| 1 | /*M/////////////////////////////////////////////////////////////////////////////////////// |
| 2 | // |
| 3 | // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
| 4 | // |
| 5 | // By downloading, copying, installing or using the software you agree to this license. |
| 6 | // If you do not agree to this license, do not download, install, |
| 7 | // copy or use the software. |
| 8 | // |
| 9 | // |
| 10 | // License Agreement |
| 11 | // For Open Source Computer Vision Library |
| 12 | // |
| 13 | // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
| 14 | // Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
| 15 | // Third party copyrights are property of their respective owners. |
| 16 | // |
| 17 | // Redistribution and use in source and binary forms, with or without modification, |
| 18 | // are permitted provided that the following conditions are met: |
| 19 | // |
| 20 | // * Redistribution's of source code must retain the above copyright notice, |
| 21 | // this list of conditions and the following disclaimer. |
| 22 | // |
| 23 | // * Redistribution's in binary form must reproduce the above copyright notice, |
| 24 | // this list of conditions and the following disclaimer in the documentation |
| 25 | // and/or other materials provided with the distribution. |
| 26 | // |
| 27 | // * The name of the copyright holders may not be used to endorse or promote products |
| 28 | // derived from this software without specific prior written permission. |
| 29 | // |
| 30 | // This software is provided by the copyright holders and contributors "as is" and |
| 31 | // any express or implied warranties, including, but not limited to, the implied |
| 32 | // warranties of merchantability and fitness for a particular purpose are disclaimed. |
| 33 | // In no event shall the Intel Corporation or contributors be liable for any direct, |
| 34 | // indirect, incidental, special, exemplary, or consequential damages |
| 35 | // (including, but not limited to, procurement of substitute goods or services; |
| 36 | // loss of use, data, or profits; or business interruption) however caused |
| 37 | // and on any theory of liability, whether in contract, strict liability, |
| 38 | // or tort (including negligence or otherwise) arising in any way out of |
| 39 | // the use of this software, even if advised of the possibility of such damage. |
| 40 | // |
| 41 | //M*/ |
| 42 | |
| 43 | #ifndef OPENCV_FLANN_HPP |
| 44 | #define OPENCV_FLANN_HPP |
| 45 | |
| 46 | #include "opencv2/core.hpp" |
| 47 | #include "opencv2/flann/miniflann.hpp" |
| 48 | #include "opencv2/flann/flann_base.hpp" |
| 49 | |
| 50 | /** |
| 51 | @defgroup flann Clustering and Search in Multi-Dimensional Spaces |
| 52 | |
| 53 | This section documents OpenCV's interface to the FLANN library. FLANN (Fast Library for Approximate |
| 54 | Nearest Neighbors) is a library that contains a collection of algorithms optimized for fast nearest |
| 55 | neighbor search in large datasets and for high dimensional features. More information about FLANN |
| 56 | can be found in @cite Muja2009 . |
| 57 | */ |
| 58 | |
| 59 | namespace cvflann |
| 60 | { |
| 61 | CV_EXPORTS flann_distance_t flann_distance_type(); |
| 62 | CV_DEPRECATED CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order); |
| 63 | } |
| 64 | |
| 65 | |
| 66 | namespace cv |
| 67 | { |
| 68 | namespace flann |
| 69 | { |
| 70 | |
| 71 | |
| 72 | //! @addtogroup flann |
| 73 | //! @{ |
| 74 | |
| 75 | template <typename T> struct CvType {}; |
| 76 | template <> struct CvType<unsigned char> { static int type() { return CV_8U; } }; |
| 77 | template <> struct CvType<char> { static int type() { return CV_8S; } }; |
| 78 | template <> struct CvType<unsigned short> { static int type() { return CV_16U; } }; |
| 79 | template <> struct CvType<short> { static int type() { return CV_16S; } }; |
| 80 | template <> struct CvType<int> { static int type() { return CV_32S; } }; |
| 81 | template <> struct CvType<float> { static int type() { return CV_32F; } }; |
| 82 | template <> struct CvType<double> { static int type() { return CV_64F; } }; |
| 83 | |
| 84 | |
| 85 | // bring the flann parameters into this namespace |
| 86 | using ::cvflann::get_param; |
| 87 | using ::cvflann::print_params; |
| 88 | |
| 89 | // bring the flann distances into this namespace |
| 90 | using ::cvflann::L2_Simple; |
| 91 | using ::cvflann::L2; |
| 92 | using ::cvflann::L1; |
| 93 | using ::cvflann::MinkowskiDistance; |
| 94 | using ::cvflann::MaxDistance; |
| 95 | using ::cvflann::HammingLUT; |
| 96 | using ::cvflann::Hamming; |
| 97 | using ::cvflann::Hamming2; |
| 98 | using ::cvflann::DNAmmingLUT; |
| 99 | using ::cvflann::DNAmming2; |
| 100 | using ::cvflann::HistIntersectionDistance; |
| 101 | using ::cvflann::HellingerDistance; |
| 102 | using ::cvflann::ChiSquareDistance; |
| 103 | using ::cvflann::KL_Divergence; |
| 104 | |
| 105 | |
| 106 | /** @brief The FLANN nearest neighbor index class. This class is templated with the type of elements for which |
| 107 | the index is built. |
| 108 | |
| 109 | `Distance` functor specifies the metric to be used to calculate the distance between two points. |
| 110 | There are several `Distance` functors that are readily available: |
| 111 | |
| 112 | cv::cvflann::L2_Simple - Squared Euclidean distance functor. |
| 113 | This is the simpler, unrolled version. This is preferable for very low dimensionality data (eg 3D points) |
| 114 | |
| 115 | cv::flann::L2 - Squared Euclidean distance functor, optimized version. |
| 116 | |
| 117 | cv::flann::L1 - Manhattan distance functor, optimized version. |
| 118 | |
| 119 | cv::flann::MinkowskiDistance - The Minkowski distance functor. |
| 120 | This is highly optimised with loop unrolling. |
| 121 | The computation of squared root at the end is omitted for efficiency. |
| 122 | |
| 123 | cv::flann::MaxDistance - The max distance functor. It computes the |
| 124 | maximum distance between two vectors. This distance is not a valid kdtree distance, it's not |
| 125 | dimensionwise additive. |
| 126 | |
| 127 | cv::flann::HammingLUT - %Hamming distance functor. It counts the bit |
| 128 | differences between two strings using a lookup table implementation. |
| 129 | |
| 130 | cv::flann::Hamming - %Hamming distance functor. Population count is |
| 131 | performed using library calls, if available. Lookup table implementation is used as a fallback. |
| 132 | |
| 133 | cv::flann::Hamming2 - %Hamming distance functor. Population count is |
| 134 | implemented in 12 arithmetic operations (one of which is multiplication). |
| 135 | |
| 136 | cv::flann::DNAmmingLUT - %Adaptation of the Hamming distance functor to DNA comparison. |
| 137 | As the four bases A, C, G, T of the DNA (or A, G, C, U for RNA) can be coded on 2 bits, |
| 138 | it counts the bits pairs differences between two sequences using a lookup table implementation. |
| 139 | |
| 140 | cv::flann::DNAmming2 - %Adaptation of the Hamming distance functor to DNA comparison. |
| 141 | Bases differences count are vectorised thanks to arithmetic operations using standard |
| 142 | registers (AVX2 and AVX-512 should come in a near future). |
| 143 | |
| 144 | cv::flann::HistIntersectionDistance - The histogram |
| 145 | intersection distance functor. |
| 146 | |
| 147 | cv::flann::HellingerDistance - The Hellinger distance functor. |
| 148 | |
| 149 | cv::flann::ChiSquareDistance - The chi-square distance functor. |
| 150 | |
| 151 | cv::flann::KL_Divergence - The Kullback-Leibler divergence functor. |
| 152 | |
| 153 | Although the provided implementations cover a vast range of cases, it is also possible to use |
| 154 | a custom implementation. The distance functor is a class whose `operator()` computes the distance |
| 155 | between two features. If the distance is also a kd-tree compatible distance, it should also provide an |
| 156 | `accum_dist()` method that computes the distance between individual feature dimensions. |
| 157 | |
| 158 | In addition to `operator()` and `accum_dist()`, a distance functor should also define the |
| 159 | `ElementType` and the `ResultType` as the types of the elements it operates on and the type of the |
| 160 | result it computes. If a distance functor can be used as a kd-tree distance (meaning that the full |
| 161 | distance between a pair of features can be accumulated from the partial distances between the |
| 162 | individual dimensions) a typedef `is_kdtree_distance` should be present inside the distance functor. |
| 163 | If the distance is not a kd-tree distance, but it's a distance in a vector space (the individual |
| 164 | dimensions of the elements it operates on can be accessed independently) a typedef |
| 165 | `is_vector_space_distance` should be defined inside the functor. If neither typedef is defined, the |
| 166 | distance is assumed to be a metric distance and will only be used with indexes operating on |
| 167 | generic metric distances. |
| 168 | */ |
| 169 | template <typename Distance> |
| 170 | class GenericIndex |
| 171 | { |
| 172 | public: |
| 173 | typedef typename Distance::ElementType ElementType; |
| 174 | typedef typename Distance::ResultType DistanceType; |
| 175 | |
| 176 | /** @brief Constructs a nearest neighbor search index for a given dataset. |
| 177 | |
| 178 | @param features Matrix of containing the features(points) to index. The size of the matrix is |
| 179 | num_features x feature_dimensionality and the data type of the elements in the matrix must |
| 180 | coincide with the type of the index. |
| 181 | @param params Structure containing the index parameters. The type of index that will be |
| 182 | constructed depends on the type of this parameter. See the description. |
| 183 | @param distance |
| 184 | |
| 185 | The method constructs a fast search structure from a set of features using the specified algorithm |
| 186 | with specified parameters, as defined by params. params is a reference to one of the following class |
| 187 | IndexParams descendants: |
| 188 | |
| 189 | - **LinearIndexParams** When passing an object of this type, the index will perform a linear, |
| 190 | brute-force search. : |
| 191 | @code |
| 192 | struct LinearIndexParams : public IndexParams |
| 193 | { |
| 194 | }; |
| 195 | @endcode |
| 196 | - **KDTreeIndexParams** When passing an object of this type the index constructed will consist of |
| 197 | a set of randomized kd-trees which will be searched in parallel. : |
| 198 | @code |
| 199 | struct KDTreeIndexParams : public IndexParams |
| 200 | { |
| 201 | KDTreeIndexParams( int trees = 4 ); |
| 202 | }; |
| 203 | @endcode |
| 204 | - **HierarchicalClusteringIndexParams** When passing an object of this type the index constructed |
| 205 | will be a hierarchical tree of clusters, dividing each set of points into n clusters whose centers |
| 206 | are picked among the points without further refinement of their position. |
| 207 | This algorithm fits both floating, integer and binary vectors. : |
| 208 | @code |
| 209 | struct HierarchicalClusteringIndexParams : public IndexParams |
| 210 | { |
| 211 | HierarchicalClusteringIndexParams( |
| 212 | int branching = 32, |
| 213 | flann_centers_init_t centers_init = CENTERS_RANDOM, |
| 214 | int trees = 4, |
| 215 | int leaf_size = 100); |
| 216 | |
| 217 | }; |
| 218 | @endcode |
| 219 | - **KMeansIndexParams** When passing an object of this type the index constructed will be a |
| 220 | hierarchical k-means tree (one tree by default), dividing each set of points into n clusters |
| 221 | whose barycenters are refined iteratively. |
| 222 | Note that this algorithm has been extended to the support of binary vectors as an alternative |
| 223 | to LSH when knn search speed is the criterium. It will also outperform LSH when processing |
| 224 | directly (i.e. without the use of MCA/PCA) datasets whose points share mostly the same values |
| 225 | for most of the dimensions. It is recommended to set more than one tree with binary data. : |
| 226 | @code |
| 227 | struct KMeansIndexParams : public IndexParams |
| 228 | { |
| 229 | KMeansIndexParams( |
| 230 | int branching = 32, |
| 231 | int iterations = 11, |
| 232 | flann_centers_init_t centers_init = CENTERS_RANDOM, |
| 233 | float cb_index = 0.2, |
| 234 | int trees = 1); |
| 235 | }; |
| 236 | @endcode |
| 237 | - **CompositeIndexParams** When using a parameters object of this type the index created |
| 238 | combines the randomized kd-trees and the hierarchical k-means tree. : |
| 239 | @code |
| 240 | struct CompositeIndexParams : public IndexParams |
| 241 | { |
| 242 | CompositeIndexParams( |
| 243 | int trees = 4, |
| 244 | int branching = 32, |
| 245 | int iterations = 11, |
| 246 | flann_centers_init_t centers_init = CENTERS_RANDOM, |
| 247 | float cb_index = 0.2 ); |
| 248 | }; |
| 249 | @endcode |
| 250 | - **LshIndexParams** When using a parameters object of this type the index created uses |
| 251 | multi-probe LSH (by Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search |
| 252 | by Qin Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li., Proceedings of the 33rd |
| 253 | International Conference on Very Large Data Bases (VLDB). Vienna, Austria. September 2007). |
| 254 | This algorithm is designed for binary vectors. : |
| 255 | @code |
| 256 | struct LshIndexParams : public IndexParams |
| 257 | { |
| 258 | LshIndexParams( |
| 259 | int table_number, |
| 260 | int key_size, |
| 261 | int multi_probe_level ); |
| 262 | }; |
| 263 | @endcode |
| 264 | - **AutotunedIndexParams** When passing an object of this type the index created is |
| 265 | automatically tuned to offer the best performance, by choosing the optimal index type |
| 266 | (randomized kd-trees, hierarchical kmeans, linear) and parameters for the dataset provided. : |
| 267 | @code |
| 268 | struct AutotunedIndexParams : public IndexParams |
| 269 | { |
| 270 | AutotunedIndexParams( |
| 271 | float target_precision = 0.9, |
| 272 | float build_weight = 0.01, |
| 273 | float memory_weight = 0, |
| 274 | float sample_fraction = 0.1 ); |
| 275 | }; |
| 276 | @endcode |
| 277 | - **SavedIndexParams** This object type is used for loading a previously saved index from the |
| 278 | disk. : |
| 279 | @code |
| 280 | struct SavedIndexParams : public IndexParams |
| 281 | { |
| 282 | SavedIndexParams( String filename ); |
| 283 | }; |
| 284 | @endcode |
| 285 | */ |
| 286 | GenericIndex(const Mat& features, const ::cvflann::IndexParams& params, Distance distance = Distance()); |
| 287 | |
| 288 | ~GenericIndex(); |
| 289 | |
| 290 | /** @brief Performs a K-nearest neighbor search for a given query point using the index. |
| 291 | |
| 292 | @param query The query point |
| 293 | @param indices Vector that will contain the indices of the K-nearest neighbors found. It must have |
| 294 | at least knn size. |
| 295 | @param dists Vector that will contain the distances to the K-nearest neighbors found. It must have |
| 296 | at least knn size. |
| 297 | @param knn Number of nearest neighbors to search for. |
| 298 | @param params SearchParams |
| 299 | */ |
| 300 | void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, |
| 301 | std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params); |
| 302 | void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params); |
| 303 | |
| 304 | /** @brief Performs a radius nearest neighbor search for a given query point using the index. |
| 305 | |
| 306 | @param query The query point. |
| 307 | @param indices Vector that will contain the indices of the nearest neighbors found. |
| 308 | @param dists Vector that will contain the distances to the nearest neighbors found. It has the same |
| 309 | number of elements as indices. |
| 310 | @param radius The search radius. |
| 311 | @param params SearchParams |
| 312 | |
| 313 | This function returns the number of nearest neighbors found. |
| 314 | */ |
| 315 | int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, |
| 316 | std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params); |
| 317 | int radiusSearch(const Mat& query, Mat& indices, Mat& dists, |
| 318 | DistanceType radius, const ::cvflann::SearchParams& params); |
| 319 | |
| 320 | void save(String filename) { nnIndex->save(filename); } |
| 321 | |
| 322 | int veclen() const { return nnIndex->veclen(); } |
| 323 | |
| 324 | int size() const { return (int)nnIndex->size(); } |
| 325 | |
| 326 | ::cvflann::IndexParams getParameters() { return nnIndex->getParameters(); } |
| 327 | |
| 328 | CV_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); } |
| 329 | |
| 330 | private: |
| 331 | ::cvflann::Index<Distance>* nnIndex; |
| 332 | Mat _dataset; |
| 333 | }; |
| 334 | |
| 335 | //! @cond IGNORED |
| 336 | |
| 337 | #define FLANN_DISTANCE_CHECK \ |
| 338 | if ( ::cvflann::flann_distance_type() != cvflann::FLANN_DIST_L2) { \ |
| 339 | printf("[WARNING] You are using cv::flann::Index (or cv::flann::GenericIndex) and have also changed "\ |
| 340 | "the distance using cvflann::set_distance_type. This is no longer working as expected "\ |
| 341 | "(cv::flann::Index always uses L2). You should create the index templated on the distance, "\ |
| 342 | "for example for L1 distance use: GenericIndex< L1<float> > \n"); \ |
| 343 | } |
| 344 | |
| 345 | |
| 346 | template <typename Distance> |
| 347 | GenericIndex<Distance>::GenericIndex(const Mat& dataset, const ::cvflann::IndexParams& params, Distance distance) |
| 348 | : _dataset(dataset) |
| 349 | { |
| 350 | CV_Assert(dataset.type() == CvType<ElementType>::type()); |
| 351 | CV_Assert(dataset.isContinuous()); |
| 352 | ::cvflann::Matrix<ElementType> m_dataset((ElementType*)_dataset.ptr<ElementType>(0), _dataset.rows, _dataset.cols); |
| 353 | |
| 354 | nnIndex = new ::cvflann::Index<Distance>(m_dataset, params, distance); |
| 355 | |
| 356 | FLANN_DISTANCE_CHECK |
| 357 | |
| 358 | nnIndex->buildIndex(); |
| 359 | } |
| 360 | |
| 361 | template <typename Distance> |
| 362 | GenericIndex<Distance>::~GenericIndex() |
| 363 | { |
| 364 | delete nnIndex; |
| 365 | } |
| 366 | |
| 367 | template <typename Distance> |
| 368 | void GenericIndex<Distance>::knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams) |
| 369 | { |
| 370 | ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); |
| 371 | ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); |
| 372 | ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); |
| 373 | |
| 374 | FLANN_DISTANCE_CHECK |
| 375 | |
| 376 | nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams); |
| 377 | } |
| 378 | |
| 379 | |
| 380 | template <typename Distance> |
| 381 | void GenericIndex<Distance>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams) |
| 382 | { |
| 383 | CV_Assert(queries.type() == CvType<ElementType>::type()); |
| 384 | CV_Assert(queries.isContinuous()); |
| 385 | ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols); |
| 386 | |
| 387 | CV_Assert(indices.type() == CV_32S); |
| 388 | CV_Assert(indices.isContinuous()); |
| 389 | ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(y: 0), indices.rows, indices.cols); |
| 390 | |
| 391 | CV_Assert(dists.type() == CvType<DistanceType>::type()); |
| 392 | CV_Assert(dists.isContinuous()); |
| 393 | ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); |
| 394 | |
| 395 | FLANN_DISTANCE_CHECK |
| 396 | |
| 397 | nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); |
| 398 | } |
| 399 | |
| 400 | template <typename Distance> |
| 401 | int GenericIndex<Distance>::radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) |
| 402 | { |
| 403 | ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); |
| 404 | ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); |
| 405 | ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); |
| 406 | |
| 407 | FLANN_DISTANCE_CHECK |
| 408 | |
| 409 | return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
| 410 | } |
| 411 | |
| 412 | template <typename Distance> |
| 413 | int GenericIndex<Distance>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) |
| 414 | { |
| 415 | CV_Assert(query.type() == CvType<ElementType>::type()); |
| 416 | CV_Assert(query.isContinuous()); |
| 417 | ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols); |
| 418 | |
| 419 | CV_Assert(indices.type() == CV_32S); |
| 420 | CV_Assert(indices.isContinuous()); |
| 421 | ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(y: 0), indices.rows, indices.cols); |
| 422 | |
| 423 | CV_Assert(dists.type() == CvType<DistanceType>::type()); |
| 424 | CV_Assert(dists.isContinuous()); |
| 425 | ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); |
| 426 | |
| 427 | FLANN_DISTANCE_CHECK |
| 428 | |
| 429 | return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
| 430 | } |
| 431 | |
| 432 | /** |
| 433 | * @deprecated Use GenericIndex class instead |
| 434 | */ |
| 435 | template <typename T> |
| 436 | class Index_ |
| 437 | { |
| 438 | public: |
| 439 | typedef typename L2<T>::ElementType ElementType; |
| 440 | typedef typename L2<T>::ResultType DistanceType; |
| 441 | |
| 442 | CV_DEPRECATED Index_(const Mat& dataset, const ::cvflann::IndexParams& params) |
| 443 | { |
| 444 | printf(format: "[WARNING] The cv::flann::Index_<T> class is deperecated, use cv::flann::GenericIndex<Distance> instead\n" ); |
| 445 | |
| 446 | CV_Assert(dataset.type() == CvType<ElementType>::type()); |
| 447 | CV_Assert(dataset.isContinuous()); |
| 448 | ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols); |
| 449 | |
| 450 | if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) { |
| 451 | nnIndex_L1 = NULL; |
| 452 | nnIndex_L2 = new ::cvflann::Index< L2<ElementType> >(m_dataset, params); |
| 453 | } |
| 454 | else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) { |
| 455 | nnIndex_L1 = new ::cvflann::Index< L1<ElementType> >(m_dataset, params); |
| 456 | nnIndex_L2 = NULL; |
| 457 | } |
| 458 | else { |
| 459 | printf(format: "[ERROR] cv::flann::Index_<T> only provides backwards compatibility for the L1 and L2 distances. " |
| 460 | "For other distance types you must use cv::flann::GenericIndex<Distance>\n" ); |
| 461 | CV_Assert(0); |
| 462 | } |
| 463 | if (nnIndex_L1) nnIndex_L1->buildIndex(); |
| 464 | if (nnIndex_L2) nnIndex_L2->buildIndex(); |
| 465 | } |
| 466 | CV_DEPRECATED ~Index_() |
| 467 | { |
| 468 | if (nnIndex_L1) delete nnIndex_L1; |
| 469 | if (nnIndex_L2) delete nnIndex_L2; |
| 470 | } |
| 471 | |
| 472 | CV_DEPRECATED void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams) |
| 473 | { |
| 474 | ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); |
| 475 | ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); |
| 476 | ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); |
| 477 | |
| 478 | if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams); |
| 479 | if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams); |
| 480 | } |
| 481 | CV_DEPRECATED void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams) |
| 482 | { |
| 483 | CV_Assert(queries.type() == CvType<ElementType>::type()); |
| 484 | CV_Assert(queries.isContinuous()); |
| 485 | ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols); |
| 486 | |
| 487 | CV_Assert(indices.type() == CV_32S); |
| 488 | CV_Assert(indices.isContinuous()); |
| 489 | ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(y: 0), indices.rows, indices.cols); |
| 490 | |
| 491 | CV_Assert(dists.type() == CvType<DistanceType>::type()); |
| 492 | CV_Assert(dists.isContinuous()); |
| 493 | ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); |
| 494 | |
| 495 | if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); |
| 496 | if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); |
| 497 | } |
| 498 | |
| 499 | CV_DEPRECATED int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) |
| 500 | { |
| 501 | ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); |
| 502 | ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); |
| 503 | ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); |
| 504 | |
| 505 | if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
| 506 | if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
| 507 | } |
| 508 | |
| 509 | CV_DEPRECATED int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) |
| 510 | { |
| 511 | CV_Assert(query.type() == CvType<ElementType>::type()); |
| 512 | CV_Assert(query.isContinuous()); |
| 513 | ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols); |
| 514 | |
| 515 | CV_Assert(indices.type() == CV_32S); |
| 516 | CV_Assert(indices.isContinuous()); |
| 517 | ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(y: 0), indices.rows, indices.cols); |
| 518 | |
| 519 | CV_Assert(dists.type() == CvType<DistanceType>::type()); |
| 520 | CV_Assert(dists.isContinuous()); |
| 521 | ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); |
| 522 | |
| 523 | if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
| 524 | if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
| 525 | } |
| 526 | |
| 527 | CV_DEPRECATED void save(String filename) |
| 528 | { |
| 529 | if (nnIndex_L1) nnIndex_L1->save(filename); |
| 530 | if (nnIndex_L2) nnIndex_L2->save(filename); |
| 531 | } |
| 532 | |
| 533 | CV_DEPRECATED int veclen() const |
| 534 | { |
| 535 | if (nnIndex_L1) return nnIndex_L1->veclen(); |
| 536 | if (nnIndex_L2) return nnIndex_L2->veclen(); |
| 537 | } |
| 538 | |
| 539 | CV_DEPRECATED int size() const |
| 540 | { |
| 541 | if (nnIndex_L1) return nnIndex_L1->size(); |
| 542 | if (nnIndex_L2) return nnIndex_L2->size(); |
| 543 | } |
| 544 | |
| 545 | CV_DEPRECATED ::cvflann::IndexParams getParameters() |
| 546 | { |
| 547 | if (nnIndex_L1) return nnIndex_L1->getParameters(); |
| 548 | if (nnIndex_L2) return nnIndex_L2->getParameters(); |
| 549 | |
| 550 | } |
| 551 | |
| 552 | CV_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() |
| 553 | { |
| 554 | if (nnIndex_L1) return nnIndex_L1->getIndexParameters(); |
| 555 | if (nnIndex_L2) return nnIndex_L2->getIndexParameters(); |
| 556 | } |
| 557 | |
| 558 | private: |
| 559 | // providing backwards compatibility for L2 and L1 distances (most common) |
| 560 | ::cvflann::Index< L2<ElementType> >* nnIndex_L2; |
| 561 | ::cvflann::Index< L1<ElementType> >* nnIndex_L1; |
| 562 | }; |
| 563 | |
| 564 | //! @endcond |
| 565 | |
| 566 | /** @brief Clusters features using hierarchical k-means algorithm. |
| 567 | |
| 568 | @param features The points to be clustered. The matrix must have elements of type |
| 569 | Distance::ElementType. |
| 570 | @param centers The centers of the clusters obtained. The matrix must have type |
| 571 | Distance::CentersType. The number of rows in this matrix represents the number of clusters desired, |
| 572 | however, because of the way the cut in the hierarchical tree is chosen, the number of clusters |
| 573 | computed will be the highest number of the form (branching-1)\*k+1 that's lower than the number of |
| 574 | clusters desired, where branching is the tree's branching factor (see description of the |
| 575 | KMeansIndexParams). |
| 576 | @param params Parameters used in the construction of the hierarchical k-means tree. |
| 577 | @param d Distance to be used for clustering. |
| 578 | |
| 579 | The method clusters the given feature vectors by constructing a hierarchical k-means tree and |
| 580 | choosing a cut in the tree that minimizes the cluster's variance. It returns the number of clusters |
| 581 | found. |
| 582 | */ |
| 583 | template <typename Distance> |
| 584 | int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params, |
| 585 | Distance d = Distance()) |
| 586 | { |
| 587 | typedef typename Distance::ElementType ElementType; |
| 588 | typedef typename Distance::CentersType CentersType; |
| 589 | |
| 590 | CV_Assert(features.type() == CvType<ElementType>::type()); |
| 591 | CV_Assert(features.isContinuous()); |
| 592 | ::cvflann::Matrix<ElementType> m_features((ElementType*)features.ptr<ElementType>(0), features.rows, features.cols); |
| 593 | |
| 594 | CV_Assert(centers.type() == CvType<CentersType>::type()); |
| 595 | CV_Assert(centers.isContinuous()); |
| 596 | ::cvflann::Matrix<CentersType> m_centers((CentersType*)centers.ptr<CentersType>(0), centers.rows, centers.cols); |
| 597 | |
| 598 | return ::cvflann::hierarchicalClustering<Distance>(m_features, m_centers, params, d); |
| 599 | } |
| 600 | |
| 601 | //! @cond IGNORED |
| 602 | |
| 603 | template <typename ELEM_TYPE, typename DIST_TYPE> |
| 604 | CV_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params) |
| 605 | { |
| 606 | printf(format: "[WARNING] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> is deprecated, use " |
| 607 | "cv::flann::hierarchicalClustering<Distance> instead\n" ); |
| 608 | |
| 609 | if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) { |
| 610 | return hierarchicalClustering< L2<ELEM_TYPE> >(features, centers, params); |
| 611 | } |
| 612 | else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) { |
| 613 | return hierarchicalClustering< L1<ELEM_TYPE> >(features, centers, params); |
| 614 | } |
| 615 | else { |
| 616 | printf(format: "[ERROR] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> only provides backwards " |
| 617 | "compatibility for the L1 and L2 distances. " |
| 618 | "For other distance types you must use cv::flann::hierarchicalClustering<Distance>\n" ); |
| 619 | CV_Assert(0); |
| 620 | } |
| 621 | } |
| 622 | |
| 623 | //! @endcond |
| 624 | |
| 625 | //! @} flann |
| 626 | |
| 627 | } } // namespace cv::flann |
| 628 | |
| 629 | #endif |
| 630 | |