1 | //===------ ZoneAlgo.cpp ----------------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Derive information about array elements between statements ("Zones"). |
10 | // |
11 | // The algorithms here work on the scatter space - the image space of the |
12 | // schedule returned by Scop::getSchedule(). We call an element in that space a |
13 | // "timepoint". Timepoints are lexicographically ordered such that we can |
14 | // defined ranges in the scatter space. We use two flavors of such ranges: |
15 | // Timepoint sets and zones. A timepoint set is simply a subset of the scatter |
16 | // space and is directly stored as isl_set. |
17 | // |
18 | // Zones are used to describe the space between timepoints as open sets, i.e. |
19 | // they do not contain the extrema. Using isl rational sets to express these |
20 | // would be overkill. We also cannot store them as the integer timepoints they |
21 | // contain; the (nonempty) zone between 1 and 2 would be empty and |
22 | // indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store |
23 | // the integer set including the extrema; the set ]1,2[ + ]3,4[ could be |
24 | // coalesced to ]1,3[, although we defined the range [2,3] to be not in the set. |
25 | // Instead, we store the "half-open" integer extrema, including the lower bound, |
26 | // but excluding the upper bound. Examples: |
27 | // |
28 | // * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the |
29 | // integer points 1 and 2, but not 0 or 3) |
30 | // |
31 | // * { [1] } represents the zone ]0,1[ |
32 | // |
33 | // * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[ |
34 | // |
35 | // Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly |
36 | // speaking the integer points never belong to the zone. However, depending an |
37 | // the interpretation, one might want to include them. Part of the |
38 | // interpretation may not be known when the zone is constructed. |
39 | // |
40 | // Reads are assumed to always take place before writes, hence we can think of |
41 | // reads taking place at the beginning of a timepoint and writes at the end. |
42 | // |
43 | // Let's assume that the zone represents the lifetime of a variable. That is, |
44 | // the zone begins with a write that defines the value during its lifetime and |
45 | // ends with the last read of that value. In the following we consider whether a |
46 | // read/write at the beginning/ending of the lifetime zone should be within the |
47 | // zone or outside of it. |
48 | // |
49 | // * A read at the timepoint that starts the live-range loads the previous |
50 | // value. Hence, exclude the timepoint starting the zone. |
51 | // |
52 | // * A write at the timepoint that starts the live-range is not defined whether |
53 | // it occurs before or after the write that starts the lifetime. We do not |
54 | // allow this situation to occur. Hence, we include the timepoint starting the |
55 | // zone to determine whether they are conflicting. |
56 | // |
57 | // * A read at the timepoint that ends the live-range reads the same variable. |
58 | // We include the timepoint at the end of the zone to include that read into |
59 | // the live-range. Doing otherwise would mean that the two reads access |
60 | // different values, which would mean that the value they read are both alive |
61 | // at the same time but occupy the same variable. |
62 | // |
63 | // * A write at the timepoint that ends the live-range starts a new live-range. |
64 | // It must not be included in the live-range of the previous definition. |
65 | // |
66 | // All combinations of reads and writes at the endpoints are possible, but most |
67 | // of the time only the write->read (for instance, a live-range from definition |
68 | // to last use) and read->write (for instance, an unused range from last use to |
69 | // overwrite) and combinations are interesting (half-open ranges). write->write |
70 | // zones might be useful as well in some context to represent |
71 | // output-dependencies. |
72 | // |
73 | // @see convertZoneToTimepoints |
74 | // |
75 | // |
76 | // The code makes use of maps and sets in many different spaces. To not loose |
77 | // track in which space a set or map is expected to be in, variables holding an |
78 | // isl reference are usually annotated in the comments. They roughly follow isl |
79 | // syntax for spaces, but only the tuples, not the dimensions. The tuples have a |
80 | // meaning as follows: |
81 | // |
82 | // * Space[] - An unspecified tuple. Used for function parameters such that the |
83 | // function caller can use it for anything they like. |
84 | // |
85 | // * Domain[] - A statement instance as returned by ScopStmt::getDomain() |
86 | // isl_id_get_name: Stmt_<NameOfBasicBlock> |
87 | // isl_id_get_user: Pointer to ScopStmt |
88 | // |
89 | // * Element[] - An array element as in the range part of |
90 | // MemoryAccess::getAccessRelation() |
91 | // isl_id_get_name: MemRef_<NameOfArrayVariable> |
92 | // isl_id_get_user: Pointer to ScopArrayInfo |
93 | // |
94 | // * Scatter[] - Scatter space or space of timepoints |
95 | // Has no tuple id |
96 | // |
97 | // * Zone[] - Range between timepoints as described above |
98 | // Has no tuple id |
99 | // |
100 | // * ValInst[] - An llvm::Value as defined at a specific timepoint. |
101 | // |
102 | // A ValInst[] itself can be structured as one of: |
103 | // |
104 | // * [] - An unknown value. |
105 | // Always zero dimensions |
106 | // Has no tuple id |
107 | // |
108 | // * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its |
109 | // runtime content does not depend on the timepoint. |
110 | // Always zero dimensions |
111 | // isl_id_get_name: Val_<NameOfValue> |
112 | // isl_id_get_user: A pointer to an llvm::Value |
113 | // |
114 | // * SCEV[...] - A synthesizable llvm::SCEV Expression. |
115 | // In contrast to a Value[] is has at least one dimension per |
116 | // SCEVAddRecExpr in the SCEV. |
117 | // |
118 | // * [Domain[] -> Value[]] - An llvm::Value that may change during the |
119 | // Scop's execution. |
120 | // The tuple itself has no id, but it wraps a map space holding a |
121 | // statement instance which defines the llvm::Value as the map's domain |
122 | // and llvm::Value itself as range. |
123 | // |
124 | // @see makeValInst() |
125 | // |
126 | // An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a |
127 | // statement instance to a timepoint, aka a schedule. There is only one scatter |
128 | // space, but most of the time multiple statements are processed in one set. |
129 | // This is why most of the time isl_union_map has to be used. |
130 | // |
131 | // The basic algorithm works as follows: |
132 | // At first we verify that the SCoP is compatible with this technique. For |
133 | // instance, two writes cannot write to the same location at the same statement |
134 | // instance because we cannot determine within the polyhedral model which one |
135 | // comes first. Once this was verified, we compute zones at which an array |
136 | // element is unused. This computation can fail if it takes too long. Then the |
137 | // main algorithm is executed. Because every store potentially trails an unused |
138 | // zone, we start at stores. We search for a scalar (MemoryKind::Value or |
139 | // MemoryKind::PHI) that we can map to the array element overwritten by the |
140 | // store, preferably one that is used by the store or at least the ScopStmt. |
141 | // When it does not conflict with the lifetime of the values in the array |
142 | // element, the map is applied and the unused zone updated as it is now used. We |
143 | // continue to try to map scalars to the array element until there are no more |
144 | // candidates to map. The algorithm is greedy in the sense that the first scalar |
145 | // not conflicting will be mapped. Other scalars processed later that could have |
146 | // fit the same unused zone will be rejected. As such the result depends on the |
147 | // processing order. |
148 | // |
149 | //===----------------------------------------------------------------------===// |
150 | |
151 | #include "polly/ZoneAlgo.h" |
152 | #include "polly/ScopInfo.h" |
153 | #include "polly/Support/GICHelper.h" |
154 | #include "polly/Support/ISLTools.h" |
155 | #include "polly/Support/VirtualInstruction.h" |
156 | #include "llvm/ADT/Statistic.h" |
157 | #include "llvm/Support/raw_ostream.h" |
158 | |
159 | #include "polly/Support/PollyDebug.h" |
160 | #define DEBUG_TYPE "polly-zone" |
161 | |
162 | STATISTIC(NumIncompatibleArrays, "Number of not zone-analyzable arrays" ); |
163 | STATISTIC(NumCompatibleArrays, "Number of zone-analyzable arrays" ); |
164 | STATISTIC(NumRecursivePHIs, "Number of recursive PHIs" ); |
165 | STATISTIC(NumNormalizablePHIs, "Number of normalizable PHIs" ); |
166 | STATISTIC(NumPHINormialization, "Number of PHI executed normalizations" ); |
167 | |
168 | using namespace polly; |
169 | using namespace llvm; |
170 | |
171 | static isl::union_map computeReachingDefinition(isl::union_map Schedule, |
172 | isl::union_map Writes, |
173 | bool InclDef, bool InclRedef) { |
174 | return computeReachingWrite(Schedule, Writes, Reverse: false, InclPrevDef: InclDef, InclNextDef: InclRedef); |
175 | } |
176 | |
177 | /// Compute the reaching definition of a scalar. |
178 | /// |
179 | /// Compared to computeReachingDefinition, there is just one element which is |
180 | /// accessed and therefore only a set if instances that accesses that element is |
181 | /// required. |
182 | /// |
183 | /// @param Schedule { DomainWrite[] -> Scatter[] } |
184 | /// @param Writes { DomainWrite[] } |
185 | /// @param InclDef Include the timepoint of the definition to the result. |
186 | /// @param InclRedef Include the timepoint of the overwrite into the result. |
187 | /// |
188 | /// @return { Scatter[] -> DomainWrite[] } |
189 | static isl::union_map computeScalarReachingDefinition(isl::union_map Schedule, |
190 | isl::union_set Writes, |
191 | bool InclDef, |
192 | bool InclRedef) { |
193 | // { DomainWrite[] -> Element[] } |
194 | isl::union_map Defs = isl::union_map::from_domain(uset: Writes); |
195 | |
196 | // { [Element[] -> Scatter[]] -> DomainWrite[] } |
197 | auto ReachDefs = |
198 | computeReachingDefinition(Schedule, Writes: Defs, InclDef, InclRedef); |
199 | |
200 | // { Scatter[] -> DomainWrite[] } |
201 | return ReachDefs.curry().range().unwrap(); |
202 | } |
203 | |
204 | /// Compute the reaching definition of a scalar. |
205 | /// |
206 | /// This overload accepts only a single writing statement as an isl_map, |
207 | /// consequently the result also is only a single isl_map. |
208 | /// |
209 | /// @param Schedule { DomainWrite[] -> Scatter[] } |
210 | /// @param Writes { DomainWrite[] } |
211 | /// @param InclDef Include the timepoint of the definition to the result. |
212 | /// @param InclRedef Include the timepoint of the overwrite into the result. |
213 | /// |
214 | /// @return { Scatter[] -> DomainWrite[] } |
215 | static isl::map computeScalarReachingDefinition(isl::union_map Schedule, |
216 | isl::set Writes, bool InclDef, |
217 | bool InclRedef) { |
218 | isl::space DomainSpace = Writes.get_space(); |
219 | isl::space ScatterSpace = getScatterSpace(Schedule); |
220 | |
221 | // { Scatter[] -> DomainWrite[] } |
222 | isl::union_map UMap = computeScalarReachingDefinition( |
223 | Schedule, Writes: isl::union_set(Writes), InclDef, InclRedef); |
224 | |
225 | isl::space ResultSpace = ScatterSpace.map_from_domain_and_range(range: DomainSpace); |
226 | return singleton(UMap, ExpectedSpace: ResultSpace); |
227 | } |
228 | |
229 | isl::union_map polly::makeUnknownForDomain(isl::union_set Domain) { |
230 | return isl::union_map::from_domain(uset: Domain); |
231 | } |
232 | |
233 | /// Create a domain-to-unknown value mapping. |
234 | /// |
235 | /// @see makeUnknownForDomain(isl::union_set) |
236 | /// |
237 | /// @param Domain { Domain[] } |
238 | /// |
239 | /// @return { Domain[] -> ValInst[] } |
240 | static isl::map makeUnknownForDomain(isl::set Domain) { |
241 | return isl::map::from_domain(set: Domain); |
242 | } |
243 | |
244 | /// Return whether @p Map maps to an unknown value. |
245 | /// |
246 | /// @param { [] -> ValInst[] } |
247 | static bool isMapToUnknown(const isl::map &Map) { |
248 | isl::space Space = Map.get_space().range(); |
249 | return Space.has_tuple_id(type: isl::dim::set).is_false() && |
250 | Space.is_wrapping().is_false() && |
251 | Space.dim(type: isl::dim::set).release() == 0; |
252 | } |
253 | |
254 | isl::union_map polly::filterKnownValInst(const isl::union_map &UMap) { |
255 | isl::union_map Result = isl::union_map::empty(ctx: UMap.ctx()); |
256 | for (isl::map Map : UMap.get_map_list()) { |
257 | if (!isMapToUnknown(Map)) |
258 | Result = Result.unite(umap2: Map); |
259 | } |
260 | return Result; |
261 | } |
262 | |
263 | ZoneAlgorithm::ZoneAlgorithm(const char *PassName, Scop *S, LoopInfo *LI) |
264 | : PassName(PassName), IslCtx(S->getSharedIslCtx()), S(S), LI(LI), |
265 | Schedule(S->getSchedule()) { |
266 | auto Domains = S->getDomains(); |
267 | |
268 | Schedule = Schedule.intersect_domain(uset: Domains); |
269 | ParamSpace = Schedule.get_space(); |
270 | ScatterSpace = getScatterSpace(Schedule); |
271 | } |
272 | |
273 | /// Check if all stores in @p Stmt store the very same value. |
274 | /// |
275 | /// This covers a special situation occurring in Polybench's |
276 | /// covariance/correlation (which is typical for algorithms that cover symmetric |
277 | /// matrices): |
278 | /// |
279 | /// for (int i = 0; i < n; i += 1) |
280 | /// for (int j = 0; j <= i; j += 1) { |
281 | /// double x = ...; |
282 | /// C[i][j] = x; |
283 | /// C[j][i] = x; |
284 | /// } |
285 | /// |
286 | /// For i == j, the same value is written twice to the same element.Double |
287 | /// writes to the same element are not allowed in DeLICM because its algorithm |
288 | /// does not see which of the writes is effective.But if its the same value |
289 | /// anyway, it doesn't matter. |
290 | /// |
291 | /// LLVM passes, however, cannot simplify this because the write is necessary |
292 | /// for i != j (unless it would add a condition for one of the writes to occur |
293 | /// only if i != j). |
294 | /// |
295 | /// TODO: In the future we may want to extent this to make the checks |
296 | /// specific to different memory locations. |
297 | static bool onlySameValueWrites(ScopStmt *Stmt) { |
298 | Value *V = nullptr; |
299 | |
300 | for (auto *MA : *Stmt) { |
301 | if (!MA->isLatestArrayKind() || !MA->isMustWrite() || |
302 | !MA->isOriginalArrayKind()) |
303 | continue; |
304 | |
305 | if (!V) { |
306 | V = MA->getAccessValue(); |
307 | continue; |
308 | } |
309 | |
310 | if (V != MA->getAccessValue()) |
311 | return false; |
312 | } |
313 | return true; |
314 | } |
315 | |
316 | /// Is @p InnerLoop nested inside @p OuterLoop? |
317 | static bool isInsideLoop(Loop *OuterLoop, Loop *InnerLoop) { |
318 | // If OuterLoop is nullptr, we cannot call its contains() method. In this case |
319 | // OuterLoop represents the 'top level' and therefore contains all loop. |
320 | return !OuterLoop || OuterLoop->contains(L: InnerLoop); |
321 | } |
322 | |
323 | void ZoneAlgorithm::collectIncompatibleElts(ScopStmt *Stmt, |
324 | isl::union_set &IncompatibleElts, |
325 | isl::union_set &AllElts) { |
326 | auto Stores = makeEmptyUnionMap(); |
327 | auto Loads = makeEmptyUnionMap(); |
328 | |
329 | // This assumes that the MemoryKind::Array MemoryAccesses are iterated in |
330 | // order. |
331 | for (auto *MA : *Stmt) { |
332 | if (!MA->isOriginalArrayKind()) |
333 | continue; |
334 | |
335 | isl::map AccRelMap = getAccessRelationFor(MA); |
336 | isl::union_map AccRel = AccRelMap; |
337 | |
338 | // To avoid solving any ILP problems, always add entire arrays instead of |
339 | // just the elements that are accessed. |
340 | auto ArrayElts = isl::set::universe(space: AccRelMap.get_space().range()); |
341 | AllElts = AllElts.unite(uset2: ArrayElts); |
342 | |
343 | if (MA->isRead()) { |
344 | // Reject load after store to same location. |
345 | if (!Stores.is_disjoint(umap2: AccRel)) { |
346 | POLLY_DEBUG( |
347 | dbgs() << "Load after store of same element in same statement\n" ); |
348 | OptimizationRemarkMissed R(PassName, "LoadAfterStore" , |
349 | MA->getAccessInstruction()); |
350 | R << "load after store of same element in same statement" ; |
351 | R << " (previous stores: " << Stores; |
352 | R << ", loading: " << AccRel << ")" ; |
353 | S->getFunction().getContext().diagnose(DI: R); |
354 | |
355 | IncompatibleElts = IncompatibleElts.unite(uset2: ArrayElts); |
356 | } |
357 | |
358 | Loads = Loads.unite(umap2: AccRel); |
359 | |
360 | continue; |
361 | } |
362 | |
363 | // In region statements the order is less clear, eg. the load and store |
364 | // might be in a boxed loop. |
365 | if (Stmt->isRegionStmt() && !Loads.is_disjoint(umap2: AccRel)) { |
366 | POLLY_DEBUG(dbgs() << "WRITE in non-affine subregion not supported\n" ); |
367 | OptimizationRemarkMissed R(PassName, "StoreInSubregion" , |
368 | MA->getAccessInstruction()); |
369 | R << "store is in a non-affine subregion" ; |
370 | S->getFunction().getContext().diagnose(DI: R); |
371 | |
372 | IncompatibleElts = IncompatibleElts.unite(uset2: ArrayElts); |
373 | } |
374 | |
375 | // Do not allow more than one store to the same location. |
376 | if (!Stores.is_disjoint(umap2: AccRel) && !onlySameValueWrites(Stmt)) { |
377 | POLLY_DEBUG(dbgs() << "WRITE after WRITE to same element\n" ); |
378 | OptimizationRemarkMissed R(PassName, "StoreAfterStore" , |
379 | MA->getAccessInstruction()); |
380 | R << "store after store of same element in same statement" ; |
381 | R << " (previous stores: " << Stores; |
382 | R << ", storing: " << AccRel << ")" ; |
383 | S->getFunction().getContext().diagnose(DI: R); |
384 | |
385 | IncompatibleElts = IncompatibleElts.unite(uset2: ArrayElts); |
386 | } |
387 | |
388 | Stores = Stores.unite(umap2: AccRel); |
389 | } |
390 | } |
391 | |
392 | void ZoneAlgorithm::addArrayReadAccess(MemoryAccess *MA) { |
393 | assert(MA->isLatestArrayKind()); |
394 | assert(MA->isRead()); |
395 | ScopStmt *Stmt = MA->getStatement(); |
396 | |
397 | // { DomainRead[] -> Element[] } |
398 | auto AccRel = intersectRange(Map: getAccessRelationFor(MA), Range: CompatibleElts); |
399 | AllReads = AllReads.unite(umap2: AccRel); |
400 | |
401 | if (LoadInst *Load = dyn_cast_or_null<LoadInst>(Val: MA->getAccessInstruction())) { |
402 | // { DomainRead[] -> ValInst[] } |
403 | isl::map LoadValInst = makeValInst( |
404 | Val: Load, UserStmt: Stmt, Scope: LI->getLoopFor(BB: Load->getParent()), IsCertain: Stmt->isBlockStmt()); |
405 | |
406 | // { DomainRead[] -> [Element[] -> DomainRead[]] } |
407 | isl::map IncludeElement = AccRel.domain_map().curry(); |
408 | |
409 | // { [Element[] -> DomainRead[]] -> ValInst[] } |
410 | isl::map EltLoadValInst = LoadValInst.apply_domain(map2: IncludeElement); |
411 | |
412 | AllReadValInst = AllReadValInst.unite(umap2: EltLoadValInst); |
413 | } |
414 | } |
415 | |
416 | isl::union_map ZoneAlgorithm::getWrittenValue(MemoryAccess *MA, |
417 | isl::map AccRel) { |
418 | if (!MA->isMustWrite()) |
419 | return {}; |
420 | |
421 | Value *AccVal = MA->getAccessValue(); |
422 | ScopStmt *Stmt = MA->getStatement(); |
423 | Instruction *AccInst = MA->getAccessInstruction(); |
424 | |
425 | // Write a value to a single element. |
426 | auto L = MA->isOriginalArrayKind() ? LI->getLoopFor(BB: AccInst->getParent()) |
427 | : Stmt->getSurroundingLoop(); |
428 | if (AccVal && |
429 | AccVal->getType() == MA->getLatestScopArrayInfo()->getElementType() && |
430 | AccRel.is_single_valued().is_true()) |
431 | return makeNormalizedValInst(Val: AccVal, UserStmt: Stmt, Scope: L); |
432 | |
433 | // memset(_, '0', ) is equivalent to writing the null value to all touched |
434 | // elements. isMustWrite() ensures that all of an element's bytes are |
435 | // overwritten. |
436 | if (auto *Memset = dyn_cast<MemSetInst>(Val: AccInst)) { |
437 | auto *WrittenConstant = dyn_cast<Constant>(Val: Memset->getValue()); |
438 | Type *Ty = MA->getLatestScopArrayInfo()->getElementType(); |
439 | if (WrittenConstant && WrittenConstant->isZeroValue()) { |
440 | Constant *Zero = Constant::getNullValue(Ty); |
441 | return makeNormalizedValInst(Val: Zero, UserStmt: Stmt, Scope: L); |
442 | } |
443 | } |
444 | |
445 | return {}; |
446 | } |
447 | |
448 | void ZoneAlgorithm::addArrayWriteAccess(MemoryAccess *MA) { |
449 | assert(MA->isLatestArrayKind()); |
450 | assert(MA->isWrite()); |
451 | auto *Stmt = MA->getStatement(); |
452 | |
453 | // { Domain[] -> Element[] } |
454 | isl::map AccRel = intersectRange(Map: getAccessRelationFor(MA), Range: CompatibleElts); |
455 | |
456 | if (MA->isMustWrite()) |
457 | AllMustWrites = AllMustWrites.unite(umap2: AccRel); |
458 | |
459 | if (MA->isMayWrite()) |
460 | AllMayWrites = AllMayWrites.unite(umap2: AccRel); |
461 | |
462 | // { Domain[] -> ValInst[] } |
463 | isl::union_map WriteValInstance = getWrittenValue(MA, AccRel); |
464 | if (WriteValInstance.is_null()) |
465 | WriteValInstance = makeUnknownForDomain(Stmt); |
466 | |
467 | // { Domain[] -> [Element[] -> Domain[]] } |
468 | isl::map IncludeElement = AccRel.domain_map().curry(); |
469 | |
470 | // { [Element[] -> DomainWrite[]] -> ValInst[] } |
471 | isl::union_map EltWriteValInst = |
472 | WriteValInstance.apply_domain(umap2: IncludeElement); |
473 | |
474 | AllWriteValInst = AllWriteValInst.unite(umap2: EltWriteValInst); |
475 | } |
476 | |
477 | /// For an llvm::Value defined in @p DefStmt, compute the RAW dependency for a |
478 | /// use in every instance of @p UseStmt. |
479 | /// |
480 | /// @param UseStmt Statement a scalar is used in. |
481 | /// @param DefStmt Statement a scalar is defined in. |
482 | /// |
483 | /// @return { DomainUse[] -> DomainDef[] } |
484 | isl::map ZoneAlgorithm::computeUseToDefFlowDependency(ScopStmt *UseStmt, |
485 | ScopStmt *DefStmt) { |
486 | // { DomainUse[] -> Scatter[] } |
487 | isl::map UseScatter = getScatterFor(Stmt: UseStmt); |
488 | |
489 | // { Zone[] -> DomainDef[] } |
490 | isl::map ReachDefZone = getScalarReachingDefinition(Stmt: DefStmt); |
491 | |
492 | // { Scatter[] -> DomainDef[] } |
493 | isl::map ReachDefTimepoints = |
494 | convertZoneToTimepoints(Zone: ReachDefZone, Dim: isl::dim::in, InclStart: false, InclEnd: true); |
495 | |
496 | // { DomainUse[] -> DomainDef[] } |
497 | return UseScatter.apply_range(map2: ReachDefTimepoints); |
498 | } |
499 | |
500 | /// Return whether @p PHI refers (also transitively through other PHIs) to |
501 | /// itself. |
502 | /// |
503 | /// loop: |
504 | /// %phi1 = phi [0, %preheader], [%phi1, %loop] |
505 | /// br i1 %c, label %loop, label %exit |
506 | /// |
507 | /// exit: |
508 | /// %phi2 = phi [%phi1, %bb] |
509 | /// |
510 | /// In this example, %phi1 is recursive, but %phi2 is not. |
511 | static bool isRecursivePHI(const PHINode *PHI) { |
512 | SmallVector<const PHINode *, 8> Worklist; |
513 | SmallPtrSet<const PHINode *, 8> Visited; |
514 | Worklist.push_back(Elt: PHI); |
515 | |
516 | while (!Worklist.empty()) { |
517 | const PHINode *Cur = Worklist.pop_back_val(); |
518 | |
519 | if (Visited.count(Ptr: Cur)) |
520 | continue; |
521 | Visited.insert(Ptr: Cur); |
522 | |
523 | for (const Use &Incoming : Cur->incoming_values()) { |
524 | Value *IncomingVal = Incoming.get(); |
525 | auto *IncomingPHI = dyn_cast<PHINode>(Val: IncomingVal); |
526 | if (!IncomingPHI) |
527 | continue; |
528 | |
529 | if (IncomingPHI == PHI) |
530 | return true; |
531 | Worklist.push_back(Elt: IncomingPHI); |
532 | } |
533 | } |
534 | return false; |
535 | } |
536 | |
537 | isl::union_map ZoneAlgorithm::computePerPHI(const ScopArrayInfo *SAI) { |
538 | // TODO: If the PHI has an incoming block from before the SCoP, it is not |
539 | // represented in any ScopStmt. |
540 | |
541 | auto *PHI = cast<PHINode>(Val: SAI->getBasePtr()); |
542 | auto It = PerPHIMaps.find(Val: PHI); |
543 | if (It != PerPHIMaps.end()) |
544 | return It->second; |
545 | |
546 | // Cannot reliably compute immediate predecessor for undefined executions, so |
547 | // bail out if we do not know. This in particular applies to undefined control |
548 | // flow. |
549 | isl::set DefinedContext = S->getDefinedBehaviorContext(); |
550 | if (DefinedContext.is_null()) |
551 | return {}; |
552 | |
553 | assert(SAI->isPHIKind()); |
554 | |
555 | // { DomainPHIWrite[] -> Scatter[] } |
556 | isl::union_map PHIWriteScatter = makeEmptyUnionMap(); |
557 | |
558 | // Collect all incoming block timepoints. |
559 | for (MemoryAccess *MA : S->getPHIIncomings(SAI)) { |
560 | isl::map Scatter = getScatterFor(MA); |
561 | PHIWriteScatter = PHIWriteScatter.unite(umap2: Scatter); |
562 | } |
563 | |
564 | // { DomainPHIRead[] -> Scatter[] } |
565 | isl::map PHIReadScatter = getScatterFor(MA: S->getPHIRead(SAI)); |
566 | |
567 | // { DomainPHIRead[] -> Scatter[] } |
568 | isl::map BeforeRead = beforeScatter(Map: PHIReadScatter, Strict: true); |
569 | |
570 | // { Scatter[] } |
571 | isl::set WriteTimes = singleton(USet: PHIWriteScatter.range(), ExpectedSpace: ScatterSpace); |
572 | |
573 | // { DomainPHIRead[] -> Scatter[] } |
574 | isl::map PHIWriteTimes = BeforeRead.intersect_range(set: WriteTimes); |
575 | |
576 | // Remove instances outside the context. |
577 | PHIWriteTimes = PHIWriteTimes.intersect_params(params: DefinedContext); |
578 | |
579 | isl::map LastPerPHIWrites = PHIWriteTimes.lexmax(); |
580 | |
581 | // { DomainPHIRead[] -> DomainPHIWrite[] } |
582 | isl::union_map Result = |
583 | isl::union_map(LastPerPHIWrites).apply_range(umap2: PHIWriteScatter.reverse()); |
584 | assert(!Result.is_single_valued().is_false()); |
585 | assert(!Result.is_injective().is_false()); |
586 | |
587 | PerPHIMaps.insert(KV: {PHI, Result}); |
588 | return Result; |
589 | } |
590 | |
591 | isl::union_set ZoneAlgorithm::makeEmptyUnionSet() const { |
592 | return isl::union_set::empty(ctx: ParamSpace.ctx()); |
593 | } |
594 | |
595 | isl::union_map ZoneAlgorithm::makeEmptyUnionMap() const { |
596 | return isl::union_map::empty(ctx: ParamSpace.ctx()); |
597 | } |
598 | |
599 | void ZoneAlgorithm::collectCompatibleElts() { |
600 | // First find all the incompatible elements, then take the complement. |
601 | // We compile the list of compatible (rather than incompatible) elements so |
602 | // users can intersect with the list, not requiring a subtract operation. It |
603 | // also allows us to define a 'universe' of all elements and makes it more |
604 | // explicit in which array elements can be used. |
605 | isl::union_set AllElts = makeEmptyUnionSet(); |
606 | isl::union_set IncompatibleElts = makeEmptyUnionSet(); |
607 | |
608 | for (auto &Stmt : *S) |
609 | collectIncompatibleElts(Stmt: &Stmt, IncompatibleElts, AllElts); |
610 | |
611 | NumIncompatibleArrays += isl_union_set_n_set(uset: IncompatibleElts.get()); |
612 | CompatibleElts = AllElts.subtract(uset2: IncompatibleElts); |
613 | NumCompatibleArrays += isl_union_set_n_set(uset: CompatibleElts.get()); |
614 | } |
615 | |
616 | isl::map ZoneAlgorithm::getScatterFor(ScopStmt *Stmt) const { |
617 | isl::space ResultSpace = |
618 | Stmt->getDomainSpace().map_from_domain_and_range(range: ScatterSpace); |
619 | return Schedule.extract_map(space: ResultSpace); |
620 | } |
621 | |
622 | isl::map ZoneAlgorithm::getScatterFor(MemoryAccess *MA) const { |
623 | return getScatterFor(Stmt: MA->getStatement()); |
624 | } |
625 | |
626 | isl::union_map ZoneAlgorithm::getScatterFor(isl::union_set Domain) const { |
627 | return Schedule.intersect_domain(uset: Domain); |
628 | } |
629 | |
630 | isl::map ZoneAlgorithm::getScatterFor(isl::set Domain) const { |
631 | auto ResultSpace = Domain.get_space().map_from_domain_and_range(range: ScatterSpace); |
632 | auto UDomain = isl::union_set(Domain); |
633 | auto UResult = getScatterFor(Domain: std::move(UDomain)); |
634 | auto Result = singleton(UMap: std::move(UResult), ExpectedSpace: std::move(ResultSpace)); |
635 | assert(Result.is_null() || Result.domain().is_equal(Domain) == isl_bool_true); |
636 | return Result; |
637 | } |
638 | |
639 | isl::set ZoneAlgorithm::getDomainFor(ScopStmt *Stmt) const { |
640 | return Stmt->getDomain().remove_redundancies(); |
641 | } |
642 | |
643 | isl::set ZoneAlgorithm::getDomainFor(MemoryAccess *MA) const { |
644 | return getDomainFor(Stmt: MA->getStatement()); |
645 | } |
646 | |
647 | isl::map ZoneAlgorithm::getAccessRelationFor(MemoryAccess *MA) const { |
648 | auto Domain = getDomainFor(MA); |
649 | auto AccRel = MA->getLatestAccessRelation(); |
650 | return AccRel.intersect_domain(set: Domain); |
651 | } |
652 | |
653 | isl::map ZoneAlgorithm::getDefToTarget(ScopStmt *DefStmt, |
654 | ScopStmt *TargetStmt) { |
655 | // No translation required if the definition is already at the target. |
656 | if (TargetStmt == DefStmt) |
657 | return isl::map::identity( |
658 | space: getDomainFor(Stmt: TargetStmt).get_space().map_from_set()); |
659 | |
660 | isl::map &Result = DefToTargetCache[std::make_pair(x&: TargetStmt, y&: DefStmt)]; |
661 | |
662 | // This is a shortcut in case the schedule is still the original and |
663 | // TargetStmt is in the same or nested inside DefStmt's loop. With the |
664 | // additional assumption that operand trees do not cross DefStmt's loop |
665 | // header, then TargetStmt's instance shared coordinates are the same as |
666 | // DefStmt's coordinates. All TargetStmt instances with this prefix share |
667 | // the same DefStmt instance. |
668 | // Model: |
669 | // |
670 | // for (int i < 0; i < N; i+=1) { |
671 | // DefStmt: |
672 | // D = ...; |
673 | // for (int j < 0; j < N; j+=1) { |
674 | // TargetStmt: |
675 | // use(D); |
676 | // } |
677 | // } |
678 | // |
679 | // Here, the value used in TargetStmt is defined in the corresponding |
680 | // DefStmt, i.e. |
681 | // |
682 | // { DefStmt[i] -> TargetStmt[i,j] } |
683 | // |
684 | // In practice, this should cover the majority of cases. |
685 | if (Result.is_null() && S->isOriginalSchedule() && |
686 | isInsideLoop(OuterLoop: DefStmt->getSurroundingLoop(), |
687 | InnerLoop: TargetStmt->getSurroundingLoop())) { |
688 | isl::set DefDomain = getDomainFor(Stmt: DefStmt); |
689 | isl::set TargetDomain = getDomainFor(Stmt: TargetStmt); |
690 | assert(unsignedFromIslSize(DefDomain.tuple_dim()) <= |
691 | unsignedFromIslSize(TargetDomain.tuple_dim())); |
692 | |
693 | Result = isl::map::from_domain_and_range(domain: DefDomain, range: TargetDomain); |
694 | for (unsigned i : rangeIslSize(Begin: 0, End: DefDomain.tuple_dim())) |
695 | Result = Result.equate(type1: isl::dim::in, pos1: i, type2: isl::dim::out, pos2: i); |
696 | } |
697 | |
698 | if (Result.is_null()) { |
699 | // { DomainDef[] -> DomainTarget[] } |
700 | Result = computeUseToDefFlowDependency(UseStmt: TargetStmt, DefStmt).reverse(); |
701 | simplify(Map&: Result); |
702 | } |
703 | |
704 | return Result; |
705 | } |
706 | |
707 | isl::map ZoneAlgorithm::getScalarReachingDefinition(ScopStmt *Stmt) { |
708 | auto &Result = ScalarReachDefZone[Stmt]; |
709 | if (!Result.is_null()) |
710 | return Result; |
711 | |
712 | auto Domain = getDomainFor(Stmt); |
713 | Result = computeScalarReachingDefinition(Schedule, Writes: Domain, InclDef: false, InclRedef: true); |
714 | simplify(Map&: Result); |
715 | |
716 | return Result; |
717 | } |
718 | |
719 | isl::map ZoneAlgorithm::getScalarReachingDefinition(isl::set DomainDef) { |
720 | auto DomId = DomainDef.get_tuple_id(); |
721 | auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(id: DomId.get())); |
722 | |
723 | auto StmtResult = getScalarReachingDefinition(Stmt); |
724 | |
725 | return StmtResult.intersect_range(set: DomainDef); |
726 | } |
727 | |
728 | isl::map ZoneAlgorithm::makeUnknownForDomain(ScopStmt *Stmt) const { |
729 | return ::makeUnknownForDomain(Domain: getDomainFor(Stmt)); |
730 | } |
731 | |
732 | isl::id ZoneAlgorithm::makeValueId(Value *V) { |
733 | if (!V) |
734 | return {}; |
735 | |
736 | auto &Id = ValueIds[V]; |
737 | if (Id.is_null()) { |
738 | auto Name = getIslCompatibleName(Prefix: "Val_" , Val: V, Number: ValueIds.size() - 1, |
739 | Suffix: std::string(), UseInstructionNames); |
740 | Id = isl::id::alloc(ctx: IslCtx.get(), name: Name.c_str(), user: V); |
741 | } |
742 | return Id; |
743 | } |
744 | |
745 | isl::space ZoneAlgorithm::makeValueSpace(Value *V) { |
746 | auto Result = ParamSpace.set_from_params(); |
747 | return Result.set_tuple_id(type: isl::dim::set, id: makeValueId(V)); |
748 | } |
749 | |
750 | isl::set ZoneAlgorithm::makeValueSet(Value *V) { |
751 | auto Space = makeValueSpace(V); |
752 | return isl::set::universe(space: Space); |
753 | } |
754 | |
755 | isl::map ZoneAlgorithm::makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope, |
756 | bool IsCertain) { |
757 | // If the definition/write is conditional, the value at the location could |
758 | // be either the written value or the old value. Since we cannot know which |
759 | // one, consider the value to be unknown. |
760 | if (!IsCertain) |
761 | return makeUnknownForDomain(Stmt: UserStmt); |
762 | |
763 | auto DomainUse = getDomainFor(Stmt: UserStmt); |
764 | auto VUse = VirtualUse::create(S, UserStmt, UserScope: Scope, Val, Virtual: true); |
765 | switch (VUse.getKind()) { |
766 | case VirtualUse::Constant: |
767 | case VirtualUse::Block: |
768 | case VirtualUse::Hoisted: |
769 | case VirtualUse::ReadOnly: { |
770 | // The definition does not depend on the statement which uses it. |
771 | auto ValSet = makeValueSet(V: Val); |
772 | return isl::map::from_domain_and_range(domain: DomainUse, range: ValSet); |
773 | } |
774 | |
775 | case VirtualUse::Synthesizable: { |
776 | auto *ScevExpr = VUse.getScevExpr(); |
777 | auto UseDomainSpace = DomainUse.get_space(); |
778 | |
779 | // Construct the SCEV space. |
780 | // TODO: Add only the induction variables referenced in SCEVAddRecExpr |
781 | // expressions, not just all of them. |
782 | auto ScevId = isl::manage(ptr: isl_id_alloc(ctx: UseDomainSpace.ctx().get(), name: nullptr, |
783 | user: const_cast<SCEV *>(ScevExpr))); |
784 | |
785 | auto ScevSpace = UseDomainSpace.drop_dims(type: isl::dim::set, first: 0, num: 0); |
786 | ScevSpace = ScevSpace.set_tuple_id(type: isl::dim::set, id: ScevId); |
787 | |
788 | // { DomainUse[] -> ScevExpr[] } |
789 | auto ValInst = |
790 | isl::map::identity(space: UseDomainSpace.map_from_domain_and_range(range: ScevSpace)); |
791 | return ValInst; |
792 | } |
793 | |
794 | case VirtualUse::Intra: { |
795 | // Definition and use is in the same statement. We do not need to compute |
796 | // a reaching definition. |
797 | |
798 | // { llvm::Value } |
799 | auto ValSet = makeValueSet(V: Val); |
800 | |
801 | // { UserDomain[] -> llvm::Value } |
802 | auto ValInstSet = isl::map::from_domain_and_range(domain: DomainUse, range: ValSet); |
803 | |
804 | // { UserDomain[] -> [UserDomain[] - >llvm::Value] } |
805 | auto Result = ValInstSet.domain_map().reverse(); |
806 | simplify(Map&: Result); |
807 | return Result; |
808 | } |
809 | |
810 | case VirtualUse::Inter: { |
811 | // The value is defined in a different statement. |
812 | |
813 | auto *Inst = cast<Instruction>(Val); |
814 | auto *ValStmt = S->getStmtFor(Inst); |
815 | |
816 | // If the llvm::Value is defined in a removed Stmt, we cannot derive its |
817 | // domain. We could use an arbitrary statement, but this could result in |
818 | // different ValInst[] for the same llvm::Value. |
819 | if (!ValStmt) |
820 | return ::makeUnknownForDomain(Domain: DomainUse); |
821 | |
822 | // { DomainUse[] -> DomainDef[] } |
823 | auto UsedInstance = getDefToTarget(DefStmt: ValStmt, TargetStmt: UserStmt).reverse(); |
824 | |
825 | // { llvm::Value } |
826 | auto ValSet = makeValueSet(V: Val); |
827 | |
828 | // { DomainUse[] -> llvm::Value[] } |
829 | auto ValInstSet = isl::map::from_domain_and_range(domain: DomainUse, range: ValSet); |
830 | |
831 | // { DomainUse[] -> [DomainDef[] -> llvm::Value] } |
832 | auto Result = UsedInstance.range_product(map2: ValInstSet); |
833 | |
834 | simplify(Map&: Result); |
835 | return Result; |
836 | } |
837 | } |
838 | llvm_unreachable("Unhandled use type" ); |
839 | } |
840 | |
841 | /// Remove all computed PHIs out of @p Input and replace by their incoming |
842 | /// value. |
843 | /// |
844 | /// @param Input { [] -> ValInst[] } |
845 | /// @param ComputedPHIs Set of PHIs that are replaced. Its ValInst must appear |
846 | /// on the LHS of @p NormalizeMap. |
847 | /// @param NormalizeMap { ValInst[] -> ValInst[] } |
848 | static isl::union_map normalizeValInst(isl::union_map Input, |
849 | const DenseSet<PHINode *> &ComputedPHIs, |
850 | isl::union_map NormalizeMap) { |
851 | isl::union_map Result = isl::union_map::empty(ctx: Input.ctx()); |
852 | for (isl::map Map : Input.get_map_list()) { |
853 | isl::space Space = Map.get_space(); |
854 | isl::space RangeSpace = Space.range(); |
855 | |
856 | // Instructions within the SCoP are always wrapped. Non-wrapped tuples |
857 | // are therefore invariant in the SCoP and don't need normalization. |
858 | if (!RangeSpace.is_wrapping()) { |
859 | Result = Result.unite(umap2: Map); |
860 | continue; |
861 | } |
862 | |
863 | auto *PHI = dyn_cast<PHINode>(Val: static_cast<Value *>( |
864 | RangeSpace.unwrap().get_tuple_id(type: isl::dim::out).get_user())); |
865 | |
866 | // If no normalization is necessary, then the ValInst stands for itself. |
867 | if (!ComputedPHIs.count(V: PHI)) { |
868 | Result = Result.unite(umap2: Map); |
869 | continue; |
870 | } |
871 | |
872 | // Otherwise, apply the normalization. |
873 | isl::union_map Mapped = isl::union_map(Map).apply_range(umap2: NormalizeMap); |
874 | Result = Result.unite(umap2: Mapped); |
875 | NumPHINormialization++; |
876 | } |
877 | return Result; |
878 | } |
879 | |
880 | isl::union_map ZoneAlgorithm::makeNormalizedValInst(llvm::Value *Val, |
881 | ScopStmt *UserStmt, |
882 | llvm::Loop *Scope, |
883 | bool IsCertain) { |
884 | isl::map ValInst = makeValInst(Val, UserStmt, Scope, IsCertain); |
885 | isl::union_map Normalized = |
886 | normalizeValInst(Input: ValInst, ComputedPHIs, NormalizeMap); |
887 | return Normalized; |
888 | } |
889 | |
890 | bool ZoneAlgorithm::isCompatibleAccess(MemoryAccess *MA) { |
891 | if (!MA) |
892 | return false; |
893 | if (!MA->isLatestArrayKind()) |
894 | return false; |
895 | Instruction *AccInst = MA->getAccessInstruction(); |
896 | return isa<StoreInst>(Val: AccInst) || isa<LoadInst>(Val: AccInst); |
897 | } |
898 | |
899 | bool ZoneAlgorithm::isNormalizable(MemoryAccess *MA) { |
900 | assert(MA->isRead()); |
901 | |
902 | // Exclude ExitPHIs, we are assuming that a normalizable PHI has a READ |
903 | // MemoryAccess. |
904 | if (!MA->isOriginalPHIKind()) |
905 | return false; |
906 | |
907 | // Exclude recursive PHIs, normalizing them would require a transitive |
908 | // closure. |
909 | auto *PHI = cast<PHINode>(Val: MA->getAccessInstruction()); |
910 | if (RecursivePHIs.count(Ptr: PHI)) |
911 | return false; |
912 | |
913 | // Ensure that each incoming value can be represented by a ValInst[]. |
914 | // We do represent values from statements associated to multiple incoming |
915 | // value by the PHI itself, but we do not handle this case yet (especially |
916 | // isNormalized()) when normalizing. |
917 | const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo(); |
918 | auto Incomings = S->getPHIIncomings(SAI); |
919 | for (MemoryAccess *Incoming : Incomings) { |
920 | if (Incoming->getIncoming().size() != 1) |
921 | return false; |
922 | } |
923 | |
924 | return true; |
925 | } |
926 | |
927 | isl::boolean ZoneAlgorithm::isNormalized(isl::map Map) { |
928 | isl::space Space = Map.get_space(); |
929 | isl::space RangeSpace = Space.range(); |
930 | |
931 | isl::boolean IsWrapping = RangeSpace.is_wrapping(); |
932 | if (!IsWrapping.is_true()) |
933 | return !IsWrapping; |
934 | isl::space Unwrapped = RangeSpace.unwrap(); |
935 | |
936 | isl::id OutTupleId = Unwrapped.get_tuple_id(type: isl::dim::out); |
937 | if (OutTupleId.is_null()) |
938 | return isl::boolean(); |
939 | auto *PHI = dyn_cast<PHINode>(Val: static_cast<Value *>(OutTupleId.get_user())); |
940 | if (!PHI) |
941 | return true; |
942 | |
943 | isl::id InTupleId = Unwrapped.get_tuple_id(type: isl::dim::in); |
944 | if (OutTupleId.is_null()) |
945 | return isl::boolean(); |
946 | auto *IncomingStmt = static_cast<ScopStmt *>(InTupleId.get_user()); |
947 | MemoryAccess *PHIRead = IncomingStmt->lookupPHIReadOf(PHI); |
948 | if (!isNormalizable(MA: PHIRead)) |
949 | return true; |
950 | |
951 | return false; |
952 | } |
953 | |
954 | isl::boolean ZoneAlgorithm::isNormalized(isl::union_map UMap) { |
955 | isl::boolean Result = true; |
956 | for (isl::map Map : UMap.get_map_list()) { |
957 | Result = isNormalized(Map); |
958 | if (Result.is_true()) |
959 | continue; |
960 | break; |
961 | } |
962 | return Result; |
963 | } |
964 | |
965 | void ZoneAlgorithm::computeCommon() { |
966 | AllReads = makeEmptyUnionMap(); |
967 | AllMayWrites = makeEmptyUnionMap(); |
968 | AllMustWrites = makeEmptyUnionMap(); |
969 | AllWriteValInst = makeEmptyUnionMap(); |
970 | AllReadValInst = makeEmptyUnionMap(); |
971 | |
972 | // Default to empty, i.e. no normalization/replacement is taking place. Call |
973 | // computeNormalizedPHIs() to initialize. |
974 | NormalizeMap = makeEmptyUnionMap(); |
975 | ComputedPHIs.clear(); |
976 | |
977 | for (auto &Stmt : *S) { |
978 | for (auto *MA : Stmt) { |
979 | if (!MA->isLatestArrayKind()) |
980 | continue; |
981 | |
982 | if (MA->isRead()) |
983 | addArrayReadAccess(MA); |
984 | |
985 | if (MA->isWrite()) |
986 | addArrayWriteAccess(MA); |
987 | } |
988 | } |
989 | |
990 | // { DomainWrite[] -> Element[] } |
991 | AllWrites = AllMustWrites.unite(umap2: AllMayWrites); |
992 | |
993 | // { [Element[] -> Zone[]] -> DomainWrite[] } |
994 | WriteReachDefZone = |
995 | computeReachingDefinition(Schedule, Writes: AllWrites, InclDef: false, InclRedef: true); |
996 | simplify(UMap&: WriteReachDefZone); |
997 | } |
998 | |
999 | void ZoneAlgorithm::computeNormalizedPHIs() { |
1000 | // Determine which PHIs can reference themselves. They are excluded from |
1001 | // normalization to avoid problems with transitive closures. |
1002 | for (ScopStmt &Stmt : *S) { |
1003 | for (MemoryAccess *MA : Stmt) { |
1004 | if (!MA->isPHIKind()) |
1005 | continue; |
1006 | if (!MA->isRead()) |
1007 | continue; |
1008 | |
1009 | // TODO: Can be more efficient since isRecursivePHI can theoretically |
1010 | // determine recursiveness for multiple values and/or cache results. |
1011 | auto *PHI = cast<PHINode>(Val: MA->getAccessInstruction()); |
1012 | if (isRecursivePHI(PHI)) { |
1013 | NumRecursivePHIs++; |
1014 | RecursivePHIs.insert(Ptr: PHI); |
1015 | } |
1016 | } |
1017 | } |
1018 | |
1019 | // { PHIValInst[] -> IncomingValInst[] } |
1020 | isl::union_map AllPHIMaps = makeEmptyUnionMap(); |
1021 | |
1022 | // Discover new PHIs and try to normalize them. |
1023 | DenseSet<PHINode *> AllPHIs; |
1024 | for (ScopStmt &Stmt : *S) { |
1025 | for (MemoryAccess *MA : Stmt) { |
1026 | if (!MA->isOriginalPHIKind()) |
1027 | continue; |
1028 | if (!MA->isRead()) |
1029 | continue; |
1030 | if (!isNormalizable(MA)) |
1031 | continue; |
1032 | |
1033 | auto *PHI = cast<PHINode>(Val: MA->getAccessInstruction()); |
1034 | const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo(); |
1035 | |
1036 | // Determine which instance of the PHI statement corresponds to which |
1037 | // incoming value. Skip if we cannot determine PHI predecessors. |
1038 | // { PHIDomain[] -> IncomingDomain[] } |
1039 | isl::union_map PerPHI = computePerPHI(SAI); |
1040 | if (PerPHI.is_null()) |
1041 | continue; |
1042 | |
1043 | // { PHIDomain[] -> PHIValInst[] } |
1044 | isl::map PHIValInst = makeValInst(Val: PHI, UserStmt: &Stmt, Scope: Stmt.getSurroundingLoop()); |
1045 | |
1046 | // { IncomingDomain[] -> IncomingValInst[] } |
1047 | isl::union_map IncomingValInsts = makeEmptyUnionMap(); |
1048 | |
1049 | // Get all incoming values. |
1050 | for (MemoryAccess *MA : S->getPHIIncomings(SAI)) { |
1051 | ScopStmt *IncomingStmt = MA->getStatement(); |
1052 | |
1053 | auto Incoming = MA->getIncoming(); |
1054 | assert(Incoming.size() == 1 && "The incoming value must be " |
1055 | "representable by something else than " |
1056 | "the PHI itself" ); |
1057 | Value *IncomingVal = Incoming[0].second; |
1058 | |
1059 | // { IncomingDomain[] -> IncomingValInst[] } |
1060 | isl::map IncomingValInst = makeValInst( |
1061 | Val: IncomingVal, UserStmt: IncomingStmt, Scope: IncomingStmt->getSurroundingLoop()); |
1062 | |
1063 | IncomingValInsts = IncomingValInsts.unite(umap2: IncomingValInst); |
1064 | } |
1065 | |
1066 | // { PHIValInst[] -> IncomingValInst[] } |
1067 | isl::union_map PHIMap = |
1068 | PerPHI.apply_domain(umap2: PHIValInst).apply_range(umap2: IncomingValInsts); |
1069 | assert(!PHIMap.is_single_valued().is_false()); |
1070 | |
1071 | // Resolve transitiveness: The incoming value of the newly discovered PHI |
1072 | // may reference a previously normalized PHI. At the same time, already |
1073 | // normalized PHIs might be normalized to the new PHI. At the end, none of |
1074 | // the PHIs may appear on the right-hand-side of the normalization map. |
1075 | PHIMap = normalizeValInst(Input: PHIMap, ComputedPHIs: AllPHIs, NormalizeMap: AllPHIMaps); |
1076 | AllPHIs.insert(V: PHI); |
1077 | AllPHIMaps = normalizeValInst(Input: AllPHIMaps, ComputedPHIs: AllPHIs, NormalizeMap: PHIMap); |
1078 | |
1079 | AllPHIMaps = AllPHIMaps.unite(umap2: PHIMap); |
1080 | NumNormalizablePHIs++; |
1081 | } |
1082 | } |
1083 | simplify(UMap&: AllPHIMaps); |
1084 | |
1085 | // Apply the normalization. |
1086 | ComputedPHIs = AllPHIs; |
1087 | NormalizeMap = AllPHIMaps; |
1088 | |
1089 | assert(NormalizeMap.is_null() || isNormalized(NormalizeMap)); |
1090 | } |
1091 | |
1092 | void ZoneAlgorithm::printAccesses(llvm::raw_ostream &OS, int Indent) const { |
1093 | OS.indent(NumSpaces: Indent) << "After accesses {\n" ; |
1094 | for (auto &Stmt : *S) { |
1095 | OS.indent(NumSpaces: Indent + 4) << Stmt.getBaseName() << "\n" ; |
1096 | for (auto *MA : Stmt) |
1097 | MA->print(OS); |
1098 | } |
1099 | OS.indent(NumSpaces: Indent) << "}\n" ; |
1100 | } |
1101 | |
1102 | isl::union_map ZoneAlgorithm::computeKnownFromMustWrites() const { |
1103 | // { [Element[] -> Zone[]] -> [Element[] -> DomainWrite[]] } |
1104 | isl::union_map EltReachdDef = distributeDomain(UMap: WriteReachDefZone.curry()); |
1105 | |
1106 | // { [Element[] -> DomainWrite[]] -> ValInst[] } |
1107 | isl::union_map AllKnownWriteValInst = filterKnownValInst(UMap: AllWriteValInst); |
1108 | |
1109 | // { [Element[] -> Zone[]] -> ValInst[] } |
1110 | return EltReachdDef.apply_range(umap2: AllKnownWriteValInst); |
1111 | } |
1112 | |
1113 | isl::union_map ZoneAlgorithm::computeKnownFromLoad() const { |
1114 | // { Element[] } |
1115 | isl::union_set AllAccessedElts = AllReads.range().unite(uset2: AllWrites.range()); |
1116 | |
1117 | // { Element[] -> Scatter[] } |
1118 | isl::union_map EltZoneUniverse = isl::union_map::from_domain_and_range( |
1119 | domain: AllAccessedElts, range: isl::set::universe(space: ScatterSpace)); |
1120 | |
1121 | // This assumes there are no "holes" in |
1122 | // isl_union_map_domain(WriteReachDefZone); alternatively, compute the zone |
1123 | // before the first write or that are not written at all. |
1124 | // { Element[] -> Scatter[] } |
1125 | isl::union_set NonReachDef = |
1126 | EltZoneUniverse.wrap().subtract(uset2: WriteReachDefZone.domain()); |
1127 | |
1128 | // { [Element[] -> Zone[]] -> ReachDefId[] } |
1129 | isl::union_map DefZone = |
1130 | WriteReachDefZone.unite(umap2: isl::union_map::from_domain(uset: NonReachDef)); |
1131 | |
1132 | // { [Element[] -> Scatter[]] -> Element[] } |
1133 | isl::union_map EltZoneElt = EltZoneUniverse.domain_map(); |
1134 | |
1135 | // { [Element[] -> Zone[]] -> [Element[] -> ReachDefId[]] } |
1136 | isl::union_map DefZoneEltDefId = EltZoneElt.range_product(umap2: DefZone); |
1137 | |
1138 | // { Element[] -> [Zone[] -> ReachDefId[]] } |
1139 | isl::union_map EltDefZone = DefZone.curry(); |
1140 | |
1141 | // { [Element[] -> Zone[] -> [Element[] -> ReachDefId[]] } |
1142 | isl::union_map EltZoneEltDefid = distributeDomain(UMap: EltDefZone); |
1143 | |
1144 | // { [Element[] -> Scatter[]] -> DomainRead[] } |
1145 | isl::union_map Reads = AllReads.range_product(umap2: Schedule).reverse(); |
1146 | |
1147 | // { [Element[] -> Scatter[]] -> [Element[] -> DomainRead[]] } |
1148 | isl::union_map ReadsElt = EltZoneElt.range_product(umap2: Reads); |
1149 | |
1150 | // { [Element[] -> Scatter[]] -> ValInst[] } |
1151 | isl::union_map ScatterKnown = ReadsElt.apply_range(umap2: AllReadValInst); |
1152 | |
1153 | // { [Element[] -> ReachDefId[]] -> ValInst[] } |
1154 | isl::union_map DefidKnown = |
1155 | DefZoneEltDefId.apply_domain(umap2: ScatterKnown).reverse(); |
1156 | |
1157 | // { [Element[] -> Zone[]] -> ValInst[] } |
1158 | return DefZoneEltDefId.apply_range(umap2: DefidKnown); |
1159 | } |
1160 | |
1161 | isl::union_map ZoneAlgorithm::computeKnown(bool FromWrite, |
1162 | bool FromRead) const { |
1163 | isl::union_map Result = makeEmptyUnionMap(); |
1164 | |
1165 | if (FromWrite) |
1166 | Result = Result.unite(umap2: computeKnownFromMustWrites()); |
1167 | |
1168 | if (FromRead) |
1169 | Result = Result.unite(umap2: computeKnownFromLoad()); |
1170 | |
1171 | simplify(UMap&: Result); |
1172 | return Result; |
1173 | } |
1174 | |