int_is_neg(tr[j])) |
1403 | continue; |
1404 | |
1405 | if (tab->col_var[j] < 0 && |
1406 | report_conflicting_constraint(tab, con: ~tab->col_var[j]) < 0) |
1407 | return -1; |
1408 | } |
1409 | |
1410 | return 0; |
1411 | } |
1412 | |
1413 | /* Resolve all known or obviously violated constraints through pivoting. |
1414 | * In particular, as long as we can find any violated constraint, we |
1415 | * look for a pivoting column that would result in the lexicographically |
1416 | * smallest increment in the sample point. If there is no such column |
1417 | * then the tableau is infeasible. |
1418 | */ |
1419 | static int restore_lexmin(struct isl_tab *tab) WARN_UNUSED; |
1420 | static int restore_lexmin(struct isl_tab *tab) |
1421 | { |
1422 | int row, col; |
1423 | |
1424 | if (!tab) |
1425 | return -1; |
1426 | if (tab->empty) |
1427 | return 0; |
1428 | while ((row = first_neg(tab)) != -1) { |
1429 | col = lexmin_pivot_col(tab, row); |
1430 | if (col >= tab->n_col) { |
1431 | if (report_conflict(tab, row) < 0) |
1432 | return -1; |
1433 | if (isl_tab_mark_empty(tab) < 0) |
1434 | return -1; |
1435 | return 0; |
1436 | } |
1437 | if (col < 0) |
1438 | return -1; |
1439 | if (isl_tab_pivot(tab, row, col) < 0) |
1440 | return -1; |
1441 | } |
1442 | return 0; |
1443 | } |
1444 | |
1445 | /* Given a row that represents an equality, look for an appropriate |
1446 | * pivoting column. |
1447 | * In particular, if there are any non-zero coefficients among |
1448 | * the non-parameter variables, then we take the last of these |
1449 | * variables. Eliminating this variable in terms of the other |
1450 | * variables and/or parameters does not influence the property |
1451 | * that all column in the initial tableau are lexicographically |
1452 | * positive. The row corresponding to the eliminated variable |
1453 | * will only have non-zero entries below the diagonal of the |
1454 | * initial tableau. That is, we transform |
1455 | * |
1456 | * I I |
1457 | * 1 into a |
1458 | * I I |
1459 | * |
1460 | * If there is no such non-parameter variable, then we are dealing with |
1461 | * pure parameter equality and we pick any parameter with coefficient 1 or -1 |
1462 | * for elimination. This will ensure that the eliminated parameter |
1463 | * always has an integer value whenever all the other parameters are integral. |
1464 | * If there is no such parameter then we return -1. |
1465 | */ |
1466 | static int last_var_col_or_int_par_col(struct isl_tab *tab, int row) |
1467 | { |
1468 | unsigned off = 2 + tab->M; |
1469 | int i; |
1470 | |
1471 | for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) { |
1472 | int col; |
1473 | if (tab->var[i].is_row) |
1474 | continue; |
1475 | col = tab->var[i].index; |
1476 | if (col <= tab->n_dead) |
1477 | continue; |
1478 | if (!isl_int_is_zero(tab->mat->row[row][off + col])) |
1479 | return col; |
1480 | } |
1481 | for (i = tab->n_dead; i < tab->n_col; ++i) { |
1482 | if (isl_int_is_one(tab->mat->row[row][off + i])) |
1483 | return i; |
1484 | if (isl_int_is_negone(tab->mat->row[row][off + i])) |
1485 | return i; |
1486 | } |
1487 | return -1; |
1488 | } |
1489 | |
1490 | /* Add an equality that is known to be valid to the tableau. |
1491 | * We first check if we can eliminate a variable or a parameter. |
1492 | * If not, we add the equality as two inequalities. |
1493 | * In this case, the equality was a pure parameter equality and there |
1494 | * is no need to resolve any constraint violations. |
1495 | * |
1496 | * This function assumes that at least two more rows and at least |
1497 | * two more elements in the constraint array are available in the tableau. |
1498 | */ |
1499 | static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq) |
1500 | { |
1501 | int i; |
1502 | int r; |
1503 | |
1504 | if (!tab) |
1505 | return NULL; |
1506 | r = isl_tab_add_row(tab, line: eq); |
1507 | if (r < 0) |
1508 | goto error; |
1509 | |
1510 | r = tab->con[r].index; |
1511 | i = last_var_col_or_int_par_col(tab, row: r); |
1512 | if (i < 0) { |
1513 | tab->con[r].is_nonneg = 1; |
1514 | if (isl_tab_push_var(tab, type: isl_tab_undo_nonneg, var: &tab->con[r]) < 0) |
1515 | goto error; |
1516 | isl_seq_neg(dst: eq, src: eq, len: 1 + tab->n_var); |
1517 | r = isl_tab_add_row(tab, line: eq); |
1518 | if (r < 0) |
1519 | goto error; |
1520 | tab->con[r].is_nonneg = 1; |
1521 | if (isl_tab_push_var(tab, type: isl_tab_undo_nonneg, var: &tab->con[r]) < 0) |
1522 | goto error; |
1523 | } else { |
1524 | if (isl_tab_pivot(tab, row: r, col: i) < 0) |
1525 | goto error; |
1526 | if (isl_tab_kill_col(tab, col: i) < 0) |
1527 | goto error; |
1528 | tab->n_eq++; |
1529 | } |
1530 | |
1531 | return tab; |
1532 | error: |
1533 | isl_tab_free(tab); |
1534 | return NULL; |
1535 | } |
1536 | |
1537 | /* Check if the given row is a pure constant. |
1538 | */ |
1539 | static int is_constant(struct isl_tab *tab, int row) |
1540 | { |
1541 | unsigned off = 2 + tab->M; |
1542 | |
1543 | return isl_seq_first_non_zero(p: tab->mat->row[row] + off + tab->n_dead, |
1544 | len: tab->n_col - tab->n_dead) == -1; |
1545 | } |
1546 | |
1547 | /* Is the given row a parametric constant? |
1548 | * That is, does it only involve variables that also appear in the context? |
1549 | */ |
1550 | static int is_parametric_constant(struct isl_tab *tab, int row) |
1551 | { |
1552 | unsigned off = 2 + tab->M; |
1553 | int col; |
1554 | |
1555 | for (col = tab->n_dead; col < tab->n_col; ++col) { |
1556 | if (col_is_parameter_var(tab, col)) |
1557 | continue; |
1558 | if (isl_int_is_zero(tab->mat->row[row][off + col])) |
1559 | continue; |
1560 | return 0; |
1561 | } |
1562 | |
1563 | return 1; |
1564 | } |
1565 | |
1566 | /* Add an equality that may or may not be valid to the tableau. |
1567 | * If the resulting row is a pure constant, then it must be zero. |
1568 | * Otherwise, the resulting tableau is empty. |
1569 | * |
1570 | * If the row is not a pure constant, then we add two inequalities, |
1571 | * each time checking that they can be satisfied. |
1572 | * In the end we try to use one of the two constraints to eliminate |
1573 | * a column. |
1574 | * |
1575 | * This function assumes that at least two more rows and at least |
1576 | * two more elements in the constraint array are available in the tableau. |
1577 | */ |
1578 | static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED; |
1579 | static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq) |
1580 | { |
1581 | int r1, r2; |
1582 | int row; |
1583 | struct isl_tab_undo *snap; |
1584 | |
1585 | if (!tab) |
1586 | return -1; |
1587 | snap = isl_tab_snap(tab); |
1588 | r1 = isl_tab_add_row(tab, line: eq); |
1589 | if (r1 < 0) |
1590 | return -1; |
1591 | tab->con[r1].is_nonneg = 1; |
1592 | if (isl_tab_push_var(tab, type: isl_tab_undo_nonneg, var: &tab->con[r1]) < 0) |
1593 | return -1; |
1594 | |
1595 | row = tab->con[r1].index; |
1596 | if (is_constant(tab, row)) { |
1597 | if (!isl_int_is_zero(tab->mat->row[row][1]) || |
1598 | (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) { |
1599 | if (isl_tab_mark_empty(tab) < 0) |
1600 | return -1; |
1601 | return 0; |
1602 | } |
1603 | if (isl_tab_rollback(tab, snap) < 0) |
1604 | return -1; |
1605 | return 0; |
1606 | } |
1607 | |
1608 | if (restore_lexmin(tab) < 0) |
1609 | return -1; |
1610 | if (tab->empty) |
1611 | return 0; |
1612 | |
1613 | isl_seq_neg(dst: eq, src: eq, len: 1 + tab->n_var); |
1614 | |
1615 | r2 = isl_tab_add_row(tab, line: eq); |
1616 | if (r2 < 0) |
1617 | return -1; |
1618 | tab->con[r2].is_nonneg = 1; |
1619 | if (isl_tab_push_var(tab, type: isl_tab_undo_nonneg, var: &tab->con[r2]) < 0) |
1620 | return -1; |
1621 | |
1622 | if (restore_lexmin(tab) < 0) |
1623 | return -1; |
1624 | if (tab->empty) |
1625 | return 0; |
1626 | |
1627 | if (!tab->con[r1].is_row) { |
1628 | if (isl_tab_kill_col(tab, col: tab->con[r1].index) < 0) |
1629 | return -1; |
1630 | } else if (!tab->con[r2].is_row) { |
1631 | if (isl_tab_kill_col(tab, col: tab->con[r2].index) < 0) |
1632 | return -1; |
1633 | } |
1634 | |
1635 | if (tab->bmap) { |
1636 | tab->bmap = isl_basic_map_add_ineq(bmap: tab->bmap, ineq: eq); |
1637 | if (isl_tab_push(tab, type: isl_tab_undo_bmap_ineq) < 0) |
1638 | return -1; |
1639 | isl_seq_neg(dst: eq, src: eq, len: 1 + tab->n_var); |
1640 | tab->bmap = isl_basic_map_add_ineq(bmap: tab->bmap, ineq: eq); |
1641 | isl_seq_neg(dst: eq, src: eq, len: 1 + tab->n_var); |
1642 | if (isl_tab_push(tab, type: isl_tab_undo_bmap_ineq) < 0) |
1643 | return -1; |
1644 | if (!tab->bmap) |
1645 | return -1; |
1646 | } |
1647 | |
1648 | return 0; |
1649 | } |
1650 | |
1651 | /* Add an inequality to the tableau, resolving violations using |
1652 | * restore_lexmin. |
1653 | * |
1654 | * This function assumes that at least one more row and at least |
1655 | * one more element in the constraint array are available in the tableau. |
1656 | */ |
1657 | static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq) |
1658 | { |
1659 | int r; |
1660 | |
1661 | if (!tab) |
1662 | return NULL; |
1663 | if (tab->bmap) { |
1664 | tab->bmap = isl_basic_map_add_ineq(bmap: tab->bmap, ineq); |
1665 | if (isl_tab_push(tab, type: isl_tab_undo_bmap_ineq) < 0) |
1666 | goto error; |
1667 | if (!tab->bmap) |
1668 | goto error; |
1669 | } |
1670 | r = isl_tab_add_row(tab, line: ineq); |
1671 | if (r < 0) |
1672 | goto error; |
1673 | tab->con[r].is_nonneg = 1; |
1674 | if (isl_tab_push_var(tab, type: isl_tab_undo_nonneg, var: &tab->con[r]) < 0) |
1675 | goto error; |
1676 | if (isl_tab_row_is_redundant(tab, row: tab->con[r].index)) { |
1677 | if (isl_tab_mark_redundant(tab, row: tab->con[r].index) < 0) |
1678 | goto error; |
1679 | return tab; |
1680 | } |
1681 | |
1682 | if (restore_lexmin(tab) < 0) |
1683 | goto error; |
1684 | if (!tab->empty && tab->con[r].is_row && |
1685 | isl_tab_row_is_redundant(tab, row: tab->con[r].index)) |
1686 | if (isl_tab_mark_redundant(tab, row: tab->con[r].index) < 0) |
1687 | goto error; |
1688 | return tab; |
1689 | error: |
1690 | isl_tab_free(tab); |
1691 | return NULL; |
1692 | } |
1693 | |
1694 | /* Check if the coefficients of the parameters are all integral. |
1695 | */ |
1696 | static int integer_parameter(struct isl_tab *tab, int row) |
1697 | { |
1698 | int i; |
1699 | int col; |
1700 | unsigned off = 2 + tab->M; |
1701 | |
1702 | for (i = 0; i < tab->n_param; ++i) { |
1703 | /* Eliminated parameter */ |
1704 | if (tab->var[i].is_row) |
1705 | continue; |
1706 | col = tab->var[i].index; |
1707 | if (!isl_int_is_divisible_by(tab->mat->row[row][off + col], |
1708 | tab->mat->row[row][0])) |
1709 | return 0; |
1710 | } |
1711 | for (i = 0; i < tab->n_div; ++i) { |
1712 | if (tab->var[tab->n_var - tab->n_div + i].is_row) |
1713 | continue; |
1714 | col = tab->var[tab->n_var - tab->n_div + i].index; |
1715 | if (!isl_int_is_divisible_by(tab->mat->row[row][off + col], |
1716 | tab->mat->row[row][0])) |
1717 | return 0; |
1718 | } |
1719 | return 1; |
1720 | } |
1721 | |
1722 | /* Check if the coefficients of the non-parameter variables are all integral. |
1723 | */ |
1724 | static int integer_variable(struct isl_tab *tab, int row) |
1725 | { |
1726 | int i; |
1727 | unsigned off = 2 + tab->M; |
1728 | |
1729 | for (i = tab->n_dead; i < tab->n_col; ++i) { |
1730 | if (col_is_parameter_var(tab, col: i)) |
1731 | continue; |
1732 | if (!isl_int_is_divisible_by(tab->mat->row[row][off + i], |
1733 | tab->mat->row[row][0])) |
1734 | return 0; |
1735 | } |
1736 | return 1; |
1737 | } |
1738 | |
1739 | /* Check if the constant term is integral. |
1740 | */ |
1741 | static int integer_constant(struct isl_tab *tab, int row) |
1742 | { |
1743 | return isl_int_is_divisible_by(tab->mat->row[row][1], |
1744 | tab->mat->row[row][0]); |
1745 | } |
1746 | |
1747 | #define I_CST 1 << 0 |
1748 | #define I_PAR 1 << 1 |
1749 | #define I_VAR 1 << 2 |
1750 | |
1751 | /* Check for next (non-parameter) variable after "var" (first if var == -1) |
1752 | * that is non-integer and therefore requires a cut and return |
1753 | * the index of the variable. |
1754 | * For parametric tableaus, there are three parts in a row, |
1755 | * the constant, the coefficients of the parameters and the rest. |
1756 | * For each part, we check whether the coefficients in that part |
1757 | * are all integral and if so, set the corresponding flag in *f. |
1758 | * If the constant and the parameter part are integral, then the |
1759 | * current sample value is integral and no cut is required |
1760 | * (irrespective of whether the variable part is integral). |
1761 | */ |
1762 | static int next_non_integer_var(struct isl_tab *tab, int var, int *f) |
1763 | { |
1764 | var = var < 0 ? tab->n_param : var + 1; |
1765 | |
1766 | for (; var < tab->n_var - tab->n_div; ++var) { |
1767 | int flags = 0; |
1768 | int row; |
1769 | if (!tab->var[var].is_row) |
1770 | continue; |
1771 | row = tab->var[var].index; |
1772 | if (integer_constant(tab, row)) |
1773 | ISL_FL_SET(flags, I_CST); |
1774 | if (integer_parameter(tab, row)) |
1775 | ISL_FL_SET(flags, I_PAR); |
1776 | if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR)) |
1777 | continue; |
1778 | if (integer_variable(tab, row)) |
1779 | ISL_FL_SET(flags, I_VAR); |
1780 | *f = flags; |
1781 | return var; |
1782 | } |
1783 | return -1; |
1784 | } |
1785 | |
1786 | /* Check for first (non-parameter) variable that is non-integer and |
1787 | * therefore requires a cut and return the corresponding row. |
1788 | * For parametric tableaus, there are three parts in a row, |
1789 | * the constant, the coefficients of the parameters and the rest. |
1790 | * For each part, we check whether the coefficients in that part |
1791 | * are all integral and if so, set the corresponding flag in *f. |
1792 | * If the constant and the parameter part are integral, then the |
1793 | * current sample value is integral and no cut is required |
1794 | * (irrespective of whether the variable part is integral). |
1795 | */ |
1796 | static int first_non_integer_row(struct isl_tab *tab, int *f) |
1797 | { |
1798 | int var = next_non_integer_var(tab, var: -1, f); |
1799 | |
1800 | return var < 0 ? -1 : tab->var[var].index; |
1801 | } |
1802 | |
1803 | /* Add a (non-parametric) cut to cut away the non-integral sample |
1804 | * value of the given row. |
1805 | * |
1806 | * If the row is given by |
1807 | * |
1808 | * m r = f + \sum_i a_i y_i |
1809 | * |
1810 | * then the cut is |
1811 | * |
1812 | * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0 |
1813 | * |
1814 | * The big parameter, if any, is ignored, since it is assumed to be big |
1815 | * enough to be divisible by any integer. |
1816 | * If the tableau is actually a parametric tableau, then this function |
1817 | * is only called when all coefficients of the parameters are integral. |
1818 | * The cut therefore has zero coefficients for the parameters. |
1819 | * |
1820 | * The current value is known to be negative, so row_sign, if it |
1821 | * exists, is set accordingly. |
1822 | * |
1823 | * Return the row of the cut or -1. |
1824 | */ |
1825 | static int add_cut(struct isl_tab *tab, int row) |
1826 | { |
1827 | int i; |
1828 | int r; |
1829 | isl_int *r_row; |
1830 | unsigned off = 2 + tab->M; |
1831 | |
1832 | if (isl_tab_extend_cons(tab, n_new: 1) < 0) |
1833 | return -1; |
1834 | r = isl_tab_allocate_con(tab); |
1835 | if (r < 0) |
1836 | return -1; |
1837 | |
1838 | r_row = tab->mat->row[tab->con[r].index]; |
1839 | isl_int_set(r_row[0], tab->mat->row[row][0]); |
1840 | isl_int_neg(r_row[1], tab->mat->row[row][1]); |
1841 | isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]); |
1842 | isl_int_neg(r_row[1], r_row[1]); |
1843 | if (tab->M) |
1844 | isl_int_set_si(r_row[2], 0); |
1845 | for (i = 0; i < tab->n_col; ++i) |
1846 | isl_int_fdiv_r(r_row[off + i], |
1847 | tab->mat->row[row][off + i], tab->mat->row[row][0]); |
1848 | |
1849 | tab->con[r].is_nonneg = 1; |
1850 | if (isl_tab_push_var(tab, type: isl_tab_undo_nonneg, var: &tab->con[r]) < 0) |
1851 | return -1; |
1852 | if (tab->row_sign) |
1853 | tab->row_sign[tab->con[r].index] = isl_tab_row_neg; |
1854 | |
1855 | return tab->con[r].index; |
1856 | } |
1857 | |
1858 | #define CUT_ALL 1 |
1859 | #define CUT_ONE 0 |
1860 | |
1861 | /* Given a non-parametric tableau, add cuts until an integer |
1862 | * sample point is obtained or until the tableau is determined |
1863 | * to be integer infeasible. |
1864 | * As long as there is any non-integer value in the sample point, |
1865 | * we add appropriate cuts, if possible, for each of these |
1866 | * non-integer values and then resolve the violated |
1867 | * cut constraints using restore_lexmin. |
1868 | * If one of the corresponding rows is equal to an integral |
1869 | * combination of variables/constraints plus a non-integral constant, |
1870 | * then there is no way to obtain an integer point and we return |
1871 | * a tableau that is marked empty. |
1872 | * The parameter cutting_strategy controls the strategy used when adding cuts |
1873 | * to remove non-integer points. CUT_ALL adds all possible cuts |
1874 | * before continuing the search. CUT_ONE adds only one cut at a time. |
1875 | */ |
1876 | static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab, |
1877 | int cutting_strategy) |
1878 | { |
1879 | int var; |
1880 | int row; |
1881 | int flags; |
1882 | |
1883 | if (!tab) |
1884 | return NULL; |
1885 | if (tab->empty) |
1886 | return tab; |
1887 | |
1888 | while ((var = next_non_integer_var(tab, var: -1, f: &flags)) != -1) { |
1889 | do { |
1890 | if (ISL_FL_ISSET(flags, I_VAR)) { |
1891 | if (isl_tab_mark_empty(tab) < 0) |
1892 | goto error; |
1893 | return tab; |
1894 | } |
1895 | row = tab->var[var].index; |
1896 | row = add_cut(tab, row); |
1897 | if (row < 0) |
1898 | goto error; |
1899 | if (cutting_strategy == CUT_ONE) |
1900 | break; |
1901 | } while ((var = next_non_integer_var(tab, var, f: &flags)) != -1); |
1902 | if (restore_lexmin(tab) < 0) |
1903 | goto error; |
1904 | if (tab->empty) |
1905 | break; |
1906 | } |
1907 | return tab; |
1908 | error: |
1909 | isl_tab_free(tab); |
1910 | return NULL; |
1911 | } |
1912 | |
1913 | /* Check whether all the currently active samples also satisfy the inequality |
1914 | * "ineq" (treated as an equality if eq is set). |
1915 | * Remove those samples that do not. |
1916 | */ |
1917 | static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq) |
1918 | { |
1919 | int i; |
1920 | isl_int v; |
1921 | |
1922 | if (!tab) |
1923 | return NULL; |
1924 | |
1925 | isl_assert(tab->mat->ctx, tab->bmap, goto error); |
1926 | isl_assert(tab->mat->ctx, tab->samples, goto error); |
1927 | isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error); |
1928 | |
1929 | isl_int_init(v); |
1930 | for (i = tab->n_outside; i < tab->n_sample; ++i) { |
1931 | int sgn; |
1932 | isl_seq_inner_product(p1: ineq, p2: tab->samples->row[i], |
1933 | len: 1 + tab->n_var, prod: &v); |
1934 | sgn = isl_int_sgn(v); |
1935 | if (eq ? (sgn == 0) : (sgn >= 0)) |
1936 | continue; |
1937 | tab = isl_tab_drop_sample(tab, s: i); |
1938 | if (!tab) |
1939 | break; |
1940 | } |
1941 | isl_int_clear(v); |
1942 | |
1943 | return tab; |
1944 | error: |
1945 | isl_tab_free(tab); |
1946 | return NULL; |
1947 | } |
1948 | |
1949 | /* Check whether the sample value of the tableau is finite, |
1950 | * i.e., either the tableau does not use a big parameter, or |
1951 | * all values of the variables are equal to the big parameter plus |
1952 | * some constant. This constant is the actual sample value. |
1953 | */ |
1954 | static int sample_is_finite(struct isl_tab *tab) |
1955 | { |
1956 | int i; |
1957 | |
1958 | if (!tab->M) |
1959 | return 1; |
1960 | |
1961 | for (i = 0; i < tab->n_var; ++i) { |
1962 | int row; |
1963 | if (!tab->var[i].is_row) |
1964 | return 0; |
1965 | row = tab->var[i].index; |
1966 | if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2])) |
1967 | return 0; |
1968 | } |
1969 | return 1; |
1970 | } |
1971 | |
1972 | /* Check if the context tableau of sol has any integer points. |
1973 | * Leave tab in empty state if no integer point can be found. |
1974 | * If an integer point can be found and if moreover it is finite, |
1975 | * then it is added to the list of sample values. |
1976 | * |
1977 | * This function is only called when none of the currently active sample |
1978 | * values satisfies the most recently added constraint. |
1979 | */ |
1980 | static struct isl_tab *check_integer_feasible(struct isl_tab *tab) |
1981 | { |
1982 | struct isl_tab_undo *snap; |
1983 | |
1984 | if (!tab) |
1985 | return NULL; |
1986 | |
1987 | snap = isl_tab_snap(tab); |
1988 | if (isl_tab_push_basis(tab) < 0) |
1989 | goto error; |
1990 | |
1991 | tab = cut_to_integer_lexmin(tab, CUT_ALL); |
1992 | if (!tab) |
1993 | goto error; |
1994 | |
1995 | if (!tab->empty && sample_is_finite(tab)) { |
1996 | struct isl_vec *sample; |
1997 | |
1998 | sample = isl_tab_get_sample_value(tab); |
1999 | |
2000 | if (isl_tab_add_sample(tab, sample) < 0) |
2001 | goto error; |
2002 | } |
2003 | |
2004 | if (!tab->empty && isl_tab_rollback(tab, snap) < 0) |
2005 | goto error; |
2006 | |
2007 | return tab; |
2008 | error: |
2009 | isl_tab_free(tab); |
2010 | return NULL; |
2011 | } |
2012 | |
2013 | /* Check if any of the currently active sample values satisfies |
2014 | * the inequality "ineq" (an equality if eq is set). |
2015 | */ |
2016 | static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq) |
2017 | { |
2018 | int i; |
2019 | isl_int v; |
2020 | |
2021 | if (!tab) |
2022 | return -1; |
2023 | |
2024 | isl_assert(tab->mat->ctx, tab->bmap, return -1); |
2025 | isl_assert(tab->mat->ctx, tab->samples, return -1); |
2026 | isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1); |
2027 | |
2028 | isl_int_init(v); |
2029 | for (i = tab->n_outside; i < tab->n_sample; ++i) { |
2030 | int sgn; |
2031 | isl_seq_inner_product(p1: ineq, p2: tab->samples->row[i], |
2032 | len: 1 + tab->n_var, prod: &v); |
2033 | sgn = isl_int_sgn(v); |
2034 | if (eq ? (sgn == 0) : (sgn >= 0)) |
2035 | break; |
2036 | } |
2037 | isl_int_clear(v); |
2038 | |
2039 | return i < tab->n_sample; |
2040 | } |
2041 | |
2042 | /* Insert a div specified by "div" to the tableau "tab" at position "pos" and |
2043 | * return isl_bool_true if the div is obviously non-negative. |
2044 | */ |
2045 | static isl_bool context_tab_insert_div(struct isl_tab *tab, int pos, |
2046 | __isl_keep isl_vec *div, |
2047 | isl_stat (*add_ineq)(void *user, isl_int *), void *user) |
2048 | { |
2049 | int i; |
2050 | int r; |
2051 | struct isl_mat *samples; |
2052 | int nonneg; |
2053 | |
2054 | r = isl_tab_insert_div(tab, pos, div, add_ineq, user); |
2055 | if (r < 0) |
2056 | return isl_bool_error; |
2057 | nonneg = tab->var[r].is_nonneg; |
2058 | tab->var[r].frozen = 1; |
2059 | |
2060 | samples = isl_mat_extend(mat: tab->samples, |
2061 | n_row: tab->n_sample, n_col: 1 + tab->n_var); |
2062 | tab->samples = samples; |
2063 | if (!samples) |
2064 | return isl_bool_error; |
2065 | for (i = tab->n_outside; i < samples->n_row; ++i) { |
2066 | isl_seq_inner_product(p1: div->el + 1, p2: samples->row[i], |
2067 | len: div->size - 1, prod: &samples->row[i][samples->n_col - 1]); |
2068 | isl_int_fdiv_q(samples->row[i][samples->n_col - 1], |
2069 | samples->row[i][samples->n_col - 1], div->el[0]); |
2070 | } |
2071 | tab->samples = isl_mat_move_cols(mat: tab->samples, dst_col: 1 + pos, |
2072 | src_col: 1 + tab->n_var - 1, n: 1); |
2073 | if (!tab->samples) |
2074 | return isl_bool_error; |
2075 | |
2076 | return isl_bool_ok(b: nonneg); |
2077 | } |
2078 | |
2079 | /* Add a div specified by "div" to both the main tableau and |
2080 | * the context tableau. In case of the main tableau, we only |
2081 | * need to add an extra div. In the context tableau, we also |
2082 | * need to express the meaning of the div. |
2083 | * Return the index of the div or -1 if anything went wrong. |
2084 | * |
2085 | * The new integer division is added before any unknown integer |
2086 | * divisions in the context to ensure that it does not get |
2087 | * equated to some linear combination involving unknown integer |
2088 | * divisions. |
2089 | */ |
2090 | static int add_div(struct isl_tab *tab, struct isl_context *context, |
2091 | __isl_keep isl_vec *div) |
2092 | { |
2093 | int r; |
2094 | int pos; |
2095 | isl_bool nonneg; |
2096 | struct isl_tab *context_tab = context->op->peek_tab(context); |
2097 | |
2098 | if (!tab || !context_tab) |
2099 | goto error; |
2100 | |
2101 | pos = context_tab->n_var - context->n_unknown; |
2102 | if ((nonneg = context->op->insert_div(context, pos, div)) < 0) |
2103 | goto error; |
2104 | |
2105 | if (!context->op->is_ok(context)) |
2106 | goto error; |
2107 | |
2108 | pos = tab->n_var - context->n_unknown; |
2109 | if (isl_tab_extend_vars(tab, n_new: 1) < 0) |
2110 | goto error; |
2111 | r = isl_tab_insert_var(tab, pos); |
2112 | if (r < 0) |
2113 | goto error; |
2114 | if (nonneg) |
2115 | tab->var[r].is_nonneg = 1; |
2116 | tab->var[r].frozen = 1; |
2117 | tab->n_div++; |
2118 | |
2119 | return tab->n_div - 1 - context->n_unknown; |
2120 | error: |
2121 | context->op->invalidate(context); |
2122 | return -1; |
2123 | } |
2124 | |
2125 | /* Return the position of the integer division that is equal to div/denom |
2126 | * if there is one. Otherwise, return a position beyond the integer divisions. |
2127 | */ |
2128 | static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom) |
2129 | { |
2130 | int i; |
2131 | isl_size total = isl_basic_map_dim(bmap: tab->bmap, type: isl_dim_all); |
2132 | isl_size n_div; |
2133 | |
2134 | n_div = isl_basic_map_dim(bmap: tab->bmap, type: isl_dim_div); |
2135 | if (total < 0 || n_div < 0) |
2136 | return -1; |
2137 | for (i = 0; i < n_div; ++i) { |
2138 | if (isl_int_ne(tab->bmap->div[i][0], denom)) |
2139 | continue; |
2140 | if (!isl_seq_eq(p1: tab->bmap->div[i] + 1, p2: div, len: 1 + total)) |
2141 | continue; |
2142 | return i; |
2143 | } |
2144 | return n_div; |
2145 | } |
2146 | |
2147 | /* Return the index of a div that corresponds to "div". |
2148 | * We first check if we already have such a div and if not, we create one. |
2149 | */ |
2150 | static int get_div(struct isl_tab *tab, struct isl_context *context, |
2151 | struct isl_vec *div) |
2152 | { |
2153 | int d; |
2154 | struct isl_tab *context_tab = context->op->peek_tab(context); |
2155 | unsigned n_div; |
2156 | |
2157 | if (!context_tab) |
2158 | return -1; |
2159 | |
2160 | n_div = isl_basic_map_dim(bmap: context_tab->bmap, type: isl_dim_div); |
2161 | d = find_div(tab: context_tab, div: div->el + 1, denom: div->el[0]); |
2162 | if (d < 0) |
2163 | return -1; |
2164 | if (d < n_div) |
2165 | return d; |
2166 | |
2167 | return add_div(tab, context, div); |
2168 | } |
2169 | |
2170 | /* Add a parametric cut to cut away the non-integral sample value |
2171 | * of the given row. |
2172 | * Let a_i be the coefficients of the constant term and the parameters |
2173 | * and let b_i be the coefficients of the variables or constraints |
2174 | * in basis of the tableau. |
2175 | * Let q be the div q = floor(\sum_i {-a_i} y_i). |
2176 | * |
2177 | * The cut is expressed as |
2178 | * |
2179 | * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0 |
2180 | * |
2181 | * If q did not already exist in the context tableau, then it is added first. |
2182 | * If q is in a column of the main tableau then the "+ q" can be accomplished |
2183 | * by setting the corresponding entry to the denominator of the constraint. |
2184 | * If q happens to be in a row of the main tableau, then the corresponding |
2185 | * row needs to be added instead (taking care of the denominators). |
2186 | * Note that this is very unlikely, but perhaps not entirely impossible. |
2187 | * |
2188 | * The current value of the cut is known to be negative (or at least |
2189 | * non-positive), so row_sign is set accordingly. |
2190 | * |
2191 | * Return the row of the cut or -1. |
2192 | */ |
2193 | static int add_parametric_cut(struct isl_tab *tab, int row, |
2194 | struct isl_context *context) |
2195 | { |
2196 | struct isl_vec *div; |
2197 | int d; |
2198 | int i; |
2199 | int r; |
2200 | isl_int *r_row; |
2201 | int col; |
2202 | int n; |
2203 | unsigned off = 2 + tab->M; |
2204 | |
2205 | if (!context) |
2206 | return -1; |
2207 | |
2208 | div = get_row_parameter_div(tab, row); |
2209 | if (!div) |
2210 | return -1; |
2211 | |
2212 | n = tab->n_div - context->n_unknown; |
2213 | d = context->op->get_div(context, tab, div); |
2214 | isl_vec_free(vec: div); |
2215 | if (d < 0) |
2216 | return -1; |
2217 | |
2218 | if (isl_tab_extend_cons(tab, n_new: 1) < 0) |
2219 | return -1; |
2220 | r = isl_tab_allocate_con(tab); |
2221 | if (r < 0) |
2222 | return -1; |
2223 | |
2224 | r_row = tab->mat->row[tab->con[r].index]; |
2225 | isl_int_set(r_row[0], tab->mat->row[row][0]); |
2226 | isl_int_neg(r_row[1], tab->mat->row[row][1]); |
2227 | isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]); |
2228 | isl_int_neg(r_row[1], r_row[1]); |
2229 | if (tab->M) |
2230 | isl_int_set_si(r_row[2], 0); |
2231 | for (i = 0; i < tab->n_param; ++i) { |
2232 | if (tab->var[i].is_row) |
2233 | continue; |
2234 | col = tab->var[i].index; |
2235 | isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]); |
2236 | isl_int_fdiv_r(r_row[off + col], r_row[off + col], |
2237 | tab->mat->row[row][0]); |
2238 | isl_int_neg(r_row[off + col], r_row[off + col]); |
2239 | } |
2240 | for (i = 0; i < tab->n_div; ++i) { |
2241 | if (tab->var[tab->n_var - tab->n_div + i].is_row) |
2242 | continue; |
2243 | col = tab->var[tab->n_var - tab->n_div + i].index; |
2244 | isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]); |
2245 | isl_int_fdiv_r(r_row[off + col], r_row[off + col], |
2246 | tab->mat->row[row][0]); |
2247 | isl_int_neg(r_row[off + col], r_row[off + col]); |
2248 | } |
2249 | for (i = 0; i < tab->n_col; ++i) { |
2250 | if (tab->col_var[i] >= 0 && |
2251 | (tab->col_var[i] < tab->n_param || |
2252 | tab->col_var[i] >= tab->n_var - tab->n_div)) |
2253 | continue; |
2254 | isl_int_fdiv_r(r_row[off + i], |
2255 | tab->mat->row[row][off + i], tab->mat->row[row][0]); |
2256 | } |
2257 | if (tab->var[tab->n_var - tab->n_div + d].is_row) { |
2258 | isl_int gcd; |
2259 | int d_row = tab->var[tab->n_var - tab->n_div + d].index; |
2260 | isl_int_init(gcd); |
2261 | isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]); |
2262 | isl_int_divexact(r_row[0], r_row[0], gcd); |
2263 | isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd); |
2264 | isl_seq_combine(dst: r_row + 1, m1: gcd, src1: r_row + 1, |
2265 | m2: r_row[0], src2: tab->mat->row[d_row] + 1, |
2266 | len: off - 1 + tab->n_col); |
2267 | isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]); |
2268 | isl_int_clear(gcd); |
2269 | } else { |
2270 | col = tab->var[tab->n_var - tab->n_div + d].index; |
2271 | isl_int_set(r_row[off + col], tab->mat->row[row][0]); |
2272 | } |
2273 | |
2274 | tab->con[r].is_nonneg = 1; |
2275 | if (isl_tab_push_var(tab, type: isl_tab_undo_nonneg, var: &tab->con[r]) < 0) |
2276 | return -1; |
2277 | if (tab->row_sign) |
2278 | tab->row_sign[tab->con[r].index] = isl_tab_row_neg; |
2279 | |
2280 | row = tab->con[r].index; |
2281 | |
2282 | if (d >= n && context->op->detect_equalities(context, tab) < 0) |
2283 | return -1; |
2284 | |
2285 | return row; |
2286 | } |
2287 | |
2288 | /* Construct a tableau for bmap that can be used for computing |
2289 | * the lexicographic minimum (or maximum) of bmap. |
2290 | * If not NULL, then dom is the domain where the minimum |
2291 | * should be computed. In this case, we set up a parametric |
2292 | * tableau with row signs (initialized to "unknown"). |
2293 | * If M is set, then the tableau will use a big parameter. |
2294 | * If max is set, then a maximum should be computed instead of a minimum. |
2295 | * This means that for each variable x, the tableau will contain the variable |
2296 | * x' = M - x, rather than x' = M + x. This in turn means that the coefficient |
2297 | * of the variables in all constraints are negated prior to adding them |
2298 | * to the tableau. |
2299 | */ |
2300 | static __isl_give struct isl_tab *tab_for_lexmin(__isl_keep isl_basic_map *bmap, |
2301 | __isl_keep isl_basic_set *dom, unsigned M, int max) |
2302 | { |
2303 | int i; |
2304 | struct isl_tab *tab; |
2305 | unsigned n_var; |
2306 | unsigned o_var; |
2307 | isl_size total; |
2308 | |
2309 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
2310 | if (total < 0) |
2311 | return NULL; |
2312 | tab = isl_tab_alloc(ctx: bmap->ctx, n_row: 2 * bmap->n_eq + bmap->n_ineq + 1, |
2313 | n_var: total, M); |
2314 | if (!tab) |
2315 | return NULL; |
2316 | |
2317 | tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL); |
2318 | if (dom) { |
2319 | isl_size dom_total; |
2320 | dom_total = isl_basic_set_dim(bset: dom, type: isl_dim_all); |
2321 | if (dom_total < 0) |
2322 | goto error; |
2323 | tab->n_param = dom_total - dom->n_div; |
2324 | tab->n_div = dom->n_div; |
2325 | tab->row_sign = isl_calloc_array(bmap->ctx, |
2326 | enum isl_tab_row_sign, tab->mat->n_row); |
2327 | if (tab->mat->n_row && !tab->row_sign) |
2328 | goto error; |
2329 | } |
2330 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) { |
2331 | if (isl_tab_mark_empty(tab) < 0) |
2332 | goto error; |
2333 | return tab; |
2334 | } |
2335 | |
2336 | for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) { |
2337 | tab->var[i].is_nonneg = 1; |
2338 | tab->var[i].frozen = 1; |
2339 | } |
2340 | o_var = 1 + tab->n_param; |
2341 | n_var = tab->n_var - tab->n_param - tab->n_div; |
2342 | for (i = 0; i < bmap->n_eq; ++i) { |
2343 | if (max) |
2344 | isl_seq_neg(dst: bmap->eq[i] + o_var, |
2345 | src: bmap->eq[i] + o_var, len: n_var); |
2346 | tab = add_lexmin_valid_eq(tab, eq: bmap->eq[i]); |
2347 | if (max) |
2348 | isl_seq_neg(dst: bmap->eq[i] + o_var, |
2349 | src: bmap->eq[i] + o_var, len: n_var); |
2350 | if (!tab || tab->empty) |
2351 | return tab; |
2352 | } |
2353 | if (bmap->n_eq && restore_lexmin(tab) < 0) |
2354 | goto error; |
2355 | for (i = 0; i < bmap->n_ineq; ++i) { |
2356 | if (max) |
2357 | isl_seq_neg(dst: bmap->ineq[i] + o_var, |
2358 | src: bmap->ineq[i] + o_var, len: n_var); |
2359 | tab = add_lexmin_ineq(tab, ineq: bmap->ineq[i]); |
2360 | if (max) |
2361 | isl_seq_neg(dst: bmap->ineq[i] + o_var, |
2362 | src: bmap->ineq[i] + o_var, len: n_var); |
2363 | if (!tab || tab->empty) |
2364 | return tab; |
2365 | } |
2366 | return tab; |
2367 | error: |
2368 | isl_tab_free(tab); |
2369 | return NULL; |
2370 | } |
2371 | |
2372 | /* Given a main tableau where more than one row requires a split, |
2373 | * determine and return the "best" row to split on. |
2374 | * |
2375 | * If any of the rows requiring a split only involves |
2376 | * variables that also appear in the context tableau, |
2377 | * then the negative part is guaranteed not to have a solution. |
2378 | * It is therefore best to split on any of these rows first. |
2379 | * |
2380 | * Otherwise, |
2381 | * given two rows in the main tableau, if the inequality corresponding |
2382 | * to the first row is redundant with respect to that of the second row |
2383 | * in the current tableau, then it is better to split on the second row, |
2384 | * since in the positive part, both rows will be positive. |
2385 | * (In the negative part a pivot will have to be performed and just about |
2386 | * anything can happen to the sign of the other row.) |
2387 | * |
2388 | * As a simple heuristic, we therefore select the row that makes the most |
2389 | * of the other rows redundant. |
2390 | * |
2391 | * Perhaps it would also be useful to look at the number of constraints |
2392 | * that conflict with any given constraint. |
2393 | * |
2394 | * best is the best row so far (-1 when we have not found any row yet). |
2395 | * best_r is the number of other rows made redundant by row best. |
2396 | * When best is still -1, bset_r is meaningless, but it is initialized |
2397 | * to some arbitrary value (0) anyway. Without this redundant initialization |
2398 | * valgrind may warn about uninitialized memory accesses when isl |
2399 | * is compiled with some versions of gcc. |
2400 | */ |
2401 | static int best_split(struct isl_tab *tab, struct isl_tab *context_tab) |
2402 | { |
2403 | struct isl_tab_undo *snap; |
2404 | int split; |
2405 | int row; |
2406 | int best = -1; |
2407 | int best_r = 0; |
2408 | |
2409 | if (isl_tab_extend_cons(tab: context_tab, n_new: 2) < 0) |
2410 | return -1; |
2411 | |
2412 | snap = isl_tab_snap(tab: context_tab); |
2413 | |
2414 | for (split = tab->n_redundant; split < tab->n_row; ++split) { |
2415 | struct isl_tab_undo *snap2; |
2416 | struct isl_vec *ineq = NULL; |
2417 | int r = 0; |
2418 | int ok; |
2419 | |
2420 | if (!isl_tab_var_from_row(tab, i: split)->is_nonneg) |
2421 | continue; |
2422 | if (tab->row_sign[split] != isl_tab_row_any) |
2423 | continue; |
2424 | |
2425 | if (is_parametric_constant(tab, row: split)) |
2426 | return split; |
2427 | |
2428 | ineq = get_row_parameter_ineq(tab, row: split); |
2429 | if (!ineq) |
2430 | return -1; |
2431 | ok = isl_tab_add_ineq(tab: context_tab, ineq: ineq->el) >= 0; |
2432 | isl_vec_free(vec: ineq); |
2433 | if (!ok) |
2434 | return -1; |
2435 | |
2436 | snap2 = isl_tab_snap(tab: context_tab); |
2437 | |
2438 | for (row = tab->n_redundant; row < tab->n_row; ++row) { |
2439 | struct isl_tab_var *var; |
2440 | |
2441 | if (row == split) |
2442 | continue; |
2443 | if (!isl_tab_var_from_row(tab, i: row)->is_nonneg) |
2444 | continue; |
2445 | if (tab->row_sign[row] != isl_tab_row_any) |
2446 | continue; |
2447 | |
2448 | ineq = get_row_parameter_ineq(tab, row); |
2449 | if (!ineq) |
2450 | return -1; |
2451 | ok = isl_tab_add_ineq(tab: context_tab, ineq: ineq->el) >= 0; |
2452 | isl_vec_free(vec: ineq); |
2453 | if (!ok) |
2454 | return -1; |
2455 | var = &context_tab->con[context_tab->n_con - 1]; |
2456 | if (!context_tab->empty && |
2457 | !isl_tab_min_at_most_neg_one(tab: context_tab, var)) |
2458 | r++; |
2459 | if (isl_tab_rollback(tab: context_tab, snap: snap2) < 0) |
2460 | return -1; |
2461 | } |
2462 | if (best == -1 || r > best_r) { |
2463 | best = split; |
2464 | best_r = r; |
2465 | } |
2466 | if (isl_tab_rollback(tab: context_tab, snap) < 0) |
2467 | return -1; |
2468 | } |
2469 | |
2470 | return best; |
2471 | } |
2472 | |
2473 | static struct isl_basic_set *context_lex_peek_basic_set( |
2474 | struct isl_context *context) |
2475 | { |
2476 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
2477 | if (!clex->tab) |
2478 | return NULL; |
2479 | return isl_tab_peek_bset(tab: clex->tab); |
2480 | } |
2481 | |
2482 | static struct isl_tab *context_lex_peek_tab(struct isl_context *context) |
2483 | { |
2484 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
2485 | return clex->tab; |
2486 | } |
2487 | |
2488 | static void context_lex_add_eq(struct isl_context *context, isl_int *eq, |
2489 | int check, int update) |
2490 | { |
2491 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
2492 | if (isl_tab_extend_cons(tab: clex->tab, n_new: 2) < 0) |
2493 | goto error; |
2494 | if (add_lexmin_eq(tab: clex->tab, eq) < 0) |
2495 | goto error; |
2496 | if (check) { |
2497 | int v = tab_has_valid_sample(tab: clex->tab, ineq: eq, eq: 1); |
2498 | if (v < 0) |
2499 | goto error; |
2500 | if (!v) |
2501 | clex->tab = check_integer_feasible(tab: clex->tab); |
2502 | } |
2503 | if (update) |
2504 | clex->tab = check_samples(tab: clex->tab, ineq: eq, eq: 1); |
2505 | return; |
2506 | error: |
2507 | isl_tab_free(tab: clex->tab); |
2508 | clex->tab = NULL; |
2509 | } |
2510 | |
2511 | static void context_lex_add_ineq(struct isl_context *context, isl_int *ineq, |
2512 | int check, int update) |
2513 | { |
2514 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
2515 | if (isl_tab_extend_cons(tab: clex->tab, n_new: 1) < 0) |
2516 | goto error; |
2517 | clex->tab = add_lexmin_ineq(tab: clex->tab, ineq); |
2518 | if (check) { |
2519 | int v = tab_has_valid_sample(tab: clex->tab, ineq, eq: 0); |
2520 | if (v < 0) |
2521 | goto error; |
2522 | if (!v) |
2523 | clex->tab = check_integer_feasible(tab: clex->tab); |
2524 | } |
2525 | if (update) |
2526 | clex->tab = check_samples(tab: clex->tab, ineq, eq: 0); |
2527 | return; |
2528 | error: |
2529 | isl_tab_free(tab: clex->tab); |
2530 | clex->tab = NULL; |
2531 | } |
2532 | |
2533 | static isl_stat context_lex_add_ineq_wrap(void *user, isl_int *ineq) |
2534 | { |
2535 | struct isl_context *context = (struct isl_context *)user; |
2536 | context_lex_add_ineq(context, ineq, check: 0, update: 0); |
2537 | return context->op->is_ok(context) ? isl_stat_ok : isl_stat_error; |
2538 | } |
2539 | |
2540 | /* Check which signs can be obtained by "ineq" on all the currently |
2541 | * active sample values. See row_sign for more information. |
2542 | */ |
2543 | static enum isl_tab_row_sign tab_ineq_sign(struct isl_tab *tab, isl_int *ineq, |
2544 | int strict) |
2545 | { |
2546 | int i; |
2547 | int sgn; |
2548 | isl_int tmp; |
2549 | enum isl_tab_row_sign res = isl_tab_row_unknown; |
2550 | |
2551 | isl_assert(tab->mat->ctx, tab->samples, return isl_tab_row_unknown); |
2552 | isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, |
2553 | return isl_tab_row_unknown); |
2554 | |
2555 | isl_int_init(tmp); |
2556 | for (i = tab->n_outside; i < tab->n_sample; ++i) { |
2557 | isl_seq_inner_product(p1: tab->samples->row[i], p2: ineq, |
2558 | len: 1 + tab->n_var, prod: &tmp); |
2559 | sgn = isl_int_sgn(tmp); |
2560 | if (sgn > 0 || (sgn == 0 && strict)) { |
2561 | if (res == isl_tab_row_unknown) |
2562 | res = isl_tab_row_pos; |
2563 | if (res == isl_tab_row_neg) |
2564 | res = isl_tab_row_any; |
2565 | } |
2566 | if (sgn < 0) { |
2567 | if (res == isl_tab_row_unknown) |
2568 | res = isl_tab_row_neg; |
2569 | if (res == isl_tab_row_pos) |
2570 | res = isl_tab_row_any; |
2571 | } |
2572 | if (res == isl_tab_row_any) |
2573 | break; |
2574 | } |
2575 | isl_int_clear(tmp); |
2576 | |
2577 | return res; |
2578 | } |
2579 | |
2580 | static enum isl_tab_row_sign context_lex_ineq_sign(struct isl_context *context, |
2581 | isl_int *ineq, int strict) |
2582 | { |
2583 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
2584 | return tab_ineq_sign(tab: clex->tab, ineq, strict); |
2585 | } |
2586 | |
2587 | /* Check whether "ineq" can be added to the tableau without rendering |
2588 | * it infeasible. |
2589 | */ |
2590 | static int context_lex_test_ineq(struct isl_context *context, isl_int *ineq) |
2591 | { |
2592 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
2593 | struct isl_tab_undo *snap; |
2594 | int feasible; |
2595 | |
2596 | if (!clex->tab) |
2597 | return -1; |
2598 | |
2599 | if (isl_tab_extend_cons(tab: clex->tab, n_new: 1) < 0) |
2600 | return -1; |
2601 | |
2602 | snap = isl_tab_snap(tab: clex->tab); |
2603 | if (isl_tab_push_basis(tab: clex->tab) < 0) |
2604 | return -1; |
2605 | clex->tab = add_lexmin_ineq(tab: clex->tab, ineq); |
2606 | clex->tab = check_integer_feasible(tab: clex->tab); |
2607 | if (!clex->tab) |
2608 | return -1; |
2609 | feasible = !clex->tab->empty; |
2610 | if (isl_tab_rollback(tab: clex->tab, snap) < 0) |
2611 | return -1; |
2612 | |
2613 | return feasible; |
2614 | } |
2615 | |
2616 | static int context_lex_get_div(struct isl_context *context, struct isl_tab *tab, |
2617 | struct isl_vec *div) |
2618 | { |
2619 | return get_div(tab, context, div); |
2620 | } |
2621 | |
2622 | /* Insert a div specified by "div" to the context tableau at position "pos" and |
2623 | * return isl_bool_true if the div is obviously non-negative. |
2624 | * context_tab_add_div will always return isl_bool_true, because all variables |
2625 | * in a isl_context_lex tableau are non-negative. |
2626 | * However, if we are using a big parameter in the context, then this only |
2627 | * reflects the non-negativity of the variable used to _encode_ the |
2628 | * div, i.e., div' = M + div, so we can't draw any conclusions. |
2629 | */ |
2630 | static isl_bool context_lex_insert_div(struct isl_context *context, int pos, |
2631 | __isl_keep isl_vec *div) |
2632 | { |
2633 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
2634 | isl_bool nonneg; |
2635 | nonneg = context_tab_insert_div(tab: clex->tab, pos, div, |
2636 | add_ineq: context_lex_add_ineq_wrap, user: context); |
2637 | if (nonneg < 0) |
2638 | return isl_bool_error; |
2639 | if (clex->tab->M) |
2640 | return isl_bool_false; |
2641 | return nonneg; |
2642 | } |
2643 | |
2644 | static int context_lex_detect_equalities(struct isl_context *context, |
2645 | struct isl_tab *tab) |
2646 | { |
2647 | return 0; |
2648 | } |
2649 | |
2650 | static int context_lex_best_split(struct isl_context *context, |
2651 | struct isl_tab *tab) |
2652 | { |
2653 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
2654 | struct isl_tab_undo *snap; |
2655 | int r; |
2656 | |
2657 | snap = isl_tab_snap(tab: clex->tab); |
2658 | if (isl_tab_push_basis(tab: clex->tab) < 0) |
2659 | return -1; |
2660 | r = best_split(tab, context_tab: clex->tab); |
2661 | |
2662 | if (r >= 0 && isl_tab_rollback(tab: clex->tab, snap) < 0) |
2663 | return -1; |
2664 | |
2665 | return r; |
2666 | } |
2667 | |
2668 | static int context_lex_is_empty(struct isl_context *context) |
2669 | { |
2670 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
2671 | if (!clex->tab) |
2672 | return -1; |
2673 | return clex->tab->empty; |
2674 | } |
2675 | |
2676 | static void *context_lex_save(struct isl_context *context) |
2677 | { |
2678 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
2679 | struct isl_tab_undo *snap; |
2680 | |
2681 | snap = isl_tab_snap(tab: clex->tab); |
2682 | if (isl_tab_push_basis(tab: clex->tab) < 0) |
2683 | return NULL; |
2684 | if (isl_tab_save_samples(tab: clex->tab) < 0) |
2685 | return NULL; |
2686 | |
2687 | return snap; |
2688 | } |
2689 | |
2690 | static void context_lex_restore(struct isl_context *context, void *save) |
2691 | { |
2692 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
2693 | if (isl_tab_rollback(tab: clex->tab, snap: (struct isl_tab_undo *)save) < 0) { |
2694 | isl_tab_free(tab: clex->tab); |
2695 | clex->tab = NULL; |
2696 | } |
2697 | } |
2698 | |
2699 | static void context_lex_discard(void *save) |
2700 | { |
2701 | } |
2702 | |
2703 | static int context_lex_is_ok(struct isl_context *context) |
2704 | { |
2705 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
2706 | return !!clex->tab; |
2707 | } |
2708 | |
2709 | /* For each variable in the context tableau, check if the variable can |
2710 | * only attain non-negative values. If so, mark the parameter as non-negative |
2711 | * in the main tableau. This allows for a more direct identification of some |
2712 | * cases of violated constraints. |
2713 | */ |
2714 | static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab, |
2715 | struct isl_tab *context_tab) |
2716 | { |
2717 | int i; |
2718 | struct isl_tab_undo *snap; |
2719 | struct isl_vec *ineq = NULL; |
2720 | struct isl_tab_var *var; |
2721 | int n; |
2722 | |
2723 | if (context_tab->n_var == 0) |
2724 | return tab; |
2725 | |
2726 | ineq = isl_vec_alloc(ctx: tab->mat->ctx, size: 1 + context_tab->n_var); |
2727 | if (!ineq) |
2728 | goto error; |
2729 | |
2730 | if (isl_tab_extend_cons(tab: context_tab, n_new: 1) < 0) |
2731 | goto error; |
2732 | |
2733 | snap = isl_tab_snap(tab: context_tab); |
2734 | |
2735 | n = 0; |
2736 | isl_seq_clr(p: ineq->el, len: ineq->size); |
2737 | for (i = 0; i < context_tab->n_var; ++i) { |
2738 | isl_int_set_si(ineq->el[1 + i], 1); |
2739 | if (isl_tab_add_ineq(tab: context_tab, ineq: ineq->el) < 0) |
2740 | goto error; |
2741 | var = &context_tab->con[context_tab->n_con - 1]; |
2742 | if (!context_tab->empty && |
2743 | !isl_tab_min_at_most_neg_one(tab: context_tab, var)) { |
2744 | int j = i; |
2745 | if (i >= tab->n_param) |
2746 | j = i - tab->n_param + tab->n_var - tab->n_div; |
2747 | tab->var[j].is_nonneg = 1; |
2748 | n++; |
2749 | } |
2750 | isl_int_set_si(ineq->el[1 + i], 0); |
2751 | if (isl_tab_rollback(tab: context_tab, snap) < 0) |
2752 | goto error; |
2753 | } |
2754 | |
2755 | if (context_tab->M && n == context_tab->n_var) { |
2756 | context_tab->mat = isl_mat_drop_cols(mat: context_tab->mat, col: 2, n: 1); |
2757 | context_tab->M = 0; |
2758 | } |
2759 | |
2760 | isl_vec_free(vec: ineq); |
2761 | return tab; |
2762 | error: |
2763 | isl_vec_free(vec: ineq); |
2764 | isl_tab_free(tab); |
2765 | return NULL; |
2766 | } |
2767 | |
2768 | static struct isl_tab *context_lex_detect_nonnegative_parameters( |
2769 | struct isl_context *context, struct isl_tab *tab) |
2770 | { |
2771 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
2772 | struct isl_tab_undo *snap; |
2773 | |
2774 | if (!tab) |
2775 | return NULL; |
2776 | |
2777 | snap = isl_tab_snap(tab: clex->tab); |
2778 | if (isl_tab_push_basis(tab: clex->tab) < 0) |
2779 | goto error; |
2780 | |
2781 | tab = tab_detect_nonnegative_parameters(tab, context_tab: clex->tab); |
2782 | |
2783 | if (isl_tab_rollback(tab: clex->tab, snap) < 0) |
2784 | goto error; |
2785 | |
2786 | return tab; |
2787 | error: |
2788 | isl_tab_free(tab); |
2789 | return NULL; |
2790 | } |
2791 | |
2792 | static void context_lex_invalidate(struct isl_context *context) |
2793 | { |
2794 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
2795 | isl_tab_free(tab: clex->tab); |
2796 | clex->tab = NULL; |
2797 | } |
2798 | |
2799 | static __isl_null struct isl_context *context_lex_free( |
2800 | struct isl_context *context) |
2801 | { |
2802 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
2803 | isl_tab_free(tab: clex->tab); |
2804 | free(ptr: clex); |
2805 | |
2806 | return NULL; |
2807 | } |
2808 | |
2809 | struct isl_context_op isl_context_lex_op = { |
2810 | context_lex_detect_nonnegative_parameters, |
2811 | context_lex_peek_basic_set, |
2812 | context_lex_peek_tab, |
2813 | context_lex_add_eq, |
2814 | context_lex_add_ineq, |
2815 | context_lex_ineq_sign, |
2816 | context_lex_test_ineq, |
2817 | context_lex_get_div, |
2818 | context_lex_insert_div, |
2819 | context_lex_detect_equalities, |
2820 | context_lex_best_split, |
2821 | context_lex_is_empty, |
2822 | context_lex_is_ok, |
2823 | context_lex_save, |
2824 | context_lex_restore, |
2825 | context_lex_discard, |
2826 | context_lex_invalidate, |
2827 | context_lex_free, |
2828 | }; |
2829 | |
2830 | static struct isl_tab *context_tab_for_lexmin(__isl_take isl_basic_set *bset) |
2831 | { |
2832 | struct isl_tab *tab; |
2833 | |
2834 | if (!bset) |
2835 | return NULL; |
2836 | tab = tab_for_lexmin(bmap: bset_to_bmap(bset), NULL, M: 1, max: 0); |
2837 | if (isl_tab_track_bset(tab, bset) < 0) |
2838 | goto error; |
2839 | tab = isl_tab_init_samples(tab); |
2840 | return tab; |
2841 | error: |
2842 | isl_tab_free(tab); |
2843 | return NULL; |
2844 | } |
2845 | |
2846 | static struct isl_context *isl_context_lex_alloc(struct isl_basic_set *dom) |
2847 | { |
2848 | struct isl_context_lex *clex; |
2849 | |
2850 | if (!dom) |
2851 | return NULL; |
2852 | |
2853 | clex = isl_alloc_type(dom->ctx, struct isl_context_lex); |
2854 | if (!clex) |
2855 | return NULL; |
2856 | |
2857 | clex->context.op = &isl_context_lex_op; |
2858 | |
2859 | clex->tab = context_tab_for_lexmin(bset: isl_basic_set_copy(bset: dom)); |
2860 | if (restore_lexmin(tab: clex->tab) < 0) |
2861 | goto error; |
2862 | clex->tab = check_integer_feasible(tab: clex->tab); |
2863 | if (!clex->tab) |
2864 | goto error; |
2865 | |
2866 | return &clex->context; |
2867 | error: |
2868 | clex->context.op->free(&clex->context); |
2869 | return NULL; |
2870 | } |
2871 | |
2872 | /* Representation of the context when using generalized basis reduction. |
2873 | * |
2874 | * "shifted" contains the offsets of the unit hypercubes that lie inside the |
2875 | * context. Any rational point in "shifted" can therefore be rounded |
2876 | * up to an integer point in the context. |
2877 | * If the context is constrained by any equality, then "shifted" is not used |
2878 | * as it would be empty. |
2879 | */ |
2880 | struct isl_context_gbr { |
2881 | struct isl_context context; |
2882 | struct isl_tab *tab; |
2883 | struct isl_tab *shifted; |
2884 | struct isl_tab *cone; |
2885 | }; |
2886 | |
2887 | static struct isl_tab *context_gbr_detect_nonnegative_parameters( |
2888 | struct isl_context *context, struct isl_tab *tab) |
2889 | { |
2890 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
2891 | if (!tab) |
2892 | return NULL; |
2893 | return tab_detect_nonnegative_parameters(tab, context_tab: cgbr->tab); |
2894 | } |
2895 | |
2896 | static struct isl_basic_set *context_gbr_peek_basic_set( |
2897 | struct isl_context *context) |
2898 | { |
2899 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
2900 | if (!cgbr->tab) |
2901 | return NULL; |
2902 | return isl_tab_peek_bset(tab: cgbr->tab); |
2903 | } |
2904 | |
2905 | static struct isl_tab *context_gbr_peek_tab(struct isl_context *context) |
2906 | { |
2907 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
2908 | return cgbr->tab; |
2909 | } |
2910 | |
2911 | /* Initialize the "shifted" tableau of the context, which |
2912 | * contains the constraints of the original tableau shifted |
2913 | * by the sum of all negative coefficients. This ensures |
2914 | * that any rational point in the shifted tableau can |
2915 | * be rounded up to yield an integer point in the original tableau. |
2916 | */ |
2917 | static void gbr_init_shifted(struct isl_context_gbr *cgbr) |
2918 | { |
2919 | int i, j; |
2920 | struct isl_vec *cst; |
2921 | struct isl_basic_set *bset = isl_tab_peek_bset(tab: cgbr->tab); |
2922 | isl_size dim = isl_basic_set_dim(bset, type: isl_dim_all); |
2923 | |
2924 | if (dim < 0) |
2925 | return; |
2926 | cst = isl_vec_alloc(ctx: cgbr->tab->mat->ctx, size: bset->n_ineq); |
2927 | if (!cst) |
2928 | return; |
2929 | |
2930 | for (i = 0; i < bset->n_ineq; ++i) { |
2931 | isl_int_set(cst->el[i], bset->ineq[i][0]); |
2932 | for (j = 0; j < dim; ++j) { |
2933 | if (!isl_int_is_neg(bset->ineq[i][1 + j])) |
2934 | continue; |
2935 | isl_int_add(bset->ineq[i][0], bset->ineq[i][0], |
2936 | bset->ineq[i][1 + j]); |
2937 | } |
2938 | } |
2939 | |
2940 | cgbr->shifted = isl_tab_from_basic_set(bset, track: 0); |
2941 | |
2942 | for (i = 0; i < bset->n_ineq; ++i) |
2943 | isl_int_set(bset->ineq[i][0], cst->el[i]); |
2944 | |
2945 | isl_vec_free(vec: cst); |
2946 | } |
2947 | |
2948 | /* Check if the shifted tableau is non-empty, and if so |
2949 | * use the sample point to construct an integer point |
2950 | * of the context tableau. |
2951 | */ |
2952 | static struct isl_vec *gbr_get_shifted_sample(struct isl_context_gbr *cgbr) |
2953 | { |
2954 | struct isl_vec *sample; |
2955 | |
2956 | if (!cgbr->shifted) |
2957 | gbr_init_shifted(cgbr); |
2958 | if (!cgbr->shifted) |
2959 | return NULL; |
2960 | if (cgbr->shifted->empty) |
2961 | return isl_vec_alloc(ctx: cgbr->tab->mat->ctx, size: 0); |
2962 | |
2963 | sample = isl_tab_get_sample_value(tab: cgbr->shifted); |
2964 | sample = isl_vec_ceil(vec: sample); |
2965 | |
2966 | return sample; |
2967 | } |
2968 | |
2969 | static __isl_give isl_basic_set *drop_constant_terms( |
2970 | __isl_take isl_basic_set *bset) |
2971 | { |
2972 | int i; |
2973 | |
2974 | if (!bset) |
2975 | return NULL; |
2976 | |
2977 | for (i = 0; i < bset->n_eq; ++i) |
2978 | isl_int_set_si(bset->eq[i][0], 0); |
2979 | |
2980 | for (i = 0; i < bset->n_ineq; ++i) |
2981 | isl_int_set_si(bset->ineq[i][0], 0); |
2982 | |
2983 | return bset; |
2984 | } |
2985 | |
2986 | static int use_shifted(struct isl_context_gbr *cgbr) |
2987 | { |
2988 | if (!cgbr->tab) |
2989 | return 0; |
2990 | return cgbr->tab->bmap->n_eq == 0 && cgbr->tab->bmap->n_div == 0; |
2991 | } |
2992 | |
2993 | static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr) |
2994 | { |
2995 | struct isl_basic_set *bset; |
2996 | struct isl_basic_set *cone; |
2997 | |
2998 | if (isl_tab_sample_is_integer(tab: cgbr->tab)) |
2999 | return isl_tab_get_sample_value(tab: cgbr->tab); |
3000 | |
3001 | if (use_shifted(cgbr)) { |
3002 | struct isl_vec *sample; |
3003 | |
3004 | sample = gbr_get_shifted_sample(cgbr); |
3005 | if (!sample || sample->size > 0) |
3006 | return sample; |
3007 | |
3008 | isl_vec_free(vec: sample); |
3009 | } |
3010 | |
3011 | if (!cgbr->cone) { |
3012 | bset = isl_tab_peek_bset(tab: cgbr->tab); |
3013 | cgbr->cone = isl_tab_from_recession_cone(bset, parametric: 0); |
3014 | if (!cgbr->cone) |
3015 | return NULL; |
3016 | if (isl_tab_track_bset(tab: cgbr->cone, |
3017 | bset: isl_basic_set_copy(bset)) < 0) |
3018 | return NULL; |
3019 | } |
3020 | if (isl_tab_detect_implicit_equalities(tab: cgbr->cone) < 0) |
3021 | return NULL; |
3022 | |
3023 | if (cgbr->cone->n_dead == cgbr->cone->n_col) { |
3024 | struct isl_vec *sample; |
3025 | struct isl_tab_undo *snap; |
3026 | |
3027 | if (cgbr->tab->basis) { |
3028 | if (cgbr->tab->basis->n_col != 1 + cgbr->tab->n_var) { |
3029 | isl_mat_free(mat: cgbr->tab->basis); |
3030 | cgbr->tab->basis = NULL; |
3031 | } |
3032 | cgbr->tab->n_zero = 0; |
3033 | cgbr->tab->n_unbounded = 0; |
3034 | } |
3035 | |
3036 | snap = isl_tab_snap(tab: cgbr->tab); |
3037 | |
3038 | sample = isl_tab_sample(tab: cgbr->tab); |
3039 | |
3040 | if (!sample || isl_tab_rollback(tab: cgbr->tab, snap) < 0) { |
3041 | isl_vec_free(vec: sample); |
3042 | return NULL; |
3043 | } |
3044 | |
3045 | return sample; |
3046 | } |
3047 | |
3048 | cone = isl_basic_set_dup(bset: isl_tab_peek_bset(tab: cgbr->cone)); |
3049 | cone = drop_constant_terms(bset: cone); |
3050 | cone = isl_basic_set_update_from_tab(bset: cone, tab: cgbr->cone); |
3051 | cone = isl_basic_set_underlying_set(bset: cone); |
3052 | cone = isl_basic_set_gauss(bset: cone, NULL); |
3053 | |
3054 | bset = isl_basic_set_dup(bset: isl_tab_peek_bset(tab: cgbr->tab)); |
3055 | bset = isl_basic_set_update_from_tab(bset, tab: cgbr->tab); |
3056 | bset = isl_basic_set_underlying_set(bset); |
3057 | bset = isl_basic_set_gauss(bset, NULL); |
3058 | |
3059 | return isl_basic_set_sample_with_cone(bset, cone); |
3060 | } |
3061 | |
3062 | static void check_gbr_integer_feasible(struct isl_context_gbr *cgbr) |
3063 | { |
3064 | struct isl_vec *sample; |
3065 | |
3066 | if (!cgbr->tab) |
3067 | return; |
3068 | |
3069 | if (cgbr->tab->empty) |
3070 | return; |
3071 | |
3072 | sample = gbr_get_sample(cgbr); |
3073 | if (!sample) |
3074 | goto error; |
3075 | |
3076 | if (sample->size == 0) { |
3077 | isl_vec_free(vec: sample); |
3078 | if (isl_tab_mark_empty(tab: cgbr->tab) < 0) |
3079 | goto error; |
3080 | return; |
3081 | } |
3082 | |
3083 | if (isl_tab_add_sample(tab: cgbr->tab, sample) < 0) |
3084 | goto error; |
3085 | |
3086 | return; |
3087 | error: |
3088 | isl_tab_free(tab: cgbr->tab); |
3089 | cgbr->tab = NULL; |
3090 | } |
3091 | |
3092 | static struct isl_tab *add_gbr_eq(struct isl_tab *tab, isl_int *eq) |
3093 | { |
3094 | if (!tab) |
3095 | return NULL; |
3096 | |
3097 | if (isl_tab_extend_cons(tab, n_new: 2) < 0) |
3098 | goto error; |
3099 | |
3100 | if (isl_tab_add_eq(tab, eq) < 0) |
3101 | goto error; |
3102 | |
3103 | return tab; |
3104 | error: |
3105 | isl_tab_free(tab); |
3106 | return NULL; |
3107 | } |
3108 | |
3109 | /* Add the equality described by "eq" to the context. |
3110 | * If "check" is set, then we check if the context is empty after |
3111 | * adding the equality. |
3112 | * If "update" is set, then we check if the samples are still valid. |
3113 | * |
3114 | * We do not explicitly add shifted copies of the equality to |
3115 | * cgbr->shifted since they would conflict with each other. |
3116 | * Instead, we directly mark cgbr->shifted empty. |
3117 | */ |
3118 | static void context_gbr_add_eq(struct isl_context *context, isl_int *eq, |
3119 | int check, int update) |
3120 | { |
3121 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
3122 | |
3123 | cgbr->tab = add_gbr_eq(tab: cgbr->tab, eq); |
3124 | |
3125 | if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) { |
3126 | if (isl_tab_mark_empty(tab: cgbr->shifted) < 0) |
3127 | goto error; |
3128 | } |
3129 | |
3130 | if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) { |
3131 | if (isl_tab_extend_cons(tab: cgbr->cone, n_new: 2) < 0) |
3132 | goto error; |
3133 | if (isl_tab_add_eq(tab: cgbr->cone, eq) < 0) |
3134 | goto error; |
3135 | } |
3136 | |
3137 | if (check) { |
3138 | int v = tab_has_valid_sample(tab: cgbr->tab, ineq: eq, eq: 1); |
3139 | if (v < 0) |
3140 | goto error; |
3141 | if (!v) |
3142 | check_gbr_integer_feasible(cgbr); |
3143 | } |
3144 | if (update) |
3145 | cgbr->tab = check_samples(tab: cgbr->tab, ineq: eq, eq: 1); |
3146 | return; |
3147 | error: |
3148 | isl_tab_free(tab: cgbr->tab); |
3149 | cgbr->tab = NULL; |
3150 | } |
3151 | |
3152 | static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq) |
3153 | { |
3154 | if (!cgbr->tab) |
3155 | return; |
3156 | |
3157 | if (isl_tab_extend_cons(tab: cgbr->tab, n_new: 1) < 0) |
3158 | goto error; |
3159 | |
3160 | if (isl_tab_add_ineq(tab: cgbr->tab, ineq) < 0) |
3161 | goto error; |
3162 | |
3163 | if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) { |
3164 | int i; |
3165 | isl_size dim; |
3166 | dim = isl_basic_map_dim(bmap: cgbr->tab->bmap, type: isl_dim_all); |
3167 | if (dim < 0) |
3168 | goto error; |
3169 | |
3170 | if (isl_tab_extend_cons(tab: cgbr->shifted, n_new: 1) < 0) |
3171 | goto error; |
3172 | |
3173 | for (i = 0; i < dim; ++i) { |
3174 | if (!isl_int_is_neg(ineq[1 + i])) |
3175 | continue; |
3176 | isl_int_add(ineq[0], ineq[0], ineq[1 + i]); |
3177 | } |
3178 | |
3179 | if (isl_tab_add_ineq(tab: cgbr->shifted, ineq) < 0) |
3180 | goto error; |
3181 | |
3182 | for (i = 0; i < dim; ++i) { |
3183 | if (!isl_int_is_neg(ineq[1 + i])) |
3184 | continue; |
3185 | isl_int_sub(ineq[0], ineq[0], ineq[1 + i]); |
3186 | } |
3187 | } |
3188 | |
3189 | if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) { |
3190 | if (isl_tab_extend_cons(tab: cgbr->cone, n_new: 1) < 0) |
3191 | goto error; |
3192 | if (isl_tab_add_ineq(tab: cgbr->cone, ineq) < 0) |
3193 | goto error; |
3194 | } |
3195 | |
3196 | return; |
3197 | error: |
3198 | isl_tab_free(tab: cgbr->tab); |
3199 | cgbr->tab = NULL; |
3200 | } |
3201 | |
3202 | static void context_gbr_add_ineq(struct isl_context *context, isl_int *ineq, |
3203 | int check, int update) |
3204 | { |
3205 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
3206 | |
3207 | add_gbr_ineq(cgbr, ineq); |
3208 | if (!cgbr->tab) |
3209 | return; |
3210 | |
3211 | if (check) { |
3212 | int v = tab_has_valid_sample(tab: cgbr->tab, ineq, eq: 0); |
3213 | if (v < 0) |
3214 | goto error; |
3215 | if (!v) |
3216 | check_gbr_integer_feasible(cgbr); |
3217 | } |
3218 | if (update) |
3219 | cgbr->tab = check_samples(tab: cgbr->tab, ineq, eq: 0); |
3220 | return; |
3221 | error: |
3222 | isl_tab_free(tab: cgbr->tab); |
3223 | cgbr->tab = NULL; |
3224 | } |
3225 | |
3226 | static isl_stat context_gbr_add_ineq_wrap(void *user, isl_int *ineq) |
3227 | { |
3228 | struct isl_context *context = (struct isl_context *)user; |
3229 | context_gbr_add_ineq(context, ineq, check: 0, update: 0); |
3230 | return context->op->is_ok(context) ? isl_stat_ok : isl_stat_error; |
3231 | } |
3232 | |
3233 | static enum isl_tab_row_sign context_gbr_ineq_sign(struct isl_context *context, |
3234 | isl_int *ineq, int strict) |
3235 | { |
3236 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
3237 | return tab_ineq_sign(tab: cgbr->tab, ineq, strict); |
3238 | } |
3239 | |
3240 | /* Check whether "ineq" can be added to the tableau without rendering |
3241 | * it infeasible. |
3242 | */ |
3243 | static int context_gbr_test_ineq(struct isl_context *context, isl_int *ineq) |
3244 | { |
3245 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
3246 | struct isl_tab_undo *snap; |
3247 | struct isl_tab_undo *shifted_snap = NULL; |
3248 | struct isl_tab_undo *cone_snap = NULL; |
3249 | int feasible; |
3250 | |
3251 | if (!cgbr->tab) |
3252 | return -1; |
3253 | |
3254 | if (isl_tab_extend_cons(tab: cgbr->tab, n_new: 1) < 0) |
3255 | return -1; |
3256 | |
3257 | snap = isl_tab_snap(tab: cgbr->tab); |
3258 | if (cgbr->shifted) |
3259 | shifted_snap = isl_tab_snap(tab: cgbr->shifted); |
3260 | if (cgbr->cone) |
3261 | cone_snap = isl_tab_snap(tab: cgbr->cone); |
3262 | add_gbr_ineq(cgbr, ineq); |
3263 | check_gbr_integer_feasible(cgbr); |
3264 | if (!cgbr->tab) |
3265 | return -1; |
3266 | feasible = !cgbr->tab->empty; |
3267 | if (isl_tab_rollback(tab: cgbr->tab, snap) < 0) |
3268 | return -1; |
3269 | if (shifted_snap) { |
3270 | if (isl_tab_rollback(tab: cgbr->shifted, snap: shifted_snap)) |
3271 | return -1; |
3272 | } else if (cgbr->shifted) { |
3273 | isl_tab_free(tab: cgbr->shifted); |
3274 | cgbr->shifted = NULL; |
3275 | } |
3276 | if (cone_snap) { |
3277 | if (isl_tab_rollback(tab: cgbr->cone, snap: cone_snap)) |
3278 | return -1; |
3279 | } else if (cgbr->cone) { |
3280 | isl_tab_free(tab: cgbr->cone); |
3281 | cgbr->cone = NULL; |
3282 | } |
3283 | |
3284 | return feasible; |
3285 | } |
3286 | |
3287 | /* Return the column of the last of the variables associated to |
3288 | * a column that has a non-zero coefficient. |
3289 | * This function is called in a context where only coefficients |
3290 | * of parameters or divs can be non-zero. |
3291 | */ |
3292 | static int last_non_zero_var_col(struct isl_tab *tab, isl_int *p) |
3293 | { |
3294 | int i; |
3295 | int col; |
3296 | |
3297 | if (tab->n_var == 0) |
3298 | return -1; |
3299 | |
3300 | for (i = tab->n_var - 1; i >= 0; --i) { |
3301 | if (i >= tab->n_param && i < tab->n_var - tab->n_div) |
3302 | continue; |
3303 | if (tab->var[i].is_row) |
3304 | continue; |
3305 | col = tab->var[i].index; |
3306 | if (!isl_int_is_zero(p[col])) |
3307 | return col; |
3308 | } |
3309 | |
3310 | return -1; |
3311 | } |
3312 | |
3313 | /* Look through all the recently added equalities in the context |
3314 | * to see if we can propagate any of them to the main tableau. |
3315 | * |
3316 | * The newly added equalities in the context are encoded as pairs |
3317 | * of inequalities starting at inequality "first". |
3318 | * |
3319 | * We tentatively add each of these equalities to the main tableau |
3320 | * and if this happens to result in a row with a final coefficient |
3321 | * that is one or negative one, we use it to kill a column |
3322 | * in the main tableau. Otherwise, we discard the tentatively |
3323 | * added row. |
3324 | * This tentative addition of equality constraints turns |
3325 | * on the undo facility of the tableau. Turn it off again |
3326 | * at the end, assuming it was turned off to begin with. |
3327 | * |
3328 | * Return 0 on success and -1 on failure. |
3329 | */ |
3330 | static int propagate_equalities(struct isl_context_gbr *cgbr, |
3331 | struct isl_tab *tab, unsigned first) |
3332 | { |
3333 | int i; |
3334 | struct isl_vec *eq = NULL; |
3335 | isl_bool needs_undo; |
3336 | |
3337 | needs_undo = isl_tab_need_undo(tab); |
3338 | if (needs_undo < 0) |
3339 | goto error; |
3340 | eq = isl_vec_alloc(ctx: tab->mat->ctx, size: 1 + tab->n_var); |
3341 | if (!eq) |
3342 | goto error; |
3343 | |
3344 | if (isl_tab_extend_cons(tab, n_new: (cgbr->tab->bmap->n_ineq - first)/2) < 0) |
3345 | goto error; |
3346 | |
3347 | isl_seq_clr(p: eq->el + 1 + tab->n_param, |
3348 | len: tab->n_var - tab->n_param - tab->n_div); |
3349 | for (i = first; i < cgbr->tab->bmap->n_ineq; i += 2) { |
3350 | int j; |
3351 | int r; |
3352 | struct isl_tab_undo *snap; |
3353 | snap = isl_tab_snap(tab); |
3354 | |
3355 | isl_seq_cpy(dst: eq->el, src: cgbr->tab->bmap->ineq[i], len: 1 + tab->n_param); |
3356 | isl_seq_cpy(dst: eq->el + 1 + tab->n_var - tab->n_div, |
3357 | src: cgbr->tab->bmap->ineq[i] + 1 + tab->n_param, |
3358 | len: tab->n_div); |
3359 | |
3360 | r = isl_tab_add_row(tab, line: eq->el); |
3361 | if (r < 0) |
3362 | goto error; |
3363 | r = tab->con[r].index; |
3364 | j = last_non_zero_var_col(tab, p: tab->mat->row[r] + 2 + tab->M); |
3365 | if (j < 0 || j < tab->n_dead || |
3366 | !isl_int_is_one(tab->mat->row[r][0]) || |
3367 | (!isl_int_is_one(tab->mat->row[r][2 + tab->M + j]) && |
3368 | !isl_int_is_negone(tab->mat->row[r][2 + tab->M + j]))) { |
3369 | if (isl_tab_rollback(tab, snap) < 0) |
3370 | goto error; |
3371 | continue; |
3372 | } |
3373 | if (isl_tab_pivot(tab, row: r, col: j) < 0) |
3374 | goto error; |
3375 | if (isl_tab_kill_col(tab, col: j) < 0) |
3376 | goto error; |
3377 | |
3378 | if (restore_lexmin(tab) < 0) |
3379 | goto error; |
3380 | } |
3381 | |
3382 | if (!needs_undo) |
3383 | isl_tab_clear_undo(tab); |
3384 | isl_vec_free(vec: eq); |
3385 | |
3386 | return 0; |
3387 | error: |
3388 | isl_vec_free(vec: eq); |
3389 | isl_tab_free(tab: cgbr->tab); |
3390 | cgbr->tab = NULL; |
3391 | return -1; |
3392 | } |
3393 | |
3394 | static int context_gbr_detect_equalities(struct isl_context *context, |
3395 | struct isl_tab *tab) |
3396 | { |
3397 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
3398 | unsigned n_ineq; |
3399 | |
3400 | if (!cgbr->cone) { |
3401 | struct isl_basic_set *bset = isl_tab_peek_bset(tab: cgbr->tab); |
3402 | cgbr->cone = isl_tab_from_recession_cone(bset, parametric: 0); |
3403 | if (!cgbr->cone) |
3404 | goto error; |
3405 | if (isl_tab_track_bset(tab: cgbr->cone, |
3406 | bset: isl_basic_set_copy(bset)) < 0) |
3407 | goto error; |
3408 | } |
3409 | if (isl_tab_detect_implicit_equalities(tab: cgbr->cone) < 0) |
3410 | goto error; |
3411 | |
3412 | n_ineq = cgbr->tab->bmap->n_ineq; |
3413 | cgbr->tab = isl_tab_detect_equalities(tab: cgbr->tab, tab_cone: cgbr->cone); |
3414 | if (!cgbr->tab) |
3415 | return -1; |
3416 | if (cgbr->tab->bmap->n_ineq > n_ineq && |
3417 | propagate_equalities(cgbr, tab, first: n_ineq) < 0) |
3418 | return -1; |
3419 | |
3420 | return 0; |
3421 | error: |
3422 | isl_tab_free(tab: cgbr->tab); |
3423 | cgbr->tab = NULL; |
3424 | return -1; |
3425 | } |
3426 | |
3427 | static int context_gbr_get_div(struct isl_context *context, struct isl_tab *tab, |
3428 | struct isl_vec *div) |
3429 | { |
3430 | return get_div(tab, context, div); |
3431 | } |
3432 | |
3433 | static isl_bool context_gbr_insert_div(struct isl_context *context, int pos, |
3434 | __isl_keep isl_vec *div) |
3435 | { |
3436 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
3437 | if (cgbr->cone) { |
3438 | int r, o_div; |
3439 | isl_size n_div; |
3440 | |
3441 | n_div = isl_basic_map_dim(bmap: cgbr->cone->bmap, type: isl_dim_div); |
3442 | if (n_div < 0) |
3443 | return isl_bool_error; |
3444 | o_div = cgbr->cone->n_var - n_div; |
3445 | |
3446 | if (isl_tab_extend_cons(tab: cgbr->cone, n_new: 3) < 0) |
3447 | return isl_bool_error; |
3448 | if (isl_tab_extend_vars(tab: cgbr->cone, n_new: 1) < 0) |
3449 | return isl_bool_error; |
3450 | if ((r = isl_tab_insert_var(tab: cgbr->cone, pos)) <0) |
3451 | return isl_bool_error; |
3452 | |
3453 | cgbr->cone->bmap = isl_basic_map_insert_div(bmap: cgbr->cone->bmap, |
3454 | pos: r - o_div, div); |
3455 | if (!cgbr->cone->bmap) |
3456 | return isl_bool_error; |
3457 | if (isl_tab_push_var(tab: cgbr->cone, type: isl_tab_undo_bmap_div, |
3458 | var: &cgbr->cone->var[r]) < 0) |
3459 | return isl_bool_error; |
3460 | } |
3461 | return context_tab_insert_div(tab: cgbr->tab, pos, div, |
3462 | add_ineq: context_gbr_add_ineq_wrap, user: context); |
3463 | } |
3464 | |
3465 | static int context_gbr_best_split(struct isl_context *context, |
3466 | struct isl_tab *tab) |
3467 | { |
3468 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
3469 | struct isl_tab_undo *snap; |
3470 | int r; |
3471 | |
3472 | snap = isl_tab_snap(tab: cgbr->tab); |
3473 | r = best_split(tab, context_tab: cgbr->tab); |
3474 | |
3475 | if (r >= 0 && isl_tab_rollback(tab: cgbr->tab, snap) < 0) |
3476 | return -1; |
3477 | |
3478 | return r; |
3479 | } |
3480 | |
3481 | static int context_gbr_is_empty(struct isl_context *context) |
3482 | { |
3483 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
3484 | if (!cgbr->tab) |
3485 | return -1; |
3486 | return cgbr->tab->empty; |
3487 | } |
3488 | |
3489 | struct isl_gbr_tab_undo { |
3490 | struct isl_tab_undo *tab_snap; |
3491 | struct isl_tab_undo *shifted_snap; |
3492 | struct isl_tab_undo *cone_snap; |
3493 | }; |
3494 | |
3495 | static void *context_gbr_save(struct isl_context *context) |
3496 | { |
3497 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
3498 | struct isl_gbr_tab_undo *snap; |
3499 | |
3500 | if (!cgbr->tab) |
3501 | return NULL; |
3502 | |
3503 | snap = isl_alloc_type(cgbr->tab->mat->ctx, struct isl_gbr_tab_undo); |
3504 | if (!snap) |
3505 | return NULL; |
3506 | |
3507 | snap->tab_snap = isl_tab_snap(tab: cgbr->tab); |
3508 | if (isl_tab_save_samples(tab: cgbr->tab) < 0) |
3509 | goto error; |
3510 | |
3511 | if (cgbr->shifted) |
3512 | snap->shifted_snap = isl_tab_snap(tab: cgbr->shifted); |
3513 | else |
3514 | snap->shifted_snap = NULL; |
3515 | |
3516 | if (cgbr->cone) |
3517 | snap->cone_snap = isl_tab_snap(tab: cgbr->cone); |
3518 | else |
3519 | snap->cone_snap = NULL; |
3520 | |
3521 | return snap; |
3522 | error: |
3523 | free(ptr: snap); |
3524 | return NULL; |
3525 | } |
3526 | |
3527 | static void context_gbr_restore(struct isl_context *context, void *save) |
3528 | { |
3529 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
3530 | struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save; |
3531 | if (!snap) |
3532 | goto error; |
3533 | if (isl_tab_rollback(tab: cgbr->tab, snap: snap->tab_snap) < 0) |
3534 | goto error; |
3535 | |
3536 | if (snap->shifted_snap) { |
3537 | if (isl_tab_rollback(tab: cgbr->shifted, snap: snap->shifted_snap) < 0) |
3538 | goto error; |
3539 | } else if (cgbr->shifted) { |
3540 | isl_tab_free(tab: cgbr->shifted); |
3541 | cgbr->shifted = NULL; |
3542 | } |
3543 | |
3544 | if (snap->cone_snap) { |
3545 | if (isl_tab_rollback(tab: cgbr->cone, snap: snap->cone_snap) < 0) |
3546 | goto error; |
3547 | } else if (cgbr->cone) { |
3548 | isl_tab_free(tab: cgbr->cone); |
3549 | cgbr->cone = NULL; |
3550 | } |
3551 | |
3552 | free(ptr: snap); |
3553 | |
3554 | return; |
3555 | error: |
3556 | free(ptr: snap); |
3557 | isl_tab_free(tab: cgbr->tab); |
3558 | cgbr->tab = NULL; |
3559 | } |
3560 | |
3561 | static void context_gbr_discard(void *save) |
3562 | { |
3563 | struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save; |
3564 | free(ptr: snap); |
3565 | } |
3566 | |
3567 | static int context_gbr_is_ok(struct isl_context *context) |
3568 | { |
3569 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
3570 | return !!cgbr->tab; |
3571 | } |
3572 | |
3573 | static void context_gbr_invalidate(struct isl_context *context) |
3574 | { |
3575 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
3576 | isl_tab_free(tab: cgbr->tab); |
3577 | cgbr->tab = NULL; |
3578 | } |
3579 | |
3580 | static __isl_null struct isl_context *context_gbr_free( |
3581 | struct isl_context *context) |
3582 | { |
3583 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
3584 | isl_tab_free(tab: cgbr->tab); |
3585 | isl_tab_free(tab: cgbr->shifted); |
3586 | isl_tab_free(tab: cgbr->cone); |
3587 | free(ptr: cgbr); |
3588 | |
3589 | return NULL; |
3590 | } |
3591 | |
3592 | struct isl_context_op isl_context_gbr_op = { |
3593 | context_gbr_detect_nonnegative_parameters, |
3594 | context_gbr_peek_basic_set, |
3595 | context_gbr_peek_tab, |
3596 | context_gbr_add_eq, |
3597 | context_gbr_add_ineq, |
3598 | context_gbr_ineq_sign, |
3599 | context_gbr_test_ineq, |
3600 | context_gbr_get_div, |
3601 | context_gbr_insert_div, |
3602 | context_gbr_detect_equalities, |
3603 | context_gbr_best_split, |
3604 | context_gbr_is_empty, |
3605 | context_gbr_is_ok, |
3606 | context_gbr_save, |
3607 | context_gbr_restore, |
3608 | context_gbr_discard, |
3609 | context_gbr_invalidate, |
3610 | context_gbr_free, |
3611 | }; |
3612 | |
3613 | static struct isl_context *isl_context_gbr_alloc(__isl_keep isl_basic_set *dom) |
3614 | { |
3615 | struct isl_context_gbr *cgbr; |
3616 | |
3617 | if (!dom) |
3618 | return NULL; |
3619 | |
3620 | cgbr = isl_calloc_type(dom->ctx, struct isl_context_gbr); |
3621 | if (!cgbr) |
3622 | return NULL; |
3623 | |
3624 | cgbr->context.op = &isl_context_gbr_op; |
3625 | |
3626 | cgbr->shifted = NULL; |
3627 | cgbr->cone = NULL; |
3628 | cgbr->tab = isl_tab_from_basic_set(bset: dom, track: 1); |
3629 | cgbr->tab = isl_tab_init_samples(tab: cgbr->tab); |
3630 | if (!cgbr->tab) |
3631 | goto error; |
3632 | check_gbr_integer_feasible(cgbr); |
3633 | |
3634 | return &cgbr->context; |
3635 | error: |
3636 | cgbr->context.op->free(&cgbr->context); |
3637 | return NULL; |
3638 | } |
3639 | |
3640 | /* Allocate a context corresponding to "dom". |
3641 | * The representation specific fields are initialized by |
3642 | * isl_context_lex_alloc or isl_context_gbr_alloc. |
3643 | * The shared "n_unknown" field is initialized to the number |
3644 | * of final unknown integer divisions in "dom". |
3645 | */ |
3646 | static struct isl_context *isl_context_alloc(__isl_keep isl_basic_set *dom) |
3647 | { |
3648 | struct isl_context *context; |
3649 | int first; |
3650 | isl_size n_div; |
3651 | |
3652 | if (!dom) |
3653 | return NULL; |
3654 | |
3655 | if (dom->ctx->opt->context == ISL_CONTEXT_LEXMIN) |
3656 | context = isl_context_lex_alloc(dom); |
3657 | else |
3658 | context = isl_context_gbr_alloc(dom); |
3659 | |
3660 | if (!context) |
3661 | return NULL; |
3662 | |
3663 | first = isl_basic_set_first_unknown_div(bset: dom); |
3664 | n_div = isl_basic_set_dim(bset: dom, type: isl_dim_div); |
3665 | if (first < 0 || n_div < 0) |
3666 | return context->op->free(context); |
3667 | context->n_unknown = n_div - first; |
3668 | |
3669 | return context; |
3670 | } |
3671 | |
3672 | /* Initialize some common fields of "sol", which keeps track |
3673 | * of the solution of an optimization problem on "bmap" over |
3674 | * the domain "dom". |
3675 | * If "max" is set, then a maximization problem is being solved, rather than |
3676 | * a minimization problem, which means that the variables in the |
3677 | * tableau have value "M - x" rather than "M + x". |
3678 | */ |
3679 | static isl_stat sol_init(struct isl_sol *sol, __isl_keep isl_basic_map *bmap, |
3680 | __isl_keep isl_basic_set *dom, int max) |
3681 | { |
3682 | sol->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL); |
3683 | sol->dec_level.callback.run = &sol_dec_level_wrap; |
3684 | sol->dec_level.sol = sol; |
3685 | sol->max = max; |
3686 | sol->n_out = isl_basic_map_dim(bmap, type: isl_dim_out); |
3687 | sol->space = isl_basic_map_get_space(bmap); |
3688 | |
3689 | sol->context = isl_context_alloc(dom); |
3690 | if (sol->n_out < 0 || !sol->space || !sol->context) |
3691 | return isl_stat_error; |
3692 | |
3693 | return isl_stat_ok; |
3694 | } |
3695 | |
3696 | /* Construct an isl_sol_map structure for accumulating the solution. |
3697 | * If track_empty is set, then we also keep track of the parts |
3698 | * of the context where there is no solution. |
3699 | * If max is set, then we are solving a maximization, rather than |
3700 | * a minimization problem, which means that the variables in the |
3701 | * tableau have value "M - x" rather than "M + x". |
3702 | */ |
3703 | static struct isl_sol *sol_map_init(__isl_keep isl_basic_map *bmap, |
3704 | __isl_take isl_basic_set *dom, int track_empty, int max) |
3705 | { |
3706 | struct isl_sol_map *sol_map = NULL; |
3707 | isl_space *space; |
3708 | |
3709 | if (!bmap) |
3710 | goto error; |
3711 | |
3712 | sol_map = isl_calloc_type(bmap->ctx, struct isl_sol_map); |
3713 | if (!sol_map) |
3714 | goto error; |
3715 | |
3716 | sol_map->sol.free = &sol_map_free; |
3717 | if (sol_init(sol: &sol_map->sol, bmap, dom, max) < 0) |
3718 | goto error; |
3719 | sol_map->sol.add = &sol_map_add_wrap; |
3720 | sol_map->sol.add_empty = track_empty ? &sol_map_add_empty_wrap : NULL; |
3721 | space = isl_space_copy(space: sol_map->sol.space); |
3722 | sol_map->map = isl_map_alloc_space(space, n: 1, ISL_MAP_DISJOINT); |
3723 | if (!sol_map->map) |
3724 | goto error; |
3725 | |
3726 | if (track_empty) { |
3727 | sol_map->empty = isl_set_alloc_space(space: isl_basic_set_get_space(bset: dom), |
3728 | n: 1, ISL_SET_DISJOINT); |
3729 | if (!sol_map->empty) |
3730 | goto error; |
3731 | } |
3732 | |
3733 | isl_basic_set_free(bset: dom); |
3734 | return &sol_map->sol; |
3735 | error: |
3736 | isl_basic_set_free(bset: dom); |
3737 | sol_free(sol: &sol_map->sol); |
3738 | return NULL; |
3739 | } |
3740 | |
3741 | /* Check whether all coefficients of (non-parameter) variables |
3742 | * are non-positive, meaning that no pivots can be performed on the row. |
3743 | */ |
3744 | static int is_critical(struct isl_tab *tab, int row) |
3745 | { |
3746 | int j; |
3747 | unsigned off = 2 + tab->M; |
3748 | |
3749 | for (j = tab->n_dead; j < tab->n_col; ++j) { |
3750 | if (col_is_parameter_var(tab, col: j)) |
3751 | continue; |
3752 | |
3753 | if (isl_int_is_pos(tab->mat->row[row][off + j])) |
3754 | return 0; |
3755 | } |
3756 | |
3757 | return 1; |
3758 | } |
3759 | |
3760 | /* Check whether the inequality represented by vec is strict over the integers, |
3761 | * i.e., there are no integer values satisfying the constraint with |
3762 | * equality. This happens if the gcd of the coefficients is not a divisor |
3763 | * of the constant term. If so, scale the constraint down by the gcd |
3764 | * of the coefficients. |
3765 | */ |
3766 | static int is_strict(struct isl_vec *vec) |
3767 | { |
3768 | isl_int gcd; |
3769 | int strict = 0; |
3770 | |
3771 | isl_int_init(gcd); |
3772 | isl_seq_gcd(p: vec->el + 1, len: vec->size - 1, gcd: &gcd); |
3773 | if (!isl_int_is_one(gcd)) { |
3774 | strict = !isl_int_is_divisible_by(vec->el[0], gcd); |
3775 | isl_int_fdiv_q(vec->el[0], vec->el[0], gcd); |
3776 | isl_seq_scale_down(dst: vec->el + 1, src: vec->el + 1, f: gcd, len: vec->size-1); |
3777 | } |
3778 | isl_int_clear(gcd); |
3779 | |
3780 | return strict; |
3781 | } |
3782 | |
3783 | /* Determine the sign of the given row of the main tableau. |
3784 | * The result is one of |
3785 | * isl_tab_row_pos: always non-negative; no pivot needed |
3786 | * isl_tab_row_neg: always non-positive; pivot |
3787 | * isl_tab_row_any: can be both positive and negative; split |
3788 | * |
3789 | * We first handle some simple cases |
3790 | * - the row sign may be known already |
3791 | * - the row may be obviously non-negative |
3792 | * - the parametric constant may be equal to that of another row |
3793 | * for which we know the sign. This sign will be either "pos" or |
3794 | * "any". If it had been "neg" then we would have pivoted before. |
3795 | * |
3796 | * If none of these cases hold, we check the value of the row for each |
3797 | * of the currently active samples. Based on the signs of these values |
3798 | * we make an initial determination of the sign of the row. |
3799 | * |
3800 | * all zero -> unk(nown) |
3801 | * all non-negative -> pos |
3802 | * all non-positive -> neg |
3803 | * both negative and positive -> all |
3804 | * |
3805 | * If we end up with "all", we are done. |
3806 | * Otherwise, we perform a check for positive and/or negative |
3807 | * values as follows. |
3808 | * |
3809 | * samples neg unk pos |
3810 | * <0 ? Y N Y N |
3811 | * pos any pos |
3812 | * >0 ? Y N Y N |
3813 | * any neg any neg |
3814 | * |
3815 | * There is no special sign for "zero", because we can usually treat zero |
3816 | * as either non-negative or non-positive, whatever works out best. |
3817 | * However, if the row is "critical", meaning that pivoting is impossible |
3818 | * then we don't want to limp zero with the non-positive case, because |
3819 | * then we we would lose the solution for those values of the parameters |
3820 | * where the value of the row is zero. Instead, we treat 0 as non-negative |
3821 | * ensuring a split if the row can attain both zero and negative values. |
3822 | * The same happens when the original constraint was one that could not |
3823 | * be satisfied with equality by any integer values of the parameters. |
3824 | * In this case, we normalize the constraint, but then a value of zero |
3825 | * for the normalized constraint is actually a positive value for the |
3826 | * original constraint, so again we need to treat zero as non-negative. |
3827 | * In both these cases, we have the following decision tree instead: |
3828 | * |
3829 | * all non-negative -> pos |
3830 | * all negative -> neg |
3831 | * both negative and non-negative -> all |
3832 | * |
3833 | * samples neg pos |
3834 | * <0 ? Y N |
3835 | * any pos |
3836 | * >=0 ? Y N |
3837 | * any neg |
3838 | */ |
3839 | static enum isl_tab_row_sign row_sign(struct isl_tab *tab, |
3840 | struct isl_sol *sol, int row) |
3841 | { |
3842 | struct isl_vec *ineq = NULL; |
3843 | enum isl_tab_row_sign res = isl_tab_row_unknown; |
3844 | int critical; |
3845 | int strict; |
3846 | int row2; |
3847 | |
3848 | if (tab->row_sign[row] != isl_tab_row_unknown) |
3849 | return tab->row_sign[row]; |
3850 | if (is_obviously_nonneg(tab, row)) |
3851 | return isl_tab_row_pos; |
3852 | for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) { |
3853 | if (tab->row_sign[row2] == isl_tab_row_unknown) |
3854 | continue; |
3855 | if (identical_parameter_line(tab, row1: row, row2)) |
3856 | return tab->row_sign[row2]; |
3857 | } |
3858 | |
3859 | critical = is_critical(tab, row); |
3860 | |
3861 | ineq = get_row_parameter_ineq(tab, row); |
3862 | if (!ineq) |
3863 | goto error; |
3864 | |
3865 | strict = is_strict(vec: ineq); |
3866 | |
3867 | res = sol->context->op->ineq_sign(sol->context, ineq->el, |
3868 | critical || strict); |
3869 | |
3870 | if (res == isl_tab_row_unknown || res == isl_tab_row_pos) { |
3871 | /* test for negative values */ |
3872 | int feasible; |
3873 | isl_seq_neg(dst: ineq->el, src: ineq->el, len: ineq->size); |
3874 | isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); |
3875 | |
3876 | feasible = sol->context->op->test_ineq(sol->context, ineq->el); |
3877 | if (feasible < 0) |
3878 | goto error; |
3879 | if (!feasible) |
3880 | res = isl_tab_row_pos; |
3881 | else |
3882 | res = (res == isl_tab_row_unknown) ? isl_tab_row_neg |
3883 | : isl_tab_row_any; |
3884 | if (res == isl_tab_row_neg) { |
3885 | isl_seq_neg(dst: ineq->el, src: ineq->el, len: ineq->size); |
3886 | isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); |
3887 | } |
3888 | } |
3889 | |
3890 | if (res == isl_tab_row_neg) { |
3891 | /* test for positive values */ |
3892 | int feasible; |
3893 | if (!critical && !strict) |
3894 | isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); |
3895 | |
3896 | feasible = sol->context->op->test_ineq(sol->context, ineq->el); |
3897 | if (feasible < 0) |
3898 | goto error; |
3899 | if (feasible) |
3900 | res = isl_tab_row_any; |
3901 | } |
3902 | |
3903 | isl_vec_free(vec: ineq); |
3904 | return res; |
3905 | error: |
3906 | isl_vec_free(vec: ineq); |
3907 | return isl_tab_row_unknown; |
3908 | } |
3909 | |
3910 | static void find_solutions(struct isl_sol *sol, struct isl_tab *tab); |
3911 | |
3912 | /* Find solutions for values of the parameters that satisfy the given |
3913 | * inequality. |
3914 | * |
3915 | * We currently take a snapshot of the context tableau that is reset |
3916 | * when we return from this function, while we make a copy of the main |
3917 | * tableau, leaving the original main tableau untouched. |
3918 | * These are fairly arbitrary choices. Making a copy also of the context |
3919 | * tableau would obviate the need to undo any changes made to it later, |
3920 | * while taking a snapshot of the main tableau could reduce memory usage. |
3921 | * If we were to switch to taking a snapshot of the main tableau, |
3922 | * we would have to keep in mind that we need to save the row signs |
3923 | * and that we need to do this before saving the current basis |
3924 | * such that the basis has been restore before we restore the row signs. |
3925 | */ |
3926 | static void find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq) |
3927 | { |
3928 | void *saved; |
3929 | |
3930 | if (!sol->context) |
3931 | goto error; |
3932 | saved = sol->context->op->save(sol->context); |
3933 | |
3934 | tab = isl_tab_dup(tab); |
3935 | if (!tab) |
3936 | goto error; |
3937 | |
3938 | sol->context->op->add_ineq(sol->context, ineq, 0, 1); |
3939 | |
3940 | find_solutions(sol, tab); |
3941 | |
3942 | if (!sol->error) |
3943 | sol->context->op->restore(sol->context, saved); |
3944 | else |
3945 | sol->context->op->discard(saved); |
3946 | return; |
3947 | error: |
3948 | sol->error = 1; |
3949 | } |
3950 | |
3951 | /* Record the absence of solutions for those values of the parameters |
3952 | * that do not satisfy the given inequality with equality. |
3953 | */ |
3954 | static void no_sol_in_strict(struct isl_sol *sol, |
3955 | struct isl_tab *tab, struct isl_vec *ineq) |
3956 | { |
3957 | int empty; |
3958 | void *saved; |
3959 | |
3960 | if (!sol->context || sol->error) |
3961 | goto error; |
3962 | saved = sol->context->op->save(sol->context); |
3963 | |
3964 | isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); |
3965 | |
3966 | sol->context->op->add_ineq(sol->context, ineq->el, 1, 0); |
3967 | if (!sol->context) |
3968 | goto error; |
3969 | |
3970 | empty = tab->empty; |
3971 | tab->empty = 1; |
3972 | sol_add(sol, tab); |
3973 | tab->empty = empty; |
3974 | |
3975 | isl_int_add_ui(ineq->el[0], ineq->el[0], 1); |
3976 | |
3977 | sol->context->op->restore(sol->context, saved); |
3978 | return; |
3979 | error: |
3980 | sol->error = 1; |
3981 | } |
3982 | |
3983 | /* Reset all row variables that are marked to have a sign that may |
3984 | * be both positive and negative to have an unknown sign. |
3985 | */ |
3986 | static void reset_any_to_unknown(struct isl_tab *tab) |
3987 | { |
3988 | int row; |
3989 | |
3990 | for (row = tab->n_redundant; row < tab->n_row; ++row) { |
3991 | if (!isl_tab_var_from_row(tab, i: row)->is_nonneg) |
3992 | continue; |
3993 | if (tab->row_sign[row] == isl_tab_row_any) |
3994 | tab->row_sign[row] = isl_tab_row_unknown; |
3995 | } |
3996 | } |
3997 | |
3998 | /* Compute the lexicographic minimum of the set represented by the main |
3999 | * tableau "tab" within the context "sol->context_tab". |
4000 | * On entry the sample value of the main tableau is lexicographically |
4001 | * less than or equal to this lexicographic minimum. |
4002 | * Pivots are performed until a feasible point is found, which is then |
4003 | * necessarily equal to the minimum, or until the tableau is found to |
4004 | * be infeasible. Some pivots may need to be performed for only some |
4005 | * feasible values of the context tableau. If so, the context tableau |
4006 | * is split into a part where the pivot is needed and a part where it is not. |
4007 | * |
4008 | * Whenever we enter the main loop, the main tableau is such that no |
4009 | * "obvious" pivots need to be performed on it, where "obvious" means |
4010 | * that the given row can be seen to be negative without looking at |
4011 | * the context tableau. In particular, for non-parametric problems, |
4012 | * no pivots need to be performed on the main tableau. |
4013 | * The caller of find_solutions is responsible for making this property |
4014 | * hold prior to the first iteration of the loop, while restore_lexmin |
4015 | * is called before every other iteration. |
4016 | * |
4017 | * Inside the main loop, we first examine the signs of the rows of |
4018 | * the main tableau within the context of the context tableau. |
4019 | * If we find a row that is always non-positive for all values of |
4020 | * the parameters satisfying the context tableau and negative for at |
4021 | * least one value of the parameters, we perform the appropriate pivot |
4022 | * and start over. An exception is the case where no pivot can be |
4023 | * performed on the row. In this case, we require that the sign of |
4024 | * the row is negative for all values of the parameters (rather than just |
4025 | * non-positive). This special case is handled inside row_sign, which |
4026 | * will say that the row can have any sign if it determines that it can |
4027 | * attain both negative and zero values. |
4028 | * |
4029 | * If we can't find a row that always requires a pivot, but we can find |
4030 | * one or more rows that require a pivot for some values of the parameters |
4031 | * (i.e., the row can attain both positive and negative signs), then we split |
4032 | * the context tableau into two parts, one where we force the sign to be |
4033 | * non-negative and one where we force is to be negative. |
4034 | * The non-negative part is handled by a recursive call (through find_in_pos). |
4035 | * Upon returning from this call, we continue with the negative part and |
4036 | * perform the required pivot. |
4037 | * |
4038 | * If no such rows can be found, all rows are non-negative and we have |
4039 | * found a (rational) feasible point. If we only wanted a rational point |
4040 | * then we are done. |
4041 | * Otherwise, we check if all values of the sample point of the tableau |
4042 | * are integral for the variables. If so, we have found the minimal |
4043 | * integral point and we are done. |
4044 | * If the sample point is not integral, then we need to make a distinction |
4045 | * based on whether the constant term is non-integral or the coefficients |
4046 | * of the parameters. Furthermore, in order to decide how to handle |
4047 | * the non-integrality, we also need to know whether the coefficients |
4048 | * of the other columns in the tableau are integral. This leads |
4049 | * to the following table. The first two rows do not correspond |
4050 | * to a non-integral sample point and are only mentioned for completeness. |
4051 | * |
4052 | * constant parameters other |
4053 | * |
4054 | * int int int | |
4055 | * int int rat | -> no problem |
4056 | * |
4057 | * rat int int -> fail |
4058 | * |
4059 | * rat int rat -> cut |
4060 | * |
4061 | * int rat rat | |
4062 | * rat rat rat | -> parametric cut |
4063 | * |
4064 | * int rat int | |
4065 | * rat rat int | -> split context |
4066 | * |
4067 | * If the parametric constant is completely integral, then there is nothing |
4068 | * to be done. If the constant term is non-integral, but all the other |
4069 | * coefficient are integral, then there is nothing that can be done |
4070 | * and the tableau has no integral solution. |
4071 | * If, on the other hand, one or more of the other columns have rational |
4072 | * coefficients, but the parameter coefficients are all integral, then |
4073 | * we can perform a regular (non-parametric) cut. |
4074 | * Finally, if there is any parameter coefficient that is non-integral, |
4075 | * then we need to involve the context tableau. There are two cases here. |
4076 | * If at least one other column has a rational coefficient, then we |
4077 | * can perform a parametric cut in the main tableau by adding a new |
4078 | * integer division in the context tableau. |
4079 | * If all other columns have integral coefficients, then we need to |
4080 | * enforce that the rational combination of parameters (c + \sum a_i y_i)/m |
4081 | * is always integral. We do this by introducing an integer division |
4082 | * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should |
4083 | * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i. |
4084 | * Since q is expressed in the tableau as |
4085 | * c + \sum a_i y_i - m q >= 0 |
4086 | * -c - \sum a_i y_i + m q + m - 1 >= 0 |
4087 | * it is sufficient to add the inequality |
4088 | * -c - \sum a_i y_i + m q >= 0 |
4089 | * In the part of the context where this inequality does not hold, the |
4090 | * main tableau is marked as being empty. |
4091 | */ |
4092 | static void find_solutions(struct isl_sol *sol, struct isl_tab *tab) |
4093 | { |
4094 | struct isl_context *context; |
4095 | int r; |
4096 | |
4097 | if (!tab || sol->error) |
4098 | goto error; |
4099 | |
4100 | context = sol->context; |
4101 | |
4102 | if (tab->empty) |
4103 | goto done; |
4104 | if (context->op->is_empty(context)) |
4105 | goto done; |
4106 | |
4107 | for (r = 0; r >= 0 && tab && !tab->empty; r = restore_lexmin(tab)) { |
4108 | int flags; |
4109 | int row; |
4110 | enum isl_tab_row_sign sgn; |
4111 | int split = -1; |
4112 | int n_split = 0; |
4113 | |
4114 | for (row = tab->n_redundant; row < tab->n_row; ++row) { |
4115 | if (!isl_tab_var_from_row(tab, i: row)->is_nonneg) |
4116 | continue; |
4117 | sgn = row_sign(tab, sol, row); |
4118 | if (!sgn) |
4119 | goto error; |
4120 | tab->row_sign[row] = sgn; |
4121 | if (sgn == isl_tab_row_any) |
4122 | n_split++; |
4123 | if (sgn == isl_tab_row_any && split == -1) |
4124 | split = row; |
4125 | if (sgn == isl_tab_row_neg) |
4126 | break; |
4127 | } |
4128 | if (row < tab->n_row) |
4129 | continue; |
4130 | if (split != -1) { |
4131 | struct isl_vec *ineq; |
4132 | if (n_split != 1) |
4133 | split = context->op->best_split(context, tab); |
4134 | if (split < 0) |
4135 | goto error; |
4136 | ineq = get_row_parameter_ineq(tab, row: split); |
4137 | if (!ineq) |
4138 | goto error; |
4139 | is_strict(vec: ineq); |
4140 | reset_any_to_unknown(tab); |
4141 | tab->row_sign[split] = isl_tab_row_pos; |
4142 | sol_inc_level(sol); |
4143 | find_in_pos(sol, tab, ineq: ineq->el); |
4144 | tab->row_sign[split] = isl_tab_row_neg; |
4145 | isl_seq_neg(dst: ineq->el, src: ineq->el, len: ineq->size); |
4146 | isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); |
4147 | if (!sol->error) |
4148 | context->op->add_ineq(context, ineq->el, 0, 1); |
4149 | isl_vec_free(vec: ineq); |
4150 | if (sol->error) |
4151 | goto error; |
4152 | continue; |
4153 | } |
4154 | if (tab->rational) |
4155 | break; |
4156 | row = first_non_integer_row(tab, f: &flags); |
4157 | if (row < 0) |
4158 | break; |
4159 | if (ISL_FL_ISSET(flags, I_PAR)) { |
4160 | if (ISL_FL_ISSET(flags, I_VAR)) { |
4161 | if (isl_tab_mark_empty(tab) < 0) |
4162 | goto error; |
4163 | break; |
4164 | } |
4165 | row = add_cut(tab, row); |
4166 | } else if (ISL_FL_ISSET(flags, I_VAR)) { |
4167 | struct isl_vec *div; |
4168 | struct isl_vec *ineq; |
4169 | int d; |
4170 | div = get_row_split_div(tab, row); |
4171 | if (!div) |
4172 | goto error; |
4173 | d = context->op->get_div(context, tab, div); |
4174 | isl_vec_free(vec: div); |
4175 | if (d < 0) |
4176 | goto error; |
4177 | ineq = ineq_for_div(bset: context->op->peek_basic_set(context), div: d); |
4178 | if (!ineq) |
4179 | goto error; |
4180 | sol_inc_level(sol); |
4181 | no_sol_in_strict(sol, tab, ineq); |
4182 | isl_seq_neg(dst: ineq->el, src: ineq->el, len: ineq->size); |
4183 | context->op->add_ineq(context, ineq->el, 1, 1); |
4184 | isl_vec_free(vec: ineq); |
4185 | if (sol->error || !context->op->is_ok(context)) |
4186 | goto error; |
4187 | tab = set_row_cst_to_div(tab, row, div: d); |
4188 | if (context->op->is_empty(context)) |
4189 | break; |
4190 | } else |
4191 | row = add_parametric_cut(tab, row, context); |
4192 | if (row < 0) |
4193 | goto error; |
4194 | } |
4195 | if (r < 0) |
4196 | goto error; |
4197 | done: |
4198 | sol_add(sol, tab); |
4199 | isl_tab_free(tab); |
4200 | return; |
4201 | error: |
4202 | isl_tab_free(tab); |
4203 | sol->error = 1; |
4204 | } |
4205 | |
4206 | /* Does "sol" contain a pair of partial solutions that could potentially |
4207 | * be merged? |
4208 | * |
4209 | * We currently only check that "sol" is not in an error state |
4210 | * and that there are at least two partial solutions of which the final two |
4211 | * are defined at the same level. |
4212 | */ |
4213 | static int sol_has_mergeable_solutions(struct isl_sol *sol) |
4214 | { |
4215 | if (sol->error) |
4216 | return 0; |
4217 | if (!sol->partial) |
4218 | return 0; |
4219 | if (!sol->partial->next) |
4220 | return 0; |
4221 | return sol->partial->level == sol->partial->next->level; |
4222 | } |
4223 | |
4224 | /* Compute the lexicographic minimum of the set represented by the main |
4225 | * tableau "tab" within the context "sol->context_tab". |
4226 | * |
4227 | * As a preprocessing step, we first transfer all the purely parametric |
4228 | * equalities from the main tableau to the context tableau, i.e., |
4229 | * parameters that have been pivoted to a row. |
4230 | * These equalities are ignored by the main algorithm, because the |
4231 | * corresponding rows may not be marked as being non-negative. |
4232 | * In parts of the context where the added equality does not hold, |
4233 | * the main tableau is marked as being empty. |
4234 | * |
4235 | * Before we embark on the actual computation, we save a copy |
4236 | * of the context. When we return, we check if there are any |
4237 | * partial solutions that can potentially be merged. If so, |
4238 | * we perform a rollback to the initial state of the context. |
4239 | * The merging of partial solutions happens inside calls to |
4240 | * sol_dec_level that are pushed onto the undo stack of the context. |
4241 | * If there are no partial solutions that can potentially be merged |
4242 | * then the rollback is skipped as it would just be wasted effort. |
4243 | */ |
4244 | static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab) |
4245 | { |
4246 | int row; |
4247 | void *saved; |
4248 | |
4249 | if (!tab) |
4250 | goto error; |
4251 | |
4252 | sol->level = 0; |
4253 | |
4254 | for (row = tab->n_redundant; row < tab->n_row; ++row) { |
4255 | int p; |
4256 | struct isl_vec *eq; |
4257 | |
4258 | if (!row_is_parameter_var(tab, row)) |
4259 | continue; |
4260 | if (tab->row_var[row] < tab->n_param) |
4261 | p = tab->row_var[row]; |
4262 | else |
4263 | p = tab->row_var[row] |
4264 | + tab->n_param - (tab->n_var - tab->n_div); |
4265 | |
4266 | eq = isl_vec_alloc(ctx: tab->mat->ctx, size: 1+tab->n_param+tab->n_div); |
4267 | if (!eq) |
4268 | goto error; |
4269 | get_row_parameter_line(tab, row, line: eq->el); |
4270 | isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]); |
4271 | eq = isl_vec_normalize(vec: eq); |
4272 | |
4273 | sol_inc_level(sol); |
4274 | no_sol_in_strict(sol, tab, ineq: eq); |
4275 | |
4276 | isl_seq_neg(dst: eq->el, src: eq->el, len: eq->size); |
4277 | sol_inc_level(sol); |
4278 | no_sol_in_strict(sol, tab, ineq: eq); |
4279 | isl_seq_neg(dst: eq->el, src: eq->el, len: eq->size); |
4280 | |
4281 | sol->context->op->add_eq(sol->context, eq->el, 1, 1); |
4282 | |
4283 | isl_vec_free(vec: eq); |
4284 | |
4285 | if (isl_tab_mark_redundant(tab, row) < 0) |
4286 | goto error; |
4287 | |
4288 | if (sol->context->op->is_empty(sol->context)) |
4289 | break; |
4290 | |
4291 | row = tab->n_redundant - 1; |
4292 | } |
4293 | |
4294 | saved = sol->context->op->save(sol->context); |
4295 | |
4296 | find_solutions(sol, tab); |
4297 | |
4298 | if (sol_has_mergeable_solutions(sol)) |
4299 | sol->context->op->restore(sol->context, saved); |
4300 | else |
4301 | sol->context->op->discard(saved); |
4302 | |
4303 | sol->level = 0; |
4304 | sol_pop(sol); |
4305 | |
4306 | return; |
4307 | error: |
4308 | isl_tab_free(tab); |
4309 | sol->error = 1; |
4310 | } |
4311 | |
4312 | /* Check if integer division "div" of "dom" also occurs in "bmap". |
4313 | * If so, return its position within the divs. |
4314 | * Otherwise, return a position beyond the integer divisions. |
4315 | */ |
4316 | static int find_context_div(__isl_keep isl_basic_map *bmap, |
4317 | __isl_keep isl_basic_set *dom, unsigned div) |
4318 | { |
4319 | int i; |
4320 | isl_size b_v_div, d_v_div; |
4321 | isl_size n_div; |
4322 | |
4323 | b_v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
4324 | d_v_div = isl_basic_set_var_offset(bset: dom, type: isl_dim_div); |
4325 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
4326 | if (b_v_div < 0 || d_v_div < 0 || n_div < 0) |
4327 | return -1; |
4328 | |
4329 | if (isl_int_is_zero(dom->div[div][0])) |
4330 | return n_div; |
4331 | if (isl_seq_first_non_zero(p: dom->div[div] + 2 + d_v_div, |
4332 | len: dom->n_div) != -1) |
4333 | return n_div; |
4334 | |
4335 | for (i = 0; i < n_div; ++i) { |
4336 | if (isl_int_is_zero(bmap->div[i][0])) |
4337 | continue; |
4338 | if (isl_seq_first_non_zero(p: bmap->div[i] + 2 + d_v_div, |
4339 | len: (b_v_div - d_v_div) + n_div) != -1) |
4340 | continue; |
4341 | if (isl_seq_eq(p1: bmap->div[i], p2: dom->div[div], len: 2 + d_v_div)) |
4342 | return i; |
4343 | } |
4344 | return n_div; |
4345 | } |
4346 | |
4347 | /* The correspondence between the variables in the main tableau, |
4348 | * the context tableau, and the input map and domain is as follows. |
4349 | * The first n_param and the last n_div variables of the main tableau |
4350 | * form the variables of the context tableau. |
4351 | * In the basic map, these n_param variables correspond to the |
4352 | * parameters and the input dimensions. In the domain, they correspond |
4353 | * to the parameters and the set dimensions. |
4354 | * The n_div variables correspond to the integer divisions in the domain. |
4355 | * To ensure that everything lines up, we may need to copy some of the |
4356 | * integer divisions of the domain to the map. These have to be placed |
4357 | * in the same order as those in the context and they have to be placed |
4358 | * after any other integer divisions that the map may have. |
4359 | * This function performs the required reordering. |
4360 | */ |
4361 | static __isl_give isl_basic_map *align_context_divs( |
4362 | __isl_take isl_basic_map *bmap, __isl_keep isl_basic_set *dom) |
4363 | { |
4364 | int i; |
4365 | int common = 0; |
4366 | int other; |
4367 | unsigned bmap_n_div; |
4368 | |
4369 | bmap_n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
4370 | |
4371 | for (i = 0; i < dom->n_div; ++i) { |
4372 | int pos; |
4373 | |
4374 | pos = find_context_div(bmap, dom, div: i); |
4375 | if (pos < 0) |
4376 | return isl_basic_map_free(bmap); |
4377 | if (pos < bmap_n_div) |
4378 | common++; |
4379 | } |
4380 | other = bmap_n_div - common; |
4381 | if (dom->n_div - common > 0) { |
4382 | bmap = isl_basic_map_cow(bmap); |
4383 | bmap = isl_basic_map_extend(base: bmap, extra: dom->n_div - common, n_eq: 0, n_ineq: 0); |
4384 | if (!bmap) |
4385 | return NULL; |
4386 | } |
4387 | for (i = 0; i < dom->n_div; ++i) { |
4388 | int pos = find_context_div(bmap, dom, div: i); |
4389 | if (pos < 0) |
4390 | bmap = isl_basic_map_free(bmap); |
4391 | if (pos >= bmap_n_div) { |
4392 | pos = isl_basic_map_alloc_div(bmap); |
4393 | if (pos < 0) |
4394 | goto error; |
4395 | isl_int_set_si(bmap->div[pos][0], 0); |
4396 | bmap_n_div++; |
4397 | } |
4398 | if (pos != other + i) |
4399 | bmap = isl_basic_map_swap_div(bmap, a: pos, b: other + i); |
4400 | } |
4401 | return bmap; |
4402 | error: |
4403 | isl_basic_map_free(bmap); |
4404 | return NULL; |
4405 | } |
4406 | |
4407 | /* Base case of isl_tab_basic_map_partial_lexopt, after removing |
4408 | * some obvious symmetries. |
4409 | * |
4410 | * We make sure the divs in the domain are properly ordered, |
4411 | * because they will be added one by one in the given order |
4412 | * during the construction of the solution map. |
4413 | * Furthermore, make sure that the known integer divisions |
4414 | * appear before any unknown integer division because the solution |
4415 | * may depend on the known integer divisions, while anything that |
4416 | * depends on any variable starting from the first unknown integer |
4417 | * division is ignored in sol_pma_add. |
4418 | */ |
4419 | static struct isl_sol *basic_map_partial_lexopt_base_sol( |
4420 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, |
4421 | __isl_give isl_set **empty, int max, |
4422 | struct isl_sol *(*init)(__isl_keep isl_basic_map *bmap, |
4423 | __isl_take isl_basic_set *dom, int track_empty, int max)) |
4424 | { |
4425 | struct isl_tab *tab; |
4426 | struct isl_sol *sol = NULL; |
4427 | struct isl_context *context; |
4428 | |
4429 | if (dom->n_div) { |
4430 | dom = isl_basic_set_sort_divs(bset: dom); |
4431 | bmap = align_context_divs(bmap, dom); |
4432 | } |
4433 | sol = init(bmap, dom, !!empty, max); |
4434 | if (!sol) |
4435 | goto error; |
4436 | |
4437 | context = sol->context; |
4438 | if (isl_basic_set_plain_is_empty(bset: context->op->peek_basic_set(context))) |
4439 | /* nothing */; |
4440 | else if (isl_basic_map_plain_is_empty(bmap)) { |
4441 | if (sol->add_empty) |
4442 | sol->add_empty(sol, |
4443 | isl_basic_set_copy(bset: context->op->peek_basic_set(context))); |
4444 | } else { |
4445 | tab = tab_for_lexmin(bmap, |
4446 | dom: context->op->peek_basic_set(context), M: 1, max); |
4447 | tab = context->op->detect_nonnegative_parameters(context, tab); |
4448 | find_solutions_main(sol, tab); |
4449 | } |
4450 | if (sol->error) |
4451 | goto error; |
4452 | |
4453 | isl_basic_map_free(bmap); |
4454 | return sol; |
4455 | error: |
4456 | sol_free(sol); |
4457 | isl_basic_map_free(bmap); |
4458 | return NULL; |
4459 | } |
4460 | |
4461 | /* Base case of isl_tab_basic_map_partial_lexopt, after removing |
4462 | * some obvious symmetries. |
4463 | * |
4464 | * We call basic_map_partial_lexopt_base_sol and extract the results. |
4465 | */ |
4466 | static __isl_give isl_map *basic_map_partial_lexopt_base( |
4467 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, |
4468 | __isl_give isl_set **empty, int max) |
4469 | { |
4470 | isl_map *result = NULL; |
4471 | struct isl_sol *sol; |
4472 | struct isl_sol_map *sol_map; |
4473 | |
4474 | sol = basic_map_partial_lexopt_base_sol(bmap, dom, empty, max, |
4475 | init: &sol_map_init); |
4476 | if (!sol) |
4477 | return NULL; |
4478 | sol_map = (struct isl_sol_map *) sol; |
4479 | |
4480 | result = isl_map_copy(map: sol_map->map); |
4481 | if (empty) |
4482 | *empty = isl_set_copy(set: sol_map->empty); |
4483 | sol_free(sol: &sol_map->sol); |
4484 | return result; |
4485 | } |
4486 | |
4487 | /* Return a count of the number of occurrences of the "n" first |
4488 | * variables in the inequality constraints of "bmap". |
4489 | */ |
4490 | static __isl_give int *count_occurrences(__isl_keep isl_basic_map *bmap, |
4491 | int n) |
4492 | { |
4493 | int i, j; |
4494 | isl_ctx *ctx; |
4495 | int *occurrences; |
4496 | |
4497 | if (!bmap) |
4498 | return NULL; |
4499 | ctx = isl_basic_map_get_ctx(bmap); |
4500 | occurrences = isl_calloc_array(ctx, int, n); |
4501 | if (!occurrences) |
4502 | return NULL; |
4503 | |
4504 | for (i = 0; i < bmap->n_ineq; ++i) { |
4505 | for (j = 0; j < n; ++j) { |
4506 | if (!isl_int_is_zero(bmap->ineq[i][1 + j])) |
4507 | occurrences[j]++; |
4508 | } |
4509 | } |
4510 | |
4511 | return occurrences; |
4512 | } |
4513 | |
4514 | /* Do all of the "n" variables with non-zero coefficients in "c" |
4515 | * occur in exactly a single constraint. |
4516 | * "occurrences" is an array of length "n" containing the number |
4517 | * of occurrences of each of the variables in the inequality constraints. |
4518 | */ |
4519 | static int single_occurrence(int n, isl_int *c, int *occurrences) |
4520 | { |
4521 | int i; |
4522 | |
4523 | for (i = 0; i < n; ++i) { |
4524 | if (isl_int_is_zero(c[i])) |
4525 | continue; |
4526 | if (occurrences[i] != 1) |
4527 | return 0; |
4528 | } |
4529 | |
4530 | return 1; |
4531 | } |
4532 | |
4533 | /* Do all of the "n" initial variables that occur in inequality constraint |
4534 | * "ineq" of "bmap" only occur in that constraint? |
4535 | */ |
4536 | static int all_single_occurrence(__isl_keep isl_basic_map *bmap, int ineq, |
4537 | int n) |
4538 | { |
4539 | int i, j; |
4540 | |
4541 | for (i = 0; i < n; ++i) { |
4542 | if (isl_int_is_zero(bmap->ineq[ineq][1 + i])) |
4543 | continue; |
4544 | for (j = 0; j < bmap->n_ineq; ++j) { |
4545 | if (j == ineq) |
4546 | continue; |
4547 | if (!isl_int_is_zero(bmap->ineq[j][1 + i])) |
4548 | return 0; |
4549 | } |
4550 | } |
4551 | |
4552 | return 1; |
4553 | } |
4554 | |
4555 | /* Structure used during detection of parallel constraints. |
4556 | * n_in: number of "input" variables: isl_dim_param + isl_dim_in |
4557 | * n_out: number of "output" variables: isl_dim_out + isl_dim_div |
4558 | * val: the coefficients of the output variables |
4559 | */ |
4560 | struct isl_constraint_equal_info { |
4561 | unsigned n_in; |
4562 | unsigned n_out; |
4563 | isl_int *val; |
4564 | }; |
4565 | |
4566 | /* Check whether the coefficients of the output variables |
4567 | * of the constraint in "entry" are equal to info->val. |
4568 | */ |
4569 | static isl_bool constraint_equal(const void *entry, const void *val) |
4570 | { |
4571 | isl_int **row = (isl_int **)entry; |
4572 | const struct isl_constraint_equal_info *info = val; |
4573 | int eq; |
4574 | |
4575 | eq = isl_seq_eq(p1: (*row) + 1 + info->n_in, p2: info->val, len: info->n_out); |
4576 | return isl_bool_ok(b: eq); |
4577 | } |
4578 | |
4579 | /* Check whether "bmap" has a pair of constraints that have |
4580 | * the same coefficients for the output variables. |
4581 | * Note that the coefficients of the existentially quantified |
4582 | * variables need to be zero since the existentially quantified |
4583 | * of the result are usually not the same as those of the input. |
4584 | * Furthermore, check that each of the input variables that occur |
4585 | * in those constraints does not occur in any other constraint. |
4586 | * If so, return true and return the row indices of the two constraints |
4587 | * in *first and *second. |
4588 | */ |
4589 | static isl_bool parallel_constraints(__isl_keep isl_basic_map *bmap, |
4590 | int *first, int *second) |
4591 | { |
4592 | int i; |
4593 | isl_ctx *ctx; |
4594 | int *occurrences = NULL; |
4595 | struct isl_hash_table *table = NULL; |
4596 | struct isl_hash_table_entry *entry; |
4597 | struct isl_constraint_equal_info info; |
4598 | isl_size nparam, n_in, n_out, n_div; |
4599 | |
4600 | ctx = isl_basic_map_get_ctx(bmap); |
4601 | table = isl_hash_table_alloc(ctx, min_size: bmap->n_ineq); |
4602 | if (!table) |
4603 | goto error; |
4604 | |
4605 | nparam = isl_basic_map_dim(bmap, type: isl_dim_param); |
4606 | n_in = isl_basic_map_dim(bmap, type: isl_dim_in); |
4607 | n_out = isl_basic_map_dim(bmap, type: isl_dim_out); |
4608 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
4609 | if (nparam < 0 || n_in < 0 || n_out < 0 || n_div < 0) |
4610 | goto error; |
4611 | info.n_in = nparam + n_in; |
4612 | occurrences = count_occurrences(bmap, n: info.n_in); |
4613 | if (info.n_in && !occurrences) |
4614 | goto error; |
4615 | info.n_out = n_out + n_div; |
4616 | for (i = 0; i < bmap->n_ineq; ++i) { |
4617 | uint32_t hash; |
4618 | |
4619 | info.val = bmap->ineq[i] + 1 + info.n_in; |
4620 | if (isl_seq_first_non_zero(p: info.val, len: n_out) < 0) |
4621 | continue; |
4622 | if (isl_seq_first_non_zero(p: info.val + n_out, len: n_div) >= 0) |
4623 | continue; |
4624 | if (!single_occurrence(n: info.n_in, c: bmap->ineq[i] + 1, |
4625 | occurrences)) |
4626 | continue; |
4627 | hash = isl_seq_get_hash(p: info.val, len: info.n_out); |
4628 | entry = isl_hash_table_find(ctx, table, key_hash: hash, |
4629 | eq: constraint_equal, val: &info, reserve: 1); |
4630 | if (!entry) |
4631 | goto error; |
4632 | if (entry->data) |
4633 | break; |
4634 | entry->data = &bmap->ineq[i]; |
4635 | } |
4636 | |
4637 | if (i < bmap->n_ineq) { |
4638 | *first = ((isl_int **)entry->data) - bmap->ineq; |
4639 | *second = i; |
4640 | } |
4641 | |
4642 | isl_hash_table_free(ctx, table); |
4643 | free(ptr: occurrences); |
4644 | |
4645 | return isl_bool_ok(b: i < bmap->n_ineq); |
4646 | error: |
4647 | isl_hash_table_free(ctx, table); |
4648 | free(ptr: occurrences); |
4649 | return isl_bool_error; |
4650 | } |
4651 | |
4652 | /* Given a set of upper bounds in "var", add constraints to "bset" |
4653 | * that make the i-th bound smallest. |
4654 | * |
4655 | * In particular, if there are n bounds b_i, then add the constraints |
4656 | * |
4657 | * b_i <= b_j for j > i |
4658 | * b_i < b_j for j < i |
4659 | */ |
4660 | static __isl_give isl_basic_set *select_minimum(__isl_take isl_basic_set *bset, |
4661 | __isl_keep isl_mat *var, int i) |
4662 | { |
4663 | isl_ctx *ctx; |
4664 | int j, k; |
4665 | |
4666 | ctx = isl_mat_get_ctx(mat: var); |
4667 | |
4668 | for (j = 0; j < var->n_row; ++j) { |
4669 | if (j == i) |
4670 | continue; |
4671 | k = isl_basic_set_alloc_inequality(bset); |
4672 | if (k < 0) |
4673 | goto error; |
4674 | isl_seq_combine(dst: bset->ineq[k], m1: ctx->one, src1: var->row[j], |
4675 | m2: ctx->negone, src2: var->row[i], len: var->n_col); |
4676 | isl_int_set_si(bset->ineq[k][var->n_col], 0); |
4677 | if (j < i) |
4678 | isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1); |
4679 | } |
4680 | |
4681 | bset = isl_basic_set_finalize(bset); |
4682 | |
4683 | return bset; |
4684 | error: |
4685 | isl_basic_set_free(bset); |
4686 | return NULL; |
4687 | } |
4688 | |
4689 | /* Given a set of upper bounds on the last "input" variable m, |
4690 | * construct a set that assigns the minimal upper bound to m, i.e., |
4691 | * construct a set that divides the space into cells where one |
4692 | * of the upper bounds is smaller than all the others and assign |
4693 | * this upper bound to m. |
4694 | * |
4695 | * In particular, if there are n bounds b_i, then the result |
4696 | * consists of n basic sets, each one of the form |
4697 | * |
4698 | * m = b_i |
4699 | * b_i <= b_j for j > i |
4700 | * b_i < b_j for j < i |
4701 | */ |
4702 | static __isl_give isl_set *set_minimum(__isl_take isl_space *space, |
4703 | __isl_take isl_mat *var) |
4704 | { |
4705 | int i, k; |
4706 | isl_basic_set *bset = NULL; |
4707 | isl_set *set = NULL; |
4708 | |
4709 | if (!space || !var) |
4710 | goto error; |
4711 | |
4712 | set = isl_set_alloc_space(space: isl_space_copy(space), |
4713 | n: var->n_row, ISL_SET_DISJOINT); |
4714 | |
4715 | for (i = 0; i < var->n_row; ++i) { |
4716 | bset = isl_basic_set_alloc_space(space: isl_space_copy(space), extra: 0, |
4717 | n_eq: 1, n_ineq: var->n_row - 1); |
4718 | k = isl_basic_set_alloc_equality(bset); |
4719 | if (k < 0) |
4720 | goto error; |
4721 | isl_seq_cpy(dst: bset->eq[k], src: var->row[i], len: var->n_col); |
4722 | isl_int_set_si(bset->eq[k][var->n_col], -1); |
4723 | bset = select_minimum(bset, var, i); |
4724 | set = isl_set_add_basic_set(set, bset); |
4725 | } |
4726 | |
4727 | isl_space_free(space); |
4728 | isl_mat_free(mat: var); |
4729 | return set; |
4730 | error: |
4731 | isl_basic_set_free(bset); |
4732 | isl_set_free(set); |
4733 | isl_space_free(space); |
4734 | isl_mat_free(mat: var); |
4735 | return NULL; |
4736 | } |
4737 | |
4738 | /* Given that the last input variable of "bmap" represents the minimum |
4739 | * of the bounds in "cst", check whether we need to split the domain |
4740 | * based on which bound attains the minimum. |
4741 | * |
4742 | * A split is needed when the minimum appears in an integer division |
4743 | * or in an equality. Otherwise, it is only needed if it appears in |
4744 | * an upper bound that is different from the upper bounds on which it |
4745 | * is defined. |
4746 | */ |
4747 | static isl_bool need_split_basic_map(__isl_keep isl_basic_map *bmap, |
4748 | __isl_keep isl_mat *cst) |
4749 | { |
4750 | int i, j; |
4751 | isl_size total; |
4752 | unsigned pos; |
4753 | |
4754 | pos = cst->n_col - 1; |
4755 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
4756 | if (total < 0) |
4757 | return isl_bool_error; |
4758 | |
4759 | for (i = 0; i < bmap->n_div; ++i) |
4760 | if (!isl_int_is_zero(bmap->div[i][2 + pos])) |
4761 | return isl_bool_true; |
4762 | |
4763 | for (i = 0; i < bmap->n_eq; ++i) |
4764 | if (!isl_int_is_zero(bmap->eq[i][1 + pos])) |
4765 | return isl_bool_true; |
4766 | |
4767 | for (i = 0; i < bmap->n_ineq; ++i) { |
4768 | if (isl_int_is_nonneg(bmap->ineq[i][1 + pos])) |
4769 | continue; |
4770 | if (!isl_int_is_negone(bmap->ineq[i][1 + pos])) |
4771 | return isl_bool_true; |
4772 | if (isl_seq_first_non_zero(p: bmap->ineq[i] + 1 + pos + 1, |
4773 | len: total - pos - 1) >= 0) |
4774 | return isl_bool_true; |
4775 | |
4776 | for (j = 0; j < cst->n_row; ++j) |
4777 | if (isl_seq_eq(p1: bmap->ineq[i], p2: cst->row[j], len: cst->n_col)) |
4778 | break; |
4779 | if (j >= cst->n_row) |
4780 | return isl_bool_true; |
4781 | } |
4782 | |
4783 | return isl_bool_false; |
4784 | } |
4785 | |
4786 | /* Given that the last set variable of "bset" represents the minimum |
4787 | * of the bounds in "cst", check whether we need to split the domain |
4788 | * based on which bound attains the minimum. |
4789 | * |
4790 | * We simply call need_split_basic_map here. This is safe because |
4791 | * the position of the minimum is computed from "cst" and not |
4792 | * from "bmap". |
4793 | */ |
4794 | static isl_bool need_split_basic_set(__isl_keep isl_basic_set *bset, |
4795 | __isl_keep isl_mat *cst) |
4796 | { |
4797 | return need_split_basic_map(bmap: bset_to_bmap(bset), cst); |
4798 | } |
4799 | |
4800 | /* Given that the last set variable of "set" represents the minimum |
4801 | * of the bounds in "cst", check whether we need to split the domain |
4802 | * based on which bound attains the minimum. |
4803 | */ |
4804 | static isl_bool need_split_set(__isl_keep isl_set *set, __isl_keep isl_mat *cst) |
4805 | { |
4806 | int i; |
4807 | |
4808 | for (i = 0; i < set->n; ++i) { |
4809 | isl_bool split; |
4810 | |
4811 | split = need_split_basic_set(bset: set->p[i], cst); |
4812 | if (split < 0 || split) |
4813 | return split; |
4814 | } |
4815 | |
4816 | return isl_bool_false; |
4817 | } |
4818 | |
4819 | /* Given a map of which the last input variable is the minimum |
4820 | * of the bounds in "cst", split each basic set in the set |
4821 | * in pieces where one of the bounds is (strictly) smaller than the others. |
4822 | * This subdivision is given in "min_expr". |
4823 | * The variable is subsequently projected out. |
4824 | * |
4825 | * We only do the split when it is needed. |
4826 | * For example if the last input variable m = min(a,b) and the only |
4827 | * constraints in the given basic set are lower bounds on m, |
4828 | * i.e., l <= m = min(a,b), then we can simply project out m |
4829 | * to obtain l <= a and l <= b, without having to split on whether |
4830 | * m is equal to a or b. |
4831 | */ |
4832 | static __isl_give isl_map *split_domain(__isl_take isl_map *opt, |
4833 | __isl_take isl_set *min_expr, __isl_take isl_mat *cst) |
4834 | { |
4835 | isl_size n_in; |
4836 | int i; |
4837 | isl_space *space; |
4838 | isl_map *res; |
4839 | |
4840 | n_in = isl_map_dim(map: opt, type: isl_dim_in); |
4841 | if (n_in < 0 || !min_expr || !cst) |
4842 | goto error; |
4843 | |
4844 | space = isl_map_get_space(map: opt); |
4845 | space = isl_space_drop_dims(space, type: isl_dim_in, first: n_in - 1, num: 1); |
4846 | res = isl_map_empty(space); |
4847 | |
4848 | for (i = 0; i < opt->n; ++i) { |
4849 | isl_map *map; |
4850 | isl_bool split; |
4851 | |
4852 | map = isl_map_from_basic_map(bmap: isl_basic_map_copy(bmap: opt->p[i])); |
4853 | split = need_split_basic_map(bmap: opt->p[i], cst); |
4854 | if (split < 0) |
4855 | map = isl_map_free(map); |
4856 | else if (split) |
4857 | map = isl_map_intersect_domain(map, |
4858 | set: isl_set_copy(set: min_expr)); |
4859 | map = isl_map_remove_dims(map, type: isl_dim_in, first: n_in - 1, n: 1); |
4860 | |
4861 | res = isl_map_union_disjoint(map1: res, map2: map); |
4862 | } |
4863 | |
4864 | isl_map_free(map: opt); |
4865 | isl_set_free(set: min_expr); |
4866 | isl_mat_free(mat: cst); |
4867 | return res; |
4868 | error: |
4869 | isl_map_free(map: opt); |
4870 | isl_set_free(set: min_expr); |
4871 | isl_mat_free(mat: cst); |
4872 | return NULL; |
4873 | } |
4874 | |
4875 | /* Given a set of which the last set variable is the minimum |
4876 | * of the bounds in "cst", split each basic set in the set |
4877 | * in pieces where one of the bounds is (strictly) smaller than the others. |
4878 | * This subdivision is given in "min_expr". |
4879 | * The variable is subsequently projected out. |
4880 | */ |
4881 | static __isl_give isl_set *split(__isl_take isl_set *empty, |
4882 | __isl_take isl_set *min_expr, __isl_take isl_mat *cst) |
4883 | { |
4884 | isl_map *map; |
4885 | |
4886 | map = isl_map_from_domain(set: empty); |
4887 | map = split_domain(opt: map, min_expr, cst); |
4888 | empty = isl_map_domain(bmap: map); |
4889 | |
4890 | return empty; |
4891 | } |
4892 | |
4893 | static __isl_give isl_map *basic_map_partial_lexopt( |
4894 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, |
4895 | __isl_give isl_set **empty, int max); |
4896 | |
4897 | /* This function is called from basic_map_partial_lexopt_symm. |
4898 | * The last variable of "bmap" and "dom" corresponds to the minimum |
4899 | * of the bounds in "cst". "map_space" is the space of the original |
4900 | * input relation (of basic_map_partial_lexopt_symm) and "set_space" |
4901 | * is the space of the original domain. |
4902 | * |
4903 | * We recursively call basic_map_partial_lexopt and then plug in |
4904 | * the definition of the minimum in the result. |
4905 | */ |
4906 | static __isl_give isl_map *basic_map_partial_lexopt_symm_core( |
4907 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, |
4908 | __isl_give isl_set **empty, int max, __isl_take isl_mat *cst, |
4909 | __isl_take isl_space *map_space, __isl_take isl_space *set_space) |
4910 | { |
4911 | isl_map *opt; |
4912 | isl_set *min_expr; |
4913 | |
4914 | min_expr = set_minimum(space: isl_basic_set_get_space(bset: dom), var: isl_mat_copy(mat: cst)); |
4915 | |
4916 | opt = basic_map_partial_lexopt(bmap, dom, empty, max); |
4917 | |
4918 | if (empty) { |
4919 | *empty = split(empty: *empty, |
4920 | min_expr: isl_set_copy(set: min_expr), cst: isl_mat_copy(mat: cst)); |
4921 | *empty = isl_set_reset_space(set: *empty, space: set_space); |
4922 | } |
4923 | |
4924 | opt = split_domain(opt, min_expr, cst); |
4925 | opt = isl_map_reset_space(map: opt, space: map_space); |
4926 | |
4927 | return opt; |
4928 | } |
4929 | |
4930 | /* Extract a domain from "bmap" for the purpose of computing |
4931 | * a lexicographic optimum. |
4932 | * |
4933 | * This function is only called when the caller wants to compute a full |
4934 | * lexicographic optimum, i.e., without specifying a domain. In this case, |
4935 | * the caller is not interested in the part of the domain space where |
4936 | * there is no solution and the domain can be initialized to those constraints |
4937 | * of "bmap" that only involve the parameters and the input dimensions. |
4938 | * This relieves the parametric programming engine from detecting those |
4939 | * inequalities and transferring them to the context. More importantly, |
4940 | * it ensures that those inequalities are transferred first and not |
4941 | * intermixed with inequalities that actually split the domain. |
4942 | * |
4943 | * If the caller does not require the absence of existentially quantified |
4944 | * variables in the result (i.e., if ISL_OPT_QE is not set in "flags"), |
4945 | * then the actual domain of "bmap" can be used. This ensures that |
4946 | * the domain does not need to be split at all just to separate out |
4947 | * pieces of the domain that do not have a solution from piece that do. |
4948 | * This domain cannot be used in general because it may involve |
4949 | * (unknown) existentially quantified variables which will then also |
4950 | * appear in the solution. |
4951 | */ |
4952 | static __isl_give isl_basic_set *extract_domain(__isl_keep isl_basic_map *bmap, |
4953 | unsigned flags) |
4954 | { |
4955 | isl_size n_div; |
4956 | isl_size n_out; |
4957 | |
4958 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
4959 | n_out = isl_basic_map_dim(bmap, type: isl_dim_out); |
4960 | if (n_div < 0 || n_out < 0) |
4961 | return NULL; |
4962 | bmap = isl_basic_map_copy(bmap); |
4963 | if (ISL_FL_ISSET(flags, ISL_OPT_QE)) { |
4964 | bmap = isl_basic_map_drop_constraints_involving_dims(bmap, |
4965 | type: isl_dim_div, first: 0, n: n_div); |
4966 | bmap = isl_basic_map_drop_constraints_involving_dims(bmap, |
4967 | type: isl_dim_out, first: 0, n: n_out); |
4968 | } |
4969 | return isl_basic_map_domain(bmap); |
4970 | } |
4971 | |
4972 | #undef TYPE |
4973 | #define TYPE isl_map |
4974 | #undef SUFFIX |
4975 | #define SUFFIX |
4976 | #include "isl_tab_lexopt_templ.c" |
4977 | |
4978 | /* Extract the subsequence of the sample value of "tab" |
4979 | * starting at "pos" and of length "len". |
4980 | */ |
4981 | static __isl_give isl_vec *(struct isl_tab *tab, |
4982 | int pos, int len) |
4983 | { |
4984 | int i; |
4985 | isl_ctx *ctx; |
4986 | isl_vec *v; |
4987 | |
4988 | ctx = isl_tab_get_ctx(tab); |
4989 | v = isl_vec_alloc(ctx, size: len); |
4990 | if (!v) |
4991 | return NULL; |
4992 | for (i = 0; i < len; ++i) { |
4993 | if (!tab->var[pos + i].is_row) { |
4994 | isl_int_set_si(v->el[i], 0); |
4995 | } else { |
4996 | int row; |
4997 | |
4998 | row = tab->var[pos + i].index; |
4999 | isl_int_divexact(v->el[i], tab->mat->row[row][1], |
5000 | tab->mat->row[row][0]); |
5001 | } |
5002 | } |
5003 | |
5004 | return v; |
5005 | } |
5006 | |
5007 | /* Check if the sequence of variables starting at "pos" |
5008 | * represents a trivial solution according to "trivial". |
5009 | * That is, is the result of applying "trivial" to this sequence |
5010 | * equal to the zero vector? |
5011 | */ |
5012 | static isl_bool region_is_trivial(struct isl_tab *tab, int pos, |
5013 | __isl_keep isl_mat *trivial) |
5014 | { |
5015 | isl_size n, len; |
5016 | isl_vec *v; |
5017 | isl_bool is_trivial; |
5018 | |
5019 | n = isl_mat_rows(mat: trivial); |
5020 | if (n < 0) |
5021 | return isl_bool_error; |
5022 | |
5023 | if (n == 0) |
5024 | return isl_bool_false; |
5025 | |
5026 | len = isl_mat_cols(mat: trivial); |
5027 | if (len < 0) |
5028 | return isl_bool_error; |
5029 | v = extract_sample_sequence(tab, pos, len); |
5030 | v = isl_mat_vec_product(mat: isl_mat_copy(mat: trivial), vec: v); |
5031 | is_trivial = isl_vec_is_zero(vec: v); |
5032 | isl_vec_free(vec: v); |
5033 | |
5034 | return is_trivial; |
5035 | } |
5036 | |
5037 | /* Global internal data for isl_tab_basic_set_non_trivial_lexmin. |
5038 | * |
5039 | * "n_op" is the number of initial coordinates to optimize, |
5040 | * as passed to isl_tab_basic_set_non_trivial_lexmin. |
5041 | * "region" is the "n_region"-sized array of regions passed |
5042 | * to isl_tab_basic_set_non_trivial_lexmin. |
5043 | * |
5044 | * "tab" is the tableau that corresponds to the ILP problem. |
5045 | * "local" is an array of local data structure, one for each |
5046 | * (potential) level of the backtracking procedure of |
5047 | * isl_tab_basic_set_non_trivial_lexmin. |
5048 | * "v" is a pre-allocated vector that can be used for adding |
5049 | * constraints to the tableau. |
5050 | * |
5051 | * "sol" contains the best solution found so far. |
5052 | * It is initialized to a vector of size zero. |
5053 | */ |
5054 | struct isl_lexmin_data { |
5055 | int n_op; |
5056 | int n_region; |
5057 | struct isl_trivial_region *region; |
5058 | |
5059 | struct isl_tab *tab; |
5060 | struct isl_local_region *local; |
5061 | isl_vec *v; |
5062 | |
5063 | isl_vec *sol; |
5064 | }; |
5065 | |
5066 | /* Return the index of the first trivial region, "n_region" if all regions |
5067 | * are non-trivial or -1 in case of error. |
5068 | */ |
5069 | static int first_trivial_region(struct isl_lexmin_data *data) |
5070 | { |
5071 | int i; |
5072 | |
5073 | for (i = 0; i < data->n_region; ++i) { |
5074 | isl_bool trivial; |
5075 | trivial = region_is_trivial(tab: data->tab, pos: data->region[i].pos, |
5076 | trivial: data->region[i].trivial); |
5077 | if (trivial < 0) |
5078 | return -1; |
5079 | if (trivial) |
5080 | return i; |
5081 | } |
5082 | |
5083 | return data->n_region; |
5084 | } |
5085 | |
5086 | /* Check if the solution is optimal, i.e., whether the first |
5087 | * n_op entries are zero. |
5088 | */ |
5089 | static int is_optimal(__isl_keep isl_vec *sol, int n_op) |
5090 | { |
5091 | int i; |
5092 | |
5093 | for (i = 0; i < n_op; ++i) |
5094 | if (!isl_int_is_zero(sol->el[1 + i])) |
5095 | return 0; |
5096 | return 1; |
5097 | } |
5098 | |
5099 | /* Add constraints to "tab" that ensure that any solution is significantly |
5100 | * better than that represented by "sol". That is, find the first |
5101 | * relevant (within first n_op) non-zero coefficient and force it (along |
5102 | * with all previous coefficients) to be zero. |
5103 | * If the solution is already optimal (all relevant coefficients are zero), |
5104 | * then just mark the table as empty. |
5105 | * "n_zero" is the number of coefficients that have been forced zero |
5106 | * by previous calls to this function at the same level. |
5107 | * Return the updated number of forced zero coefficients or -1 on error. |
5108 | * |
5109 | * This function assumes that at least 2 * (n_op - n_zero) more rows and |
5110 | * at least 2 * (n_op - n_zero) more elements in the constraint array |
5111 | * are available in the tableau. |
5112 | */ |
5113 | static int force_better_solution(struct isl_tab *tab, |
5114 | __isl_keep isl_vec *sol, int n_op, int n_zero) |
5115 | { |
5116 | int i, n; |
5117 | isl_ctx *ctx; |
5118 | isl_vec *v = NULL; |
5119 | |
5120 | if (!sol) |
5121 | return -1; |
5122 | |
5123 | for (i = n_zero; i < n_op; ++i) |
5124 | if (!isl_int_is_zero(sol->el[1 + i])) |
5125 | break; |
5126 | |
5127 | if (i == n_op) { |
5128 | if (isl_tab_mark_empty(tab) < 0) |
5129 | return -1; |
5130 | return n_op; |
5131 | } |
5132 | |
5133 | ctx = isl_vec_get_ctx(vec: sol); |
5134 | v = isl_vec_alloc(ctx, size: 1 + tab->n_var); |
5135 | if (!v) |
5136 | return -1; |
5137 | |
5138 | n = i + 1; |
5139 | for (; i >= n_zero; --i) { |
5140 | v = isl_vec_clr(vec: v); |
5141 | isl_int_set_si(v->el[1 + i], -1); |
5142 | if (add_lexmin_eq(tab, eq: v->el) < 0) |
5143 | goto error; |
5144 | } |
5145 | |
5146 | isl_vec_free(vec: v); |
5147 | return n; |
5148 | error: |
5149 | isl_vec_free(vec: v); |
5150 | return -1; |
5151 | } |
5152 | |
5153 | /* Fix triviality direction "dir" of the given region to zero. |
5154 | * |
5155 | * This function assumes that at least two more rows and at least |
5156 | * two more elements in the constraint array are available in the tableau. |
5157 | */ |
5158 | static isl_stat fix_zero(struct isl_tab *tab, struct isl_trivial_region *region, |
5159 | int dir, struct isl_lexmin_data *data) |
5160 | { |
5161 | isl_size len; |
5162 | |
5163 | data->v = isl_vec_clr(vec: data->v); |
5164 | if (!data->v) |
5165 | return isl_stat_error; |
5166 | len = isl_mat_cols(mat: region->trivial); |
5167 | if (len < 0) |
5168 | return isl_stat_error; |
5169 | isl_seq_cpy(dst: data->v->el + 1 + region->pos, src: region->trivial->row[dir], |
5170 | len); |
5171 | if (add_lexmin_eq(tab, eq: data->v->el) < 0) |
5172 | return isl_stat_error; |
5173 | |
5174 | return isl_stat_ok; |
5175 | } |
5176 | |
5177 | /* This function selects case "side" for non-triviality region "region", |
5178 | * assuming all the equality constraints have been imposed already. |
5179 | * In particular, the triviality direction side/2 is made positive |
5180 | * if side is even and made negative if side is odd. |
5181 | * |
5182 | * This function assumes that at least one more row and at least |
5183 | * one more element in the constraint array are available in the tableau. |
5184 | */ |
5185 | static struct isl_tab *pos_neg(struct isl_tab *tab, |
5186 | struct isl_trivial_region *region, |
5187 | int side, struct isl_lexmin_data *data) |
5188 | { |
5189 | isl_size len; |
5190 | |
5191 | data->v = isl_vec_clr(vec: data->v); |
5192 | if (!data->v) |
5193 | goto error; |
5194 | isl_int_set_si(data->v->el[0], -1); |
5195 | len = isl_mat_cols(mat: region->trivial); |
5196 | if (len < 0) |
5197 | goto error; |
5198 | if (side % 2 == 0) |
5199 | isl_seq_cpy(dst: data->v->el + 1 + region->pos, |
5200 | src: region->trivial->row[side / 2], len); |
5201 | else |
5202 | isl_seq_neg(dst: data->v->el + 1 + region->pos, |
5203 | src: region->trivial->row[side / 2], len); |
5204 | return add_lexmin_ineq(tab, ineq: data->v->el); |
5205 | error: |
5206 | isl_tab_free(tab); |
5207 | return NULL; |
5208 | } |
5209 | |
5210 | /* Local data at each level of the backtracking procedure of |
5211 | * isl_tab_basic_set_non_trivial_lexmin. |
5212 | * |
5213 | * "update" is set if a solution has been found in the current case |
5214 | * of this level, such that a better solution needs to be enforced |
5215 | * in the next case. |
5216 | * "n_zero" is the number of initial coordinates that have already |
5217 | * been forced to be zero at this level. |
5218 | * "region" is the non-triviality region considered at this level. |
5219 | * "side" is the index of the current case at this level. |
5220 | * "n" is the number of triviality directions. |
5221 | * "snap" is a snapshot of the tableau holding a state that needs |
5222 | * to be satisfied by all subsequent cases. |
5223 | */ |
5224 | struct isl_local_region { |
5225 | int update; |
5226 | int n_zero; |
5227 | int region; |
5228 | int side; |
5229 | int n; |
5230 | struct isl_tab_undo *snap; |
5231 | }; |
5232 | |
5233 | /* Initialize the global data structure "data" used while solving |
5234 | * the ILP problem "bset". |
5235 | */ |
5236 | static isl_stat init_lexmin_data(struct isl_lexmin_data *data, |
5237 | __isl_keep isl_basic_set *bset) |
5238 | { |
5239 | isl_ctx *ctx; |
5240 | |
5241 | ctx = isl_basic_set_get_ctx(bset); |
5242 | |
5243 | data->tab = tab_for_lexmin(bmap: bset, NULL, M: 0, max: 0); |
5244 | if (!data->tab) |
5245 | return isl_stat_error; |
5246 | |
5247 | data->v = isl_vec_alloc(ctx, size: 1 + data->tab->n_var); |
5248 | if (!data->v) |
5249 | return isl_stat_error; |
5250 | data->local = isl_calloc_array(ctx, struct isl_local_region, |
5251 | data->n_region); |
5252 | if (data->n_region && !data->local) |
5253 | return isl_stat_error; |
5254 | |
5255 | data->sol = isl_vec_alloc(ctx, size: 0); |
5256 | |
5257 | return isl_stat_ok; |
5258 | } |
5259 | |
5260 | /* Mark all outer levels as requiring a better solution |
5261 | * in the next cases. |
5262 | */ |
5263 | static void update_outer_levels(struct isl_lexmin_data *data, int level) |
5264 | { |
5265 | int i; |
5266 | |
5267 | for (i = 0; i < level; ++i) |
5268 | data->local[i].update = 1; |
5269 | } |
5270 | |
5271 | /* Initialize "local" to refer to region "region" and |
5272 | * to initiate processing at this level. |
5273 | */ |
5274 | static isl_stat init_local_region(struct isl_local_region *local, int region, |
5275 | struct isl_lexmin_data *data) |
5276 | { |
5277 | isl_size n = isl_mat_rows(mat: data->region[region].trivial); |
5278 | |
5279 | if (n < 0) |
5280 | return isl_stat_error; |
5281 | local->n = n; |
5282 | local->region = region; |
5283 | local->side = 0; |
5284 | local->update = 0; |
5285 | local->n_zero = 0; |
5286 | |
5287 | return isl_stat_ok; |
5288 | } |
5289 | |
5290 | /* What to do next after entering a level of the backtracking procedure. |
5291 | * |
5292 | * error: some error has occurred; abort |
5293 | * done: an optimal solution has been found; stop search |
5294 | * backtrack: backtrack to the previous level |
5295 | * handle: add the constraints for the current level and |
5296 | * move to the next level |
5297 | */ |
5298 | enum isl_next { |
5299 | isl_next_error = -1, |
5300 | isl_next_done, |
5301 | isl_next_backtrack, |
5302 | isl_next_handle, |
5303 | }; |
5304 | |
5305 | /* Have all cases of the current region been considered? |
5306 | * If there are n directions, then there are 2n cases. |
5307 | * |
5308 | * The constraints in the current tableau are imposed |
5309 | * in all subsequent cases. This means that if the current |
5310 | * tableau is empty, then none of those cases should be considered |
5311 | * anymore and all cases have effectively been considered. |
5312 | */ |
5313 | static int finished_all_cases(struct isl_local_region *local, |
5314 | struct isl_lexmin_data *data) |
5315 | { |
5316 | if (data->tab->empty) |
5317 | return 1; |
5318 | return local->side >= 2 * local->n; |
5319 | } |
5320 | |
5321 | /* Enter level "level" of the backtracking search and figure out |
5322 | * what to do next. "init" is set if the level was entered |
5323 | * from a higher level and needs to be initialized. |
5324 | * Otherwise, the level is entered as a result of backtracking and |
5325 | * the tableau needs to be restored to a position that can |
5326 | * be used for the next case at this level. |
5327 | * The snapshot is assumed to have been saved in the previous case, |
5328 | * before the constraints specific to that case were added. |
5329 | * |
5330 | * In the initialization case, the local region is initialized |
5331 | * to point to the first violated region. |
5332 | * If the constraints of all regions are satisfied by the current |
5333 | * sample of the tableau, then tell the caller to continue looking |
5334 | * for a better solution or to stop searching if an optimal solution |
5335 | * has been found. |
5336 | * |
5337 | * If the tableau is empty or if all cases at the current level |
5338 | * have been considered, then the caller needs to backtrack as well. |
5339 | */ |
5340 | static enum isl_next enter_level(int level, int init, |
5341 | struct isl_lexmin_data *data) |
5342 | { |
5343 | struct isl_local_region *local = &data->local[level]; |
5344 | |
5345 | if (init) { |
5346 | int r; |
5347 | |
5348 | data->tab = cut_to_integer_lexmin(tab: data->tab, CUT_ONE); |
5349 | if (!data->tab) |
5350 | return isl_next_error; |
5351 | if (data->tab->empty) |
5352 | return isl_next_backtrack; |
5353 | r = first_trivial_region(data); |
5354 | if (r < 0) |
5355 | return isl_next_error; |
5356 | if (r == data->n_region) { |
5357 | update_outer_levels(data, level); |
5358 | isl_vec_free(vec: data->sol); |
5359 | data->sol = isl_tab_get_sample_value(tab: data->tab); |
5360 | if (!data->sol) |
5361 | return isl_next_error; |
5362 | if (is_optimal(sol: data->sol, n_op: data->n_op)) |
5363 | return isl_next_done; |
5364 | return isl_next_backtrack; |
5365 | } |
5366 | if (level >= data->n_region) |
5367 | isl_die(isl_vec_get_ctx(data->v), isl_error_internal, |
5368 | "nesting level too deep" , |
5369 | return isl_next_error); |
5370 | if (init_local_region(local, region: r, data) < 0) |
5371 | return isl_next_error; |
5372 | if (isl_tab_extend_cons(tab: data->tab, |
5373 | n_new: 2 * local->n + 2 * data->n_op) < 0) |
5374 | return isl_next_error; |
5375 | } else { |
5376 | if (isl_tab_rollback(tab: data->tab, snap: local->snap) < 0) |
5377 | return isl_next_error; |
5378 | } |
5379 | |
5380 | if (finished_all_cases(local, data)) |
5381 | return isl_next_backtrack; |
5382 | return isl_next_handle; |
5383 | } |
5384 | |
5385 | /* If a solution has been found in the previous case at this level |
5386 | * (marked by local->update being set), then add constraints |
5387 | * that enforce a better solution in the present and all following cases. |
5388 | * The constraints only need to be imposed once because they are |
5389 | * included in the snapshot (taken in pick_side) that will be used in |
5390 | * subsequent cases. |
5391 | */ |
5392 | static isl_stat better_next_side(struct isl_local_region *local, |
5393 | struct isl_lexmin_data *data) |
5394 | { |
5395 | if (!local->update) |
5396 | return isl_stat_ok; |
5397 | |
5398 | local->n_zero = force_better_solution(tab: data->tab, |
5399 | sol: data->sol, n_op: data->n_op, n_zero: local->n_zero); |
5400 | if (local->n_zero < 0) |
5401 | return isl_stat_error; |
5402 | |
5403 | local->update = 0; |
5404 | |
5405 | return isl_stat_ok; |
5406 | } |
5407 | |
5408 | /* Add constraints to data->tab that select the current case (local->side) |
5409 | * at the current level. |
5410 | * |
5411 | * If the linear combinations v should not be zero, then the cases are |
5412 | * v_0 >= 1 |
5413 | * v_0 <= -1 |
5414 | * v_0 = 0 and v_1 >= 1 |
5415 | * v_0 = 0 and v_1 <= -1 |
5416 | * v_0 = 0 and v_1 = 0 and v_2 >= 1 |
5417 | * v_0 = 0 and v_1 = 0 and v_2 <= -1 |
5418 | * ... |
5419 | * in this order. |
5420 | * |
5421 | * A snapshot is taken after the equality constraint (if any) has been added |
5422 | * such that the next case can start off from this position. |
5423 | * The rollback to this position is performed in enter_level. |
5424 | */ |
5425 | static isl_stat pick_side(struct isl_local_region *local, |
5426 | struct isl_lexmin_data *data) |
5427 | { |
5428 | struct isl_trivial_region *region; |
5429 | int side, base; |
5430 | |
5431 | region = &data->region[local->region]; |
5432 | side = local->side; |
5433 | base = 2 * (side/2); |
5434 | |
5435 | if (side == base && base >= 2 && |
5436 | fix_zero(tab: data->tab, region, dir: base / 2 - 1, data) < 0) |
5437 | return isl_stat_error; |
5438 | |
5439 | local->snap = isl_tab_snap(tab: data->tab); |
5440 | if (isl_tab_push_basis(tab: data->tab) < 0) |
5441 | return isl_stat_error; |
5442 | |
5443 | data->tab = pos_neg(tab: data->tab, region, side, data); |
5444 | if (!data->tab) |
5445 | return isl_stat_error; |
5446 | return isl_stat_ok; |
5447 | } |
5448 | |
5449 | /* Free the memory associated to "data". |
5450 | */ |
5451 | static void clear_lexmin_data(struct isl_lexmin_data *data) |
5452 | { |
5453 | free(ptr: data->local); |
5454 | isl_vec_free(vec: data->v); |
5455 | isl_tab_free(tab: data->tab); |
5456 | } |
5457 | |
5458 | /* Return the lexicographically smallest non-trivial solution of the |
5459 | * given ILP problem. |
5460 | * |
5461 | * All variables are assumed to be non-negative. |
5462 | * |
5463 | * n_op is the number of initial coordinates to optimize. |
5464 | * That is, once a solution has been found, we will only continue looking |
5465 | * for solutions that result in significantly better values for those |
5466 | * initial coordinates. That is, we only continue looking for solutions |
5467 | * that increase the number of initial zeros in this sequence. |
5468 | * |
5469 | * A solution is non-trivial, if it is non-trivial on each of the |
5470 | * specified regions. Each region represents a sequence of |
5471 | * triviality directions on a sequence of variables that starts |
5472 | * at a given position. A solution is non-trivial on such a region if |
5473 | * at least one of the triviality directions is non-zero |
5474 | * on that sequence of variables. |
5475 | * |
5476 | * Whenever a conflict is encountered, all constraints involved are |
5477 | * reported to the caller through a call to "conflict". |
5478 | * |
5479 | * We perform a simple branch-and-bound backtracking search. |
5480 | * Each level in the search represents an initially trivial region |
5481 | * that is forced to be non-trivial. |
5482 | * At each level we consider 2 * n cases, where n |
5483 | * is the number of triviality directions. |
5484 | * In terms of those n directions v_i, we consider the cases |
5485 | * v_0 >= 1 |
5486 | * v_0 <= -1 |
5487 | * v_0 = 0 and v_1 >= 1 |
5488 | * v_0 = 0 and v_1 <= -1 |
5489 | * v_0 = 0 and v_1 = 0 and v_2 >= 1 |
5490 | * v_0 = 0 and v_1 = 0 and v_2 <= -1 |
5491 | * ... |
5492 | * in this order. |
5493 | */ |
5494 | __isl_give isl_vec *isl_tab_basic_set_non_trivial_lexmin( |
5495 | __isl_take isl_basic_set *bset, int n_op, int n_region, |
5496 | struct isl_trivial_region *region, |
5497 | int (*conflict)(int con, void *user), void *user) |
5498 | { |
5499 | struct isl_lexmin_data data = { n_op, n_region, region }; |
5500 | int level, init; |
5501 | |
5502 | if (!bset) |
5503 | return NULL; |
5504 | |
5505 | if (init_lexmin_data(data: &data, bset) < 0) |
5506 | goto error; |
5507 | data.tab->conflict = conflict; |
5508 | data.tab->conflict_user = user; |
5509 | |
5510 | level = 0; |
5511 | init = 1; |
5512 | |
5513 | while (level >= 0) { |
5514 | enum isl_next next; |
5515 | struct isl_local_region *local = &data.local[level]; |
5516 | |
5517 | next = enter_level(level, init, data: &data); |
5518 | if (next < 0) |
5519 | goto error; |
5520 | if (next == isl_next_done) |
5521 | break; |
5522 | if (next == isl_next_backtrack) { |
5523 | level--; |
5524 | init = 0; |
5525 | continue; |
5526 | } |
5527 | |
5528 | if (better_next_side(local, data: &data) < 0) |
5529 | goto error; |
5530 | if (pick_side(local, data: &data) < 0) |
5531 | goto error; |
5532 | |
5533 | local->side++; |
5534 | level++; |
5535 | init = 1; |
5536 | } |
5537 | |
5538 | clear_lexmin_data(data: &data); |
5539 | isl_basic_set_free(bset); |
5540 | |
5541 | return data.sol; |
5542 | error: |
5543 | clear_lexmin_data(data: &data); |
5544 | isl_basic_set_free(bset); |
5545 | isl_vec_free(vec: data.sol); |
5546 | return NULL; |
5547 | } |
5548 | |
5549 | /* Wrapper for a tableau that is used for computing |
5550 | * the lexicographically smallest rational point of a non-negative set. |
5551 | * This point is represented by the sample value of "tab", |
5552 | * unless "tab" is empty. |
5553 | */ |
5554 | struct isl_tab_lexmin { |
5555 | isl_ctx *ctx; |
5556 | struct isl_tab *tab; |
5557 | }; |
5558 | |
5559 | /* Free "tl" and return NULL. |
5560 | */ |
5561 | __isl_null isl_tab_lexmin *isl_tab_lexmin_free(__isl_take isl_tab_lexmin *tl) |
5562 | { |
5563 | if (!tl) |
5564 | return NULL; |
5565 | isl_ctx_deref(ctx: tl->ctx); |
5566 | isl_tab_free(tab: tl->tab); |
5567 | free(ptr: tl); |
5568 | |
5569 | return NULL; |
5570 | } |
5571 | |
5572 | /* Construct an isl_tab_lexmin for computing |
5573 | * the lexicographically smallest rational point in "bset", |
5574 | * assuming that all variables are non-negative. |
5575 | */ |
5576 | __isl_give isl_tab_lexmin *isl_tab_lexmin_from_basic_set( |
5577 | __isl_take isl_basic_set *bset) |
5578 | { |
5579 | isl_ctx *ctx; |
5580 | isl_tab_lexmin *tl; |
5581 | |
5582 | if (!bset) |
5583 | return NULL; |
5584 | |
5585 | ctx = isl_basic_set_get_ctx(bset); |
5586 | tl = isl_calloc_type(ctx, struct isl_tab_lexmin); |
5587 | if (!tl) |
5588 | goto error; |
5589 | tl->ctx = ctx; |
5590 | isl_ctx_ref(ctx); |
5591 | tl->tab = tab_for_lexmin(bmap: bset, NULL, M: 0, max: 0); |
5592 | isl_basic_set_free(bset); |
5593 | if (!tl->tab) |
5594 | return isl_tab_lexmin_free(tl); |
5595 | return tl; |
5596 | error: |
5597 | isl_basic_set_free(bset); |
5598 | isl_tab_lexmin_free(tl); |
5599 | return NULL; |
5600 | } |
5601 | |
5602 | /* Return the dimension of the set represented by "tl". |
5603 | */ |
5604 | int isl_tab_lexmin_dim(__isl_keep isl_tab_lexmin *tl) |
5605 | { |
5606 | return tl ? tl->tab->n_var : -1; |
5607 | } |
5608 | |
5609 | /* Add the equality with coefficients "eq" to "tl", updating the optimal |
5610 | * solution if needed. |
5611 | * The equality is added as two opposite inequality constraints. |
5612 | */ |
5613 | __isl_give isl_tab_lexmin *isl_tab_lexmin_add_eq(__isl_take isl_tab_lexmin *tl, |
5614 | isl_int *eq) |
5615 | { |
5616 | unsigned n_var; |
5617 | |
5618 | if (!tl || !eq) |
5619 | return isl_tab_lexmin_free(tl); |
5620 | |
5621 | if (isl_tab_extend_cons(tab: tl->tab, n_new: 2) < 0) |
5622 | return isl_tab_lexmin_free(tl); |
5623 | n_var = tl->tab->n_var; |
5624 | isl_seq_neg(dst: eq, src: eq, len: 1 + n_var); |
5625 | tl->tab = add_lexmin_ineq(tab: tl->tab, ineq: eq); |
5626 | isl_seq_neg(dst: eq, src: eq, len: 1 + n_var); |
5627 | tl->tab = add_lexmin_ineq(tab: tl->tab, ineq: eq); |
5628 | |
5629 | if (!tl->tab) |
5630 | return isl_tab_lexmin_free(tl); |
5631 | |
5632 | return tl; |
5633 | } |
5634 | |
5635 | /* Add cuts to "tl" until the sample value reaches an integer value or |
5636 | * until the result becomes empty. |
5637 | */ |
5638 | __isl_give isl_tab_lexmin *isl_tab_lexmin_cut_to_integer( |
5639 | __isl_take isl_tab_lexmin *tl) |
5640 | { |
5641 | if (!tl) |
5642 | return NULL; |
5643 | tl->tab = cut_to_integer_lexmin(tab: tl->tab, CUT_ONE); |
5644 | if (!tl->tab) |
5645 | return isl_tab_lexmin_free(tl); |
5646 | return tl; |
5647 | } |
5648 | |
5649 | /* Return the lexicographically smallest rational point in the basic set |
5650 | * from which "tl" was constructed. |
5651 | * If the original input was empty, then return a zero-length vector. |
5652 | */ |
5653 | __isl_give isl_vec *isl_tab_lexmin_get_solution(__isl_keep isl_tab_lexmin *tl) |
5654 | { |
5655 | if (!tl) |
5656 | return NULL; |
5657 | if (tl->tab->empty) |
5658 | return isl_vec_alloc(ctx: tl->ctx, size: 0); |
5659 | else |
5660 | return isl_tab_get_sample_value(tab: tl->tab); |
5661 | } |
5662 | |
5663 | struct isl_sol_pma { |
5664 | struct isl_sol sol; |
5665 | isl_pw_multi_aff *pma; |
5666 | isl_set *empty; |
5667 | }; |
5668 | |
5669 | static void sol_pma_free(struct isl_sol *sol) |
5670 | { |
5671 | struct isl_sol_pma *sol_pma = (struct isl_sol_pma *) sol; |
5672 | isl_pw_multi_aff_free(pma: sol_pma->pma); |
5673 | isl_set_free(set: sol_pma->empty); |
5674 | } |
5675 | |
5676 | /* This function is called for parts of the context where there is |
5677 | * no solution, with "bset" corresponding to the context tableau. |
5678 | * Simply add the basic set to the set "empty". |
5679 | */ |
5680 | static void sol_pma_add_empty(struct isl_sol_pma *sol, |
5681 | __isl_take isl_basic_set *bset) |
5682 | { |
5683 | if (!bset || !sol->empty) |
5684 | goto error; |
5685 | |
5686 | sol->empty = isl_set_grow(set: sol->empty, n: 1); |
5687 | bset = isl_basic_set_simplify(bset); |
5688 | bset = isl_basic_set_finalize(bset); |
5689 | sol->empty = isl_set_add_basic_set(set: sol->empty, bset); |
5690 | if (!sol->empty) |
5691 | sol->sol.error = 1; |
5692 | return; |
5693 | error: |
5694 | isl_basic_set_free(bset); |
5695 | sol->sol.error = 1; |
5696 | } |
5697 | |
5698 | /* Given a basic set "dom" that represents the context and a tuple of |
5699 | * affine expressions "maff" defined over this domain, construct |
5700 | * an isl_pw_multi_aff with a single cell corresponding to "dom" and |
5701 | * the affine expressions in "maff". |
5702 | */ |
5703 | static void sol_pma_add(struct isl_sol_pma *sol, |
5704 | __isl_take isl_basic_set *dom, __isl_take isl_multi_aff *maff) |
5705 | { |
5706 | isl_pw_multi_aff *pma; |
5707 | |
5708 | dom = isl_basic_set_simplify(bset: dom); |
5709 | dom = isl_basic_set_finalize(bset: dom); |
5710 | pma = isl_pw_multi_aff_alloc(set: isl_set_from_basic_set(bset: dom), maff); |
5711 | sol->pma = isl_pw_multi_aff_add_disjoint(pma1: sol->pma, pma2: pma); |
5712 | if (!sol->pma) |
5713 | sol->sol.error = 1; |
5714 | } |
5715 | |
5716 | static void sol_pma_add_empty_wrap(struct isl_sol *sol, |
5717 | __isl_take isl_basic_set *bset) |
5718 | { |
5719 | sol_pma_add_empty(sol: (struct isl_sol_pma *)sol, bset); |
5720 | } |
5721 | |
5722 | static void sol_pma_add_wrap(struct isl_sol *sol, |
5723 | __isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma) |
5724 | { |
5725 | sol_pma_add(sol: (struct isl_sol_pma *)sol, dom, maff: ma); |
5726 | } |
5727 | |
5728 | /* Construct an isl_sol_pma structure for accumulating the solution. |
5729 | * If track_empty is set, then we also keep track of the parts |
5730 | * of the context where there is no solution. |
5731 | * If max is set, then we are solving a maximization, rather than |
5732 | * a minimization problem, which means that the variables in the |
5733 | * tableau have value "M - x" rather than "M + x". |
5734 | */ |
5735 | static struct isl_sol *sol_pma_init(__isl_keep isl_basic_map *bmap, |
5736 | __isl_take isl_basic_set *dom, int track_empty, int max) |
5737 | { |
5738 | struct isl_sol_pma *sol_pma = NULL; |
5739 | isl_space *space; |
5740 | |
5741 | if (!bmap) |
5742 | goto error; |
5743 | |
5744 | sol_pma = isl_calloc_type(bmap->ctx, struct isl_sol_pma); |
5745 | if (!sol_pma) |
5746 | goto error; |
5747 | |
5748 | sol_pma->sol.free = &sol_pma_free; |
5749 | if (sol_init(sol: &sol_pma->sol, bmap, dom, max) < 0) |
5750 | goto error; |
5751 | sol_pma->sol.add = &sol_pma_add_wrap; |
5752 | sol_pma->sol.add_empty = track_empty ? &sol_pma_add_empty_wrap : NULL; |
5753 | space = isl_space_copy(space: sol_pma->sol.space); |
5754 | sol_pma->pma = isl_pw_multi_aff_empty(space); |
5755 | if (!sol_pma->pma) |
5756 | goto error; |
5757 | |
5758 | if (track_empty) { |
5759 | sol_pma->empty = isl_set_alloc_space(space: isl_basic_set_get_space(bset: dom), |
5760 | n: 1, ISL_SET_DISJOINT); |
5761 | if (!sol_pma->empty) |
5762 | goto error; |
5763 | } |
5764 | |
5765 | isl_basic_set_free(bset: dom); |
5766 | return &sol_pma->sol; |
5767 | error: |
5768 | isl_basic_set_free(bset: dom); |
5769 | sol_free(sol: &sol_pma->sol); |
5770 | return NULL; |
5771 | } |
5772 | |
5773 | /* Base case of isl_tab_basic_map_partial_lexopt, after removing |
5774 | * some obvious symmetries. |
5775 | * |
5776 | * We call basic_map_partial_lexopt_base_sol and extract the results. |
5777 | */ |
5778 | static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_base_pw_multi_aff( |
5779 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, |
5780 | __isl_give isl_set **empty, int max) |
5781 | { |
5782 | isl_pw_multi_aff *result = NULL; |
5783 | struct isl_sol *sol; |
5784 | struct isl_sol_pma *sol_pma; |
5785 | |
5786 | sol = basic_map_partial_lexopt_base_sol(bmap, dom, empty, max, |
5787 | init: &sol_pma_init); |
5788 | if (!sol) |
5789 | return NULL; |
5790 | sol_pma = (struct isl_sol_pma *) sol; |
5791 | |
5792 | result = isl_pw_multi_aff_copy(pma: sol_pma->pma); |
5793 | if (empty) |
5794 | *empty = isl_set_copy(set: sol_pma->empty); |
5795 | sol_free(sol: &sol_pma->sol); |
5796 | return result; |
5797 | } |
5798 | |
5799 | /* Given that the last input variable of "maff" represents the minimum |
5800 | * of some bounds, check whether we need to plug in the expression |
5801 | * of the minimum. |
5802 | * |
5803 | * In particular, check if the last input variable appears in any |
5804 | * of the expressions in "maff". |
5805 | */ |
5806 | static isl_bool need_substitution(__isl_keep isl_multi_aff *maff) |
5807 | { |
5808 | int i; |
5809 | isl_size n_in; |
5810 | unsigned pos; |
5811 | |
5812 | n_in = isl_multi_aff_dim(multi: maff, type: isl_dim_in); |
5813 | if (n_in < 0) |
5814 | return isl_bool_error; |
5815 | pos = n_in - 1; |
5816 | |
5817 | for (i = 0; i < maff->n; ++i) { |
5818 | isl_bool involves; |
5819 | |
5820 | involves = isl_aff_involves_dims(aff: maff->u.p[i], |
5821 | type: isl_dim_in, first: pos, n: 1); |
5822 | if (involves < 0 || involves) |
5823 | return involves; |
5824 | } |
5825 | |
5826 | return isl_bool_false; |
5827 | } |
5828 | |
5829 | /* Given a set of upper bounds on the last "input" variable m, |
5830 | * construct a piecewise affine expression that selects |
5831 | * the minimal upper bound to m, i.e., |
5832 | * divide the space into cells where one |
5833 | * of the upper bounds is smaller than all the others and select |
5834 | * this upper bound on that cell. |
5835 | * |
5836 | * In particular, if there are n bounds b_i, then the result |
5837 | * consists of n cell, each one of the form |
5838 | * |
5839 | * b_i <= b_j for j > i |
5840 | * b_i < b_j for j < i |
5841 | * |
5842 | * The affine expression on this cell is |
5843 | * |
5844 | * b_i |
5845 | */ |
5846 | static __isl_give isl_pw_aff *set_minimum_pa(__isl_take isl_space *space, |
5847 | __isl_take isl_mat *var) |
5848 | { |
5849 | int i; |
5850 | isl_aff *aff = NULL; |
5851 | isl_basic_set *bset = NULL; |
5852 | isl_pw_aff *paff = NULL; |
5853 | isl_space *pw_space; |
5854 | isl_local_space *ls = NULL; |
5855 | |
5856 | if (!space || !var) |
5857 | goto error; |
5858 | |
5859 | ls = isl_local_space_from_space(space: isl_space_copy(space)); |
5860 | pw_space = isl_space_copy(space); |
5861 | pw_space = isl_space_from_domain(space: pw_space); |
5862 | pw_space = isl_space_add_dims(space: pw_space, type: isl_dim_out, n: 1); |
5863 | paff = isl_pw_aff_alloc_size(space: pw_space, n: var->n_row); |
5864 | |
5865 | for (i = 0; i < var->n_row; ++i) { |
5866 | isl_pw_aff *paff_i; |
5867 | |
5868 | aff = isl_aff_alloc(ls: isl_local_space_copy(ls)); |
5869 | bset = isl_basic_set_alloc_space(space: isl_space_copy(space), extra: 0, |
5870 | n_eq: 0, n_ineq: var->n_row - 1); |
5871 | if (!aff || !bset) |
5872 | goto error; |
5873 | isl_int_set_si(aff->v->el[0], 1); |
5874 | isl_seq_cpy(dst: aff->v->el + 1, src: var->row[i], len: var->n_col); |
5875 | isl_int_set_si(aff->v->el[1 + var->n_col], 0); |
5876 | bset = select_minimum(bset, var, i); |
5877 | paff_i = isl_pw_aff_alloc(set: isl_set_from_basic_set(bset), aff); |
5878 | paff = isl_pw_aff_add_disjoint(pwaff1: paff, pwaff2: paff_i); |
5879 | } |
5880 | |
5881 | isl_local_space_free(ls); |
5882 | isl_space_free(space); |
5883 | isl_mat_free(mat: var); |
5884 | return paff; |
5885 | error: |
5886 | isl_aff_free(aff); |
5887 | isl_basic_set_free(bset); |
5888 | isl_pw_aff_free(pwaff: paff); |
5889 | isl_local_space_free(ls); |
5890 | isl_space_free(space); |
5891 | isl_mat_free(mat: var); |
5892 | return NULL; |
5893 | } |
5894 | |
5895 | /* Given a piecewise multi-affine expression of which the last input variable |
5896 | * is the minimum of the bounds in "cst", plug in the value of the minimum. |
5897 | * This minimum expression is given in "min_expr_pa". |
5898 | * The set "min_expr" contains the same information, but in the form of a set. |
5899 | * The variable is subsequently projected out. |
5900 | * |
5901 | * The implementation is similar to those of "split" and "split_domain". |
5902 | * If the variable appears in a given expression, then minimum expression |
5903 | * is plugged in. Otherwise, if the variable appears in the constraints |
5904 | * and a split is required, then the domain is split. Otherwise, no split |
5905 | * is performed. |
5906 | */ |
5907 | static __isl_give isl_pw_multi_aff *split_domain_pma( |
5908 | __isl_take isl_pw_multi_aff *opt, __isl_take isl_pw_aff *min_expr_pa, |
5909 | __isl_take isl_set *min_expr, __isl_take isl_mat *cst) |
5910 | { |
5911 | isl_size n_in; |
5912 | int i; |
5913 | isl_space *space; |
5914 | isl_pw_multi_aff *res; |
5915 | |
5916 | if (!opt || !min_expr || !cst) |
5917 | goto error; |
5918 | |
5919 | n_in = isl_pw_multi_aff_dim(pma: opt, type: isl_dim_in); |
5920 | if (n_in < 0) |
5921 | goto error; |
5922 | space = isl_pw_multi_aff_get_space(pma: opt); |
5923 | space = isl_space_drop_dims(space, type: isl_dim_in, first: n_in - 1, num: 1); |
5924 | res = isl_pw_multi_aff_empty(space); |
5925 | |
5926 | for (i = 0; i < opt->n; ++i) { |
5927 | isl_bool subs; |
5928 | isl_pw_multi_aff *pma; |
5929 | |
5930 | pma = isl_pw_multi_aff_alloc(set: isl_set_copy(set: opt->p[i].set), |
5931 | maff: isl_multi_aff_copy(multi: opt->p[i].maff)); |
5932 | subs = need_substitution(maff: opt->p[i].maff); |
5933 | if (subs < 0) { |
5934 | pma = isl_pw_multi_aff_free(pma); |
5935 | } else if (subs) { |
5936 | pma = isl_pw_multi_aff_substitute(pma, |
5937 | pos: n_in - 1, subs: min_expr_pa); |
5938 | } else { |
5939 | isl_bool split; |
5940 | split = need_split_set(set: opt->p[i].set, cst); |
5941 | if (split < 0) |
5942 | pma = isl_pw_multi_aff_free(pma); |
5943 | else if (split) |
5944 | pma = isl_pw_multi_aff_intersect_domain(pma, |
5945 | set: isl_set_copy(set: min_expr)); |
5946 | } |
5947 | pma = isl_pw_multi_aff_project_out(pma, |
5948 | type: isl_dim_in, first: n_in - 1, n: 1); |
5949 | |
5950 | res = isl_pw_multi_aff_add_disjoint(pma1: res, pma2: pma); |
5951 | } |
5952 | |
5953 | isl_pw_multi_aff_free(pma: opt); |
5954 | isl_pw_aff_free(pwaff: min_expr_pa); |
5955 | isl_set_free(set: min_expr); |
5956 | isl_mat_free(mat: cst); |
5957 | return res; |
5958 | error: |
5959 | isl_pw_multi_aff_free(pma: opt); |
5960 | isl_pw_aff_free(pwaff: min_expr_pa); |
5961 | isl_set_free(set: min_expr); |
5962 | isl_mat_free(mat: cst); |
5963 | return NULL; |
5964 | } |
5965 | |
5966 | static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_pw_multi_aff( |
5967 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, |
5968 | __isl_give isl_set **empty, int max); |
5969 | |
5970 | /* This function is called from basic_map_partial_lexopt_symm. |
5971 | * The last variable of "bmap" and "dom" corresponds to the minimum |
5972 | * of the bounds in "cst". "map_space" is the space of the original |
5973 | * input relation (of basic_map_partial_lexopt_symm) and "set_space" |
5974 | * is the space of the original domain. |
5975 | * |
5976 | * We recursively call basic_map_partial_lexopt and then plug in |
5977 | * the definition of the minimum in the result. |
5978 | */ |
5979 | static __isl_give isl_pw_multi_aff * |
5980 | basic_map_partial_lexopt_symm_core_pw_multi_aff( |
5981 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, |
5982 | __isl_give isl_set **empty, int max, __isl_take isl_mat *cst, |
5983 | __isl_take isl_space *map_space, __isl_take isl_space *set_space) |
5984 | { |
5985 | isl_pw_multi_aff *opt; |
5986 | isl_pw_aff *min_expr_pa; |
5987 | isl_set *min_expr; |
5988 | |
5989 | min_expr = set_minimum(space: isl_basic_set_get_space(bset: dom), var: isl_mat_copy(mat: cst)); |
5990 | min_expr_pa = set_minimum_pa(space: isl_basic_set_get_space(bset: dom), |
5991 | var: isl_mat_copy(mat: cst)); |
5992 | |
5993 | opt = basic_map_partial_lexopt_pw_multi_aff(bmap, dom, empty, max); |
5994 | |
5995 | if (empty) { |
5996 | *empty = split(empty: *empty, |
5997 | min_expr: isl_set_copy(set: min_expr), cst: isl_mat_copy(mat: cst)); |
5998 | *empty = isl_set_reset_space(set: *empty, space: set_space); |
5999 | } |
6000 | |
6001 | opt = split_domain_pma(opt, min_expr_pa, min_expr, cst); |
6002 | opt = isl_pw_multi_aff_reset_space(pwmaff: opt, space: map_space); |
6003 | |
6004 | return opt; |
6005 | } |
6006 | |
6007 | #undef TYPE |
6008 | #define TYPE isl_pw_multi_aff |
6009 | #undef SUFFIX |
6010 | #define SUFFIX _pw_multi_aff |
6011 | #include "isl_tab_lexopt_templ.c" |
6012 | |