1/*
2 * Copyright 2010 INRIA Saclay
3 *
4 * Use of this software is governed by the MIT license
5 *
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
10
11#include <isl_map_private.h>
12#include <isl_aff_private.h>
13#include <isl/set.h>
14#include <isl_seq.h>
15#include <isl_tab.h>
16#include <isl_space_private.h>
17#include <isl_morph.h>
18#include <isl_vertices_private.h>
19#include <isl_mat_private.h>
20#include <isl_vec_private.h>
21
22#define SELECTED 1
23#define DESELECTED -1
24#define UNSELECTED 0
25
26static __isl_give isl_vertices *compute_chambers(__isl_take isl_basic_set *bset,
27 __isl_take isl_vertices *vertices);
28
29__isl_give isl_vertices *isl_vertices_copy(__isl_keep isl_vertices *vertices)
30{
31 if (!vertices)
32 return NULL;
33
34 vertices->ref++;
35 return vertices;
36}
37
38__isl_null isl_vertices *isl_vertices_free(__isl_take isl_vertices *vertices)
39{
40 int i;
41
42 if (!vertices)
43 return NULL;
44
45 if (--vertices->ref > 0)
46 return NULL;
47
48 for (i = 0; i < vertices->n_vertices; ++i) {
49 isl_basic_set_free(bset: vertices->v[i].vertex);
50 isl_basic_set_free(bset: vertices->v[i].dom);
51 }
52 free(ptr: vertices->v);
53
54 for (i = 0; i < vertices->n_chambers; ++i) {
55 free(ptr: vertices->c[i].vertices);
56 isl_basic_set_free(bset: vertices->c[i].dom);
57 }
58 free(ptr: vertices->c);
59
60 isl_basic_set_free(bset: vertices->bset);
61 free(ptr: vertices);
62
63 return NULL;
64}
65
66struct isl_vertex_list {
67 struct isl_vertex v;
68 struct isl_vertex_list *next;
69};
70
71static struct isl_vertex_list *free_vertex_list(struct isl_vertex_list *list)
72{
73 struct isl_vertex_list *next;
74
75 for (; list; list = next) {
76 next = list->next;
77 isl_basic_set_free(bset: list->v.vertex);
78 isl_basic_set_free(bset: list->v.dom);
79 free(ptr: list);
80 }
81
82 return NULL;
83}
84
85static __isl_give isl_vertices *vertices_from_list(__isl_keep isl_basic_set *bset,
86 int n_vertices, struct isl_vertex_list *list)
87{
88 int i;
89 struct isl_vertex_list *next;
90 isl_vertices *vertices;
91
92 vertices = isl_calloc_type(bset->ctx, isl_vertices);
93 if (!vertices)
94 goto error;
95 vertices->ref = 1;
96 vertices->bset = isl_basic_set_copy(bset);
97 vertices->v = isl_alloc_array(bset->ctx, struct isl_vertex, n_vertices);
98 if (n_vertices && !vertices->v)
99 goto error;
100 vertices->n_vertices = n_vertices;
101
102 for (i = 0; list; list = next, i++) {
103 next = list->next;
104 vertices->v[i] = list->v;
105 free(ptr: list);
106 }
107
108 return vertices;
109error:
110 isl_vertices_free(vertices);
111 free_vertex_list(list);
112 return NULL;
113}
114
115/* Prepend a vertex to the linked list "list" based on the equalities in "tab".
116 * Return isl_bool_true if the vertex was actually added and
117 * isl_bool_false otherwise.
118 * In particular, vertices with a lower-dimensional activity domain are
119 * not added to the list because they would not be included in any chamber.
120 * Return isl_bool_error on error.
121 */
122static isl_bool add_vertex(struct isl_vertex_list **list,
123 __isl_keep isl_basic_set *bset, struct isl_tab *tab)
124{
125 isl_size nvar;
126 struct isl_vertex_list *v = NULL;
127
128 if (isl_tab_detect_implicit_equalities(tab) < 0)
129 return isl_bool_error;
130
131 nvar = isl_basic_set_dim(bset, type: isl_dim_set);
132 if (nvar < 0)
133 return isl_bool_error;
134
135 v = isl_calloc_type(tab->mat->ctx, struct isl_vertex_list);
136 if (!v)
137 goto error;
138
139 v->v.vertex = isl_basic_set_copy(bset);
140 v->v.vertex = isl_basic_set_cow(bset: v->v.vertex);
141 v->v.vertex = isl_basic_set_update_from_tab(bset: v->v.vertex, tab);
142 v->v.vertex = isl_basic_set_simplify(bset: v->v.vertex);
143 v->v.vertex = isl_basic_set_finalize(bset: v->v.vertex);
144 if (!v->v.vertex)
145 goto error;
146 isl_assert(bset->ctx, v->v.vertex->n_eq >= nvar, goto error);
147 v->v.dom = isl_basic_set_copy(bset: v->v.vertex);
148 v->v.dom = isl_basic_set_params(bset: v->v.dom);
149 if (!v->v.dom)
150 goto error;
151
152 if (v->v.dom->n_eq > 0) {
153 free_vertex_list(list: v);
154 return isl_bool_false;
155 }
156
157 v->next = *list;
158 *list = v;
159
160 return isl_bool_true;
161error:
162 free_vertex_list(list: v);
163 return isl_bool_error;
164}
165
166/* Compute the parametric vertices and the chamber decomposition
167 * of an empty parametric polytope.
168 */
169static __isl_give isl_vertices *vertices_empty(__isl_keep isl_basic_set *bset)
170{
171 isl_vertices *vertices;
172
173 if (!bset)
174 return NULL;
175
176 vertices = isl_calloc_type(bset->ctx, isl_vertices);
177 if (!vertices)
178 return NULL;
179 vertices->bset = isl_basic_set_copy(bset);
180 vertices->ref = 1;
181
182 vertices->n_vertices = 0;
183 vertices->n_chambers = 0;
184
185 return vertices;
186}
187
188/* Compute the parametric vertices and the chamber decomposition
189 * of the parametric polytope defined using the same constraints
190 * as "bset" in the 0D case.
191 * There is exactly one 0D vertex and a single chamber containing
192 * the vertex.
193 */
194static __isl_give isl_vertices *vertices_0D(__isl_keep isl_basic_set *bset)
195{
196 isl_vertices *vertices;
197
198 if (!bset)
199 return NULL;
200
201 vertices = isl_calloc_type(bset->ctx, isl_vertices);
202 if (!vertices)
203 return NULL;
204 vertices->ref = 1;
205 vertices->bset = isl_basic_set_copy(bset);
206
207 vertices->v = isl_calloc_array(bset->ctx, struct isl_vertex, 1);
208 if (!vertices->v)
209 goto error;
210 vertices->n_vertices = 1;
211 vertices->v[0].vertex = isl_basic_set_copy(bset);
212 vertices->v[0].dom = isl_basic_set_params(bset: isl_basic_set_copy(bset));
213 if (!vertices->v[0].vertex || !vertices->v[0].dom)
214 goto error;
215
216 vertices->c = isl_calloc_array(bset->ctx, struct isl_chamber, 1);
217 if (!vertices->c)
218 goto error;
219 vertices->n_chambers = 1;
220 vertices->c[0].n_vertices = 1;
221 vertices->c[0].vertices = isl_calloc_array(bset->ctx, int, 1);
222 if (!vertices->c[0].vertices)
223 goto error;
224 vertices->c[0].dom = isl_basic_set_copy(bset: vertices->v[0].dom);
225 if (!vertices->c[0].dom)
226 goto error;
227
228 return vertices;
229error:
230 isl_vertices_free(vertices);
231 return NULL;
232}
233
234/* Is the row pointed to by "f" linearly independent of the "n" first
235 * rows in "facets"?
236 */
237static isl_bool is_independent(__isl_keep isl_mat *facets, int n, isl_int *f)
238{
239 isl_size rank;
240
241 if (isl_seq_first_non_zero(p: f, len: facets->n_col) < 0)
242 return isl_bool_false;
243
244 isl_seq_cpy(dst: facets->row[n], src: f, len: facets->n_col);
245 facets->n_row = n + 1;
246 rank = isl_mat_rank(mat: facets);
247 if (rank < 0)
248 return isl_bool_error;
249
250 return isl_bool_ok(b: rank == n + 1);
251}
252
253/* Check whether we can select constraint "level", given the current selection
254 * reflected by facets in "tab", the rows of "facets" and the earlier
255 * "selected" elements of "selection".
256 *
257 * If the constraint is (strictly) redundant in the tableau, selecting it would
258 * result in an empty tableau, so it can't be selected.
259 * If the set variable part of the constraint is not linearly independent
260 * of the set variable parts of the already selected constraints,
261 * the constraint cannot be selected.
262 * If selecting the constraint results in an empty tableau, the constraint
263 * cannot be selected.
264 * Finally, if selecting the constraint results in some explicitly
265 * deselected constraints turning into equalities, then the corresponding
266 * vertices have already been generated, so the constraint cannot be selected.
267 */
268static isl_bool can_select(__isl_keep isl_basic_set *bset, int level,
269 struct isl_tab *tab, __isl_keep isl_mat *facets, int selected,
270 int *selection)
271{
272 int i;
273 isl_bool indep;
274 unsigned ovar;
275 struct isl_tab_undo *snap;
276
277 if (isl_tab_is_redundant(tab, con: level))
278 return isl_bool_false;
279
280 ovar = isl_space_offset(space: bset->dim, type: isl_dim_set);
281
282 indep = is_independent(facets, n: selected, f: bset->ineq[level] + 1 + ovar);
283 if (indep < 0 || !indep)
284 return indep;
285
286 snap = isl_tab_snap(tab);
287 if (isl_tab_select_facet(tab, con: level) < 0)
288 return isl_bool_error;
289
290 if (tab->empty) {
291 if (isl_tab_rollback(tab, snap) < 0)
292 return isl_bool_error;
293 return isl_bool_false;
294 }
295
296 for (i = 0; i < level; ++i) {
297 int sgn;
298
299 if (selection[i] != DESELECTED)
300 continue;
301
302 if (isl_tab_is_equality(tab, con: i))
303 sgn = 0;
304 else if (isl_tab_is_redundant(tab, con: i))
305 sgn = 1;
306 else
307 sgn = isl_tab_sign_of_max(tab, con: i);
308 if (sgn < -1)
309 return isl_bool_error;
310 if (sgn <= 0) {
311 if (isl_tab_rollback(tab, snap) < 0)
312 return isl_bool_error;
313 return isl_bool_false;
314 }
315 }
316
317 return isl_bool_true;
318}
319
320/* Compute the parametric vertices and the chamber decomposition
321 * of a parametric polytope that is not full-dimensional.
322 *
323 * Simply map the parametric polytope to a lower dimensional space
324 * and map the resulting vertices back.
325 */
326static __isl_give isl_vertices *lower_dim_vertices(
327 __isl_take isl_basic_set *bset)
328{
329 isl_morph *morph;
330 isl_vertices *vertices;
331
332 morph = isl_basic_set_full_compression(bset);
333 bset = isl_morph_basic_set(morph: isl_morph_copy(morph), bset);
334
335 vertices = isl_basic_set_compute_vertices(bset);
336 isl_basic_set_free(bset);
337
338 morph = isl_morph_inverse(morph);
339
340 vertices = isl_morph_vertices(morph, vertices);
341
342 return vertices;
343}
344
345/* Compute the parametric vertices and the chamber decomposition
346 * of a parametric polytope "bset" that is not full-dimensional.
347 * Additionally, free both "copy" and "tab".
348 */
349static __isl_give isl_vertices *lower_dim_vertices_free(
350 __isl_take isl_basic_set *bset, __isl_take isl_basic_set *copy,
351 struct isl_tab *tab)
352{
353 isl_basic_set_free(bset: copy);
354 isl_tab_free(tab);
355 return lower_dim_vertices(bset);
356}
357
358/* Detect implicit equality constraints in "bset" using the tableau
359 * representation "tab".
360 * Return a copy of "bset" with the implicit equality constraints
361 * made explicit, leaving the original "bset" unmodified.
362 */
363static __isl_give isl_basic_set *detect_implicit_equality_constraints(
364 __isl_keep isl_basic_set *bset, struct isl_tab *tab)
365{
366 if (isl_tab_detect_implicit_equalities(tab) < 0)
367 return NULL;
368
369 bset = isl_basic_set_copy(bset);
370 bset = isl_basic_set_cow(bset);
371 bset = isl_basic_set_update_from_tab(bset, tab);
372
373 return bset;
374}
375
376/* Compute the parametric vertices and the chamber decomposition
377 * of the parametric polytope defined using the same constraints
378 * as "bset". "bset" is assumed to have no existentially quantified
379 * variables.
380 *
381 * The vertices themselves are computed in a fairly simplistic way.
382 * We simply run through all combinations of d constraints,
383 * with d the number of set variables, and check if those d constraints
384 * define a vertex. To avoid the generation of duplicate vertices,
385 * which may happen if a vertex is defined by more than d constraints,
386 * we make sure we only generate the vertex for the d constraints with
387 * smallest index.
388 *
389 * Only potential vertices with a full-dimensional activity domain
390 * are considered. However, if the input has (implicit) equality
391 * constraints among the parameters, then activity domain
392 * should be considered full-dimensional if it does not satisfy
393 * any extra equality constraints beyond those of the input.
394 * The implicit equality constraints of the input are therefore first detected.
395 * If there are any, then the input is mapped to a lower dimensional space
396 * such that the check for full-dimensional activity domains
397 * can be performed with respect to a full-dimensional space.
398 * Note that it is important to leave "bset" unmodified while detecting
399 * equality constraints since the inequality constraints of "bset"
400 * are assumed to correspond to those of the tableau.
401 *
402 * We set up a tableau and keep track of which facets have been
403 * selected. The tableau is marked strict_redundant so that we can be
404 * sure that any constraint that is marked redundant (and that is not
405 * also marked zero) is not an equality.
406 * If a constraint is marked DESELECTED, it means the constraint was
407 * SELECTED before (in combination with the same selection of earlier
408 * constraints). If such a deselected constraint turns out to be an
409 * equality, then any vertex that may still be found with the current
410 * selection has already been generated when the constraint was selected.
411 * A constraint is marked UNSELECTED when there is no way selecting
412 * the constraint could lead to a vertex (in combination with the current
413 * selection of earlier constraints).
414 *
415 * The set variable coefficients of the selected constraints are stored
416 * in the facets matrix.
417 */
418__isl_give isl_vertices *isl_basic_set_compute_vertices(
419 __isl_keep isl_basic_set *bset)
420{
421 struct isl_tab *tab;
422 int level;
423 int init;
424 isl_size n_eq;
425 isl_size nvar;
426 int *selection = NULL;
427 int selected;
428 struct isl_tab_undo **snap = NULL;
429 isl_mat *facets = NULL;
430 struct isl_vertex_list *list = NULL;
431 int n_vertices = 0;
432 isl_vertices *vertices;
433 isl_basic_set *copy;
434 isl_basic_set *test;
435
436 if (!bset)
437 return NULL;
438
439 if (isl_basic_set_plain_is_empty(bset))
440 return vertices_empty(bset);
441
442 if (bset->n_eq != 0)
443 return lower_dim_vertices(bset: isl_basic_set_copy(bset));
444
445 if (isl_basic_set_check_no_locals(bset) < 0)
446 return NULL;
447
448 nvar = isl_basic_set_dim(bset, type: isl_dim_set);
449 if (nvar < 0)
450 return NULL;
451 if (nvar == 0)
452 return vertices_0D(bset);
453
454 copy = isl_basic_set_copy(bset);
455 copy = isl_basic_set_set_rational(bset: copy);
456 if (!copy)
457 return NULL;
458
459 tab = isl_tab_from_basic_set(bset: copy, track: 0);
460 if (!tab)
461 goto error;
462 tab->strict_redundant = 1;
463
464 if (tab->empty) {
465 vertices = vertices_empty(bset: copy);
466 isl_basic_set_free(bset: copy);
467 isl_tab_free(tab);
468 return vertices;
469 }
470
471 test = detect_implicit_equality_constraints(bset, tab);
472 n_eq = isl_basic_set_n_equality(bset: test);
473 if (n_eq < 0)
474 test = isl_basic_set_free(bset: test);
475 if (n_eq < 0 || n_eq > 0)
476 return lower_dim_vertices_free(bset: test, copy, tab);
477 isl_basic_set_free(bset: test);
478
479 selection = isl_alloc_array(copy->ctx, int, copy->n_ineq);
480 snap = isl_alloc_array(copy->ctx, struct isl_tab_undo *, copy->n_ineq);
481 facets = isl_mat_alloc(ctx: copy->ctx, n_row: nvar, n_col: nvar);
482 if ((copy->n_ineq && (!selection || !snap)) || !facets)
483 goto error;
484
485 level = 0;
486 init = 1;
487 selected = 0;
488
489 while (level >= 0) {
490 if (level >= copy->n_ineq ||
491 (!init && selection[level] != SELECTED)) {
492 --level;
493 init = 0;
494 continue;
495 }
496 if (init) {
497 isl_bool ok;
498 snap[level] = isl_tab_snap(tab);
499 ok = can_select(bset: copy, level, tab, facets, selected,
500 selection);
501 if (ok < 0)
502 goto error;
503 if (ok) {
504 selection[level] = SELECTED;
505 selected++;
506 } else
507 selection[level] = UNSELECTED;
508 } else {
509 selection[level] = DESELECTED;
510 selected--;
511 if (isl_tab_rollback(tab, snap: snap[level]) < 0)
512 goto error;
513 }
514 if (selected == nvar) {
515 if (tab->n_dead == nvar) {
516 isl_bool added = add_vertex(list: &list, bset: copy, tab);
517 if (added < 0)
518 goto error;
519 if (added)
520 n_vertices++;
521 }
522 init = 0;
523 continue;
524 }
525 ++level;
526 init = 1;
527 }
528
529 isl_mat_free(mat: facets);
530 free(ptr: selection);
531 free(ptr: snap);
532
533 isl_tab_free(tab);
534
535 vertices = vertices_from_list(bset: copy, n_vertices, list);
536
537 vertices = compute_chambers(bset: copy, vertices);
538
539 return vertices;
540error:
541 free_vertex_list(list);
542 isl_mat_free(mat: facets);
543 free(ptr: selection);
544 free(ptr: snap);
545 isl_tab_free(tab);
546 isl_basic_set_free(bset: copy);
547 return NULL;
548}
549
550struct isl_chamber_list {
551 struct isl_chamber c;
552 struct isl_chamber_list *next;
553};
554
555static void free_chamber_list(struct isl_chamber_list *list)
556{
557 struct isl_chamber_list *next;
558
559 for (; list; list = next) {
560 next = list->next;
561 isl_basic_set_free(bset: list->c.dom);
562 free(ptr: list->c.vertices);
563 free(ptr: list);
564 }
565}
566
567/* Check whether the basic set "bset" is a superset of the basic set described
568 * by "tab", i.e., check whether all constraints of "bset" are redundant.
569 */
570static isl_bool bset_covers_tab(__isl_keep isl_basic_set *bset,
571 struct isl_tab *tab)
572{
573 int i;
574
575 if (!bset || !tab)
576 return isl_bool_error;
577
578 for (i = 0; i < bset->n_ineq; ++i) {
579 enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq: bset->ineq[i]);
580 switch (type) {
581 case isl_ineq_error: return isl_bool_error;
582 case isl_ineq_redundant: continue;
583 default: return isl_bool_false;
584 }
585 }
586
587 return isl_bool_true;
588}
589
590static __isl_give isl_vertices *vertices_add_chambers(
591 __isl_take isl_vertices *vertices, int n_chambers,
592 struct isl_chamber_list *list)
593{
594 int i;
595 isl_ctx *ctx;
596 struct isl_chamber_list *next;
597
598 ctx = isl_vertices_get_ctx(vertices);
599 vertices->c = isl_alloc_array(ctx, struct isl_chamber, n_chambers);
600 if (!vertices->c)
601 goto error;
602 vertices->n_chambers = n_chambers;
603
604 for (i = 0; list; list = next, i++) {
605 next = list->next;
606 vertices->c[i] = list->c;
607 free(ptr: list);
608 }
609
610 return vertices;
611error:
612 isl_vertices_free(vertices);
613 free_chamber_list(list);
614 return NULL;
615}
616
617/* Can "tab" be intersected with "bset" without resulting in
618 * a lower-dimensional set.
619 * "bset" itself is assumed to be full-dimensional.
620 */
621static isl_bool can_intersect(struct isl_tab *tab,
622 __isl_keep isl_basic_set *bset)
623{
624 int i;
625 struct isl_tab_undo *snap;
626
627 if (bset->n_eq > 0)
628 isl_die(isl_basic_set_get_ctx(bset), isl_error_internal,
629 "expecting full-dimensional input",
630 return isl_bool_error);
631
632 if (isl_tab_extend_cons(tab, n_new: bset->n_ineq) < 0)
633 return isl_bool_error;
634
635 snap = isl_tab_snap(tab);
636
637 for (i = 0; i < bset->n_ineq; ++i) {
638 enum isl_ineq_type type;
639
640 type = isl_tab_ineq_type(tab, ineq: bset->ineq[i]);
641 if (type < 0)
642 return isl_bool_error;
643 if (type == isl_ineq_redundant)
644 continue;
645 if (isl_tab_add_ineq(tab, ineq: bset->ineq[i]) < 0)
646 return isl_bool_error;
647 }
648
649 if (isl_tab_detect_implicit_equalities(tab) < 0)
650 return isl_bool_error;
651 if (tab->n_dead) {
652 if (isl_tab_rollback(tab, snap) < 0)
653 return isl_bool_error;
654 return isl_bool_false;
655 }
656
657 return isl_bool_true;
658}
659
660static int add_chamber(struct isl_chamber_list **list,
661 __isl_keep isl_vertices *vertices, struct isl_tab *tab, int *selection)
662{
663 int n_frozen;
664 int i, j;
665 int n_vertices = 0;
666 struct isl_tab_undo *snap;
667 struct isl_chamber_list *c = NULL;
668
669 for (i = 0; i < vertices->n_vertices; ++i)
670 if (selection[i])
671 n_vertices++;
672
673 snap = isl_tab_snap(tab);
674
675 for (i = 0; i < tab->n_con && tab->con[i].frozen; ++i)
676 tab->con[i].frozen = 0;
677 n_frozen = i;
678
679 if (isl_tab_detect_redundant(tab) < 0)
680 return -1;
681
682 c = isl_calloc_type(tab->mat->ctx, struct isl_chamber_list);
683 if (!c)
684 goto error;
685 c->c.vertices = isl_alloc_array(tab->mat->ctx, int, n_vertices);
686 if (n_vertices && !c->c.vertices)
687 goto error;
688 c->c.dom = isl_basic_set_copy(bset: isl_tab_peek_bset(tab));
689 c->c.dom = isl_basic_set_set_rational(bset: c->c.dom);
690 c->c.dom = isl_basic_set_cow(bset: c->c.dom);
691 c->c.dom = isl_basic_set_update_from_tab(bset: c->c.dom, tab);
692 c->c.dom = isl_basic_set_simplify(bset: c->c.dom);
693 c->c.dom = isl_basic_set_finalize(bset: c->c.dom);
694 if (!c->c.dom)
695 goto error;
696
697 c->c.n_vertices = n_vertices;
698
699 for (i = 0, j = 0; i < vertices->n_vertices; ++i)
700 if (selection[i]) {
701 c->c.vertices[j] = i;
702 j++;
703 }
704
705 c->next = *list;
706 *list = c;
707
708 for (i = 0; i < n_frozen; ++i)
709 tab->con[i].frozen = 1;
710
711 if (isl_tab_rollback(tab, snap) < 0)
712 return -1;
713
714 return 0;
715error:
716 free_chamber_list(list: c);
717 return -1;
718}
719
720struct isl_facet_todo {
721 struct isl_tab *tab; /* A tableau representation of the facet */
722 isl_basic_set *bset; /* A normalized basic set representation */
723 isl_vec *constraint; /* Constraint pointing to the other side */
724 struct isl_facet_todo *next;
725};
726
727static void free_todo(struct isl_facet_todo *todo)
728{
729 while (todo) {
730 struct isl_facet_todo *next = todo->next;
731
732 isl_tab_free(tab: todo->tab);
733 isl_basic_set_free(bset: todo->bset);
734 isl_vec_free(vec: todo->constraint);
735 free(ptr: todo);
736
737 todo = next;
738 }
739}
740
741static struct isl_facet_todo *create_todo(struct isl_tab *tab, int con)
742{
743 int i;
744 int n_frozen;
745 struct isl_tab_undo *snap;
746 struct isl_facet_todo *todo;
747
748 snap = isl_tab_snap(tab);
749
750 for (i = 0; i < tab->n_con && tab->con[i].frozen; ++i)
751 tab->con[i].frozen = 0;
752 n_frozen = i;
753
754 if (isl_tab_detect_redundant(tab) < 0)
755 return NULL;
756
757 todo = isl_calloc_type(tab->mat->ctx, struct isl_facet_todo);
758 if (!todo)
759 return NULL;
760
761 todo->constraint = isl_vec_alloc(ctx: tab->mat->ctx, size: 1 + tab->n_var);
762 if (!todo->constraint)
763 goto error;
764 isl_seq_neg(dst: todo->constraint->el, src: tab->bmap->ineq[con], len: 1 + tab->n_var);
765 todo->bset = isl_basic_set_copy(bset: isl_tab_peek_bset(tab));
766 todo->bset = isl_basic_set_set_rational(bset: todo->bset);
767 todo->bset = isl_basic_set_cow(bset: todo->bset);
768 todo->bset = isl_basic_set_update_from_tab(bset: todo->bset, tab);
769 todo->bset = isl_basic_set_simplify(bset: todo->bset);
770 todo->bset = isl_basic_set_sort_constraints(bset: todo->bset);
771 if (!todo->bset)
772 goto error;
773 ISL_F_SET(todo->bset, ISL_BASIC_SET_NO_REDUNDANT);
774 todo->tab = isl_tab_dup(tab);
775 if (!todo->tab)
776 goto error;
777
778 for (i = 0; i < n_frozen; ++i)
779 tab->con[i].frozen = 1;
780
781 if (isl_tab_rollback(tab, snap) < 0)
782 goto error;
783
784 return todo;
785error:
786 free_todo(todo);
787 return NULL;
788}
789
790/* Create todo items for all interior facets of the chamber represented
791 * by "tab" and collect them in "next".
792 */
793static int init_todo(struct isl_facet_todo **next, struct isl_tab *tab)
794{
795 int i;
796 struct isl_tab_undo *snap;
797 struct isl_facet_todo *todo;
798
799 snap = isl_tab_snap(tab);
800
801 for (i = 0; i < tab->n_con; ++i) {
802 if (tab->con[i].frozen)
803 continue;
804 if (tab->con[i].is_redundant)
805 continue;
806
807 if (isl_tab_select_facet(tab, con: i) < 0)
808 return -1;
809
810 todo = create_todo(tab, con: i);
811 if (!todo)
812 return -1;
813
814 todo->next = *next;
815 *next = todo;
816
817 if (isl_tab_rollback(tab, snap) < 0)
818 return -1;
819 }
820
821 return 0;
822}
823
824/* Does the linked list contain a todo item that is the opposite of "todo".
825 * If so, return 1 and remove the opposite todo item.
826 */
827static int has_opposite(struct isl_facet_todo *todo,
828 struct isl_facet_todo **list)
829{
830 for (; *list; list = &(*list)->next) {
831 int eq;
832 eq = isl_basic_set_plain_is_equal(bset1: todo->bset, bset2: (*list)->bset);
833 if (eq < 0)
834 return -1;
835 if (!eq)
836 continue;
837 todo = *list;
838 *list = todo->next;
839 todo->next = NULL;
840 free_todo(todo);
841 return 1;
842 }
843
844 return 0;
845}
846
847/* Create todo items for all interior facets of the chamber represented
848 * by "tab" and collect them in first->next, taking care to cancel
849 * opposite todo items.
850 */
851static int update_todo(struct isl_facet_todo *first, struct isl_tab *tab)
852{
853 int i;
854 struct isl_tab_undo *snap;
855 struct isl_facet_todo *todo;
856
857 snap = isl_tab_snap(tab);
858
859 for (i = 0; i < tab->n_con; ++i) {
860 int drop;
861
862 if (tab->con[i].frozen)
863 continue;
864 if (tab->con[i].is_redundant)
865 continue;
866
867 if (isl_tab_select_facet(tab, con: i) < 0)
868 return -1;
869
870 todo = create_todo(tab, con: i);
871 if (!todo)
872 return -1;
873
874 drop = has_opposite(todo, list: &first->next);
875 if (drop < 0)
876 return -1;
877
878 if (drop)
879 free_todo(todo);
880 else {
881 todo->next = first->next;
882 first->next = todo;
883 }
884
885 if (isl_tab_rollback(tab, snap) < 0)
886 return -1;
887 }
888
889 return 0;
890}
891
892/* Compute the chamber decomposition of the parametric polytope respresented
893 * by "bset" given the parametric vertices and their activity domains.
894 *
895 * We are only interested in full-dimensional chambers.
896 * Each of these chambers is the intersection of the activity domains of
897 * one or more vertices and the union of all chambers is equal to the
898 * projection of the entire parametric polytope onto the parameter space.
899 *
900 * We first create an initial chamber by intersecting as many activity
901 * domains as possible without ending up with an empty or lower-dimensional
902 * set. As a minor optimization, we only consider those activity domains
903 * that contain some arbitrary point.
904 *
905 * For each of the interior facets of the chamber, we construct a todo item,
906 * containing the facet and a constraint containing the other side of the facet,
907 * for constructing the chamber on the other side.
908 * While their are any todo items left, we pick a todo item and
909 * create the required chamber by intersecting all activity domains
910 * that contain the facet and have a full-dimensional intersection with
911 * the other side of the facet. For each of the interior facets, we
912 * again create todo items, taking care to cancel opposite todo items.
913 */
914static __isl_give isl_vertices *compute_chambers(__isl_take isl_basic_set *bset,
915 __isl_take isl_vertices *vertices)
916{
917 int i;
918 isl_ctx *ctx;
919 isl_size n_eq;
920 isl_vec *sample = NULL;
921 struct isl_tab *tab = NULL;
922 struct isl_tab_undo *snap;
923 int *selection = NULL;
924 int n_chambers = 0;
925 struct isl_chamber_list *list = NULL;
926 struct isl_facet_todo *todo = NULL;
927
928 if (!bset || !vertices)
929 goto error;
930
931 ctx = isl_vertices_get_ctx(vertices);
932 selection = isl_alloc_array(ctx, int, vertices->n_vertices);
933 if (vertices->n_vertices && !selection)
934 goto error;
935
936 bset = isl_basic_set_params(bset);
937 n_eq = isl_basic_set_n_equality(bset);
938 if (n_eq < 0)
939 goto error;
940 if (n_eq > 0)
941 isl_die(isl_basic_set_get_ctx(bset), isl_error_internal,
942 "expecting full-dimensional input", goto error);
943
944 tab = isl_tab_from_basic_set(bset, track: 1);
945 if (!tab)
946 goto error;
947 for (i = 0; i < bset->n_ineq; ++i)
948 if (isl_tab_freeze_constraint(tab, con: i) < 0)
949 goto error;
950 isl_basic_set_free(bset);
951
952 snap = isl_tab_snap(tab);
953
954 sample = isl_tab_get_sample_value(tab);
955
956 for (i = 0; i < vertices->n_vertices; ++i) {
957 selection[i] = isl_basic_set_contains(bset: vertices->v[i].dom, vec: sample);
958 if (selection[i] < 0)
959 goto error;
960 if (!selection[i])
961 continue;
962 selection[i] = can_intersect(tab, bset: vertices->v[i].dom);
963 if (selection[i] < 0)
964 goto error;
965 }
966
967 if (isl_tab_detect_redundant(tab) < 0)
968 goto error;
969
970 if (add_chamber(list: &list, vertices, tab, selection) < 0)
971 goto error;
972 n_chambers++;
973
974 if (init_todo(next: &todo, tab) < 0)
975 goto error;
976
977 while (todo) {
978 struct isl_facet_todo *next;
979
980 if (isl_tab_rollback(tab, snap) < 0)
981 goto error;
982
983 if (isl_tab_add_ineq(tab, ineq: todo->constraint->el) < 0)
984 goto error;
985 if (isl_tab_freeze_constraint(tab, con: tab->n_con - 1) < 0)
986 goto error;
987
988 for (i = 0; i < vertices->n_vertices; ++i) {
989 selection[i] = bset_covers_tab(bset: vertices->v[i].dom,
990 tab: todo->tab);
991 if (selection[i] < 0)
992 goto error;
993 if (!selection[i])
994 continue;
995 selection[i] = can_intersect(tab, bset: vertices->v[i].dom);
996 if (selection[i] < 0)
997 goto error;
998 }
999
1000 if (isl_tab_detect_redundant(tab) < 0)
1001 goto error;
1002
1003 if (add_chamber(list: &list, vertices, tab, selection) < 0)
1004 goto error;
1005 n_chambers++;
1006
1007 if (update_todo(first: todo, tab) < 0)
1008 goto error;
1009
1010 next = todo->next;
1011 todo->next = NULL;
1012 free_todo(todo);
1013 todo = next;
1014 }
1015
1016 isl_vec_free(vec: sample);
1017
1018 isl_tab_free(tab);
1019 free(ptr: selection);
1020
1021 vertices = vertices_add_chambers(vertices, n_chambers, list);
1022
1023 for (i = 0; vertices && i < vertices->n_vertices; ++i) {
1024 isl_basic_set_free(bset: vertices->v[i].dom);
1025 vertices->v[i].dom = NULL;
1026 }
1027
1028 return vertices;
1029error:
1030 free_chamber_list(list);
1031 free_todo(todo);
1032 isl_vec_free(vec: sample);
1033 isl_tab_free(tab);
1034 free(ptr: selection);
1035 if (!tab)
1036 isl_basic_set_free(bset);
1037 isl_vertices_free(vertices);
1038 return NULL;
1039}
1040
1041isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex)
1042{
1043 return vertex ? isl_vertices_get_ctx(vertices: vertex->vertices) : NULL;
1044}
1045
1046isl_size isl_vertex_get_id(__isl_keep isl_vertex *vertex)
1047{
1048 return vertex ? vertex->id : isl_size_error;
1049}
1050
1051/* Return the activity domain of the vertex "vertex".
1052 */
1053__isl_give isl_basic_set *isl_vertex_get_domain(__isl_keep isl_vertex *vertex)
1054{
1055 struct isl_vertex *v;
1056
1057 if (!vertex)
1058 return NULL;
1059
1060 v = &vertex->vertices->v[vertex->id];
1061 if (!v->dom) {
1062 v->dom = isl_basic_set_copy(bset: v->vertex);
1063 v->dom = isl_basic_set_params(bset: v->dom);
1064 v->dom = isl_basic_set_set_integral(bset: v->dom);
1065 }
1066
1067 return isl_basic_set_copy(bset: v->dom);
1068}
1069
1070/* Return a multiple quasi-affine expression describing the vertex "vertex"
1071 * in terms of the parameters,
1072 */
1073__isl_give isl_multi_aff *isl_vertex_get_expr(__isl_keep isl_vertex *vertex)
1074{
1075 struct isl_vertex *v;
1076 isl_basic_set *bset;
1077
1078 if (!vertex)
1079 return NULL;
1080
1081 v = &vertex->vertices->v[vertex->id];
1082
1083 bset = isl_basic_set_copy(bset: v->vertex);
1084 return isl_multi_aff_from_basic_set_equalities(bset);
1085}
1086
1087static __isl_give isl_vertex *isl_vertex_alloc(__isl_take isl_vertices *vertices,
1088 int id)
1089{
1090 isl_ctx *ctx;
1091 isl_vertex *vertex;
1092
1093 if (!vertices)
1094 return NULL;
1095
1096 ctx = isl_vertices_get_ctx(vertices);
1097 vertex = isl_alloc_type(ctx, isl_vertex);
1098 if (!vertex)
1099 goto error;
1100
1101 vertex->vertices = vertices;
1102 vertex->id = id;
1103
1104 return vertex;
1105error:
1106 isl_vertices_free(vertices);
1107 return NULL;
1108}
1109
1110__isl_null isl_vertex *isl_vertex_free(__isl_take isl_vertex *vertex)
1111{
1112 if (!vertex)
1113 return NULL;
1114 isl_vertices_free(vertices: vertex->vertices);
1115 free(ptr: vertex);
1116
1117 return NULL;
1118}
1119
1120isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell)
1121{
1122 return cell ? cell->dom->ctx : NULL;
1123}
1124
1125__isl_give isl_basic_set *isl_cell_get_domain(__isl_keep isl_cell *cell)
1126{
1127 return cell ? isl_basic_set_copy(bset: cell->dom) : NULL;
1128}
1129
1130static __isl_give isl_cell *isl_cell_alloc(__isl_take isl_vertices *vertices,
1131 __isl_take isl_basic_set *dom, int id)
1132{
1133 int i;
1134 isl_cell *cell = NULL;
1135
1136 if (!vertices || !dom)
1137 goto error;
1138
1139 cell = isl_calloc_type(dom->ctx, isl_cell);
1140 if (!cell)
1141 goto error;
1142
1143 cell->n_vertices = vertices->c[id].n_vertices;
1144 cell->ids = isl_alloc_array(dom->ctx, int, cell->n_vertices);
1145 if (cell->n_vertices && !cell->ids)
1146 goto error;
1147 for (i = 0; i < cell->n_vertices; ++i)
1148 cell->ids[i] = vertices->c[id].vertices[i];
1149 cell->vertices = vertices;
1150 cell->dom = dom;
1151
1152 return cell;
1153error:
1154 isl_cell_free(cell);
1155 isl_vertices_free(vertices);
1156 isl_basic_set_free(bset: dom);
1157 return NULL;
1158}
1159
1160__isl_null isl_cell *isl_cell_free(__isl_take isl_cell *cell)
1161{
1162 if (!cell)
1163 return NULL;
1164
1165 isl_vertices_free(vertices: cell->vertices);
1166 free(ptr: cell->ids);
1167 isl_basic_set_free(bset: cell->dom);
1168 free(ptr: cell);
1169
1170 return NULL;
1171}
1172
1173/* Create a tableau of the cone obtained by first homogenizing the given
1174 * polytope and then making all inequalities strict by setting the
1175 * constant term to -1.
1176 */
1177static struct isl_tab *tab_for_shifted_cone(__isl_keep isl_basic_set *bset)
1178{
1179 int i;
1180 isl_vec *c = NULL;
1181 struct isl_tab *tab;
1182 isl_size total;
1183
1184 total = isl_basic_set_dim(bset, type: isl_dim_all);
1185 if (total < 0)
1186 return NULL;
1187 tab = isl_tab_alloc(ctx: bset->ctx, n_row: bset->n_eq + bset->n_ineq + 1,
1188 n_var: 1 + total, M: 0);
1189 if (!tab)
1190 return NULL;
1191 tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL);
1192 if (ISL_F_ISSET(bset, ISL_BASIC_MAP_EMPTY)) {
1193 if (isl_tab_mark_empty(tab) < 0)
1194 goto error;
1195 return tab;
1196 }
1197
1198 c = isl_vec_alloc(ctx: bset->ctx, size: 1 + 1 + total);
1199 if (!c)
1200 goto error;
1201
1202 isl_int_set_si(c->el[0], 0);
1203 for (i = 0; i < bset->n_eq; ++i) {
1204 isl_seq_cpy(dst: c->el + 1, src: bset->eq[i], len: c->size - 1);
1205 if (isl_tab_add_eq(tab, eq: c->el) < 0)
1206 goto error;
1207 }
1208
1209 isl_int_set_si(c->el[0], -1);
1210 for (i = 0; i < bset->n_ineq; ++i) {
1211 isl_seq_cpy(dst: c->el + 1, src: bset->ineq[i], len: c->size - 1);
1212 if (isl_tab_add_ineq(tab, ineq: c->el) < 0)
1213 goto error;
1214 if (tab->empty) {
1215 isl_vec_free(vec: c);
1216 return tab;
1217 }
1218 }
1219
1220 isl_seq_clr(p: c->el + 1, len: c->size - 1);
1221 isl_int_set_si(c->el[1], 1);
1222 if (isl_tab_add_ineq(tab, ineq: c->el) < 0)
1223 goto error;
1224
1225 isl_vec_free(vec: c);
1226 return tab;
1227error:
1228 isl_vec_free(vec: c);
1229 isl_tab_free(tab);
1230 return NULL;
1231}
1232
1233/* Compute an interior point of "bset" by selecting an interior
1234 * point in homogeneous space and projecting the point back down.
1235 */
1236static __isl_give isl_vec *isl_basic_set_interior_point(
1237 __isl_keep isl_basic_set *bset)
1238{
1239 isl_vec *vec;
1240 struct isl_tab *tab;
1241
1242 tab = tab_for_shifted_cone(bset);
1243 vec = isl_tab_get_sample_value(tab);
1244 isl_tab_free(tab);
1245 if (!vec)
1246 return NULL;
1247
1248 isl_seq_cpy(dst: vec->el, src: vec->el + 1, len: vec->size - 1);
1249 vec->size--;
1250
1251 return vec;
1252}
1253
1254/* Call "fn" on all chambers of the parametric polytope with the shared
1255 * facets of neighboring chambers only appearing in one of the chambers.
1256 *
1257 * We pick an interior point from one of the chambers and then make
1258 * all constraints that do not satisfy this point strict.
1259 * For constraints that saturate the interior point, the sign
1260 * of the first non-zero coefficient is used to determine which
1261 * of the two (internal) constraints should be tightened.
1262 */
1263isl_stat isl_vertices_foreach_disjoint_cell(__isl_keep isl_vertices *vertices,
1264 isl_stat (*fn)(__isl_take isl_cell *cell, void *user), void *user)
1265{
1266 int i;
1267 isl_vec *vec;
1268 isl_cell *cell;
1269
1270 if (!vertices)
1271 return isl_stat_error;
1272
1273 if (vertices->n_chambers == 0)
1274 return isl_stat_ok;
1275
1276 if (vertices->n_chambers == 1) {
1277 isl_basic_set *dom = isl_basic_set_copy(bset: vertices->c[0].dom);
1278 dom = isl_basic_set_set_integral(bset: dom);
1279 cell = isl_cell_alloc(vertices: isl_vertices_copy(vertices), dom, id: 0);
1280 if (!cell)
1281 return isl_stat_error;
1282 return fn(cell, user);
1283 }
1284
1285 vec = isl_basic_set_interior_point(bset: vertices->c[0].dom);
1286 if (!vec)
1287 return isl_stat_error;
1288
1289 for (i = 0; i < vertices->n_chambers; ++i) {
1290 int r;
1291 isl_basic_set *dom = isl_basic_set_copy(bset: vertices->c[i].dom);
1292 if (i)
1293 dom = isl_basic_set_tighten_outward(bset: dom, vec);
1294 dom = isl_basic_set_set_integral(bset: dom);
1295 cell = isl_cell_alloc(vertices: isl_vertices_copy(vertices), dom, id: i);
1296 if (!cell)
1297 goto error;
1298 r = fn(cell, user);
1299 if (r < 0)
1300 goto error;
1301 }
1302
1303 isl_vec_free(vec);
1304
1305 return isl_stat_ok;
1306error:
1307 isl_vec_free(vec);
1308 return isl_stat_error;
1309}
1310
1311isl_stat isl_vertices_foreach_cell(__isl_keep isl_vertices *vertices,
1312 isl_stat (*fn)(__isl_take isl_cell *cell, void *user), void *user)
1313{
1314 int i;
1315 isl_cell *cell;
1316
1317 if (!vertices)
1318 return isl_stat_error;
1319
1320 if (vertices->n_chambers == 0)
1321 return isl_stat_ok;
1322
1323 for (i = 0; i < vertices->n_chambers; ++i) {
1324 isl_stat r;
1325 isl_basic_set *dom = isl_basic_set_copy(bset: vertices->c[i].dom);
1326
1327 cell = isl_cell_alloc(vertices: isl_vertices_copy(vertices), dom, id: i);
1328 if (!cell)
1329 return isl_stat_error;
1330
1331 r = fn(cell, user);
1332 if (r < 0)
1333 return isl_stat_error;
1334 }
1335
1336 return isl_stat_ok;
1337}
1338
1339isl_stat isl_vertices_foreach_vertex(__isl_keep isl_vertices *vertices,
1340 isl_stat (*fn)(__isl_take isl_vertex *vertex, void *user), void *user)
1341{
1342 int i;
1343 isl_vertex *vertex;
1344
1345 if (!vertices)
1346 return isl_stat_error;
1347
1348 if (vertices->n_vertices == 0)
1349 return isl_stat_ok;
1350
1351 for (i = 0; i < vertices->n_vertices; ++i) {
1352 isl_stat r;
1353
1354 vertex = isl_vertex_alloc(vertices: isl_vertices_copy(vertices), id: i);
1355 if (!vertex)
1356 return isl_stat_error;
1357
1358 r = fn(vertex, user);
1359 if (r < 0)
1360 return isl_stat_error;
1361 }
1362
1363 return isl_stat_ok;
1364}
1365
1366isl_stat isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
1367 isl_stat (*fn)(__isl_take isl_vertex *vertex, void *user), void *user)
1368{
1369 int i;
1370 isl_vertex *vertex;
1371
1372 if (!cell)
1373 return isl_stat_error;
1374
1375 if (cell->n_vertices == 0)
1376 return isl_stat_ok;
1377
1378 for (i = 0; i < cell->n_vertices; ++i) {
1379 isl_stat r;
1380
1381 vertex = isl_vertex_alloc(vertices: isl_vertices_copy(vertices: cell->vertices),
1382 id: cell->ids[i]);
1383 if (!vertex)
1384 return isl_stat_error;
1385
1386 r = fn(vertex, user);
1387 if (r < 0)
1388 return isl_stat_error;
1389 }
1390
1391 return isl_stat_ok;
1392}
1393
1394isl_ctx *isl_vertices_get_ctx(__isl_keep isl_vertices *vertices)
1395{
1396 return vertices ? vertices->bset->ctx : NULL;
1397}
1398
1399isl_size isl_vertices_get_n_vertices(__isl_keep isl_vertices *vertices)
1400{
1401 return vertices ? vertices->n_vertices : isl_size_error;
1402}
1403
1404__isl_give isl_vertices *isl_morph_vertices(__isl_take isl_morph *morph,
1405 __isl_take isl_vertices *vertices)
1406{
1407 int i;
1408 isl_morph *param_morph = NULL;
1409
1410 if (!morph || !vertices)
1411 goto error;
1412
1413 isl_assert(vertices->bset->ctx, vertices->ref == 1, goto error);
1414
1415 param_morph = isl_morph_copy(morph);
1416 param_morph = isl_morph_dom_params(morph: param_morph);
1417 param_morph = isl_morph_ran_params(morph: param_morph);
1418
1419 for (i = 0; i < vertices->n_vertices; ++i) {
1420 vertices->v[i].dom = isl_morph_basic_set(
1421 morph: isl_morph_copy(morph: param_morph), bset: vertices->v[i].dom);
1422 vertices->v[i].vertex = isl_morph_basic_set(
1423 morph: isl_morph_copy(morph), bset: vertices->v[i].vertex);
1424 if (!vertices->v[i].vertex)
1425 goto error;
1426 }
1427
1428 for (i = 0; i < vertices->n_chambers; ++i) {
1429 vertices->c[i].dom = isl_morph_basic_set(
1430 morph: isl_morph_copy(morph: param_morph), bset: vertices->c[i].dom);
1431 if (!vertices->c[i].dom)
1432 goto error;
1433 }
1434
1435 isl_morph_free(morph: param_morph);
1436 isl_morph_free(morph);
1437 return vertices;
1438error:
1439 isl_morph_free(morph: param_morph);
1440 isl_morph_free(morph);
1441 isl_vertices_free(vertices);
1442 return NULL;
1443}
1444
1445/* Construct a simplex isl_cell spanned by the vertices with indices in
1446 * "simplex_ids" and "other_ids" and call "fn" on this isl_cell.
1447 */
1448static isl_stat call_on_simplex(__isl_keep isl_cell *cell,
1449 int *simplex_ids, int n_simplex, int *other_ids, int n_other,
1450 isl_stat (*fn)(__isl_take isl_cell *simplex, void *user), void *user)
1451{
1452 int i;
1453 isl_ctx *ctx;
1454 struct isl_cell *simplex;
1455
1456 ctx = isl_cell_get_ctx(cell);
1457
1458 simplex = isl_calloc_type(ctx, struct isl_cell);
1459 if (!simplex)
1460 return isl_stat_error;
1461 simplex->vertices = isl_vertices_copy(vertices: cell->vertices);
1462 if (!simplex->vertices)
1463 goto error;
1464 simplex->dom = isl_basic_set_copy(bset: cell->dom);
1465 if (!simplex->dom)
1466 goto error;
1467 simplex->n_vertices = n_simplex + n_other;
1468 simplex->ids = isl_alloc_array(ctx, int, simplex->n_vertices);
1469 if (!simplex->ids)
1470 goto error;
1471
1472 for (i = 0; i < n_simplex; ++i)
1473 simplex->ids[i] = simplex_ids[i];
1474 for (i = 0; i < n_other; ++i)
1475 simplex->ids[n_simplex + i] = other_ids[i];
1476
1477 return fn(simplex, user);
1478error:
1479 isl_cell_free(cell: simplex);
1480 return isl_stat_error;
1481}
1482
1483/* Check whether the parametric vertex described by "vertex"
1484 * lies on the facet corresponding to constraint "facet" of "bset".
1485 * The isl_vec "v" is a temporary vector than can be used by this function.
1486 *
1487 * We eliminate the variables from the facet constraint using the
1488 * equalities defining the vertex and check if the result is identical
1489 * to zero.
1490 *
1491 * It would probably be better to keep track of the constraints defining
1492 * a vertex during the vertex construction so that we could simply look
1493 * it up here.
1494 */
1495static int vertex_on_facet(__isl_keep isl_basic_set *vertex,
1496 __isl_keep isl_basic_set *bset, int facet, __isl_keep isl_vec *v)
1497{
1498 int i;
1499 isl_int m;
1500
1501 isl_seq_cpy(dst: v->el, src: bset->ineq[facet], len: v->size);
1502
1503 isl_int_init(m);
1504 for (i = 0; i < vertex->n_eq; ++i) {
1505 int k = isl_seq_last_non_zero(p: vertex->eq[i], len: v->size);
1506 isl_seq_elim(dst: v->el, src: vertex->eq[i], pos: k, len: v->size, m: &m);
1507 }
1508 isl_int_clear(m);
1509
1510 return isl_seq_first_non_zero(p: v->el, len: v->size) == -1;
1511}
1512
1513/* Triangulate the polytope spanned by the vertices with ids
1514 * in "simplex_ids" and "other_ids" and call "fn" on each of
1515 * the resulting simplices.
1516 * If the input polytope is already a simplex, we simply call "fn".
1517 * Otherwise, we pick a point from "other_ids" and add it to "simplex_ids".
1518 * Then we consider each facet of "bset" that does not contain the point
1519 * we just picked, but does contain some of the other points in "other_ids"
1520 * and call ourselves recursively on the polytope spanned by the new
1521 * "simplex_ids" and those points in "other_ids" that lie on the facet.
1522 */
1523static isl_stat triangulate(__isl_keep isl_cell *cell, __isl_keep isl_vec *v,
1524 int *simplex_ids, int n_simplex, int *other_ids, int n_other,
1525 isl_stat (*fn)(__isl_take isl_cell *simplex, void *user), void *user)
1526{
1527 int i, j, k;
1528 isl_size d, nparam;
1529 int *ids;
1530 isl_ctx *ctx;
1531 isl_basic_set *vertex;
1532 isl_basic_set *bset;
1533
1534 ctx = isl_cell_get_ctx(cell);
1535 d = isl_basic_set_dim(bset: cell->vertices->bset, type: isl_dim_set);
1536 nparam = isl_basic_set_dim(bset: cell->vertices->bset, type: isl_dim_param);
1537 if (d < 0 || nparam < 0)
1538 return isl_stat_error;
1539
1540 if (n_simplex + n_other == d + 1)
1541 return call_on_simplex(cell, simplex_ids, n_simplex,
1542 other_ids, n_other, fn, user);
1543
1544 simplex_ids[n_simplex] = other_ids[0];
1545 vertex = cell->vertices->v[other_ids[0]].vertex;
1546 bset = cell->vertices->bset;
1547
1548 ids = isl_alloc_array(ctx, int, n_other - 1);
1549 if (!ids)
1550 goto error;
1551 for (i = 0; i < bset->n_ineq; ++i) {
1552 if (isl_seq_first_non_zero(p: bset->ineq[i] + 1 + nparam, len: d) == -1)
1553 continue;
1554 if (vertex_on_facet(vertex, bset, facet: i, v))
1555 continue;
1556
1557 for (j = 1, k = 0; j < n_other; ++j) {
1558 isl_basic_set *ov;
1559 ov = cell->vertices->v[other_ids[j]].vertex;
1560 if (vertex_on_facet(vertex: ov, bset, facet: i, v))
1561 ids[k++] = other_ids[j];
1562 }
1563 if (k == 0)
1564 continue;
1565
1566 if (triangulate(cell, v, simplex_ids, n_simplex: n_simplex + 1,
1567 other_ids: ids, n_other: k, fn, user) < 0)
1568 goto error;
1569 }
1570 free(ptr: ids);
1571
1572 return isl_stat_ok;
1573error:
1574 free(ptr: ids);
1575 return isl_stat_error;
1576}
1577
1578/* Triangulate the given cell and call "fn" on each of the resulting
1579 * simplices.
1580 */
1581isl_stat isl_cell_foreach_simplex(__isl_take isl_cell *cell,
1582 isl_stat (*fn)(__isl_take isl_cell *simplex, void *user), void *user)
1583{
1584 isl_size d, total;
1585 isl_stat r;
1586 isl_ctx *ctx;
1587 isl_vec *v = NULL;
1588 int *simplex_ids = NULL;
1589
1590 if (!cell)
1591 return isl_stat_error;
1592
1593 d = isl_basic_set_dim(bset: cell->vertices->bset, type: isl_dim_set);
1594 total = isl_basic_set_dim(bset: cell->vertices->bset, type: isl_dim_all);
1595 if (d < 0 || total < 0)
1596 return isl_stat_error;
1597
1598 if (cell->n_vertices == d + 1)
1599 return fn(cell, user);
1600
1601 ctx = isl_cell_get_ctx(cell);
1602 simplex_ids = isl_alloc_array(ctx, int, d + 1);
1603 if (!simplex_ids)
1604 goto error;
1605
1606 v = isl_vec_alloc(ctx, size: 1 + total);
1607 if (!v)
1608 goto error;
1609
1610 r = triangulate(cell, v, simplex_ids, n_simplex: 0,
1611 other_ids: cell->ids, n_other: cell->n_vertices, fn, user);
1612
1613 isl_vec_free(vec: v);
1614 free(ptr: simplex_ids);
1615
1616 isl_cell_free(cell);
1617
1618 return r;
1619error:
1620 free(ptr: simplex_ids);
1621 isl_vec_free(vec: v);
1622 isl_cell_free(cell);
1623 return isl_stat_error;
1624}
1625

source code of polly/lib/External/isl/isl_vertices.c