1 | /*M/////////////////////////////////////////////////////////////////////////////////////// |
---|---|
2 | // |
3 | // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
4 | // |
5 | // By downloading, copying, installing or using the software you agree to this license. |
6 | // If you do not agree to this license, do not download, install, |
7 | // copy or use the software. |
8 | // |
9 | // |
10 | // License Agreement |
11 | // For Open Source Computer Vision Library |
12 | // |
13 | // Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
14 | // Third party copyrights are property of their respective owners. |
15 | // |
16 | // Redistribution and use in source and binary forms, with or without modification, |
17 | // are permitted provided that the following conditions are met: |
18 | // |
19 | // * Redistribution's of source code must retain the above copyright notice, |
20 | // this list of conditions and the following disclaimer. |
21 | // |
22 | // * Redistribution's in binary form must reproduce the above copyright notice, |
23 | // this list of conditions and the following disclaimer in the documentation |
24 | // and/or other materials provided with the distribution. |
25 | // |
26 | // * The name of the copyright holders may not be used to endorse or promote products |
27 | // derived from this software without specific prior written permission. |
28 | // |
29 | // This software is provided by the copyright holders and contributors "as is" and |
30 | // any express or implied warranties, including, but not limited to, the implied |
31 | // warranties of merchantability and fitness for a particular purpose are disclaimed. |
32 | // In no event shall the Intel Corporation or contributors be liable for any direct, |
33 | // indirect, incidental, special, exemplary, or consequential damages |
34 | // (including, but not limited to, procurement of substitute goods or services; |
35 | // loss of use, data, or profits; or business interruption) however caused |
36 | // and on any theory of liability, whether in contract, strict liability, |
37 | // or tort (including negligence or otherwise) arising in any way out of |
38 | // the use of this software, even if advised of the possibility of such damage. |
39 | // |
40 | //M*/ |
41 | |
42 | #ifndef OPENCV_DNN_DNN_HPP |
43 | #define OPENCV_DNN_DNN_HPP |
44 | |
45 | #include <vector> |
46 | #include <opencv2/core.hpp> |
47 | #include "opencv2/core/async.hpp" |
48 | |
49 | #include "../dnn/version.hpp" |
50 | |
51 | #include <opencv2/dnn/dict.hpp> |
52 | |
53 | namespace cv { |
54 | namespace dnn { |
55 | |
56 | namespace accessor { |
57 | class DnnNetAccessor; // forward declaration |
58 | } |
59 | |
60 | CV__DNN_INLINE_NS_BEGIN |
61 | //! @addtogroup dnn |
62 | //! @{ |
63 | |
64 | typedef std::vector<int> MatShape; |
65 | |
66 | /** |
67 | * @brief Enum of computation backends supported by layers. |
68 | * @see Net::setPreferableBackend |
69 | */ |
70 | enum Backend |
71 | { |
72 | //! DNN_BACKEND_DEFAULT equals to OPENCV_DNN_BACKEND_DEFAULT, which can be defined using CMake or a configuration parameter |
73 | DNN_BACKEND_DEFAULT = 0, |
74 | DNN_BACKEND_HALIDE, |
75 | DNN_BACKEND_INFERENCE_ENGINE, //!< Intel OpenVINO computational backend |
76 | //!< @note Tutorial how to build OpenCV with OpenVINO: @ref tutorial_dnn_openvino |
77 | DNN_BACKEND_OPENCV, |
78 | DNN_BACKEND_VKCOM, |
79 | DNN_BACKEND_CUDA, |
80 | DNN_BACKEND_WEBNN, |
81 | DNN_BACKEND_TIMVX, |
82 | DNN_BACKEND_CANN, |
83 | #if defined(__OPENCV_BUILD) || defined(BUILD_PLUGIN) |
84 | #if !defined(OPENCV_BINDING_PARSER) |
85 | DNN_BACKEND_INFERENCE_ENGINE_NGRAPH = 1000000, // internal - use DNN_BACKEND_INFERENCE_ENGINE + setInferenceEngineBackendType() |
86 | DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, // internal - use DNN_BACKEND_INFERENCE_ENGINE + setInferenceEngineBackendType() |
87 | #endif |
88 | #endif |
89 | }; |
90 | |
91 | /** |
92 | * @brief Enum of target devices for computations. |
93 | * @see Net::setPreferableTarget |
94 | */ |
95 | enum Target |
96 | { |
97 | DNN_TARGET_CPU = 0, |
98 | DNN_TARGET_OPENCL, |
99 | DNN_TARGET_OPENCL_FP16, |
100 | DNN_TARGET_MYRIAD, |
101 | DNN_TARGET_VULKAN, |
102 | DNN_TARGET_FPGA, //!< FPGA device with CPU fallbacks using Inference Engine's Heterogeneous plugin. |
103 | DNN_TARGET_CUDA, |
104 | DNN_TARGET_CUDA_FP16, |
105 | DNN_TARGET_HDDL, |
106 | DNN_TARGET_NPU, |
107 | DNN_TARGET_CPU_FP16, // Only the ARM platform is supported. Low precision computing, accelerate model inference. |
108 | }; |
109 | |
110 | /** |
111 | * @brief Enum of data layout for model inference. |
112 | * @see Image2BlobParams |
113 | */ |
114 | enum DataLayout |
115 | { |
116 | DNN_LAYOUT_UNKNOWN = 0, |
117 | DNN_LAYOUT_ND = 1, //!< OpenCV data layout for 2D data. |
118 | DNN_LAYOUT_NCHW = 2, //!< OpenCV data layout for 4D data. |
119 | DNN_LAYOUT_NCDHW = 3, //!< OpenCV data layout for 5D data. |
120 | DNN_LAYOUT_NHWC = 4, //!< Tensorflow-like data layout for 4D data. |
121 | DNN_LAYOUT_NDHWC = 5, //!< Tensorflow-like data layout for 5D data. |
122 | DNN_LAYOUT_PLANAR = 6, //!< Tensorflow-like data layout, it should only be used at tf or tflite model parsing. |
123 | }; |
124 | |
125 | CV_EXPORTS std::vector< std::pair<Backend, Target> > getAvailableBackends(); |
126 | CV_EXPORTS_W std::vector<Target> getAvailableTargets(dnn::Backend be); |
127 | |
128 | /** |
129 | * @brief Enables detailed logging of the DNN model loading with CV DNN API. |
130 | * @param[in] isDiagnosticsMode Indicates whether diagnostic mode should be set. |
131 | * |
132 | * Diagnostic mode provides detailed logging of the model loading stage to explore |
133 | * potential problems (ex.: not implemented layer type). |
134 | * |
135 | * @note In diagnostic mode series of assertions will be skipped, it can lead to the |
136 | * expected application crash. |
137 | */ |
138 | CV_EXPORTS void enableModelDiagnostics(bool isDiagnosticsMode); |
139 | |
140 | /** @brief This class provides all data needed to initialize layer. |
141 | * |
142 | * It includes dictionary with scalar params (which can be read by using Dict interface), |
143 | * blob params #blobs and optional meta information: #name and #type of layer instance. |
144 | */ |
145 | class CV_EXPORTS LayerParams : public Dict |
146 | { |
147 | public: |
148 | //TODO: Add ability to name blob params |
149 | std::vector<Mat> blobs; //!< List of learned parameters stored as blobs. |
150 | |
151 | String name; //!< Name of the layer instance (optional, can be used internal purposes). |
152 | String type; //!< Type name which was used for creating layer by layer factory (optional). |
153 | }; |
154 | |
155 | /** |
156 | * @brief Derivatives of this class encapsulates functions of certain backends. |
157 | */ |
158 | class BackendNode |
159 | { |
160 | public: |
161 | explicit BackendNode(int backendId); |
162 | |
163 | virtual ~BackendNode(); //!< Virtual destructor to make polymorphism. |
164 | |
165 | int backendId; //!< Backend identifier. |
166 | }; |
167 | |
168 | /** |
169 | * @brief Derivatives of this class wraps cv::Mat for different backends and targets. |
170 | */ |
171 | class BackendWrapper |
172 | { |
173 | public: |
174 | BackendWrapper(int backendId, int targetId); |
175 | |
176 | /** |
177 | * @brief Wrap cv::Mat for specific backend and target. |
178 | * @param[in] targetId Target identifier. |
179 | * @param[in] m cv::Mat for wrapping. |
180 | * |
181 | * Make CPU->GPU data transfer if it's require for the target. |
182 | */ |
183 | BackendWrapper(int targetId, const cv::Mat& m); |
184 | |
185 | /** |
186 | * @brief Make wrapper for reused cv::Mat. |
187 | * @param[in] base Wrapper of cv::Mat that will be reused. |
188 | * @param[in] shape Specific shape. |
189 | * |
190 | * Initialize wrapper from another one. It'll wrap the same host CPU |
191 | * memory and mustn't allocate memory on device(i.e. GPU). It might |
192 | * has different shape. Use in case of CPU memory reusing for reuse |
193 | * associated memory on device too. |
194 | */ |
195 | BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape); |
196 | |
197 | virtual ~BackendWrapper(); //!< Virtual destructor to make polymorphism. |
198 | |
199 | /** |
200 | * @brief Transfer data to CPU host memory. |
201 | */ |
202 | virtual void copyToHost() = 0; |
203 | |
204 | /** |
205 | * @brief Indicate that an actual data is on CPU. |
206 | */ |
207 | virtual void setHostDirty() = 0; |
208 | |
209 | int backendId; //!< Backend identifier. |
210 | int targetId; //!< Target identifier. |
211 | }; |
212 | |
213 | class CV_EXPORTS ActivationLayer; |
214 | |
215 | /** @brief This interface class allows to build new Layers - are building blocks of networks. |
216 | * |
217 | * Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs. |
218 | * Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros. |
219 | */ |
220 | class CV_EXPORTS_W Layer : public Algorithm |
221 | { |
222 | public: |
223 | |
224 | //! List of learned parameters must be stored here to allow read them by using Net::getParam(). |
225 | CV_PROP_RW std::vector<Mat> blobs; |
226 | |
227 | /** @brief Computes and sets internal parameters according to inputs, outputs and blobs. |
228 | * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead |
229 | * @param[in] input vector of already allocated input blobs |
230 | * @param[out] output vector of already allocated output blobs |
231 | * |
232 | * If this method is called after network has allocated all memory for input and output blobs |
233 | * and before inferencing. |
234 | */ |
235 | CV_DEPRECATED_EXTERNAL |
236 | virtual void finalize(const std::vector<Mat*> &input, std::vector<Mat> &output); |
237 | |
238 | /** @brief Computes and sets internal parameters according to inputs, outputs and blobs. |
239 | * @param[in] inputs vector of already allocated input blobs |
240 | * @param[out] outputs vector of already allocated output blobs |
241 | * |
242 | * If this method is called after network has allocated all memory for input and output blobs |
243 | * and before inferencing. |
244 | */ |
245 | CV_WRAP virtual void finalize(InputArrayOfArrays inputs, OutputArrayOfArrays outputs); |
246 | |
247 | /** @brief Given the @p input blobs, computes the output @p blobs. |
248 | * @deprecated Use Layer::forward(InputArrayOfArrays, OutputArrayOfArrays, OutputArrayOfArrays) instead |
249 | * @param[in] input the input blobs. |
250 | * @param[out] output allocated output blobs, which will store results of the computation. |
251 | * @param[out] internals allocated internal blobs |
252 | */ |
253 | CV_DEPRECATED_EXTERNAL |
254 | virtual void forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &internals); |
255 | |
256 | /** @brief Given the @p input blobs, computes the output @p blobs. |
257 | * @param[in] inputs the input blobs. |
258 | * @param[out] outputs allocated output blobs, which will store results of the computation. |
259 | * @param[out] internals allocated internal blobs |
260 | */ |
261 | virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals); |
262 | |
263 | /** @brief Tries to quantize the given layer and compute the quantization parameters required for fixed point implementation. |
264 | * @param[in] scales input and output scales. |
265 | * @param[in] zeropoints input and output zeropoints. |
266 | * @param[out] params Quantized parameters required for fixed point implementation of that layer. |
267 | * @returns True if layer can be quantized. |
268 | */ |
269 | virtual bool tryQuantize(const std::vector<std::vector<float> > &scales, |
270 | const std::vector<std::vector<int> > &zeropoints, LayerParams& params); |
271 | |
272 | /** @brief Given the @p input blobs, computes the output @p blobs. |
273 | * @param[in] inputs the input blobs. |
274 | * @param[out] outputs allocated output blobs, which will store results of the computation. |
275 | * @param[out] internals allocated internal blobs |
276 | */ |
277 | void forward_fallback(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals); |
278 | |
279 | /** @brief |
280 | * @overload |
281 | * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead |
282 | */ |
283 | CV_DEPRECATED_EXTERNAL |
284 | void finalize(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs); |
285 | |
286 | /** @brief |
287 | * @overload |
288 | * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead |
289 | */ |
290 | CV_DEPRECATED std::vector<Mat> finalize(const std::vector<Mat> &inputs); |
291 | |
292 | /** @brief Allocates layer and computes output. |
293 | * @deprecated This method will be removed in the future release. |
294 | */ |
295 | CV_DEPRECATED CV_WRAP void run(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs, |
296 | CV_IN_OUT std::vector<Mat> &internals); |
297 | |
298 | /** @brief Returns index of input blob into the input array. |
299 | * @param inputName label of input blob |
300 | * |
301 | * Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation. |
302 | * This method maps label of input blob to its index into input vector. |
303 | */ |
304 | virtual int inputNameToIndex(String inputName); // FIXIT const |
305 | /** @brief Returns index of output blob in output array. |
306 | * @see inputNameToIndex() |
307 | */ |
308 | CV_WRAP virtual int outputNameToIndex(const String& outputName); // FIXIT const |
309 | |
310 | /** |
311 | * @brief Ask layer if it support specific backend for doing computations. |
312 | * @param[in] backendId computation backend identifier. |
313 | * @see Backend |
314 | */ |
315 | virtual bool supportBackend(int backendId); // FIXIT const |
316 | |
317 | /** |
318 | * @brief Returns Halide backend node. |
319 | * @param[in] inputs Input Halide buffers. |
320 | * @see BackendNode, BackendWrapper |
321 | * |
322 | * Input buffers should be exactly the same that will be used in forward invocations. |
323 | * Despite we can use Halide::ImageParam based on input shape only, |
324 | * it helps prevent some memory management issues (if something wrong, |
325 | * Halide tests will be failed). |
326 | */ |
327 | virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs); |
328 | |
329 | virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> > &inputs, const std::vector<Ptr<BackendNode> >& nodes); |
330 | |
331 | virtual Ptr<BackendNode> initVkCom(const std::vector<Ptr<BackendWrapper> > &inputs, std::vector<Ptr<BackendWrapper> > &outputs); |
332 | |
333 | virtual Ptr<BackendNode> initWebnn(const std::vector<Ptr<BackendWrapper> > &inputs, const std::vector<Ptr<BackendNode> >& nodes); |
334 | |
335 | /** |
336 | * @brief Returns a CUDA backend node |
337 | * |
338 | * @param context void pointer to CSLContext object |
339 | * @param inputs layer inputs |
340 | * @param outputs layer outputs |
341 | */ |
342 | virtual Ptr<BackendNode> initCUDA( |
343 | void *context, |
344 | const std::vector<Ptr<BackendWrapper>>& inputs, |
345 | const std::vector<Ptr<BackendWrapper>>& outputs |
346 | ); |
347 | |
348 | /** |
349 | * @brief Returns a TimVX backend node |
350 | * |
351 | * @param timVxInfo void pointer to CSLContext object |
352 | * @param inputsWrapper layer inputs |
353 | * @param outputsWrapper layer outputs |
354 | * @param isLast if the node is the last one of the TimVX Graph. |
355 | */ |
356 | virtual Ptr<BackendNode> initTimVX(void* timVxInfo, |
357 | const std::vector<Ptr<BackendWrapper> > &inputsWrapper, |
358 | const std::vector<Ptr<BackendWrapper> > &outputsWrapper, |
359 | bool isLast); |
360 | |
361 | /** |
362 | * @brief Returns a CANN backend node |
363 | * |
364 | * @param inputs input tensors of CANN operator |
365 | * @param outputs output tensors of CANN operator |
366 | * @param nodes nodes of input tensors |
367 | */ |
368 | virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputs, |
369 | const std::vector<Ptr<BackendWrapper> > &outputs, |
370 | const std::vector<Ptr<BackendNode> >& nodes); |
371 | |
372 | /** |
373 | * @brief Automatic Halide scheduling based on layer hyper-parameters. |
374 | * @param[in] node Backend node with Halide functions. |
375 | * @param[in] inputs Blobs that will be used in forward invocations. |
376 | * @param[in] outputs Blobs that will be used in forward invocations. |
377 | * @param[in] targetId Target identifier |
378 | * @see BackendNode, Target |
379 | * |
380 | * Layer don't use own Halide::Func members because we can have applied |
381 | * layers fusing. In this way the fused function should be scheduled. |
382 | */ |
383 | virtual void applyHalideScheduler(Ptr<BackendNode>& node, |
384 | const std::vector<Mat*> &inputs, |
385 | const std::vector<Mat> &outputs, |
386 | int targetId) const; |
387 | |
388 | /** |
389 | * @brief Implement layers fusing. |
390 | * @param[in] node Backend node of bottom layer. |
391 | * @see BackendNode |
392 | * |
393 | * Actual for graph-based backends. If layer attached successfully, |
394 | * returns non-empty cv::Ptr to node of the same backend. |
395 | * Fuse only over the last function. |
396 | */ |
397 | virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node); |
398 | |
399 | /** |
400 | * @brief Tries to attach to the layer the subsequent activation layer, i.e. do the layer fusion in a partial case. |
401 | * @param[in] layer The subsequent activation layer. |
402 | * |
403 | * Returns true if the activation layer has been attached successfully. |
404 | */ |
405 | virtual bool setActivation(const Ptr<ActivationLayer>& layer); |
406 | |
407 | /** |
408 | * @brief Try to fuse current layer with a next one |
409 | * @param[in] top Next layer to be fused. |
410 | * @returns True if fusion was performed. |
411 | */ |
412 | virtual bool tryFuse(Ptr<Layer>& top); |
413 | |
414 | /** |
415 | * @brief Returns parameters of layers with channel-wise multiplication and addition. |
416 | * @param[out] scale Channel-wise multipliers. Total number of values should |
417 | * be equal to number of channels. |
418 | * @param[out] shift Channel-wise offsets. Total number of values should |
419 | * be equal to number of channels. |
420 | * |
421 | * Some layers can fuse their transformations with further layers. |
422 | * In example, convolution + batch normalization. This way base layer |
423 | * use weights from layer after it. Fused layer is skipped. |
424 | * By default, @p scale and @p shift are empty that means layer has no |
425 | * element-wise multiplications or additions. |
426 | */ |
427 | virtual void getScaleShift(Mat& scale, Mat& shift) const; |
428 | |
429 | /** |
430 | * @brief Returns scale and zeropoint of layers |
431 | * @param[out] scale Output scale |
432 | * @param[out] zeropoint Output zeropoint |
433 | * |
434 | * By default, @p scale is 1 and @p zeropoint is 0. |
435 | */ |
436 | virtual void getScaleZeropoint(float& scale, int& zeropoint) const; |
437 | |
438 | |
439 | /** |
440 | * @brief "Detaches" all the layers, attached to particular layer. |
441 | */ |
442 | virtual void unsetAttached(); |
443 | |
444 | virtual bool getMemoryShapes(const std::vector<MatShape> &inputs, |
445 | const int requiredOutputs, |
446 | std::vector<MatShape> &outputs, |
447 | std::vector<MatShape> &internals) const; |
448 | |
449 | virtual int64 getFLOPS(const std::vector<MatShape> &inputs, |
450 | const std::vector<MatShape> &outputs) const {CV_UNUSED(inputs); CV_UNUSED(outputs); return 0;} |
451 | |
452 | virtual bool updateMemoryShapes(const std::vector<MatShape> &inputs); |
453 | |
454 | CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes. |
455 | CV_PROP String type; //!< Type name which was used for creating layer by layer factory. |
456 | CV_PROP int preferableTarget; //!< prefer target for layer forwarding |
457 | |
458 | Layer(); |
459 | explicit Layer(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields. |
460 | void setParamsFrom(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields. |
461 | virtual ~Layer(); |
462 | }; |
463 | |
464 | /** @brief This class allows to create and manipulate comprehensive artificial neural networks. |
465 | * |
466 | * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances, |
467 | * and edges specify relationships between layers inputs and outputs. |
468 | * |
469 | * Each network layer has unique integer id and unique string name inside its network. |
470 | * LayerId can store either layer name or layer id. |
471 | * |
472 | * This class supports reference counting of its instances, i. e. copies point to the same instance. |
473 | */ |
474 | class CV_EXPORTS_W_SIMPLE Net |
475 | { |
476 | public: |
477 | |
478 | CV_WRAP Net(); //!< Default constructor. |
479 | CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore. |
480 | |
481 | /** @brief Create a network from Intel's Model Optimizer intermediate representation (IR). |
482 | * @param[in] xml XML configuration file with network's topology. |
483 | * @param[in] bin Binary file with trained weights. |
484 | * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine |
485 | * backend. |
486 | */ |
487 | CV_WRAP static Net readFromModelOptimizer(const String& xml, const String& bin); |
488 | |
489 | /** @brief Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR). |
490 | * @param[in] bufferModelConfig buffer with model's configuration. |
491 | * @param[in] bufferWeights buffer with model's trained weights. |
492 | * @returns Net object. |
493 | */ |
494 | CV_WRAP static |
495 | Net readFromModelOptimizer(const std::vector<uchar>& bufferModelConfig, const std::vector<uchar>& bufferWeights); |
496 | |
497 | /** @brief Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR). |
498 | * @param[in] bufferModelConfigPtr buffer pointer of model's configuration. |
499 | * @param[in] bufferModelConfigSize buffer size of model's configuration. |
500 | * @param[in] bufferWeightsPtr buffer pointer of model's trained weights. |
501 | * @param[in] bufferWeightsSize buffer size of model's trained weights. |
502 | * @returns Net object. |
503 | */ |
504 | static |
505 | Net readFromModelOptimizer(const uchar* bufferModelConfigPtr, size_t bufferModelConfigSize, |
506 | const uchar* bufferWeightsPtr, size_t bufferWeightsSize); |
507 | |
508 | /** Returns true if there are no layers in the network. */ |
509 | CV_WRAP bool empty() const; |
510 | |
511 | /** @brief Dump net to String |
512 | * @returns String with structure, hyperparameters, backend, target and fusion |
513 | * Call method after setInput(). To see correct backend, target and fusion run after forward(). |
514 | */ |
515 | CV_WRAP String dump(); |
516 | /** @brief Dump net structure, hyperparameters, backend, target and fusion to dot file |
517 | * @param path path to output file with .dot extension |
518 | * @see dump() |
519 | */ |
520 | CV_WRAP void dumpToFile(const String& path); |
521 | /** @brief Adds new layer to the net. |
522 | * @param name unique name of the adding layer. |
523 | * @param type typename of the adding layer (type must be registered in LayerRegister). |
524 | * @param dtype datatype of output blobs. |
525 | * @param params parameters which will be used to initialize the creating layer. |
526 | * @returns unique identifier of created layer, or -1 if a failure will happen. |
527 | */ |
528 | int addLayer(const String &name, const String &type, const int &dtype, LayerParams ¶ms); |
529 | |
530 | /** @overload Datatype of output blobs set to default CV_32F */ |
531 | int addLayer(const String &name, const String &type, LayerParams ¶ms); |
532 | |
533 | /** @brief Adds new layer and connects its first input to the first output of previously added layer. |
534 | * @see addLayer() |
535 | */ |
536 | int addLayerToPrev(const String &name, const String &type, const int &dtype, LayerParams ¶ms); |
537 | |
538 | /** @overload */ |
539 | int addLayerToPrev(const String &name, const String &type, LayerParams ¶ms); |
540 | |
541 | /** @brief Converts string name of the layer to the integer identifier. |
542 | * @returns id of the layer, or -1 if the layer wasn't found. |
543 | */ |
544 | CV_WRAP int getLayerId(const String &layer) const; |
545 | |
546 | CV_WRAP std::vector<String> getLayerNames() const; |
547 | |
548 | /** @brief Container for strings and integers. |
549 | * |
550 | * @deprecated Use getLayerId() with int result. |
551 | */ |
552 | typedef DictValue LayerId; |
553 | |
554 | /** @brief Returns pointer to layer with specified id or name which the network use. */ |
555 | CV_WRAP Ptr<Layer> getLayer(int layerId) const; |
556 | /** @overload |
557 | * @deprecated Use int getLayerId(const String &layer) |
558 | */ |
559 | CV_WRAP inline Ptr<Layer> getLayer(const String& layerName) const { return getLayer(layerId: getLayerId(layer: layerName)); } |
560 | /** @overload |
561 | * @deprecated to be removed |
562 | */ |
563 | CV_WRAP Ptr<Layer> getLayer(const LayerId& layerId) const; |
564 | |
565 | /** @brief Returns pointers to input layers of specific layer. */ |
566 | std::vector<Ptr<Layer> > getLayerInputs(int layerId) const; // FIXIT: CV_WRAP |
567 | |
568 | /** @brief Connects output of the first layer to input of the second layer. |
569 | * @param outPin descriptor of the first layer output. |
570 | * @param inpPin descriptor of the second layer input. |
571 | * |
572 | * Descriptors have the following template <DFN><layer_name>[.input_number]</DFN>: |
573 | * - the first part of the template <DFN>layer_name</DFN> is string name of the added layer. |
574 | * If this part is empty then the network input pseudo layer will be used; |
575 | * - the second optional part of the template <DFN>input_number</DFN> |
576 | * is either number of the layer input, either label one. |
577 | * If this part is omitted then the first layer input will be used. |
578 | * |
579 | * @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex() |
580 | */ |
581 | CV_WRAP void connect(String outPin, String inpPin); |
582 | |
583 | /** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer. |
584 | * @param outLayerId identifier of the first layer |
585 | * @param outNum number of the first layer output |
586 | * @param inpLayerId identifier of the second layer |
587 | * @param inpNum number of the second layer input |
588 | */ |
589 | void connect(int outLayerId, int outNum, int inpLayerId, int inpNum); |
590 | |
591 | /** @brief Registers network output with name |
592 | * |
593 | * Function may create additional 'Identity' layer. |
594 | * |
595 | * @param outputName identifier of the output |
596 | * @param layerId identifier of the second layer |
597 | * @param outputPort number of the second layer input |
598 | * |
599 | * @returns index of bound layer (the same as layerId or newly created) |
600 | */ |
601 | int registerOutput(const std::string& outputName, int layerId, int outputPort); |
602 | |
603 | /** @brief Sets outputs names of the network input pseudo layer. |
604 | * |
605 | * Each net always has special own the network input pseudo layer with id=0. |
606 | * This layer stores the user blobs only and don't make any computations. |
607 | * In fact, this layer provides the only way to pass user data into the network. |
608 | * As any other layer, this layer can label its outputs and this function provides an easy way to do this. |
609 | */ |
610 | CV_WRAP void setInputsNames(const std::vector<String> &inputBlobNames); |
611 | |
612 | /** @brief Specify shape of network input. |
613 | */ |
614 | CV_WRAP void setInputShape(const String &inputName, const MatShape& shape); |
615 | |
616 | /** @brief Runs forward pass to compute output of layer with name @p outputName. |
617 | * @param outputName name for layer which output is needed to get |
618 | * @return blob for first output of specified layer. |
619 | * @details By default runs forward pass for the whole network. |
620 | */ |
621 | CV_WRAP Mat forward(const String& outputName = String()); |
622 | |
623 | /** @brief Runs forward pass to compute output of layer with name @p outputName. |
624 | * @param outputName name for layer which output is needed to get |
625 | * @details By default runs forward pass for the whole network. |
626 | * |
627 | * This is an asynchronous version of forward(const String&). |
628 | * dnn::DNN_BACKEND_INFERENCE_ENGINE backend is required. |
629 | */ |
630 | CV_WRAP AsyncArray forwardAsync(const String& outputName = String()); |
631 | |
632 | /** @brief Runs forward pass to compute output of layer with name @p outputName. |
633 | * @param outputBlobs contains all output blobs for specified layer. |
634 | * @param outputName name for layer which output is needed to get |
635 | * @details If @p outputName is empty, runs forward pass for the whole network. |
636 | */ |
637 | CV_WRAP void forward(OutputArrayOfArrays outputBlobs, const String& outputName = String()); |
638 | |
639 | /** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames. |
640 | * @param outputBlobs contains blobs for first outputs of specified layers. |
641 | * @param outBlobNames names for layers which outputs are needed to get |
642 | */ |
643 | CV_WRAP void forward(OutputArrayOfArrays outputBlobs, |
644 | const std::vector<String>& outBlobNames); |
645 | |
646 | /** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames. |
647 | * @param outputBlobs contains all output blobs for each layer specified in @p outBlobNames. |
648 | * @param outBlobNames names for layers which outputs are needed to get |
649 | */ |
650 | CV_WRAP_AS(forwardAndRetrieve) void forward(CV_OUT std::vector<std::vector<Mat> >& outputBlobs, |
651 | const std::vector<String>& outBlobNames); |
652 | |
653 | /** @brief Returns a quantized Net from a floating-point Net. |
654 | * @param calibData Calibration data to compute the quantization parameters. |
655 | * @param inputsDtype Datatype of quantized net's inputs. Can be CV_32F or CV_8S. |
656 | * @param outputsDtype Datatype of quantized net's outputs. Can be CV_32F or CV_8S. |
657 | * @param perChannel Quantization granularity of quantized Net. The default is true, that means quantize model |
658 | * in per-channel way (channel-wise). Set it false to quantize model in per-tensor way (or tensor-wise). |
659 | */ |
660 | CV_WRAP Net quantize(InputArrayOfArrays calibData, int inputsDtype, int outputsDtype, bool perChannel=true); |
661 | |
662 | /** @brief Returns input scale and zeropoint for a quantized Net. |
663 | * @param scales output parameter for returning input scales. |
664 | * @param zeropoints output parameter for returning input zeropoints. |
665 | */ |
666 | CV_WRAP void getInputDetails(CV_OUT std::vector<float>& scales, CV_OUT std::vector<int>& zeropoints) const; |
667 | |
668 | /** @brief Returns output scale and zeropoint for a quantized Net. |
669 | * @param scales output parameter for returning output scales. |
670 | * @param zeropoints output parameter for returning output zeropoints. |
671 | */ |
672 | CV_WRAP void getOutputDetails(CV_OUT std::vector<float>& scales, CV_OUT std::vector<int>& zeropoints) const; |
673 | |
674 | /** |
675 | * @brief Compile Halide layers. |
676 | * @param[in] scheduler Path to YAML file with scheduling directives. |
677 | * @see setPreferableBackend |
678 | * |
679 | * Schedule layers that support Halide backend. Then compile them for |
680 | * specific target. For layers that not represented in scheduling file |
681 | * or if no manual scheduling used at all, automatic scheduling will be applied. |
682 | */ |
683 | CV_WRAP void setHalideScheduler(const String& scheduler); |
684 | |
685 | /** |
686 | * @brief Ask network to use specific computation backend where it supported. |
687 | * @param[in] backendId backend identifier. |
688 | * @see Backend |
689 | */ |
690 | CV_WRAP void setPreferableBackend(int backendId); |
691 | |
692 | /** |
693 | * @brief Ask network to make computations on specific target device. |
694 | * @param[in] targetId target identifier. |
695 | * @see Target |
696 | * |
697 | * List of supported combinations backend / target: |
698 | * | | DNN_BACKEND_OPENCV | DNN_BACKEND_INFERENCE_ENGINE | DNN_BACKEND_HALIDE | DNN_BACKEND_CUDA | |
699 | * |------------------------|--------------------|------------------------------|--------------------|-------------------| |
700 | * | DNN_TARGET_CPU | + | + | + | | |
701 | * | DNN_TARGET_OPENCL | + | + | + | | |
702 | * | DNN_TARGET_OPENCL_FP16 | + | + | | | |
703 | * | DNN_TARGET_MYRIAD | | + | | | |
704 | * | DNN_TARGET_FPGA | | + | | | |
705 | * | DNN_TARGET_CUDA | | | | + | |
706 | * | DNN_TARGET_CUDA_FP16 | | | | + | |
707 | * | DNN_TARGET_HDDL | | + | | | |
708 | */ |
709 | CV_WRAP void setPreferableTarget(int targetId); |
710 | |
711 | /** @brief Sets the new input value for the network |
712 | * @param blob A new blob. Should have CV_32F or CV_8U depth. |
713 | * @param name A name of input layer. |
714 | * @param scalefactor An optional normalization scale. |
715 | * @param mean An optional mean subtraction values. |
716 | * @see connect(String, String) to know format of the descriptor. |
717 | * |
718 | * If scale or mean values are specified, a final input blob is computed |
719 | * as: |
720 | * \f[input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\f] |
721 | */ |
722 | CV_WRAP void setInput(InputArray blob, const String& name = "", |
723 | double scalefactor = 1.0, const Scalar& mean = Scalar()); |
724 | |
725 | /** @brief Sets the new value for the learned param of the layer. |
726 | * @param layer name or id of the layer. |
727 | * @param numParam index of the layer parameter in the Layer::blobs array. |
728 | * @param blob the new value. |
729 | * @see Layer::blobs |
730 | * @note If shape of the new blob differs from the previous shape, |
731 | * then the following forward pass may fail. |
732 | */ |
733 | CV_WRAP void setParam(int layer, int numParam, const Mat &blob); |
734 | CV_WRAP inline void setParam(const String& layerName, int numParam, const Mat &blob) { return setParam(layer: getLayerId(layer: layerName), numParam, blob); } |
735 | |
736 | /** @brief Returns parameter blob of the layer. |
737 | * @param layer name or id of the layer. |
738 | * @param numParam index of the layer parameter in the Layer::blobs array. |
739 | * @see Layer::blobs |
740 | */ |
741 | CV_WRAP Mat getParam(int layer, int numParam = 0) const; |
742 | CV_WRAP inline Mat getParam(const String& layerName, int numParam = 0) const { return getParam(layer: getLayerId(layer: layerName), numParam); } |
743 | |
744 | /** @brief Returns indexes of layers with unconnected outputs. |
745 | * |
746 | * FIXIT: Rework API to registerOutput() approach, deprecate this call |
747 | */ |
748 | CV_WRAP std::vector<int> getUnconnectedOutLayers() const; |
749 | |
750 | /** @brief Returns names of layers with unconnected outputs. |
751 | * |
752 | * FIXIT: Rework API to registerOutput() approach, deprecate this call |
753 | */ |
754 | CV_WRAP std::vector<String> getUnconnectedOutLayersNames() const; |
755 | |
756 | /** @brief Returns input and output shapes for all layers in loaded model; |
757 | * preliminary inferencing isn't necessary. |
758 | * @param netInputShapes shapes for all input blobs in net input layer. |
759 | * @param layersIds output parameter for layer IDs. |
760 | * @param inLayersShapes output parameter for input layers shapes; |
761 | * order is the same as in layersIds |
762 | * @param outLayersShapes output parameter for output layers shapes; |
763 | * order is the same as in layersIds |
764 | */ |
765 | CV_WRAP void getLayersShapes(const std::vector<MatShape>& netInputShapes, |
766 | CV_OUT std::vector<int>& layersIds, |
767 | CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes, |
768 | CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const; |
769 | |
770 | /** @overload */ |
771 | CV_WRAP void getLayersShapes(const MatShape& netInputShape, |
772 | CV_OUT std::vector<int>& layersIds, |
773 | CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes, |
774 | CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const; |
775 | |
776 | /** @brief Returns input and output shapes for layer with specified |
777 | * id in loaded model; preliminary inferencing isn't necessary. |
778 | * @param netInputShape shape input blob in net input layer. |
779 | * @param layerId id for layer. |
780 | * @param inLayerShapes output parameter for input layers shapes; |
781 | * order is the same as in layersIds |
782 | * @param outLayerShapes output parameter for output layers shapes; |
783 | * order is the same as in layersIds |
784 | */ |
785 | void getLayerShapes(const MatShape& netInputShape, |
786 | const int layerId, |
787 | CV_OUT std::vector<MatShape>& inLayerShapes, |
788 | CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP |
789 | |
790 | /** @overload */ |
791 | void getLayerShapes(const std::vector<MatShape>& netInputShapes, |
792 | const int layerId, |
793 | CV_OUT std::vector<MatShape>& inLayerShapes, |
794 | CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP |
795 | |
796 | /** @brief Computes FLOP for whole loaded model with specified input shapes. |
797 | * @param netInputShapes vector of shapes for all net inputs. |
798 | * @returns computed FLOP. |
799 | */ |
800 | CV_WRAP int64 getFLOPS(const std::vector<MatShape>& netInputShapes) const; |
801 | /** @overload */ |
802 | CV_WRAP int64 getFLOPS(const MatShape& netInputShape) const; |
803 | /** @overload */ |
804 | CV_WRAP int64 getFLOPS(const int layerId, |
805 | const std::vector<MatShape>& netInputShapes) const; |
806 | /** @overload */ |
807 | CV_WRAP int64 getFLOPS(const int layerId, |
808 | const MatShape& netInputShape) const; |
809 | |
810 | /** @brief Returns list of types for layer used in model. |
811 | * @param layersTypes output parameter for returning types. |
812 | */ |
813 | CV_WRAP void getLayerTypes(CV_OUT std::vector<String>& layersTypes) const; |
814 | |
815 | /** @brief Returns count of layers of specified type. |
816 | * @param layerType type. |
817 | * @returns count of layers |
818 | */ |
819 | CV_WRAP int getLayersCount(const String& layerType) const; |
820 | |
821 | /** @brief Computes bytes number which are required to store |
822 | * all weights and intermediate blobs for model. |
823 | * @param netInputShapes vector of shapes for all net inputs. |
824 | * @param weights output parameter to store resulting bytes for weights. |
825 | * @param blobs output parameter to store resulting bytes for intermediate blobs. |
826 | */ |
827 | void getMemoryConsumption(const std::vector<MatShape>& netInputShapes, |
828 | CV_OUT size_t& weights, CV_OUT size_t& blobs) const; // FIXIT: CV_WRAP |
829 | /** @overload */ |
830 | CV_WRAP void getMemoryConsumption(const MatShape& netInputShape, |
831 | CV_OUT size_t& weights, CV_OUT size_t& blobs) const; |
832 | /** @overload */ |
833 | CV_WRAP void getMemoryConsumption(const int layerId, |
834 | const std::vector<MatShape>& netInputShapes, |
835 | CV_OUT size_t& weights, CV_OUT size_t& blobs) const; |
836 | /** @overload */ |
837 | CV_WRAP void getMemoryConsumption(const int layerId, |
838 | const MatShape& netInputShape, |
839 | CV_OUT size_t& weights, CV_OUT size_t& blobs) const; |
840 | |
841 | /** @brief Computes bytes number which are required to store |
842 | * all weights and intermediate blobs for each layer. |
843 | * @param netInputShapes vector of shapes for all net inputs. |
844 | * @param layerIds output vector to save layer IDs. |
845 | * @param weights output parameter to store resulting bytes for weights. |
846 | * @param blobs output parameter to store resulting bytes for intermediate blobs. |
847 | */ |
848 | void getMemoryConsumption(const std::vector<MatShape>& netInputShapes, |
849 | CV_OUT std::vector<int>& layerIds, |
850 | CV_OUT std::vector<size_t>& weights, |
851 | CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP |
852 | /** @overload */ |
853 | void getMemoryConsumption(const MatShape& netInputShape, |
854 | CV_OUT std::vector<int>& layerIds, |
855 | CV_OUT std::vector<size_t>& weights, |
856 | CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP |
857 | |
858 | /** @brief Enables or disables layer fusion in the network. |
859 | * @param fusion true to enable the fusion, false to disable. The fusion is enabled by default. |
860 | */ |
861 | CV_WRAP void enableFusion(bool fusion); |
862 | |
863 | /** @brief Enables or disables the Winograd compute branch. The Winograd compute branch can speed up |
864 | * 3x3 Convolution at a small loss of accuracy. |
865 | * @param useWinograd true to enable the Winograd compute branch. The default is true. |
866 | */ |
867 | CV_WRAP void enableWinograd(bool useWinograd); |
868 | |
869 | /** @brief Returns overall time for inference and timings (in ticks) for layers. |
870 | * |
871 | * Indexes in returned vector correspond to layers ids. Some layers can be fused with others, |
872 | * in this case zero ticks count will be return for that skipped layers. Supported by DNN_BACKEND_OPENCV on DNN_TARGET_CPU only. |
873 | * |
874 | * @param[out] timings vector for tick timings for all layers. |
875 | * @return overall ticks for model inference. |
876 | */ |
877 | CV_WRAP int64 getPerfProfile(CV_OUT std::vector<double>& timings); |
878 | |
879 | |
880 | struct Impl; |
881 | inline Impl* getImpl() const { return impl.get(); } |
882 | inline Impl& getImplRef() const { CV_DbgAssert(impl); return *impl.get(); } |
883 | friend class accessor::DnnNetAccessor; |
884 | protected: |
885 | Ptr<Impl> impl; |
886 | }; |
887 | |
888 | /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files. |
889 | * @param cfgFile path to the .cfg file with text description of the network architecture. |
890 | * @param darknetModel path to the .weights file with learned network. |
891 | * @returns Network object that ready to do forward, throw an exception in failure cases. |
892 | */ |
893 | CV_EXPORTS_W Net readNetFromDarknet(const String &cfgFile, const String &darknetModel = String()); |
894 | |
895 | /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files. |
896 | * @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture. |
897 | * @param bufferModel A buffer contains a content of .weights file with learned network. |
898 | * @returns Net object. |
899 | */ |
900 | CV_EXPORTS_W Net readNetFromDarknet(const std::vector<uchar>& bufferCfg, |
901 | const std::vector<uchar>& bufferModel = std::vector<uchar>()); |
902 | |
903 | /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files. |
904 | * @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture. |
905 | * @param lenCfg Number of bytes to read from bufferCfg |
906 | * @param bufferModel A buffer contains a content of .weights file with learned network. |
907 | * @param lenModel Number of bytes to read from bufferModel |
908 | * @returns Net object. |
909 | */ |
910 | CV_EXPORTS Net readNetFromDarknet(const char *bufferCfg, size_t lenCfg, |
911 | const char *bufferModel = NULL, size_t lenModel = 0); |
912 | |
913 | /** @brief Reads a network model stored in <a href="http://caffe.berkeleyvision.org">Caffe</a> framework's format. |
914 | * @param prototxt path to the .prototxt file with text description of the network architecture. |
915 | * @param caffeModel path to the .caffemodel file with learned network. |
916 | * @returns Net object. |
917 | */ |
918 | CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String()); |
919 | |
920 | /** @brief Reads a network model stored in Caffe model in memory. |
921 | * @param bufferProto buffer containing the content of the .prototxt file |
922 | * @param bufferModel buffer containing the content of the .caffemodel file |
923 | * @returns Net object. |
924 | */ |
925 | CV_EXPORTS_W Net readNetFromCaffe(const std::vector<uchar>& bufferProto, |
926 | const std::vector<uchar>& bufferModel = std::vector<uchar>()); |
927 | |
928 | /** @brief Reads a network model stored in Caffe model in memory. |
929 | * @details This is an overloaded member function, provided for convenience. |
930 | * It differs from the above function only in what argument(s) it accepts. |
931 | * @param bufferProto buffer containing the content of the .prototxt file |
932 | * @param lenProto length of bufferProto |
933 | * @param bufferModel buffer containing the content of the .caffemodel file |
934 | * @param lenModel length of bufferModel |
935 | * @returns Net object. |
936 | */ |
937 | CV_EXPORTS Net readNetFromCaffe(const char *bufferProto, size_t lenProto, |
938 | const char *bufferModel = NULL, size_t lenModel = 0); |
939 | |
940 | /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format. |
941 | * @param model path to the .pb file with binary protobuf description of the network architecture |
942 | * @param config path to the .pbtxt file that contains text graph definition in protobuf format. |
943 | * Resulting Net object is built by text graph using weights from a binary one that |
944 | * let us make it more flexible. |
945 | * @returns Net object. |
946 | */ |
947 | CV_EXPORTS_W Net readNetFromTensorflow(const String &model, const String &config = String()); |
948 | |
949 | /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format. |
950 | * @param bufferModel buffer containing the content of the pb file |
951 | * @param bufferConfig buffer containing the content of the pbtxt file |
952 | * @returns Net object. |
953 | */ |
954 | CV_EXPORTS_W Net readNetFromTensorflow(const std::vector<uchar>& bufferModel, |
955 | const std::vector<uchar>& bufferConfig = std::vector<uchar>()); |
956 | |
957 | /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format. |
958 | * @details This is an overloaded member function, provided for convenience. |
959 | * It differs from the above function only in what argument(s) it accepts. |
960 | * @param bufferModel buffer containing the content of the pb file |
961 | * @param lenModel length of bufferModel |
962 | * @param bufferConfig buffer containing the content of the pbtxt file |
963 | * @param lenConfig length of bufferConfig |
964 | */ |
965 | CV_EXPORTS Net readNetFromTensorflow(const char *bufferModel, size_t lenModel, |
966 | const char *bufferConfig = NULL, size_t lenConfig = 0); |
967 | |
968 | /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/lite">TFLite</a> framework's format. |
969 | * @param model path to the .tflite file with binary flatbuffers description of the network architecture |
970 | * @returns Net object. |
971 | */ |
972 | CV_EXPORTS_W Net readNetFromTFLite(const String &model); |
973 | |
974 | /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/lite">TFLite</a> framework's format. |
975 | * @param bufferModel buffer containing the content of the tflite file |
976 | * @returns Net object. |
977 | */ |
978 | CV_EXPORTS_W Net readNetFromTFLite(const std::vector<uchar>& bufferModel); |
979 | |
980 | /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/lite">TFLite</a> framework's format. |
981 | * @details This is an overloaded member function, provided for convenience. |
982 | * It differs from the above function only in what argument(s) it accepts. |
983 | * @param bufferModel buffer containing the content of the tflite file |
984 | * @param lenModel length of bufferModel |
985 | */ |
986 | CV_EXPORTS Net readNetFromTFLite(const char *bufferModel, size_t lenModel); |
987 | |
988 | /** |
989 | * @brief Reads a network model stored in <a href="http://torch.ch">Torch7</a> framework's format. |
990 | * @param model path to the file, dumped from Torch by using torch.save() function. |
991 | * @param isBinary specifies whether the network was serialized in ascii mode or binary. |
992 | * @param evaluate specifies testing phase of network. If true, it's similar to evaluate() method in Torch. |
993 | * @returns Net object. |
994 | * |
995 | * @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language, |
996 | * which has various bit-length on different systems. |
997 | * |
998 | * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object |
999 | * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors. |
1000 | * |
1001 | * List of supported layers (i.e. object instances derived from Torch nn.Module class): |
1002 | * - nn.Sequential |
1003 | * - nn.Parallel |
1004 | * - nn.Concat |
1005 | * - nn.Linear |
1006 | * - nn.SpatialConvolution |
1007 | * - nn.SpatialMaxPooling, nn.SpatialAveragePooling |
1008 | * - nn.ReLU, nn.TanH, nn.Sigmoid |
1009 | * - nn.Reshape |
1010 | * - nn.SoftMax, nn.LogSoftMax |
1011 | * |
1012 | * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported. |
1013 | */ |
1014 | CV_EXPORTS_W Net readNetFromTorch(const String &model, bool isBinary = true, bool evaluate = true); |
1015 | |
1016 | /** |
1017 | * @brief Read deep learning network represented in one of the supported formats. |
1018 | * @param[in] model Binary file contains trained weights. The following file |
1019 | * extensions are expected for models from different frameworks: |
1020 | * * `*.caffemodel` (Caffe, http://caffe.berkeleyvision.org/) |
1021 | * * `*.pb` (TensorFlow, https://www.tensorflow.org/) |
1022 | * * `*.t7` | `*.net` (Torch, http://torch.ch/) |
1023 | * * `*.weights` (Darknet, https://pjreddie.com/darknet/) |
1024 | * * `*.bin` | `*.onnx` (OpenVINO, https://software.intel.com/openvino-toolkit) |
1025 | * * `*.onnx` (ONNX, https://onnx.ai/) |
1026 | * @param[in] config Text file contains network configuration. It could be a |
1027 | * file with the following extensions: |
1028 | * * `*.prototxt` (Caffe, http://caffe.berkeleyvision.org/) |
1029 | * * `*.pbtxt` (TensorFlow, https://www.tensorflow.org/) |
1030 | * * `*.cfg` (Darknet, https://pjreddie.com/darknet/) |
1031 | * * `*.xml` (OpenVINO, https://software.intel.com/openvino-toolkit) |
1032 | * @param[in] framework Explicit framework name tag to determine a format. |
1033 | * @returns Net object. |
1034 | * |
1035 | * This function automatically detects an origin framework of trained model |
1036 | * and calls an appropriate function such @ref readNetFromCaffe, @ref readNetFromTensorflow, |
1037 | * @ref readNetFromTorch or @ref readNetFromDarknet. An order of @p model and @p config |
1038 | * arguments does not matter. |
1039 | */ |
1040 | CV_EXPORTS_W Net readNet(const String& model, const String& config = "", const String& framework = ""); |
1041 | |
1042 | /** |
1043 | * @brief Read deep learning network represented in one of the supported formats. |
1044 | * @details This is an overloaded member function, provided for convenience. |
1045 | * It differs from the above function only in what argument(s) it accepts. |
1046 | * @param[in] framework Name of origin framework. |
1047 | * @param[in] bufferModel A buffer with a content of binary file with weights |
1048 | * @param[in] bufferConfig A buffer with a content of text file contains network configuration. |
1049 | * @returns Net object. |
1050 | */ |
1051 | CV_EXPORTS_W Net readNet(const String& framework, const std::vector<uchar>& bufferModel, |
1052 | const std::vector<uchar>& bufferConfig = std::vector<uchar>()); |
1053 | |
1054 | /** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework. |
1055 | * @warning This function has the same limitations as readNetFromTorch(). |
1056 | */ |
1057 | CV_EXPORTS_W Mat readTorchBlob(const String &filename, bool isBinary = true); |
1058 | |
1059 | /** @brief Load a network from Intel's Model Optimizer intermediate representation. |
1060 | * @param[in] xml XML configuration file with network's topology. |
1061 | * @param[in] bin Binary file with trained weights. |
1062 | * @returns Net object. |
1063 | * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine |
1064 | * backend. |
1065 | */ |
1066 | CV_EXPORTS_W |
1067 | Net readNetFromModelOptimizer(const String &xml, const String &bin = ""); |
1068 | |
1069 | /** @brief Load a network from Intel's Model Optimizer intermediate representation. |
1070 | * @param[in] bufferModelConfig Buffer contains XML configuration with network's topology. |
1071 | * @param[in] bufferWeights Buffer contains binary data with trained weights. |
1072 | * @returns Net object. |
1073 | * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine |
1074 | * backend. |
1075 | */ |
1076 | CV_EXPORTS_W |
1077 | Net readNetFromModelOptimizer(const std::vector<uchar>& bufferModelConfig, const std::vector<uchar>& bufferWeights); |
1078 | |
1079 | /** @brief Load a network from Intel's Model Optimizer intermediate representation. |
1080 | * @param[in] bufferModelConfigPtr Pointer to buffer which contains XML configuration with network's topology. |
1081 | * @param[in] bufferModelConfigSize Binary size of XML configuration data. |
1082 | * @param[in] bufferWeightsPtr Pointer to buffer which contains binary data with trained weights. |
1083 | * @param[in] bufferWeightsSize Binary size of trained weights data. |
1084 | * @returns Net object. |
1085 | * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine |
1086 | * backend. |
1087 | */ |
1088 | CV_EXPORTS |
1089 | Net readNetFromModelOptimizer(const uchar* bufferModelConfigPtr, size_t bufferModelConfigSize, |
1090 | const uchar* bufferWeightsPtr, size_t bufferWeightsSize); |
1091 | |
1092 | /** @brief Reads a network model <a href="https://onnx.ai/">ONNX</a>. |
1093 | * @param onnxFile path to the .onnx file with text description of the network architecture. |
1094 | * @returns Network object that ready to do forward, throw an exception in failure cases. |
1095 | */ |
1096 | CV_EXPORTS_W Net readNetFromONNX(const String &onnxFile); |
1097 | |
1098 | /** @brief Reads a network model from <a href="https://onnx.ai/">ONNX</a> |
1099 | * in-memory buffer. |
1100 | * @param buffer memory address of the first byte of the buffer. |
1101 | * @param sizeBuffer size of the buffer. |
1102 | * @returns Network object that ready to do forward, throw an exception |
1103 | * in failure cases. |
1104 | */ |
1105 | CV_EXPORTS Net readNetFromONNX(const char* buffer, size_t sizeBuffer); |
1106 | |
1107 | /** @brief Reads a network model from <a href="https://onnx.ai/">ONNX</a> |
1108 | * in-memory buffer. |
1109 | * @param buffer in-memory buffer that stores the ONNX model bytes. |
1110 | * @returns Network object that ready to do forward, throw an exception |
1111 | * in failure cases. |
1112 | */ |
1113 | CV_EXPORTS_W Net readNetFromONNX(const std::vector<uchar>& buffer); |
1114 | |
1115 | /** @brief Creates blob from .pb file. |
1116 | * @param path to the .pb file with input tensor. |
1117 | * @returns Mat. |
1118 | */ |
1119 | CV_EXPORTS_W Mat readTensorFromONNX(const String& path); |
1120 | |
1121 | /** @brief Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center, |
1122 | * subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels. |
1123 | * @param image input image (with 1-, 3- or 4-channels). |
1124 | * @param scalefactor multiplier for @p images values. |
1125 | * @param size spatial size for output image |
1126 | * @param mean scalar with mean values which are subtracted from channels. Values are intended |
1127 | * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true. |
1128 | * @param swapRB flag which indicates that swap first and last channels |
1129 | * in 3-channel image is necessary. |
1130 | * @param crop flag which indicates whether image will be cropped after resize or not |
1131 | * @param ddepth Depth of output blob. Choose CV_32F or CV_8U. |
1132 | * @details if @p crop is true, input image is resized so one side after resize is equal to corresponding |
1133 | * dimension in @p size and another one is equal or larger. Then, crop from the center is performed. |
1134 | * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed. |
1135 | * @returns 4-dimensional Mat with NCHW dimensions order. |
1136 | * |
1137 | * @note |
1138 | * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor. |
1139 | */ |
1140 | CV_EXPORTS_W Mat blobFromImage(InputArray image, double scalefactor=1.0, const Size& size = Size(), |
1141 | const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false, |
1142 | int ddepth=CV_32F); |
1143 | |
1144 | /** @brief Creates 4-dimensional blob from image. |
1145 | * @details This is an overloaded member function, provided for convenience. |
1146 | * It differs from the above function only in what argument(s) it accepts. |
1147 | */ |
1148 | CV_EXPORTS void blobFromImage(InputArray image, OutputArray blob, double scalefactor=1.0, |
1149 | const Size& size = Size(), const Scalar& mean = Scalar(), |
1150 | bool swapRB=false, bool crop=false, int ddepth=CV_32F); |
1151 | |
1152 | |
1153 | /** @brief Creates 4-dimensional blob from series of images. Optionally resizes and |
1154 | * crops @p images from center, subtract @p mean values, scales values by @p scalefactor, |
1155 | * swap Blue and Red channels. |
1156 | * @param images input images (all with 1-, 3- or 4-channels). |
1157 | * @param size spatial size for output image |
1158 | * @param mean scalar with mean values which are subtracted from channels. Values are intended |
1159 | * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true. |
1160 | * @param scalefactor multiplier for @p images values. |
1161 | * @param swapRB flag which indicates that swap first and last channels |
1162 | * in 3-channel image is necessary. |
1163 | * @param crop flag which indicates whether image will be cropped after resize or not |
1164 | * @param ddepth Depth of output blob. Choose CV_32F or CV_8U. |
1165 | * @details if @p crop is true, input image is resized so one side after resize is equal to corresponding |
1166 | * dimension in @p size and another one is equal or larger. Then, crop from the center is performed. |
1167 | * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed. |
1168 | * @returns 4-dimensional Mat with NCHW dimensions order. |
1169 | * |
1170 | * @note |
1171 | * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor. |
1172 | */ |
1173 | CV_EXPORTS_W Mat blobFromImages(InputArrayOfArrays images, double scalefactor=1.0, |
1174 | Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false, |
1175 | int ddepth=CV_32F); |
1176 | |
1177 | /** @brief Creates 4-dimensional blob from series of images. |
1178 | * @details This is an overloaded member function, provided for convenience. |
1179 | * It differs from the above function only in what argument(s) it accepts. |
1180 | */ |
1181 | CV_EXPORTS void blobFromImages(InputArrayOfArrays images, OutputArray blob, |
1182 | double scalefactor=1.0, Size size = Size(), |
1183 | const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false, |
1184 | int ddepth=CV_32F); |
1185 | |
1186 | /** |
1187 | * @brief Enum of image processing mode. |
1188 | * To facilitate the specialization pre-processing requirements of the dnn model. |
1189 | * For example, the `letter box` often used in the Yolo series of models. |
1190 | * @see Image2BlobParams |
1191 | */ |
1192 | enum ImagePaddingMode |
1193 | { |
1194 | DNN_PMODE_NULL = 0, // !< Default. Resize to required input size without extra processing. |
1195 | DNN_PMODE_CROP_CENTER = 1, // !< Image will be cropped after resize. |
1196 | DNN_PMODE_LETTERBOX = 2, // !< Resize image to the desired size while preserving the aspect ratio of original image. |
1197 | }; |
1198 | |
1199 | /** @brief Processing params of image to blob. |
1200 | * |
1201 | * It includes all possible image processing operations and corresponding parameters. |
1202 | * |
1203 | * @see blobFromImageWithParams |
1204 | * |
1205 | * @note |
1206 | * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor. |
1207 | * The order and usage of `scalefactor`, `size`, `mean`, `swapRB`, and `ddepth` are consistent |
1208 | * with the function of @ref blobFromImage. |
1209 | */ |
1210 | struct CV_EXPORTS_W_SIMPLE Image2BlobParams |
1211 | { |
1212 | CV_WRAP Image2BlobParams(); |
1213 | CV_WRAP Image2BlobParams(const Scalar& scalefactor, const Size& size = Size(), const Scalar& mean = Scalar(), |
1214 | bool swapRB = false, int ddepth = CV_32F, DataLayout datalayout = DNN_LAYOUT_NCHW, |
1215 | ImagePaddingMode mode = DNN_PMODE_NULL, Scalar borderValue = 0.0); |
1216 | |
1217 | CV_PROP_RW Scalar scalefactor; //!< scalefactor multiplier for input image values. |
1218 | CV_PROP_RW Size size; //!< Spatial size for output image. |
1219 | CV_PROP_RW Scalar mean; //!< Scalar with mean values which are subtracted from channels. |
1220 | CV_PROP_RW bool swapRB; //!< Flag which indicates that swap first and last channels |
1221 | CV_PROP_RW int ddepth; //!< Depth of output blob. Choose CV_32F or CV_8U. |
1222 | CV_PROP_RW DataLayout datalayout; //!< Order of output dimensions. Choose DNN_LAYOUT_NCHW or DNN_LAYOUT_NHWC. |
1223 | CV_PROP_RW ImagePaddingMode paddingmode; //!< Image padding mode. @see ImagePaddingMode. |
1224 | CV_PROP_RW Scalar borderValue; //!< Value used in padding mode for padding. |
1225 | |
1226 | /** @brief Get rectangle coordinates in original image system from rectangle in blob coordinates. |
1227 | * @param rBlob rect in blob coordinates. |
1228 | * @param size original input image size. |
1229 | * @returns rectangle in original image coordinates. |
1230 | */ |
1231 | CV_WRAP Rect blobRectToImageRect(const Rect &rBlob, const Size &size); |
1232 | |
1233 | /** @brief Get rectangle coordinates in original image system from rectangle in blob coordinates. |
1234 | * @param rBlob rect in blob coordinates. |
1235 | * @param rImg result rect in image coordinates. |
1236 | * @param size original input image size. |
1237 | */ |
1238 | CV_WRAP void blobRectsToImageRects(const std::vector<Rect> &rBlob, CV_OUT std::vector<Rect>& rImg, const Size& size); |
1239 | }; |
1240 | |
1241 | /** @brief Creates 4-dimensional blob from image with given params. |
1242 | * |
1243 | * @details This function is an extension of @ref blobFromImage to meet more image preprocess needs. |
1244 | * Given input image and preprocessing parameters, and function outputs the blob. |
1245 | * |
1246 | * @param image input image (all with 1-, 3- or 4-channels). |
1247 | * @param param struct of Image2BlobParams, contains all parameters needed by processing of image to blob. |
1248 | * @return 4-dimensional Mat. |
1249 | */ |
1250 | CV_EXPORTS_W Mat blobFromImageWithParams(InputArray image, const Image2BlobParams& param = Image2BlobParams()); |
1251 | |
1252 | /** @overload */ |
1253 | CV_EXPORTS_W void blobFromImageWithParams(InputArray image, OutputArray blob, const Image2BlobParams& param = Image2BlobParams()); |
1254 | |
1255 | /** @brief Creates 4-dimensional blob from series of images with given params. |
1256 | * |
1257 | * @details This function is an extension of @ref blobFromImages to meet more image preprocess needs. |
1258 | * Given input image and preprocessing parameters, and function outputs the blob. |
1259 | * |
1260 | * @param images input image (all with 1-, 3- or 4-channels). |
1261 | * @param param struct of Image2BlobParams, contains all parameters needed by processing of image to blob. |
1262 | * @returns 4-dimensional Mat. |
1263 | */ |
1264 | CV_EXPORTS_W Mat blobFromImagesWithParams(InputArrayOfArrays images, const Image2BlobParams& param = Image2BlobParams()); |
1265 | |
1266 | /** @overload */ |
1267 | CV_EXPORTS_W void blobFromImagesWithParams(InputArrayOfArrays images, OutputArray blob, const Image2BlobParams& param = Image2BlobParams()); |
1268 | |
1269 | /** @brief Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure |
1270 | * (std::vector<cv::Mat>). |
1271 | * @param[in] blob_ 4 dimensional array (images, channels, height, width) in floating point precision (CV_32F) from |
1272 | * which you would like to extract the images. |
1273 | * @param[out] images_ array of 2D Mat containing the images extracted from the blob in floating point precision |
1274 | * (CV_32F). They are non normalized neither mean added. The number of returned images equals the first dimension |
1275 | * of the blob (batch size). Every image has a number of channels equals to the second dimension of the blob (depth). |
1276 | */ |
1277 | CV_EXPORTS_W void imagesFromBlob(const cv::Mat& blob_, OutputArrayOfArrays images_); |
1278 | |
1279 | /** @brief Convert all weights of Caffe network to half precision floating point. |
1280 | * @param src Path to origin model from Caffe framework contains single |
1281 | * precision floating point weights (usually has `.caffemodel` extension). |
1282 | * @param dst Path to destination model with updated weights. |
1283 | * @param layersTypes Set of layers types which parameters will be converted. |
1284 | * By default, converts only Convolutional and Fully-Connected layers' |
1285 | * weights. |
1286 | * |
1287 | * @note Shrinked model has no origin float32 weights so it can't be used |
1288 | * in origin Caffe framework anymore. However the structure of data |
1289 | * is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe. |
1290 | * So the resulting model may be used there. |
1291 | */ |
1292 | CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst, |
1293 | const std::vector<String>& layersTypes = std::vector<String>()); |
1294 | |
1295 | /** @brief Create a text representation for a binary network stored in protocol buffer format. |
1296 | * @param[in] model A path to binary network. |
1297 | * @param[in] output A path to output text file to be created. |
1298 | * |
1299 | * @note To reduce output file size, trained weights are not included. |
1300 | */ |
1301 | CV_EXPORTS_W void writeTextGraph(const String& model, const String& output); |
1302 | |
1303 | /** @brief Performs non maximum suppression given boxes and corresponding scores. |
1304 | |
1305 | * @param bboxes a set of bounding boxes to apply NMS. |
1306 | * @param scores a set of corresponding confidences. |
1307 | * @param score_threshold a threshold used to filter boxes by score. |
1308 | * @param nms_threshold a threshold used in non maximum suppression. |
1309 | * @param indices the kept indices of bboxes after NMS. |
1310 | * @param eta a coefficient in adaptive threshold formula: \f$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i\f$. |
1311 | * @param top_k if `>0`, keep at most @p top_k picked indices. |
1312 | */ |
1313 | CV_EXPORTS void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores, |
1314 | const float score_threshold, const float nms_threshold, |
1315 | CV_OUT std::vector<int>& indices, |
1316 | const float eta = 1.f, const int top_k = 0); |
1317 | |
1318 | CV_EXPORTS_W void NMSBoxes(const std::vector<Rect2d>& bboxes, const std::vector<float>& scores, |
1319 | const float score_threshold, const float nms_threshold, |
1320 | CV_OUT std::vector<int>& indices, |
1321 | const float eta = 1.f, const int top_k = 0); |
1322 | |
1323 | CV_EXPORTS_AS(NMSBoxesRotated) void NMSBoxes(const std::vector<RotatedRect>& bboxes, const std::vector<float>& scores, |
1324 | const float score_threshold, const float nms_threshold, |
1325 | CV_OUT std::vector<int>& indices, |
1326 | const float eta = 1.f, const int top_k = 0); |
1327 | |
1328 | /** @brief Performs batched non maximum suppression on given boxes and corresponding scores across different classes. |
1329 | |
1330 | * @param bboxes a set of bounding boxes to apply NMS. |
1331 | * @param scores a set of corresponding confidences. |
1332 | * @param class_ids a set of corresponding class ids. Ids are integer and usually start from 0. |
1333 | * @param score_threshold a threshold used to filter boxes by score. |
1334 | * @param nms_threshold a threshold used in non maximum suppression. |
1335 | * @param indices the kept indices of bboxes after NMS. |
1336 | * @param eta a coefficient in adaptive threshold formula: \f$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i\f$. |
1337 | * @param top_k if `>0`, keep at most @p top_k picked indices. |
1338 | */ |
1339 | CV_EXPORTS void NMSBoxesBatched(const std::vector<Rect>& bboxes, const std::vector<float>& scores, const std::vector<int>& class_ids, |
1340 | const float score_threshold, const float nms_threshold, |
1341 | CV_OUT std::vector<int>& indices, |
1342 | const float eta = 1.f, const int top_k = 0); |
1343 | |
1344 | CV_EXPORTS_W void NMSBoxesBatched(const std::vector<Rect2d>& bboxes, const std::vector<float>& scores, const std::vector<int>& class_ids, |
1345 | const float score_threshold, const float nms_threshold, |
1346 | CV_OUT std::vector<int>& indices, |
1347 | const float eta = 1.f, const int top_k = 0); |
1348 | |
1349 | /** |
1350 | * @brief Enum of Soft NMS methods. |
1351 | * @see softNMSBoxes |
1352 | */ |
1353 | enum class SoftNMSMethod |
1354 | { |
1355 | SOFTNMS_LINEAR = 1, |
1356 | SOFTNMS_GAUSSIAN = 2 |
1357 | }; |
1358 | |
1359 | /** @brief Performs soft non maximum suppression given boxes and corresponding scores. |
1360 | * Reference: https://arxiv.org/abs/1704.04503 |
1361 | * @param bboxes a set of bounding boxes to apply Soft NMS. |
1362 | * @param scores a set of corresponding confidences. |
1363 | * @param updated_scores a set of corresponding updated confidences. |
1364 | * @param score_threshold a threshold used to filter boxes by score. |
1365 | * @param nms_threshold a threshold used in non maximum suppression. |
1366 | * @param indices the kept indices of bboxes after NMS. |
1367 | * @param top_k keep at most @p top_k picked indices. |
1368 | * @param sigma parameter of Gaussian weighting. |
1369 | * @param method Gaussian or linear. |
1370 | * @see SoftNMSMethod |
1371 | */ |
1372 | CV_EXPORTS_W void softNMSBoxes(const std::vector<Rect>& bboxes, |
1373 | const std::vector<float>& scores, |
1374 | CV_OUT std::vector<float>& updated_scores, |
1375 | const float score_threshold, |
1376 | const float nms_threshold, |
1377 | CV_OUT std::vector<int>& indices, |
1378 | size_t top_k = 0, |
1379 | const float sigma = 0.5, |
1380 | SoftNMSMethod method = SoftNMSMethod::SOFTNMS_GAUSSIAN); |
1381 | |
1382 | |
1383 | /** @brief This class is presented high-level API for neural networks. |
1384 | * |
1385 | * Model allows to set params for preprocessing input image. |
1386 | * Model creates net from file with trained weights and config, |
1387 | * sets preprocessing input and runs forward pass. |
1388 | */ |
1389 | class CV_EXPORTS_W_SIMPLE Model |
1390 | { |
1391 | public: |
1392 | CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first) |
1393 | Model(); |
1394 | |
1395 | Model(const Model&) = default; |
1396 | Model(Model&&) = default; |
1397 | Model& operator=(const Model&) = default; |
1398 | Model& operator=(Model&&) = default; |
1399 | |
1400 | /** |
1401 | * @brief Create model from deep learning network represented in one of the supported formats. |
1402 | * An order of @p model and @p config arguments does not matter. |
1403 | * @param[in] model Binary file contains trained weights. |
1404 | * @param[in] config Text file contains network configuration. |
1405 | */ |
1406 | CV_WRAP Model(const String& model, const String& config = ""); |
1407 | |
1408 | /** |
1409 | * @brief Create model from deep learning network. |
1410 | * @param[in] network Net object. |
1411 | */ |
1412 | CV_WRAP Model(const Net& network); |
1413 | |
1414 | /** @brief Set input size for frame. |
1415 | * @param[in] size New input size. |
1416 | * @note If shape of the new blob less than 0, then frame size not change. |
1417 | */ |
1418 | CV_WRAP Model& setInputSize(const Size& size); |
1419 | |
1420 | /** @overload |
1421 | * @param[in] width New input width. |
1422 | * @param[in] height New input height. |
1423 | */ |
1424 | CV_WRAP inline |
1425 | Model& setInputSize(int width, int height) { return setInputSize(Size(width, height)); } |
1426 | |
1427 | /** @brief Set mean value for frame. |
1428 | * @param[in] mean Scalar with mean values which are subtracted from channels. |
1429 | */ |
1430 | CV_WRAP Model& setInputMean(const Scalar& mean); |
1431 | |
1432 | /** @brief Set scalefactor value for frame. |
1433 | * @param[in] scale Multiplier for frame values. |
1434 | */ |
1435 | CV_WRAP Model& setInputScale(const Scalar& scale); |
1436 | |
1437 | /** @brief Set flag crop for frame. |
1438 | * @param[in] crop Flag which indicates whether image will be cropped after resize or not. |
1439 | */ |
1440 | CV_WRAP Model& setInputCrop(bool crop); |
1441 | |
1442 | /** @brief Set flag swapRB for frame. |
1443 | * @param[in] swapRB Flag which indicates that swap first and last channels. |
1444 | */ |
1445 | CV_WRAP Model& setInputSwapRB(bool swapRB); |
1446 | |
1447 | /** @brief Set preprocessing parameters for frame. |
1448 | * @param[in] size New input size. |
1449 | * @param[in] mean Scalar with mean values which are subtracted from channels. |
1450 | * @param[in] scale Multiplier for frame values. |
1451 | * @param[in] swapRB Flag which indicates that swap first and last channels. |
1452 | * @param[in] crop Flag which indicates whether image will be cropped after resize or not. |
1453 | * blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) ) |
1454 | */ |
1455 | CV_WRAP void setInputParams(double scale = 1.0, const Size& size = Size(), |
1456 | const Scalar& mean = Scalar(), bool swapRB = false, bool crop = false); |
1457 | |
1458 | /** @brief Given the @p input frame, create input blob, run net and return the output @p blobs. |
1459 | * @param[in] frame The input image. |
1460 | * @param[out] outs Allocated output blobs, which will store results of the computation. |
1461 | */ |
1462 | CV_WRAP void predict(InputArray frame, OutputArrayOfArrays outs) const; |
1463 | |
1464 | |
1465 | // ============================== Net proxy methods ============================== |
1466 | // Never expose methods with network implementation details, like: |
1467 | // - addLayer, addLayerToPrev, connect, setInputsNames, setInputShape, setParam, getParam |
1468 | // - getLayer*, getUnconnectedOutLayers, getUnconnectedOutLayersNames, getLayersShapes |
1469 | // - forward* methods, setInput |
1470 | |
1471 | /// @sa Net::setPreferableBackend |
1472 | CV_WRAP Model& setPreferableBackend(dnn::Backend backendId); |
1473 | /// @sa Net::setPreferableTarget |
1474 | CV_WRAP Model& setPreferableTarget(dnn::Target targetId); |
1475 | |
1476 | /// @sa Net::enableWinograd |
1477 | CV_WRAP Model& enableWinograd(bool useWinograd); |
1478 | |
1479 | CV_DEPRECATED_EXTERNAL |
1480 | operator Net&() const { return getNetwork_(); } |
1481 | |
1482 | //protected: - internal/tests usage only |
1483 | Net& getNetwork_() const; |
1484 | inline Net& getNetwork_() { return const_cast<const Model*>(this)->getNetwork_(); } |
1485 | |
1486 | struct Impl; |
1487 | inline Impl* getImpl() const { return impl.get(); } |
1488 | inline Impl& getImplRef() const { CV_DbgAssert(impl); return *impl.get(); } |
1489 | protected: |
1490 | Ptr<Impl> impl; |
1491 | }; |
1492 | |
1493 | /** @brief This class represents high-level API for classification models. |
1494 | * |
1495 | * ClassificationModel allows to set params for preprocessing input image. |
1496 | * ClassificationModel creates net from file with trained weights and config, |
1497 | * sets preprocessing input, runs forward pass and return top-1 prediction. |
1498 | */ |
1499 | class CV_EXPORTS_W_SIMPLE ClassificationModel : public Model |
1500 | { |
1501 | public: |
1502 | CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first) |
1503 | ClassificationModel(); |
1504 | |
1505 | /** |
1506 | * @brief Create classification model from network represented in one of the supported formats. |
1507 | * An order of @p model and @p config arguments does not matter. |
1508 | * @param[in] model Binary file contains trained weights. |
1509 | * @param[in] config Text file contains network configuration. |
1510 | */ |
1511 | CV_WRAP ClassificationModel(const String& model, const String& config = ""); |
1512 | |
1513 | /** |
1514 | * @brief Create model from deep learning network. |
1515 | * @param[in] network Net object. |
1516 | */ |
1517 | CV_WRAP ClassificationModel(const Net& network); |
1518 | |
1519 | /** |
1520 | * @brief Set enable/disable softmax post processing option. |
1521 | * |
1522 | * If this option is true, softmax is applied after forward inference within the classify() function |
1523 | * to convert the confidences range to [0.0-1.0]. |
1524 | * This function allows you to toggle this behavior. |
1525 | * Please turn true when not contain softmax layer in model. |
1526 | * @param[in] enable Set enable softmax post processing within the classify() function. |
1527 | */ |
1528 | CV_WRAP ClassificationModel& setEnableSoftmaxPostProcessing(bool enable); |
1529 | |
1530 | /** |
1531 | * @brief Get enable/disable softmax post processing option. |
1532 | * |
1533 | * This option defaults to false, softmax post processing is not applied within the classify() function. |
1534 | */ |
1535 | CV_WRAP bool getEnableSoftmaxPostProcessing() const; |
1536 | |
1537 | /** @brief Given the @p input frame, create input blob, run net and return top-1 prediction. |
1538 | * @param[in] frame The input image. |
1539 | */ |
1540 | std::pair<int, float> classify(InputArray frame); |
1541 | |
1542 | /** @overload */ |
1543 | CV_WRAP void classify(InputArray frame, CV_OUT int& classId, CV_OUT float& conf); |
1544 | }; |
1545 | |
1546 | /** @brief This class represents high-level API for keypoints models |
1547 | * |
1548 | * KeypointsModel allows to set params for preprocessing input image. |
1549 | * KeypointsModel creates net from file with trained weights and config, |
1550 | * sets preprocessing input, runs forward pass and returns the x and y coordinates of each detected keypoint |
1551 | */ |
1552 | class CV_EXPORTS_W_SIMPLE KeypointsModel: public Model |
1553 | { |
1554 | public: |
1555 | /** |
1556 | * @brief Create keypoints model from network represented in one of the supported formats. |
1557 | * An order of @p model and @p config arguments does not matter. |
1558 | * @param[in] model Binary file contains trained weights. |
1559 | * @param[in] config Text file contains network configuration. |
1560 | */ |
1561 | CV_WRAP KeypointsModel(const String& model, const String& config = ""); |
1562 | |
1563 | /** |
1564 | * @brief Create model from deep learning network. |
1565 | * @param[in] network Net object. |
1566 | */ |
1567 | CV_WRAP KeypointsModel(const Net& network); |
1568 | |
1569 | /** @brief Given the @p input frame, create input blob, run net |
1570 | * @param[in] frame The input image. |
1571 | * @param thresh minimum confidence threshold to select a keypoint |
1572 | * @returns a vector holding the x and y coordinates of each detected keypoint |
1573 | * |
1574 | */ |
1575 | CV_WRAP std::vector<Point2f> estimate(InputArray frame, float thresh=0.5); |
1576 | }; |
1577 | |
1578 | /** @brief This class represents high-level API for segmentation models |
1579 | * |
1580 | * SegmentationModel allows to set params for preprocessing input image. |
1581 | * SegmentationModel creates net from file with trained weights and config, |
1582 | * sets preprocessing input, runs forward pass and returns the class prediction for each pixel. |
1583 | */ |
1584 | class CV_EXPORTS_W_SIMPLE SegmentationModel: public Model |
1585 | { |
1586 | public: |
1587 | /** |
1588 | * @brief Create segmentation model from network represented in one of the supported formats. |
1589 | * An order of @p model and @p config arguments does not matter. |
1590 | * @param[in] model Binary file contains trained weights. |
1591 | * @param[in] config Text file contains network configuration. |
1592 | */ |
1593 | CV_WRAP SegmentationModel(const String& model, const String& config = ""); |
1594 | |
1595 | /** |
1596 | * @brief Create model from deep learning network. |
1597 | * @param[in] network Net object. |
1598 | */ |
1599 | CV_WRAP SegmentationModel(const Net& network); |
1600 | |
1601 | /** @brief Given the @p input frame, create input blob, run net |
1602 | * @param[in] frame The input image. |
1603 | * @param[out] mask Allocated class prediction for each pixel |
1604 | */ |
1605 | CV_WRAP void segment(InputArray frame, OutputArray mask); |
1606 | }; |
1607 | |
1608 | /** @brief This class represents high-level API for object detection networks. |
1609 | * |
1610 | * DetectionModel allows to set params for preprocessing input image. |
1611 | * DetectionModel creates net from file with trained weights and config, |
1612 | * sets preprocessing input, runs forward pass and return result detections. |
1613 | * For DetectionModel SSD, Faster R-CNN, YOLO topologies are supported. |
1614 | */ |
1615 | class CV_EXPORTS_W_SIMPLE DetectionModel : public Model |
1616 | { |
1617 | public: |
1618 | /** |
1619 | * @brief Create detection model from network represented in one of the supported formats. |
1620 | * An order of @p model and @p config arguments does not matter. |
1621 | * @param[in] model Binary file contains trained weights. |
1622 | * @param[in] config Text file contains network configuration. |
1623 | */ |
1624 | CV_WRAP DetectionModel(const String& model, const String& config = ""); |
1625 | |
1626 | /** |
1627 | * @brief Create model from deep learning network. |
1628 | * @param[in] network Net object. |
1629 | */ |
1630 | CV_WRAP DetectionModel(const Net& network); |
1631 | |
1632 | CV_DEPRECATED_EXTERNAL // avoid using in C++ code (need to fix bindings first) |
1633 | DetectionModel(); |
1634 | |
1635 | /** |
1636 | * @brief nmsAcrossClasses defaults to false, |
1637 | * such that when non max suppression is used during the detect() function, it will do so per-class. |
1638 | * This function allows you to toggle this behaviour. |
1639 | * @param[in] value The new value for nmsAcrossClasses |
1640 | */ |
1641 | CV_WRAP DetectionModel& setNmsAcrossClasses(bool value); |
1642 | |
1643 | /** |
1644 | * @brief Getter for nmsAcrossClasses. This variable defaults to false, |
1645 | * such that when non max suppression is used during the detect() function, it will do so only per-class |
1646 | */ |
1647 | CV_WRAP bool getNmsAcrossClasses(); |
1648 | |
1649 | /** @brief Given the @p input frame, create input blob, run net and return result detections. |
1650 | * @param[in] frame The input image. |
1651 | * @param[out] classIds Class indexes in result detection. |
1652 | * @param[out] confidences A set of corresponding confidences. |
1653 | * @param[out] boxes A set of bounding boxes. |
1654 | * @param[in] confThreshold A threshold used to filter boxes by confidences. |
1655 | * @param[in] nmsThreshold A threshold used in non maximum suppression. |
1656 | */ |
1657 | CV_WRAP void detect(InputArray frame, CV_OUT std::vector<int>& classIds, |
1658 | CV_OUT std::vector<float>& confidences, CV_OUT std::vector<Rect>& boxes, |
1659 | float confThreshold = 0.5f, float nmsThreshold = 0.0f); |
1660 | }; |
1661 | |
1662 | |
1663 | /** @brief This class represents high-level API for text recognition networks. |
1664 | * |
1665 | * TextRecognitionModel allows to set params for preprocessing input image. |
1666 | * TextRecognitionModel creates net from file with trained weights and config, |
1667 | * sets preprocessing input, runs forward pass and return recognition result. |
1668 | * For TextRecognitionModel, CRNN-CTC is supported. |
1669 | */ |
1670 | class CV_EXPORTS_W_SIMPLE TextRecognitionModel : public Model |
1671 | { |
1672 | public: |
1673 | CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first) |
1674 | TextRecognitionModel(); |
1675 | |
1676 | /** |
1677 | * @brief Create Text Recognition model from deep learning network |
1678 | * Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method |
1679 | * @param[in] network Net object |
1680 | */ |
1681 | CV_WRAP TextRecognitionModel(const Net& network); |
1682 | |
1683 | /** |
1684 | * @brief Create text recognition model from network represented in one of the supported formats |
1685 | * Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method |
1686 | * @param[in] model Binary file contains trained weights |
1687 | * @param[in] config Text file contains network configuration |
1688 | */ |
1689 | CV_WRAP inline |
1690 | TextRecognitionModel(const std::string& model, const std::string& config = "") |
1691 | : TextRecognitionModel(readNet(model, config)) { /* nothing */ } |
1692 | |
1693 | /** |
1694 | * @brief Set the decoding method of translating the network output into string |
1695 | * @param[in] decodeType The decoding method of translating the network output into string, currently supported type: |
1696 | * - `"CTC-greedy"` greedy decoding for the output of CTC-based methods |
1697 | * - `"CTC-prefix-beam-search"` Prefix beam search decoding for the output of CTC-based methods |
1698 | */ |
1699 | CV_WRAP |
1700 | TextRecognitionModel& setDecodeType(const std::string& decodeType); |
1701 | |
1702 | /** |
1703 | * @brief Get the decoding method |
1704 | * @return the decoding method |
1705 | */ |
1706 | CV_WRAP |
1707 | const std::string& getDecodeType() const; |
1708 | |
1709 | /** |
1710 | * @brief Set the decoding method options for `"CTC-prefix-beam-search"` decode usage |
1711 | * @param[in] beamSize Beam size for search |
1712 | * @param[in] vocPruneSize Parameter to optimize big vocabulary search, |
1713 | * only take top @p vocPruneSize tokens in each search step, @p vocPruneSize <= 0 stands for disable this prune. |
1714 | */ |
1715 | CV_WRAP |
1716 | TextRecognitionModel& setDecodeOptsCTCPrefixBeamSearch(int beamSize, int vocPruneSize = 0); |
1717 | |
1718 | /** |
1719 | * @brief Set the vocabulary for recognition. |
1720 | * @param[in] vocabulary the associated vocabulary of the network. |
1721 | */ |
1722 | CV_WRAP |
1723 | TextRecognitionModel& setVocabulary(const std::vector<std::string>& vocabulary); |
1724 | |
1725 | /** |
1726 | * @brief Get the vocabulary for recognition. |
1727 | * @return vocabulary the associated vocabulary |
1728 | */ |
1729 | CV_WRAP |
1730 | const std::vector<std::string>& getVocabulary() const; |
1731 | |
1732 | /** |
1733 | * @brief Given the @p input frame, create input blob, run net and return recognition result |
1734 | * @param[in] frame The input image |
1735 | * @return The text recognition result |
1736 | */ |
1737 | CV_WRAP |
1738 | std::string recognize(InputArray frame) const; |
1739 | |
1740 | /** |
1741 | * @brief Given the @p input frame, create input blob, run net and return recognition result |
1742 | * @param[in] frame The input image |
1743 | * @param[in] roiRects List of text detection regions of interest (cv::Rect, CV_32SC4). ROIs is be cropped as the network inputs |
1744 | * @param[out] results A set of text recognition results. |
1745 | */ |
1746 | CV_WRAP |
1747 | void recognize(InputArray frame, InputArrayOfArrays roiRects, CV_OUT std::vector<std::string>& results) const; |
1748 | }; |
1749 | |
1750 | |
1751 | /** @brief Base class for text detection networks |
1752 | */ |
1753 | class CV_EXPORTS_W_SIMPLE TextDetectionModel : public Model |
1754 | { |
1755 | protected: |
1756 | CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first) |
1757 | TextDetectionModel(); |
1758 | |
1759 | public: |
1760 | |
1761 | /** @brief Performs detection |
1762 | * |
1763 | * Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections. |
1764 | * |
1765 | * Each result is quadrangle's 4 points in this order: |
1766 | * - bottom-left |
1767 | * - top-left |
1768 | * - top-right |
1769 | * - bottom-right |
1770 | * |
1771 | * Use cv::getPerspectiveTransform function to retrieve image region without perspective transformations. |
1772 | * |
1773 | * @note If DL model doesn't support that kind of output then result may be derived from detectTextRectangles() output. |
1774 | * |
1775 | * @param[in] frame The input image |
1776 | * @param[out] detections array with detections' quadrangles (4 points per result) |
1777 | * @param[out] confidences array with detection confidences |
1778 | */ |
1779 | CV_WRAP |
1780 | void detect( |
1781 | InputArray frame, |
1782 | CV_OUT std::vector< std::vector<Point> >& detections, |
1783 | CV_OUT std::vector<float>& confidences |
1784 | ) const; |
1785 | |
1786 | /** @overload */ |
1787 | CV_WRAP |
1788 | void detect( |
1789 | InputArray frame, |
1790 | CV_OUT std::vector< std::vector<Point> >& detections |
1791 | ) const; |
1792 | |
1793 | /** @brief Performs detection |
1794 | * |
1795 | * Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections. |
1796 | * |
1797 | * Each result is rotated rectangle. |
1798 | * |
1799 | * @note Result may be inaccurate in case of strong perspective transformations. |
1800 | * |
1801 | * @param[in] frame the input image |
1802 | * @param[out] detections array with detections' RotationRect results |
1803 | * @param[out] confidences array with detection confidences |
1804 | */ |
1805 | CV_WRAP |
1806 | void detectTextRectangles( |
1807 | InputArray frame, |
1808 | CV_OUT std::vector<cv::RotatedRect>& detections, |
1809 | CV_OUT std::vector<float>& confidences |
1810 | ) const; |
1811 | |
1812 | /** @overload */ |
1813 | CV_WRAP |
1814 | void detectTextRectangles( |
1815 | InputArray frame, |
1816 | CV_OUT std::vector<cv::RotatedRect>& detections |
1817 | ) const; |
1818 | }; |
1819 | |
1820 | /** @brief This class represents high-level API for text detection DL networks compatible with EAST model. |
1821 | * |
1822 | * Configurable parameters: |
1823 | * - (float) confThreshold - used to filter boxes by confidences, default: 0.5f |
1824 | * - (float) nmsThreshold - used in non maximum suppression, default: 0.0f |
1825 | */ |
1826 | class CV_EXPORTS_W_SIMPLE TextDetectionModel_EAST : public TextDetectionModel |
1827 | { |
1828 | public: |
1829 | CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first) |
1830 | TextDetectionModel_EAST(); |
1831 | |
1832 | /** |
1833 | * @brief Create text detection algorithm from deep learning network |
1834 | * @param[in] network Net object |
1835 | */ |
1836 | CV_WRAP TextDetectionModel_EAST(const Net& network); |
1837 | |
1838 | /** |
1839 | * @brief Create text detection model from network represented in one of the supported formats. |
1840 | * An order of @p model and @p config arguments does not matter. |
1841 | * @param[in] model Binary file contains trained weights. |
1842 | * @param[in] config Text file contains network configuration. |
1843 | */ |
1844 | CV_WRAP inline |
1845 | TextDetectionModel_EAST(const std::string& model, const std::string& config = "") |
1846 | : TextDetectionModel_EAST(readNet(model, config)) { /* nothing */ } |
1847 | |
1848 | /** |
1849 | * @brief Set the detection confidence threshold |
1850 | * @param[in] confThreshold A threshold used to filter boxes by confidences |
1851 | */ |
1852 | CV_WRAP |
1853 | TextDetectionModel_EAST& setConfidenceThreshold(float confThreshold); |
1854 | |
1855 | /** |
1856 | * @brief Get the detection confidence threshold |
1857 | */ |
1858 | CV_WRAP |
1859 | float getConfidenceThreshold() const; |
1860 | |
1861 | /** |
1862 | * @brief Set the detection NMS filter threshold |
1863 | * @param[in] nmsThreshold A threshold used in non maximum suppression |
1864 | */ |
1865 | CV_WRAP |
1866 | TextDetectionModel_EAST& setNMSThreshold(float nmsThreshold); |
1867 | |
1868 | /** |
1869 | * @brief Get the detection confidence threshold |
1870 | */ |
1871 | CV_WRAP |
1872 | float getNMSThreshold() const; |
1873 | }; |
1874 | |
1875 | /** @brief This class represents high-level API for text detection DL networks compatible with DB model. |
1876 | * |
1877 | * Related publications: @cite liao2020real |
1878 | * Paper: https://arxiv.org/abs/1911.08947 |
1879 | * For more information about the hyper-parameters setting, please refer to https://github.com/MhLiao/DB |
1880 | * |
1881 | * Configurable parameters: |
1882 | * - (float) binaryThreshold - The threshold of the binary map. It is usually set to 0.3. |
1883 | * - (float) polygonThreshold - The threshold of text polygons. It is usually set to 0.5, 0.6, and 0.7. Default is 0.5f |
1884 | * - (double) unclipRatio - The unclip ratio of the detected text region, which determines the output size. It is usually set to 2.0. |
1885 | * - (int) maxCandidates - The max number of the output results. |
1886 | */ |
1887 | class CV_EXPORTS_W_SIMPLE TextDetectionModel_DB : public TextDetectionModel |
1888 | { |
1889 | public: |
1890 | CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first) |
1891 | TextDetectionModel_DB(); |
1892 | |
1893 | /** |
1894 | * @brief Create text detection algorithm from deep learning network. |
1895 | * @param[in] network Net object. |
1896 | */ |
1897 | CV_WRAP TextDetectionModel_DB(const Net& network); |
1898 | |
1899 | /** |
1900 | * @brief Create text detection model from network represented in one of the supported formats. |
1901 | * An order of @p model and @p config arguments does not matter. |
1902 | * @param[in] model Binary file contains trained weights. |
1903 | * @param[in] config Text file contains network configuration. |
1904 | */ |
1905 | CV_WRAP inline |
1906 | TextDetectionModel_DB(const std::string& model, const std::string& config = "") |
1907 | : TextDetectionModel_DB(readNet(model, config)) { /* nothing */ } |
1908 | |
1909 | CV_WRAP TextDetectionModel_DB& setBinaryThreshold(float binaryThreshold); |
1910 | CV_WRAP float getBinaryThreshold() const; |
1911 | |
1912 | CV_WRAP TextDetectionModel_DB& setPolygonThreshold(float polygonThreshold); |
1913 | CV_WRAP float getPolygonThreshold() const; |
1914 | |
1915 | CV_WRAP TextDetectionModel_DB& setUnclipRatio(double unclipRatio); |
1916 | CV_WRAP double getUnclipRatio() const; |
1917 | |
1918 | CV_WRAP TextDetectionModel_DB& setMaxCandidates(int maxCandidates); |
1919 | CV_WRAP int getMaxCandidates() const; |
1920 | }; |
1921 | |
1922 | //! @} |
1923 | CV__DNN_INLINE_NS_END |
1924 | } |
1925 | } |
1926 | |
1927 | #include <opencv2/dnn/layer.hpp> |
1928 | #include <opencv2/dnn/dnn.inl.hpp> |
1929 | |
1930 | /// @deprecated Include this header directly from application. Automatic inclusion will be removed |
1931 | #include <opencv2/dnn/utils/inference_engine.hpp> |
1932 | |
1933 | #endif /* OPENCV_DNN_DNN_HPP */ |
1934 |
Definitions
- Backend
- Target
- DataLayout
- LayerParams
- BackendNode
- BackendWrapper
- Layer
- getFLOPS
- Net
- getLayer
- setParam
- getParam
- getImpl
- getImplRef
- ImagePaddingMode
- Image2BlobParams
- SoftNMSMethod
- Model
- Model
- Model
- operator=
- operator=
- setInputSize
- operator Net&
- getNetwork_
- getImpl
- getImplRef
- ClassificationModel
- KeypointsModel
- SegmentationModel
- DetectionModel
- TextRecognitionModel
- TextRecognitionModel
- TextDetectionModel
- TextDetectionModel_EAST
- TextDetectionModel_EAST
- TextDetectionModel_DB
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more