1 | #ifndef P3P_P3P_H |
2 | #define P3P_P3P_H |
3 | |
4 | #include <opencv2/core.hpp> |
5 | |
6 | namespace cv { |
7 | class ap3p { |
8 | private: |
9 | template<typename T> |
10 | void init_camera_parameters(const cv::Mat &cameraMatrix) { |
11 | cx = cameraMatrix.at<T>(0, 2); |
12 | cy = cameraMatrix.at<T>(1, 2); |
13 | fx = cameraMatrix.at<T>(0, 0); |
14 | fy = cameraMatrix.at<T>(1, 1); |
15 | } |
16 | |
17 | template<typename OpointType, typename IpointType> |
18 | void (const cv::Mat &opoints, const cv::Mat &ipoints, std::vector<double> &points) { |
19 | points.clear(); |
20 | int npoints = std::max(a: opoints.checkVector(elemChannels: 3, CV_32F), b: opoints.checkVector(elemChannels: 3, CV_64F)); |
21 | points.resize(new_size: 5*4); //resize vector to fit for p4p case |
22 | for (int i = 0; i < npoints; i++) { |
23 | points[i * 5] = ipoints.at<IpointType>(i).x * fx + cx; |
24 | points[i * 5 + 1] = ipoints.at<IpointType>(i).y * fy + cy; |
25 | points[i * 5 + 2] = opoints.at<OpointType>(i).x; |
26 | points[i * 5 + 3] = opoints.at<OpointType>(i).y; |
27 | points[i * 5 + 4] = opoints.at<OpointType>(i).z; |
28 | } |
29 | //Fill vectors with unused values for p3p case |
30 | for (int i = npoints; i < 4; i++) { |
31 | for (int j = 0; j < 5; j++) { |
32 | points[i * 5 + j] = 0; |
33 | } |
34 | } |
35 | } |
36 | |
37 | void init_inverse_parameters(); |
38 | |
39 | double fx, fy, cx, cy; |
40 | double inv_fx, inv_fy, cx_fx, cy_fy; |
41 | public: |
42 | ap3p() : fx(0), fy(0), cx(0), cy(0), inv_fx(0), inv_fy(0), cx_fx(0), cy_fy(0) {} |
43 | |
44 | ap3p(double fx, double fy, double cx, double cy); |
45 | |
46 | ap3p(cv::Mat cameraMatrix); |
47 | |
48 | bool solve(cv::Mat &R, cv::Mat &tvec, const cv::Mat &opoints, const cv::Mat &ipoints); |
49 | int solve(std::vector<cv::Mat> &Rs, std::vector<cv::Mat> &tvecs, const cv::Mat &opoints, const cv::Mat &ipoints); |
50 | |
51 | int solve(double R[4][3][3], double t[4][3], |
52 | double mu0, double mv0, double X0, double Y0, double Z0, |
53 | double mu1, double mv1, double X1, double Y1, double Z1, |
54 | double mu2, double mv2, double X2, double Y2, double Z2, |
55 | double mu3, double mv3, double X3, double Y3, double Z3, |
56 | bool p4p); |
57 | |
58 | bool solve(double R[3][3], double t[3], |
59 | double mu0, double mv0, double X0, double Y0, double Z0, |
60 | double mu1, double mv1, double X1, double Y1, double Z1, |
61 | double mu2, double mv2, double X2, double Y2, double Z2, |
62 | double mu3, double mv3, double X3, double Y3, double Z3); |
63 | |
64 | // This algorithm is from "Tong Ke, Stergios Roumeliotis, An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (Accepted by CVPR 2017) |
65 | // See https://arxiv.org/pdf/1701.08237.pdf |
66 | // featureVectors: 3 bearing measurements (normalized) stored as column vectors |
67 | // worldPoints: Positions of the 3 feature points stored as column vectors |
68 | // solutionsR: 4 possible solutions of rotation matrix of the world w.r.t the camera frame |
69 | // solutionsT: 4 possible solutions of translation of the world origin w.r.t the camera frame |
70 | int computePoses(const double featureVectors[3][4], const double worldPoints[3][4], double solutionsR[4][3][3], |
71 | double solutionsT[4][3], bool p4p); |
72 | |
73 | }; |
74 | } |
75 | #endif //P3P_P3P_H |
76 | |