| 1 | /* |
| 2 | * Copyright 2010 INRIA Saclay |
| 3 | * |
| 4 | * Use of this software is governed by the MIT license |
| 5 | * |
| 6 | * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, |
| 7 | * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, |
| 8 | * 91893 Orsay, France |
| 9 | */ |
| 10 | |
| 11 | #include <isl_map_private.h> |
| 12 | #include <isl_aff_private.h> |
| 13 | #include <isl/set.h> |
| 14 | #include <isl_seq.h> |
| 15 | #include <isl_tab.h> |
| 16 | #include <isl_space_private.h> |
| 17 | #include <isl_morph.h> |
| 18 | #include <isl_vertices_private.h> |
| 19 | #include <isl_mat_private.h> |
| 20 | #include <isl_vec_private.h> |
| 21 | |
| 22 | #define SELECTED 1 |
| 23 | #define DESELECTED -1 |
| 24 | #define UNSELECTED 0 |
| 25 | |
| 26 | static __isl_give isl_vertices *compute_chambers(__isl_take isl_basic_set *bset, |
| 27 | __isl_take isl_vertices *vertices); |
| 28 | |
| 29 | __isl_give isl_vertices *isl_vertices_copy(__isl_keep isl_vertices *vertices) |
| 30 | { |
| 31 | if (!vertices) |
| 32 | return NULL; |
| 33 | |
| 34 | vertices->ref++; |
| 35 | return vertices; |
| 36 | } |
| 37 | |
| 38 | __isl_null isl_vertices *isl_vertices_free(__isl_take isl_vertices *vertices) |
| 39 | { |
| 40 | int i; |
| 41 | |
| 42 | if (!vertices) |
| 43 | return NULL; |
| 44 | |
| 45 | if (--vertices->ref > 0) |
| 46 | return NULL; |
| 47 | |
| 48 | for (i = 0; i < vertices->n_vertices; ++i) { |
| 49 | isl_basic_set_free(bset: vertices->v[i].vertex); |
| 50 | isl_basic_set_free(bset: vertices->v[i].dom); |
| 51 | } |
| 52 | free(ptr: vertices->v); |
| 53 | |
| 54 | for (i = 0; i < vertices->n_chambers; ++i) { |
| 55 | free(ptr: vertices->c[i].vertices); |
| 56 | isl_basic_set_free(bset: vertices->c[i].dom); |
| 57 | } |
| 58 | free(ptr: vertices->c); |
| 59 | |
| 60 | isl_basic_set_free(bset: vertices->bset); |
| 61 | free(ptr: vertices); |
| 62 | |
| 63 | return NULL; |
| 64 | } |
| 65 | |
| 66 | struct isl_vertex_list { |
| 67 | struct isl_vertex v; |
| 68 | struct isl_vertex_list *next; |
| 69 | }; |
| 70 | |
| 71 | static struct isl_vertex_list *free_vertex_list(struct isl_vertex_list *list) |
| 72 | { |
| 73 | struct isl_vertex_list *next; |
| 74 | |
| 75 | for (; list; list = next) { |
| 76 | next = list->next; |
| 77 | isl_basic_set_free(bset: list->v.vertex); |
| 78 | isl_basic_set_free(bset: list->v.dom); |
| 79 | free(ptr: list); |
| 80 | } |
| 81 | |
| 82 | return NULL; |
| 83 | } |
| 84 | |
| 85 | static __isl_give isl_vertices *vertices_from_list(__isl_keep isl_basic_set *bset, |
| 86 | int n_vertices, struct isl_vertex_list *list) |
| 87 | { |
| 88 | int i; |
| 89 | struct isl_vertex_list *next; |
| 90 | isl_vertices *vertices; |
| 91 | |
| 92 | vertices = isl_calloc_type(bset->ctx, isl_vertices); |
| 93 | if (!vertices) |
| 94 | goto error; |
| 95 | vertices->ref = 1; |
| 96 | vertices->bset = isl_basic_set_copy(bset); |
| 97 | vertices->v = isl_alloc_array(bset->ctx, struct isl_vertex, n_vertices); |
| 98 | if (n_vertices && !vertices->v) |
| 99 | goto error; |
| 100 | vertices->n_vertices = n_vertices; |
| 101 | |
| 102 | for (i = 0; list; list = next, i++) { |
| 103 | next = list->next; |
| 104 | vertices->v[i] = list->v; |
| 105 | free(ptr: list); |
| 106 | } |
| 107 | |
| 108 | return vertices; |
| 109 | error: |
| 110 | isl_vertices_free(vertices); |
| 111 | free_vertex_list(list); |
| 112 | return NULL; |
| 113 | } |
| 114 | |
| 115 | /* Prepend a vertex to the linked list "list" based on the equalities in "tab". |
| 116 | * Return isl_bool_true if the vertex was actually added and |
| 117 | * isl_bool_false otherwise. |
| 118 | * In particular, vertices with a lower-dimensional activity domain are |
| 119 | * not added to the list because they would not be included in any chamber. |
| 120 | * Return isl_bool_error on error. |
| 121 | */ |
| 122 | static isl_bool add_vertex(struct isl_vertex_list **list, |
| 123 | __isl_keep isl_basic_set *bset, struct isl_tab *tab) |
| 124 | { |
| 125 | isl_size nvar; |
| 126 | struct isl_vertex_list *v = NULL; |
| 127 | |
| 128 | if (isl_tab_detect_implicit_equalities(tab) < 0) |
| 129 | return isl_bool_error; |
| 130 | |
| 131 | nvar = isl_basic_set_dim(bset, type: isl_dim_set); |
| 132 | if (nvar < 0) |
| 133 | return isl_bool_error; |
| 134 | |
| 135 | v = isl_calloc_type(tab->mat->ctx, struct isl_vertex_list); |
| 136 | if (!v) |
| 137 | goto error; |
| 138 | |
| 139 | v->v.vertex = isl_basic_set_copy(bset); |
| 140 | v->v.vertex = isl_basic_set_cow(bset: v->v.vertex); |
| 141 | v->v.vertex = isl_basic_set_update_from_tab(bset: v->v.vertex, tab); |
| 142 | v->v.vertex = isl_basic_set_simplify(bset: v->v.vertex); |
| 143 | v->v.vertex = isl_basic_set_finalize(bset: v->v.vertex); |
| 144 | if (!v->v.vertex) |
| 145 | goto error; |
| 146 | isl_assert(bset->ctx, v->v.vertex->n_eq >= nvar, goto error); |
| 147 | v->v.dom = isl_basic_set_copy(bset: v->v.vertex); |
| 148 | v->v.dom = isl_basic_set_params(bset: v->v.dom); |
| 149 | if (!v->v.dom) |
| 150 | goto error; |
| 151 | |
| 152 | if (v->v.dom->n_eq > 0) { |
| 153 | free_vertex_list(list: v); |
| 154 | return isl_bool_false; |
| 155 | } |
| 156 | |
| 157 | v->next = *list; |
| 158 | *list = v; |
| 159 | |
| 160 | return isl_bool_true; |
| 161 | error: |
| 162 | free_vertex_list(list: v); |
| 163 | return isl_bool_error; |
| 164 | } |
| 165 | |
| 166 | /* Compute the parametric vertices and the chamber decomposition |
| 167 | * of an empty parametric polytope. |
| 168 | */ |
| 169 | static __isl_give isl_vertices *vertices_empty(__isl_keep isl_basic_set *bset) |
| 170 | { |
| 171 | isl_vertices *vertices; |
| 172 | |
| 173 | if (!bset) |
| 174 | return NULL; |
| 175 | |
| 176 | vertices = isl_calloc_type(bset->ctx, isl_vertices); |
| 177 | if (!vertices) |
| 178 | return NULL; |
| 179 | vertices->bset = isl_basic_set_copy(bset); |
| 180 | vertices->ref = 1; |
| 181 | |
| 182 | vertices->n_vertices = 0; |
| 183 | vertices->n_chambers = 0; |
| 184 | |
| 185 | return vertices; |
| 186 | } |
| 187 | |
| 188 | /* Compute the parametric vertices and the chamber decomposition |
| 189 | * of the parametric polytope defined using the same constraints |
| 190 | * as "bset" in the 0D case. |
| 191 | * There is exactly one 0D vertex and a single chamber containing |
| 192 | * the vertex. |
| 193 | */ |
| 194 | static __isl_give isl_vertices *vertices_0D(__isl_keep isl_basic_set *bset) |
| 195 | { |
| 196 | isl_vertices *vertices; |
| 197 | |
| 198 | if (!bset) |
| 199 | return NULL; |
| 200 | |
| 201 | vertices = isl_calloc_type(bset->ctx, isl_vertices); |
| 202 | if (!vertices) |
| 203 | return NULL; |
| 204 | vertices->ref = 1; |
| 205 | vertices->bset = isl_basic_set_copy(bset); |
| 206 | |
| 207 | vertices->v = isl_calloc_array(bset->ctx, struct isl_vertex, 1); |
| 208 | if (!vertices->v) |
| 209 | goto error; |
| 210 | vertices->n_vertices = 1; |
| 211 | vertices->v[0].vertex = isl_basic_set_copy(bset); |
| 212 | vertices->v[0].dom = isl_basic_set_params(bset: isl_basic_set_copy(bset)); |
| 213 | if (!vertices->v[0].vertex || !vertices->v[0].dom) |
| 214 | goto error; |
| 215 | |
| 216 | vertices->c = isl_calloc_array(bset->ctx, struct isl_chamber, 1); |
| 217 | if (!vertices->c) |
| 218 | goto error; |
| 219 | vertices->n_chambers = 1; |
| 220 | vertices->c[0].n_vertices = 1; |
| 221 | vertices->c[0].vertices = isl_calloc_array(bset->ctx, int, 1); |
| 222 | if (!vertices->c[0].vertices) |
| 223 | goto error; |
| 224 | vertices->c[0].dom = isl_basic_set_copy(bset: vertices->v[0].dom); |
| 225 | if (!vertices->c[0].dom) |
| 226 | goto error; |
| 227 | |
| 228 | return vertices; |
| 229 | error: |
| 230 | isl_vertices_free(vertices); |
| 231 | return NULL; |
| 232 | } |
| 233 | |
| 234 | /* Is the row pointed to by "f" linearly independent of the "n" first |
| 235 | * rows in "facets"? |
| 236 | */ |
| 237 | static isl_bool is_independent(__isl_keep isl_mat *facets, int n, isl_int *f) |
| 238 | { |
| 239 | isl_size rank; |
| 240 | |
| 241 | if (isl_seq_first_non_zero(p: f, len: facets->n_col) < 0) |
| 242 | return isl_bool_false; |
| 243 | |
| 244 | isl_seq_cpy(dst: facets->row[n], src: f, len: facets->n_col); |
| 245 | facets->n_row = n + 1; |
| 246 | rank = isl_mat_rank(mat: facets); |
| 247 | if (rank < 0) |
| 248 | return isl_bool_error; |
| 249 | |
| 250 | return isl_bool_ok(b: rank == n + 1); |
| 251 | } |
| 252 | |
| 253 | /* Check whether we can select constraint "level", given the current selection |
| 254 | * reflected by facets in "tab", the rows of "facets" and the earlier |
| 255 | * "selected" elements of "selection". |
| 256 | * |
| 257 | * If the constraint is (strictly) redundant in the tableau, selecting it would |
| 258 | * result in an empty tableau, so it can't be selected. |
| 259 | * If the set variable part of the constraint is not linearly independent |
| 260 | * of the set variable parts of the already selected constraints, |
| 261 | * the constraint cannot be selected. |
| 262 | * If selecting the constraint results in an empty tableau, the constraint |
| 263 | * cannot be selected. |
| 264 | * Finally, if selecting the constraint results in some explicitly |
| 265 | * deselected constraints turning into equalities, then the corresponding |
| 266 | * vertices have already been generated, so the constraint cannot be selected. |
| 267 | */ |
| 268 | static isl_bool can_select(__isl_keep isl_basic_set *bset, int level, |
| 269 | struct isl_tab *tab, __isl_keep isl_mat *facets, int selected, |
| 270 | int *selection) |
| 271 | { |
| 272 | int i; |
| 273 | isl_bool indep; |
| 274 | unsigned ovar; |
| 275 | struct isl_tab_undo *snap; |
| 276 | |
| 277 | if (isl_tab_is_redundant(tab, con: level)) |
| 278 | return isl_bool_false; |
| 279 | |
| 280 | ovar = isl_space_offset(space: bset->dim, type: isl_dim_set); |
| 281 | |
| 282 | indep = is_independent(facets, n: selected, f: bset->ineq[level] + 1 + ovar); |
| 283 | if (indep < 0 || !indep) |
| 284 | return indep; |
| 285 | |
| 286 | snap = isl_tab_snap(tab); |
| 287 | if (isl_tab_select_facet(tab, con: level) < 0) |
| 288 | return isl_bool_error; |
| 289 | |
| 290 | if (tab->empty) { |
| 291 | if (isl_tab_rollback(tab, snap) < 0) |
| 292 | return isl_bool_error; |
| 293 | return isl_bool_false; |
| 294 | } |
| 295 | |
| 296 | for (i = 0; i < level; ++i) { |
| 297 | int sgn; |
| 298 | |
| 299 | if (selection[i] != DESELECTED) |
| 300 | continue; |
| 301 | |
| 302 | if (isl_tab_is_equality(tab, con: i)) |
| 303 | sgn = 0; |
| 304 | else if (isl_tab_is_redundant(tab, con: i)) |
| 305 | sgn = 1; |
| 306 | else |
| 307 | sgn = isl_tab_sign_of_max(tab, con: i); |
| 308 | if (sgn < -1) |
| 309 | return isl_bool_error; |
| 310 | if (sgn <= 0) { |
| 311 | if (isl_tab_rollback(tab, snap) < 0) |
| 312 | return isl_bool_error; |
| 313 | return isl_bool_false; |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | return isl_bool_true; |
| 318 | } |
| 319 | |
| 320 | /* Compute the parametric vertices and the chamber decomposition |
| 321 | * of a parametric polytope that is not full-dimensional. |
| 322 | * |
| 323 | * Simply map the parametric polytope to a lower dimensional space |
| 324 | * and map the resulting vertices back. |
| 325 | */ |
| 326 | static __isl_give isl_vertices *lower_dim_vertices( |
| 327 | __isl_take isl_basic_set *bset) |
| 328 | { |
| 329 | isl_morph *morph; |
| 330 | isl_vertices *vertices; |
| 331 | |
| 332 | morph = isl_basic_set_full_compression(bset); |
| 333 | bset = isl_morph_basic_set(morph: isl_morph_copy(morph), bset); |
| 334 | |
| 335 | vertices = isl_basic_set_compute_vertices(bset); |
| 336 | isl_basic_set_free(bset); |
| 337 | |
| 338 | morph = isl_morph_inverse(morph); |
| 339 | |
| 340 | vertices = isl_morph_vertices(morph, vertices); |
| 341 | |
| 342 | return vertices; |
| 343 | } |
| 344 | |
| 345 | /* Compute the parametric vertices and the chamber decomposition |
| 346 | * of a parametric polytope "bset" that is not full-dimensional. |
| 347 | * Additionally, free both "copy" and "tab". |
| 348 | */ |
| 349 | static __isl_give isl_vertices *lower_dim_vertices_free( |
| 350 | __isl_take isl_basic_set *bset, __isl_take isl_basic_set *copy, |
| 351 | struct isl_tab *tab) |
| 352 | { |
| 353 | isl_basic_set_free(bset: copy); |
| 354 | isl_tab_free(tab); |
| 355 | return lower_dim_vertices(bset); |
| 356 | } |
| 357 | |
| 358 | /* Detect implicit equality constraints in "bset" using the tableau |
| 359 | * representation "tab". |
| 360 | * Return a copy of "bset" with the implicit equality constraints |
| 361 | * made explicit, leaving the original "bset" unmodified. |
| 362 | */ |
| 363 | static __isl_give isl_basic_set *detect_implicit_equality_constraints( |
| 364 | __isl_keep isl_basic_set *bset, struct isl_tab *tab) |
| 365 | { |
| 366 | if (isl_tab_detect_implicit_equalities(tab) < 0) |
| 367 | return NULL; |
| 368 | |
| 369 | bset = isl_basic_set_copy(bset); |
| 370 | bset = isl_basic_set_cow(bset); |
| 371 | bset = isl_basic_set_update_from_tab(bset, tab); |
| 372 | |
| 373 | return bset; |
| 374 | } |
| 375 | |
| 376 | /* Compute the parametric vertices and the chamber decomposition |
| 377 | * of the parametric polytope defined using the same constraints |
| 378 | * as "bset". "bset" is assumed to have no existentially quantified |
| 379 | * variables. |
| 380 | * |
| 381 | * The vertices themselves are computed in a fairly simplistic way. |
| 382 | * We simply run through all combinations of d constraints, |
| 383 | * with d the number of set variables, and check if those d constraints |
| 384 | * define a vertex. To avoid the generation of duplicate vertices, |
| 385 | * which may happen if a vertex is defined by more than d constraints, |
| 386 | * we make sure we only generate the vertex for the d constraints with |
| 387 | * smallest index. |
| 388 | * |
| 389 | * Only potential vertices with a full-dimensional activity domain |
| 390 | * are considered. However, if the input has (implicit) equality |
| 391 | * constraints among the parameters, then activity domain |
| 392 | * should be considered full-dimensional if it does not satisfy |
| 393 | * any extra equality constraints beyond those of the input. |
| 394 | * The implicit equality constraints of the input are therefore first detected. |
| 395 | * If there are any, then the input is mapped to a lower dimensional space |
| 396 | * such that the check for full-dimensional activity domains |
| 397 | * can be performed with respect to a full-dimensional space. |
| 398 | * Note that it is important to leave "bset" unmodified while detecting |
| 399 | * equality constraints since the inequality constraints of "bset" |
| 400 | * are assumed to correspond to those of the tableau. |
| 401 | * |
| 402 | * We set up a tableau and keep track of which facets have been |
| 403 | * selected. The tableau is marked strict_redundant so that we can be |
| 404 | * sure that any constraint that is marked redundant (and that is not |
| 405 | * also marked zero) is not an equality. |
| 406 | * If a constraint is marked DESELECTED, it means the constraint was |
| 407 | * SELECTED before (in combination with the same selection of earlier |
| 408 | * constraints). If such a deselected constraint turns out to be an |
| 409 | * equality, then any vertex that may still be found with the current |
| 410 | * selection has already been generated when the constraint was selected. |
| 411 | * A constraint is marked UNSELECTED when there is no way selecting |
| 412 | * the constraint could lead to a vertex (in combination with the current |
| 413 | * selection of earlier constraints). |
| 414 | * |
| 415 | * The set variable coefficients of the selected constraints are stored |
| 416 | * in the facets matrix. |
| 417 | */ |
| 418 | __isl_give isl_vertices *isl_basic_set_compute_vertices( |
| 419 | __isl_keep isl_basic_set *bset) |
| 420 | { |
| 421 | struct isl_tab *tab; |
| 422 | int level; |
| 423 | int init; |
| 424 | isl_size n_eq; |
| 425 | isl_size nvar; |
| 426 | int *selection = NULL; |
| 427 | int selected; |
| 428 | struct isl_tab_undo **snap = NULL; |
| 429 | isl_mat *facets = NULL; |
| 430 | struct isl_vertex_list *list = NULL; |
| 431 | int n_vertices = 0; |
| 432 | isl_vertices *vertices; |
| 433 | isl_basic_set *copy; |
| 434 | isl_basic_set *test; |
| 435 | |
| 436 | if (!bset) |
| 437 | return NULL; |
| 438 | |
| 439 | if (isl_basic_set_plain_is_empty(bset)) |
| 440 | return vertices_empty(bset); |
| 441 | |
| 442 | if (bset->n_eq != 0) |
| 443 | return lower_dim_vertices(bset: isl_basic_set_copy(bset)); |
| 444 | |
| 445 | if (isl_basic_set_check_no_locals(bset) < 0) |
| 446 | return NULL; |
| 447 | |
| 448 | nvar = isl_basic_set_dim(bset, type: isl_dim_set); |
| 449 | if (nvar < 0) |
| 450 | return NULL; |
| 451 | if (nvar == 0) |
| 452 | return vertices_0D(bset); |
| 453 | |
| 454 | copy = isl_basic_set_copy(bset); |
| 455 | copy = isl_basic_set_set_rational(bset: copy); |
| 456 | if (!copy) |
| 457 | return NULL; |
| 458 | |
| 459 | tab = isl_tab_from_basic_set(bset: copy, track: 0); |
| 460 | if (!tab) |
| 461 | goto error; |
| 462 | tab->strict_redundant = 1; |
| 463 | |
| 464 | if (tab->empty) { |
| 465 | vertices = vertices_empty(bset: copy); |
| 466 | isl_basic_set_free(bset: copy); |
| 467 | isl_tab_free(tab); |
| 468 | return vertices; |
| 469 | } |
| 470 | |
| 471 | test = detect_implicit_equality_constraints(bset, tab); |
| 472 | n_eq = isl_basic_set_n_equality(bset: test); |
| 473 | if (n_eq < 0) |
| 474 | test = isl_basic_set_free(bset: test); |
| 475 | if (n_eq < 0 || n_eq > 0) |
| 476 | return lower_dim_vertices_free(bset: test, copy, tab); |
| 477 | isl_basic_set_free(bset: test); |
| 478 | |
| 479 | selection = isl_alloc_array(copy->ctx, int, copy->n_ineq); |
| 480 | snap = isl_alloc_array(copy->ctx, struct isl_tab_undo *, copy->n_ineq); |
| 481 | facets = isl_mat_alloc(ctx: copy->ctx, n_row: nvar, n_col: nvar); |
| 482 | if ((copy->n_ineq && (!selection || !snap)) || !facets) |
| 483 | goto error; |
| 484 | |
| 485 | level = 0; |
| 486 | init = 1; |
| 487 | selected = 0; |
| 488 | |
| 489 | while (level >= 0) { |
| 490 | if (level >= copy->n_ineq || |
| 491 | (!init && selection[level] != SELECTED)) { |
| 492 | --level; |
| 493 | init = 0; |
| 494 | continue; |
| 495 | } |
| 496 | if (init) { |
| 497 | isl_bool ok; |
| 498 | snap[level] = isl_tab_snap(tab); |
| 499 | ok = can_select(bset: copy, level, tab, facets, selected, |
| 500 | selection); |
| 501 | if (ok < 0) |
| 502 | goto error; |
| 503 | if (ok) { |
| 504 | selection[level] = SELECTED; |
| 505 | selected++; |
| 506 | } else |
| 507 | selection[level] = UNSELECTED; |
| 508 | } else { |
| 509 | selection[level] = DESELECTED; |
| 510 | selected--; |
| 511 | if (isl_tab_rollback(tab, snap: snap[level]) < 0) |
| 512 | goto error; |
| 513 | } |
| 514 | if (selected == nvar) { |
| 515 | if (tab->n_dead == nvar) { |
| 516 | isl_bool added = add_vertex(list: &list, bset: copy, tab); |
| 517 | if (added < 0) |
| 518 | goto error; |
| 519 | if (added) |
| 520 | n_vertices++; |
| 521 | } |
| 522 | init = 0; |
| 523 | continue; |
| 524 | } |
| 525 | ++level; |
| 526 | init = 1; |
| 527 | } |
| 528 | |
| 529 | isl_mat_free(mat: facets); |
| 530 | free(ptr: selection); |
| 531 | free(ptr: snap); |
| 532 | |
| 533 | isl_tab_free(tab); |
| 534 | |
| 535 | vertices = vertices_from_list(bset: copy, n_vertices, list); |
| 536 | |
| 537 | vertices = compute_chambers(bset: copy, vertices); |
| 538 | |
| 539 | return vertices; |
| 540 | error: |
| 541 | free_vertex_list(list); |
| 542 | isl_mat_free(mat: facets); |
| 543 | free(ptr: selection); |
| 544 | free(ptr: snap); |
| 545 | isl_tab_free(tab); |
| 546 | isl_basic_set_free(bset: copy); |
| 547 | return NULL; |
| 548 | } |
| 549 | |
| 550 | struct isl_chamber_list { |
| 551 | struct isl_chamber c; |
| 552 | struct isl_chamber_list *next; |
| 553 | }; |
| 554 | |
| 555 | static void free_chamber_list(struct isl_chamber_list *list) |
| 556 | { |
| 557 | struct isl_chamber_list *next; |
| 558 | |
| 559 | for (; list; list = next) { |
| 560 | next = list->next; |
| 561 | isl_basic_set_free(bset: list->c.dom); |
| 562 | free(ptr: list->c.vertices); |
| 563 | free(ptr: list); |
| 564 | } |
| 565 | } |
| 566 | |
| 567 | /* Check whether the basic set "bset" is a superset of the basic set described |
| 568 | * by "tab", i.e., check whether all constraints of "bset" are redundant. |
| 569 | */ |
| 570 | static isl_bool bset_covers_tab(__isl_keep isl_basic_set *bset, |
| 571 | struct isl_tab *tab) |
| 572 | { |
| 573 | int i; |
| 574 | |
| 575 | if (!bset || !tab) |
| 576 | return isl_bool_error; |
| 577 | |
| 578 | for (i = 0; i < bset->n_ineq; ++i) { |
| 579 | enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq: bset->ineq[i]); |
| 580 | switch (type) { |
| 581 | case isl_ineq_error: return isl_bool_error; |
| 582 | case isl_ineq_redundant: continue; |
| 583 | default: return isl_bool_false; |
| 584 | } |
| 585 | } |
| 586 | |
| 587 | return isl_bool_true; |
| 588 | } |
| 589 | |
| 590 | static __isl_give isl_vertices *vertices_add_chambers( |
| 591 | __isl_take isl_vertices *vertices, int n_chambers, |
| 592 | struct isl_chamber_list *list) |
| 593 | { |
| 594 | int i; |
| 595 | isl_ctx *ctx; |
| 596 | struct isl_chamber_list *next; |
| 597 | |
| 598 | ctx = isl_vertices_get_ctx(vertices); |
| 599 | vertices->c = isl_alloc_array(ctx, struct isl_chamber, n_chambers); |
| 600 | if (!vertices->c) |
| 601 | goto error; |
| 602 | vertices->n_chambers = n_chambers; |
| 603 | |
| 604 | for (i = 0; list; list = next, i++) { |
| 605 | next = list->next; |
| 606 | vertices->c[i] = list->c; |
| 607 | free(ptr: list); |
| 608 | } |
| 609 | |
| 610 | return vertices; |
| 611 | error: |
| 612 | isl_vertices_free(vertices); |
| 613 | free_chamber_list(list); |
| 614 | return NULL; |
| 615 | } |
| 616 | |
| 617 | /* Can "tab" be intersected with "bset" without resulting in |
| 618 | * a lower-dimensional set. |
| 619 | * "bset" itself is assumed to be full-dimensional. |
| 620 | */ |
| 621 | static isl_bool can_intersect(struct isl_tab *tab, |
| 622 | __isl_keep isl_basic_set *bset) |
| 623 | { |
| 624 | int i; |
| 625 | struct isl_tab_undo *snap; |
| 626 | |
| 627 | if (bset->n_eq > 0) |
| 628 | isl_die(isl_basic_set_get_ctx(bset), isl_error_internal, |
| 629 | "expecting full-dimensional input" , |
| 630 | return isl_bool_error); |
| 631 | |
| 632 | if (isl_tab_extend_cons(tab, n_new: bset->n_ineq) < 0) |
| 633 | return isl_bool_error; |
| 634 | |
| 635 | snap = isl_tab_snap(tab); |
| 636 | |
| 637 | for (i = 0; i < bset->n_ineq; ++i) { |
| 638 | enum isl_ineq_type type; |
| 639 | |
| 640 | type = isl_tab_ineq_type(tab, ineq: bset->ineq[i]); |
| 641 | if (type < 0) |
| 642 | return isl_bool_error; |
| 643 | if (type == isl_ineq_redundant) |
| 644 | continue; |
| 645 | if (isl_tab_add_ineq(tab, ineq: bset->ineq[i]) < 0) |
| 646 | return isl_bool_error; |
| 647 | } |
| 648 | |
| 649 | if (isl_tab_detect_implicit_equalities(tab) < 0) |
| 650 | return isl_bool_error; |
| 651 | if (tab->n_dead) { |
| 652 | if (isl_tab_rollback(tab, snap) < 0) |
| 653 | return isl_bool_error; |
| 654 | return isl_bool_false; |
| 655 | } |
| 656 | |
| 657 | return isl_bool_true; |
| 658 | } |
| 659 | |
| 660 | static int add_chamber(struct isl_chamber_list **list, |
| 661 | __isl_keep isl_vertices *vertices, struct isl_tab *tab, int *selection) |
| 662 | { |
| 663 | int n_frozen; |
| 664 | int i, j; |
| 665 | int n_vertices = 0; |
| 666 | struct isl_tab_undo *snap; |
| 667 | struct isl_chamber_list *c = NULL; |
| 668 | |
| 669 | for (i = 0; i < vertices->n_vertices; ++i) |
| 670 | if (selection[i]) |
| 671 | n_vertices++; |
| 672 | |
| 673 | snap = isl_tab_snap(tab); |
| 674 | |
| 675 | for (i = 0; i < tab->n_con && tab->con[i].frozen; ++i) |
| 676 | tab->con[i].frozen = 0; |
| 677 | n_frozen = i; |
| 678 | |
| 679 | if (isl_tab_detect_redundant(tab) < 0) |
| 680 | return -1; |
| 681 | |
| 682 | c = isl_calloc_type(tab->mat->ctx, struct isl_chamber_list); |
| 683 | if (!c) |
| 684 | goto error; |
| 685 | c->c.vertices = isl_alloc_array(tab->mat->ctx, int, n_vertices); |
| 686 | if (n_vertices && !c->c.vertices) |
| 687 | goto error; |
| 688 | c->c.dom = isl_basic_set_copy(bset: isl_tab_peek_bset(tab)); |
| 689 | c->c.dom = isl_basic_set_set_rational(bset: c->c.dom); |
| 690 | c->c.dom = isl_basic_set_cow(bset: c->c.dom); |
| 691 | c->c.dom = isl_basic_set_update_from_tab(bset: c->c.dom, tab); |
| 692 | c->c.dom = isl_basic_set_simplify(bset: c->c.dom); |
| 693 | c->c.dom = isl_basic_set_finalize(bset: c->c.dom); |
| 694 | if (!c->c.dom) |
| 695 | goto error; |
| 696 | |
| 697 | c->c.n_vertices = n_vertices; |
| 698 | |
| 699 | for (i = 0, j = 0; i < vertices->n_vertices; ++i) |
| 700 | if (selection[i]) { |
| 701 | c->c.vertices[j] = i; |
| 702 | j++; |
| 703 | } |
| 704 | |
| 705 | c->next = *list; |
| 706 | *list = c; |
| 707 | |
| 708 | for (i = 0; i < n_frozen; ++i) |
| 709 | tab->con[i].frozen = 1; |
| 710 | |
| 711 | if (isl_tab_rollback(tab, snap) < 0) |
| 712 | return -1; |
| 713 | |
| 714 | return 0; |
| 715 | error: |
| 716 | free_chamber_list(list: c); |
| 717 | return -1; |
| 718 | } |
| 719 | |
| 720 | struct isl_facet_todo { |
| 721 | struct isl_tab *tab; /* A tableau representation of the facet */ |
| 722 | isl_basic_set *bset; /* A normalized basic set representation */ |
| 723 | isl_vec *constraint; /* Constraint pointing to the other side */ |
| 724 | struct isl_facet_todo *next; |
| 725 | }; |
| 726 | |
| 727 | static void free_todo(struct isl_facet_todo *todo) |
| 728 | { |
| 729 | while (todo) { |
| 730 | struct isl_facet_todo *next = todo->next; |
| 731 | |
| 732 | isl_tab_free(tab: todo->tab); |
| 733 | isl_basic_set_free(bset: todo->bset); |
| 734 | isl_vec_free(vec: todo->constraint); |
| 735 | free(ptr: todo); |
| 736 | |
| 737 | todo = next; |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | static struct isl_facet_todo *create_todo(struct isl_tab *tab, int con) |
| 742 | { |
| 743 | int i; |
| 744 | int n_frozen; |
| 745 | struct isl_tab_undo *snap; |
| 746 | struct isl_facet_todo *todo; |
| 747 | |
| 748 | snap = isl_tab_snap(tab); |
| 749 | |
| 750 | for (i = 0; i < tab->n_con && tab->con[i].frozen; ++i) |
| 751 | tab->con[i].frozen = 0; |
| 752 | n_frozen = i; |
| 753 | |
| 754 | if (isl_tab_detect_redundant(tab) < 0) |
| 755 | return NULL; |
| 756 | |
| 757 | todo = isl_calloc_type(tab->mat->ctx, struct isl_facet_todo); |
| 758 | if (!todo) |
| 759 | return NULL; |
| 760 | |
| 761 | todo->constraint = isl_vec_alloc(ctx: tab->mat->ctx, size: 1 + tab->n_var); |
| 762 | if (!todo->constraint) |
| 763 | goto error; |
| 764 | isl_seq_neg(dst: todo->constraint->el, src: tab->bmap->ineq[con], len: 1 + tab->n_var); |
| 765 | todo->bset = isl_basic_set_copy(bset: isl_tab_peek_bset(tab)); |
| 766 | todo->bset = isl_basic_set_set_rational(bset: todo->bset); |
| 767 | todo->bset = isl_basic_set_cow(bset: todo->bset); |
| 768 | todo->bset = isl_basic_set_update_from_tab(bset: todo->bset, tab); |
| 769 | todo->bset = isl_basic_set_simplify(bset: todo->bset); |
| 770 | todo->bset = isl_basic_set_sort_constraints(bset: todo->bset); |
| 771 | if (!todo->bset) |
| 772 | goto error; |
| 773 | ISL_F_SET(todo->bset, ISL_BASIC_SET_NO_REDUNDANT); |
| 774 | todo->tab = isl_tab_dup(tab); |
| 775 | if (!todo->tab) |
| 776 | goto error; |
| 777 | |
| 778 | for (i = 0; i < n_frozen; ++i) |
| 779 | tab->con[i].frozen = 1; |
| 780 | |
| 781 | if (isl_tab_rollback(tab, snap) < 0) |
| 782 | goto error; |
| 783 | |
| 784 | return todo; |
| 785 | error: |
| 786 | free_todo(todo); |
| 787 | return NULL; |
| 788 | } |
| 789 | |
| 790 | /* Create todo items for all interior facets of the chamber represented |
| 791 | * by "tab" and collect them in "next". |
| 792 | */ |
| 793 | static int init_todo(struct isl_facet_todo **next, struct isl_tab *tab) |
| 794 | { |
| 795 | int i; |
| 796 | struct isl_tab_undo *snap; |
| 797 | struct isl_facet_todo *todo; |
| 798 | |
| 799 | snap = isl_tab_snap(tab); |
| 800 | |
| 801 | for (i = 0; i < tab->n_con; ++i) { |
| 802 | if (tab->con[i].frozen) |
| 803 | continue; |
| 804 | if (tab->con[i].is_redundant) |
| 805 | continue; |
| 806 | |
| 807 | if (isl_tab_select_facet(tab, con: i) < 0) |
| 808 | return -1; |
| 809 | |
| 810 | todo = create_todo(tab, con: i); |
| 811 | if (!todo) |
| 812 | return -1; |
| 813 | |
| 814 | todo->next = *next; |
| 815 | *next = todo; |
| 816 | |
| 817 | if (isl_tab_rollback(tab, snap) < 0) |
| 818 | return -1; |
| 819 | } |
| 820 | |
| 821 | return 0; |
| 822 | } |
| 823 | |
| 824 | /* Does the linked list contain a todo item that is the opposite of "todo". |
| 825 | * If so, return 1 and remove the opposite todo item. |
| 826 | */ |
| 827 | static int has_opposite(struct isl_facet_todo *todo, |
| 828 | struct isl_facet_todo **list) |
| 829 | { |
| 830 | for (; *list; list = &(*list)->next) { |
| 831 | int eq; |
| 832 | eq = isl_basic_set_plain_is_equal(bset1: todo->bset, bset2: (*list)->bset); |
| 833 | if (eq < 0) |
| 834 | return -1; |
| 835 | if (!eq) |
| 836 | continue; |
| 837 | todo = *list; |
| 838 | *list = todo->next; |
| 839 | todo->next = NULL; |
| 840 | free_todo(todo); |
| 841 | return 1; |
| 842 | } |
| 843 | |
| 844 | return 0; |
| 845 | } |
| 846 | |
| 847 | /* Create todo items for all interior facets of the chamber represented |
| 848 | * by "tab" and collect them in first->next, taking care to cancel |
| 849 | * opposite todo items. |
| 850 | */ |
| 851 | static int update_todo(struct isl_facet_todo *first, struct isl_tab *tab) |
| 852 | { |
| 853 | int i; |
| 854 | struct isl_tab_undo *snap; |
| 855 | struct isl_facet_todo *todo; |
| 856 | |
| 857 | snap = isl_tab_snap(tab); |
| 858 | |
| 859 | for (i = 0; i < tab->n_con; ++i) { |
| 860 | int drop; |
| 861 | |
| 862 | if (tab->con[i].frozen) |
| 863 | continue; |
| 864 | if (tab->con[i].is_redundant) |
| 865 | continue; |
| 866 | |
| 867 | if (isl_tab_select_facet(tab, con: i) < 0) |
| 868 | return -1; |
| 869 | |
| 870 | todo = create_todo(tab, con: i); |
| 871 | if (!todo) |
| 872 | return -1; |
| 873 | |
| 874 | drop = has_opposite(todo, list: &first->next); |
| 875 | if (drop < 0) |
| 876 | return -1; |
| 877 | |
| 878 | if (drop) |
| 879 | free_todo(todo); |
| 880 | else { |
| 881 | todo->next = first->next; |
| 882 | first->next = todo; |
| 883 | } |
| 884 | |
| 885 | if (isl_tab_rollback(tab, snap) < 0) |
| 886 | return -1; |
| 887 | } |
| 888 | |
| 889 | return 0; |
| 890 | } |
| 891 | |
| 892 | /* Compute the chamber decomposition of the parametric polytope respresented |
| 893 | * by "bset" given the parametric vertices and their activity domains. |
| 894 | * |
| 895 | * We are only interested in full-dimensional chambers. |
| 896 | * Each of these chambers is the intersection of the activity domains of |
| 897 | * one or more vertices and the union of all chambers is equal to the |
| 898 | * projection of the entire parametric polytope onto the parameter space. |
| 899 | * |
| 900 | * We first create an initial chamber by intersecting as many activity |
| 901 | * domains as possible without ending up with an empty or lower-dimensional |
| 902 | * set. As a minor optimization, we only consider those activity domains |
| 903 | * that contain some arbitrary point. |
| 904 | * |
| 905 | * For each of the interior facets of the chamber, we construct a todo item, |
| 906 | * containing the facet and a constraint containing the other side of the facet, |
| 907 | * for constructing the chamber on the other side. |
| 908 | * While their are any todo items left, we pick a todo item and |
| 909 | * create the required chamber by intersecting all activity domains |
| 910 | * that contain the facet and have a full-dimensional intersection with |
| 911 | * the other side of the facet. For each of the interior facets, we |
| 912 | * again create todo items, taking care to cancel opposite todo items. |
| 913 | */ |
| 914 | static __isl_give isl_vertices *compute_chambers(__isl_take isl_basic_set *bset, |
| 915 | __isl_take isl_vertices *vertices) |
| 916 | { |
| 917 | int i; |
| 918 | isl_ctx *ctx; |
| 919 | isl_size n_eq; |
| 920 | isl_vec *sample = NULL; |
| 921 | struct isl_tab *tab = NULL; |
| 922 | struct isl_tab_undo *snap; |
| 923 | int *selection = NULL; |
| 924 | int n_chambers = 0; |
| 925 | struct isl_chamber_list *list = NULL; |
| 926 | struct isl_facet_todo *todo = NULL; |
| 927 | |
| 928 | if (!bset || !vertices) |
| 929 | goto error; |
| 930 | |
| 931 | ctx = isl_vertices_get_ctx(vertices); |
| 932 | selection = isl_alloc_array(ctx, int, vertices->n_vertices); |
| 933 | if (vertices->n_vertices && !selection) |
| 934 | goto error; |
| 935 | |
| 936 | bset = isl_basic_set_params(bset); |
| 937 | n_eq = isl_basic_set_n_equality(bset); |
| 938 | if (n_eq < 0) |
| 939 | goto error; |
| 940 | if (n_eq > 0) |
| 941 | isl_die(isl_basic_set_get_ctx(bset), isl_error_internal, |
| 942 | "expecting full-dimensional input" , goto error); |
| 943 | |
| 944 | tab = isl_tab_from_basic_set(bset, track: 1); |
| 945 | if (!tab) |
| 946 | goto error; |
| 947 | for (i = 0; i < bset->n_ineq; ++i) |
| 948 | if (isl_tab_freeze_constraint(tab, con: i) < 0) |
| 949 | goto error; |
| 950 | isl_basic_set_free(bset); |
| 951 | |
| 952 | snap = isl_tab_snap(tab); |
| 953 | |
| 954 | sample = isl_tab_get_sample_value(tab); |
| 955 | |
| 956 | for (i = 0; i < vertices->n_vertices; ++i) { |
| 957 | selection[i] = isl_basic_set_contains(bset: vertices->v[i].dom, vec: sample); |
| 958 | if (selection[i] < 0) |
| 959 | goto error; |
| 960 | if (!selection[i]) |
| 961 | continue; |
| 962 | selection[i] = can_intersect(tab, bset: vertices->v[i].dom); |
| 963 | if (selection[i] < 0) |
| 964 | goto error; |
| 965 | } |
| 966 | |
| 967 | if (isl_tab_detect_redundant(tab) < 0) |
| 968 | goto error; |
| 969 | |
| 970 | if (add_chamber(list: &list, vertices, tab, selection) < 0) |
| 971 | goto error; |
| 972 | n_chambers++; |
| 973 | |
| 974 | if (init_todo(next: &todo, tab) < 0) |
| 975 | goto error; |
| 976 | |
| 977 | while (todo) { |
| 978 | struct isl_facet_todo *next; |
| 979 | |
| 980 | if (isl_tab_rollback(tab, snap) < 0) |
| 981 | goto error; |
| 982 | |
| 983 | if (isl_tab_add_ineq(tab, ineq: todo->constraint->el) < 0) |
| 984 | goto error; |
| 985 | if (isl_tab_freeze_constraint(tab, con: tab->n_con - 1) < 0) |
| 986 | goto error; |
| 987 | |
| 988 | for (i = 0; i < vertices->n_vertices; ++i) { |
| 989 | selection[i] = bset_covers_tab(bset: vertices->v[i].dom, |
| 990 | tab: todo->tab); |
| 991 | if (selection[i] < 0) |
| 992 | goto error; |
| 993 | if (!selection[i]) |
| 994 | continue; |
| 995 | selection[i] = can_intersect(tab, bset: vertices->v[i].dom); |
| 996 | if (selection[i] < 0) |
| 997 | goto error; |
| 998 | } |
| 999 | |
| 1000 | if (isl_tab_detect_redundant(tab) < 0) |
| 1001 | goto error; |
| 1002 | |
| 1003 | if (add_chamber(list: &list, vertices, tab, selection) < 0) |
| 1004 | goto error; |
| 1005 | n_chambers++; |
| 1006 | |
| 1007 | if (update_todo(first: todo, tab) < 0) |
| 1008 | goto error; |
| 1009 | |
| 1010 | next = todo->next; |
| 1011 | todo->next = NULL; |
| 1012 | free_todo(todo); |
| 1013 | todo = next; |
| 1014 | } |
| 1015 | |
| 1016 | isl_vec_free(vec: sample); |
| 1017 | |
| 1018 | isl_tab_free(tab); |
| 1019 | free(ptr: selection); |
| 1020 | |
| 1021 | vertices = vertices_add_chambers(vertices, n_chambers, list); |
| 1022 | |
| 1023 | for (i = 0; vertices && i < vertices->n_vertices; ++i) { |
| 1024 | isl_basic_set_free(bset: vertices->v[i].dom); |
| 1025 | vertices->v[i].dom = NULL; |
| 1026 | } |
| 1027 | |
| 1028 | return vertices; |
| 1029 | error: |
| 1030 | free_chamber_list(list); |
| 1031 | free_todo(todo); |
| 1032 | isl_vec_free(vec: sample); |
| 1033 | isl_tab_free(tab); |
| 1034 | free(ptr: selection); |
| 1035 | if (!tab) |
| 1036 | isl_basic_set_free(bset); |
| 1037 | isl_vertices_free(vertices); |
| 1038 | return NULL; |
| 1039 | } |
| 1040 | |
| 1041 | isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex) |
| 1042 | { |
| 1043 | return vertex ? isl_vertices_get_ctx(vertices: vertex->vertices) : NULL; |
| 1044 | } |
| 1045 | |
| 1046 | isl_size isl_vertex_get_id(__isl_keep isl_vertex *vertex) |
| 1047 | { |
| 1048 | return vertex ? vertex->id : isl_size_error; |
| 1049 | } |
| 1050 | |
| 1051 | /* Return the activity domain of the vertex "vertex". |
| 1052 | */ |
| 1053 | __isl_give isl_basic_set *isl_vertex_get_domain(__isl_keep isl_vertex *vertex) |
| 1054 | { |
| 1055 | struct isl_vertex *v; |
| 1056 | |
| 1057 | if (!vertex) |
| 1058 | return NULL; |
| 1059 | |
| 1060 | v = &vertex->vertices->v[vertex->id]; |
| 1061 | if (!v->dom) { |
| 1062 | v->dom = isl_basic_set_copy(bset: v->vertex); |
| 1063 | v->dom = isl_basic_set_params(bset: v->dom); |
| 1064 | v->dom = isl_basic_set_set_integral(bset: v->dom); |
| 1065 | } |
| 1066 | |
| 1067 | return isl_basic_set_copy(bset: v->dom); |
| 1068 | } |
| 1069 | |
| 1070 | /* Return a multiple quasi-affine expression describing the vertex "vertex" |
| 1071 | * in terms of the parameters, |
| 1072 | */ |
| 1073 | __isl_give isl_multi_aff *isl_vertex_get_expr(__isl_keep isl_vertex *vertex) |
| 1074 | { |
| 1075 | struct isl_vertex *v; |
| 1076 | isl_basic_set *bset; |
| 1077 | |
| 1078 | if (!vertex) |
| 1079 | return NULL; |
| 1080 | |
| 1081 | v = &vertex->vertices->v[vertex->id]; |
| 1082 | |
| 1083 | bset = isl_basic_set_copy(bset: v->vertex); |
| 1084 | return isl_multi_aff_from_basic_set_equalities(bset); |
| 1085 | } |
| 1086 | |
| 1087 | static __isl_give isl_vertex *isl_vertex_alloc(__isl_take isl_vertices *vertices, |
| 1088 | int id) |
| 1089 | { |
| 1090 | isl_ctx *ctx; |
| 1091 | isl_vertex *vertex; |
| 1092 | |
| 1093 | if (!vertices) |
| 1094 | return NULL; |
| 1095 | |
| 1096 | ctx = isl_vertices_get_ctx(vertices); |
| 1097 | vertex = isl_alloc_type(ctx, isl_vertex); |
| 1098 | if (!vertex) |
| 1099 | goto error; |
| 1100 | |
| 1101 | vertex->vertices = vertices; |
| 1102 | vertex->id = id; |
| 1103 | |
| 1104 | return vertex; |
| 1105 | error: |
| 1106 | isl_vertices_free(vertices); |
| 1107 | return NULL; |
| 1108 | } |
| 1109 | |
| 1110 | __isl_null isl_vertex *isl_vertex_free(__isl_take isl_vertex *vertex) |
| 1111 | { |
| 1112 | if (!vertex) |
| 1113 | return NULL; |
| 1114 | isl_vertices_free(vertices: vertex->vertices); |
| 1115 | free(ptr: vertex); |
| 1116 | |
| 1117 | return NULL; |
| 1118 | } |
| 1119 | |
| 1120 | isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell) |
| 1121 | { |
| 1122 | return cell ? cell->dom->ctx : NULL; |
| 1123 | } |
| 1124 | |
| 1125 | __isl_give isl_basic_set *isl_cell_get_domain(__isl_keep isl_cell *cell) |
| 1126 | { |
| 1127 | return cell ? isl_basic_set_copy(bset: cell->dom) : NULL; |
| 1128 | } |
| 1129 | |
| 1130 | static __isl_give isl_cell *isl_cell_alloc(__isl_take isl_vertices *vertices, |
| 1131 | __isl_take isl_basic_set *dom, int id) |
| 1132 | { |
| 1133 | int i; |
| 1134 | isl_cell *cell = NULL; |
| 1135 | |
| 1136 | if (!vertices || !dom) |
| 1137 | goto error; |
| 1138 | |
| 1139 | cell = isl_calloc_type(dom->ctx, isl_cell); |
| 1140 | if (!cell) |
| 1141 | goto error; |
| 1142 | |
| 1143 | cell->n_vertices = vertices->c[id].n_vertices; |
| 1144 | cell->ids = isl_alloc_array(dom->ctx, int, cell->n_vertices); |
| 1145 | if (cell->n_vertices && !cell->ids) |
| 1146 | goto error; |
| 1147 | for (i = 0; i < cell->n_vertices; ++i) |
| 1148 | cell->ids[i] = vertices->c[id].vertices[i]; |
| 1149 | cell->vertices = vertices; |
| 1150 | cell->dom = dom; |
| 1151 | |
| 1152 | return cell; |
| 1153 | error: |
| 1154 | isl_cell_free(cell); |
| 1155 | isl_vertices_free(vertices); |
| 1156 | isl_basic_set_free(bset: dom); |
| 1157 | return NULL; |
| 1158 | } |
| 1159 | |
| 1160 | __isl_null isl_cell *isl_cell_free(__isl_take isl_cell *cell) |
| 1161 | { |
| 1162 | if (!cell) |
| 1163 | return NULL; |
| 1164 | |
| 1165 | isl_vertices_free(vertices: cell->vertices); |
| 1166 | free(ptr: cell->ids); |
| 1167 | isl_basic_set_free(bset: cell->dom); |
| 1168 | free(ptr: cell); |
| 1169 | |
| 1170 | return NULL; |
| 1171 | } |
| 1172 | |
| 1173 | /* Create a tableau of the cone obtained by first homogenizing the given |
| 1174 | * polytope and then making all inequalities strict by setting the |
| 1175 | * constant term to -1. |
| 1176 | */ |
| 1177 | static struct isl_tab *tab_for_shifted_cone(__isl_keep isl_basic_set *bset) |
| 1178 | { |
| 1179 | int i; |
| 1180 | isl_vec *c = NULL; |
| 1181 | struct isl_tab *tab; |
| 1182 | isl_size total; |
| 1183 | |
| 1184 | total = isl_basic_set_dim(bset, type: isl_dim_all); |
| 1185 | if (total < 0) |
| 1186 | return NULL; |
| 1187 | tab = isl_tab_alloc(ctx: bset->ctx, n_row: bset->n_eq + bset->n_ineq + 1, |
| 1188 | n_var: 1 + total, M: 0); |
| 1189 | if (!tab) |
| 1190 | return NULL; |
| 1191 | tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL); |
| 1192 | if (ISL_F_ISSET(bset, ISL_BASIC_MAP_EMPTY)) { |
| 1193 | if (isl_tab_mark_empty(tab) < 0) |
| 1194 | goto error; |
| 1195 | return tab; |
| 1196 | } |
| 1197 | |
| 1198 | c = isl_vec_alloc(ctx: bset->ctx, size: 1 + 1 + total); |
| 1199 | if (!c) |
| 1200 | goto error; |
| 1201 | |
| 1202 | isl_int_set_si(c->el[0], 0); |
| 1203 | for (i = 0; i < bset->n_eq; ++i) { |
| 1204 | isl_seq_cpy(dst: c->el + 1, src: bset->eq[i], len: c->size - 1); |
| 1205 | if (isl_tab_add_eq(tab, eq: c->el) < 0) |
| 1206 | goto error; |
| 1207 | } |
| 1208 | |
| 1209 | isl_int_set_si(c->el[0], -1); |
| 1210 | for (i = 0; i < bset->n_ineq; ++i) { |
| 1211 | isl_seq_cpy(dst: c->el + 1, src: bset->ineq[i], len: c->size - 1); |
| 1212 | if (isl_tab_add_ineq(tab, ineq: c->el) < 0) |
| 1213 | goto error; |
| 1214 | if (tab->empty) { |
| 1215 | isl_vec_free(vec: c); |
| 1216 | return tab; |
| 1217 | } |
| 1218 | } |
| 1219 | |
| 1220 | isl_seq_clr(p: c->el + 1, len: c->size - 1); |
| 1221 | isl_int_set_si(c->el[1], 1); |
| 1222 | if (isl_tab_add_ineq(tab, ineq: c->el) < 0) |
| 1223 | goto error; |
| 1224 | |
| 1225 | isl_vec_free(vec: c); |
| 1226 | return tab; |
| 1227 | error: |
| 1228 | isl_vec_free(vec: c); |
| 1229 | isl_tab_free(tab); |
| 1230 | return NULL; |
| 1231 | } |
| 1232 | |
| 1233 | /* Compute an interior point of "bset" by selecting an interior |
| 1234 | * point in homogeneous space and projecting the point back down. |
| 1235 | */ |
| 1236 | static __isl_give isl_vec *isl_basic_set_interior_point( |
| 1237 | __isl_keep isl_basic_set *bset) |
| 1238 | { |
| 1239 | isl_vec *vec; |
| 1240 | struct isl_tab *tab; |
| 1241 | |
| 1242 | tab = tab_for_shifted_cone(bset); |
| 1243 | vec = isl_tab_get_sample_value(tab); |
| 1244 | isl_tab_free(tab); |
| 1245 | if (!vec) |
| 1246 | return NULL; |
| 1247 | |
| 1248 | isl_seq_cpy(dst: vec->el, src: vec->el + 1, len: vec->size - 1); |
| 1249 | vec->size--; |
| 1250 | |
| 1251 | return vec; |
| 1252 | } |
| 1253 | |
| 1254 | /* Call "fn" on all chambers of the parametric polytope with the shared |
| 1255 | * facets of neighboring chambers only appearing in one of the chambers. |
| 1256 | * |
| 1257 | * We pick an interior point from one of the chambers and then make |
| 1258 | * all constraints that do not satisfy this point strict. |
| 1259 | * For constraints that saturate the interior point, the sign |
| 1260 | * of the first non-zero coefficient is used to determine which |
| 1261 | * of the two (internal) constraints should be tightened. |
| 1262 | */ |
| 1263 | isl_stat isl_vertices_foreach_disjoint_cell(__isl_keep isl_vertices *vertices, |
| 1264 | isl_stat (*fn)(__isl_take isl_cell *cell, void *user), void *user) |
| 1265 | { |
| 1266 | int i; |
| 1267 | isl_vec *vec; |
| 1268 | isl_cell *cell; |
| 1269 | |
| 1270 | if (!vertices) |
| 1271 | return isl_stat_error; |
| 1272 | |
| 1273 | if (vertices->n_chambers == 0) |
| 1274 | return isl_stat_ok; |
| 1275 | |
| 1276 | if (vertices->n_chambers == 1) { |
| 1277 | isl_basic_set *dom = isl_basic_set_copy(bset: vertices->c[0].dom); |
| 1278 | dom = isl_basic_set_set_integral(bset: dom); |
| 1279 | cell = isl_cell_alloc(vertices: isl_vertices_copy(vertices), dom, id: 0); |
| 1280 | if (!cell) |
| 1281 | return isl_stat_error; |
| 1282 | return fn(cell, user); |
| 1283 | } |
| 1284 | |
| 1285 | vec = isl_basic_set_interior_point(bset: vertices->c[0].dom); |
| 1286 | if (!vec) |
| 1287 | return isl_stat_error; |
| 1288 | |
| 1289 | for (i = 0; i < vertices->n_chambers; ++i) { |
| 1290 | int r; |
| 1291 | isl_basic_set *dom = isl_basic_set_copy(bset: vertices->c[i].dom); |
| 1292 | if (i) |
| 1293 | dom = isl_basic_set_tighten_outward(bset: dom, vec); |
| 1294 | dom = isl_basic_set_set_integral(bset: dom); |
| 1295 | cell = isl_cell_alloc(vertices: isl_vertices_copy(vertices), dom, id: i); |
| 1296 | if (!cell) |
| 1297 | goto error; |
| 1298 | r = fn(cell, user); |
| 1299 | if (r < 0) |
| 1300 | goto error; |
| 1301 | } |
| 1302 | |
| 1303 | isl_vec_free(vec); |
| 1304 | |
| 1305 | return isl_stat_ok; |
| 1306 | error: |
| 1307 | isl_vec_free(vec); |
| 1308 | return isl_stat_error; |
| 1309 | } |
| 1310 | |
| 1311 | isl_stat isl_vertices_foreach_cell(__isl_keep isl_vertices *vertices, |
| 1312 | isl_stat (*fn)(__isl_take isl_cell *cell, void *user), void *user) |
| 1313 | { |
| 1314 | int i; |
| 1315 | isl_cell *cell; |
| 1316 | |
| 1317 | if (!vertices) |
| 1318 | return isl_stat_error; |
| 1319 | |
| 1320 | if (vertices->n_chambers == 0) |
| 1321 | return isl_stat_ok; |
| 1322 | |
| 1323 | for (i = 0; i < vertices->n_chambers; ++i) { |
| 1324 | isl_stat r; |
| 1325 | isl_basic_set *dom = isl_basic_set_copy(bset: vertices->c[i].dom); |
| 1326 | |
| 1327 | cell = isl_cell_alloc(vertices: isl_vertices_copy(vertices), dom, id: i); |
| 1328 | if (!cell) |
| 1329 | return isl_stat_error; |
| 1330 | |
| 1331 | r = fn(cell, user); |
| 1332 | if (r < 0) |
| 1333 | return isl_stat_error; |
| 1334 | } |
| 1335 | |
| 1336 | return isl_stat_ok; |
| 1337 | } |
| 1338 | |
| 1339 | isl_stat isl_vertices_foreach_vertex(__isl_keep isl_vertices *vertices, |
| 1340 | isl_stat (*fn)(__isl_take isl_vertex *vertex, void *user), void *user) |
| 1341 | { |
| 1342 | int i; |
| 1343 | isl_vertex *vertex; |
| 1344 | |
| 1345 | if (!vertices) |
| 1346 | return isl_stat_error; |
| 1347 | |
| 1348 | if (vertices->n_vertices == 0) |
| 1349 | return isl_stat_ok; |
| 1350 | |
| 1351 | for (i = 0; i < vertices->n_vertices; ++i) { |
| 1352 | isl_stat r; |
| 1353 | |
| 1354 | vertex = isl_vertex_alloc(vertices: isl_vertices_copy(vertices), id: i); |
| 1355 | if (!vertex) |
| 1356 | return isl_stat_error; |
| 1357 | |
| 1358 | r = fn(vertex, user); |
| 1359 | if (r < 0) |
| 1360 | return isl_stat_error; |
| 1361 | } |
| 1362 | |
| 1363 | return isl_stat_ok; |
| 1364 | } |
| 1365 | |
| 1366 | isl_stat isl_cell_foreach_vertex(__isl_keep isl_cell *cell, |
| 1367 | isl_stat (*fn)(__isl_take isl_vertex *vertex, void *user), void *user) |
| 1368 | { |
| 1369 | int i; |
| 1370 | isl_vertex *vertex; |
| 1371 | |
| 1372 | if (!cell) |
| 1373 | return isl_stat_error; |
| 1374 | |
| 1375 | if (cell->n_vertices == 0) |
| 1376 | return isl_stat_ok; |
| 1377 | |
| 1378 | for (i = 0; i < cell->n_vertices; ++i) { |
| 1379 | isl_stat r; |
| 1380 | |
| 1381 | vertex = isl_vertex_alloc(vertices: isl_vertices_copy(vertices: cell->vertices), |
| 1382 | id: cell->ids[i]); |
| 1383 | if (!vertex) |
| 1384 | return isl_stat_error; |
| 1385 | |
| 1386 | r = fn(vertex, user); |
| 1387 | if (r < 0) |
| 1388 | return isl_stat_error; |
| 1389 | } |
| 1390 | |
| 1391 | return isl_stat_ok; |
| 1392 | } |
| 1393 | |
| 1394 | isl_ctx *isl_vertices_get_ctx(__isl_keep isl_vertices *vertices) |
| 1395 | { |
| 1396 | return vertices ? vertices->bset->ctx : NULL; |
| 1397 | } |
| 1398 | |
| 1399 | isl_size isl_vertices_get_n_vertices(__isl_keep isl_vertices *vertices) |
| 1400 | { |
| 1401 | return vertices ? vertices->n_vertices : isl_size_error; |
| 1402 | } |
| 1403 | |
| 1404 | __isl_give isl_vertices *isl_morph_vertices(__isl_take isl_morph *morph, |
| 1405 | __isl_take isl_vertices *vertices) |
| 1406 | { |
| 1407 | int i; |
| 1408 | isl_morph *param_morph = NULL; |
| 1409 | |
| 1410 | if (!morph || !vertices) |
| 1411 | goto error; |
| 1412 | |
| 1413 | isl_assert(vertices->bset->ctx, vertices->ref == 1, goto error); |
| 1414 | |
| 1415 | param_morph = isl_morph_copy(morph); |
| 1416 | param_morph = isl_morph_dom_params(morph: param_morph); |
| 1417 | param_morph = isl_morph_ran_params(morph: param_morph); |
| 1418 | |
| 1419 | for (i = 0; i < vertices->n_vertices; ++i) { |
| 1420 | vertices->v[i].dom = isl_morph_basic_set( |
| 1421 | morph: isl_morph_copy(morph: param_morph), bset: vertices->v[i].dom); |
| 1422 | vertices->v[i].vertex = isl_morph_basic_set( |
| 1423 | morph: isl_morph_copy(morph), bset: vertices->v[i].vertex); |
| 1424 | if (!vertices->v[i].vertex) |
| 1425 | goto error; |
| 1426 | } |
| 1427 | |
| 1428 | for (i = 0; i < vertices->n_chambers; ++i) { |
| 1429 | vertices->c[i].dom = isl_morph_basic_set( |
| 1430 | morph: isl_morph_copy(morph: param_morph), bset: vertices->c[i].dom); |
| 1431 | if (!vertices->c[i].dom) |
| 1432 | goto error; |
| 1433 | } |
| 1434 | |
| 1435 | isl_morph_free(morph: param_morph); |
| 1436 | isl_morph_free(morph); |
| 1437 | return vertices; |
| 1438 | error: |
| 1439 | isl_morph_free(morph: param_morph); |
| 1440 | isl_morph_free(morph); |
| 1441 | isl_vertices_free(vertices); |
| 1442 | return NULL; |
| 1443 | } |
| 1444 | |
| 1445 | /* Construct a simplex isl_cell spanned by the vertices with indices in |
| 1446 | * "simplex_ids" and "other_ids" and call "fn" on this isl_cell. |
| 1447 | */ |
| 1448 | static isl_stat call_on_simplex(__isl_keep isl_cell *cell, |
| 1449 | int *simplex_ids, int n_simplex, int *other_ids, int n_other, |
| 1450 | isl_stat (*fn)(__isl_take isl_cell *simplex, void *user), void *user) |
| 1451 | { |
| 1452 | int i; |
| 1453 | isl_ctx *ctx; |
| 1454 | struct isl_cell *simplex; |
| 1455 | |
| 1456 | ctx = isl_cell_get_ctx(cell); |
| 1457 | |
| 1458 | simplex = isl_calloc_type(ctx, struct isl_cell); |
| 1459 | if (!simplex) |
| 1460 | return isl_stat_error; |
| 1461 | simplex->vertices = isl_vertices_copy(vertices: cell->vertices); |
| 1462 | if (!simplex->vertices) |
| 1463 | goto error; |
| 1464 | simplex->dom = isl_basic_set_copy(bset: cell->dom); |
| 1465 | if (!simplex->dom) |
| 1466 | goto error; |
| 1467 | simplex->n_vertices = n_simplex + n_other; |
| 1468 | simplex->ids = isl_alloc_array(ctx, int, simplex->n_vertices); |
| 1469 | if (!simplex->ids) |
| 1470 | goto error; |
| 1471 | |
| 1472 | for (i = 0; i < n_simplex; ++i) |
| 1473 | simplex->ids[i] = simplex_ids[i]; |
| 1474 | for (i = 0; i < n_other; ++i) |
| 1475 | simplex->ids[n_simplex + i] = other_ids[i]; |
| 1476 | |
| 1477 | return fn(simplex, user); |
| 1478 | error: |
| 1479 | isl_cell_free(cell: simplex); |
| 1480 | return isl_stat_error; |
| 1481 | } |
| 1482 | |
| 1483 | /* Check whether the parametric vertex described by "vertex" |
| 1484 | * lies on the facet corresponding to constraint "facet" of "bset". |
| 1485 | * The isl_vec "v" is a temporary vector than can be used by this function. |
| 1486 | * |
| 1487 | * We eliminate the variables from the facet constraint using the |
| 1488 | * equalities defining the vertex and check if the result is identical |
| 1489 | * to zero. |
| 1490 | * |
| 1491 | * It would probably be better to keep track of the constraints defining |
| 1492 | * a vertex during the vertex construction so that we could simply look |
| 1493 | * it up here. |
| 1494 | */ |
| 1495 | static int vertex_on_facet(__isl_keep isl_basic_set *vertex, |
| 1496 | __isl_keep isl_basic_set *bset, int facet, __isl_keep isl_vec *v) |
| 1497 | { |
| 1498 | int i; |
| 1499 | isl_int m; |
| 1500 | |
| 1501 | isl_seq_cpy(dst: v->el, src: bset->ineq[facet], len: v->size); |
| 1502 | |
| 1503 | isl_int_init(m); |
| 1504 | for (i = 0; i < vertex->n_eq; ++i) { |
| 1505 | int k = isl_seq_last_non_zero(p: vertex->eq[i], len: v->size); |
| 1506 | isl_seq_elim(dst: v->el, src: vertex->eq[i], pos: k, len: v->size, m: &m); |
| 1507 | } |
| 1508 | isl_int_clear(m); |
| 1509 | |
| 1510 | return isl_seq_first_non_zero(p: v->el, len: v->size) == -1; |
| 1511 | } |
| 1512 | |
| 1513 | /* Triangulate the polytope spanned by the vertices with ids |
| 1514 | * in "simplex_ids" and "other_ids" and call "fn" on each of |
| 1515 | * the resulting simplices. |
| 1516 | * If the input polytope is already a simplex, we simply call "fn". |
| 1517 | * Otherwise, we pick a point from "other_ids" and add it to "simplex_ids". |
| 1518 | * Then we consider each facet of "bset" that does not contain the point |
| 1519 | * we just picked, but does contain some of the other points in "other_ids" |
| 1520 | * and call ourselves recursively on the polytope spanned by the new |
| 1521 | * "simplex_ids" and those points in "other_ids" that lie on the facet. |
| 1522 | */ |
| 1523 | static isl_stat triangulate(__isl_keep isl_cell *cell, __isl_keep isl_vec *v, |
| 1524 | int *simplex_ids, int n_simplex, int *other_ids, int n_other, |
| 1525 | isl_stat (*fn)(__isl_take isl_cell *simplex, void *user), void *user) |
| 1526 | { |
| 1527 | int i, j, k; |
| 1528 | isl_size d, nparam; |
| 1529 | int *ids; |
| 1530 | isl_ctx *ctx; |
| 1531 | isl_basic_set *vertex; |
| 1532 | isl_basic_set *bset; |
| 1533 | |
| 1534 | ctx = isl_cell_get_ctx(cell); |
| 1535 | d = isl_basic_set_dim(bset: cell->vertices->bset, type: isl_dim_set); |
| 1536 | nparam = isl_basic_set_dim(bset: cell->vertices->bset, type: isl_dim_param); |
| 1537 | if (d < 0 || nparam < 0) |
| 1538 | return isl_stat_error; |
| 1539 | |
| 1540 | if (n_simplex + n_other == d + 1) |
| 1541 | return call_on_simplex(cell, simplex_ids, n_simplex, |
| 1542 | other_ids, n_other, fn, user); |
| 1543 | |
| 1544 | simplex_ids[n_simplex] = other_ids[0]; |
| 1545 | vertex = cell->vertices->v[other_ids[0]].vertex; |
| 1546 | bset = cell->vertices->bset; |
| 1547 | |
| 1548 | ids = isl_alloc_array(ctx, int, n_other - 1); |
| 1549 | if (!ids) |
| 1550 | goto error; |
| 1551 | for (i = 0; i < bset->n_ineq; ++i) { |
| 1552 | if (isl_seq_first_non_zero(p: bset->ineq[i] + 1 + nparam, len: d) == -1) |
| 1553 | continue; |
| 1554 | if (vertex_on_facet(vertex, bset, facet: i, v)) |
| 1555 | continue; |
| 1556 | |
| 1557 | for (j = 1, k = 0; j < n_other; ++j) { |
| 1558 | isl_basic_set *ov; |
| 1559 | ov = cell->vertices->v[other_ids[j]].vertex; |
| 1560 | if (vertex_on_facet(vertex: ov, bset, facet: i, v)) |
| 1561 | ids[k++] = other_ids[j]; |
| 1562 | } |
| 1563 | if (k == 0) |
| 1564 | continue; |
| 1565 | |
| 1566 | if (triangulate(cell, v, simplex_ids, n_simplex: n_simplex + 1, |
| 1567 | other_ids: ids, n_other: k, fn, user) < 0) |
| 1568 | goto error; |
| 1569 | } |
| 1570 | free(ptr: ids); |
| 1571 | |
| 1572 | return isl_stat_ok; |
| 1573 | error: |
| 1574 | free(ptr: ids); |
| 1575 | return isl_stat_error; |
| 1576 | } |
| 1577 | |
| 1578 | /* Triangulate the given cell and call "fn" on each of the resulting |
| 1579 | * simplices. |
| 1580 | */ |
| 1581 | isl_stat isl_cell_foreach_simplex(__isl_take isl_cell *cell, |
| 1582 | isl_stat (*fn)(__isl_take isl_cell *simplex, void *user), void *user) |
| 1583 | { |
| 1584 | isl_size d, total; |
| 1585 | isl_stat r; |
| 1586 | isl_ctx *ctx; |
| 1587 | isl_vec *v = NULL; |
| 1588 | int *simplex_ids = NULL; |
| 1589 | |
| 1590 | if (!cell) |
| 1591 | return isl_stat_error; |
| 1592 | |
| 1593 | d = isl_basic_set_dim(bset: cell->vertices->bset, type: isl_dim_set); |
| 1594 | total = isl_basic_set_dim(bset: cell->vertices->bset, type: isl_dim_all); |
| 1595 | if (d < 0 || total < 0) |
| 1596 | return isl_stat_error; |
| 1597 | |
| 1598 | if (cell->n_vertices == d + 1) |
| 1599 | return fn(cell, user); |
| 1600 | |
| 1601 | ctx = isl_cell_get_ctx(cell); |
| 1602 | simplex_ids = isl_alloc_array(ctx, int, d + 1); |
| 1603 | if (!simplex_ids) |
| 1604 | goto error; |
| 1605 | |
| 1606 | v = isl_vec_alloc(ctx, size: 1 + total); |
| 1607 | if (!v) |
| 1608 | goto error; |
| 1609 | |
| 1610 | r = triangulate(cell, v, simplex_ids, n_simplex: 0, |
| 1611 | other_ids: cell->ids, n_other: cell->n_vertices, fn, user); |
| 1612 | |
| 1613 | isl_vec_free(vec: v); |
| 1614 | free(ptr: simplex_ids); |
| 1615 | |
| 1616 | isl_cell_free(cell); |
| 1617 | |
| 1618 | return r; |
| 1619 | error: |
| 1620 | free(ptr: simplex_ids); |
| 1621 | isl_vec_free(vec: v); |
| 1622 | isl_cell_free(cell); |
| 1623 | return isl_stat_error; |
| 1624 | } |
| 1625 | |