| 1 | /* |
| 2 | * Copyright 2008-2009 Katholieke Universiteit Leuven |
| 3 | * Copyright 2010 INRIA Saclay |
| 4 | * Copyright 2016-2017 Sven Verdoolaege |
| 5 | * |
| 6 | * Use of this software is governed by the MIT license |
| 7 | * |
| 8 | * Written by Sven Verdoolaege, K.U.Leuven, Departement |
| 9 | * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium |
| 10 | * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, |
| 11 | * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France |
| 12 | */ |
| 13 | |
| 14 | #include <isl_ctx_private.h> |
| 15 | #include "isl_map_private.h" |
| 16 | #include <isl_seq.h> |
| 17 | #include "isl_tab.h" |
| 18 | #include "isl_sample.h" |
| 19 | #include <isl_mat_private.h> |
| 20 | #include <isl_vec_private.h> |
| 21 | #include <isl_aff_private.h> |
| 22 | #include <isl_constraint_private.h> |
| 23 | #include <isl_options_private.h> |
| 24 | #include <isl_config.h> |
| 25 | |
| 26 | #include <bset_to_bmap.c> |
| 27 | |
| 28 | /* |
| 29 | * The implementation of parametric integer linear programming in this file |
| 30 | * was inspired by the paper "Parametric Integer Programming" and the |
| 31 | * report "Solving systems of affine (in)equalities" by Paul Feautrier |
| 32 | * (and others). |
| 33 | * |
| 34 | * The strategy used for obtaining a feasible solution is different |
| 35 | * from the one used in isl_tab.c. In particular, in isl_tab.c, |
| 36 | * upon finding a constraint that is not yet satisfied, we pivot |
| 37 | * in a row that increases the constant term of the row holding the |
| 38 | * constraint, making sure the sample solution remains feasible |
| 39 | * for all the constraints it already satisfied. |
| 40 | * Here, we always pivot in the row holding the constraint, |
| 41 | * choosing a column that induces the lexicographically smallest |
| 42 | * increment to the sample solution. |
| 43 | * |
| 44 | * By starting out from a sample value that is lexicographically |
| 45 | * smaller than any integer point in the problem space, the first |
| 46 | * feasible integer sample point we find will also be the lexicographically |
| 47 | * smallest. If all variables can be assumed to be non-negative, |
| 48 | * then the initial sample value may be chosen equal to zero. |
| 49 | * However, we will not make this assumption. Instead, we apply |
| 50 | * the "big parameter" trick. Any variable x is then not directly |
| 51 | * used in the tableau, but instead it is represented by another |
| 52 | * variable x' = M + x, where M is an arbitrarily large (positive) |
| 53 | * value. x' is therefore always non-negative, whatever the value of x. |
| 54 | * Taking as initial sample value x' = 0 corresponds to x = -M, |
| 55 | * which is always smaller than any possible value of x. |
| 56 | * |
| 57 | * The big parameter trick is used in the main tableau and |
| 58 | * also in the context tableau if isl_context_lex is used. |
| 59 | * In this case, each tableaus has its own big parameter. |
| 60 | * Before doing any real work, we check if all the parameters |
| 61 | * happen to be non-negative. If so, we drop the column corresponding |
| 62 | * to M from the initial context tableau. |
| 63 | * If isl_context_gbr is used, then the big parameter trick is only |
| 64 | * used in the main tableau. |
| 65 | */ |
| 66 | |
| 67 | struct isl_context; |
| 68 | struct isl_context_op { |
| 69 | /* detect nonnegative parameters in context and mark them in tab */ |
| 70 | struct isl_tab *(*detect_nonnegative_parameters)( |
| 71 | struct isl_context *context, struct isl_tab *tab); |
| 72 | /* return temporary reference to basic set representation of context */ |
| 73 | struct isl_basic_set *(*peek_basic_set)(struct isl_context *context); |
| 74 | /* return temporary reference to tableau representation of context */ |
| 75 | struct isl_tab *(*peek_tab)(struct isl_context *context); |
| 76 | /* add equality; check is 1 if eq may not be valid; |
| 77 | * update is 1 if we may want to call ineq_sign on context later. |
| 78 | */ |
| 79 | void (*add_eq)(struct isl_context *context, isl_int *eq, |
| 80 | int check, int update); |
| 81 | /* add inequality; check is 1 if ineq may not be valid; |
| 82 | * update is 1 if we may want to call ineq_sign on context later. |
| 83 | */ |
| 84 | void (*add_ineq)(struct isl_context *context, isl_int *ineq, |
| 85 | int check, int update); |
| 86 | /* check sign of ineq based on previous information. |
| 87 | * strict is 1 if saturation should be treated as a positive sign. |
| 88 | */ |
| 89 | enum isl_tab_row_sign (*ineq_sign)(struct isl_context *context, |
| 90 | isl_int *ineq, int strict); |
| 91 | /* check if inequality maintains feasibility */ |
| 92 | int (*test_ineq)(struct isl_context *context, isl_int *ineq); |
| 93 | /* return index of a div that corresponds to "div" */ |
| 94 | int (*get_div)(struct isl_context *context, struct isl_tab *tab, |
| 95 | struct isl_vec *div); |
| 96 | /* insert div "div" to context at "pos" and return non-negativity */ |
| 97 | isl_bool (*insert_div)(struct isl_context *context, int pos, |
| 98 | __isl_keep isl_vec *div); |
| 99 | int (*detect_equalities)(struct isl_context *context, |
| 100 | struct isl_tab *tab); |
| 101 | /* return row index of "best" split */ |
| 102 | int (*best_split)(struct isl_context *context, struct isl_tab *tab); |
| 103 | /* check if context has already been determined to be empty */ |
| 104 | int (*is_empty)(struct isl_context *context); |
| 105 | /* check if context is still usable */ |
| 106 | int (*is_ok)(struct isl_context *context); |
| 107 | /* save a copy/snapshot of context */ |
| 108 | void *(*save)(struct isl_context *context); |
| 109 | /* restore saved context */ |
| 110 | void (*restore)(struct isl_context *context, void *); |
| 111 | /* discard saved context */ |
| 112 | void (*discard)(void *); |
| 113 | /* invalidate context */ |
| 114 | void (*invalidate)(struct isl_context *context); |
| 115 | /* free context */ |
| 116 | __isl_null struct isl_context *(*free)(struct isl_context *context); |
| 117 | }; |
| 118 | |
| 119 | /* Shared parts of context representation. |
| 120 | * |
| 121 | * "n_unknown" is the number of final unknown integer divisions |
| 122 | * in the input domain. |
| 123 | */ |
| 124 | struct isl_context { |
| 125 | struct isl_context_op *op; |
| 126 | int n_unknown; |
| 127 | }; |
| 128 | |
| 129 | struct isl_context_lex { |
| 130 | struct isl_context context; |
| 131 | struct isl_tab *tab; |
| 132 | }; |
| 133 | |
| 134 | /* A stack (linked list) of solutions of subtrees of the search space. |
| 135 | * |
| 136 | * "ma" describes the solution as a function of "dom". |
| 137 | * In particular, the domain space of "ma" is equal to the space of "dom". |
| 138 | * |
| 139 | * If "ma" is NULL, then there is no solution on "dom". |
| 140 | */ |
| 141 | struct isl_partial_sol { |
| 142 | int level; |
| 143 | struct isl_basic_set *dom; |
| 144 | isl_multi_aff *ma; |
| 145 | |
| 146 | struct isl_partial_sol *next; |
| 147 | }; |
| 148 | |
| 149 | struct isl_sol; |
| 150 | struct isl_sol_callback { |
| 151 | struct isl_tab_callback callback; |
| 152 | struct isl_sol *sol; |
| 153 | }; |
| 154 | |
| 155 | /* isl_sol is an interface for constructing a solution to |
| 156 | * a parametric integer linear programming problem. |
| 157 | * Every time the algorithm reaches a state where a solution |
| 158 | * can be read off from the tableau, the function "add" is called |
| 159 | * on the isl_sol passed to find_solutions_main. In a state where |
| 160 | * the tableau is empty, "add_empty" is called instead. |
| 161 | * "free" is called to free the implementation specific fields, if any. |
| 162 | * |
| 163 | * "error" is set if some error has occurred. This flag invalidates |
| 164 | * the remainder of the data structure. |
| 165 | * If "rational" is set, then a rational optimization is being performed. |
| 166 | * "level" is the current level in the tree with nodes for each |
| 167 | * split in the context. |
| 168 | * If "max" is set, then a maximization problem is being solved, rather than |
| 169 | * a minimization problem, which means that the variables in the |
| 170 | * tableau have value "M - x" rather than "M + x". |
| 171 | * "n_out" is the number of output dimensions in the input. |
| 172 | * "space" is the space in which the solution (and also the input) lives. |
| 173 | * |
| 174 | * The context tableau is owned by isl_sol and is updated incrementally. |
| 175 | * |
| 176 | * There are currently two implementations of this interface, |
| 177 | * isl_sol_map, which simply collects the solutions in an isl_map |
| 178 | * and (optionally) the parts of the context where there is no solution |
| 179 | * in an isl_set, and |
| 180 | * isl_sol_pma, which collects an isl_pw_multi_aff instead. |
| 181 | */ |
| 182 | struct isl_sol { |
| 183 | int error; |
| 184 | int rational; |
| 185 | int level; |
| 186 | int max; |
| 187 | isl_size n_out; |
| 188 | isl_space *space; |
| 189 | struct isl_context *context; |
| 190 | struct isl_partial_sol *partial; |
| 191 | void (*add)(struct isl_sol *sol, |
| 192 | __isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma); |
| 193 | void (*add_empty)(struct isl_sol *sol, struct isl_basic_set *bset); |
| 194 | void (*free)(struct isl_sol *sol); |
| 195 | struct isl_sol_callback dec_level; |
| 196 | }; |
| 197 | |
| 198 | static void sol_free(struct isl_sol *sol) |
| 199 | { |
| 200 | struct isl_partial_sol *partial, *next; |
| 201 | if (!sol) |
| 202 | return; |
| 203 | for (partial = sol->partial; partial; partial = next) { |
| 204 | next = partial->next; |
| 205 | isl_basic_set_free(bset: partial->dom); |
| 206 | isl_multi_aff_free(multi: partial->ma); |
| 207 | free(ptr: partial); |
| 208 | } |
| 209 | isl_space_free(space: sol->space); |
| 210 | if (sol->context) |
| 211 | sol->context->op->free(sol->context); |
| 212 | sol->free(sol); |
| 213 | free(ptr: sol); |
| 214 | } |
| 215 | |
| 216 | /* Push a partial solution represented by a domain and function "ma" |
| 217 | * onto the stack of partial solutions. |
| 218 | * If "ma" is NULL, then "dom" represents a part of the domain |
| 219 | * with no solution. |
| 220 | */ |
| 221 | static void sol_push_sol(struct isl_sol *sol, |
| 222 | __isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma) |
| 223 | { |
| 224 | struct isl_partial_sol *partial; |
| 225 | |
| 226 | if (sol->error || !dom) |
| 227 | goto error; |
| 228 | |
| 229 | partial = isl_alloc_type(dom->ctx, struct isl_partial_sol); |
| 230 | if (!partial) |
| 231 | goto error; |
| 232 | |
| 233 | partial->level = sol->level; |
| 234 | partial->dom = dom; |
| 235 | partial->ma = ma; |
| 236 | partial->next = sol->partial; |
| 237 | |
| 238 | sol->partial = partial; |
| 239 | |
| 240 | return; |
| 241 | error: |
| 242 | isl_basic_set_free(bset: dom); |
| 243 | isl_multi_aff_free(multi: ma); |
| 244 | sol->error = 1; |
| 245 | } |
| 246 | |
| 247 | /* Check that the final columns of "M", starting at "first", are zero. |
| 248 | */ |
| 249 | static isl_stat check_final_columns_are_zero(__isl_keep isl_mat *M, |
| 250 | unsigned first) |
| 251 | { |
| 252 | int i; |
| 253 | isl_size rows, cols; |
| 254 | unsigned n; |
| 255 | |
| 256 | rows = isl_mat_rows(mat: M); |
| 257 | cols = isl_mat_cols(mat: M); |
| 258 | if (rows < 0 || cols < 0) |
| 259 | return isl_stat_error; |
| 260 | n = cols - first; |
| 261 | for (i = 0; i < rows; ++i) |
| 262 | if (isl_seq_first_non_zero(p: M->row[i] + first, len: n) != -1) |
| 263 | isl_die(isl_mat_get_ctx(M), isl_error_internal, |
| 264 | "final columns should be zero" , |
| 265 | return isl_stat_error); |
| 266 | return isl_stat_ok; |
| 267 | } |
| 268 | |
| 269 | /* Set the affine expressions in "ma" according to the rows in "M", which |
| 270 | * are defined over the local space "ls". |
| 271 | * The matrix "M" may have extra (zero) columns beyond the number |
| 272 | * of variables in "ls". |
| 273 | */ |
| 274 | static __isl_give isl_multi_aff *set_from_affine_matrix( |
| 275 | __isl_take isl_multi_aff *ma, __isl_take isl_local_space *ls, |
| 276 | __isl_take isl_mat *M) |
| 277 | { |
| 278 | int i; |
| 279 | isl_size dim; |
| 280 | isl_aff *aff; |
| 281 | |
| 282 | dim = isl_local_space_dim(ls, type: isl_dim_all); |
| 283 | if (!ma || dim < 0 || !M) |
| 284 | goto error; |
| 285 | |
| 286 | if (check_final_columns_are_zero(M, first: 1 + dim) < 0) |
| 287 | goto error; |
| 288 | for (i = 1; i < M->n_row; ++i) { |
| 289 | aff = isl_aff_alloc(ls: isl_local_space_copy(ls)); |
| 290 | if (aff) { |
| 291 | isl_int_set(aff->v->el[0], M->row[0][0]); |
| 292 | isl_seq_cpy(dst: aff->v->el + 1, src: M->row[i], len: 1 + dim); |
| 293 | } |
| 294 | aff = isl_aff_normalize(aff); |
| 295 | ma = isl_multi_aff_set_aff(multi: ma, pos: i - 1, el: aff); |
| 296 | } |
| 297 | isl_local_space_free(ls); |
| 298 | isl_mat_free(mat: M); |
| 299 | |
| 300 | return ma; |
| 301 | error: |
| 302 | isl_local_space_free(ls); |
| 303 | isl_mat_free(mat: M); |
| 304 | isl_multi_aff_free(multi: ma); |
| 305 | return NULL; |
| 306 | } |
| 307 | |
| 308 | /* Push a partial solution represented by a domain and mapping M |
| 309 | * onto the stack of partial solutions. |
| 310 | * |
| 311 | * The affine matrix "M" maps the dimensions of the context |
| 312 | * to the output variables. Convert it into an isl_multi_aff and |
| 313 | * then call sol_push_sol. |
| 314 | * |
| 315 | * Note that the description of the initial context may have involved |
| 316 | * existentially quantified variables, in which case they also appear |
| 317 | * in "dom". These need to be removed before creating the affine |
| 318 | * expression because an affine expression cannot be defined in terms |
| 319 | * of existentially quantified variables without a known representation. |
| 320 | * Since newly added integer divisions are inserted before these |
| 321 | * existentially quantified variables, they are still in the final |
| 322 | * positions and the corresponding final columns of "M" are zero |
| 323 | * because align_context_divs adds the existentially quantified |
| 324 | * variables of the context to the main tableau without any constraints and |
| 325 | * any equality constraints that are added later on can only serve |
| 326 | * to eliminate these existentially quantified variables. |
| 327 | */ |
| 328 | static void sol_push_sol_mat(struct isl_sol *sol, |
| 329 | __isl_take isl_basic_set *dom, __isl_take isl_mat *M) |
| 330 | { |
| 331 | isl_local_space *ls; |
| 332 | isl_multi_aff *ma; |
| 333 | isl_size n_div; |
| 334 | int n_known; |
| 335 | |
| 336 | n_div = isl_basic_set_dim(bset: dom, type: isl_dim_div); |
| 337 | if (n_div < 0) |
| 338 | goto error; |
| 339 | n_known = n_div - sol->context->n_unknown; |
| 340 | |
| 341 | ma = isl_multi_aff_alloc(space: isl_space_copy(space: sol->space)); |
| 342 | ls = isl_basic_set_get_local_space(bset: dom); |
| 343 | ls = isl_local_space_drop_dims(ls, type: isl_dim_div, |
| 344 | first: n_known, n: n_div - n_known); |
| 345 | ma = set_from_affine_matrix(ma, ls, M); |
| 346 | |
| 347 | if (!ma) |
| 348 | dom = isl_basic_set_free(bset: dom); |
| 349 | sol_push_sol(sol, dom, ma); |
| 350 | return; |
| 351 | error: |
| 352 | isl_basic_set_free(bset: dom); |
| 353 | isl_mat_free(mat: M); |
| 354 | sol_push_sol(sol, NULL, NULL); |
| 355 | } |
| 356 | |
| 357 | /* Pop one partial solution from the partial solution stack and |
| 358 | * pass it on to sol->add or sol->add_empty. |
| 359 | */ |
| 360 | static void sol_pop_one(struct isl_sol *sol) |
| 361 | { |
| 362 | struct isl_partial_sol *partial; |
| 363 | |
| 364 | partial = sol->partial; |
| 365 | sol->partial = partial->next; |
| 366 | |
| 367 | if (partial->ma) |
| 368 | sol->add(sol, partial->dom, partial->ma); |
| 369 | else |
| 370 | sol->add_empty(sol, partial->dom); |
| 371 | free(ptr: partial); |
| 372 | } |
| 373 | |
| 374 | /* Return a fresh copy of the domain represented by the context tableau. |
| 375 | */ |
| 376 | static struct isl_basic_set *sol_domain(struct isl_sol *sol) |
| 377 | { |
| 378 | struct isl_basic_set *bset; |
| 379 | |
| 380 | if (sol->error) |
| 381 | return NULL; |
| 382 | |
| 383 | bset = isl_basic_set_dup(bset: sol->context->op->peek_basic_set(sol->context)); |
| 384 | bset = isl_basic_set_update_from_tab(bset, |
| 385 | tab: sol->context->op->peek_tab(sol->context)); |
| 386 | |
| 387 | return bset; |
| 388 | } |
| 389 | |
| 390 | /* Check whether two partial solutions have the same affine expressions. |
| 391 | */ |
| 392 | static isl_bool same_solution(struct isl_partial_sol *s1, |
| 393 | struct isl_partial_sol *s2) |
| 394 | { |
| 395 | if (!s1->ma != !s2->ma) |
| 396 | return isl_bool_false; |
| 397 | if (!s1->ma) |
| 398 | return isl_bool_true; |
| 399 | |
| 400 | return isl_multi_aff_plain_is_equal(multi1: s1->ma, multi2: s2->ma); |
| 401 | } |
| 402 | |
| 403 | /* Swap the initial two partial solutions in "sol". |
| 404 | * |
| 405 | * That is, go from |
| 406 | * |
| 407 | * sol->partial = p1; p1->next = p2; p2->next = p3 |
| 408 | * |
| 409 | * to |
| 410 | * |
| 411 | * sol->partial = p2; p2->next = p1; p1->next = p3 |
| 412 | */ |
| 413 | static void swap_initial(struct isl_sol *sol) |
| 414 | { |
| 415 | struct isl_partial_sol *partial; |
| 416 | |
| 417 | partial = sol->partial; |
| 418 | sol->partial = partial->next; |
| 419 | partial->next = partial->next->next; |
| 420 | sol->partial->next = partial; |
| 421 | } |
| 422 | |
| 423 | /* Combine the initial two partial solution of "sol" into |
| 424 | * a partial solution with the current context domain of "sol" and |
| 425 | * the function description of the second partial solution in the list. |
| 426 | * The level of the new partial solution is set to the current level. |
| 427 | * |
| 428 | * That is, the first two partial solutions (D1,M1) and (D2,M2) are |
| 429 | * replaced by (D,M2), where D is the domain of "sol", which is assumed |
| 430 | * to be the union of D1 and D2, while M1 is assumed to be equal to M2 |
| 431 | * (at least on D1). |
| 432 | */ |
| 433 | static isl_stat combine_initial_into_second(struct isl_sol *sol) |
| 434 | { |
| 435 | struct isl_partial_sol *partial; |
| 436 | isl_basic_set *bset; |
| 437 | |
| 438 | partial = sol->partial; |
| 439 | |
| 440 | bset = sol_domain(sol); |
| 441 | isl_basic_set_free(bset: partial->next->dom); |
| 442 | partial->next->dom = bset; |
| 443 | partial->next->level = sol->level; |
| 444 | |
| 445 | if (!bset) |
| 446 | return isl_stat_error; |
| 447 | |
| 448 | sol->partial = partial->next; |
| 449 | isl_basic_set_free(bset: partial->dom); |
| 450 | isl_multi_aff_free(multi: partial->ma); |
| 451 | free(ptr: partial); |
| 452 | |
| 453 | return isl_stat_ok; |
| 454 | } |
| 455 | |
| 456 | /* Are "ma1" and "ma2" equal to each other on "dom"? |
| 457 | * |
| 458 | * Combine "ma1" and "ma2" with "dom" and check if the results are the same. |
| 459 | * "dom" may have existentially quantified variables. Eliminate them first |
| 460 | * as otherwise they would have to be eliminated twice, in a more complicated |
| 461 | * context. |
| 462 | */ |
| 463 | static isl_bool equal_on_domain(__isl_keep isl_multi_aff *ma1, |
| 464 | __isl_keep isl_multi_aff *ma2, __isl_keep isl_basic_set *dom) |
| 465 | { |
| 466 | isl_set *set; |
| 467 | isl_pw_multi_aff *pma1, *pma2; |
| 468 | isl_bool equal; |
| 469 | |
| 470 | set = isl_basic_set_compute_divs(bset: isl_basic_set_copy(bset: dom)); |
| 471 | pma1 = isl_pw_multi_aff_alloc(set: isl_set_copy(set), |
| 472 | maff: isl_multi_aff_copy(multi: ma1)); |
| 473 | pma2 = isl_pw_multi_aff_alloc(set, maff: isl_multi_aff_copy(multi: ma2)); |
| 474 | equal = isl_pw_multi_aff_is_equal(pma1, pma2); |
| 475 | isl_pw_multi_aff_free(pma: pma1); |
| 476 | isl_pw_multi_aff_free(pma: pma2); |
| 477 | |
| 478 | return equal; |
| 479 | } |
| 480 | |
| 481 | /* The initial two partial solutions of "sol" are known to be at |
| 482 | * the same level. |
| 483 | * If they represent the same solution (on different parts of the domain), |
| 484 | * then combine them into a single solution at the current level. |
| 485 | * Otherwise, pop them both. |
| 486 | * |
| 487 | * Even if the two partial solution are not obviously the same, |
| 488 | * one may still be a simplification of the other over its own domain. |
| 489 | * Also check if the two sets of affine functions are equal when |
| 490 | * restricted to one of the domains. If so, combine the two |
| 491 | * using the set of affine functions on the other domain. |
| 492 | * That is, for two partial solutions (D1,M1) and (D2,M2), |
| 493 | * if M1 = M2 on D1, then the pair of partial solutions can |
| 494 | * be replaced by (D1+D2,M2) and similarly when M1 = M2 on D2. |
| 495 | */ |
| 496 | static isl_stat combine_initial_if_equal(struct isl_sol *sol) |
| 497 | { |
| 498 | struct isl_partial_sol *partial; |
| 499 | isl_bool same; |
| 500 | |
| 501 | partial = sol->partial; |
| 502 | |
| 503 | same = same_solution(s1: partial, s2: partial->next); |
| 504 | if (same < 0) |
| 505 | return isl_stat_error; |
| 506 | if (same) |
| 507 | return combine_initial_into_second(sol); |
| 508 | if (partial->ma && partial->next->ma) { |
| 509 | same = equal_on_domain(ma1: partial->ma, ma2: partial->next->ma, |
| 510 | dom: partial->dom); |
| 511 | if (same < 0) |
| 512 | return isl_stat_error; |
| 513 | if (same) |
| 514 | return combine_initial_into_second(sol); |
| 515 | same = equal_on_domain(ma1: partial->ma, ma2: partial->next->ma, |
| 516 | dom: partial->next->dom); |
| 517 | if (same) { |
| 518 | swap_initial(sol); |
| 519 | return combine_initial_into_second(sol); |
| 520 | } |
| 521 | } |
| 522 | |
| 523 | sol_pop_one(sol); |
| 524 | sol_pop_one(sol); |
| 525 | |
| 526 | return isl_stat_ok; |
| 527 | } |
| 528 | |
| 529 | /* Pop all solutions from the partial solution stack that were pushed onto |
| 530 | * the stack at levels that are deeper than the current level. |
| 531 | * If the two topmost elements on the stack have the same level |
| 532 | * and represent the same solution, then their domains are combined. |
| 533 | * This combined domain is the same as the current context domain |
| 534 | * as sol_pop is called each time we move back to a higher level. |
| 535 | * If the outer level (0) has been reached, then all partial solutions |
| 536 | * at the current level are also popped off. |
| 537 | */ |
| 538 | static void sol_pop(struct isl_sol *sol) |
| 539 | { |
| 540 | struct isl_partial_sol *partial; |
| 541 | |
| 542 | if (sol->error) |
| 543 | return; |
| 544 | |
| 545 | partial = sol->partial; |
| 546 | if (!partial) |
| 547 | return; |
| 548 | |
| 549 | if (partial->level == 0 && sol->level == 0) { |
| 550 | for (partial = sol->partial; partial; partial = sol->partial) |
| 551 | sol_pop_one(sol); |
| 552 | return; |
| 553 | } |
| 554 | |
| 555 | if (partial->level <= sol->level) |
| 556 | return; |
| 557 | |
| 558 | if (partial->next && partial->next->level == partial->level) { |
| 559 | if (combine_initial_if_equal(sol) < 0) |
| 560 | goto error; |
| 561 | } else |
| 562 | sol_pop_one(sol); |
| 563 | |
| 564 | if (sol->level == 0) { |
| 565 | for (partial = sol->partial; partial; partial = sol->partial) |
| 566 | sol_pop_one(sol); |
| 567 | return; |
| 568 | } |
| 569 | |
| 570 | if (0) |
| 571 | error: sol->error = 1; |
| 572 | } |
| 573 | |
| 574 | static void sol_dec_level(struct isl_sol *sol) |
| 575 | { |
| 576 | if (sol->error) |
| 577 | return; |
| 578 | |
| 579 | sol->level--; |
| 580 | |
| 581 | sol_pop(sol); |
| 582 | } |
| 583 | |
| 584 | static isl_stat sol_dec_level_wrap(struct isl_tab_callback *cb) |
| 585 | { |
| 586 | struct isl_sol_callback *callback = (struct isl_sol_callback *)cb; |
| 587 | |
| 588 | sol_dec_level(sol: callback->sol); |
| 589 | |
| 590 | return callback->sol->error ? isl_stat_error : isl_stat_ok; |
| 591 | } |
| 592 | |
| 593 | /* Move down to next level and push callback onto context tableau |
| 594 | * to decrease the level again when it gets rolled back across |
| 595 | * the current state. That is, dec_level will be called with |
| 596 | * the context tableau in the same state as it is when inc_level |
| 597 | * is called. |
| 598 | */ |
| 599 | static void sol_inc_level(struct isl_sol *sol) |
| 600 | { |
| 601 | struct isl_tab *tab; |
| 602 | |
| 603 | if (sol->error) |
| 604 | return; |
| 605 | |
| 606 | sol->level++; |
| 607 | tab = sol->context->op->peek_tab(sol->context); |
| 608 | if (isl_tab_push_callback(tab, callback: &sol->dec_level.callback) < 0) |
| 609 | sol->error = 1; |
| 610 | } |
| 611 | |
| 612 | static void scale_rows(struct isl_mat *mat, isl_int m, int n_row) |
| 613 | { |
| 614 | int i; |
| 615 | |
| 616 | if (isl_int_is_one(m)) |
| 617 | return; |
| 618 | |
| 619 | for (i = 0; i < n_row; ++i) |
| 620 | isl_seq_scale(dst: mat->row[i], src: mat->row[i], f: m, len: mat->n_col); |
| 621 | } |
| 622 | |
| 623 | /* Add the solution identified by the tableau and the context tableau. |
| 624 | * |
| 625 | * The layout of the variables is as follows. |
| 626 | * tab->n_var is equal to the total number of variables in the input |
| 627 | * map (including divs that were copied from the context) |
| 628 | * + the number of extra divs constructed |
| 629 | * Of these, the first tab->n_param and the last tab->n_div variables |
| 630 | * correspond to the variables in the context, i.e., |
| 631 | * tab->n_param + tab->n_div = context_tab->n_var |
| 632 | * tab->n_param is equal to the number of parameters and input |
| 633 | * dimensions in the input map |
| 634 | * tab->n_div is equal to the number of divs in the context |
| 635 | * |
| 636 | * If there is no solution, then call add_empty with a basic set |
| 637 | * that corresponds to the context tableau. (If add_empty is NULL, |
| 638 | * then do nothing). |
| 639 | * |
| 640 | * If there is a solution, then first construct a matrix that maps |
| 641 | * all dimensions of the context to the output variables, i.e., |
| 642 | * the output dimensions in the input map. |
| 643 | * The divs in the input map (if any) that do not correspond to any |
| 644 | * div in the context do not appear in the solution. |
| 645 | * The algorithm will make sure that they have an integer value, |
| 646 | * but these values themselves are of no interest. |
| 647 | * We have to be careful not to drop or rearrange any divs in the |
| 648 | * context because that would change the meaning of the matrix. |
| 649 | * |
| 650 | * To extract the value of the output variables, it should be noted |
| 651 | * that we always use a big parameter M in the main tableau and so |
| 652 | * the variable stored in this tableau is not an output variable x itself, but |
| 653 | * x' = M + x (in case of minimization) |
| 654 | * or |
| 655 | * x' = M - x (in case of maximization) |
| 656 | * If x' appears in a column, then its optimal value is zero, |
| 657 | * which means that the optimal value of x is an unbounded number |
| 658 | * (-M for minimization and M for maximization). |
| 659 | * We currently assume that the output dimensions in the original map |
| 660 | * are bounded, so this cannot occur. |
| 661 | * Similarly, when x' appears in a row, then the coefficient of M in that |
| 662 | * row is necessarily 1. |
| 663 | * If the row in the tableau represents |
| 664 | * d x' = c + d M + e(y) |
| 665 | * then, in case of minimization, the corresponding row in the matrix |
| 666 | * will be |
| 667 | * a c + a e(y) |
| 668 | * with a d = m, the (updated) common denominator of the matrix. |
| 669 | * In case of maximization, the row will be |
| 670 | * -a c - a e(y) |
| 671 | */ |
| 672 | static void sol_add(struct isl_sol *sol, struct isl_tab *tab) |
| 673 | { |
| 674 | struct isl_basic_set *bset = NULL; |
| 675 | struct isl_mat *mat = NULL; |
| 676 | unsigned off; |
| 677 | int row; |
| 678 | isl_int m; |
| 679 | |
| 680 | if (sol->error || !tab) |
| 681 | goto error; |
| 682 | |
| 683 | if (tab->empty && !sol->add_empty) |
| 684 | return; |
| 685 | if (sol->context->op->is_empty(sol->context)) |
| 686 | return; |
| 687 | |
| 688 | bset = sol_domain(sol); |
| 689 | |
| 690 | if (tab->empty) { |
| 691 | sol_push_sol(sol, dom: bset, NULL); |
| 692 | return; |
| 693 | } |
| 694 | |
| 695 | off = 2 + tab->M; |
| 696 | |
| 697 | mat = isl_mat_alloc(ctx: tab->mat->ctx, n_row: 1 + sol->n_out, |
| 698 | n_col: 1 + tab->n_param + tab->n_div); |
| 699 | if (!mat) |
| 700 | goto error; |
| 701 | |
| 702 | isl_int_init(m); |
| 703 | |
| 704 | isl_seq_clr(p: mat->row[0] + 1, len: mat->n_col - 1); |
| 705 | isl_int_set_si(mat->row[0][0], 1); |
| 706 | for (row = 0; row < sol->n_out; ++row) { |
| 707 | int i = tab->n_param + row; |
| 708 | int r, j; |
| 709 | |
| 710 | isl_seq_clr(p: mat->row[1 + row], len: mat->n_col); |
| 711 | if (!tab->var[i].is_row) { |
| 712 | if (tab->M) |
| 713 | isl_die(mat->ctx, isl_error_invalid, |
| 714 | "unbounded optimum" , goto error2); |
| 715 | continue; |
| 716 | } |
| 717 | |
| 718 | r = tab->var[i].index; |
| 719 | if (tab->M && |
| 720 | isl_int_ne(tab->mat->row[r][2], tab->mat->row[r][0])) |
| 721 | isl_die(mat->ctx, isl_error_invalid, |
| 722 | "unbounded optimum" , goto error2); |
| 723 | isl_int_gcd(m, mat->row[0][0], tab->mat->row[r][0]); |
| 724 | isl_int_divexact(m, tab->mat->row[r][0], m); |
| 725 | scale_rows(mat, m, n_row: 1 + row); |
| 726 | isl_int_divexact(m, mat->row[0][0], tab->mat->row[r][0]); |
| 727 | isl_int_mul(mat->row[1 + row][0], m, tab->mat->row[r][1]); |
| 728 | for (j = 0; j < tab->n_param; ++j) { |
| 729 | int col; |
| 730 | if (tab->var[j].is_row) |
| 731 | continue; |
| 732 | col = tab->var[j].index; |
| 733 | isl_int_mul(mat->row[1 + row][1 + j], m, |
| 734 | tab->mat->row[r][off + col]); |
| 735 | } |
| 736 | for (j = 0; j < tab->n_div; ++j) { |
| 737 | int col; |
| 738 | if (tab->var[tab->n_var - tab->n_div+j].is_row) |
| 739 | continue; |
| 740 | col = tab->var[tab->n_var - tab->n_div+j].index; |
| 741 | isl_int_mul(mat->row[1 + row][1 + tab->n_param + j], m, |
| 742 | tab->mat->row[r][off + col]); |
| 743 | } |
| 744 | if (sol->max) |
| 745 | isl_seq_neg(dst: mat->row[1 + row], src: mat->row[1 + row], |
| 746 | len: mat->n_col); |
| 747 | } |
| 748 | |
| 749 | isl_int_clear(m); |
| 750 | |
| 751 | sol_push_sol_mat(sol, dom: bset, M: mat); |
| 752 | return; |
| 753 | error2: |
| 754 | isl_int_clear(m); |
| 755 | error: |
| 756 | isl_basic_set_free(bset); |
| 757 | isl_mat_free(mat); |
| 758 | sol->error = 1; |
| 759 | } |
| 760 | |
| 761 | struct isl_sol_map { |
| 762 | struct isl_sol sol; |
| 763 | struct isl_map *map; |
| 764 | struct isl_set *empty; |
| 765 | }; |
| 766 | |
| 767 | static void sol_map_free(struct isl_sol *sol) |
| 768 | { |
| 769 | struct isl_sol_map *sol_map = (struct isl_sol_map *) sol; |
| 770 | isl_map_free(map: sol_map->map); |
| 771 | isl_set_free(set: sol_map->empty); |
| 772 | } |
| 773 | |
| 774 | /* This function is called for parts of the context where there is |
| 775 | * no solution, with "bset" corresponding to the context tableau. |
| 776 | * Simply add the basic set to the set "empty". |
| 777 | */ |
| 778 | static void sol_map_add_empty(struct isl_sol_map *sol, |
| 779 | struct isl_basic_set *bset) |
| 780 | { |
| 781 | if (!bset || !sol->empty) |
| 782 | goto error; |
| 783 | |
| 784 | sol->empty = isl_set_grow(set: sol->empty, n: 1); |
| 785 | bset = isl_basic_set_simplify(bset); |
| 786 | bset = isl_basic_set_finalize(bset); |
| 787 | sol->empty = isl_set_add_basic_set(set: sol->empty, bset: isl_basic_set_copy(bset)); |
| 788 | if (!sol->empty) |
| 789 | goto error; |
| 790 | isl_basic_set_free(bset); |
| 791 | return; |
| 792 | error: |
| 793 | isl_basic_set_free(bset); |
| 794 | sol->sol.error = 1; |
| 795 | } |
| 796 | |
| 797 | static void sol_map_add_empty_wrap(struct isl_sol *sol, |
| 798 | struct isl_basic_set *bset) |
| 799 | { |
| 800 | sol_map_add_empty(sol: (struct isl_sol_map *)sol, bset); |
| 801 | } |
| 802 | |
| 803 | /* Given a basic set "dom" that represents the context and a tuple of |
| 804 | * affine expressions "ma" defined over this domain, construct a basic map |
| 805 | * that expresses this function on the domain. |
| 806 | */ |
| 807 | static void sol_map_add(struct isl_sol_map *sol, |
| 808 | __isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma) |
| 809 | { |
| 810 | isl_basic_map *bmap; |
| 811 | |
| 812 | if (sol->sol.error || !dom || !ma) |
| 813 | goto error; |
| 814 | |
| 815 | bmap = isl_basic_map_from_multi_aff2(maff: ma, rational: sol->sol.rational); |
| 816 | bmap = isl_basic_map_intersect_domain(bmap, bset: dom); |
| 817 | sol->map = isl_map_grow(map: sol->map, n: 1); |
| 818 | sol->map = isl_map_add_basic_map(map: sol->map, bmap); |
| 819 | if (!sol->map) |
| 820 | sol->sol.error = 1; |
| 821 | return; |
| 822 | error: |
| 823 | isl_basic_set_free(bset: dom); |
| 824 | isl_multi_aff_free(multi: ma); |
| 825 | sol->sol.error = 1; |
| 826 | } |
| 827 | |
| 828 | static void sol_map_add_wrap(struct isl_sol *sol, |
| 829 | __isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma) |
| 830 | { |
| 831 | sol_map_add(sol: (struct isl_sol_map *)sol, dom, ma); |
| 832 | } |
| 833 | |
| 834 | |
| 835 | /* Store the "parametric constant" of row "row" of tableau "tab" in "line", |
| 836 | * i.e., the constant term and the coefficients of all variables that |
| 837 | * appear in the context tableau. |
| 838 | * Note that the coefficient of the big parameter M is NOT copied. |
| 839 | * The context tableau may not have a big parameter and even when it |
| 840 | * does, it is a different big parameter. |
| 841 | */ |
| 842 | static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line) |
| 843 | { |
| 844 | int i; |
| 845 | unsigned off = 2 + tab->M; |
| 846 | |
| 847 | isl_int_set(line[0], tab->mat->row[row][1]); |
| 848 | for (i = 0; i < tab->n_param; ++i) { |
| 849 | if (tab->var[i].is_row) |
| 850 | isl_int_set_si(line[1 + i], 0); |
| 851 | else { |
| 852 | int col = tab->var[i].index; |
| 853 | isl_int_set(line[1 + i], tab->mat->row[row][off + col]); |
| 854 | } |
| 855 | } |
| 856 | for (i = 0; i < tab->n_div; ++i) { |
| 857 | if (tab->var[tab->n_var - tab->n_div + i].is_row) |
| 858 | isl_int_set_si(line[1 + tab->n_param + i], 0); |
| 859 | else { |
| 860 | int col = tab->var[tab->n_var - tab->n_div + i].index; |
| 861 | isl_int_set(line[1 + tab->n_param + i], |
| 862 | tab->mat->row[row][off + col]); |
| 863 | } |
| 864 | } |
| 865 | } |
| 866 | |
| 867 | /* Check if rows "row1" and "row2" have identical "parametric constants", |
| 868 | * as explained above. |
| 869 | * In this case, we also insist that the coefficients of the big parameter |
| 870 | * be the same as the values of the constants will only be the same |
| 871 | * if these coefficients are also the same. |
| 872 | */ |
| 873 | static int identical_parameter_line(struct isl_tab *tab, int row1, int row2) |
| 874 | { |
| 875 | int i; |
| 876 | unsigned off = 2 + tab->M; |
| 877 | |
| 878 | if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1])) |
| 879 | return 0; |
| 880 | |
| 881 | if (tab->M && isl_int_ne(tab->mat->row[row1][2], |
| 882 | tab->mat->row[row2][2])) |
| 883 | return 0; |
| 884 | |
| 885 | for (i = 0; i < tab->n_param + tab->n_div; ++i) { |
| 886 | int pos = i < tab->n_param ? i : |
| 887 | tab->n_var - tab->n_div + i - tab->n_param; |
| 888 | int col; |
| 889 | |
| 890 | if (tab->var[pos].is_row) |
| 891 | continue; |
| 892 | col = tab->var[pos].index; |
| 893 | if (isl_int_ne(tab->mat->row[row1][off + col], |
| 894 | tab->mat->row[row2][off + col])) |
| 895 | return 0; |
| 896 | } |
| 897 | return 1; |
| 898 | } |
| 899 | |
| 900 | /* Return an inequality that expresses that the "parametric constant" |
| 901 | * should be non-negative. |
| 902 | * This function is only called when the coefficient of the big parameter |
| 903 | * is equal to zero. |
| 904 | */ |
| 905 | static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row) |
| 906 | { |
| 907 | struct isl_vec *ineq; |
| 908 | |
| 909 | ineq = isl_vec_alloc(ctx: tab->mat->ctx, size: 1 + tab->n_param + tab->n_div); |
| 910 | if (!ineq) |
| 911 | return NULL; |
| 912 | |
| 913 | get_row_parameter_line(tab, row, line: ineq->el); |
| 914 | if (ineq) |
| 915 | ineq = isl_vec_normalize(vec: ineq); |
| 916 | |
| 917 | return ineq; |
| 918 | } |
| 919 | |
| 920 | /* Normalize a div expression of the form |
| 921 | * |
| 922 | * [(g*f(x) + c)/(g * m)] |
| 923 | * |
| 924 | * with c the constant term and f(x) the remaining coefficients, to |
| 925 | * |
| 926 | * [(f(x) + [c/g])/m] |
| 927 | */ |
| 928 | static void normalize_div(__isl_keep isl_vec *div) |
| 929 | { |
| 930 | isl_ctx *ctx = isl_vec_get_ctx(vec: div); |
| 931 | int len = div->size - 2; |
| 932 | |
| 933 | isl_seq_gcd(p: div->el + 2, len, gcd: &ctx->normalize_gcd); |
| 934 | isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, div->el[0]); |
| 935 | |
| 936 | if (isl_int_is_one(ctx->normalize_gcd)) |
| 937 | return; |
| 938 | |
| 939 | isl_int_divexact(div->el[0], div->el[0], ctx->normalize_gcd); |
| 940 | isl_int_fdiv_q(div->el[1], div->el[1], ctx->normalize_gcd); |
| 941 | isl_seq_scale_down(dst: div->el + 2, src: div->el + 2, f: ctx->normalize_gcd, len); |
| 942 | } |
| 943 | |
| 944 | /* Return an integer division for use in a parametric cut based |
| 945 | * on the given row. |
| 946 | * In particular, let the parametric constant of the row be |
| 947 | * |
| 948 | * \sum_i a_i y_i |
| 949 | * |
| 950 | * where y_0 = 1, but none of the y_i corresponds to the big parameter M. |
| 951 | * The div returned is equal to |
| 952 | * |
| 953 | * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d) |
| 954 | */ |
| 955 | static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row) |
| 956 | { |
| 957 | struct isl_vec *div; |
| 958 | |
| 959 | div = isl_vec_alloc(ctx: tab->mat->ctx, size: 1 + 1 + tab->n_param + tab->n_div); |
| 960 | if (!div) |
| 961 | return NULL; |
| 962 | |
| 963 | isl_int_set(div->el[0], tab->mat->row[row][0]); |
| 964 | get_row_parameter_line(tab, row, line: div->el + 1); |
| 965 | isl_seq_neg(dst: div->el + 1, src: div->el + 1, len: div->size - 1); |
| 966 | normalize_div(div); |
| 967 | isl_seq_fdiv_r(dst: div->el + 1, src: div->el + 1, m: div->el[0], len: div->size - 1); |
| 968 | |
| 969 | return div; |
| 970 | } |
| 971 | |
| 972 | /* Return an integer division for use in transferring an integrality constraint |
| 973 | * to the context. |
| 974 | * In particular, let the parametric constant of the row be |
| 975 | * |
| 976 | * \sum_i a_i y_i |
| 977 | * |
| 978 | * where y_0 = 1, but none of the y_i corresponds to the big parameter M. |
| 979 | * The the returned div is equal to |
| 980 | * |
| 981 | * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d) |
| 982 | */ |
| 983 | static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row) |
| 984 | { |
| 985 | struct isl_vec *div; |
| 986 | |
| 987 | div = isl_vec_alloc(ctx: tab->mat->ctx, size: 1 + 1 + tab->n_param + tab->n_div); |
| 988 | if (!div) |
| 989 | return NULL; |
| 990 | |
| 991 | isl_int_set(div->el[0], tab->mat->row[row][0]); |
| 992 | get_row_parameter_line(tab, row, line: div->el + 1); |
| 993 | normalize_div(div); |
| 994 | isl_seq_fdiv_r(dst: div->el + 1, src: div->el + 1, m: div->el[0], len: div->size - 1); |
| 995 | |
| 996 | return div; |
| 997 | } |
| 998 | |
| 999 | /* Construct and return an inequality that expresses an upper bound |
| 1000 | * on the given div. |
| 1001 | * In particular, if the div is given by |
| 1002 | * |
| 1003 | * d = floor(e/m) |
| 1004 | * |
| 1005 | * then the inequality expresses |
| 1006 | * |
| 1007 | * m d <= e |
| 1008 | */ |
| 1009 | static __isl_give isl_vec *ineq_for_div(__isl_keep isl_basic_set *bset, |
| 1010 | unsigned div) |
| 1011 | { |
| 1012 | isl_size total; |
| 1013 | unsigned div_pos; |
| 1014 | struct isl_vec *ineq; |
| 1015 | |
| 1016 | total = isl_basic_set_dim(bset, type: isl_dim_all); |
| 1017 | if (total < 0) |
| 1018 | return NULL; |
| 1019 | |
| 1020 | div_pos = 1 + total - bset->n_div + div; |
| 1021 | |
| 1022 | ineq = isl_vec_alloc(ctx: bset->ctx, size: 1 + total); |
| 1023 | if (!ineq) |
| 1024 | return NULL; |
| 1025 | |
| 1026 | isl_seq_cpy(dst: ineq->el, src: bset->div[div] + 1, len: 1 + total); |
| 1027 | isl_int_neg(ineq->el[div_pos], bset->div[div][0]); |
| 1028 | return ineq; |
| 1029 | } |
| 1030 | |
| 1031 | /* Given a row in the tableau and a div that was created |
| 1032 | * using get_row_split_div and that has been constrained to equality, i.e., |
| 1033 | * |
| 1034 | * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i |
| 1035 | * |
| 1036 | * replace the expression "\sum_i {a_i} y_i" in the row by d, |
| 1037 | * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d. |
| 1038 | * The coefficients of the non-parameters in the tableau have been |
| 1039 | * verified to be integral. We can therefore simply replace coefficient b |
| 1040 | * by floor(b). For the coefficients of the parameters we have |
| 1041 | * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have |
| 1042 | * floor(b) = b. |
| 1043 | */ |
| 1044 | static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div) |
| 1045 | { |
| 1046 | isl_seq_fdiv_q(dst: tab->mat->row[row] + 1, src: tab->mat->row[row] + 1, |
| 1047 | m: tab->mat->row[row][0], len: 1 + tab->M + tab->n_col); |
| 1048 | |
| 1049 | isl_int_set_si(tab->mat->row[row][0], 1); |
| 1050 | |
| 1051 | if (tab->var[tab->n_var - tab->n_div + div].is_row) { |
| 1052 | int drow = tab->var[tab->n_var - tab->n_div + div].index; |
| 1053 | |
| 1054 | isl_assert(tab->mat->ctx, |
| 1055 | isl_int_is_one(tab->mat->row[drow][0]), goto error); |
| 1056 | isl_seq_combine(dst: tab->mat->row[row] + 1, |
| 1057 | m1: tab->mat->ctx->one, src1: tab->mat->row[row] + 1, |
| 1058 | m2: tab->mat->ctx->one, src2: tab->mat->row[drow] + 1, |
| 1059 | len: 1 + tab->M + tab->n_col); |
| 1060 | } else { |
| 1061 | int dcol = tab->var[tab->n_var - tab->n_div + div].index; |
| 1062 | |
| 1063 | isl_int_add_ui(tab->mat->row[row][2 + tab->M + dcol], |
| 1064 | tab->mat->row[row][2 + tab->M + dcol], 1); |
| 1065 | } |
| 1066 | |
| 1067 | return tab; |
| 1068 | error: |
| 1069 | isl_tab_free(tab); |
| 1070 | return NULL; |
| 1071 | } |
| 1072 | |
| 1073 | /* Check if the (parametric) constant of the given row is obviously |
| 1074 | * negative, meaning that we don't need to consult the context tableau. |
| 1075 | * If there is a big parameter and its coefficient is non-zero, |
| 1076 | * then this coefficient determines the outcome. |
| 1077 | * Otherwise, we check whether the constant is negative and |
| 1078 | * all non-zero coefficients of parameters are negative and |
| 1079 | * belong to non-negative parameters. |
| 1080 | */ |
| 1081 | static int is_obviously_neg(struct isl_tab *tab, int row) |
| 1082 | { |
| 1083 | int i; |
| 1084 | int col; |
| 1085 | unsigned off = 2 + tab->M; |
| 1086 | |
| 1087 | if (tab->M) { |
| 1088 | if (isl_int_is_pos(tab->mat->row[row][2])) |
| 1089 | return 0; |
| 1090 | if (isl_int_is_neg(tab->mat->row[row][2])) |
| 1091 | return 1; |
| 1092 | } |
| 1093 | |
| 1094 | if (isl_int_is_nonneg(tab->mat->row[row][1])) |
| 1095 | return 0; |
| 1096 | for (i = 0; i < tab->n_param; ++i) { |
| 1097 | /* Eliminated parameter */ |
| 1098 | if (tab->var[i].is_row) |
| 1099 | continue; |
| 1100 | col = tab->var[i].index; |
| 1101 | if (isl_int_is_zero(tab->mat->row[row][off + col])) |
| 1102 | continue; |
| 1103 | if (!tab->var[i].is_nonneg) |
| 1104 | return 0; |
| 1105 | if (isl_int_is_pos(tab->mat->row[row][off + col])) |
| 1106 | return 0; |
| 1107 | } |
| 1108 | for (i = 0; i < tab->n_div; ++i) { |
| 1109 | if (tab->var[tab->n_var - tab->n_div + i].is_row) |
| 1110 | continue; |
| 1111 | col = tab->var[tab->n_var - tab->n_div + i].index; |
| 1112 | if (isl_int_is_zero(tab->mat->row[row][off + col])) |
| 1113 | continue; |
| 1114 | if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg) |
| 1115 | return 0; |
| 1116 | if (isl_int_is_pos(tab->mat->row[row][off + col])) |
| 1117 | return 0; |
| 1118 | } |
| 1119 | return 1; |
| 1120 | } |
| 1121 | |
| 1122 | /* Check if the (parametric) constant of the given row is obviously |
| 1123 | * non-negative, meaning that we don't need to consult the context tableau. |
| 1124 | * If there is a big parameter and its coefficient is non-zero, |
| 1125 | * then this coefficient determines the outcome. |
| 1126 | * Otherwise, we check whether the constant is non-negative and |
| 1127 | * all non-zero coefficients of parameters are positive and |
| 1128 | * belong to non-negative parameters. |
| 1129 | */ |
| 1130 | static int is_obviously_nonneg(struct isl_tab *tab, int row) |
| 1131 | { |
| 1132 | int i; |
| 1133 | int col; |
| 1134 | unsigned off = 2 + tab->M; |
| 1135 | |
| 1136 | if (tab->M) { |
| 1137 | if (isl_int_is_pos(tab->mat->row[row][2])) |
| 1138 | return 1; |
| 1139 | if (isl_int_is_neg(tab->mat->row[row][2])) |
| 1140 | return 0; |
| 1141 | } |
| 1142 | |
| 1143 | if (isl_int_is_neg(tab->mat->row[row][1])) |
| 1144 | return 0; |
| 1145 | for (i = 0; i < tab->n_param; ++i) { |
| 1146 | /* Eliminated parameter */ |
| 1147 | if (tab->var[i].is_row) |
| 1148 | continue; |
| 1149 | col = tab->var[i].index; |
| 1150 | if (isl_int_is_zero(tab->mat->row[row][off + col])) |
| 1151 | continue; |
| 1152 | if (!tab->var[i].is_nonneg) |
| 1153 | return 0; |
| 1154 | if (isl_int_is_neg(tab->mat->row[row][off + col])) |
| 1155 | return 0; |
| 1156 | } |
| 1157 | for (i = 0; i < tab->n_div; ++i) { |
| 1158 | if (tab->var[tab->n_var - tab->n_div + i].is_row) |
| 1159 | continue; |
| 1160 | col = tab->var[tab->n_var - tab->n_div + i].index; |
| 1161 | if (isl_int_is_zero(tab->mat->row[row][off + col])) |
| 1162 | continue; |
| 1163 | if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg) |
| 1164 | return 0; |
| 1165 | if (isl_int_is_neg(tab->mat->row[row][off + col])) |
| 1166 | return 0; |
| 1167 | } |
| 1168 | return 1; |
| 1169 | } |
| 1170 | |
| 1171 | /* Given a row r and two columns, return the column that would |
| 1172 | * lead to the lexicographically smallest increment in the sample |
| 1173 | * solution when leaving the basis in favor of the row. |
| 1174 | * Pivoting with column c will increment the sample value by a non-negative |
| 1175 | * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c |
| 1176 | * corresponding to the non-parametric variables. |
| 1177 | * If variable v appears in a column c_v, then a_{v,c} = 1 iff c = c_v, |
| 1178 | * with all other entries in this virtual row equal to zero. |
| 1179 | * If variable v appears in a row, then a_{v,c} is the element in column c |
| 1180 | * of that row. |
| 1181 | * |
| 1182 | * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}. |
| 1183 | * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e., |
| 1184 | * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal |
| 1185 | * increment. Otherwise, it's c2. |
| 1186 | */ |
| 1187 | static int lexmin_col_pair(struct isl_tab *tab, |
| 1188 | int row, int col1, int col2, isl_int tmp) |
| 1189 | { |
| 1190 | int i; |
| 1191 | isl_int *tr; |
| 1192 | |
| 1193 | tr = tab->mat->row[row] + 2 + tab->M; |
| 1194 | |
| 1195 | for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) { |
| 1196 | int s1, s2; |
| 1197 | isl_int *r; |
| 1198 | |
| 1199 | if (!tab->var[i].is_row) { |
| 1200 | if (tab->var[i].index == col1) |
| 1201 | return col2; |
| 1202 | if (tab->var[i].index == col2) |
| 1203 | return col1; |
| 1204 | continue; |
| 1205 | } |
| 1206 | |
| 1207 | if (tab->var[i].index == row) |
| 1208 | continue; |
| 1209 | |
| 1210 | r = tab->mat->row[tab->var[i].index] + 2 + tab->M; |
| 1211 | s1 = isl_int_sgn(r[col1]); |
| 1212 | s2 = isl_int_sgn(r[col2]); |
| 1213 | if (s1 == 0 && s2 == 0) |
| 1214 | continue; |
| 1215 | if (s1 < s2) |
| 1216 | return col1; |
| 1217 | if (s2 < s1) |
| 1218 | return col2; |
| 1219 | |
| 1220 | isl_int_mul(tmp, r[col2], tr[col1]); |
| 1221 | isl_int_submul(tmp, r[col1], tr[col2]); |
| 1222 | if (isl_int_is_pos(tmp)) |
| 1223 | return col1; |
| 1224 | if (isl_int_is_neg(tmp)) |
| 1225 | return col2; |
| 1226 | } |
| 1227 | return -1; |
| 1228 | } |
| 1229 | |
| 1230 | /* Does the index into the tab->var or tab->con array "index" |
| 1231 | * correspond to a variable in the context tableau? |
| 1232 | * In particular, it needs to be an index into the tab->var array and |
| 1233 | * it needs to refer to either one of the first tab->n_param variables or |
| 1234 | * one of the last tab->n_div variables. |
| 1235 | */ |
| 1236 | static int is_parameter_var(struct isl_tab *tab, int index) |
| 1237 | { |
| 1238 | if (index < 0) |
| 1239 | return 0; |
| 1240 | if (index < tab->n_param) |
| 1241 | return 1; |
| 1242 | if (index >= tab->n_var - tab->n_div) |
| 1243 | return 1; |
| 1244 | return 0; |
| 1245 | } |
| 1246 | |
| 1247 | /* Does column "col" of "tab" refer to a variable in the context tableau? |
| 1248 | */ |
| 1249 | static int col_is_parameter_var(struct isl_tab *tab, int col) |
| 1250 | { |
| 1251 | return is_parameter_var(tab, index: tab->col_var[col]); |
| 1252 | } |
| 1253 | |
| 1254 | /* Does row "row" of "tab" refer to a variable in the context tableau? |
| 1255 | */ |
| 1256 | static int row_is_parameter_var(struct isl_tab *tab, int row) |
| 1257 | { |
| 1258 | return is_parameter_var(tab, index: tab->row_var[row]); |
| 1259 | } |
| 1260 | |
| 1261 | /* Given a row in the tableau, find and return the column that would |
| 1262 | * result in the lexicographically smallest, but positive, increment |
| 1263 | * in the sample point. |
| 1264 | * If there is no such column, then return tab->n_col. |
| 1265 | * If anything goes wrong, return -1. |
| 1266 | */ |
| 1267 | static int lexmin_pivot_col(struct isl_tab *tab, int row) |
| 1268 | { |
| 1269 | int j; |
| 1270 | int col = tab->n_col; |
| 1271 | isl_int *tr; |
| 1272 | isl_int tmp; |
| 1273 | |
| 1274 | tr = tab->mat->row[row] + 2 + tab->M; |
| 1275 | |
| 1276 | isl_int_init(tmp); |
| 1277 | |
| 1278 | for (j = tab->n_dead; j < tab->n_col; ++j) { |
| 1279 | if (col_is_parameter_var(tab, col: j)) |
| 1280 | continue; |
| 1281 | |
| 1282 | if (!isl_int_is_pos(tr[j])) |
| 1283 | continue; |
| 1284 | |
| 1285 | if (col == tab->n_col) |
| 1286 | col = j; |
| 1287 | else |
| 1288 | col = lexmin_col_pair(tab, row, col1: col, col2: j, tmp); |
| 1289 | isl_assert(tab->mat->ctx, col >= 0, goto error); |
| 1290 | } |
| 1291 | |
| 1292 | isl_int_clear(tmp); |
| 1293 | return col; |
| 1294 | error: |
| 1295 | isl_int_clear(tmp); |
| 1296 | return -1; |
| 1297 | } |
| 1298 | |
| 1299 | /* Return the first known violated constraint, i.e., a non-negative |
| 1300 | * constraint that currently has an either obviously negative value |
| 1301 | * or a previously determined to be negative value. |
| 1302 | * |
| 1303 | * If any constraint has a negative coefficient for the big parameter, |
| 1304 | * if any, then we return one of these first. |
| 1305 | */ |
| 1306 | static int first_neg(struct isl_tab *tab) |
| 1307 | { |
| 1308 | int row; |
| 1309 | |
| 1310 | if (tab->M) |
| 1311 | for (row = tab->n_redundant; row < tab->n_row; ++row) { |
| 1312 | if (!isl_tab_var_from_row(tab, i: row)->is_nonneg) |
| 1313 | continue; |
| 1314 | if (!isl_int_is_neg(tab->mat->row[row][2])) |
| 1315 | continue; |
| 1316 | if (tab->row_sign) |
| 1317 | tab->row_sign[row] = isl_tab_row_neg; |
| 1318 | return row; |
| 1319 | } |
| 1320 | for (row = tab->n_redundant; row < tab->n_row; ++row) { |
| 1321 | if (!isl_tab_var_from_row(tab, i: row)->is_nonneg) |
| 1322 | continue; |
| 1323 | if (tab->row_sign) { |
| 1324 | if (tab->row_sign[row] == 0 && |
| 1325 | is_obviously_neg(tab, row)) |
| 1326 | tab->row_sign[row] = isl_tab_row_neg; |
| 1327 | if (tab->row_sign[row] != isl_tab_row_neg) |
| 1328 | continue; |
| 1329 | } else if (!is_obviously_neg(tab, row)) |
| 1330 | continue; |
| 1331 | return row; |
| 1332 | } |
| 1333 | return -1; |
| 1334 | } |
| 1335 | |
| 1336 | /* Check whether the invariant that all columns are lexico-positive |
| 1337 | * is satisfied. This function is not called from the current code |
| 1338 | * but is useful during debugging. |
| 1339 | */ |
| 1340 | static void check_lexpos(struct isl_tab *tab) __attribute__ ((unused)); |
| 1341 | static void check_lexpos(struct isl_tab *tab) |
| 1342 | { |
| 1343 | unsigned off = 2 + tab->M; |
| 1344 | int col; |
| 1345 | int var; |
| 1346 | int row; |
| 1347 | |
| 1348 | for (col = tab->n_dead; col < tab->n_col; ++col) { |
| 1349 | if (col_is_parameter_var(tab, col)) |
| 1350 | continue; |
| 1351 | for (var = tab->n_param; var < tab->n_var - tab->n_div; ++var) { |
| 1352 | if (!tab->var[var].is_row) { |
| 1353 | if (tab->var[var].index == col) |
| 1354 | break; |
| 1355 | else |
| 1356 | continue; |
| 1357 | } |
| 1358 | row = tab->var[var].index; |
| 1359 | if (isl_int_is_zero(tab->mat->row[row][off + col])) |
| 1360 | continue; |
| 1361 | if (isl_int_is_pos(tab->mat->row[row][off + col])) |
| 1362 | break; |
| 1363 | fprintf(stderr, format: "lexneg column %d (row %d)\n" , |
| 1364 | col, row); |
| 1365 | } |
| 1366 | if (var >= tab->n_var - tab->n_div) |
| 1367 | fprintf(stderr, format: "zero column %d\n" , col); |
| 1368 | } |
| 1369 | } |
| 1370 | |
| 1371 | /* Report to the caller that the given constraint is part of an encountered |
| 1372 | * conflict. |
| 1373 | */ |
| 1374 | static int report_conflicting_constraint(struct isl_tab *tab, int con) |
| 1375 | { |
| 1376 | return tab->conflict(con, tab->conflict_user); |
| 1377 | } |
| 1378 | |
| 1379 | /* Given a conflicting row in the tableau, report all constraints |
| 1380 | * involved in the row to the caller. That is, the row itself |
| 1381 | * (if it represents a constraint) and all constraint columns with |
| 1382 | * non-zero (and therefore negative) coefficients. |
| 1383 | */ |
| 1384 | static int report_conflict(struct isl_tab *tab, int row) |
| 1385 | { |
| 1386 | int j; |
| 1387 | isl_int *tr; |
| 1388 | |
| 1389 | if (!tab->conflict) |
| 1390 | return 0; |
| 1391 | |
| 1392 | if (tab->row_var[row] < 0 && |
| 1393 | report_conflicting_constraint(tab, con: ~tab->row_var[row]) < 0) |
| 1394 | return -1; |
| 1395 | |
| 1396 | tr = tab->mat->row[row] + 2 + tab->M; |
| 1397 | |
| 1398 | for (j = tab->n_dead; j < tab->n_col; ++j) { |
| 1399 | if (col_is_parameter_var(tab, col: j)) |
| 1400 | continue; |
| 1401 | |
| 1402 | if (!isl_int_is_neg(tr[j])) |
| 1403 | continue; |
| 1404 | |
| 1405 | if (tab->col_var[j] < 0 && |
| 1406 | report_conflicting_constraint(tab, con: ~tab->col_var[j]) < 0) |
| 1407 | return -1; |
| 1408 | } |
| 1409 | |
| 1410 | return 0; |
| 1411 | } |
| 1412 | |
| 1413 | /* Resolve all known or obviously violated constraints through pivoting. |
| 1414 | * In particular, as long as we can find any violated constraint, we |
| 1415 | * look for a pivoting column that would result in the lexicographically |
| 1416 | * smallest increment in the sample point. If there is no such column |
| 1417 | * then the tableau is infeasible. |
| 1418 | */ |
| 1419 | static int restore_lexmin(struct isl_tab *tab) WARN_UNUSED; |
| 1420 | static int restore_lexmin(struct isl_tab *tab) |
| 1421 | { |
| 1422 | int row, col; |
| 1423 | |
| 1424 | if (!tab) |
| 1425 | return -1; |
| 1426 | if (tab->empty) |
| 1427 | return 0; |
| 1428 | while ((row = first_neg(tab)) != -1) { |
| 1429 | col = lexmin_pivot_col(tab, row); |
| 1430 | if (col >= tab->n_col) { |
| 1431 | if (report_conflict(tab, row) < 0) |
| 1432 | return -1; |
| 1433 | if (isl_tab_mark_empty(tab) < 0) |
| 1434 | return -1; |
| 1435 | return 0; |
| 1436 | } |
| 1437 | if (col < 0) |
| 1438 | return -1; |
| 1439 | if (isl_tab_pivot(tab, row, col) < 0) |
| 1440 | return -1; |
| 1441 | } |
| 1442 | return 0; |
| 1443 | } |
| 1444 | |
| 1445 | /* Given a row that represents an equality, look for an appropriate |
| 1446 | * pivoting column. |
| 1447 | * In particular, if there are any non-zero coefficients among |
| 1448 | * the non-parameter variables, then we take the last of these |
| 1449 | * variables. Eliminating this variable in terms of the other |
| 1450 | * variables and/or parameters does not influence the property |
| 1451 | * that all column in the initial tableau are lexicographically |
| 1452 | * positive. The row corresponding to the eliminated variable |
| 1453 | * will only have non-zero entries below the diagonal of the |
| 1454 | * initial tableau. That is, we transform |
| 1455 | * |
| 1456 | * I I |
| 1457 | * 1 into a |
| 1458 | * I I |
| 1459 | * |
| 1460 | * If there is no such non-parameter variable, then we are dealing with |
| 1461 | * pure parameter equality and we pick any parameter with coefficient 1 or -1 |
| 1462 | * for elimination. This will ensure that the eliminated parameter |
| 1463 | * always has an integer value whenever all the other parameters are integral. |
| 1464 | * If there is no such parameter then we return -1. |
| 1465 | */ |
| 1466 | static int last_var_col_or_int_par_col(struct isl_tab *tab, int row) |
| 1467 | { |
| 1468 | unsigned off = 2 + tab->M; |
| 1469 | int i; |
| 1470 | |
| 1471 | for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) { |
| 1472 | int col; |
| 1473 | if (tab->var[i].is_row) |
| 1474 | continue; |
| 1475 | col = tab->var[i].index; |
| 1476 | if (col <= tab->n_dead) |
| 1477 | continue; |
| 1478 | if (!isl_int_is_zero(tab->mat->row[row][off + col])) |
| 1479 | return col; |
| 1480 | } |
| 1481 | for (i = tab->n_dead; i < tab->n_col; ++i) { |
| 1482 | if (isl_int_is_one(tab->mat->row[row][off + i])) |
| 1483 | return i; |
| 1484 | if (isl_int_is_negone(tab->mat->row[row][off + i])) |
| 1485 | return i; |
| 1486 | } |
| 1487 | return -1; |
| 1488 | } |
| 1489 | |
| 1490 | /* Add an equality that is known to be valid to the tableau. |
| 1491 | * We first check if we can eliminate a variable or a parameter. |
| 1492 | * If not, we add the equality as two inequalities. |
| 1493 | * In this case, the equality was a pure parameter equality and there |
| 1494 | * is no need to resolve any constraint violations. |
| 1495 | * |
| 1496 | * This function assumes that at least two more rows and at least |
| 1497 | * two more elements in the constraint array are available in the tableau. |
| 1498 | */ |
| 1499 | static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq) |
| 1500 | { |
| 1501 | int i; |
| 1502 | int r; |
| 1503 | |
| 1504 | if (!tab) |
| 1505 | return NULL; |
| 1506 | r = isl_tab_add_row(tab, line: eq); |
| 1507 | if (r < 0) |
| 1508 | goto error; |
| 1509 | |
| 1510 | r = tab->con[r].index; |
| 1511 | i = last_var_col_or_int_par_col(tab, row: r); |
| 1512 | if (i < 0) { |
| 1513 | tab->con[r].is_nonneg = 1; |
| 1514 | if (isl_tab_push_var(tab, type: isl_tab_undo_nonneg, var: &tab->con[r]) < 0) |
| 1515 | goto error; |
| 1516 | isl_seq_neg(dst: eq, src: eq, len: 1 + tab->n_var); |
| 1517 | r = isl_tab_add_row(tab, line: eq); |
| 1518 | if (r < 0) |
| 1519 | goto error; |
| 1520 | tab->con[r].is_nonneg = 1; |
| 1521 | if (isl_tab_push_var(tab, type: isl_tab_undo_nonneg, var: &tab->con[r]) < 0) |
| 1522 | goto error; |
| 1523 | } else { |
| 1524 | if (isl_tab_pivot(tab, row: r, col: i) < 0) |
| 1525 | goto error; |
| 1526 | if (isl_tab_kill_col(tab, col: i) < 0) |
| 1527 | goto error; |
| 1528 | tab->n_eq++; |
| 1529 | } |
| 1530 | |
| 1531 | return tab; |
| 1532 | error: |
| 1533 | isl_tab_free(tab); |
| 1534 | return NULL; |
| 1535 | } |
| 1536 | |
| 1537 | /* Check if the given row is a pure constant. |
| 1538 | */ |
| 1539 | static int is_constant(struct isl_tab *tab, int row) |
| 1540 | { |
| 1541 | unsigned off = 2 + tab->M; |
| 1542 | |
| 1543 | return isl_seq_first_non_zero(p: tab->mat->row[row] + off + tab->n_dead, |
| 1544 | len: tab->n_col - tab->n_dead) == -1; |
| 1545 | } |
| 1546 | |
| 1547 | /* Is the given row a parametric constant? |
| 1548 | * That is, does it only involve variables that also appear in the context? |
| 1549 | */ |
| 1550 | static int is_parametric_constant(struct isl_tab *tab, int row) |
| 1551 | { |
| 1552 | unsigned off = 2 + tab->M; |
| 1553 | int col; |
| 1554 | |
| 1555 | for (col = tab->n_dead; col < tab->n_col; ++col) { |
| 1556 | if (col_is_parameter_var(tab, col)) |
| 1557 | continue; |
| 1558 | if (isl_int_is_zero(tab->mat->row[row][off + col])) |
| 1559 | continue; |
| 1560 | return 0; |
| 1561 | } |
| 1562 | |
| 1563 | return 1; |
| 1564 | } |
| 1565 | |
| 1566 | /* Add an equality that may or may not be valid to the tableau. |
| 1567 | * If the resulting row is a pure constant, then it must be zero. |
| 1568 | * Otherwise, the resulting tableau is empty. |
| 1569 | * |
| 1570 | * If the row is not a pure constant, then we add two inequalities, |
| 1571 | * each time checking that they can be satisfied. |
| 1572 | * In the end we try to use one of the two constraints to eliminate |
| 1573 | * a column. |
| 1574 | * |
| 1575 | * This function assumes that at least two more rows and at least |
| 1576 | * two more elements in the constraint array are available in the tableau. |
| 1577 | */ |
| 1578 | static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED; |
| 1579 | static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq) |
| 1580 | { |
| 1581 | int r1, r2; |
| 1582 | int row; |
| 1583 | struct isl_tab_undo *snap; |
| 1584 | |
| 1585 | if (!tab) |
| 1586 | return -1; |
| 1587 | snap = isl_tab_snap(tab); |
| 1588 | r1 = isl_tab_add_row(tab, line: eq); |
| 1589 | if (r1 < 0) |
| 1590 | return -1; |
| 1591 | tab->con[r1].is_nonneg = 1; |
| 1592 | if (isl_tab_push_var(tab, type: isl_tab_undo_nonneg, var: &tab->con[r1]) < 0) |
| 1593 | return -1; |
| 1594 | |
| 1595 | row = tab->con[r1].index; |
| 1596 | if (is_constant(tab, row)) { |
| 1597 | if (!isl_int_is_zero(tab->mat->row[row][1]) || |
| 1598 | (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) { |
| 1599 | if (isl_tab_mark_empty(tab) < 0) |
| 1600 | return -1; |
| 1601 | return 0; |
| 1602 | } |
| 1603 | if (isl_tab_rollback(tab, snap) < 0) |
| 1604 | return -1; |
| 1605 | return 0; |
| 1606 | } |
| 1607 | |
| 1608 | if (restore_lexmin(tab) < 0) |
| 1609 | return -1; |
| 1610 | if (tab->empty) |
| 1611 | return 0; |
| 1612 | |
| 1613 | isl_seq_neg(dst: eq, src: eq, len: 1 + tab->n_var); |
| 1614 | |
| 1615 | r2 = isl_tab_add_row(tab, line: eq); |
| 1616 | if (r2 < 0) |
| 1617 | return -1; |
| 1618 | tab->con[r2].is_nonneg = 1; |
| 1619 | if (isl_tab_push_var(tab, type: isl_tab_undo_nonneg, var: &tab->con[r2]) < 0) |
| 1620 | return -1; |
| 1621 | |
| 1622 | if (restore_lexmin(tab) < 0) |
| 1623 | return -1; |
| 1624 | if (tab->empty) |
| 1625 | return 0; |
| 1626 | |
| 1627 | if (!tab->con[r1].is_row) { |
| 1628 | if (isl_tab_kill_col(tab, col: tab->con[r1].index) < 0) |
| 1629 | return -1; |
| 1630 | } else if (!tab->con[r2].is_row) { |
| 1631 | if (isl_tab_kill_col(tab, col: tab->con[r2].index) < 0) |
| 1632 | return -1; |
| 1633 | } |
| 1634 | |
| 1635 | if (tab->bmap) { |
| 1636 | tab->bmap = isl_basic_map_add_ineq(bmap: tab->bmap, ineq: eq); |
| 1637 | if (isl_tab_push(tab, type: isl_tab_undo_bmap_ineq) < 0) |
| 1638 | return -1; |
| 1639 | isl_seq_neg(dst: eq, src: eq, len: 1 + tab->n_var); |
| 1640 | tab->bmap = isl_basic_map_add_ineq(bmap: tab->bmap, ineq: eq); |
| 1641 | isl_seq_neg(dst: eq, src: eq, len: 1 + tab->n_var); |
| 1642 | if (isl_tab_push(tab, type: isl_tab_undo_bmap_ineq) < 0) |
| 1643 | return -1; |
| 1644 | if (!tab->bmap) |
| 1645 | return -1; |
| 1646 | } |
| 1647 | |
| 1648 | return 0; |
| 1649 | } |
| 1650 | |
| 1651 | /* Add an inequality to the tableau, resolving violations using |
| 1652 | * restore_lexmin. |
| 1653 | * |
| 1654 | * This function assumes that at least one more row and at least |
| 1655 | * one more element in the constraint array are available in the tableau. |
| 1656 | */ |
| 1657 | static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq) |
| 1658 | { |
| 1659 | int r; |
| 1660 | |
| 1661 | if (!tab) |
| 1662 | return NULL; |
| 1663 | if (tab->bmap) { |
| 1664 | tab->bmap = isl_basic_map_add_ineq(bmap: tab->bmap, ineq); |
| 1665 | if (isl_tab_push(tab, type: isl_tab_undo_bmap_ineq) < 0) |
| 1666 | goto error; |
| 1667 | if (!tab->bmap) |
| 1668 | goto error; |
| 1669 | } |
| 1670 | r = isl_tab_add_row(tab, line: ineq); |
| 1671 | if (r < 0) |
| 1672 | goto error; |
| 1673 | tab->con[r].is_nonneg = 1; |
| 1674 | if (isl_tab_push_var(tab, type: isl_tab_undo_nonneg, var: &tab->con[r]) < 0) |
| 1675 | goto error; |
| 1676 | if (isl_tab_row_is_redundant(tab, row: tab->con[r].index)) { |
| 1677 | if (isl_tab_mark_redundant(tab, row: tab->con[r].index) < 0) |
| 1678 | goto error; |
| 1679 | return tab; |
| 1680 | } |
| 1681 | |
| 1682 | if (restore_lexmin(tab) < 0) |
| 1683 | goto error; |
| 1684 | if (!tab->empty && tab->con[r].is_row && |
| 1685 | isl_tab_row_is_redundant(tab, row: tab->con[r].index)) |
| 1686 | if (isl_tab_mark_redundant(tab, row: tab->con[r].index) < 0) |
| 1687 | goto error; |
| 1688 | return tab; |
| 1689 | error: |
| 1690 | isl_tab_free(tab); |
| 1691 | return NULL; |
| 1692 | } |
| 1693 | |
| 1694 | /* Check if the coefficients of the parameters are all integral. |
| 1695 | */ |
| 1696 | static int integer_parameter(struct isl_tab *tab, int row) |
| 1697 | { |
| 1698 | int i; |
| 1699 | int col; |
| 1700 | unsigned off = 2 + tab->M; |
| 1701 | |
| 1702 | for (i = 0; i < tab->n_param; ++i) { |
| 1703 | /* Eliminated parameter */ |
| 1704 | if (tab->var[i].is_row) |
| 1705 | continue; |
| 1706 | col = tab->var[i].index; |
| 1707 | if (!isl_int_is_divisible_by(tab->mat->row[row][off + col], |
| 1708 | tab->mat->row[row][0])) |
| 1709 | return 0; |
| 1710 | } |
| 1711 | for (i = 0; i < tab->n_div; ++i) { |
| 1712 | if (tab->var[tab->n_var - tab->n_div + i].is_row) |
| 1713 | continue; |
| 1714 | col = tab->var[tab->n_var - tab->n_div + i].index; |
| 1715 | if (!isl_int_is_divisible_by(tab->mat->row[row][off + col], |
| 1716 | tab->mat->row[row][0])) |
| 1717 | return 0; |
| 1718 | } |
| 1719 | return 1; |
| 1720 | } |
| 1721 | |
| 1722 | /* Check if the coefficients of the non-parameter variables are all integral. |
| 1723 | */ |
| 1724 | static int integer_variable(struct isl_tab *tab, int row) |
| 1725 | { |
| 1726 | int i; |
| 1727 | unsigned off = 2 + tab->M; |
| 1728 | |
| 1729 | for (i = tab->n_dead; i < tab->n_col; ++i) { |
| 1730 | if (col_is_parameter_var(tab, col: i)) |
| 1731 | continue; |
| 1732 | if (!isl_int_is_divisible_by(tab->mat->row[row][off + i], |
| 1733 | tab->mat->row[row][0])) |
| 1734 | return 0; |
| 1735 | } |
| 1736 | return 1; |
| 1737 | } |
| 1738 | |
| 1739 | /* Check if the constant term is integral. |
| 1740 | */ |
| 1741 | static int integer_constant(struct isl_tab *tab, int row) |
| 1742 | { |
| 1743 | return isl_int_is_divisible_by(tab->mat->row[row][1], |
| 1744 | tab->mat->row[row][0]); |
| 1745 | } |
| 1746 | |
| 1747 | #define I_CST 1 << 0 |
| 1748 | #define I_PAR 1 << 1 |
| 1749 | #define I_VAR 1 << 2 |
| 1750 | |
| 1751 | /* Check for next (non-parameter) variable after "var" (first if var == -1) |
| 1752 | * that is non-integer and therefore requires a cut and return |
| 1753 | * the index of the variable. |
| 1754 | * For parametric tableaus, there are three parts in a row, |
| 1755 | * the constant, the coefficients of the parameters and the rest. |
| 1756 | * For each part, we check whether the coefficients in that part |
| 1757 | * are all integral and if so, set the corresponding flag in *f. |
| 1758 | * If the constant and the parameter part are integral, then the |
| 1759 | * current sample value is integral and no cut is required |
| 1760 | * (irrespective of whether the variable part is integral). |
| 1761 | */ |
| 1762 | static int next_non_integer_var(struct isl_tab *tab, int var, int *f) |
| 1763 | { |
| 1764 | var = var < 0 ? tab->n_param : var + 1; |
| 1765 | |
| 1766 | for (; var < tab->n_var - tab->n_div; ++var) { |
| 1767 | int flags = 0; |
| 1768 | int row; |
| 1769 | if (!tab->var[var].is_row) |
| 1770 | continue; |
| 1771 | row = tab->var[var].index; |
| 1772 | if (integer_constant(tab, row)) |
| 1773 | ISL_FL_SET(flags, I_CST); |
| 1774 | if (integer_parameter(tab, row)) |
| 1775 | ISL_FL_SET(flags, I_PAR); |
| 1776 | if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR)) |
| 1777 | continue; |
| 1778 | if (integer_variable(tab, row)) |
| 1779 | ISL_FL_SET(flags, I_VAR); |
| 1780 | *f = flags; |
| 1781 | return var; |
| 1782 | } |
| 1783 | return -1; |
| 1784 | } |
| 1785 | |
| 1786 | /* Check for first (non-parameter) variable that is non-integer and |
| 1787 | * therefore requires a cut and return the corresponding row. |
| 1788 | * For parametric tableaus, there are three parts in a row, |
| 1789 | * the constant, the coefficients of the parameters and the rest. |
| 1790 | * For each part, we check whether the coefficients in that part |
| 1791 | * are all integral and if so, set the corresponding flag in *f. |
| 1792 | * If the constant and the parameter part are integral, then the |
| 1793 | * current sample value is integral and no cut is required |
| 1794 | * (irrespective of whether the variable part is integral). |
| 1795 | */ |
| 1796 | static int first_non_integer_row(struct isl_tab *tab, int *f) |
| 1797 | { |
| 1798 | int var = next_non_integer_var(tab, var: -1, f); |
| 1799 | |
| 1800 | return var < 0 ? -1 : tab->var[var].index; |
| 1801 | } |
| 1802 | |
| 1803 | /* Add a (non-parametric) cut to cut away the non-integral sample |
| 1804 | * value of the given row. |
| 1805 | * |
| 1806 | * If the row is given by |
| 1807 | * |
| 1808 | * m r = f + \sum_i a_i y_i |
| 1809 | * |
| 1810 | * then the cut is |
| 1811 | * |
| 1812 | * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0 |
| 1813 | * |
| 1814 | * The big parameter, if any, is ignored, since it is assumed to be big |
| 1815 | * enough to be divisible by any integer. |
| 1816 | * If the tableau is actually a parametric tableau, then this function |
| 1817 | * is only called when all coefficients of the parameters are integral. |
| 1818 | * The cut therefore has zero coefficients for the parameters. |
| 1819 | * |
| 1820 | * The current value is known to be negative, so row_sign, if it |
| 1821 | * exists, is set accordingly. |
| 1822 | * |
| 1823 | * Return the row of the cut or -1. |
| 1824 | */ |
| 1825 | static int add_cut(struct isl_tab *tab, int row) |
| 1826 | { |
| 1827 | int i; |
| 1828 | int r; |
| 1829 | isl_int *r_row; |
| 1830 | unsigned off = 2 + tab->M; |
| 1831 | |
| 1832 | if (isl_tab_extend_cons(tab, n_new: 1) < 0) |
| 1833 | return -1; |
| 1834 | r = isl_tab_allocate_con(tab); |
| 1835 | if (r < 0) |
| 1836 | return -1; |
| 1837 | |
| 1838 | r_row = tab->mat->row[tab->con[r].index]; |
| 1839 | isl_int_set(r_row[0], tab->mat->row[row][0]); |
| 1840 | isl_int_neg(r_row[1], tab->mat->row[row][1]); |
| 1841 | isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]); |
| 1842 | isl_int_neg(r_row[1], r_row[1]); |
| 1843 | if (tab->M) |
| 1844 | isl_int_set_si(r_row[2], 0); |
| 1845 | for (i = 0; i < tab->n_col; ++i) |
| 1846 | isl_int_fdiv_r(r_row[off + i], |
| 1847 | tab->mat->row[row][off + i], tab->mat->row[row][0]); |
| 1848 | |
| 1849 | tab->con[r].is_nonneg = 1; |
| 1850 | if (isl_tab_push_var(tab, type: isl_tab_undo_nonneg, var: &tab->con[r]) < 0) |
| 1851 | return -1; |
| 1852 | if (tab->row_sign) |
| 1853 | tab->row_sign[tab->con[r].index] = isl_tab_row_neg; |
| 1854 | |
| 1855 | return tab->con[r].index; |
| 1856 | } |
| 1857 | |
| 1858 | #define CUT_ALL 1 |
| 1859 | #define CUT_ONE 0 |
| 1860 | |
| 1861 | /* Given a non-parametric tableau, add cuts until an integer |
| 1862 | * sample point is obtained or until the tableau is determined |
| 1863 | * to be integer infeasible. |
| 1864 | * As long as there is any non-integer value in the sample point, |
| 1865 | * we add appropriate cuts, if possible, for each of these |
| 1866 | * non-integer values and then resolve the violated |
| 1867 | * cut constraints using restore_lexmin. |
| 1868 | * If one of the corresponding rows is equal to an integral |
| 1869 | * combination of variables/constraints plus a non-integral constant, |
| 1870 | * then there is no way to obtain an integer point and we return |
| 1871 | * a tableau that is marked empty. |
| 1872 | * The parameter cutting_strategy controls the strategy used when adding cuts |
| 1873 | * to remove non-integer points. CUT_ALL adds all possible cuts |
| 1874 | * before continuing the search. CUT_ONE adds only one cut at a time. |
| 1875 | */ |
| 1876 | static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab, |
| 1877 | int cutting_strategy) |
| 1878 | { |
| 1879 | int var; |
| 1880 | int row; |
| 1881 | int flags; |
| 1882 | |
| 1883 | if (!tab) |
| 1884 | return NULL; |
| 1885 | if (tab->empty) |
| 1886 | return tab; |
| 1887 | |
| 1888 | while ((var = next_non_integer_var(tab, var: -1, f: &flags)) != -1) { |
| 1889 | do { |
| 1890 | if (ISL_FL_ISSET(flags, I_VAR)) { |
| 1891 | if (isl_tab_mark_empty(tab) < 0) |
| 1892 | goto error; |
| 1893 | return tab; |
| 1894 | } |
| 1895 | row = tab->var[var].index; |
| 1896 | row = add_cut(tab, row); |
| 1897 | if (row < 0) |
| 1898 | goto error; |
| 1899 | if (cutting_strategy == CUT_ONE) |
| 1900 | break; |
| 1901 | } while ((var = next_non_integer_var(tab, var, f: &flags)) != -1); |
| 1902 | if (restore_lexmin(tab) < 0) |
| 1903 | goto error; |
| 1904 | if (tab->empty) |
| 1905 | break; |
| 1906 | } |
| 1907 | return tab; |
| 1908 | error: |
| 1909 | isl_tab_free(tab); |
| 1910 | return NULL; |
| 1911 | } |
| 1912 | |
| 1913 | /* Check whether all the currently active samples also satisfy the inequality |
| 1914 | * "ineq" (treated as an equality if eq is set). |
| 1915 | * Remove those samples that do not. |
| 1916 | */ |
| 1917 | static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq) |
| 1918 | { |
| 1919 | int i; |
| 1920 | isl_int v; |
| 1921 | |
| 1922 | if (!tab) |
| 1923 | return NULL; |
| 1924 | |
| 1925 | isl_assert(tab->mat->ctx, tab->bmap, goto error); |
| 1926 | isl_assert(tab->mat->ctx, tab->samples, goto error); |
| 1927 | isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error); |
| 1928 | |
| 1929 | isl_int_init(v); |
| 1930 | for (i = tab->n_outside; i < tab->n_sample; ++i) { |
| 1931 | int sgn; |
| 1932 | isl_seq_inner_product(p1: ineq, p2: tab->samples->row[i], |
| 1933 | len: 1 + tab->n_var, prod: &v); |
| 1934 | sgn = isl_int_sgn(v); |
| 1935 | if (eq ? (sgn == 0) : (sgn >= 0)) |
| 1936 | continue; |
| 1937 | tab = isl_tab_drop_sample(tab, s: i); |
| 1938 | if (!tab) |
| 1939 | break; |
| 1940 | } |
| 1941 | isl_int_clear(v); |
| 1942 | |
| 1943 | return tab; |
| 1944 | error: |
| 1945 | isl_tab_free(tab); |
| 1946 | return NULL; |
| 1947 | } |
| 1948 | |
| 1949 | /* Check whether the sample value of the tableau is finite, |
| 1950 | * i.e., either the tableau does not use a big parameter, or |
| 1951 | * all values of the variables are equal to the big parameter plus |
| 1952 | * some constant. This constant is the actual sample value. |
| 1953 | */ |
| 1954 | static int sample_is_finite(struct isl_tab *tab) |
| 1955 | { |
| 1956 | int i; |
| 1957 | |
| 1958 | if (!tab->M) |
| 1959 | return 1; |
| 1960 | |
| 1961 | for (i = 0; i < tab->n_var; ++i) { |
| 1962 | int row; |
| 1963 | if (!tab->var[i].is_row) |
| 1964 | return 0; |
| 1965 | row = tab->var[i].index; |
| 1966 | if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2])) |
| 1967 | return 0; |
| 1968 | } |
| 1969 | return 1; |
| 1970 | } |
| 1971 | |
| 1972 | /* Check if the context tableau of sol has any integer points. |
| 1973 | * Leave tab in empty state if no integer point can be found. |
| 1974 | * If an integer point can be found and if moreover it is finite, |
| 1975 | * then it is added to the list of sample values. |
| 1976 | * |
| 1977 | * This function is only called when none of the currently active sample |
| 1978 | * values satisfies the most recently added constraint. |
| 1979 | */ |
| 1980 | static struct isl_tab *check_integer_feasible(struct isl_tab *tab) |
| 1981 | { |
| 1982 | struct isl_tab_undo *snap; |
| 1983 | |
| 1984 | if (!tab) |
| 1985 | return NULL; |
| 1986 | |
| 1987 | snap = isl_tab_snap(tab); |
| 1988 | if (isl_tab_push_basis(tab) < 0) |
| 1989 | goto error; |
| 1990 | |
| 1991 | tab = cut_to_integer_lexmin(tab, CUT_ALL); |
| 1992 | if (!tab) |
| 1993 | goto error; |
| 1994 | |
| 1995 | if (!tab->empty && sample_is_finite(tab)) { |
| 1996 | struct isl_vec *sample; |
| 1997 | |
| 1998 | sample = isl_tab_get_sample_value(tab); |
| 1999 | |
| 2000 | if (isl_tab_add_sample(tab, sample) < 0) |
| 2001 | goto error; |
| 2002 | } |
| 2003 | |
| 2004 | if (!tab->empty && isl_tab_rollback(tab, snap) < 0) |
| 2005 | goto error; |
| 2006 | |
| 2007 | return tab; |
| 2008 | error: |
| 2009 | isl_tab_free(tab); |
| 2010 | return NULL; |
| 2011 | } |
| 2012 | |
| 2013 | /* Check if any of the currently active sample values satisfies |
| 2014 | * the inequality "ineq" (an equality if eq is set). |
| 2015 | */ |
| 2016 | static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq) |
| 2017 | { |
| 2018 | int i; |
| 2019 | isl_int v; |
| 2020 | |
| 2021 | if (!tab) |
| 2022 | return -1; |
| 2023 | |
| 2024 | isl_assert(tab->mat->ctx, tab->bmap, return -1); |
| 2025 | isl_assert(tab->mat->ctx, tab->samples, return -1); |
| 2026 | isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1); |
| 2027 | |
| 2028 | isl_int_init(v); |
| 2029 | for (i = tab->n_outside; i < tab->n_sample; ++i) { |
| 2030 | int sgn; |
| 2031 | isl_seq_inner_product(p1: ineq, p2: tab->samples->row[i], |
| 2032 | len: 1 + tab->n_var, prod: &v); |
| 2033 | sgn = isl_int_sgn(v); |
| 2034 | if (eq ? (sgn == 0) : (sgn >= 0)) |
| 2035 | break; |
| 2036 | } |
| 2037 | isl_int_clear(v); |
| 2038 | |
| 2039 | return i < tab->n_sample; |
| 2040 | } |
| 2041 | |
| 2042 | /* Insert a div specified by "div" to the tableau "tab" at position "pos" and |
| 2043 | * return isl_bool_true if the div is obviously non-negative. |
| 2044 | */ |
| 2045 | static isl_bool context_tab_insert_div(struct isl_tab *tab, int pos, |
| 2046 | __isl_keep isl_vec *div, |
| 2047 | isl_stat (*add_ineq)(void *user, isl_int *), void *user) |
| 2048 | { |
| 2049 | int i; |
| 2050 | int r; |
| 2051 | struct isl_mat *samples; |
| 2052 | int nonneg; |
| 2053 | |
| 2054 | r = isl_tab_insert_div(tab, pos, div, add_ineq, user); |
| 2055 | if (r < 0) |
| 2056 | return isl_bool_error; |
| 2057 | nonneg = tab->var[r].is_nonneg; |
| 2058 | tab->var[r].frozen = 1; |
| 2059 | |
| 2060 | samples = isl_mat_extend(mat: tab->samples, |
| 2061 | n_row: tab->n_sample, n_col: 1 + tab->n_var); |
| 2062 | tab->samples = samples; |
| 2063 | if (!samples) |
| 2064 | return isl_bool_error; |
| 2065 | for (i = tab->n_outside; i < samples->n_row; ++i) { |
| 2066 | isl_seq_inner_product(p1: div->el + 1, p2: samples->row[i], |
| 2067 | len: div->size - 1, prod: &samples->row[i][samples->n_col - 1]); |
| 2068 | isl_int_fdiv_q(samples->row[i][samples->n_col - 1], |
| 2069 | samples->row[i][samples->n_col - 1], div->el[0]); |
| 2070 | } |
| 2071 | tab->samples = isl_mat_move_cols(mat: tab->samples, dst_col: 1 + pos, |
| 2072 | src_col: 1 + tab->n_var - 1, n: 1); |
| 2073 | if (!tab->samples) |
| 2074 | return isl_bool_error; |
| 2075 | |
| 2076 | return isl_bool_ok(b: nonneg); |
| 2077 | } |
| 2078 | |
| 2079 | /* Add a div specified by "div" to both the main tableau and |
| 2080 | * the context tableau. In case of the main tableau, we only |
| 2081 | * need to add an extra div. In the context tableau, we also |
| 2082 | * need to express the meaning of the div. |
| 2083 | * Return the index of the div or -1 if anything went wrong. |
| 2084 | * |
| 2085 | * The new integer division is added before any unknown integer |
| 2086 | * divisions in the context to ensure that it does not get |
| 2087 | * equated to some linear combination involving unknown integer |
| 2088 | * divisions. |
| 2089 | */ |
| 2090 | static int add_div(struct isl_tab *tab, struct isl_context *context, |
| 2091 | __isl_keep isl_vec *div) |
| 2092 | { |
| 2093 | int r; |
| 2094 | int pos; |
| 2095 | isl_bool nonneg; |
| 2096 | struct isl_tab *context_tab = context->op->peek_tab(context); |
| 2097 | |
| 2098 | if (!tab || !context_tab) |
| 2099 | goto error; |
| 2100 | |
| 2101 | pos = context_tab->n_var - context->n_unknown; |
| 2102 | if ((nonneg = context->op->insert_div(context, pos, div)) < 0) |
| 2103 | goto error; |
| 2104 | |
| 2105 | if (!context->op->is_ok(context)) |
| 2106 | goto error; |
| 2107 | |
| 2108 | pos = tab->n_var - context->n_unknown; |
| 2109 | if (isl_tab_extend_vars(tab, n_new: 1) < 0) |
| 2110 | goto error; |
| 2111 | r = isl_tab_insert_var(tab, pos); |
| 2112 | if (r < 0) |
| 2113 | goto error; |
| 2114 | if (nonneg) |
| 2115 | tab->var[r].is_nonneg = 1; |
| 2116 | tab->var[r].frozen = 1; |
| 2117 | tab->n_div++; |
| 2118 | |
| 2119 | return tab->n_div - 1 - context->n_unknown; |
| 2120 | error: |
| 2121 | context->op->invalidate(context); |
| 2122 | return -1; |
| 2123 | } |
| 2124 | |
| 2125 | /* Return the position of the integer division that is equal to div/denom |
| 2126 | * if there is one. Otherwise, return a position beyond the integer divisions. |
| 2127 | */ |
| 2128 | static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom) |
| 2129 | { |
| 2130 | int i; |
| 2131 | isl_size total = isl_basic_map_dim(bmap: tab->bmap, type: isl_dim_all); |
| 2132 | isl_size n_div; |
| 2133 | |
| 2134 | n_div = isl_basic_map_dim(bmap: tab->bmap, type: isl_dim_div); |
| 2135 | if (total < 0 || n_div < 0) |
| 2136 | return -1; |
| 2137 | for (i = 0; i < n_div; ++i) { |
| 2138 | if (isl_int_ne(tab->bmap->div[i][0], denom)) |
| 2139 | continue; |
| 2140 | if (!isl_seq_eq(p1: tab->bmap->div[i] + 1, p2: div, len: 1 + total)) |
| 2141 | continue; |
| 2142 | return i; |
| 2143 | } |
| 2144 | return n_div; |
| 2145 | } |
| 2146 | |
| 2147 | /* Return the index of a div that corresponds to "div". |
| 2148 | * We first check if we already have such a div and if not, we create one. |
| 2149 | */ |
| 2150 | static int get_div(struct isl_tab *tab, struct isl_context *context, |
| 2151 | struct isl_vec *div) |
| 2152 | { |
| 2153 | int d; |
| 2154 | struct isl_tab *context_tab = context->op->peek_tab(context); |
| 2155 | unsigned n_div; |
| 2156 | |
| 2157 | if (!context_tab) |
| 2158 | return -1; |
| 2159 | |
| 2160 | n_div = isl_basic_map_dim(bmap: context_tab->bmap, type: isl_dim_div); |
| 2161 | d = find_div(tab: context_tab, div: div->el + 1, denom: div->el[0]); |
| 2162 | if (d < 0) |
| 2163 | return -1; |
| 2164 | if (d < n_div) |
| 2165 | return d; |
| 2166 | |
| 2167 | return add_div(tab, context, div); |
| 2168 | } |
| 2169 | |
| 2170 | /* Add a parametric cut to cut away the non-integral sample value |
| 2171 | * of the given row. |
| 2172 | * Let a_i be the coefficients of the constant term and the parameters |
| 2173 | * and let b_i be the coefficients of the variables or constraints |
| 2174 | * in basis of the tableau. |
| 2175 | * Let q be the div q = floor(\sum_i {-a_i} y_i). |
| 2176 | * |
| 2177 | * The cut is expressed as |
| 2178 | * |
| 2179 | * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0 |
| 2180 | * |
| 2181 | * If q did not already exist in the context tableau, then it is added first. |
| 2182 | * If q is in a column of the main tableau then the "+ q" can be accomplished |
| 2183 | * by setting the corresponding entry to the denominator of the constraint. |
| 2184 | * If q happens to be in a row of the main tableau, then the corresponding |
| 2185 | * row needs to be added instead (taking care of the denominators). |
| 2186 | * Note that this is very unlikely, but perhaps not entirely impossible. |
| 2187 | * |
| 2188 | * The current value of the cut is known to be negative (or at least |
| 2189 | * non-positive), so row_sign is set accordingly. |
| 2190 | * |
| 2191 | * Return the row of the cut or -1. |
| 2192 | */ |
| 2193 | static int add_parametric_cut(struct isl_tab *tab, int row, |
| 2194 | struct isl_context *context) |
| 2195 | { |
| 2196 | struct isl_vec *div; |
| 2197 | int d; |
| 2198 | int i; |
| 2199 | int r; |
| 2200 | isl_int *r_row; |
| 2201 | int col; |
| 2202 | int n; |
| 2203 | unsigned off = 2 + tab->M; |
| 2204 | |
| 2205 | if (!context) |
| 2206 | return -1; |
| 2207 | |
| 2208 | div = get_row_parameter_div(tab, row); |
| 2209 | if (!div) |
| 2210 | return -1; |
| 2211 | |
| 2212 | n = tab->n_div - context->n_unknown; |
| 2213 | d = context->op->get_div(context, tab, div); |
| 2214 | isl_vec_free(vec: div); |
| 2215 | if (d < 0) |
| 2216 | return -1; |
| 2217 | |
| 2218 | if (isl_tab_extend_cons(tab, n_new: 1) < 0) |
| 2219 | return -1; |
| 2220 | r = isl_tab_allocate_con(tab); |
| 2221 | if (r < 0) |
| 2222 | return -1; |
| 2223 | |
| 2224 | r_row = tab->mat->row[tab->con[r].index]; |
| 2225 | isl_int_set(r_row[0], tab->mat->row[row][0]); |
| 2226 | isl_int_neg(r_row[1], tab->mat->row[row][1]); |
| 2227 | isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]); |
| 2228 | isl_int_neg(r_row[1], r_row[1]); |
| 2229 | if (tab->M) |
| 2230 | isl_int_set_si(r_row[2], 0); |
| 2231 | for (i = 0; i < tab->n_param; ++i) { |
| 2232 | if (tab->var[i].is_row) |
| 2233 | continue; |
| 2234 | col = tab->var[i].index; |
| 2235 | isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]); |
| 2236 | isl_int_fdiv_r(r_row[off + col], r_row[off + col], |
| 2237 | tab->mat->row[row][0]); |
| 2238 | isl_int_neg(r_row[off + col], r_row[off + col]); |
| 2239 | } |
| 2240 | for (i = 0; i < tab->n_div; ++i) { |
| 2241 | if (tab->var[tab->n_var - tab->n_div + i].is_row) |
| 2242 | continue; |
| 2243 | col = tab->var[tab->n_var - tab->n_div + i].index; |
| 2244 | isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]); |
| 2245 | isl_int_fdiv_r(r_row[off + col], r_row[off + col], |
| 2246 | tab->mat->row[row][0]); |
| 2247 | isl_int_neg(r_row[off + col], r_row[off + col]); |
| 2248 | } |
| 2249 | for (i = 0; i < tab->n_col; ++i) { |
| 2250 | if (tab->col_var[i] >= 0 && |
| 2251 | (tab->col_var[i] < tab->n_param || |
| 2252 | tab->col_var[i] >= tab->n_var - tab->n_div)) |
| 2253 | continue; |
| 2254 | isl_int_fdiv_r(r_row[off + i], |
| 2255 | tab->mat->row[row][off + i], tab->mat->row[row][0]); |
| 2256 | } |
| 2257 | if (tab->var[tab->n_var - tab->n_div + d].is_row) { |
| 2258 | isl_int gcd; |
| 2259 | int d_row = tab->var[tab->n_var - tab->n_div + d].index; |
| 2260 | isl_int_init(gcd); |
| 2261 | isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]); |
| 2262 | isl_int_divexact(r_row[0], r_row[0], gcd); |
| 2263 | isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd); |
| 2264 | isl_seq_combine(dst: r_row + 1, m1: gcd, src1: r_row + 1, |
| 2265 | m2: r_row[0], src2: tab->mat->row[d_row] + 1, |
| 2266 | len: off - 1 + tab->n_col); |
| 2267 | isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]); |
| 2268 | isl_int_clear(gcd); |
| 2269 | } else { |
| 2270 | col = tab->var[tab->n_var - tab->n_div + d].index; |
| 2271 | isl_int_set(r_row[off + col], tab->mat->row[row][0]); |
| 2272 | } |
| 2273 | |
| 2274 | tab->con[r].is_nonneg = 1; |
| 2275 | if (isl_tab_push_var(tab, type: isl_tab_undo_nonneg, var: &tab->con[r]) < 0) |
| 2276 | return -1; |
| 2277 | if (tab->row_sign) |
| 2278 | tab->row_sign[tab->con[r].index] = isl_tab_row_neg; |
| 2279 | |
| 2280 | row = tab->con[r].index; |
| 2281 | |
| 2282 | if (d >= n && context->op->detect_equalities(context, tab) < 0) |
| 2283 | return -1; |
| 2284 | |
| 2285 | return row; |
| 2286 | } |
| 2287 | |
| 2288 | /* Construct a tableau for bmap that can be used for computing |
| 2289 | * the lexicographic minimum (or maximum) of bmap. |
| 2290 | * If not NULL, then dom is the domain where the minimum |
| 2291 | * should be computed. In this case, we set up a parametric |
| 2292 | * tableau with row signs (initialized to "unknown"). |
| 2293 | * If M is set, then the tableau will use a big parameter. |
| 2294 | * If max is set, then a maximum should be computed instead of a minimum. |
| 2295 | * This means that for each variable x, the tableau will contain the variable |
| 2296 | * x' = M - x, rather than x' = M + x. This in turn means that the coefficient |
| 2297 | * of the variables in all constraints are negated prior to adding them |
| 2298 | * to the tableau. |
| 2299 | */ |
| 2300 | static __isl_give struct isl_tab *tab_for_lexmin(__isl_keep isl_basic_map *bmap, |
| 2301 | __isl_keep isl_basic_set *dom, unsigned M, int max) |
| 2302 | { |
| 2303 | int i; |
| 2304 | struct isl_tab *tab; |
| 2305 | unsigned n_var; |
| 2306 | unsigned o_var; |
| 2307 | isl_size total; |
| 2308 | |
| 2309 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 2310 | if (total < 0) |
| 2311 | return NULL; |
| 2312 | tab = isl_tab_alloc(ctx: bmap->ctx, n_row: 2 * bmap->n_eq + bmap->n_ineq + 1, |
| 2313 | n_var: total, M); |
| 2314 | if (!tab) |
| 2315 | return NULL; |
| 2316 | |
| 2317 | tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL); |
| 2318 | if (dom) { |
| 2319 | isl_size dom_total; |
| 2320 | dom_total = isl_basic_set_dim(bset: dom, type: isl_dim_all); |
| 2321 | if (dom_total < 0) |
| 2322 | goto error; |
| 2323 | tab->n_param = dom_total - dom->n_div; |
| 2324 | tab->n_div = dom->n_div; |
| 2325 | tab->row_sign = isl_calloc_array(bmap->ctx, |
| 2326 | enum isl_tab_row_sign, tab->mat->n_row); |
| 2327 | if (tab->mat->n_row && !tab->row_sign) |
| 2328 | goto error; |
| 2329 | } |
| 2330 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) { |
| 2331 | if (isl_tab_mark_empty(tab) < 0) |
| 2332 | goto error; |
| 2333 | return tab; |
| 2334 | } |
| 2335 | |
| 2336 | for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) { |
| 2337 | tab->var[i].is_nonneg = 1; |
| 2338 | tab->var[i].frozen = 1; |
| 2339 | } |
| 2340 | o_var = 1 + tab->n_param; |
| 2341 | n_var = tab->n_var - tab->n_param - tab->n_div; |
| 2342 | for (i = 0; i < bmap->n_eq; ++i) { |
| 2343 | if (max) |
| 2344 | isl_seq_neg(dst: bmap->eq[i] + o_var, |
| 2345 | src: bmap->eq[i] + o_var, len: n_var); |
| 2346 | tab = add_lexmin_valid_eq(tab, eq: bmap->eq[i]); |
| 2347 | if (max) |
| 2348 | isl_seq_neg(dst: bmap->eq[i] + o_var, |
| 2349 | src: bmap->eq[i] + o_var, len: n_var); |
| 2350 | if (!tab || tab->empty) |
| 2351 | return tab; |
| 2352 | } |
| 2353 | if (bmap->n_eq && restore_lexmin(tab) < 0) |
| 2354 | goto error; |
| 2355 | for (i = 0; i < bmap->n_ineq; ++i) { |
| 2356 | if (max) |
| 2357 | isl_seq_neg(dst: bmap->ineq[i] + o_var, |
| 2358 | src: bmap->ineq[i] + o_var, len: n_var); |
| 2359 | tab = add_lexmin_ineq(tab, ineq: bmap->ineq[i]); |
| 2360 | if (max) |
| 2361 | isl_seq_neg(dst: bmap->ineq[i] + o_var, |
| 2362 | src: bmap->ineq[i] + o_var, len: n_var); |
| 2363 | if (!tab || tab->empty) |
| 2364 | return tab; |
| 2365 | } |
| 2366 | return tab; |
| 2367 | error: |
| 2368 | isl_tab_free(tab); |
| 2369 | return NULL; |
| 2370 | } |
| 2371 | |
| 2372 | /* Given a main tableau where more than one row requires a split, |
| 2373 | * determine and return the "best" row to split on. |
| 2374 | * |
| 2375 | * If any of the rows requiring a split only involves |
| 2376 | * variables that also appear in the context tableau, |
| 2377 | * then the negative part is guaranteed not to have a solution. |
| 2378 | * It is therefore best to split on any of these rows first. |
| 2379 | * |
| 2380 | * Otherwise, |
| 2381 | * given two rows in the main tableau, if the inequality corresponding |
| 2382 | * to the first row is redundant with respect to that of the second row |
| 2383 | * in the current tableau, then it is better to split on the second row, |
| 2384 | * since in the positive part, both rows will be positive. |
| 2385 | * (In the negative part a pivot will have to be performed and just about |
| 2386 | * anything can happen to the sign of the other row.) |
| 2387 | * |
| 2388 | * As a simple heuristic, we therefore select the row that makes the most |
| 2389 | * of the other rows redundant. |
| 2390 | * |
| 2391 | * Perhaps it would also be useful to look at the number of constraints |
| 2392 | * that conflict with any given constraint. |
| 2393 | * |
| 2394 | * best is the best row so far (-1 when we have not found any row yet). |
| 2395 | * best_r is the number of other rows made redundant by row best. |
| 2396 | * When best is still -1, bset_r is meaningless, but it is initialized |
| 2397 | * to some arbitrary value (0) anyway. Without this redundant initialization |
| 2398 | * valgrind may warn about uninitialized memory accesses when isl |
| 2399 | * is compiled with some versions of gcc. |
| 2400 | */ |
| 2401 | static int best_split(struct isl_tab *tab, struct isl_tab *context_tab) |
| 2402 | { |
| 2403 | struct isl_tab_undo *snap; |
| 2404 | int split; |
| 2405 | int row; |
| 2406 | int best = -1; |
| 2407 | int best_r = 0; |
| 2408 | |
| 2409 | if (isl_tab_extend_cons(tab: context_tab, n_new: 2) < 0) |
| 2410 | return -1; |
| 2411 | |
| 2412 | snap = isl_tab_snap(tab: context_tab); |
| 2413 | |
| 2414 | for (split = tab->n_redundant; split < tab->n_row; ++split) { |
| 2415 | struct isl_tab_undo *snap2; |
| 2416 | struct isl_vec *ineq = NULL; |
| 2417 | int r = 0; |
| 2418 | int ok; |
| 2419 | |
| 2420 | if (!isl_tab_var_from_row(tab, i: split)->is_nonneg) |
| 2421 | continue; |
| 2422 | if (tab->row_sign[split] != isl_tab_row_any) |
| 2423 | continue; |
| 2424 | |
| 2425 | if (is_parametric_constant(tab, row: split)) |
| 2426 | return split; |
| 2427 | |
| 2428 | ineq = get_row_parameter_ineq(tab, row: split); |
| 2429 | if (!ineq) |
| 2430 | return -1; |
| 2431 | ok = isl_tab_add_ineq(tab: context_tab, ineq: ineq->el) >= 0; |
| 2432 | isl_vec_free(vec: ineq); |
| 2433 | if (!ok) |
| 2434 | return -1; |
| 2435 | |
| 2436 | snap2 = isl_tab_snap(tab: context_tab); |
| 2437 | |
| 2438 | for (row = tab->n_redundant; row < tab->n_row; ++row) { |
| 2439 | struct isl_tab_var *var; |
| 2440 | |
| 2441 | if (row == split) |
| 2442 | continue; |
| 2443 | if (!isl_tab_var_from_row(tab, i: row)->is_nonneg) |
| 2444 | continue; |
| 2445 | if (tab->row_sign[row] != isl_tab_row_any) |
| 2446 | continue; |
| 2447 | |
| 2448 | ineq = get_row_parameter_ineq(tab, row); |
| 2449 | if (!ineq) |
| 2450 | return -1; |
| 2451 | ok = isl_tab_add_ineq(tab: context_tab, ineq: ineq->el) >= 0; |
| 2452 | isl_vec_free(vec: ineq); |
| 2453 | if (!ok) |
| 2454 | return -1; |
| 2455 | var = &context_tab->con[context_tab->n_con - 1]; |
| 2456 | if (!context_tab->empty && |
| 2457 | !isl_tab_min_at_most_neg_one(tab: context_tab, var)) |
| 2458 | r++; |
| 2459 | if (isl_tab_rollback(tab: context_tab, snap: snap2) < 0) |
| 2460 | return -1; |
| 2461 | } |
| 2462 | if (best == -1 || r > best_r) { |
| 2463 | best = split; |
| 2464 | best_r = r; |
| 2465 | } |
| 2466 | if (isl_tab_rollback(tab: context_tab, snap) < 0) |
| 2467 | return -1; |
| 2468 | } |
| 2469 | |
| 2470 | return best; |
| 2471 | } |
| 2472 | |
| 2473 | static struct isl_basic_set *context_lex_peek_basic_set( |
| 2474 | struct isl_context *context) |
| 2475 | { |
| 2476 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
| 2477 | if (!clex->tab) |
| 2478 | return NULL; |
| 2479 | return isl_tab_peek_bset(tab: clex->tab); |
| 2480 | } |
| 2481 | |
| 2482 | static struct isl_tab *context_lex_peek_tab(struct isl_context *context) |
| 2483 | { |
| 2484 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
| 2485 | return clex->tab; |
| 2486 | } |
| 2487 | |
| 2488 | static void context_lex_add_eq(struct isl_context *context, isl_int *eq, |
| 2489 | int check, int update) |
| 2490 | { |
| 2491 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
| 2492 | if (isl_tab_extend_cons(tab: clex->tab, n_new: 2) < 0) |
| 2493 | goto error; |
| 2494 | if (add_lexmin_eq(tab: clex->tab, eq) < 0) |
| 2495 | goto error; |
| 2496 | if (check) { |
| 2497 | int v = tab_has_valid_sample(tab: clex->tab, ineq: eq, eq: 1); |
| 2498 | if (v < 0) |
| 2499 | goto error; |
| 2500 | if (!v) |
| 2501 | clex->tab = check_integer_feasible(tab: clex->tab); |
| 2502 | } |
| 2503 | if (update) |
| 2504 | clex->tab = check_samples(tab: clex->tab, ineq: eq, eq: 1); |
| 2505 | return; |
| 2506 | error: |
| 2507 | isl_tab_free(tab: clex->tab); |
| 2508 | clex->tab = NULL; |
| 2509 | } |
| 2510 | |
| 2511 | static void context_lex_add_ineq(struct isl_context *context, isl_int *ineq, |
| 2512 | int check, int update) |
| 2513 | { |
| 2514 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
| 2515 | if (isl_tab_extend_cons(tab: clex->tab, n_new: 1) < 0) |
| 2516 | goto error; |
| 2517 | clex->tab = add_lexmin_ineq(tab: clex->tab, ineq); |
| 2518 | if (check) { |
| 2519 | int v = tab_has_valid_sample(tab: clex->tab, ineq, eq: 0); |
| 2520 | if (v < 0) |
| 2521 | goto error; |
| 2522 | if (!v) |
| 2523 | clex->tab = check_integer_feasible(tab: clex->tab); |
| 2524 | } |
| 2525 | if (update) |
| 2526 | clex->tab = check_samples(tab: clex->tab, ineq, eq: 0); |
| 2527 | return; |
| 2528 | error: |
| 2529 | isl_tab_free(tab: clex->tab); |
| 2530 | clex->tab = NULL; |
| 2531 | } |
| 2532 | |
| 2533 | static isl_stat context_lex_add_ineq_wrap(void *user, isl_int *ineq) |
| 2534 | { |
| 2535 | struct isl_context *context = (struct isl_context *)user; |
| 2536 | context_lex_add_ineq(context, ineq, check: 0, update: 0); |
| 2537 | return context->op->is_ok(context) ? isl_stat_ok : isl_stat_error; |
| 2538 | } |
| 2539 | |
| 2540 | /* Check which signs can be obtained by "ineq" on all the currently |
| 2541 | * active sample values. See row_sign for more information. |
| 2542 | */ |
| 2543 | static enum isl_tab_row_sign tab_ineq_sign(struct isl_tab *tab, isl_int *ineq, |
| 2544 | int strict) |
| 2545 | { |
| 2546 | int i; |
| 2547 | int sgn; |
| 2548 | isl_int tmp; |
| 2549 | enum isl_tab_row_sign res = isl_tab_row_unknown; |
| 2550 | |
| 2551 | isl_assert(tab->mat->ctx, tab->samples, return isl_tab_row_unknown); |
| 2552 | isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, |
| 2553 | return isl_tab_row_unknown); |
| 2554 | |
| 2555 | isl_int_init(tmp); |
| 2556 | for (i = tab->n_outside; i < tab->n_sample; ++i) { |
| 2557 | isl_seq_inner_product(p1: tab->samples->row[i], p2: ineq, |
| 2558 | len: 1 + tab->n_var, prod: &tmp); |
| 2559 | sgn = isl_int_sgn(tmp); |
| 2560 | if (sgn > 0 || (sgn == 0 && strict)) { |
| 2561 | if (res == isl_tab_row_unknown) |
| 2562 | res = isl_tab_row_pos; |
| 2563 | if (res == isl_tab_row_neg) |
| 2564 | res = isl_tab_row_any; |
| 2565 | } |
| 2566 | if (sgn < 0) { |
| 2567 | if (res == isl_tab_row_unknown) |
| 2568 | res = isl_tab_row_neg; |
| 2569 | if (res == isl_tab_row_pos) |
| 2570 | res = isl_tab_row_any; |
| 2571 | } |
| 2572 | if (res == isl_tab_row_any) |
| 2573 | break; |
| 2574 | } |
| 2575 | isl_int_clear(tmp); |
| 2576 | |
| 2577 | return res; |
| 2578 | } |
| 2579 | |
| 2580 | static enum isl_tab_row_sign context_lex_ineq_sign(struct isl_context *context, |
| 2581 | isl_int *ineq, int strict) |
| 2582 | { |
| 2583 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
| 2584 | return tab_ineq_sign(tab: clex->tab, ineq, strict); |
| 2585 | } |
| 2586 | |
| 2587 | /* Check whether "ineq" can be added to the tableau without rendering |
| 2588 | * it infeasible. |
| 2589 | */ |
| 2590 | static int context_lex_test_ineq(struct isl_context *context, isl_int *ineq) |
| 2591 | { |
| 2592 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
| 2593 | struct isl_tab_undo *snap; |
| 2594 | int feasible; |
| 2595 | |
| 2596 | if (!clex->tab) |
| 2597 | return -1; |
| 2598 | |
| 2599 | if (isl_tab_extend_cons(tab: clex->tab, n_new: 1) < 0) |
| 2600 | return -1; |
| 2601 | |
| 2602 | snap = isl_tab_snap(tab: clex->tab); |
| 2603 | if (isl_tab_push_basis(tab: clex->tab) < 0) |
| 2604 | return -1; |
| 2605 | clex->tab = add_lexmin_ineq(tab: clex->tab, ineq); |
| 2606 | clex->tab = check_integer_feasible(tab: clex->tab); |
| 2607 | if (!clex->tab) |
| 2608 | return -1; |
| 2609 | feasible = !clex->tab->empty; |
| 2610 | if (isl_tab_rollback(tab: clex->tab, snap) < 0) |
| 2611 | return -1; |
| 2612 | |
| 2613 | return feasible; |
| 2614 | } |
| 2615 | |
| 2616 | static int context_lex_get_div(struct isl_context *context, struct isl_tab *tab, |
| 2617 | struct isl_vec *div) |
| 2618 | { |
| 2619 | return get_div(tab, context, div); |
| 2620 | } |
| 2621 | |
| 2622 | /* Insert a div specified by "div" to the context tableau at position "pos" and |
| 2623 | * return isl_bool_true if the div is obviously non-negative. |
| 2624 | * context_tab_add_div will always return isl_bool_true, because all variables |
| 2625 | * in a isl_context_lex tableau are non-negative. |
| 2626 | * However, if we are using a big parameter in the context, then this only |
| 2627 | * reflects the non-negativity of the variable used to _encode_ the |
| 2628 | * div, i.e., div' = M + div, so we can't draw any conclusions. |
| 2629 | */ |
| 2630 | static isl_bool context_lex_insert_div(struct isl_context *context, int pos, |
| 2631 | __isl_keep isl_vec *div) |
| 2632 | { |
| 2633 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
| 2634 | isl_bool nonneg; |
| 2635 | nonneg = context_tab_insert_div(tab: clex->tab, pos, div, |
| 2636 | add_ineq: context_lex_add_ineq_wrap, user: context); |
| 2637 | if (nonneg < 0) |
| 2638 | return isl_bool_error; |
| 2639 | if (clex->tab->M) |
| 2640 | return isl_bool_false; |
| 2641 | return nonneg; |
| 2642 | } |
| 2643 | |
| 2644 | static int context_lex_detect_equalities(struct isl_context *context, |
| 2645 | struct isl_tab *tab) |
| 2646 | { |
| 2647 | return 0; |
| 2648 | } |
| 2649 | |
| 2650 | static int context_lex_best_split(struct isl_context *context, |
| 2651 | struct isl_tab *tab) |
| 2652 | { |
| 2653 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
| 2654 | struct isl_tab_undo *snap; |
| 2655 | int r; |
| 2656 | |
| 2657 | snap = isl_tab_snap(tab: clex->tab); |
| 2658 | if (isl_tab_push_basis(tab: clex->tab) < 0) |
| 2659 | return -1; |
| 2660 | r = best_split(tab, context_tab: clex->tab); |
| 2661 | |
| 2662 | if (r >= 0 && isl_tab_rollback(tab: clex->tab, snap) < 0) |
| 2663 | return -1; |
| 2664 | |
| 2665 | return r; |
| 2666 | } |
| 2667 | |
| 2668 | static int context_lex_is_empty(struct isl_context *context) |
| 2669 | { |
| 2670 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
| 2671 | if (!clex->tab) |
| 2672 | return -1; |
| 2673 | return clex->tab->empty; |
| 2674 | } |
| 2675 | |
| 2676 | static void *context_lex_save(struct isl_context *context) |
| 2677 | { |
| 2678 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
| 2679 | struct isl_tab_undo *snap; |
| 2680 | |
| 2681 | snap = isl_tab_snap(tab: clex->tab); |
| 2682 | if (isl_tab_push_basis(tab: clex->tab) < 0) |
| 2683 | return NULL; |
| 2684 | if (isl_tab_save_samples(tab: clex->tab) < 0) |
| 2685 | return NULL; |
| 2686 | |
| 2687 | return snap; |
| 2688 | } |
| 2689 | |
| 2690 | static void context_lex_restore(struct isl_context *context, void *save) |
| 2691 | { |
| 2692 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
| 2693 | if (isl_tab_rollback(tab: clex->tab, snap: (struct isl_tab_undo *)save) < 0) { |
| 2694 | isl_tab_free(tab: clex->tab); |
| 2695 | clex->tab = NULL; |
| 2696 | } |
| 2697 | } |
| 2698 | |
| 2699 | static void context_lex_discard(void *save) |
| 2700 | { |
| 2701 | } |
| 2702 | |
| 2703 | static int context_lex_is_ok(struct isl_context *context) |
| 2704 | { |
| 2705 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
| 2706 | return !!clex->tab; |
| 2707 | } |
| 2708 | |
| 2709 | /* For each variable in the context tableau, check if the variable can |
| 2710 | * only attain non-negative values. If so, mark the parameter as non-negative |
| 2711 | * in the main tableau. This allows for a more direct identification of some |
| 2712 | * cases of violated constraints. |
| 2713 | */ |
| 2714 | static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab, |
| 2715 | struct isl_tab *context_tab) |
| 2716 | { |
| 2717 | int i; |
| 2718 | struct isl_tab_undo *snap; |
| 2719 | struct isl_vec *ineq = NULL; |
| 2720 | struct isl_tab_var *var; |
| 2721 | int n; |
| 2722 | |
| 2723 | if (context_tab->n_var == 0) |
| 2724 | return tab; |
| 2725 | |
| 2726 | ineq = isl_vec_alloc(ctx: tab->mat->ctx, size: 1 + context_tab->n_var); |
| 2727 | if (!ineq) |
| 2728 | goto error; |
| 2729 | |
| 2730 | if (isl_tab_extend_cons(tab: context_tab, n_new: 1) < 0) |
| 2731 | goto error; |
| 2732 | |
| 2733 | snap = isl_tab_snap(tab: context_tab); |
| 2734 | |
| 2735 | n = 0; |
| 2736 | isl_seq_clr(p: ineq->el, len: ineq->size); |
| 2737 | for (i = 0; i < context_tab->n_var; ++i) { |
| 2738 | isl_int_set_si(ineq->el[1 + i], 1); |
| 2739 | if (isl_tab_add_ineq(tab: context_tab, ineq: ineq->el) < 0) |
| 2740 | goto error; |
| 2741 | var = &context_tab->con[context_tab->n_con - 1]; |
| 2742 | if (!context_tab->empty && |
| 2743 | !isl_tab_min_at_most_neg_one(tab: context_tab, var)) { |
| 2744 | int j = i; |
| 2745 | if (i >= tab->n_param) |
| 2746 | j = i - tab->n_param + tab->n_var - tab->n_div; |
| 2747 | tab->var[j].is_nonneg = 1; |
| 2748 | n++; |
| 2749 | } |
| 2750 | isl_int_set_si(ineq->el[1 + i], 0); |
| 2751 | if (isl_tab_rollback(tab: context_tab, snap) < 0) |
| 2752 | goto error; |
| 2753 | } |
| 2754 | |
| 2755 | if (context_tab->M && n == context_tab->n_var) { |
| 2756 | context_tab->mat = isl_mat_drop_cols(mat: context_tab->mat, col: 2, n: 1); |
| 2757 | context_tab->M = 0; |
| 2758 | } |
| 2759 | |
| 2760 | isl_vec_free(vec: ineq); |
| 2761 | return tab; |
| 2762 | error: |
| 2763 | isl_vec_free(vec: ineq); |
| 2764 | isl_tab_free(tab); |
| 2765 | return NULL; |
| 2766 | } |
| 2767 | |
| 2768 | static struct isl_tab *context_lex_detect_nonnegative_parameters( |
| 2769 | struct isl_context *context, struct isl_tab *tab) |
| 2770 | { |
| 2771 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
| 2772 | struct isl_tab_undo *snap; |
| 2773 | |
| 2774 | if (!tab) |
| 2775 | return NULL; |
| 2776 | |
| 2777 | snap = isl_tab_snap(tab: clex->tab); |
| 2778 | if (isl_tab_push_basis(tab: clex->tab) < 0) |
| 2779 | goto error; |
| 2780 | |
| 2781 | tab = tab_detect_nonnegative_parameters(tab, context_tab: clex->tab); |
| 2782 | |
| 2783 | if (isl_tab_rollback(tab: clex->tab, snap) < 0) |
| 2784 | goto error; |
| 2785 | |
| 2786 | return tab; |
| 2787 | error: |
| 2788 | isl_tab_free(tab); |
| 2789 | return NULL; |
| 2790 | } |
| 2791 | |
| 2792 | static void context_lex_invalidate(struct isl_context *context) |
| 2793 | { |
| 2794 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
| 2795 | isl_tab_free(tab: clex->tab); |
| 2796 | clex->tab = NULL; |
| 2797 | } |
| 2798 | |
| 2799 | static __isl_null struct isl_context *context_lex_free( |
| 2800 | struct isl_context *context) |
| 2801 | { |
| 2802 | struct isl_context_lex *clex = (struct isl_context_lex *)context; |
| 2803 | isl_tab_free(tab: clex->tab); |
| 2804 | free(ptr: clex); |
| 2805 | |
| 2806 | return NULL; |
| 2807 | } |
| 2808 | |
| 2809 | struct isl_context_op isl_context_lex_op = { |
| 2810 | context_lex_detect_nonnegative_parameters, |
| 2811 | context_lex_peek_basic_set, |
| 2812 | context_lex_peek_tab, |
| 2813 | context_lex_add_eq, |
| 2814 | context_lex_add_ineq, |
| 2815 | context_lex_ineq_sign, |
| 2816 | context_lex_test_ineq, |
| 2817 | context_lex_get_div, |
| 2818 | context_lex_insert_div, |
| 2819 | context_lex_detect_equalities, |
| 2820 | context_lex_best_split, |
| 2821 | context_lex_is_empty, |
| 2822 | context_lex_is_ok, |
| 2823 | context_lex_save, |
| 2824 | context_lex_restore, |
| 2825 | context_lex_discard, |
| 2826 | context_lex_invalidate, |
| 2827 | context_lex_free, |
| 2828 | }; |
| 2829 | |
| 2830 | static struct isl_tab *context_tab_for_lexmin(__isl_take isl_basic_set *bset) |
| 2831 | { |
| 2832 | struct isl_tab *tab; |
| 2833 | |
| 2834 | if (!bset) |
| 2835 | return NULL; |
| 2836 | tab = tab_for_lexmin(bmap: bset_to_bmap(bset), NULL, M: 1, max: 0); |
| 2837 | if (isl_tab_track_bset(tab, bset) < 0) |
| 2838 | goto error; |
| 2839 | tab = isl_tab_init_samples(tab); |
| 2840 | return tab; |
| 2841 | error: |
| 2842 | isl_tab_free(tab); |
| 2843 | return NULL; |
| 2844 | } |
| 2845 | |
| 2846 | static struct isl_context *isl_context_lex_alloc(struct isl_basic_set *dom) |
| 2847 | { |
| 2848 | struct isl_context_lex *clex; |
| 2849 | |
| 2850 | if (!dom) |
| 2851 | return NULL; |
| 2852 | |
| 2853 | clex = isl_alloc_type(dom->ctx, struct isl_context_lex); |
| 2854 | if (!clex) |
| 2855 | return NULL; |
| 2856 | |
| 2857 | clex->context.op = &isl_context_lex_op; |
| 2858 | |
| 2859 | clex->tab = context_tab_for_lexmin(bset: isl_basic_set_copy(bset: dom)); |
| 2860 | if (restore_lexmin(tab: clex->tab) < 0) |
| 2861 | goto error; |
| 2862 | clex->tab = check_integer_feasible(tab: clex->tab); |
| 2863 | if (!clex->tab) |
| 2864 | goto error; |
| 2865 | |
| 2866 | return &clex->context; |
| 2867 | error: |
| 2868 | clex->context.op->free(&clex->context); |
| 2869 | return NULL; |
| 2870 | } |
| 2871 | |
| 2872 | /* Representation of the context when using generalized basis reduction. |
| 2873 | * |
| 2874 | * "shifted" contains the offsets of the unit hypercubes that lie inside the |
| 2875 | * context. Any rational point in "shifted" can therefore be rounded |
| 2876 | * up to an integer point in the context. |
| 2877 | * If the context is constrained by any equality, then "shifted" is not used |
| 2878 | * as it would be empty. |
| 2879 | */ |
| 2880 | struct isl_context_gbr { |
| 2881 | struct isl_context context; |
| 2882 | struct isl_tab *tab; |
| 2883 | struct isl_tab *shifted; |
| 2884 | struct isl_tab *cone; |
| 2885 | }; |
| 2886 | |
| 2887 | static struct isl_tab *context_gbr_detect_nonnegative_parameters( |
| 2888 | struct isl_context *context, struct isl_tab *tab) |
| 2889 | { |
| 2890 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
| 2891 | if (!tab) |
| 2892 | return NULL; |
| 2893 | return tab_detect_nonnegative_parameters(tab, context_tab: cgbr->tab); |
| 2894 | } |
| 2895 | |
| 2896 | static struct isl_basic_set *context_gbr_peek_basic_set( |
| 2897 | struct isl_context *context) |
| 2898 | { |
| 2899 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
| 2900 | if (!cgbr->tab) |
| 2901 | return NULL; |
| 2902 | return isl_tab_peek_bset(tab: cgbr->tab); |
| 2903 | } |
| 2904 | |
| 2905 | static struct isl_tab *context_gbr_peek_tab(struct isl_context *context) |
| 2906 | { |
| 2907 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
| 2908 | return cgbr->tab; |
| 2909 | } |
| 2910 | |
| 2911 | /* Initialize the "shifted" tableau of the context, which |
| 2912 | * contains the constraints of the original tableau shifted |
| 2913 | * by the sum of all negative coefficients. This ensures |
| 2914 | * that any rational point in the shifted tableau can |
| 2915 | * be rounded up to yield an integer point in the original tableau. |
| 2916 | */ |
| 2917 | static void gbr_init_shifted(struct isl_context_gbr *cgbr) |
| 2918 | { |
| 2919 | int i, j; |
| 2920 | struct isl_vec *cst; |
| 2921 | struct isl_basic_set *bset = isl_tab_peek_bset(tab: cgbr->tab); |
| 2922 | isl_size dim = isl_basic_set_dim(bset, type: isl_dim_all); |
| 2923 | |
| 2924 | if (dim < 0) |
| 2925 | return; |
| 2926 | cst = isl_vec_alloc(ctx: cgbr->tab->mat->ctx, size: bset->n_ineq); |
| 2927 | if (!cst) |
| 2928 | return; |
| 2929 | |
| 2930 | for (i = 0; i < bset->n_ineq; ++i) { |
| 2931 | isl_int_set(cst->el[i], bset->ineq[i][0]); |
| 2932 | for (j = 0; j < dim; ++j) { |
| 2933 | if (!isl_int_is_neg(bset->ineq[i][1 + j])) |
| 2934 | continue; |
| 2935 | isl_int_add(bset->ineq[i][0], bset->ineq[i][0], |
| 2936 | bset->ineq[i][1 + j]); |
| 2937 | } |
| 2938 | } |
| 2939 | |
| 2940 | cgbr->shifted = isl_tab_from_basic_set(bset, track: 0); |
| 2941 | |
| 2942 | for (i = 0; i < bset->n_ineq; ++i) |
| 2943 | isl_int_set(bset->ineq[i][0], cst->el[i]); |
| 2944 | |
| 2945 | isl_vec_free(vec: cst); |
| 2946 | } |
| 2947 | |
| 2948 | /* Check if the shifted tableau is non-empty, and if so |
| 2949 | * use the sample point to construct an integer point |
| 2950 | * of the context tableau. |
| 2951 | */ |
| 2952 | static struct isl_vec *gbr_get_shifted_sample(struct isl_context_gbr *cgbr) |
| 2953 | { |
| 2954 | struct isl_vec *sample; |
| 2955 | |
| 2956 | if (!cgbr->shifted) |
| 2957 | gbr_init_shifted(cgbr); |
| 2958 | if (!cgbr->shifted) |
| 2959 | return NULL; |
| 2960 | if (cgbr->shifted->empty) |
| 2961 | return isl_vec_alloc(ctx: cgbr->tab->mat->ctx, size: 0); |
| 2962 | |
| 2963 | sample = isl_tab_get_sample_value(tab: cgbr->shifted); |
| 2964 | sample = isl_vec_ceil(vec: sample); |
| 2965 | |
| 2966 | return sample; |
| 2967 | } |
| 2968 | |
| 2969 | static __isl_give isl_basic_set *drop_constant_terms( |
| 2970 | __isl_take isl_basic_set *bset) |
| 2971 | { |
| 2972 | int i; |
| 2973 | |
| 2974 | if (!bset) |
| 2975 | return NULL; |
| 2976 | |
| 2977 | for (i = 0; i < bset->n_eq; ++i) |
| 2978 | isl_int_set_si(bset->eq[i][0], 0); |
| 2979 | |
| 2980 | for (i = 0; i < bset->n_ineq; ++i) |
| 2981 | isl_int_set_si(bset->ineq[i][0], 0); |
| 2982 | |
| 2983 | return bset; |
| 2984 | } |
| 2985 | |
| 2986 | static int use_shifted(struct isl_context_gbr *cgbr) |
| 2987 | { |
| 2988 | if (!cgbr->tab) |
| 2989 | return 0; |
| 2990 | return cgbr->tab->bmap->n_eq == 0 && cgbr->tab->bmap->n_div == 0; |
| 2991 | } |
| 2992 | |
| 2993 | static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr) |
| 2994 | { |
| 2995 | struct isl_basic_set *bset; |
| 2996 | struct isl_basic_set *cone; |
| 2997 | |
| 2998 | if (isl_tab_sample_is_integer(tab: cgbr->tab)) |
| 2999 | return isl_tab_get_sample_value(tab: cgbr->tab); |
| 3000 | |
| 3001 | if (use_shifted(cgbr)) { |
| 3002 | struct isl_vec *sample; |
| 3003 | |
| 3004 | sample = gbr_get_shifted_sample(cgbr); |
| 3005 | if (!sample || sample->size > 0) |
| 3006 | return sample; |
| 3007 | |
| 3008 | isl_vec_free(vec: sample); |
| 3009 | } |
| 3010 | |
| 3011 | if (!cgbr->cone) { |
| 3012 | bset = isl_tab_peek_bset(tab: cgbr->tab); |
| 3013 | cgbr->cone = isl_tab_from_recession_cone(bset, parametric: 0); |
| 3014 | if (!cgbr->cone) |
| 3015 | return NULL; |
| 3016 | if (isl_tab_track_bset(tab: cgbr->cone, |
| 3017 | bset: isl_basic_set_copy(bset)) < 0) |
| 3018 | return NULL; |
| 3019 | } |
| 3020 | if (isl_tab_detect_implicit_equalities(tab: cgbr->cone) < 0) |
| 3021 | return NULL; |
| 3022 | |
| 3023 | if (cgbr->cone->n_dead == cgbr->cone->n_col) { |
| 3024 | struct isl_vec *sample; |
| 3025 | struct isl_tab_undo *snap; |
| 3026 | |
| 3027 | if (cgbr->tab->basis) { |
| 3028 | if (cgbr->tab->basis->n_col != 1 + cgbr->tab->n_var) { |
| 3029 | isl_mat_free(mat: cgbr->tab->basis); |
| 3030 | cgbr->tab->basis = NULL; |
| 3031 | } |
| 3032 | cgbr->tab->n_zero = 0; |
| 3033 | cgbr->tab->n_unbounded = 0; |
| 3034 | } |
| 3035 | |
| 3036 | snap = isl_tab_snap(tab: cgbr->tab); |
| 3037 | |
| 3038 | sample = isl_tab_sample(tab: cgbr->tab); |
| 3039 | |
| 3040 | if (!sample || isl_tab_rollback(tab: cgbr->tab, snap) < 0) { |
| 3041 | isl_vec_free(vec: sample); |
| 3042 | return NULL; |
| 3043 | } |
| 3044 | |
| 3045 | return sample; |
| 3046 | } |
| 3047 | |
| 3048 | cone = isl_basic_set_dup(bset: isl_tab_peek_bset(tab: cgbr->cone)); |
| 3049 | cone = drop_constant_terms(bset: cone); |
| 3050 | cone = isl_basic_set_update_from_tab(bset: cone, tab: cgbr->cone); |
| 3051 | cone = isl_basic_set_underlying_set(bset: cone); |
| 3052 | cone = isl_basic_set_gauss(bset: cone, NULL); |
| 3053 | |
| 3054 | bset = isl_basic_set_dup(bset: isl_tab_peek_bset(tab: cgbr->tab)); |
| 3055 | bset = isl_basic_set_update_from_tab(bset, tab: cgbr->tab); |
| 3056 | bset = isl_basic_set_underlying_set(bset); |
| 3057 | bset = isl_basic_set_gauss(bset, NULL); |
| 3058 | |
| 3059 | return isl_basic_set_sample_with_cone(bset, cone); |
| 3060 | } |
| 3061 | |
| 3062 | static void check_gbr_integer_feasible(struct isl_context_gbr *cgbr) |
| 3063 | { |
| 3064 | struct isl_vec *sample; |
| 3065 | |
| 3066 | if (!cgbr->tab) |
| 3067 | return; |
| 3068 | |
| 3069 | if (cgbr->tab->empty) |
| 3070 | return; |
| 3071 | |
| 3072 | sample = gbr_get_sample(cgbr); |
| 3073 | if (!sample) |
| 3074 | goto error; |
| 3075 | |
| 3076 | if (sample->size == 0) { |
| 3077 | isl_vec_free(vec: sample); |
| 3078 | if (isl_tab_mark_empty(tab: cgbr->tab) < 0) |
| 3079 | goto error; |
| 3080 | return; |
| 3081 | } |
| 3082 | |
| 3083 | if (isl_tab_add_sample(tab: cgbr->tab, sample) < 0) |
| 3084 | goto error; |
| 3085 | |
| 3086 | return; |
| 3087 | error: |
| 3088 | isl_tab_free(tab: cgbr->tab); |
| 3089 | cgbr->tab = NULL; |
| 3090 | } |
| 3091 | |
| 3092 | static struct isl_tab *add_gbr_eq(struct isl_tab *tab, isl_int *eq) |
| 3093 | { |
| 3094 | if (!tab) |
| 3095 | return NULL; |
| 3096 | |
| 3097 | if (isl_tab_extend_cons(tab, n_new: 2) < 0) |
| 3098 | goto error; |
| 3099 | |
| 3100 | if (isl_tab_add_eq(tab, eq) < 0) |
| 3101 | goto error; |
| 3102 | |
| 3103 | return tab; |
| 3104 | error: |
| 3105 | isl_tab_free(tab); |
| 3106 | return NULL; |
| 3107 | } |
| 3108 | |
| 3109 | /* Add the equality described by "eq" to the context. |
| 3110 | * If "check" is set, then we check if the context is empty after |
| 3111 | * adding the equality. |
| 3112 | * If "update" is set, then we check if the samples are still valid. |
| 3113 | * |
| 3114 | * We do not explicitly add shifted copies of the equality to |
| 3115 | * cgbr->shifted since they would conflict with each other. |
| 3116 | * Instead, we directly mark cgbr->shifted empty. |
| 3117 | */ |
| 3118 | static void context_gbr_add_eq(struct isl_context *context, isl_int *eq, |
| 3119 | int check, int update) |
| 3120 | { |
| 3121 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
| 3122 | |
| 3123 | cgbr->tab = add_gbr_eq(tab: cgbr->tab, eq); |
| 3124 | |
| 3125 | if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) { |
| 3126 | if (isl_tab_mark_empty(tab: cgbr->shifted) < 0) |
| 3127 | goto error; |
| 3128 | } |
| 3129 | |
| 3130 | if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) { |
| 3131 | if (isl_tab_extend_cons(tab: cgbr->cone, n_new: 2) < 0) |
| 3132 | goto error; |
| 3133 | if (isl_tab_add_eq(tab: cgbr->cone, eq) < 0) |
| 3134 | goto error; |
| 3135 | } |
| 3136 | |
| 3137 | if (check) { |
| 3138 | int v = tab_has_valid_sample(tab: cgbr->tab, ineq: eq, eq: 1); |
| 3139 | if (v < 0) |
| 3140 | goto error; |
| 3141 | if (!v) |
| 3142 | check_gbr_integer_feasible(cgbr); |
| 3143 | } |
| 3144 | if (update) |
| 3145 | cgbr->tab = check_samples(tab: cgbr->tab, ineq: eq, eq: 1); |
| 3146 | return; |
| 3147 | error: |
| 3148 | isl_tab_free(tab: cgbr->tab); |
| 3149 | cgbr->tab = NULL; |
| 3150 | } |
| 3151 | |
| 3152 | static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq) |
| 3153 | { |
| 3154 | if (!cgbr->tab) |
| 3155 | return; |
| 3156 | |
| 3157 | if (isl_tab_extend_cons(tab: cgbr->tab, n_new: 1) < 0) |
| 3158 | goto error; |
| 3159 | |
| 3160 | if (isl_tab_add_ineq(tab: cgbr->tab, ineq) < 0) |
| 3161 | goto error; |
| 3162 | |
| 3163 | if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) { |
| 3164 | int i; |
| 3165 | isl_size dim; |
| 3166 | dim = isl_basic_map_dim(bmap: cgbr->tab->bmap, type: isl_dim_all); |
| 3167 | if (dim < 0) |
| 3168 | goto error; |
| 3169 | |
| 3170 | if (isl_tab_extend_cons(tab: cgbr->shifted, n_new: 1) < 0) |
| 3171 | goto error; |
| 3172 | |
| 3173 | for (i = 0; i < dim; ++i) { |
| 3174 | if (!isl_int_is_neg(ineq[1 + i])) |
| 3175 | continue; |
| 3176 | isl_int_add(ineq[0], ineq[0], ineq[1 + i]); |
| 3177 | } |
| 3178 | |
| 3179 | if (isl_tab_add_ineq(tab: cgbr->shifted, ineq) < 0) |
| 3180 | goto error; |
| 3181 | |
| 3182 | for (i = 0; i < dim; ++i) { |
| 3183 | if (!isl_int_is_neg(ineq[1 + i])) |
| 3184 | continue; |
| 3185 | isl_int_sub(ineq[0], ineq[0], ineq[1 + i]); |
| 3186 | } |
| 3187 | } |
| 3188 | |
| 3189 | if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) { |
| 3190 | if (isl_tab_extend_cons(tab: cgbr->cone, n_new: 1) < 0) |
| 3191 | goto error; |
| 3192 | if (isl_tab_add_ineq(tab: cgbr->cone, ineq) < 0) |
| 3193 | goto error; |
| 3194 | } |
| 3195 | |
| 3196 | return; |
| 3197 | error: |
| 3198 | isl_tab_free(tab: cgbr->tab); |
| 3199 | cgbr->tab = NULL; |
| 3200 | } |
| 3201 | |
| 3202 | static void context_gbr_add_ineq(struct isl_context *context, isl_int *ineq, |
| 3203 | int check, int update) |
| 3204 | { |
| 3205 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
| 3206 | |
| 3207 | add_gbr_ineq(cgbr, ineq); |
| 3208 | if (!cgbr->tab) |
| 3209 | return; |
| 3210 | |
| 3211 | if (check) { |
| 3212 | int v = tab_has_valid_sample(tab: cgbr->tab, ineq, eq: 0); |
| 3213 | if (v < 0) |
| 3214 | goto error; |
| 3215 | if (!v) |
| 3216 | check_gbr_integer_feasible(cgbr); |
| 3217 | } |
| 3218 | if (update) |
| 3219 | cgbr->tab = check_samples(tab: cgbr->tab, ineq, eq: 0); |
| 3220 | return; |
| 3221 | error: |
| 3222 | isl_tab_free(tab: cgbr->tab); |
| 3223 | cgbr->tab = NULL; |
| 3224 | } |
| 3225 | |
| 3226 | static isl_stat context_gbr_add_ineq_wrap(void *user, isl_int *ineq) |
| 3227 | { |
| 3228 | struct isl_context *context = (struct isl_context *)user; |
| 3229 | context_gbr_add_ineq(context, ineq, check: 0, update: 0); |
| 3230 | return context->op->is_ok(context) ? isl_stat_ok : isl_stat_error; |
| 3231 | } |
| 3232 | |
| 3233 | static enum isl_tab_row_sign context_gbr_ineq_sign(struct isl_context *context, |
| 3234 | isl_int *ineq, int strict) |
| 3235 | { |
| 3236 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
| 3237 | return tab_ineq_sign(tab: cgbr->tab, ineq, strict); |
| 3238 | } |
| 3239 | |
| 3240 | /* Check whether "ineq" can be added to the tableau without rendering |
| 3241 | * it infeasible. |
| 3242 | */ |
| 3243 | static int context_gbr_test_ineq(struct isl_context *context, isl_int *ineq) |
| 3244 | { |
| 3245 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
| 3246 | struct isl_tab_undo *snap; |
| 3247 | struct isl_tab_undo *shifted_snap = NULL; |
| 3248 | struct isl_tab_undo *cone_snap = NULL; |
| 3249 | int feasible; |
| 3250 | |
| 3251 | if (!cgbr->tab) |
| 3252 | return -1; |
| 3253 | |
| 3254 | if (isl_tab_extend_cons(tab: cgbr->tab, n_new: 1) < 0) |
| 3255 | return -1; |
| 3256 | |
| 3257 | snap = isl_tab_snap(tab: cgbr->tab); |
| 3258 | if (cgbr->shifted) |
| 3259 | shifted_snap = isl_tab_snap(tab: cgbr->shifted); |
| 3260 | if (cgbr->cone) |
| 3261 | cone_snap = isl_tab_snap(tab: cgbr->cone); |
| 3262 | add_gbr_ineq(cgbr, ineq); |
| 3263 | check_gbr_integer_feasible(cgbr); |
| 3264 | if (!cgbr->tab) |
| 3265 | return -1; |
| 3266 | feasible = !cgbr->tab->empty; |
| 3267 | if (isl_tab_rollback(tab: cgbr->tab, snap) < 0) |
| 3268 | return -1; |
| 3269 | if (shifted_snap) { |
| 3270 | if (isl_tab_rollback(tab: cgbr->shifted, snap: shifted_snap)) |
| 3271 | return -1; |
| 3272 | } else if (cgbr->shifted) { |
| 3273 | isl_tab_free(tab: cgbr->shifted); |
| 3274 | cgbr->shifted = NULL; |
| 3275 | } |
| 3276 | if (cone_snap) { |
| 3277 | if (isl_tab_rollback(tab: cgbr->cone, snap: cone_snap)) |
| 3278 | return -1; |
| 3279 | } else if (cgbr->cone) { |
| 3280 | isl_tab_free(tab: cgbr->cone); |
| 3281 | cgbr->cone = NULL; |
| 3282 | } |
| 3283 | |
| 3284 | return feasible; |
| 3285 | } |
| 3286 | |
| 3287 | /* Return the column of the last of the variables associated to |
| 3288 | * a column that has a non-zero coefficient. |
| 3289 | * This function is called in a context where only coefficients |
| 3290 | * of parameters or divs can be non-zero. |
| 3291 | */ |
| 3292 | static int last_non_zero_var_col(struct isl_tab *tab, isl_int *p) |
| 3293 | { |
| 3294 | int i; |
| 3295 | int col; |
| 3296 | |
| 3297 | if (tab->n_var == 0) |
| 3298 | return -1; |
| 3299 | |
| 3300 | for (i = tab->n_var - 1; i >= 0; --i) { |
| 3301 | if (i >= tab->n_param && i < tab->n_var - tab->n_div) |
| 3302 | continue; |
| 3303 | if (tab->var[i].is_row) |
| 3304 | continue; |
| 3305 | col = tab->var[i].index; |
| 3306 | if (!isl_int_is_zero(p[col])) |
| 3307 | return col; |
| 3308 | } |
| 3309 | |
| 3310 | return -1; |
| 3311 | } |
| 3312 | |
| 3313 | /* Look through all the recently added equalities in the context |
| 3314 | * to see if we can propagate any of them to the main tableau. |
| 3315 | * |
| 3316 | * The newly added equalities in the context are encoded as pairs |
| 3317 | * of inequalities starting at inequality "first". |
| 3318 | * |
| 3319 | * We tentatively add each of these equalities to the main tableau |
| 3320 | * and if this happens to result in a row with a final coefficient |
| 3321 | * that is one or negative one, we use it to kill a column |
| 3322 | * in the main tableau. Otherwise, we discard the tentatively |
| 3323 | * added row. |
| 3324 | * This tentative addition of equality constraints turns |
| 3325 | * on the undo facility of the tableau. Turn it off again |
| 3326 | * at the end, assuming it was turned off to begin with. |
| 3327 | * |
| 3328 | * Return 0 on success and -1 on failure. |
| 3329 | */ |
| 3330 | static int propagate_equalities(struct isl_context_gbr *cgbr, |
| 3331 | struct isl_tab *tab, unsigned first) |
| 3332 | { |
| 3333 | int i; |
| 3334 | struct isl_vec *eq = NULL; |
| 3335 | isl_bool needs_undo; |
| 3336 | |
| 3337 | needs_undo = isl_tab_need_undo(tab); |
| 3338 | if (needs_undo < 0) |
| 3339 | goto error; |
| 3340 | eq = isl_vec_alloc(ctx: tab->mat->ctx, size: 1 + tab->n_var); |
| 3341 | if (!eq) |
| 3342 | goto error; |
| 3343 | |
| 3344 | if (isl_tab_extend_cons(tab, n_new: (cgbr->tab->bmap->n_ineq - first)/2) < 0) |
| 3345 | goto error; |
| 3346 | |
| 3347 | isl_seq_clr(p: eq->el + 1 + tab->n_param, |
| 3348 | len: tab->n_var - tab->n_param - tab->n_div); |
| 3349 | for (i = first; i < cgbr->tab->bmap->n_ineq; i += 2) { |
| 3350 | int j; |
| 3351 | int r; |
| 3352 | struct isl_tab_undo *snap; |
| 3353 | snap = isl_tab_snap(tab); |
| 3354 | |
| 3355 | isl_seq_cpy(dst: eq->el, src: cgbr->tab->bmap->ineq[i], len: 1 + tab->n_param); |
| 3356 | isl_seq_cpy(dst: eq->el + 1 + tab->n_var - tab->n_div, |
| 3357 | src: cgbr->tab->bmap->ineq[i] + 1 + tab->n_param, |
| 3358 | len: tab->n_div); |
| 3359 | |
| 3360 | r = isl_tab_add_row(tab, line: eq->el); |
| 3361 | if (r < 0) |
| 3362 | goto error; |
| 3363 | r = tab->con[r].index; |
| 3364 | j = last_non_zero_var_col(tab, p: tab->mat->row[r] + 2 + tab->M); |
| 3365 | if (j < 0 || j < tab->n_dead || |
| 3366 | !isl_int_is_one(tab->mat->row[r][0]) || |
| 3367 | (!isl_int_is_one(tab->mat->row[r][2 + tab->M + j]) && |
| 3368 | !isl_int_is_negone(tab->mat->row[r][2 + tab->M + j]))) { |
| 3369 | if (isl_tab_rollback(tab, snap) < 0) |
| 3370 | goto error; |
| 3371 | continue; |
| 3372 | } |
| 3373 | if (isl_tab_pivot(tab, row: r, col: j) < 0) |
| 3374 | goto error; |
| 3375 | if (isl_tab_kill_col(tab, col: j) < 0) |
| 3376 | goto error; |
| 3377 | |
| 3378 | if (restore_lexmin(tab) < 0) |
| 3379 | goto error; |
| 3380 | } |
| 3381 | |
| 3382 | if (!needs_undo) |
| 3383 | isl_tab_clear_undo(tab); |
| 3384 | isl_vec_free(vec: eq); |
| 3385 | |
| 3386 | return 0; |
| 3387 | error: |
| 3388 | isl_vec_free(vec: eq); |
| 3389 | isl_tab_free(tab: cgbr->tab); |
| 3390 | cgbr->tab = NULL; |
| 3391 | return -1; |
| 3392 | } |
| 3393 | |
| 3394 | static int context_gbr_detect_equalities(struct isl_context *context, |
| 3395 | struct isl_tab *tab) |
| 3396 | { |
| 3397 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
| 3398 | unsigned n_ineq; |
| 3399 | |
| 3400 | if (!cgbr->cone) { |
| 3401 | struct isl_basic_set *bset = isl_tab_peek_bset(tab: cgbr->tab); |
| 3402 | cgbr->cone = isl_tab_from_recession_cone(bset, parametric: 0); |
| 3403 | if (!cgbr->cone) |
| 3404 | goto error; |
| 3405 | if (isl_tab_track_bset(tab: cgbr->cone, |
| 3406 | bset: isl_basic_set_copy(bset)) < 0) |
| 3407 | goto error; |
| 3408 | } |
| 3409 | if (isl_tab_detect_implicit_equalities(tab: cgbr->cone) < 0) |
| 3410 | goto error; |
| 3411 | |
| 3412 | n_ineq = cgbr->tab->bmap->n_ineq; |
| 3413 | cgbr->tab = isl_tab_detect_equalities(tab: cgbr->tab, tab_cone: cgbr->cone); |
| 3414 | if (!cgbr->tab) |
| 3415 | return -1; |
| 3416 | if (cgbr->tab->bmap->n_ineq > n_ineq && |
| 3417 | propagate_equalities(cgbr, tab, first: n_ineq) < 0) |
| 3418 | return -1; |
| 3419 | |
| 3420 | return 0; |
| 3421 | error: |
| 3422 | isl_tab_free(tab: cgbr->tab); |
| 3423 | cgbr->tab = NULL; |
| 3424 | return -1; |
| 3425 | } |
| 3426 | |
| 3427 | static int context_gbr_get_div(struct isl_context *context, struct isl_tab *tab, |
| 3428 | struct isl_vec *div) |
| 3429 | { |
| 3430 | return get_div(tab, context, div); |
| 3431 | } |
| 3432 | |
| 3433 | static isl_bool context_gbr_insert_div(struct isl_context *context, int pos, |
| 3434 | __isl_keep isl_vec *div) |
| 3435 | { |
| 3436 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
| 3437 | if (cgbr->cone) { |
| 3438 | int r, o_div; |
| 3439 | isl_size n_div; |
| 3440 | |
| 3441 | n_div = isl_basic_map_dim(bmap: cgbr->cone->bmap, type: isl_dim_div); |
| 3442 | if (n_div < 0) |
| 3443 | return isl_bool_error; |
| 3444 | o_div = cgbr->cone->n_var - n_div; |
| 3445 | |
| 3446 | if (isl_tab_extend_cons(tab: cgbr->cone, n_new: 3) < 0) |
| 3447 | return isl_bool_error; |
| 3448 | if (isl_tab_extend_vars(tab: cgbr->cone, n_new: 1) < 0) |
| 3449 | return isl_bool_error; |
| 3450 | if ((r = isl_tab_insert_var(tab: cgbr->cone, pos)) <0) |
| 3451 | return isl_bool_error; |
| 3452 | |
| 3453 | cgbr->cone->bmap = isl_basic_map_insert_div(bmap: cgbr->cone->bmap, |
| 3454 | pos: r - o_div, div); |
| 3455 | if (!cgbr->cone->bmap) |
| 3456 | return isl_bool_error; |
| 3457 | if (isl_tab_push_var(tab: cgbr->cone, type: isl_tab_undo_bmap_div, |
| 3458 | var: &cgbr->cone->var[r]) < 0) |
| 3459 | return isl_bool_error; |
| 3460 | } |
| 3461 | return context_tab_insert_div(tab: cgbr->tab, pos, div, |
| 3462 | add_ineq: context_gbr_add_ineq_wrap, user: context); |
| 3463 | } |
| 3464 | |
| 3465 | static int context_gbr_best_split(struct isl_context *context, |
| 3466 | struct isl_tab *tab) |
| 3467 | { |
| 3468 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
| 3469 | struct isl_tab_undo *snap; |
| 3470 | int r; |
| 3471 | |
| 3472 | snap = isl_tab_snap(tab: cgbr->tab); |
| 3473 | r = best_split(tab, context_tab: cgbr->tab); |
| 3474 | |
| 3475 | if (r >= 0 && isl_tab_rollback(tab: cgbr->tab, snap) < 0) |
| 3476 | return -1; |
| 3477 | |
| 3478 | return r; |
| 3479 | } |
| 3480 | |
| 3481 | static int context_gbr_is_empty(struct isl_context *context) |
| 3482 | { |
| 3483 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
| 3484 | if (!cgbr->tab) |
| 3485 | return -1; |
| 3486 | return cgbr->tab->empty; |
| 3487 | } |
| 3488 | |
| 3489 | struct isl_gbr_tab_undo { |
| 3490 | struct isl_tab_undo *tab_snap; |
| 3491 | struct isl_tab_undo *shifted_snap; |
| 3492 | struct isl_tab_undo *cone_snap; |
| 3493 | }; |
| 3494 | |
| 3495 | static void *context_gbr_save(struct isl_context *context) |
| 3496 | { |
| 3497 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
| 3498 | struct isl_gbr_tab_undo *snap; |
| 3499 | |
| 3500 | if (!cgbr->tab) |
| 3501 | return NULL; |
| 3502 | |
| 3503 | snap = isl_alloc_type(cgbr->tab->mat->ctx, struct isl_gbr_tab_undo); |
| 3504 | if (!snap) |
| 3505 | return NULL; |
| 3506 | |
| 3507 | snap->tab_snap = isl_tab_snap(tab: cgbr->tab); |
| 3508 | if (isl_tab_save_samples(tab: cgbr->tab) < 0) |
| 3509 | goto error; |
| 3510 | |
| 3511 | if (cgbr->shifted) |
| 3512 | snap->shifted_snap = isl_tab_snap(tab: cgbr->shifted); |
| 3513 | else |
| 3514 | snap->shifted_snap = NULL; |
| 3515 | |
| 3516 | if (cgbr->cone) |
| 3517 | snap->cone_snap = isl_tab_snap(tab: cgbr->cone); |
| 3518 | else |
| 3519 | snap->cone_snap = NULL; |
| 3520 | |
| 3521 | return snap; |
| 3522 | error: |
| 3523 | free(ptr: snap); |
| 3524 | return NULL; |
| 3525 | } |
| 3526 | |
| 3527 | static void context_gbr_restore(struct isl_context *context, void *save) |
| 3528 | { |
| 3529 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
| 3530 | struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save; |
| 3531 | if (!snap) |
| 3532 | goto error; |
| 3533 | if (isl_tab_rollback(tab: cgbr->tab, snap: snap->tab_snap) < 0) |
| 3534 | goto error; |
| 3535 | |
| 3536 | if (snap->shifted_snap) { |
| 3537 | if (isl_tab_rollback(tab: cgbr->shifted, snap: snap->shifted_snap) < 0) |
| 3538 | goto error; |
| 3539 | } else if (cgbr->shifted) { |
| 3540 | isl_tab_free(tab: cgbr->shifted); |
| 3541 | cgbr->shifted = NULL; |
| 3542 | } |
| 3543 | |
| 3544 | if (snap->cone_snap) { |
| 3545 | if (isl_tab_rollback(tab: cgbr->cone, snap: snap->cone_snap) < 0) |
| 3546 | goto error; |
| 3547 | } else if (cgbr->cone) { |
| 3548 | isl_tab_free(tab: cgbr->cone); |
| 3549 | cgbr->cone = NULL; |
| 3550 | } |
| 3551 | |
| 3552 | free(ptr: snap); |
| 3553 | |
| 3554 | return; |
| 3555 | error: |
| 3556 | free(ptr: snap); |
| 3557 | isl_tab_free(tab: cgbr->tab); |
| 3558 | cgbr->tab = NULL; |
| 3559 | } |
| 3560 | |
| 3561 | static void context_gbr_discard(void *save) |
| 3562 | { |
| 3563 | struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save; |
| 3564 | free(ptr: snap); |
| 3565 | } |
| 3566 | |
| 3567 | static int context_gbr_is_ok(struct isl_context *context) |
| 3568 | { |
| 3569 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
| 3570 | return !!cgbr->tab; |
| 3571 | } |
| 3572 | |
| 3573 | static void context_gbr_invalidate(struct isl_context *context) |
| 3574 | { |
| 3575 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
| 3576 | isl_tab_free(tab: cgbr->tab); |
| 3577 | cgbr->tab = NULL; |
| 3578 | } |
| 3579 | |
| 3580 | static __isl_null struct isl_context *context_gbr_free( |
| 3581 | struct isl_context *context) |
| 3582 | { |
| 3583 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; |
| 3584 | isl_tab_free(tab: cgbr->tab); |
| 3585 | isl_tab_free(tab: cgbr->shifted); |
| 3586 | isl_tab_free(tab: cgbr->cone); |
| 3587 | free(ptr: cgbr); |
| 3588 | |
| 3589 | return NULL; |
| 3590 | } |
| 3591 | |
| 3592 | struct isl_context_op isl_context_gbr_op = { |
| 3593 | context_gbr_detect_nonnegative_parameters, |
| 3594 | context_gbr_peek_basic_set, |
| 3595 | context_gbr_peek_tab, |
| 3596 | context_gbr_add_eq, |
| 3597 | context_gbr_add_ineq, |
| 3598 | context_gbr_ineq_sign, |
| 3599 | context_gbr_test_ineq, |
| 3600 | context_gbr_get_div, |
| 3601 | context_gbr_insert_div, |
| 3602 | context_gbr_detect_equalities, |
| 3603 | context_gbr_best_split, |
| 3604 | context_gbr_is_empty, |
| 3605 | context_gbr_is_ok, |
| 3606 | context_gbr_save, |
| 3607 | context_gbr_restore, |
| 3608 | context_gbr_discard, |
| 3609 | context_gbr_invalidate, |
| 3610 | context_gbr_free, |
| 3611 | }; |
| 3612 | |
| 3613 | static struct isl_context *isl_context_gbr_alloc(__isl_keep isl_basic_set *dom) |
| 3614 | { |
| 3615 | struct isl_context_gbr *cgbr; |
| 3616 | |
| 3617 | if (!dom) |
| 3618 | return NULL; |
| 3619 | |
| 3620 | cgbr = isl_calloc_type(dom->ctx, struct isl_context_gbr); |
| 3621 | if (!cgbr) |
| 3622 | return NULL; |
| 3623 | |
| 3624 | cgbr->context.op = &isl_context_gbr_op; |
| 3625 | |
| 3626 | cgbr->shifted = NULL; |
| 3627 | cgbr->cone = NULL; |
| 3628 | cgbr->tab = isl_tab_from_basic_set(bset: dom, track: 1); |
| 3629 | cgbr->tab = isl_tab_init_samples(tab: cgbr->tab); |
| 3630 | if (!cgbr->tab) |
| 3631 | goto error; |
| 3632 | check_gbr_integer_feasible(cgbr); |
| 3633 | |
| 3634 | return &cgbr->context; |
| 3635 | error: |
| 3636 | cgbr->context.op->free(&cgbr->context); |
| 3637 | return NULL; |
| 3638 | } |
| 3639 | |
| 3640 | /* Allocate a context corresponding to "dom". |
| 3641 | * The representation specific fields are initialized by |
| 3642 | * isl_context_lex_alloc or isl_context_gbr_alloc. |
| 3643 | * The shared "n_unknown" field is initialized to the number |
| 3644 | * of final unknown integer divisions in "dom". |
| 3645 | */ |
| 3646 | static struct isl_context *isl_context_alloc(__isl_keep isl_basic_set *dom) |
| 3647 | { |
| 3648 | struct isl_context *context; |
| 3649 | int first; |
| 3650 | isl_size n_div; |
| 3651 | |
| 3652 | if (!dom) |
| 3653 | return NULL; |
| 3654 | |
| 3655 | if (dom->ctx->opt->context == ISL_CONTEXT_LEXMIN) |
| 3656 | context = isl_context_lex_alloc(dom); |
| 3657 | else |
| 3658 | context = isl_context_gbr_alloc(dom); |
| 3659 | |
| 3660 | if (!context) |
| 3661 | return NULL; |
| 3662 | |
| 3663 | first = isl_basic_set_first_unknown_div(bset: dom); |
| 3664 | n_div = isl_basic_set_dim(bset: dom, type: isl_dim_div); |
| 3665 | if (first < 0 || n_div < 0) |
| 3666 | return context->op->free(context); |
| 3667 | context->n_unknown = n_div - first; |
| 3668 | |
| 3669 | return context; |
| 3670 | } |
| 3671 | |
| 3672 | /* Initialize some common fields of "sol", which keeps track |
| 3673 | * of the solution of an optimization problem on "bmap" over |
| 3674 | * the domain "dom". |
| 3675 | * If "max" is set, then a maximization problem is being solved, rather than |
| 3676 | * a minimization problem, which means that the variables in the |
| 3677 | * tableau have value "M - x" rather than "M + x". |
| 3678 | */ |
| 3679 | static isl_stat sol_init(struct isl_sol *sol, __isl_keep isl_basic_map *bmap, |
| 3680 | __isl_keep isl_basic_set *dom, int max) |
| 3681 | { |
| 3682 | sol->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL); |
| 3683 | sol->dec_level.callback.run = &sol_dec_level_wrap; |
| 3684 | sol->dec_level.sol = sol; |
| 3685 | sol->max = max; |
| 3686 | sol->n_out = isl_basic_map_dim(bmap, type: isl_dim_out); |
| 3687 | sol->space = isl_basic_map_get_space(bmap); |
| 3688 | |
| 3689 | sol->context = isl_context_alloc(dom); |
| 3690 | if (sol->n_out < 0 || !sol->space || !sol->context) |
| 3691 | return isl_stat_error; |
| 3692 | |
| 3693 | return isl_stat_ok; |
| 3694 | } |
| 3695 | |
| 3696 | /* Construct an isl_sol_map structure for accumulating the solution. |
| 3697 | * If track_empty is set, then we also keep track of the parts |
| 3698 | * of the context where there is no solution. |
| 3699 | * If max is set, then we are solving a maximization, rather than |
| 3700 | * a minimization problem, which means that the variables in the |
| 3701 | * tableau have value "M - x" rather than "M + x". |
| 3702 | */ |
| 3703 | static struct isl_sol *sol_map_init(__isl_keep isl_basic_map *bmap, |
| 3704 | __isl_take isl_basic_set *dom, int track_empty, int max) |
| 3705 | { |
| 3706 | struct isl_sol_map *sol_map = NULL; |
| 3707 | isl_space *space; |
| 3708 | |
| 3709 | if (!bmap) |
| 3710 | goto error; |
| 3711 | |
| 3712 | sol_map = isl_calloc_type(bmap->ctx, struct isl_sol_map); |
| 3713 | if (!sol_map) |
| 3714 | goto error; |
| 3715 | |
| 3716 | sol_map->sol.free = &sol_map_free; |
| 3717 | if (sol_init(sol: &sol_map->sol, bmap, dom, max) < 0) |
| 3718 | goto error; |
| 3719 | sol_map->sol.add = &sol_map_add_wrap; |
| 3720 | sol_map->sol.add_empty = track_empty ? &sol_map_add_empty_wrap : NULL; |
| 3721 | space = isl_space_copy(space: sol_map->sol.space); |
| 3722 | sol_map->map = isl_map_alloc_space(space, n: 1, ISL_MAP_DISJOINT); |
| 3723 | if (!sol_map->map) |
| 3724 | goto error; |
| 3725 | |
| 3726 | if (track_empty) { |
| 3727 | sol_map->empty = isl_set_alloc_space(space: isl_basic_set_get_space(bset: dom), |
| 3728 | n: 1, ISL_SET_DISJOINT); |
| 3729 | if (!sol_map->empty) |
| 3730 | goto error; |
| 3731 | } |
| 3732 | |
| 3733 | isl_basic_set_free(bset: dom); |
| 3734 | return &sol_map->sol; |
| 3735 | error: |
| 3736 | isl_basic_set_free(bset: dom); |
| 3737 | sol_free(sol: &sol_map->sol); |
| 3738 | return NULL; |
| 3739 | } |
| 3740 | |
| 3741 | /* Check whether all coefficients of (non-parameter) variables |
| 3742 | * are non-positive, meaning that no pivots can be performed on the row. |
| 3743 | */ |
| 3744 | static int is_critical(struct isl_tab *tab, int row) |
| 3745 | { |
| 3746 | int j; |
| 3747 | unsigned off = 2 + tab->M; |
| 3748 | |
| 3749 | for (j = tab->n_dead; j < tab->n_col; ++j) { |
| 3750 | if (col_is_parameter_var(tab, col: j)) |
| 3751 | continue; |
| 3752 | |
| 3753 | if (isl_int_is_pos(tab->mat->row[row][off + j])) |
| 3754 | return 0; |
| 3755 | } |
| 3756 | |
| 3757 | return 1; |
| 3758 | } |
| 3759 | |
| 3760 | /* Check whether the inequality represented by vec is strict over the integers, |
| 3761 | * i.e., there are no integer values satisfying the constraint with |
| 3762 | * equality. This happens if the gcd of the coefficients is not a divisor |
| 3763 | * of the constant term. If so, scale the constraint down by the gcd |
| 3764 | * of the coefficients. |
| 3765 | */ |
| 3766 | static int is_strict(struct isl_vec *vec) |
| 3767 | { |
| 3768 | isl_int gcd; |
| 3769 | int strict = 0; |
| 3770 | |
| 3771 | isl_int_init(gcd); |
| 3772 | isl_seq_gcd(p: vec->el + 1, len: vec->size - 1, gcd: &gcd); |
| 3773 | if (!isl_int_is_one(gcd)) { |
| 3774 | strict = !isl_int_is_divisible_by(vec->el[0], gcd); |
| 3775 | isl_int_fdiv_q(vec->el[0], vec->el[0], gcd); |
| 3776 | isl_seq_scale_down(dst: vec->el + 1, src: vec->el + 1, f: gcd, len: vec->size-1); |
| 3777 | } |
| 3778 | isl_int_clear(gcd); |
| 3779 | |
| 3780 | return strict; |
| 3781 | } |
| 3782 | |
| 3783 | /* Determine the sign of the given row of the main tableau. |
| 3784 | * The result is one of |
| 3785 | * isl_tab_row_pos: always non-negative; no pivot needed |
| 3786 | * isl_tab_row_neg: always non-positive; pivot |
| 3787 | * isl_tab_row_any: can be both positive and negative; split |
| 3788 | * |
| 3789 | * We first handle some simple cases |
| 3790 | * - the row sign may be known already |
| 3791 | * - the row may be obviously non-negative |
| 3792 | * - the parametric constant may be equal to that of another row |
| 3793 | * for which we know the sign. This sign will be either "pos" or |
| 3794 | * "any". If it had been "neg" then we would have pivoted before. |
| 3795 | * |
| 3796 | * If none of these cases hold, we check the value of the row for each |
| 3797 | * of the currently active samples. Based on the signs of these values |
| 3798 | * we make an initial determination of the sign of the row. |
| 3799 | * |
| 3800 | * all zero -> unk(nown) |
| 3801 | * all non-negative -> pos |
| 3802 | * all non-positive -> neg |
| 3803 | * both negative and positive -> all |
| 3804 | * |
| 3805 | * If we end up with "all", we are done. |
| 3806 | * Otherwise, we perform a check for positive and/or negative |
| 3807 | * values as follows. |
| 3808 | * |
| 3809 | * samples neg unk pos |
| 3810 | * <0 ? Y N Y N |
| 3811 | * pos any pos |
| 3812 | * >0 ? Y N Y N |
| 3813 | * any neg any neg |
| 3814 | * |
| 3815 | * There is no special sign for "zero", because we can usually treat zero |
| 3816 | * as either non-negative or non-positive, whatever works out best. |
| 3817 | * However, if the row is "critical", meaning that pivoting is impossible |
| 3818 | * then we don't want to limp zero with the non-positive case, because |
| 3819 | * then we we would lose the solution for those values of the parameters |
| 3820 | * where the value of the row is zero. Instead, we treat 0 as non-negative |
| 3821 | * ensuring a split if the row can attain both zero and negative values. |
| 3822 | * The same happens when the original constraint was one that could not |
| 3823 | * be satisfied with equality by any integer values of the parameters. |
| 3824 | * In this case, we normalize the constraint, but then a value of zero |
| 3825 | * for the normalized constraint is actually a positive value for the |
| 3826 | * original constraint, so again we need to treat zero as non-negative. |
| 3827 | * In both these cases, we have the following decision tree instead: |
| 3828 | * |
| 3829 | * all non-negative -> pos |
| 3830 | * all negative -> neg |
| 3831 | * both negative and non-negative -> all |
| 3832 | * |
| 3833 | * samples neg pos |
| 3834 | * <0 ? Y N |
| 3835 | * any pos |
| 3836 | * >=0 ? Y N |
| 3837 | * any neg |
| 3838 | */ |
| 3839 | static enum isl_tab_row_sign row_sign(struct isl_tab *tab, |
| 3840 | struct isl_sol *sol, int row) |
| 3841 | { |
| 3842 | struct isl_vec *ineq = NULL; |
| 3843 | enum isl_tab_row_sign res = isl_tab_row_unknown; |
| 3844 | int critical; |
| 3845 | int strict; |
| 3846 | int row2; |
| 3847 | |
| 3848 | if (tab->row_sign[row] != isl_tab_row_unknown) |
| 3849 | return tab->row_sign[row]; |
| 3850 | if (is_obviously_nonneg(tab, row)) |
| 3851 | return isl_tab_row_pos; |
| 3852 | for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) { |
| 3853 | if (tab->row_sign[row2] == isl_tab_row_unknown) |
| 3854 | continue; |
| 3855 | if (identical_parameter_line(tab, row1: row, row2)) |
| 3856 | return tab->row_sign[row2]; |
| 3857 | } |
| 3858 | |
| 3859 | critical = is_critical(tab, row); |
| 3860 | |
| 3861 | ineq = get_row_parameter_ineq(tab, row); |
| 3862 | if (!ineq) |
| 3863 | goto error; |
| 3864 | |
| 3865 | strict = is_strict(vec: ineq); |
| 3866 | |
| 3867 | res = sol->context->op->ineq_sign(sol->context, ineq->el, |
| 3868 | critical || strict); |
| 3869 | |
| 3870 | if (res == isl_tab_row_unknown || res == isl_tab_row_pos) { |
| 3871 | /* test for negative values */ |
| 3872 | int feasible; |
| 3873 | isl_seq_neg(dst: ineq->el, src: ineq->el, len: ineq->size); |
| 3874 | isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); |
| 3875 | |
| 3876 | feasible = sol->context->op->test_ineq(sol->context, ineq->el); |
| 3877 | if (feasible < 0) |
| 3878 | goto error; |
| 3879 | if (!feasible) |
| 3880 | res = isl_tab_row_pos; |
| 3881 | else |
| 3882 | res = (res == isl_tab_row_unknown) ? isl_tab_row_neg |
| 3883 | : isl_tab_row_any; |
| 3884 | if (res == isl_tab_row_neg) { |
| 3885 | isl_seq_neg(dst: ineq->el, src: ineq->el, len: ineq->size); |
| 3886 | isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); |
| 3887 | } |
| 3888 | } |
| 3889 | |
| 3890 | if (res == isl_tab_row_neg) { |
| 3891 | /* test for positive values */ |
| 3892 | int feasible; |
| 3893 | if (!critical && !strict) |
| 3894 | isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); |
| 3895 | |
| 3896 | feasible = sol->context->op->test_ineq(sol->context, ineq->el); |
| 3897 | if (feasible < 0) |
| 3898 | goto error; |
| 3899 | if (feasible) |
| 3900 | res = isl_tab_row_any; |
| 3901 | } |
| 3902 | |
| 3903 | isl_vec_free(vec: ineq); |
| 3904 | return res; |
| 3905 | error: |
| 3906 | isl_vec_free(vec: ineq); |
| 3907 | return isl_tab_row_unknown; |
| 3908 | } |
| 3909 | |
| 3910 | static void find_solutions(struct isl_sol *sol, struct isl_tab *tab); |
| 3911 | |
| 3912 | /* Find solutions for values of the parameters that satisfy the given |
| 3913 | * inequality. |
| 3914 | * |
| 3915 | * We currently take a snapshot of the context tableau that is reset |
| 3916 | * when we return from this function, while we make a copy of the main |
| 3917 | * tableau, leaving the original main tableau untouched. |
| 3918 | * These are fairly arbitrary choices. Making a copy also of the context |
| 3919 | * tableau would obviate the need to undo any changes made to it later, |
| 3920 | * while taking a snapshot of the main tableau could reduce memory usage. |
| 3921 | * If we were to switch to taking a snapshot of the main tableau, |
| 3922 | * we would have to keep in mind that we need to save the row signs |
| 3923 | * and that we need to do this before saving the current basis |
| 3924 | * such that the basis has been restore before we restore the row signs. |
| 3925 | */ |
| 3926 | static void find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq) |
| 3927 | { |
| 3928 | void *saved; |
| 3929 | |
| 3930 | if (!sol->context) |
| 3931 | goto error; |
| 3932 | saved = sol->context->op->save(sol->context); |
| 3933 | |
| 3934 | tab = isl_tab_dup(tab); |
| 3935 | if (!tab) |
| 3936 | goto error; |
| 3937 | |
| 3938 | sol->context->op->add_ineq(sol->context, ineq, 0, 1); |
| 3939 | |
| 3940 | find_solutions(sol, tab); |
| 3941 | |
| 3942 | if (!sol->error) |
| 3943 | sol->context->op->restore(sol->context, saved); |
| 3944 | else |
| 3945 | sol->context->op->discard(saved); |
| 3946 | return; |
| 3947 | error: |
| 3948 | sol->error = 1; |
| 3949 | } |
| 3950 | |
| 3951 | /* Record the absence of solutions for those values of the parameters |
| 3952 | * that do not satisfy the given inequality with equality. |
| 3953 | */ |
| 3954 | static void no_sol_in_strict(struct isl_sol *sol, |
| 3955 | struct isl_tab *tab, struct isl_vec *ineq) |
| 3956 | { |
| 3957 | int empty; |
| 3958 | void *saved; |
| 3959 | |
| 3960 | if (!sol->context || sol->error) |
| 3961 | goto error; |
| 3962 | saved = sol->context->op->save(sol->context); |
| 3963 | |
| 3964 | isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); |
| 3965 | |
| 3966 | sol->context->op->add_ineq(sol->context, ineq->el, 1, 0); |
| 3967 | if (!sol->context) |
| 3968 | goto error; |
| 3969 | |
| 3970 | empty = tab->empty; |
| 3971 | tab->empty = 1; |
| 3972 | sol_add(sol, tab); |
| 3973 | tab->empty = empty; |
| 3974 | |
| 3975 | isl_int_add_ui(ineq->el[0], ineq->el[0], 1); |
| 3976 | |
| 3977 | sol->context->op->restore(sol->context, saved); |
| 3978 | return; |
| 3979 | error: |
| 3980 | sol->error = 1; |
| 3981 | } |
| 3982 | |
| 3983 | /* Reset all row variables that are marked to have a sign that may |
| 3984 | * be both positive and negative to have an unknown sign. |
| 3985 | */ |
| 3986 | static void reset_any_to_unknown(struct isl_tab *tab) |
| 3987 | { |
| 3988 | int row; |
| 3989 | |
| 3990 | for (row = tab->n_redundant; row < tab->n_row; ++row) { |
| 3991 | if (!isl_tab_var_from_row(tab, i: row)->is_nonneg) |
| 3992 | continue; |
| 3993 | if (tab->row_sign[row] == isl_tab_row_any) |
| 3994 | tab->row_sign[row] = isl_tab_row_unknown; |
| 3995 | } |
| 3996 | } |
| 3997 | |
| 3998 | /* Compute the lexicographic minimum of the set represented by the main |
| 3999 | * tableau "tab" within the context "sol->context_tab". |
| 4000 | * On entry the sample value of the main tableau is lexicographically |
| 4001 | * less than or equal to this lexicographic minimum. |
| 4002 | * Pivots are performed until a feasible point is found, which is then |
| 4003 | * necessarily equal to the minimum, or until the tableau is found to |
| 4004 | * be infeasible. Some pivots may need to be performed for only some |
| 4005 | * feasible values of the context tableau. If so, the context tableau |
| 4006 | * is split into a part where the pivot is needed and a part where it is not. |
| 4007 | * |
| 4008 | * Whenever we enter the main loop, the main tableau is such that no |
| 4009 | * "obvious" pivots need to be performed on it, where "obvious" means |
| 4010 | * that the given row can be seen to be negative without looking at |
| 4011 | * the context tableau. In particular, for non-parametric problems, |
| 4012 | * no pivots need to be performed on the main tableau. |
| 4013 | * The caller of find_solutions is responsible for making this property |
| 4014 | * hold prior to the first iteration of the loop, while restore_lexmin |
| 4015 | * is called before every other iteration. |
| 4016 | * |
| 4017 | * Inside the main loop, we first examine the signs of the rows of |
| 4018 | * the main tableau within the context of the context tableau. |
| 4019 | * If we find a row that is always non-positive for all values of |
| 4020 | * the parameters satisfying the context tableau and negative for at |
| 4021 | * least one value of the parameters, we perform the appropriate pivot |
| 4022 | * and start over. An exception is the case where no pivot can be |
| 4023 | * performed on the row. In this case, we require that the sign of |
| 4024 | * the row is negative for all values of the parameters (rather than just |
| 4025 | * non-positive). This special case is handled inside row_sign, which |
| 4026 | * will say that the row can have any sign if it determines that it can |
| 4027 | * attain both negative and zero values. |
| 4028 | * |
| 4029 | * If we can't find a row that always requires a pivot, but we can find |
| 4030 | * one or more rows that require a pivot for some values of the parameters |
| 4031 | * (i.e., the row can attain both positive and negative signs), then we split |
| 4032 | * the context tableau into two parts, one where we force the sign to be |
| 4033 | * non-negative and one where we force is to be negative. |
| 4034 | * The non-negative part is handled by a recursive call (through find_in_pos). |
| 4035 | * Upon returning from this call, we continue with the negative part and |
| 4036 | * perform the required pivot. |
| 4037 | * |
| 4038 | * If no such rows can be found, all rows are non-negative and we have |
| 4039 | * found a (rational) feasible point. If we only wanted a rational point |
| 4040 | * then we are done. |
| 4041 | * Otherwise, we check if all values of the sample point of the tableau |
| 4042 | * are integral for the variables. If so, we have found the minimal |
| 4043 | * integral point and we are done. |
| 4044 | * If the sample point is not integral, then we need to make a distinction |
| 4045 | * based on whether the constant term is non-integral or the coefficients |
| 4046 | * of the parameters. Furthermore, in order to decide how to handle |
| 4047 | * the non-integrality, we also need to know whether the coefficients |
| 4048 | * of the other columns in the tableau are integral. This leads |
| 4049 | * to the following table. The first two rows do not correspond |
| 4050 | * to a non-integral sample point and are only mentioned for completeness. |
| 4051 | * |
| 4052 | * constant parameters other |
| 4053 | * |
| 4054 | * int int int | |
| 4055 | * int int rat | -> no problem |
| 4056 | * |
| 4057 | * rat int int -> fail |
| 4058 | * |
| 4059 | * rat int rat -> cut |
| 4060 | * |
| 4061 | * int rat rat | |
| 4062 | * rat rat rat | -> parametric cut |
| 4063 | * |
| 4064 | * int rat int | |
| 4065 | * rat rat int | -> split context |
| 4066 | * |
| 4067 | * If the parametric constant is completely integral, then there is nothing |
| 4068 | * to be done. If the constant term is non-integral, but all the other |
| 4069 | * coefficient are integral, then there is nothing that can be done |
| 4070 | * and the tableau has no integral solution. |
| 4071 | * If, on the other hand, one or more of the other columns have rational |
| 4072 | * coefficients, but the parameter coefficients are all integral, then |
| 4073 | * we can perform a regular (non-parametric) cut. |
| 4074 | * Finally, if there is any parameter coefficient that is non-integral, |
| 4075 | * then we need to involve the context tableau. There are two cases here. |
| 4076 | * If at least one other column has a rational coefficient, then we |
| 4077 | * can perform a parametric cut in the main tableau by adding a new |
| 4078 | * integer division in the context tableau. |
| 4079 | * If all other columns have integral coefficients, then we need to |
| 4080 | * enforce that the rational combination of parameters (c + \sum a_i y_i)/m |
| 4081 | * is always integral. We do this by introducing an integer division |
| 4082 | * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should |
| 4083 | * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i. |
| 4084 | * Since q is expressed in the tableau as |
| 4085 | * c + \sum a_i y_i - m q >= 0 |
| 4086 | * -c - \sum a_i y_i + m q + m - 1 >= 0 |
| 4087 | * it is sufficient to add the inequality |
| 4088 | * -c - \sum a_i y_i + m q >= 0 |
| 4089 | * In the part of the context where this inequality does not hold, the |
| 4090 | * main tableau is marked as being empty. |
| 4091 | */ |
| 4092 | static void find_solutions(struct isl_sol *sol, struct isl_tab *tab) |
| 4093 | { |
| 4094 | struct isl_context *context; |
| 4095 | int r; |
| 4096 | |
| 4097 | if (!tab || sol->error) |
| 4098 | goto error; |
| 4099 | |
| 4100 | context = sol->context; |
| 4101 | |
| 4102 | if (tab->empty) |
| 4103 | goto done; |
| 4104 | if (context->op->is_empty(context)) |
| 4105 | goto done; |
| 4106 | |
| 4107 | for (r = 0; r >= 0 && tab && !tab->empty; r = restore_lexmin(tab)) { |
| 4108 | int flags; |
| 4109 | int row; |
| 4110 | enum isl_tab_row_sign sgn; |
| 4111 | int split = -1; |
| 4112 | int n_split = 0; |
| 4113 | |
| 4114 | for (row = tab->n_redundant; row < tab->n_row; ++row) { |
| 4115 | if (!isl_tab_var_from_row(tab, i: row)->is_nonneg) |
| 4116 | continue; |
| 4117 | sgn = row_sign(tab, sol, row); |
| 4118 | if (!sgn) |
| 4119 | goto error; |
| 4120 | tab->row_sign[row] = sgn; |
| 4121 | if (sgn == isl_tab_row_any) |
| 4122 | n_split++; |
| 4123 | if (sgn == isl_tab_row_any && split == -1) |
| 4124 | split = row; |
| 4125 | if (sgn == isl_tab_row_neg) |
| 4126 | break; |
| 4127 | } |
| 4128 | if (row < tab->n_row) |
| 4129 | continue; |
| 4130 | if (split != -1) { |
| 4131 | struct isl_vec *ineq; |
| 4132 | if (n_split != 1) |
| 4133 | split = context->op->best_split(context, tab); |
| 4134 | if (split < 0) |
| 4135 | goto error; |
| 4136 | ineq = get_row_parameter_ineq(tab, row: split); |
| 4137 | if (!ineq) |
| 4138 | goto error; |
| 4139 | is_strict(vec: ineq); |
| 4140 | reset_any_to_unknown(tab); |
| 4141 | tab->row_sign[split] = isl_tab_row_pos; |
| 4142 | sol_inc_level(sol); |
| 4143 | find_in_pos(sol, tab, ineq: ineq->el); |
| 4144 | tab->row_sign[split] = isl_tab_row_neg; |
| 4145 | isl_seq_neg(dst: ineq->el, src: ineq->el, len: ineq->size); |
| 4146 | isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); |
| 4147 | if (!sol->error) |
| 4148 | context->op->add_ineq(context, ineq->el, 0, 1); |
| 4149 | isl_vec_free(vec: ineq); |
| 4150 | if (sol->error) |
| 4151 | goto error; |
| 4152 | continue; |
| 4153 | } |
| 4154 | if (tab->rational) |
| 4155 | break; |
| 4156 | row = first_non_integer_row(tab, f: &flags); |
| 4157 | if (row < 0) |
| 4158 | break; |
| 4159 | if (ISL_FL_ISSET(flags, I_PAR)) { |
| 4160 | if (ISL_FL_ISSET(flags, I_VAR)) { |
| 4161 | if (isl_tab_mark_empty(tab) < 0) |
| 4162 | goto error; |
| 4163 | break; |
| 4164 | } |
| 4165 | row = add_cut(tab, row); |
| 4166 | } else if (ISL_FL_ISSET(flags, I_VAR)) { |
| 4167 | struct isl_vec *div; |
| 4168 | struct isl_vec *ineq; |
| 4169 | int d; |
| 4170 | div = get_row_split_div(tab, row); |
| 4171 | if (!div) |
| 4172 | goto error; |
| 4173 | d = context->op->get_div(context, tab, div); |
| 4174 | isl_vec_free(vec: div); |
| 4175 | if (d < 0) |
| 4176 | goto error; |
| 4177 | ineq = ineq_for_div(bset: context->op->peek_basic_set(context), div: d); |
| 4178 | if (!ineq) |
| 4179 | goto error; |
| 4180 | sol_inc_level(sol); |
| 4181 | no_sol_in_strict(sol, tab, ineq); |
| 4182 | isl_seq_neg(dst: ineq->el, src: ineq->el, len: ineq->size); |
| 4183 | context->op->add_ineq(context, ineq->el, 1, 1); |
| 4184 | isl_vec_free(vec: ineq); |
| 4185 | if (sol->error || !context->op->is_ok(context)) |
| 4186 | goto error; |
| 4187 | tab = set_row_cst_to_div(tab, row, div: d); |
| 4188 | if (context->op->is_empty(context)) |
| 4189 | break; |
| 4190 | } else |
| 4191 | row = add_parametric_cut(tab, row, context); |
| 4192 | if (row < 0) |
| 4193 | goto error; |
| 4194 | } |
| 4195 | if (r < 0) |
| 4196 | goto error; |
| 4197 | done: |
| 4198 | sol_add(sol, tab); |
| 4199 | isl_tab_free(tab); |
| 4200 | return; |
| 4201 | error: |
| 4202 | isl_tab_free(tab); |
| 4203 | sol->error = 1; |
| 4204 | } |
| 4205 | |
| 4206 | /* Does "sol" contain a pair of partial solutions that could potentially |
| 4207 | * be merged? |
| 4208 | * |
| 4209 | * We currently only check that "sol" is not in an error state |
| 4210 | * and that there are at least two partial solutions of which the final two |
| 4211 | * are defined at the same level. |
| 4212 | */ |
| 4213 | static int sol_has_mergeable_solutions(struct isl_sol *sol) |
| 4214 | { |
| 4215 | if (sol->error) |
| 4216 | return 0; |
| 4217 | if (!sol->partial) |
| 4218 | return 0; |
| 4219 | if (!sol->partial->next) |
| 4220 | return 0; |
| 4221 | return sol->partial->level == sol->partial->next->level; |
| 4222 | } |
| 4223 | |
| 4224 | /* Compute the lexicographic minimum of the set represented by the main |
| 4225 | * tableau "tab" within the context "sol->context_tab". |
| 4226 | * |
| 4227 | * As a preprocessing step, we first transfer all the purely parametric |
| 4228 | * equalities from the main tableau to the context tableau, i.e., |
| 4229 | * parameters that have been pivoted to a row. |
| 4230 | * These equalities are ignored by the main algorithm, because the |
| 4231 | * corresponding rows may not be marked as being non-negative. |
| 4232 | * In parts of the context where the added equality does not hold, |
| 4233 | * the main tableau is marked as being empty. |
| 4234 | * |
| 4235 | * Before we embark on the actual computation, we save a copy |
| 4236 | * of the context. When we return, we check if there are any |
| 4237 | * partial solutions that can potentially be merged. If so, |
| 4238 | * we perform a rollback to the initial state of the context. |
| 4239 | * The merging of partial solutions happens inside calls to |
| 4240 | * sol_dec_level that are pushed onto the undo stack of the context. |
| 4241 | * If there are no partial solutions that can potentially be merged |
| 4242 | * then the rollback is skipped as it would just be wasted effort. |
| 4243 | */ |
| 4244 | static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab) |
| 4245 | { |
| 4246 | int row; |
| 4247 | void *saved; |
| 4248 | |
| 4249 | if (!tab) |
| 4250 | goto error; |
| 4251 | |
| 4252 | sol->level = 0; |
| 4253 | |
| 4254 | for (row = tab->n_redundant; row < tab->n_row; ++row) { |
| 4255 | int p; |
| 4256 | struct isl_vec *eq; |
| 4257 | |
| 4258 | if (!row_is_parameter_var(tab, row)) |
| 4259 | continue; |
| 4260 | if (tab->row_var[row] < tab->n_param) |
| 4261 | p = tab->row_var[row]; |
| 4262 | else |
| 4263 | p = tab->row_var[row] |
| 4264 | + tab->n_param - (tab->n_var - tab->n_div); |
| 4265 | |
| 4266 | eq = isl_vec_alloc(ctx: tab->mat->ctx, size: 1+tab->n_param+tab->n_div); |
| 4267 | if (!eq) |
| 4268 | goto error; |
| 4269 | get_row_parameter_line(tab, row, line: eq->el); |
| 4270 | isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]); |
| 4271 | eq = isl_vec_normalize(vec: eq); |
| 4272 | |
| 4273 | sol_inc_level(sol); |
| 4274 | no_sol_in_strict(sol, tab, ineq: eq); |
| 4275 | |
| 4276 | isl_seq_neg(dst: eq->el, src: eq->el, len: eq->size); |
| 4277 | sol_inc_level(sol); |
| 4278 | no_sol_in_strict(sol, tab, ineq: eq); |
| 4279 | isl_seq_neg(dst: eq->el, src: eq->el, len: eq->size); |
| 4280 | |
| 4281 | sol->context->op->add_eq(sol->context, eq->el, 1, 1); |
| 4282 | |
| 4283 | isl_vec_free(vec: eq); |
| 4284 | |
| 4285 | if (isl_tab_mark_redundant(tab, row) < 0) |
| 4286 | goto error; |
| 4287 | |
| 4288 | if (sol->context->op->is_empty(sol->context)) |
| 4289 | break; |
| 4290 | |
| 4291 | row = tab->n_redundant - 1; |
| 4292 | } |
| 4293 | |
| 4294 | saved = sol->context->op->save(sol->context); |
| 4295 | |
| 4296 | find_solutions(sol, tab); |
| 4297 | |
| 4298 | if (sol_has_mergeable_solutions(sol)) |
| 4299 | sol->context->op->restore(sol->context, saved); |
| 4300 | else |
| 4301 | sol->context->op->discard(saved); |
| 4302 | |
| 4303 | sol->level = 0; |
| 4304 | sol_pop(sol); |
| 4305 | |
| 4306 | return; |
| 4307 | error: |
| 4308 | isl_tab_free(tab); |
| 4309 | sol->error = 1; |
| 4310 | } |
| 4311 | |
| 4312 | /* Check if integer division "div" of "dom" also occurs in "bmap". |
| 4313 | * If so, return its position within the divs. |
| 4314 | * Otherwise, return a position beyond the integer divisions. |
| 4315 | */ |
| 4316 | static int find_context_div(__isl_keep isl_basic_map *bmap, |
| 4317 | __isl_keep isl_basic_set *dom, unsigned div) |
| 4318 | { |
| 4319 | int i; |
| 4320 | isl_size b_v_div, d_v_div; |
| 4321 | isl_size n_div; |
| 4322 | |
| 4323 | b_v_div = isl_basic_map_var_offset(bmap, type: isl_dim_div); |
| 4324 | d_v_div = isl_basic_set_var_offset(bset: dom, type: isl_dim_div); |
| 4325 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
| 4326 | if (b_v_div < 0 || d_v_div < 0 || n_div < 0) |
| 4327 | return -1; |
| 4328 | |
| 4329 | if (isl_int_is_zero(dom->div[div][0])) |
| 4330 | return n_div; |
| 4331 | if (isl_seq_first_non_zero(p: dom->div[div] + 2 + d_v_div, |
| 4332 | len: dom->n_div) != -1) |
| 4333 | return n_div; |
| 4334 | |
| 4335 | for (i = 0; i < n_div; ++i) { |
| 4336 | if (isl_int_is_zero(bmap->div[i][0])) |
| 4337 | continue; |
| 4338 | if (isl_seq_first_non_zero(p: bmap->div[i] + 2 + d_v_div, |
| 4339 | len: (b_v_div - d_v_div) + n_div) != -1) |
| 4340 | continue; |
| 4341 | if (isl_seq_eq(p1: bmap->div[i], p2: dom->div[div], len: 2 + d_v_div)) |
| 4342 | return i; |
| 4343 | } |
| 4344 | return n_div; |
| 4345 | } |
| 4346 | |
| 4347 | /* The correspondence between the variables in the main tableau, |
| 4348 | * the context tableau, and the input map and domain is as follows. |
| 4349 | * The first n_param and the last n_div variables of the main tableau |
| 4350 | * form the variables of the context tableau. |
| 4351 | * In the basic map, these n_param variables correspond to the |
| 4352 | * parameters and the input dimensions. In the domain, they correspond |
| 4353 | * to the parameters and the set dimensions. |
| 4354 | * The n_div variables correspond to the integer divisions in the domain. |
| 4355 | * To ensure that everything lines up, we may need to copy some of the |
| 4356 | * integer divisions of the domain to the map. These have to be placed |
| 4357 | * in the same order as those in the context and they have to be placed |
| 4358 | * after any other integer divisions that the map may have. |
| 4359 | * This function performs the required reordering. |
| 4360 | */ |
| 4361 | static __isl_give isl_basic_map *align_context_divs( |
| 4362 | __isl_take isl_basic_map *bmap, __isl_keep isl_basic_set *dom) |
| 4363 | { |
| 4364 | int i; |
| 4365 | int common = 0; |
| 4366 | int other; |
| 4367 | unsigned bmap_n_div; |
| 4368 | |
| 4369 | bmap_n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
| 4370 | |
| 4371 | for (i = 0; i < dom->n_div; ++i) { |
| 4372 | int pos; |
| 4373 | |
| 4374 | pos = find_context_div(bmap, dom, div: i); |
| 4375 | if (pos < 0) |
| 4376 | return isl_basic_map_free(bmap); |
| 4377 | if (pos < bmap_n_div) |
| 4378 | common++; |
| 4379 | } |
| 4380 | other = bmap_n_div - common; |
| 4381 | if (dom->n_div - common > 0) { |
| 4382 | bmap = isl_basic_map_cow(bmap); |
| 4383 | bmap = isl_basic_map_extend(base: bmap, extra: dom->n_div - common, n_eq: 0, n_ineq: 0); |
| 4384 | if (!bmap) |
| 4385 | return NULL; |
| 4386 | } |
| 4387 | for (i = 0; i < dom->n_div; ++i) { |
| 4388 | int pos = find_context_div(bmap, dom, div: i); |
| 4389 | if (pos < 0) |
| 4390 | bmap = isl_basic_map_free(bmap); |
| 4391 | if (pos >= bmap_n_div) { |
| 4392 | pos = isl_basic_map_alloc_div(bmap); |
| 4393 | if (pos < 0) |
| 4394 | goto error; |
| 4395 | isl_int_set_si(bmap->div[pos][0], 0); |
| 4396 | bmap_n_div++; |
| 4397 | } |
| 4398 | if (pos != other + i) |
| 4399 | bmap = isl_basic_map_swap_div(bmap, a: pos, b: other + i); |
| 4400 | } |
| 4401 | return bmap; |
| 4402 | error: |
| 4403 | isl_basic_map_free(bmap); |
| 4404 | return NULL; |
| 4405 | } |
| 4406 | |
| 4407 | /* Base case of isl_tab_basic_map_partial_lexopt, after removing |
| 4408 | * some obvious symmetries. |
| 4409 | * |
| 4410 | * We make sure the divs in the domain are properly ordered, |
| 4411 | * because they will be added one by one in the given order |
| 4412 | * during the construction of the solution map. |
| 4413 | * Furthermore, make sure that the known integer divisions |
| 4414 | * appear before any unknown integer division because the solution |
| 4415 | * may depend on the known integer divisions, while anything that |
| 4416 | * depends on any variable starting from the first unknown integer |
| 4417 | * division is ignored in sol_pma_add. |
| 4418 | */ |
| 4419 | static struct isl_sol *basic_map_partial_lexopt_base_sol( |
| 4420 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, |
| 4421 | __isl_give isl_set **empty, int max, |
| 4422 | struct isl_sol *(*init)(__isl_keep isl_basic_map *bmap, |
| 4423 | __isl_take isl_basic_set *dom, int track_empty, int max)) |
| 4424 | { |
| 4425 | struct isl_tab *tab; |
| 4426 | struct isl_sol *sol = NULL; |
| 4427 | struct isl_context *context; |
| 4428 | |
| 4429 | if (dom->n_div) { |
| 4430 | dom = isl_basic_set_sort_divs(bset: dom); |
| 4431 | bmap = align_context_divs(bmap, dom); |
| 4432 | } |
| 4433 | sol = init(bmap, dom, !!empty, max); |
| 4434 | if (!sol) |
| 4435 | goto error; |
| 4436 | |
| 4437 | context = sol->context; |
| 4438 | if (isl_basic_set_plain_is_empty(bset: context->op->peek_basic_set(context))) |
| 4439 | /* nothing */; |
| 4440 | else if (isl_basic_map_plain_is_empty(bmap)) { |
| 4441 | if (sol->add_empty) |
| 4442 | sol->add_empty(sol, |
| 4443 | isl_basic_set_copy(bset: context->op->peek_basic_set(context))); |
| 4444 | } else { |
| 4445 | tab = tab_for_lexmin(bmap, |
| 4446 | dom: context->op->peek_basic_set(context), M: 1, max); |
| 4447 | tab = context->op->detect_nonnegative_parameters(context, tab); |
| 4448 | find_solutions_main(sol, tab); |
| 4449 | } |
| 4450 | if (sol->error) |
| 4451 | goto error; |
| 4452 | |
| 4453 | isl_basic_map_free(bmap); |
| 4454 | return sol; |
| 4455 | error: |
| 4456 | sol_free(sol); |
| 4457 | isl_basic_map_free(bmap); |
| 4458 | return NULL; |
| 4459 | } |
| 4460 | |
| 4461 | /* Base case of isl_tab_basic_map_partial_lexopt, after removing |
| 4462 | * some obvious symmetries. |
| 4463 | * |
| 4464 | * We call basic_map_partial_lexopt_base_sol and extract the results. |
| 4465 | */ |
| 4466 | static __isl_give isl_map *basic_map_partial_lexopt_base( |
| 4467 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, |
| 4468 | __isl_give isl_set **empty, int max) |
| 4469 | { |
| 4470 | isl_map *result = NULL; |
| 4471 | struct isl_sol *sol; |
| 4472 | struct isl_sol_map *sol_map; |
| 4473 | |
| 4474 | sol = basic_map_partial_lexopt_base_sol(bmap, dom, empty, max, |
| 4475 | init: &sol_map_init); |
| 4476 | if (!sol) |
| 4477 | return NULL; |
| 4478 | sol_map = (struct isl_sol_map *) sol; |
| 4479 | |
| 4480 | result = isl_map_copy(map: sol_map->map); |
| 4481 | if (empty) |
| 4482 | *empty = isl_set_copy(set: sol_map->empty); |
| 4483 | sol_free(sol: &sol_map->sol); |
| 4484 | return result; |
| 4485 | } |
| 4486 | |
| 4487 | /* Return a count of the number of occurrences of the "n" first |
| 4488 | * variables in the inequality constraints of "bmap". |
| 4489 | */ |
| 4490 | static __isl_give int *count_occurrences(__isl_keep isl_basic_map *bmap, |
| 4491 | int n) |
| 4492 | { |
| 4493 | int i, j; |
| 4494 | isl_ctx *ctx; |
| 4495 | int *occurrences; |
| 4496 | |
| 4497 | if (!bmap) |
| 4498 | return NULL; |
| 4499 | ctx = isl_basic_map_get_ctx(bmap); |
| 4500 | occurrences = isl_calloc_array(ctx, int, n); |
| 4501 | if (!occurrences) |
| 4502 | return NULL; |
| 4503 | |
| 4504 | for (i = 0; i < bmap->n_ineq; ++i) { |
| 4505 | for (j = 0; j < n; ++j) { |
| 4506 | if (!isl_int_is_zero(bmap->ineq[i][1 + j])) |
| 4507 | occurrences[j]++; |
| 4508 | } |
| 4509 | } |
| 4510 | |
| 4511 | return occurrences; |
| 4512 | } |
| 4513 | |
| 4514 | /* Do all of the "n" variables with non-zero coefficients in "c" |
| 4515 | * occur in exactly a single constraint. |
| 4516 | * "occurrences" is an array of length "n" containing the number |
| 4517 | * of occurrences of each of the variables in the inequality constraints. |
| 4518 | */ |
| 4519 | static int single_occurrence(int n, isl_int *c, int *occurrences) |
| 4520 | { |
| 4521 | int i; |
| 4522 | |
| 4523 | for (i = 0; i < n; ++i) { |
| 4524 | if (isl_int_is_zero(c[i])) |
| 4525 | continue; |
| 4526 | if (occurrences[i] != 1) |
| 4527 | return 0; |
| 4528 | } |
| 4529 | |
| 4530 | return 1; |
| 4531 | } |
| 4532 | |
| 4533 | /* Do all of the "n" initial variables that occur in inequality constraint |
| 4534 | * "ineq" of "bmap" only occur in that constraint? |
| 4535 | */ |
| 4536 | static int all_single_occurrence(__isl_keep isl_basic_map *bmap, int ineq, |
| 4537 | int n) |
| 4538 | { |
| 4539 | int i, j; |
| 4540 | |
| 4541 | for (i = 0; i < n; ++i) { |
| 4542 | if (isl_int_is_zero(bmap->ineq[ineq][1 + i])) |
| 4543 | continue; |
| 4544 | for (j = 0; j < bmap->n_ineq; ++j) { |
| 4545 | if (j == ineq) |
| 4546 | continue; |
| 4547 | if (!isl_int_is_zero(bmap->ineq[j][1 + i])) |
| 4548 | return 0; |
| 4549 | } |
| 4550 | } |
| 4551 | |
| 4552 | return 1; |
| 4553 | } |
| 4554 | |
| 4555 | /* Structure used during detection of parallel constraints. |
| 4556 | * n_in: number of "input" variables: isl_dim_param + isl_dim_in |
| 4557 | * n_out: number of "output" variables: isl_dim_out + isl_dim_div |
| 4558 | * val: the coefficients of the output variables |
| 4559 | */ |
| 4560 | struct isl_constraint_equal_info { |
| 4561 | unsigned n_in; |
| 4562 | unsigned n_out; |
| 4563 | isl_int *val; |
| 4564 | }; |
| 4565 | |
| 4566 | /* Check whether the coefficients of the output variables |
| 4567 | * of the constraint in "entry" are equal to info->val. |
| 4568 | */ |
| 4569 | static isl_bool constraint_equal(const void *entry, const void *val) |
| 4570 | { |
| 4571 | isl_int **row = (isl_int **)entry; |
| 4572 | const struct isl_constraint_equal_info *info = val; |
| 4573 | int eq; |
| 4574 | |
| 4575 | eq = isl_seq_eq(p1: (*row) + 1 + info->n_in, p2: info->val, len: info->n_out); |
| 4576 | return isl_bool_ok(b: eq); |
| 4577 | } |
| 4578 | |
| 4579 | /* Check whether "bmap" has a pair of constraints that have |
| 4580 | * the same coefficients for the output variables. |
| 4581 | * Note that the coefficients of the existentially quantified |
| 4582 | * variables need to be zero since the existentially quantified |
| 4583 | * of the result are usually not the same as those of the input. |
| 4584 | * Furthermore, check that each of the input variables that occur |
| 4585 | * in those constraints does not occur in any other constraint. |
| 4586 | * If so, return true and return the row indices of the two constraints |
| 4587 | * in *first and *second. |
| 4588 | */ |
| 4589 | static isl_bool parallel_constraints(__isl_keep isl_basic_map *bmap, |
| 4590 | int *first, int *second) |
| 4591 | { |
| 4592 | int i; |
| 4593 | isl_ctx *ctx; |
| 4594 | int *occurrences = NULL; |
| 4595 | struct isl_hash_table *table = NULL; |
| 4596 | struct isl_hash_table_entry *entry; |
| 4597 | struct isl_constraint_equal_info info; |
| 4598 | isl_size nparam, n_in, n_out, n_div; |
| 4599 | |
| 4600 | ctx = isl_basic_map_get_ctx(bmap); |
| 4601 | table = isl_hash_table_alloc(ctx, min_size: bmap->n_ineq); |
| 4602 | if (!table) |
| 4603 | goto error; |
| 4604 | |
| 4605 | nparam = isl_basic_map_dim(bmap, type: isl_dim_param); |
| 4606 | n_in = isl_basic_map_dim(bmap, type: isl_dim_in); |
| 4607 | n_out = isl_basic_map_dim(bmap, type: isl_dim_out); |
| 4608 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
| 4609 | if (nparam < 0 || n_in < 0 || n_out < 0 || n_div < 0) |
| 4610 | goto error; |
| 4611 | info.n_in = nparam + n_in; |
| 4612 | occurrences = count_occurrences(bmap, n: info.n_in); |
| 4613 | if (info.n_in && !occurrences) |
| 4614 | goto error; |
| 4615 | info.n_out = n_out + n_div; |
| 4616 | for (i = 0; i < bmap->n_ineq; ++i) { |
| 4617 | uint32_t hash; |
| 4618 | |
| 4619 | info.val = bmap->ineq[i] + 1 + info.n_in; |
| 4620 | if (isl_seq_first_non_zero(p: info.val, len: n_out) < 0) |
| 4621 | continue; |
| 4622 | if (isl_seq_first_non_zero(p: info.val + n_out, len: n_div) >= 0) |
| 4623 | continue; |
| 4624 | if (!single_occurrence(n: info.n_in, c: bmap->ineq[i] + 1, |
| 4625 | occurrences)) |
| 4626 | continue; |
| 4627 | hash = isl_seq_get_hash(p: info.val, len: info.n_out); |
| 4628 | entry = isl_hash_table_find(ctx, table, key_hash: hash, |
| 4629 | eq: constraint_equal, val: &info, reserve: 1); |
| 4630 | if (!entry) |
| 4631 | goto error; |
| 4632 | if (entry->data) |
| 4633 | break; |
| 4634 | entry->data = &bmap->ineq[i]; |
| 4635 | } |
| 4636 | |
| 4637 | if (i < bmap->n_ineq) { |
| 4638 | *first = ((isl_int **)entry->data) - bmap->ineq; |
| 4639 | *second = i; |
| 4640 | } |
| 4641 | |
| 4642 | isl_hash_table_free(ctx, table); |
| 4643 | free(ptr: occurrences); |
| 4644 | |
| 4645 | return isl_bool_ok(b: i < bmap->n_ineq); |
| 4646 | error: |
| 4647 | isl_hash_table_free(ctx, table); |
| 4648 | free(ptr: occurrences); |
| 4649 | return isl_bool_error; |
| 4650 | } |
| 4651 | |
| 4652 | /* Given a set of upper bounds in "var", add constraints to "bset" |
| 4653 | * that make the i-th bound smallest. |
| 4654 | * |
| 4655 | * In particular, if there are n bounds b_i, then add the constraints |
| 4656 | * |
| 4657 | * b_i <= b_j for j > i |
| 4658 | * b_i < b_j for j < i |
| 4659 | */ |
| 4660 | static __isl_give isl_basic_set *select_minimum(__isl_take isl_basic_set *bset, |
| 4661 | __isl_keep isl_mat *var, int i) |
| 4662 | { |
| 4663 | isl_ctx *ctx; |
| 4664 | int j, k; |
| 4665 | |
| 4666 | ctx = isl_mat_get_ctx(mat: var); |
| 4667 | |
| 4668 | for (j = 0; j < var->n_row; ++j) { |
| 4669 | if (j == i) |
| 4670 | continue; |
| 4671 | k = isl_basic_set_alloc_inequality(bset); |
| 4672 | if (k < 0) |
| 4673 | goto error; |
| 4674 | isl_seq_combine(dst: bset->ineq[k], m1: ctx->one, src1: var->row[j], |
| 4675 | m2: ctx->negone, src2: var->row[i], len: var->n_col); |
| 4676 | isl_int_set_si(bset->ineq[k][var->n_col], 0); |
| 4677 | if (j < i) |
| 4678 | isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1); |
| 4679 | } |
| 4680 | |
| 4681 | bset = isl_basic_set_finalize(bset); |
| 4682 | |
| 4683 | return bset; |
| 4684 | error: |
| 4685 | isl_basic_set_free(bset); |
| 4686 | return NULL; |
| 4687 | } |
| 4688 | |
| 4689 | /* Given a set of upper bounds on the last "input" variable m, |
| 4690 | * construct a set that assigns the minimal upper bound to m, i.e., |
| 4691 | * construct a set that divides the space into cells where one |
| 4692 | * of the upper bounds is smaller than all the others and assign |
| 4693 | * this upper bound to m. |
| 4694 | * |
| 4695 | * In particular, if there are n bounds b_i, then the result |
| 4696 | * consists of n basic sets, each one of the form |
| 4697 | * |
| 4698 | * m = b_i |
| 4699 | * b_i <= b_j for j > i |
| 4700 | * b_i < b_j for j < i |
| 4701 | */ |
| 4702 | static __isl_give isl_set *set_minimum(__isl_take isl_space *space, |
| 4703 | __isl_take isl_mat *var) |
| 4704 | { |
| 4705 | int i, k; |
| 4706 | isl_basic_set *bset = NULL; |
| 4707 | isl_set *set = NULL; |
| 4708 | |
| 4709 | if (!space || !var) |
| 4710 | goto error; |
| 4711 | |
| 4712 | set = isl_set_alloc_space(space: isl_space_copy(space), |
| 4713 | n: var->n_row, ISL_SET_DISJOINT); |
| 4714 | |
| 4715 | for (i = 0; i < var->n_row; ++i) { |
| 4716 | bset = isl_basic_set_alloc_space(space: isl_space_copy(space), extra: 0, |
| 4717 | n_eq: 1, n_ineq: var->n_row - 1); |
| 4718 | k = isl_basic_set_alloc_equality(bset); |
| 4719 | if (k < 0) |
| 4720 | goto error; |
| 4721 | isl_seq_cpy(dst: bset->eq[k], src: var->row[i], len: var->n_col); |
| 4722 | isl_int_set_si(bset->eq[k][var->n_col], -1); |
| 4723 | bset = select_minimum(bset, var, i); |
| 4724 | set = isl_set_add_basic_set(set, bset); |
| 4725 | } |
| 4726 | |
| 4727 | isl_space_free(space); |
| 4728 | isl_mat_free(mat: var); |
| 4729 | return set; |
| 4730 | error: |
| 4731 | isl_basic_set_free(bset); |
| 4732 | isl_set_free(set); |
| 4733 | isl_space_free(space); |
| 4734 | isl_mat_free(mat: var); |
| 4735 | return NULL; |
| 4736 | } |
| 4737 | |
| 4738 | /* Given that the last input variable of "bmap" represents the minimum |
| 4739 | * of the bounds in "cst", check whether we need to split the domain |
| 4740 | * based on which bound attains the minimum. |
| 4741 | * |
| 4742 | * A split is needed when the minimum appears in an integer division |
| 4743 | * or in an equality. Otherwise, it is only needed if it appears in |
| 4744 | * an upper bound that is different from the upper bounds on which it |
| 4745 | * is defined. |
| 4746 | */ |
| 4747 | static isl_bool need_split_basic_map(__isl_keep isl_basic_map *bmap, |
| 4748 | __isl_keep isl_mat *cst) |
| 4749 | { |
| 4750 | int i, j; |
| 4751 | isl_size total; |
| 4752 | unsigned pos; |
| 4753 | |
| 4754 | pos = cst->n_col - 1; |
| 4755 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 4756 | if (total < 0) |
| 4757 | return isl_bool_error; |
| 4758 | |
| 4759 | for (i = 0; i < bmap->n_div; ++i) |
| 4760 | if (!isl_int_is_zero(bmap->div[i][2 + pos])) |
| 4761 | return isl_bool_true; |
| 4762 | |
| 4763 | for (i = 0; i < bmap->n_eq; ++i) |
| 4764 | if (!isl_int_is_zero(bmap->eq[i][1 + pos])) |
| 4765 | return isl_bool_true; |
| 4766 | |
| 4767 | for (i = 0; i < bmap->n_ineq; ++i) { |
| 4768 | if (isl_int_is_nonneg(bmap->ineq[i][1 + pos])) |
| 4769 | continue; |
| 4770 | if (!isl_int_is_negone(bmap->ineq[i][1 + pos])) |
| 4771 | return isl_bool_true; |
| 4772 | if (isl_seq_first_non_zero(p: bmap->ineq[i] + 1 + pos + 1, |
| 4773 | len: total - pos - 1) >= 0) |
| 4774 | return isl_bool_true; |
| 4775 | |
| 4776 | for (j = 0; j < cst->n_row; ++j) |
| 4777 | if (isl_seq_eq(p1: bmap->ineq[i], p2: cst->row[j], len: cst->n_col)) |
| 4778 | break; |
| 4779 | if (j >= cst->n_row) |
| 4780 | return isl_bool_true; |
| 4781 | } |
| 4782 | |
| 4783 | return isl_bool_false; |
| 4784 | } |
| 4785 | |
| 4786 | /* Given that the last set variable of "bset" represents the minimum |
| 4787 | * of the bounds in "cst", check whether we need to split the domain |
| 4788 | * based on which bound attains the minimum. |
| 4789 | * |
| 4790 | * We simply call need_split_basic_map here. This is safe because |
| 4791 | * the position of the minimum is computed from "cst" and not |
| 4792 | * from "bmap". |
| 4793 | */ |
| 4794 | static isl_bool need_split_basic_set(__isl_keep isl_basic_set *bset, |
| 4795 | __isl_keep isl_mat *cst) |
| 4796 | { |
| 4797 | return need_split_basic_map(bmap: bset_to_bmap(bset), cst); |
| 4798 | } |
| 4799 | |
| 4800 | /* Given that the last set variable of "set" represents the minimum |
| 4801 | * of the bounds in "cst", check whether we need to split the domain |
| 4802 | * based on which bound attains the minimum. |
| 4803 | */ |
| 4804 | static isl_bool need_split_set(__isl_keep isl_set *set, __isl_keep isl_mat *cst) |
| 4805 | { |
| 4806 | int i; |
| 4807 | |
| 4808 | for (i = 0; i < set->n; ++i) { |
| 4809 | isl_bool split; |
| 4810 | |
| 4811 | split = need_split_basic_set(bset: set->p[i], cst); |
| 4812 | if (split < 0 || split) |
| 4813 | return split; |
| 4814 | } |
| 4815 | |
| 4816 | return isl_bool_false; |
| 4817 | } |
| 4818 | |
| 4819 | /* Given a map of which the last input variable is the minimum |
| 4820 | * of the bounds in "cst", split each basic set in the set |
| 4821 | * in pieces where one of the bounds is (strictly) smaller than the others. |
| 4822 | * This subdivision is given in "min_expr". |
| 4823 | * The variable is subsequently projected out. |
| 4824 | * |
| 4825 | * We only do the split when it is needed. |
| 4826 | * For example if the last input variable m = min(a,b) and the only |
| 4827 | * constraints in the given basic set are lower bounds on m, |
| 4828 | * i.e., l <= m = min(a,b), then we can simply project out m |
| 4829 | * to obtain l <= a and l <= b, without having to split on whether |
| 4830 | * m is equal to a or b. |
| 4831 | */ |
| 4832 | static __isl_give isl_map *split_domain(__isl_take isl_map *opt, |
| 4833 | __isl_take isl_set *min_expr, __isl_take isl_mat *cst) |
| 4834 | { |
| 4835 | isl_size n_in; |
| 4836 | int i; |
| 4837 | isl_space *space; |
| 4838 | isl_map *res; |
| 4839 | |
| 4840 | n_in = isl_map_dim(map: opt, type: isl_dim_in); |
| 4841 | if (n_in < 0 || !min_expr || !cst) |
| 4842 | goto error; |
| 4843 | |
| 4844 | space = isl_map_get_space(map: opt); |
| 4845 | space = isl_space_drop_dims(space, type: isl_dim_in, first: n_in - 1, num: 1); |
| 4846 | res = isl_map_empty(space); |
| 4847 | |
| 4848 | for (i = 0; i < opt->n; ++i) { |
| 4849 | isl_map *map; |
| 4850 | isl_bool split; |
| 4851 | |
| 4852 | map = isl_map_from_basic_map(bmap: isl_basic_map_copy(bmap: opt->p[i])); |
| 4853 | split = need_split_basic_map(bmap: opt->p[i], cst); |
| 4854 | if (split < 0) |
| 4855 | map = isl_map_free(map); |
| 4856 | else if (split) |
| 4857 | map = isl_map_intersect_domain(map, |
| 4858 | set: isl_set_copy(set: min_expr)); |
| 4859 | map = isl_map_remove_dims(map, type: isl_dim_in, first: n_in - 1, n: 1); |
| 4860 | |
| 4861 | res = isl_map_union_disjoint(map1: res, map2: map); |
| 4862 | } |
| 4863 | |
| 4864 | isl_map_free(map: opt); |
| 4865 | isl_set_free(set: min_expr); |
| 4866 | isl_mat_free(mat: cst); |
| 4867 | return res; |
| 4868 | error: |
| 4869 | isl_map_free(map: opt); |
| 4870 | isl_set_free(set: min_expr); |
| 4871 | isl_mat_free(mat: cst); |
| 4872 | return NULL; |
| 4873 | } |
| 4874 | |
| 4875 | /* Given a set of which the last set variable is the minimum |
| 4876 | * of the bounds in "cst", split each basic set in the set |
| 4877 | * in pieces where one of the bounds is (strictly) smaller than the others. |
| 4878 | * This subdivision is given in "min_expr". |
| 4879 | * The variable is subsequently projected out. |
| 4880 | */ |
| 4881 | static __isl_give isl_set *split(__isl_take isl_set *empty, |
| 4882 | __isl_take isl_set *min_expr, __isl_take isl_mat *cst) |
| 4883 | { |
| 4884 | isl_map *map; |
| 4885 | |
| 4886 | map = isl_map_from_domain(set: empty); |
| 4887 | map = split_domain(opt: map, min_expr, cst); |
| 4888 | empty = isl_map_domain(bmap: map); |
| 4889 | |
| 4890 | return empty; |
| 4891 | } |
| 4892 | |
| 4893 | static __isl_give isl_map *basic_map_partial_lexopt( |
| 4894 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, |
| 4895 | __isl_give isl_set **empty, int max); |
| 4896 | |
| 4897 | /* This function is called from basic_map_partial_lexopt_symm. |
| 4898 | * The last variable of "bmap" and "dom" corresponds to the minimum |
| 4899 | * of the bounds in "cst". "map_space" is the space of the original |
| 4900 | * input relation (of basic_map_partial_lexopt_symm) and "set_space" |
| 4901 | * is the space of the original domain. |
| 4902 | * |
| 4903 | * We recursively call basic_map_partial_lexopt and then plug in |
| 4904 | * the definition of the minimum in the result. |
| 4905 | */ |
| 4906 | static __isl_give isl_map *basic_map_partial_lexopt_symm_core( |
| 4907 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, |
| 4908 | __isl_give isl_set **empty, int max, __isl_take isl_mat *cst, |
| 4909 | __isl_take isl_space *map_space, __isl_take isl_space *set_space) |
| 4910 | { |
| 4911 | isl_map *opt; |
| 4912 | isl_set *min_expr; |
| 4913 | |
| 4914 | min_expr = set_minimum(space: isl_basic_set_get_space(bset: dom), var: isl_mat_copy(mat: cst)); |
| 4915 | |
| 4916 | opt = basic_map_partial_lexopt(bmap, dom, empty, max); |
| 4917 | |
| 4918 | if (empty) { |
| 4919 | *empty = split(empty: *empty, |
| 4920 | min_expr: isl_set_copy(set: min_expr), cst: isl_mat_copy(mat: cst)); |
| 4921 | *empty = isl_set_reset_space(set: *empty, space: set_space); |
| 4922 | } |
| 4923 | |
| 4924 | opt = split_domain(opt, min_expr, cst); |
| 4925 | opt = isl_map_reset_space(map: opt, space: map_space); |
| 4926 | |
| 4927 | return opt; |
| 4928 | } |
| 4929 | |
| 4930 | /* Extract a domain from "bmap" for the purpose of computing |
| 4931 | * a lexicographic optimum. |
| 4932 | * |
| 4933 | * This function is only called when the caller wants to compute a full |
| 4934 | * lexicographic optimum, i.e., without specifying a domain. In this case, |
| 4935 | * the caller is not interested in the part of the domain space where |
| 4936 | * there is no solution and the domain can be initialized to those constraints |
| 4937 | * of "bmap" that only involve the parameters and the input dimensions. |
| 4938 | * This relieves the parametric programming engine from detecting those |
| 4939 | * inequalities and transferring them to the context. More importantly, |
| 4940 | * it ensures that those inequalities are transferred first and not |
| 4941 | * intermixed with inequalities that actually split the domain. |
| 4942 | * |
| 4943 | * If the caller does not require the absence of existentially quantified |
| 4944 | * variables in the result (i.e., if ISL_OPT_QE is not set in "flags"), |
| 4945 | * then the actual domain of "bmap" can be used. This ensures that |
| 4946 | * the domain does not need to be split at all just to separate out |
| 4947 | * pieces of the domain that do not have a solution from piece that do. |
| 4948 | * This domain cannot be used in general because it may involve |
| 4949 | * (unknown) existentially quantified variables which will then also |
| 4950 | * appear in the solution. |
| 4951 | */ |
| 4952 | static __isl_give isl_basic_set *extract_domain(__isl_keep isl_basic_map *bmap, |
| 4953 | unsigned flags) |
| 4954 | { |
| 4955 | isl_size n_div; |
| 4956 | isl_size n_out; |
| 4957 | |
| 4958 | n_div = isl_basic_map_dim(bmap, type: isl_dim_div); |
| 4959 | n_out = isl_basic_map_dim(bmap, type: isl_dim_out); |
| 4960 | if (n_div < 0 || n_out < 0) |
| 4961 | return NULL; |
| 4962 | bmap = isl_basic_map_copy(bmap); |
| 4963 | if (ISL_FL_ISSET(flags, ISL_OPT_QE)) { |
| 4964 | bmap = isl_basic_map_drop_constraints_involving_dims(bmap, |
| 4965 | type: isl_dim_div, first: 0, n: n_div); |
| 4966 | bmap = isl_basic_map_drop_constraints_involving_dims(bmap, |
| 4967 | type: isl_dim_out, first: 0, n: n_out); |
| 4968 | } |
| 4969 | return isl_basic_map_domain(bmap); |
| 4970 | } |
| 4971 | |
| 4972 | #undef TYPE |
| 4973 | #define TYPE isl_map |
| 4974 | #undef SUFFIX |
| 4975 | #define SUFFIX |
| 4976 | #include "isl_tab_lexopt_templ.c" |
| 4977 | |
| 4978 | /* Extract the subsequence of the sample value of "tab" |
| 4979 | * starting at "pos" and of length "len". |
| 4980 | */ |
| 4981 | static __isl_give isl_vec *(struct isl_tab *tab, |
| 4982 | int pos, int len) |
| 4983 | { |
| 4984 | int i; |
| 4985 | isl_ctx *ctx; |
| 4986 | isl_vec *v; |
| 4987 | |
| 4988 | ctx = isl_tab_get_ctx(tab); |
| 4989 | v = isl_vec_alloc(ctx, size: len); |
| 4990 | if (!v) |
| 4991 | return NULL; |
| 4992 | for (i = 0; i < len; ++i) { |
| 4993 | if (!tab->var[pos + i].is_row) { |
| 4994 | isl_int_set_si(v->el[i], 0); |
| 4995 | } else { |
| 4996 | int row; |
| 4997 | |
| 4998 | row = tab->var[pos + i].index; |
| 4999 | isl_int_divexact(v->el[i], tab->mat->row[row][1], |
| 5000 | tab->mat->row[row][0]); |
| 5001 | } |
| 5002 | } |
| 5003 | |
| 5004 | return v; |
| 5005 | } |
| 5006 | |
| 5007 | /* Check if the sequence of variables starting at "pos" |
| 5008 | * represents a trivial solution according to "trivial". |
| 5009 | * That is, is the result of applying "trivial" to this sequence |
| 5010 | * equal to the zero vector? |
| 5011 | */ |
| 5012 | static isl_bool region_is_trivial(struct isl_tab *tab, int pos, |
| 5013 | __isl_keep isl_mat *trivial) |
| 5014 | { |
| 5015 | isl_size n, len; |
| 5016 | isl_vec *v; |
| 5017 | isl_bool is_trivial; |
| 5018 | |
| 5019 | n = isl_mat_rows(mat: trivial); |
| 5020 | if (n < 0) |
| 5021 | return isl_bool_error; |
| 5022 | |
| 5023 | if (n == 0) |
| 5024 | return isl_bool_false; |
| 5025 | |
| 5026 | len = isl_mat_cols(mat: trivial); |
| 5027 | if (len < 0) |
| 5028 | return isl_bool_error; |
| 5029 | v = extract_sample_sequence(tab, pos, len); |
| 5030 | v = isl_mat_vec_product(mat: isl_mat_copy(mat: trivial), vec: v); |
| 5031 | is_trivial = isl_vec_is_zero(vec: v); |
| 5032 | isl_vec_free(vec: v); |
| 5033 | |
| 5034 | return is_trivial; |
| 5035 | } |
| 5036 | |
| 5037 | /* Global internal data for isl_tab_basic_set_non_trivial_lexmin. |
| 5038 | * |
| 5039 | * "n_op" is the number of initial coordinates to optimize, |
| 5040 | * as passed to isl_tab_basic_set_non_trivial_lexmin. |
| 5041 | * "region" is the "n_region"-sized array of regions passed |
| 5042 | * to isl_tab_basic_set_non_trivial_lexmin. |
| 5043 | * |
| 5044 | * "tab" is the tableau that corresponds to the ILP problem. |
| 5045 | * "local" is an array of local data structure, one for each |
| 5046 | * (potential) level of the backtracking procedure of |
| 5047 | * isl_tab_basic_set_non_trivial_lexmin. |
| 5048 | * "v" is a pre-allocated vector that can be used for adding |
| 5049 | * constraints to the tableau. |
| 5050 | * |
| 5051 | * "sol" contains the best solution found so far. |
| 5052 | * It is initialized to a vector of size zero. |
| 5053 | */ |
| 5054 | struct isl_lexmin_data { |
| 5055 | int n_op; |
| 5056 | int n_region; |
| 5057 | struct isl_trivial_region *region; |
| 5058 | |
| 5059 | struct isl_tab *tab; |
| 5060 | struct isl_local_region *local; |
| 5061 | isl_vec *v; |
| 5062 | |
| 5063 | isl_vec *sol; |
| 5064 | }; |
| 5065 | |
| 5066 | /* Return the index of the first trivial region, "n_region" if all regions |
| 5067 | * are non-trivial or -1 in case of error. |
| 5068 | */ |
| 5069 | static int first_trivial_region(struct isl_lexmin_data *data) |
| 5070 | { |
| 5071 | int i; |
| 5072 | |
| 5073 | for (i = 0; i < data->n_region; ++i) { |
| 5074 | isl_bool trivial; |
| 5075 | trivial = region_is_trivial(tab: data->tab, pos: data->region[i].pos, |
| 5076 | trivial: data->region[i].trivial); |
| 5077 | if (trivial < 0) |
| 5078 | return -1; |
| 5079 | if (trivial) |
| 5080 | return i; |
| 5081 | } |
| 5082 | |
| 5083 | return data->n_region; |
| 5084 | } |
| 5085 | |
| 5086 | /* Check if the solution is optimal, i.e., whether the first |
| 5087 | * n_op entries are zero. |
| 5088 | */ |
| 5089 | static int is_optimal(__isl_keep isl_vec *sol, int n_op) |
| 5090 | { |
| 5091 | int i; |
| 5092 | |
| 5093 | for (i = 0; i < n_op; ++i) |
| 5094 | if (!isl_int_is_zero(sol->el[1 + i])) |
| 5095 | return 0; |
| 5096 | return 1; |
| 5097 | } |
| 5098 | |
| 5099 | /* Add constraints to "tab" that ensure that any solution is significantly |
| 5100 | * better than that represented by "sol". That is, find the first |
| 5101 | * relevant (within first n_op) non-zero coefficient and force it (along |
| 5102 | * with all previous coefficients) to be zero. |
| 5103 | * If the solution is already optimal (all relevant coefficients are zero), |
| 5104 | * then just mark the table as empty. |
| 5105 | * "n_zero" is the number of coefficients that have been forced zero |
| 5106 | * by previous calls to this function at the same level. |
| 5107 | * Return the updated number of forced zero coefficients or -1 on error. |
| 5108 | * |
| 5109 | * This function assumes that at least 2 * (n_op - n_zero) more rows and |
| 5110 | * at least 2 * (n_op - n_zero) more elements in the constraint array |
| 5111 | * are available in the tableau. |
| 5112 | */ |
| 5113 | static int force_better_solution(struct isl_tab *tab, |
| 5114 | __isl_keep isl_vec *sol, int n_op, int n_zero) |
| 5115 | { |
| 5116 | int i, n; |
| 5117 | isl_ctx *ctx; |
| 5118 | isl_vec *v = NULL; |
| 5119 | |
| 5120 | if (!sol) |
| 5121 | return -1; |
| 5122 | |
| 5123 | for (i = n_zero; i < n_op; ++i) |
| 5124 | if (!isl_int_is_zero(sol->el[1 + i])) |
| 5125 | break; |
| 5126 | |
| 5127 | if (i == n_op) { |
| 5128 | if (isl_tab_mark_empty(tab) < 0) |
| 5129 | return -1; |
| 5130 | return n_op; |
| 5131 | } |
| 5132 | |
| 5133 | ctx = isl_vec_get_ctx(vec: sol); |
| 5134 | v = isl_vec_alloc(ctx, size: 1 + tab->n_var); |
| 5135 | if (!v) |
| 5136 | return -1; |
| 5137 | |
| 5138 | n = i + 1; |
| 5139 | for (; i >= n_zero; --i) { |
| 5140 | v = isl_vec_clr(vec: v); |
| 5141 | isl_int_set_si(v->el[1 + i], -1); |
| 5142 | if (add_lexmin_eq(tab, eq: v->el) < 0) |
| 5143 | goto error; |
| 5144 | } |
| 5145 | |
| 5146 | isl_vec_free(vec: v); |
| 5147 | return n; |
| 5148 | error: |
| 5149 | isl_vec_free(vec: v); |
| 5150 | return -1; |
| 5151 | } |
| 5152 | |
| 5153 | /* Fix triviality direction "dir" of the given region to zero. |
| 5154 | * |
| 5155 | * This function assumes that at least two more rows and at least |
| 5156 | * two more elements in the constraint array are available in the tableau. |
| 5157 | */ |
| 5158 | static isl_stat fix_zero(struct isl_tab *tab, struct isl_trivial_region *region, |
| 5159 | int dir, struct isl_lexmin_data *data) |
| 5160 | { |
| 5161 | isl_size len; |
| 5162 | |
| 5163 | data->v = isl_vec_clr(vec: data->v); |
| 5164 | if (!data->v) |
| 5165 | return isl_stat_error; |
| 5166 | len = isl_mat_cols(mat: region->trivial); |
| 5167 | if (len < 0) |
| 5168 | return isl_stat_error; |
| 5169 | isl_seq_cpy(dst: data->v->el + 1 + region->pos, src: region->trivial->row[dir], |
| 5170 | len); |
| 5171 | if (add_lexmin_eq(tab, eq: data->v->el) < 0) |
| 5172 | return isl_stat_error; |
| 5173 | |
| 5174 | return isl_stat_ok; |
| 5175 | } |
| 5176 | |
| 5177 | /* This function selects case "side" for non-triviality region "region", |
| 5178 | * assuming all the equality constraints have been imposed already. |
| 5179 | * In particular, the triviality direction side/2 is made positive |
| 5180 | * if side is even and made negative if side is odd. |
| 5181 | * |
| 5182 | * This function assumes that at least one more row and at least |
| 5183 | * one more element in the constraint array are available in the tableau. |
| 5184 | */ |
| 5185 | static struct isl_tab *pos_neg(struct isl_tab *tab, |
| 5186 | struct isl_trivial_region *region, |
| 5187 | int side, struct isl_lexmin_data *data) |
| 5188 | { |
| 5189 | isl_size len; |
| 5190 | |
| 5191 | data->v = isl_vec_clr(vec: data->v); |
| 5192 | if (!data->v) |
| 5193 | goto error; |
| 5194 | isl_int_set_si(data->v->el[0], -1); |
| 5195 | len = isl_mat_cols(mat: region->trivial); |
| 5196 | if (len < 0) |
| 5197 | goto error; |
| 5198 | if (side % 2 == 0) |
| 5199 | isl_seq_cpy(dst: data->v->el + 1 + region->pos, |
| 5200 | src: region->trivial->row[side / 2], len); |
| 5201 | else |
| 5202 | isl_seq_neg(dst: data->v->el + 1 + region->pos, |
| 5203 | src: region->trivial->row[side / 2], len); |
| 5204 | return add_lexmin_ineq(tab, ineq: data->v->el); |
| 5205 | error: |
| 5206 | isl_tab_free(tab); |
| 5207 | return NULL; |
| 5208 | } |
| 5209 | |
| 5210 | /* Local data at each level of the backtracking procedure of |
| 5211 | * isl_tab_basic_set_non_trivial_lexmin. |
| 5212 | * |
| 5213 | * "update" is set if a solution has been found in the current case |
| 5214 | * of this level, such that a better solution needs to be enforced |
| 5215 | * in the next case. |
| 5216 | * "n_zero" is the number of initial coordinates that have already |
| 5217 | * been forced to be zero at this level. |
| 5218 | * "region" is the non-triviality region considered at this level. |
| 5219 | * "side" is the index of the current case at this level. |
| 5220 | * "n" is the number of triviality directions. |
| 5221 | * "snap" is a snapshot of the tableau holding a state that needs |
| 5222 | * to be satisfied by all subsequent cases. |
| 5223 | */ |
| 5224 | struct isl_local_region { |
| 5225 | int update; |
| 5226 | int n_zero; |
| 5227 | int region; |
| 5228 | int side; |
| 5229 | int n; |
| 5230 | struct isl_tab_undo *snap; |
| 5231 | }; |
| 5232 | |
| 5233 | /* Initialize the global data structure "data" used while solving |
| 5234 | * the ILP problem "bset". |
| 5235 | */ |
| 5236 | static isl_stat init_lexmin_data(struct isl_lexmin_data *data, |
| 5237 | __isl_keep isl_basic_set *bset) |
| 5238 | { |
| 5239 | isl_ctx *ctx; |
| 5240 | |
| 5241 | ctx = isl_basic_set_get_ctx(bset); |
| 5242 | |
| 5243 | data->tab = tab_for_lexmin(bmap: bset, NULL, M: 0, max: 0); |
| 5244 | if (!data->tab) |
| 5245 | return isl_stat_error; |
| 5246 | |
| 5247 | data->v = isl_vec_alloc(ctx, size: 1 + data->tab->n_var); |
| 5248 | if (!data->v) |
| 5249 | return isl_stat_error; |
| 5250 | data->local = isl_calloc_array(ctx, struct isl_local_region, |
| 5251 | data->n_region); |
| 5252 | if (data->n_region && !data->local) |
| 5253 | return isl_stat_error; |
| 5254 | |
| 5255 | data->sol = isl_vec_alloc(ctx, size: 0); |
| 5256 | |
| 5257 | return isl_stat_ok; |
| 5258 | } |
| 5259 | |
| 5260 | /* Mark all outer levels as requiring a better solution |
| 5261 | * in the next cases. |
| 5262 | */ |
| 5263 | static void update_outer_levels(struct isl_lexmin_data *data, int level) |
| 5264 | { |
| 5265 | int i; |
| 5266 | |
| 5267 | for (i = 0; i < level; ++i) |
| 5268 | data->local[i].update = 1; |
| 5269 | } |
| 5270 | |
| 5271 | /* Initialize "local" to refer to region "region" and |
| 5272 | * to initiate processing at this level. |
| 5273 | */ |
| 5274 | static isl_stat init_local_region(struct isl_local_region *local, int region, |
| 5275 | struct isl_lexmin_data *data) |
| 5276 | { |
| 5277 | isl_size n = isl_mat_rows(mat: data->region[region].trivial); |
| 5278 | |
| 5279 | if (n < 0) |
| 5280 | return isl_stat_error; |
| 5281 | local->n = n; |
| 5282 | local->region = region; |
| 5283 | local->side = 0; |
| 5284 | local->update = 0; |
| 5285 | local->n_zero = 0; |
| 5286 | |
| 5287 | return isl_stat_ok; |
| 5288 | } |
| 5289 | |
| 5290 | /* What to do next after entering a level of the backtracking procedure. |
| 5291 | * |
| 5292 | * error: some error has occurred; abort |
| 5293 | * done: an optimal solution has been found; stop search |
| 5294 | * backtrack: backtrack to the previous level |
| 5295 | * handle: add the constraints for the current level and |
| 5296 | * move to the next level |
| 5297 | */ |
| 5298 | enum isl_next { |
| 5299 | isl_next_error = -1, |
| 5300 | isl_next_done, |
| 5301 | isl_next_backtrack, |
| 5302 | isl_next_handle, |
| 5303 | }; |
| 5304 | |
| 5305 | /* Have all cases of the current region been considered? |
| 5306 | * If there are n directions, then there are 2n cases. |
| 5307 | * |
| 5308 | * The constraints in the current tableau are imposed |
| 5309 | * in all subsequent cases. This means that if the current |
| 5310 | * tableau is empty, then none of those cases should be considered |
| 5311 | * anymore and all cases have effectively been considered. |
| 5312 | */ |
| 5313 | static int finished_all_cases(struct isl_local_region *local, |
| 5314 | struct isl_lexmin_data *data) |
| 5315 | { |
| 5316 | if (data->tab->empty) |
| 5317 | return 1; |
| 5318 | return local->side >= 2 * local->n; |
| 5319 | } |
| 5320 | |
| 5321 | /* Enter level "level" of the backtracking search and figure out |
| 5322 | * what to do next. "init" is set if the level was entered |
| 5323 | * from a higher level and needs to be initialized. |
| 5324 | * Otherwise, the level is entered as a result of backtracking and |
| 5325 | * the tableau needs to be restored to a position that can |
| 5326 | * be used for the next case at this level. |
| 5327 | * The snapshot is assumed to have been saved in the previous case, |
| 5328 | * before the constraints specific to that case were added. |
| 5329 | * |
| 5330 | * In the initialization case, the local region is initialized |
| 5331 | * to point to the first violated region. |
| 5332 | * If the constraints of all regions are satisfied by the current |
| 5333 | * sample of the tableau, then tell the caller to continue looking |
| 5334 | * for a better solution or to stop searching if an optimal solution |
| 5335 | * has been found. |
| 5336 | * |
| 5337 | * If the tableau is empty or if all cases at the current level |
| 5338 | * have been considered, then the caller needs to backtrack as well. |
| 5339 | */ |
| 5340 | static enum isl_next enter_level(int level, int init, |
| 5341 | struct isl_lexmin_data *data) |
| 5342 | { |
| 5343 | struct isl_local_region *local = &data->local[level]; |
| 5344 | |
| 5345 | if (init) { |
| 5346 | int r; |
| 5347 | |
| 5348 | data->tab = cut_to_integer_lexmin(tab: data->tab, CUT_ONE); |
| 5349 | if (!data->tab) |
| 5350 | return isl_next_error; |
| 5351 | if (data->tab->empty) |
| 5352 | return isl_next_backtrack; |
| 5353 | r = first_trivial_region(data); |
| 5354 | if (r < 0) |
| 5355 | return isl_next_error; |
| 5356 | if (r == data->n_region) { |
| 5357 | update_outer_levels(data, level); |
| 5358 | isl_vec_free(vec: data->sol); |
| 5359 | data->sol = isl_tab_get_sample_value(tab: data->tab); |
| 5360 | if (!data->sol) |
| 5361 | return isl_next_error; |
| 5362 | if (is_optimal(sol: data->sol, n_op: data->n_op)) |
| 5363 | return isl_next_done; |
| 5364 | return isl_next_backtrack; |
| 5365 | } |
| 5366 | if (level >= data->n_region) |
| 5367 | isl_die(isl_vec_get_ctx(data->v), isl_error_internal, |
| 5368 | "nesting level too deep" , |
| 5369 | return isl_next_error); |
| 5370 | if (init_local_region(local, region: r, data) < 0) |
| 5371 | return isl_next_error; |
| 5372 | if (isl_tab_extend_cons(tab: data->tab, |
| 5373 | n_new: 2 * local->n + 2 * data->n_op) < 0) |
| 5374 | return isl_next_error; |
| 5375 | } else { |
| 5376 | if (isl_tab_rollback(tab: data->tab, snap: local->snap) < 0) |
| 5377 | return isl_next_error; |
| 5378 | } |
| 5379 | |
| 5380 | if (finished_all_cases(local, data)) |
| 5381 | return isl_next_backtrack; |
| 5382 | return isl_next_handle; |
| 5383 | } |
| 5384 | |
| 5385 | /* If a solution has been found in the previous case at this level |
| 5386 | * (marked by local->update being set), then add constraints |
| 5387 | * that enforce a better solution in the present and all following cases. |
| 5388 | * The constraints only need to be imposed once because they are |
| 5389 | * included in the snapshot (taken in pick_side) that will be used in |
| 5390 | * subsequent cases. |
| 5391 | */ |
| 5392 | static isl_stat better_next_side(struct isl_local_region *local, |
| 5393 | struct isl_lexmin_data *data) |
| 5394 | { |
| 5395 | if (!local->update) |
| 5396 | return isl_stat_ok; |
| 5397 | |
| 5398 | local->n_zero = force_better_solution(tab: data->tab, |
| 5399 | sol: data->sol, n_op: data->n_op, n_zero: local->n_zero); |
| 5400 | if (local->n_zero < 0) |
| 5401 | return isl_stat_error; |
| 5402 | |
| 5403 | local->update = 0; |
| 5404 | |
| 5405 | return isl_stat_ok; |
| 5406 | } |
| 5407 | |
| 5408 | /* Add constraints to data->tab that select the current case (local->side) |
| 5409 | * at the current level. |
| 5410 | * |
| 5411 | * If the linear combinations v should not be zero, then the cases are |
| 5412 | * v_0 >= 1 |
| 5413 | * v_0 <= -1 |
| 5414 | * v_0 = 0 and v_1 >= 1 |
| 5415 | * v_0 = 0 and v_1 <= -1 |
| 5416 | * v_0 = 0 and v_1 = 0 and v_2 >= 1 |
| 5417 | * v_0 = 0 and v_1 = 0 and v_2 <= -1 |
| 5418 | * ... |
| 5419 | * in this order. |
| 5420 | * |
| 5421 | * A snapshot is taken after the equality constraint (if any) has been added |
| 5422 | * such that the next case can start off from this position. |
| 5423 | * The rollback to this position is performed in enter_level. |
| 5424 | */ |
| 5425 | static isl_stat pick_side(struct isl_local_region *local, |
| 5426 | struct isl_lexmin_data *data) |
| 5427 | { |
| 5428 | struct isl_trivial_region *region; |
| 5429 | int side, base; |
| 5430 | |
| 5431 | region = &data->region[local->region]; |
| 5432 | side = local->side; |
| 5433 | base = 2 * (side/2); |
| 5434 | |
| 5435 | if (side == base && base >= 2 && |
| 5436 | fix_zero(tab: data->tab, region, dir: base / 2 - 1, data) < 0) |
| 5437 | return isl_stat_error; |
| 5438 | |
| 5439 | local->snap = isl_tab_snap(tab: data->tab); |
| 5440 | if (isl_tab_push_basis(tab: data->tab) < 0) |
| 5441 | return isl_stat_error; |
| 5442 | |
| 5443 | data->tab = pos_neg(tab: data->tab, region, side, data); |
| 5444 | if (!data->tab) |
| 5445 | return isl_stat_error; |
| 5446 | return isl_stat_ok; |
| 5447 | } |
| 5448 | |
| 5449 | /* Free the memory associated to "data". |
| 5450 | */ |
| 5451 | static void clear_lexmin_data(struct isl_lexmin_data *data) |
| 5452 | { |
| 5453 | free(ptr: data->local); |
| 5454 | isl_vec_free(vec: data->v); |
| 5455 | isl_tab_free(tab: data->tab); |
| 5456 | } |
| 5457 | |
| 5458 | /* Return the lexicographically smallest non-trivial solution of the |
| 5459 | * given ILP problem. |
| 5460 | * |
| 5461 | * All variables are assumed to be non-negative. |
| 5462 | * |
| 5463 | * n_op is the number of initial coordinates to optimize. |
| 5464 | * That is, once a solution has been found, we will only continue looking |
| 5465 | * for solutions that result in significantly better values for those |
| 5466 | * initial coordinates. That is, we only continue looking for solutions |
| 5467 | * that increase the number of initial zeros in this sequence. |
| 5468 | * |
| 5469 | * A solution is non-trivial, if it is non-trivial on each of the |
| 5470 | * specified regions. Each region represents a sequence of |
| 5471 | * triviality directions on a sequence of variables that starts |
| 5472 | * at a given position. A solution is non-trivial on such a region if |
| 5473 | * at least one of the triviality directions is non-zero |
| 5474 | * on that sequence of variables. |
| 5475 | * |
| 5476 | * Whenever a conflict is encountered, all constraints involved are |
| 5477 | * reported to the caller through a call to "conflict". |
| 5478 | * |
| 5479 | * We perform a simple branch-and-bound backtracking search. |
| 5480 | * Each level in the search represents an initially trivial region |
| 5481 | * that is forced to be non-trivial. |
| 5482 | * At each level we consider 2 * n cases, where n |
| 5483 | * is the number of triviality directions. |
| 5484 | * In terms of those n directions v_i, we consider the cases |
| 5485 | * v_0 >= 1 |
| 5486 | * v_0 <= -1 |
| 5487 | * v_0 = 0 and v_1 >= 1 |
| 5488 | * v_0 = 0 and v_1 <= -1 |
| 5489 | * v_0 = 0 and v_1 = 0 and v_2 >= 1 |
| 5490 | * v_0 = 0 and v_1 = 0 and v_2 <= -1 |
| 5491 | * ... |
| 5492 | * in this order. |
| 5493 | */ |
| 5494 | __isl_give isl_vec *isl_tab_basic_set_non_trivial_lexmin( |
| 5495 | __isl_take isl_basic_set *bset, int n_op, int n_region, |
| 5496 | struct isl_trivial_region *region, |
| 5497 | int (*conflict)(int con, void *user), void *user) |
| 5498 | { |
| 5499 | struct isl_lexmin_data data = { n_op, n_region, region }; |
| 5500 | int level, init; |
| 5501 | |
| 5502 | if (!bset) |
| 5503 | return NULL; |
| 5504 | |
| 5505 | if (init_lexmin_data(data: &data, bset) < 0) |
| 5506 | goto error; |
| 5507 | data.tab->conflict = conflict; |
| 5508 | data.tab->conflict_user = user; |
| 5509 | |
| 5510 | level = 0; |
| 5511 | init = 1; |
| 5512 | |
| 5513 | while (level >= 0) { |
| 5514 | enum isl_next next; |
| 5515 | struct isl_local_region *local = &data.local[level]; |
| 5516 | |
| 5517 | next = enter_level(level, init, data: &data); |
| 5518 | if (next < 0) |
| 5519 | goto error; |
| 5520 | if (next == isl_next_done) |
| 5521 | break; |
| 5522 | if (next == isl_next_backtrack) { |
| 5523 | level--; |
| 5524 | init = 0; |
| 5525 | continue; |
| 5526 | } |
| 5527 | |
| 5528 | if (better_next_side(local, data: &data) < 0) |
| 5529 | goto error; |
| 5530 | if (pick_side(local, data: &data) < 0) |
| 5531 | goto error; |
| 5532 | |
| 5533 | local->side++; |
| 5534 | level++; |
| 5535 | init = 1; |
| 5536 | } |
| 5537 | |
| 5538 | clear_lexmin_data(data: &data); |
| 5539 | isl_basic_set_free(bset); |
| 5540 | |
| 5541 | return data.sol; |
| 5542 | error: |
| 5543 | clear_lexmin_data(data: &data); |
| 5544 | isl_basic_set_free(bset); |
| 5545 | isl_vec_free(vec: data.sol); |
| 5546 | return NULL; |
| 5547 | } |
| 5548 | |
| 5549 | /* Wrapper for a tableau that is used for computing |
| 5550 | * the lexicographically smallest rational point of a non-negative set. |
| 5551 | * This point is represented by the sample value of "tab", |
| 5552 | * unless "tab" is empty. |
| 5553 | */ |
| 5554 | struct isl_tab_lexmin { |
| 5555 | isl_ctx *ctx; |
| 5556 | struct isl_tab *tab; |
| 5557 | }; |
| 5558 | |
| 5559 | /* Free "tl" and return NULL. |
| 5560 | */ |
| 5561 | __isl_null isl_tab_lexmin *isl_tab_lexmin_free(__isl_take isl_tab_lexmin *tl) |
| 5562 | { |
| 5563 | if (!tl) |
| 5564 | return NULL; |
| 5565 | isl_ctx_deref(ctx: tl->ctx); |
| 5566 | isl_tab_free(tab: tl->tab); |
| 5567 | free(ptr: tl); |
| 5568 | |
| 5569 | return NULL; |
| 5570 | } |
| 5571 | |
| 5572 | /* Construct an isl_tab_lexmin for computing |
| 5573 | * the lexicographically smallest rational point in "bset", |
| 5574 | * assuming that all variables are non-negative. |
| 5575 | */ |
| 5576 | __isl_give isl_tab_lexmin *isl_tab_lexmin_from_basic_set( |
| 5577 | __isl_take isl_basic_set *bset) |
| 5578 | { |
| 5579 | isl_ctx *ctx; |
| 5580 | isl_tab_lexmin *tl; |
| 5581 | |
| 5582 | if (!bset) |
| 5583 | return NULL; |
| 5584 | |
| 5585 | ctx = isl_basic_set_get_ctx(bset); |
| 5586 | tl = isl_calloc_type(ctx, struct isl_tab_lexmin); |
| 5587 | if (!tl) |
| 5588 | goto error; |
| 5589 | tl->ctx = ctx; |
| 5590 | isl_ctx_ref(ctx); |
| 5591 | tl->tab = tab_for_lexmin(bmap: bset, NULL, M: 0, max: 0); |
| 5592 | isl_basic_set_free(bset); |
| 5593 | if (!tl->tab) |
| 5594 | return isl_tab_lexmin_free(tl); |
| 5595 | return tl; |
| 5596 | error: |
| 5597 | isl_basic_set_free(bset); |
| 5598 | isl_tab_lexmin_free(tl); |
| 5599 | return NULL; |
| 5600 | } |
| 5601 | |
| 5602 | /* Return the dimension of the set represented by "tl". |
| 5603 | */ |
| 5604 | int isl_tab_lexmin_dim(__isl_keep isl_tab_lexmin *tl) |
| 5605 | { |
| 5606 | return tl ? tl->tab->n_var : -1; |
| 5607 | } |
| 5608 | |
| 5609 | /* Add the equality with coefficients "eq" to "tl", updating the optimal |
| 5610 | * solution if needed. |
| 5611 | * The equality is added as two opposite inequality constraints. |
| 5612 | */ |
| 5613 | __isl_give isl_tab_lexmin *isl_tab_lexmin_add_eq(__isl_take isl_tab_lexmin *tl, |
| 5614 | isl_int *eq) |
| 5615 | { |
| 5616 | unsigned n_var; |
| 5617 | |
| 5618 | if (!tl || !eq) |
| 5619 | return isl_tab_lexmin_free(tl); |
| 5620 | |
| 5621 | if (isl_tab_extend_cons(tab: tl->tab, n_new: 2) < 0) |
| 5622 | return isl_tab_lexmin_free(tl); |
| 5623 | n_var = tl->tab->n_var; |
| 5624 | isl_seq_neg(dst: eq, src: eq, len: 1 + n_var); |
| 5625 | tl->tab = add_lexmin_ineq(tab: tl->tab, ineq: eq); |
| 5626 | isl_seq_neg(dst: eq, src: eq, len: 1 + n_var); |
| 5627 | tl->tab = add_lexmin_ineq(tab: tl->tab, ineq: eq); |
| 5628 | |
| 5629 | if (!tl->tab) |
| 5630 | return isl_tab_lexmin_free(tl); |
| 5631 | |
| 5632 | return tl; |
| 5633 | } |
| 5634 | |
| 5635 | /* Add cuts to "tl" until the sample value reaches an integer value or |
| 5636 | * until the result becomes empty. |
| 5637 | */ |
| 5638 | __isl_give isl_tab_lexmin *isl_tab_lexmin_cut_to_integer( |
| 5639 | __isl_take isl_tab_lexmin *tl) |
| 5640 | { |
| 5641 | if (!tl) |
| 5642 | return NULL; |
| 5643 | tl->tab = cut_to_integer_lexmin(tab: tl->tab, CUT_ONE); |
| 5644 | if (!tl->tab) |
| 5645 | return isl_tab_lexmin_free(tl); |
| 5646 | return tl; |
| 5647 | } |
| 5648 | |
| 5649 | /* Return the lexicographically smallest rational point in the basic set |
| 5650 | * from which "tl" was constructed. |
| 5651 | * If the original input was empty, then return a zero-length vector. |
| 5652 | */ |
| 5653 | __isl_give isl_vec *isl_tab_lexmin_get_solution(__isl_keep isl_tab_lexmin *tl) |
| 5654 | { |
| 5655 | if (!tl) |
| 5656 | return NULL; |
| 5657 | if (tl->tab->empty) |
| 5658 | return isl_vec_alloc(ctx: tl->ctx, size: 0); |
| 5659 | else |
| 5660 | return isl_tab_get_sample_value(tab: tl->tab); |
| 5661 | } |
| 5662 | |
| 5663 | struct isl_sol_pma { |
| 5664 | struct isl_sol sol; |
| 5665 | isl_pw_multi_aff *pma; |
| 5666 | isl_set *empty; |
| 5667 | }; |
| 5668 | |
| 5669 | static void sol_pma_free(struct isl_sol *sol) |
| 5670 | { |
| 5671 | struct isl_sol_pma *sol_pma = (struct isl_sol_pma *) sol; |
| 5672 | isl_pw_multi_aff_free(pma: sol_pma->pma); |
| 5673 | isl_set_free(set: sol_pma->empty); |
| 5674 | } |
| 5675 | |
| 5676 | /* This function is called for parts of the context where there is |
| 5677 | * no solution, with "bset" corresponding to the context tableau. |
| 5678 | * Simply add the basic set to the set "empty". |
| 5679 | */ |
| 5680 | static void sol_pma_add_empty(struct isl_sol_pma *sol, |
| 5681 | __isl_take isl_basic_set *bset) |
| 5682 | { |
| 5683 | if (!bset || !sol->empty) |
| 5684 | goto error; |
| 5685 | |
| 5686 | sol->empty = isl_set_grow(set: sol->empty, n: 1); |
| 5687 | bset = isl_basic_set_simplify(bset); |
| 5688 | bset = isl_basic_set_finalize(bset); |
| 5689 | sol->empty = isl_set_add_basic_set(set: sol->empty, bset); |
| 5690 | if (!sol->empty) |
| 5691 | sol->sol.error = 1; |
| 5692 | return; |
| 5693 | error: |
| 5694 | isl_basic_set_free(bset); |
| 5695 | sol->sol.error = 1; |
| 5696 | } |
| 5697 | |
| 5698 | /* Given a basic set "dom" that represents the context and a tuple of |
| 5699 | * affine expressions "maff" defined over this domain, construct |
| 5700 | * an isl_pw_multi_aff with a single cell corresponding to "dom" and |
| 5701 | * the affine expressions in "maff". |
| 5702 | */ |
| 5703 | static void sol_pma_add(struct isl_sol_pma *sol, |
| 5704 | __isl_take isl_basic_set *dom, __isl_take isl_multi_aff *maff) |
| 5705 | { |
| 5706 | isl_pw_multi_aff *pma; |
| 5707 | |
| 5708 | dom = isl_basic_set_simplify(bset: dom); |
| 5709 | dom = isl_basic_set_finalize(bset: dom); |
| 5710 | pma = isl_pw_multi_aff_alloc(set: isl_set_from_basic_set(bset: dom), maff); |
| 5711 | sol->pma = isl_pw_multi_aff_add_disjoint(pma1: sol->pma, pma2: pma); |
| 5712 | if (!sol->pma) |
| 5713 | sol->sol.error = 1; |
| 5714 | } |
| 5715 | |
| 5716 | static void sol_pma_add_empty_wrap(struct isl_sol *sol, |
| 5717 | __isl_take isl_basic_set *bset) |
| 5718 | { |
| 5719 | sol_pma_add_empty(sol: (struct isl_sol_pma *)sol, bset); |
| 5720 | } |
| 5721 | |
| 5722 | static void sol_pma_add_wrap(struct isl_sol *sol, |
| 5723 | __isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma) |
| 5724 | { |
| 5725 | sol_pma_add(sol: (struct isl_sol_pma *)sol, dom, maff: ma); |
| 5726 | } |
| 5727 | |
| 5728 | /* Construct an isl_sol_pma structure for accumulating the solution. |
| 5729 | * If track_empty is set, then we also keep track of the parts |
| 5730 | * of the context where there is no solution. |
| 5731 | * If max is set, then we are solving a maximization, rather than |
| 5732 | * a minimization problem, which means that the variables in the |
| 5733 | * tableau have value "M - x" rather than "M + x". |
| 5734 | */ |
| 5735 | static struct isl_sol *sol_pma_init(__isl_keep isl_basic_map *bmap, |
| 5736 | __isl_take isl_basic_set *dom, int track_empty, int max) |
| 5737 | { |
| 5738 | struct isl_sol_pma *sol_pma = NULL; |
| 5739 | isl_space *space; |
| 5740 | |
| 5741 | if (!bmap) |
| 5742 | goto error; |
| 5743 | |
| 5744 | sol_pma = isl_calloc_type(bmap->ctx, struct isl_sol_pma); |
| 5745 | if (!sol_pma) |
| 5746 | goto error; |
| 5747 | |
| 5748 | sol_pma->sol.free = &sol_pma_free; |
| 5749 | if (sol_init(sol: &sol_pma->sol, bmap, dom, max) < 0) |
| 5750 | goto error; |
| 5751 | sol_pma->sol.add = &sol_pma_add_wrap; |
| 5752 | sol_pma->sol.add_empty = track_empty ? &sol_pma_add_empty_wrap : NULL; |
| 5753 | space = isl_space_copy(space: sol_pma->sol.space); |
| 5754 | sol_pma->pma = isl_pw_multi_aff_empty(space); |
| 5755 | if (!sol_pma->pma) |
| 5756 | goto error; |
| 5757 | |
| 5758 | if (track_empty) { |
| 5759 | sol_pma->empty = isl_set_alloc_space(space: isl_basic_set_get_space(bset: dom), |
| 5760 | n: 1, ISL_SET_DISJOINT); |
| 5761 | if (!sol_pma->empty) |
| 5762 | goto error; |
| 5763 | } |
| 5764 | |
| 5765 | isl_basic_set_free(bset: dom); |
| 5766 | return &sol_pma->sol; |
| 5767 | error: |
| 5768 | isl_basic_set_free(bset: dom); |
| 5769 | sol_free(sol: &sol_pma->sol); |
| 5770 | return NULL; |
| 5771 | } |
| 5772 | |
| 5773 | /* Base case of isl_tab_basic_map_partial_lexopt, after removing |
| 5774 | * some obvious symmetries. |
| 5775 | * |
| 5776 | * We call basic_map_partial_lexopt_base_sol and extract the results. |
| 5777 | */ |
| 5778 | static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_base_pw_multi_aff( |
| 5779 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, |
| 5780 | __isl_give isl_set **empty, int max) |
| 5781 | { |
| 5782 | isl_pw_multi_aff *result = NULL; |
| 5783 | struct isl_sol *sol; |
| 5784 | struct isl_sol_pma *sol_pma; |
| 5785 | |
| 5786 | sol = basic_map_partial_lexopt_base_sol(bmap, dom, empty, max, |
| 5787 | init: &sol_pma_init); |
| 5788 | if (!sol) |
| 5789 | return NULL; |
| 5790 | sol_pma = (struct isl_sol_pma *) sol; |
| 5791 | |
| 5792 | result = isl_pw_multi_aff_copy(pma: sol_pma->pma); |
| 5793 | if (empty) |
| 5794 | *empty = isl_set_copy(set: sol_pma->empty); |
| 5795 | sol_free(sol: &sol_pma->sol); |
| 5796 | return result; |
| 5797 | } |
| 5798 | |
| 5799 | /* Given that the last input variable of "maff" represents the minimum |
| 5800 | * of some bounds, check whether we need to plug in the expression |
| 5801 | * of the minimum. |
| 5802 | * |
| 5803 | * In particular, check if the last input variable appears in any |
| 5804 | * of the expressions in "maff". |
| 5805 | */ |
| 5806 | static isl_bool need_substitution(__isl_keep isl_multi_aff *maff) |
| 5807 | { |
| 5808 | int i; |
| 5809 | isl_size n_in; |
| 5810 | unsigned pos; |
| 5811 | |
| 5812 | n_in = isl_multi_aff_dim(multi: maff, type: isl_dim_in); |
| 5813 | if (n_in < 0) |
| 5814 | return isl_bool_error; |
| 5815 | pos = n_in - 1; |
| 5816 | |
| 5817 | for (i = 0; i < maff->n; ++i) { |
| 5818 | isl_bool involves; |
| 5819 | |
| 5820 | involves = isl_aff_involves_dims(aff: maff->u.p[i], |
| 5821 | type: isl_dim_in, first: pos, n: 1); |
| 5822 | if (involves < 0 || involves) |
| 5823 | return involves; |
| 5824 | } |
| 5825 | |
| 5826 | return isl_bool_false; |
| 5827 | } |
| 5828 | |
| 5829 | /* Given a set of upper bounds on the last "input" variable m, |
| 5830 | * construct a piecewise affine expression that selects |
| 5831 | * the minimal upper bound to m, i.e., |
| 5832 | * divide the space into cells where one |
| 5833 | * of the upper bounds is smaller than all the others and select |
| 5834 | * this upper bound on that cell. |
| 5835 | * |
| 5836 | * In particular, if there are n bounds b_i, then the result |
| 5837 | * consists of n cell, each one of the form |
| 5838 | * |
| 5839 | * b_i <= b_j for j > i |
| 5840 | * b_i < b_j for j < i |
| 5841 | * |
| 5842 | * The affine expression on this cell is |
| 5843 | * |
| 5844 | * b_i |
| 5845 | */ |
| 5846 | static __isl_give isl_pw_aff *set_minimum_pa(__isl_take isl_space *space, |
| 5847 | __isl_take isl_mat *var) |
| 5848 | { |
| 5849 | int i; |
| 5850 | isl_aff *aff = NULL; |
| 5851 | isl_basic_set *bset = NULL; |
| 5852 | isl_pw_aff *paff = NULL; |
| 5853 | isl_space *pw_space; |
| 5854 | isl_local_space *ls = NULL; |
| 5855 | |
| 5856 | if (!space || !var) |
| 5857 | goto error; |
| 5858 | |
| 5859 | ls = isl_local_space_from_space(space: isl_space_copy(space)); |
| 5860 | pw_space = isl_space_copy(space); |
| 5861 | pw_space = isl_space_from_domain(space: pw_space); |
| 5862 | pw_space = isl_space_add_dims(space: pw_space, type: isl_dim_out, n: 1); |
| 5863 | paff = isl_pw_aff_alloc_size(space: pw_space, n: var->n_row); |
| 5864 | |
| 5865 | for (i = 0; i < var->n_row; ++i) { |
| 5866 | isl_pw_aff *paff_i; |
| 5867 | |
| 5868 | aff = isl_aff_alloc(ls: isl_local_space_copy(ls)); |
| 5869 | bset = isl_basic_set_alloc_space(space: isl_space_copy(space), extra: 0, |
| 5870 | n_eq: 0, n_ineq: var->n_row - 1); |
| 5871 | if (!aff || !bset) |
| 5872 | goto error; |
| 5873 | isl_int_set_si(aff->v->el[0], 1); |
| 5874 | isl_seq_cpy(dst: aff->v->el + 1, src: var->row[i], len: var->n_col); |
| 5875 | isl_int_set_si(aff->v->el[1 + var->n_col], 0); |
| 5876 | bset = select_minimum(bset, var, i); |
| 5877 | paff_i = isl_pw_aff_alloc(set: isl_set_from_basic_set(bset), aff); |
| 5878 | paff = isl_pw_aff_add_disjoint(pwaff1: paff, pwaff2: paff_i); |
| 5879 | } |
| 5880 | |
| 5881 | isl_local_space_free(ls); |
| 5882 | isl_space_free(space); |
| 5883 | isl_mat_free(mat: var); |
| 5884 | return paff; |
| 5885 | error: |
| 5886 | isl_aff_free(aff); |
| 5887 | isl_basic_set_free(bset); |
| 5888 | isl_pw_aff_free(pwaff: paff); |
| 5889 | isl_local_space_free(ls); |
| 5890 | isl_space_free(space); |
| 5891 | isl_mat_free(mat: var); |
| 5892 | return NULL; |
| 5893 | } |
| 5894 | |
| 5895 | /* Given a piecewise multi-affine expression of which the last input variable |
| 5896 | * is the minimum of the bounds in "cst", plug in the value of the minimum. |
| 5897 | * This minimum expression is given in "min_expr_pa". |
| 5898 | * The set "min_expr" contains the same information, but in the form of a set. |
| 5899 | * The variable is subsequently projected out. |
| 5900 | * |
| 5901 | * The implementation is similar to those of "split" and "split_domain". |
| 5902 | * If the variable appears in a given expression, then minimum expression |
| 5903 | * is plugged in. Otherwise, if the variable appears in the constraints |
| 5904 | * and a split is required, then the domain is split. Otherwise, no split |
| 5905 | * is performed. |
| 5906 | */ |
| 5907 | static __isl_give isl_pw_multi_aff *split_domain_pma( |
| 5908 | __isl_take isl_pw_multi_aff *opt, __isl_take isl_pw_aff *min_expr_pa, |
| 5909 | __isl_take isl_set *min_expr, __isl_take isl_mat *cst) |
| 5910 | { |
| 5911 | isl_size n_in; |
| 5912 | int i; |
| 5913 | isl_space *space; |
| 5914 | isl_pw_multi_aff *res; |
| 5915 | |
| 5916 | if (!opt || !min_expr || !cst) |
| 5917 | goto error; |
| 5918 | |
| 5919 | n_in = isl_pw_multi_aff_dim(pma: opt, type: isl_dim_in); |
| 5920 | if (n_in < 0) |
| 5921 | goto error; |
| 5922 | space = isl_pw_multi_aff_get_space(pma: opt); |
| 5923 | space = isl_space_drop_dims(space, type: isl_dim_in, first: n_in - 1, num: 1); |
| 5924 | res = isl_pw_multi_aff_empty(space); |
| 5925 | |
| 5926 | for (i = 0; i < opt->n; ++i) { |
| 5927 | isl_bool subs; |
| 5928 | isl_pw_multi_aff *pma; |
| 5929 | |
| 5930 | pma = isl_pw_multi_aff_alloc(set: isl_set_copy(set: opt->p[i].set), |
| 5931 | maff: isl_multi_aff_copy(multi: opt->p[i].maff)); |
| 5932 | subs = need_substitution(maff: opt->p[i].maff); |
| 5933 | if (subs < 0) { |
| 5934 | pma = isl_pw_multi_aff_free(pma); |
| 5935 | } else if (subs) { |
| 5936 | pma = isl_pw_multi_aff_substitute(pma, |
| 5937 | pos: n_in - 1, subs: min_expr_pa); |
| 5938 | } else { |
| 5939 | isl_bool split; |
| 5940 | split = need_split_set(set: opt->p[i].set, cst); |
| 5941 | if (split < 0) |
| 5942 | pma = isl_pw_multi_aff_free(pma); |
| 5943 | else if (split) |
| 5944 | pma = isl_pw_multi_aff_intersect_domain(pma, |
| 5945 | set: isl_set_copy(set: min_expr)); |
| 5946 | } |
| 5947 | pma = isl_pw_multi_aff_project_out(pma, |
| 5948 | type: isl_dim_in, first: n_in - 1, n: 1); |
| 5949 | |
| 5950 | res = isl_pw_multi_aff_add_disjoint(pma1: res, pma2: pma); |
| 5951 | } |
| 5952 | |
| 5953 | isl_pw_multi_aff_free(pma: opt); |
| 5954 | isl_pw_aff_free(pwaff: min_expr_pa); |
| 5955 | isl_set_free(set: min_expr); |
| 5956 | isl_mat_free(mat: cst); |
| 5957 | return res; |
| 5958 | error: |
| 5959 | isl_pw_multi_aff_free(pma: opt); |
| 5960 | isl_pw_aff_free(pwaff: min_expr_pa); |
| 5961 | isl_set_free(set: min_expr); |
| 5962 | isl_mat_free(mat: cst); |
| 5963 | return NULL; |
| 5964 | } |
| 5965 | |
| 5966 | static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_pw_multi_aff( |
| 5967 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, |
| 5968 | __isl_give isl_set **empty, int max); |
| 5969 | |
| 5970 | /* This function is called from basic_map_partial_lexopt_symm. |
| 5971 | * The last variable of "bmap" and "dom" corresponds to the minimum |
| 5972 | * of the bounds in "cst". "map_space" is the space of the original |
| 5973 | * input relation (of basic_map_partial_lexopt_symm) and "set_space" |
| 5974 | * is the space of the original domain. |
| 5975 | * |
| 5976 | * We recursively call basic_map_partial_lexopt and then plug in |
| 5977 | * the definition of the minimum in the result. |
| 5978 | */ |
| 5979 | static __isl_give isl_pw_multi_aff * |
| 5980 | basic_map_partial_lexopt_symm_core_pw_multi_aff( |
| 5981 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, |
| 5982 | __isl_give isl_set **empty, int max, __isl_take isl_mat *cst, |
| 5983 | __isl_take isl_space *map_space, __isl_take isl_space *set_space) |
| 5984 | { |
| 5985 | isl_pw_multi_aff *opt; |
| 5986 | isl_pw_aff *min_expr_pa; |
| 5987 | isl_set *min_expr; |
| 5988 | |
| 5989 | min_expr = set_minimum(space: isl_basic_set_get_space(bset: dom), var: isl_mat_copy(mat: cst)); |
| 5990 | min_expr_pa = set_minimum_pa(space: isl_basic_set_get_space(bset: dom), |
| 5991 | var: isl_mat_copy(mat: cst)); |
| 5992 | |
| 5993 | opt = basic_map_partial_lexopt_pw_multi_aff(bmap, dom, empty, max); |
| 5994 | |
| 5995 | if (empty) { |
| 5996 | *empty = split(empty: *empty, |
| 5997 | min_expr: isl_set_copy(set: min_expr), cst: isl_mat_copy(mat: cst)); |
| 5998 | *empty = isl_set_reset_space(set: *empty, space: set_space); |
| 5999 | } |
| 6000 | |
| 6001 | opt = split_domain_pma(opt, min_expr_pa, min_expr, cst); |
| 6002 | opt = isl_pw_multi_aff_reset_space(pwmaff: opt, space: map_space); |
| 6003 | |
| 6004 | return opt; |
| 6005 | } |
| 6006 | |
| 6007 | #undef TYPE |
| 6008 | #define TYPE isl_pw_multi_aff |
| 6009 | #undef SUFFIX |
| 6010 | #define SUFFIX _pw_multi_aff |
| 6011 | #include "isl_tab_lexopt_templ.c" |
| 6012 | |