1 | /*M/////////////////////////////////////////////////////////////////////////////////////// |
---|---|
2 | // |
3 | // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
4 | // |
5 | // By downloading, copying, installing or using the software you agree to this license. |
6 | // If you do not agree to this license, do not download, install, |
7 | // copy or use the software. |
8 | // |
9 | // |
10 | // License Agreement |
11 | // For Open Source Computer Vision Library |
12 | // |
13 | // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
14 | // Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
15 | // Third party copyrights are property of their respective owners. |
16 | // |
17 | // Redistribution and use in source and binary forms, with or without modification, |
18 | // are permitted provided that the following conditions are met: |
19 | // |
20 | // * Redistribution's of source code must retain the above copyright notice, |
21 | // this list of conditions and the following disclaimer. |
22 | // |
23 | // * Redistribution's in binary form must reproduce the above copyright notice, |
24 | // this list of conditions and the following disclaimer in the documentation |
25 | // and/or other materials provided with the distribution. |
26 | // |
27 | // * The name of the copyright holders may not be used to endorse or promote products |
28 | // derived from this software without specific prior written permission. |
29 | // |
30 | // This software is provided by the copyright holders and contributors "as is" and |
31 | // any express or implied warranties, including, but not limited to, the implied |
32 | // warranties of merchantability and fitness for a particular purpose are disclaimed. |
33 | // In no event shall the Intel Corporation or contributors be liable for any direct, |
34 | // indirect, incidental, special, exemplary, or consequential damages |
35 | // (including, but not limited to, procurement of substitute goods or services; |
36 | // loss of use, data, or profits; or business interruption) however caused |
37 | // and on any theory of liability, whether in contract, strict liability, |
38 | // or tort (including negligence or otherwise) arising in any way out of |
39 | // the use of this software, even if advised of the possibility of such damage. |
40 | // |
41 | //M*/ |
42 | |
43 | #ifndef OPENCV_FLANN_HPP |
44 | #define OPENCV_FLANN_HPP |
45 | |
46 | #include "opencv2/core.hpp" |
47 | #include "opencv2/flann/miniflann.hpp" |
48 | #include "opencv2/flann/flann_base.hpp" |
49 | |
50 | /** |
51 | @defgroup flann Clustering and Search in Multi-Dimensional Spaces |
52 | |
53 | This section documents OpenCV's interface to the FLANN library. FLANN (Fast Library for Approximate |
54 | Nearest Neighbors) is a library that contains a collection of algorithms optimized for fast nearest |
55 | neighbor search in large datasets and for high dimensional features. More information about FLANN |
56 | can be found in @cite Muja2009 . |
57 | */ |
58 | |
59 | namespace cvflann |
60 | { |
61 | CV_EXPORTS flann_distance_t flann_distance_type(); |
62 | CV_DEPRECATED CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order); |
63 | } |
64 | |
65 | |
66 | namespace cv |
67 | { |
68 | namespace flann |
69 | { |
70 | |
71 | |
72 | //! @addtogroup flann |
73 | //! @{ |
74 | |
75 | template <typename T> struct CvType {}; |
76 | template <> struct CvType<unsigned char> { static int type() { return CV_8U; } }; |
77 | template <> struct CvType<char> { static int type() { return CV_8S; } }; |
78 | template <> struct CvType<unsigned short> { static int type() { return CV_16U; } }; |
79 | template <> struct CvType<short> { static int type() { return CV_16S; } }; |
80 | template <> struct CvType<int> { static int type() { return CV_32S; } }; |
81 | template <> struct CvType<float> { static int type() { return CV_32F; } }; |
82 | template <> struct CvType<double> { static int type() { return CV_64F; } }; |
83 | |
84 | |
85 | // bring the flann parameters into this namespace |
86 | using ::cvflann::get_param; |
87 | using ::cvflann::print_params; |
88 | |
89 | // bring the flann distances into this namespace |
90 | using ::cvflann::L2_Simple; |
91 | using ::cvflann::L2; |
92 | using ::cvflann::L1; |
93 | using ::cvflann::MinkowskiDistance; |
94 | using ::cvflann::MaxDistance; |
95 | using ::cvflann::HammingLUT; |
96 | using ::cvflann::Hamming; |
97 | using ::cvflann::Hamming2; |
98 | using ::cvflann::DNAmmingLUT; |
99 | using ::cvflann::DNAmming2; |
100 | using ::cvflann::HistIntersectionDistance; |
101 | using ::cvflann::HellingerDistance; |
102 | using ::cvflann::ChiSquareDistance; |
103 | using ::cvflann::KL_Divergence; |
104 | |
105 | |
106 | /** @brief The FLANN nearest neighbor index class. This class is templated with the type of elements for which |
107 | the index is built. |
108 | |
109 | `Distance` functor specifies the metric to be used to calculate the distance between two points. |
110 | There are several `Distance` functors that are readily available: |
111 | |
112 | cv::cvflann::L2_Simple - Squared Euclidean distance functor. |
113 | This is the simpler, unrolled version. This is preferable for very low dimensionality data (eg 3D points) |
114 | |
115 | cv::flann::L2 - Squared Euclidean distance functor, optimized version. |
116 | |
117 | cv::flann::L1 - Manhattan distance functor, optimized version. |
118 | |
119 | cv::flann::MinkowskiDistance - The Minkowski distance functor. |
120 | This is highly optimised with loop unrolling. |
121 | The computation of squared root at the end is omitted for efficiency. |
122 | |
123 | cv::flann::MaxDistance - The max distance functor. It computes the |
124 | maximum distance between two vectors. This distance is not a valid kdtree distance, it's not |
125 | dimensionwise additive. |
126 | |
127 | cv::flann::HammingLUT - %Hamming distance functor. It counts the bit |
128 | differences between two strings using a lookup table implementation. |
129 | |
130 | cv::flann::Hamming - %Hamming distance functor. Population count is |
131 | performed using library calls, if available. Lookup table implementation is used as a fallback. |
132 | |
133 | cv::flann::Hamming2 - %Hamming distance functor. Population count is |
134 | implemented in 12 arithmetic operations (one of which is multiplication). |
135 | |
136 | cv::flann::DNAmmingLUT - %Adaptation of the Hamming distance functor to DNA comparison. |
137 | As the four bases A, C, G, T of the DNA (or A, G, C, U for RNA) can be coded on 2 bits, |
138 | it counts the bits pairs differences between two sequences using a lookup table implementation. |
139 | |
140 | cv::flann::DNAmming2 - %Adaptation of the Hamming distance functor to DNA comparison. |
141 | Bases differences count are vectorised thanks to arithmetic operations using standard |
142 | registers (AVX2 and AVX-512 should come in a near future). |
143 | |
144 | cv::flann::HistIntersectionDistance - The histogram |
145 | intersection distance functor. |
146 | |
147 | cv::flann::HellingerDistance - The Hellinger distance functor. |
148 | |
149 | cv::flann::ChiSquareDistance - The chi-square distance functor. |
150 | |
151 | cv::flann::KL_Divergence - The Kullback-Leibler divergence functor. |
152 | |
153 | Although the provided implementations cover a vast range of cases, it is also possible to use |
154 | a custom implementation. The distance functor is a class whose `operator()` computes the distance |
155 | between two features. If the distance is also a kd-tree compatible distance, it should also provide an |
156 | `accum_dist()` method that computes the distance between individual feature dimensions. |
157 | |
158 | In addition to `operator()` and `accum_dist()`, a distance functor should also define the |
159 | `ElementType` and the `ResultType` as the types of the elements it operates on and the type of the |
160 | result it computes. If a distance functor can be used as a kd-tree distance (meaning that the full |
161 | distance between a pair of features can be accumulated from the partial distances between the |
162 | individual dimensions) a typedef `is_kdtree_distance` should be present inside the distance functor. |
163 | If the distance is not a kd-tree distance, but it's a distance in a vector space (the individual |
164 | dimensions of the elements it operates on can be accessed independently) a typedef |
165 | `is_vector_space_distance` should be defined inside the functor. If neither typedef is defined, the |
166 | distance is assumed to be a metric distance and will only be used with indexes operating on |
167 | generic metric distances. |
168 | */ |
169 | template <typename Distance> |
170 | class GenericIndex |
171 | { |
172 | public: |
173 | typedef typename Distance::ElementType ElementType; |
174 | typedef typename Distance::ResultType DistanceType; |
175 | |
176 | /** @brief Constructs a nearest neighbor search index for a given dataset. |
177 | |
178 | @param features Matrix of containing the features(points) to index. The size of the matrix is |
179 | num_features x feature_dimensionality and the data type of the elements in the matrix must |
180 | coincide with the type of the index. |
181 | @param params Structure containing the index parameters. The type of index that will be |
182 | constructed depends on the type of this parameter. See the description. |
183 | @param distance |
184 | |
185 | The method constructs a fast search structure from a set of features using the specified algorithm |
186 | with specified parameters, as defined by params. params is a reference to one of the following class |
187 | IndexParams descendants: |
188 | |
189 | - **LinearIndexParams** When passing an object of this type, the index will perform a linear, |
190 | brute-force search. : |
191 | @code |
192 | struct LinearIndexParams : public IndexParams |
193 | { |
194 | }; |
195 | @endcode |
196 | - **KDTreeIndexParams** When passing an object of this type the index constructed will consist of |
197 | a set of randomized kd-trees which will be searched in parallel. : |
198 | @code |
199 | struct KDTreeIndexParams : public IndexParams |
200 | { |
201 | KDTreeIndexParams( int trees = 4 ); |
202 | }; |
203 | @endcode |
204 | - **HierarchicalClusteringIndexParams** When passing an object of this type the index constructed |
205 | will be a hierarchical tree of clusters, dividing each set of points into n clusters whose centers |
206 | are picked among the points without further refinement of their position. |
207 | This algorithm fits both floating, integer and binary vectors. : |
208 | @code |
209 | struct HierarchicalClusteringIndexParams : public IndexParams |
210 | { |
211 | HierarchicalClusteringIndexParams( |
212 | int branching = 32, |
213 | flann_centers_init_t centers_init = CENTERS_RANDOM, |
214 | int trees = 4, |
215 | int leaf_size = 100); |
216 | |
217 | }; |
218 | @endcode |
219 | - **KMeansIndexParams** When passing an object of this type the index constructed will be a |
220 | hierarchical k-means tree (one tree by default), dividing each set of points into n clusters |
221 | whose barycenters are refined iteratively. |
222 | Note that this algorithm has been extended to the support of binary vectors as an alternative |
223 | to LSH when knn search speed is the criterium. It will also outperform LSH when processing |
224 | directly (i.e. without the use of MCA/PCA) datasets whose points share mostly the same values |
225 | for most of the dimensions. It is recommended to set more than one tree with binary data. : |
226 | @code |
227 | struct KMeansIndexParams : public IndexParams |
228 | { |
229 | KMeansIndexParams( |
230 | int branching = 32, |
231 | int iterations = 11, |
232 | flann_centers_init_t centers_init = CENTERS_RANDOM, |
233 | float cb_index = 0.2, |
234 | int trees = 1); |
235 | }; |
236 | @endcode |
237 | - **CompositeIndexParams** When using a parameters object of this type the index created |
238 | combines the randomized kd-trees and the hierarchical k-means tree. : |
239 | @code |
240 | struct CompositeIndexParams : public IndexParams |
241 | { |
242 | CompositeIndexParams( |
243 | int trees = 4, |
244 | int branching = 32, |
245 | int iterations = 11, |
246 | flann_centers_init_t centers_init = CENTERS_RANDOM, |
247 | float cb_index = 0.2 ); |
248 | }; |
249 | @endcode |
250 | - **LshIndexParams** When using a parameters object of this type the index created uses |
251 | multi-probe LSH (by Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search |
252 | by Qin Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li., Proceedings of the 33rd |
253 | International Conference on Very Large Data Bases (VLDB). Vienna, Austria. September 2007). |
254 | This algorithm is designed for binary vectors. : |
255 | @code |
256 | struct LshIndexParams : public IndexParams |
257 | { |
258 | LshIndexParams( |
259 | int table_number, |
260 | int key_size, |
261 | int multi_probe_level ); |
262 | }; |
263 | @endcode |
264 | - **AutotunedIndexParams** When passing an object of this type the index created is |
265 | automatically tuned to offer the best performance, by choosing the optimal index type |
266 | (randomized kd-trees, hierarchical kmeans, linear) and parameters for the dataset provided. : |
267 | @code |
268 | struct AutotunedIndexParams : public IndexParams |
269 | { |
270 | AutotunedIndexParams( |
271 | float target_precision = 0.9, |
272 | float build_weight = 0.01, |
273 | float memory_weight = 0, |
274 | float sample_fraction = 0.1 ); |
275 | }; |
276 | @endcode |
277 | - **SavedIndexParams** This object type is used for loading a previously saved index from the |
278 | disk. : |
279 | @code |
280 | struct SavedIndexParams : public IndexParams |
281 | { |
282 | SavedIndexParams( String filename ); |
283 | }; |
284 | @endcode |
285 | */ |
286 | GenericIndex(const Mat& features, const ::cvflann::IndexParams& params, Distance distance = Distance()); |
287 | |
288 | ~GenericIndex(); |
289 | |
290 | /** @brief Performs a K-nearest neighbor search for a given query point using the index. |
291 | |
292 | @param query The query point |
293 | @param indices Vector that will contain the indices of the K-nearest neighbors found. It must have |
294 | at least knn size. |
295 | @param dists Vector that will contain the distances to the K-nearest neighbors found. It must have |
296 | at least knn size. |
297 | @param knn Number of nearest neighbors to search for. |
298 | @param params SearchParams |
299 | */ |
300 | void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, |
301 | std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params); |
302 | void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params); |
303 | |
304 | /** @brief Performs a radius nearest neighbor search for a given query point using the index. |
305 | |
306 | @param query The query point. |
307 | @param indices Vector that will contain the indices of the nearest neighbors found. |
308 | @param dists Vector that will contain the distances to the nearest neighbors found. It has the same |
309 | number of elements as indices. |
310 | @param radius The search radius. |
311 | @param params SearchParams |
312 | |
313 | This function returns the number of nearest neighbors found. |
314 | */ |
315 | int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, |
316 | std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params); |
317 | int radiusSearch(const Mat& query, Mat& indices, Mat& dists, |
318 | DistanceType radius, const ::cvflann::SearchParams& params); |
319 | |
320 | void save(String filename) { nnIndex->save(filename); } |
321 | |
322 | int veclen() const { return nnIndex->veclen(); } |
323 | |
324 | int size() const { return (int)nnIndex->size(); } |
325 | |
326 | ::cvflann::IndexParams getParameters() { return nnIndex->getParameters(); } |
327 | |
328 | CV_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); } |
329 | |
330 | private: |
331 | ::cvflann::Index<Distance>* nnIndex; |
332 | Mat _dataset; |
333 | }; |
334 | |
335 | //! @cond IGNORED |
336 | |
337 | #define FLANN_DISTANCE_CHECK \ |
338 | if ( ::cvflann::flann_distance_type() != cvflann::FLANN_DIST_L2) { \ |
339 | printf("[WARNING] You are using cv::flann::Index (or cv::flann::GenericIndex) and have also changed "\ |
340 | "the distance using cvflann::set_distance_type. This is no longer working as expected "\ |
341 | "(cv::flann::Index always uses L2). You should create the index templated on the distance, "\ |
342 | "for example for L1 distance use: GenericIndex< L1<float> > \n"); \ |
343 | } |
344 | |
345 | |
346 | template <typename Distance> |
347 | GenericIndex<Distance>::GenericIndex(const Mat& dataset, const ::cvflann::IndexParams& params, Distance distance) |
348 | : _dataset(dataset) |
349 | { |
350 | CV_Assert(dataset.type() == CvType<ElementType>::type()); |
351 | CV_Assert(dataset.isContinuous()); |
352 | ::cvflann::Matrix<ElementType> m_dataset((ElementType*)_dataset.ptr<ElementType>(0), _dataset.rows, _dataset.cols); |
353 | |
354 | nnIndex = new ::cvflann::Index<Distance>(m_dataset, params, distance); |
355 | |
356 | FLANN_DISTANCE_CHECK |
357 | |
358 | nnIndex->buildIndex(); |
359 | } |
360 | |
361 | template <typename Distance> |
362 | GenericIndex<Distance>::~GenericIndex() |
363 | { |
364 | delete nnIndex; |
365 | } |
366 | |
367 | template <typename Distance> |
368 | void GenericIndex<Distance>::knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams) |
369 | { |
370 | ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); |
371 | ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); |
372 | ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); |
373 | |
374 | FLANN_DISTANCE_CHECK |
375 | |
376 | nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams); |
377 | } |
378 | |
379 | |
380 | template <typename Distance> |
381 | void GenericIndex<Distance>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams) |
382 | { |
383 | CV_Assert(queries.type() == CvType<ElementType>::type()); |
384 | CV_Assert(queries.isContinuous()); |
385 | ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols); |
386 | |
387 | CV_Assert(indices.type() == CV_32S); |
388 | CV_Assert(indices.isContinuous()); |
389 | ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(y: 0), indices.rows, indices.cols); |
390 | |
391 | CV_Assert(dists.type() == CvType<DistanceType>::type()); |
392 | CV_Assert(dists.isContinuous()); |
393 | ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); |
394 | |
395 | FLANN_DISTANCE_CHECK |
396 | |
397 | nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); |
398 | } |
399 | |
400 | template <typename Distance> |
401 | int GenericIndex<Distance>::radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) |
402 | { |
403 | ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); |
404 | ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); |
405 | ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); |
406 | |
407 | FLANN_DISTANCE_CHECK |
408 | |
409 | return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
410 | } |
411 | |
412 | template <typename Distance> |
413 | int GenericIndex<Distance>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) |
414 | { |
415 | CV_Assert(query.type() == CvType<ElementType>::type()); |
416 | CV_Assert(query.isContinuous()); |
417 | ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols); |
418 | |
419 | CV_Assert(indices.type() == CV_32S); |
420 | CV_Assert(indices.isContinuous()); |
421 | ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(y: 0), indices.rows, indices.cols); |
422 | |
423 | CV_Assert(dists.type() == CvType<DistanceType>::type()); |
424 | CV_Assert(dists.isContinuous()); |
425 | ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); |
426 | |
427 | FLANN_DISTANCE_CHECK |
428 | |
429 | return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
430 | } |
431 | |
432 | /** |
433 | * @deprecated Use GenericIndex class instead |
434 | */ |
435 | template <typename T> |
436 | class Index_ |
437 | { |
438 | public: |
439 | typedef typename L2<T>::ElementType ElementType; |
440 | typedef typename L2<T>::ResultType DistanceType; |
441 | |
442 | CV_DEPRECATED Index_(const Mat& dataset, const ::cvflann::IndexParams& params) |
443 | { |
444 | printf(format: "[WARNING] The cv::flann::Index_<T> class is deperecated, use cv::flann::GenericIndex<Distance> instead\n"); |
445 | |
446 | CV_Assert(dataset.type() == CvType<ElementType>::type()); |
447 | CV_Assert(dataset.isContinuous()); |
448 | ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols); |
449 | |
450 | if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) { |
451 | nnIndex_L1 = NULL; |
452 | nnIndex_L2 = new ::cvflann::Index< L2<ElementType> >(m_dataset, params); |
453 | } |
454 | else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) { |
455 | nnIndex_L1 = new ::cvflann::Index< L1<ElementType> >(m_dataset, params); |
456 | nnIndex_L2 = NULL; |
457 | } |
458 | else { |
459 | printf(format: "[ERROR] cv::flann::Index_<T> only provides backwards compatibility for the L1 and L2 distances. " |
460 | "For other distance types you must use cv::flann::GenericIndex<Distance>\n"); |
461 | CV_Assert(0); |
462 | } |
463 | if (nnIndex_L1) nnIndex_L1->buildIndex(); |
464 | if (nnIndex_L2) nnIndex_L2->buildIndex(); |
465 | } |
466 | CV_DEPRECATED ~Index_() |
467 | { |
468 | if (nnIndex_L1) delete nnIndex_L1; |
469 | if (nnIndex_L2) delete nnIndex_L2; |
470 | } |
471 | |
472 | CV_DEPRECATED void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams) |
473 | { |
474 | ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); |
475 | ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); |
476 | ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); |
477 | |
478 | if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams); |
479 | if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams); |
480 | } |
481 | CV_DEPRECATED void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams) |
482 | { |
483 | CV_Assert(queries.type() == CvType<ElementType>::type()); |
484 | CV_Assert(queries.isContinuous()); |
485 | ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols); |
486 | |
487 | CV_Assert(indices.type() == CV_32S); |
488 | CV_Assert(indices.isContinuous()); |
489 | ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(y: 0), indices.rows, indices.cols); |
490 | |
491 | CV_Assert(dists.type() == CvType<DistanceType>::type()); |
492 | CV_Assert(dists.isContinuous()); |
493 | ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); |
494 | |
495 | if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); |
496 | if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); |
497 | } |
498 | |
499 | CV_DEPRECATED int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) |
500 | { |
501 | ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); |
502 | ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); |
503 | ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); |
504 | |
505 | if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
506 | if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
507 | } |
508 | |
509 | CV_DEPRECATED int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) |
510 | { |
511 | CV_Assert(query.type() == CvType<ElementType>::type()); |
512 | CV_Assert(query.isContinuous()); |
513 | ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols); |
514 | |
515 | CV_Assert(indices.type() == CV_32S); |
516 | CV_Assert(indices.isContinuous()); |
517 | ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(y: 0), indices.rows, indices.cols); |
518 | |
519 | CV_Assert(dists.type() == CvType<DistanceType>::type()); |
520 | CV_Assert(dists.isContinuous()); |
521 | ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); |
522 | |
523 | if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
524 | if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
525 | } |
526 | |
527 | CV_DEPRECATED void save(String filename) |
528 | { |
529 | if (nnIndex_L1) nnIndex_L1->save(filename); |
530 | if (nnIndex_L2) nnIndex_L2->save(filename); |
531 | } |
532 | |
533 | CV_DEPRECATED int veclen() const |
534 | { |
535 | if (nnIndex_L1) return nnIndex_L1->veclen(); |
536 | if (nnIndex_L2) return nnIndex_L2->veclen(); |
537 | } |
538 | |
539 | CV_DEPRECATED int size() const |
540 | { |
541 | if (nnIndex_L1) return nnIndex_L1->size(); |
542 | if (nnIndex_L2) return nnIndex_L2->size(); |
543 | } |
544 | |
545 | CV_DEPRECATED ::cvflann::IndexParams getParameters() |
546 | { |
547 | if (nnIndex_L1) return nnIndex_L1->getParameters(); |
548 | if (nnIndex_L2) return nnIndex_L2->getParameters(); |
549 | |
550 | } |
551 | |
552 | CV_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() |
553 | { |
554 | if (nnIndex_L1) return nnIndex_L1->getIndexParameters(); |
555 | if (nnIndex_L2) return nnIndex_L2->getIndexParameters(); |
556 | } |
557 | |
558 | private: |
559 | // providing backwards compatibility for L2 and L1 distances (most common) |
560 | ::cvflann::Index< L2<ElementType> >* nnIndex_L2; |
561 | ::cvflann::Index< L1<ElementType> >* nnIndex_L1; |
562 | }; |
563 | |
564 | //! @endcond |
565 | |
566 | /** @brief Clusters features using hierarchical k-means algorithm. |
567 | |
568 | @param features The points to be clustered. The matrix must have elements of type |
569 | Distance::ElementType. |
570 | @param centers The centers of the clusters obtained. The matrix must have type |
571 | Distance::CentersType. The number of rows in this matrix represents the number of clusters desired, |
572 | however, because of the way the cut in the hierarchical tree is chosen, the number of clusters |
573 | computed will be the highest number of the form (branching-1)\*k+1 that's lower than the number of |
574 | clusters desired, where branching is the tree's branching factor (see description of the |
575 | KMeansIndexParams). |
576 | @param params Parameters used in the construction of the hierarchical k-means tree. |
577 | @param d Distance to be used for clustering. |
578 | |
579 | The method clusters the given feature vectors by constructing a hierarchical k-means tree and |
580 | choosing a cut in the tree that minimizes the cluster's variance. It returns the number of clusters |
581 | found. |
582 | */ |
583 | template <typename Distance> |
584 | int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params, |
585 | Distance d = Distance()) |
586 | { |
587 | typedef typename Distance::ElementType ElementType; |
588 | typedef typename Distance::CentersType CentersType; |
589 | |
590 | CV_Assert(features.type() == CvType<ElementType>::type()); |
591 | CV_Assert(features.isContinuous()); |
592 | ::cvflann::Matrix<ElementType> m_features((ElementType*)features.ptr<ElementType>(0), features.rows, features.cols); |
593 | |
594 | CV_Assert(centers.type() == CvType<CentersType>::type()); |
595 | CV_Assert(centers.isContinuous()); |
596 | ::cvflann::Matrix<CentersType> m_centers((CentersType*)centers.ptr<CentersType>(0), centers.rows, centers.cols); |
597 | |
598 | return ::cvflann::hierarchicalClustering<Distance>(m_features, m_centers, params, d); |
599 | } |
600 | |
601 | //! @cond IGNORED |
602 | |
603 | template <typename ELEM_TYPE, typename DIST_TYPE> |
604 | CV_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params) |
605 | { |
606 | printf(format: "[WARNING] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> is deprecated, use " |
607 | "cv::flann::hierarchicalClustering<Distance> instead\n"); |
608 | |
609 | if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) { |
610 | return hierarchicalClustering< L2<ELEM_TYPE> >(features, centers, params); |
611 | } |
612 | else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) { |
613 | return hierarchicalClustering< L1<ELEM_TYPE> >(features, centers, params); |
614 | } |
615 | else { |
616 | printf(format: "[ERROR] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> only provides backwards " |
617 | "compatibility for the L1 and L2 distances. " |
618 | "For other distance types you must use cv::flann::hierarchicalClustering<Distance>\n"); |
619 | CV_Assert(0); |
620 | } |
621 | } |
622 | |
623 | //! @endcond |
624 | |
625 | //! @} flann |
626 | |
627 | } } // namespace cv::flann |
628 | |
629 | #endif |
630 |
Definitions
- CvType
- CvType
- type
- CvType
- type
- CvType
- type
- CvType
- type
- CvType
- type
- CvType
- type
- CvType
- type
- GenericIndex
- save
- veclen
- size
- getParameters
- getIndexParameters
- GenericIndex
- ~GenericIndex
- knnSearch
- knnSearch
- radiusSearch
- radiusSearch
- Index_
- Index_
- ~Index_
- knnSearch
- knnSearch
- radiusSearch
- radiusSearch
- save
- veclen
- size
- getParameters
- getIndexParameters
- hierarchicalClustering
Learn to use CMake with our Intro Training
Find out more