1// This file is part of OpenCV project.
2// It is subject to the license terms in the LICENSE file found in the top-level directory
3// of this distribution and at http://opencv.org/license.html
4#ifndef OPENCV_OBJDETECT_ARUCO_DETECTOR_HPP
5#define OPENCV_OBJDETECT_ARUCO_DETECTOR_HPP
6
7#include <opencv2/objdetect/aruco_dictionary.hpp>
8#include <opencv2/objdetect/aruco_board.hpp>
9
10namespace cv {
11namespace aruco {
12
13//! @addtogroup objdetect_aruco
14//! @{
15
16enum CornerRefineMethod{
17 CORNER_REFINE_NONE, ///< Tag and corners detection based on the ArUco approach
18 CORNER_REFINE_SUBPIX, ///< ArUco approach and refine the corners locations using corner subpixel accuracy
19 CORNER_REFINE_CONTOUR, ///< ArUco approach and refine the corners locations using the contour-points line fitting
20 CORNER_REFINE_APRILTAG, ///< Tag and corners detection based on the AprilTag 2 approach @cite wang2016iros
21};
22
23/** @brief struct DetectorParameters is used by ArucoDetector
24 */
25struct CV_EXPORTS_W_SIMPLE DetectorParameters {
26 CV_WRAP DetectorParameters() {
27 adaptiveThreshWinSizeMin = 3;
28 adaptiveThreshWinSizeMax = 23;
29 adaptiveThreshWinSizeStep = 10;
30 adaptiveThreshConstant = 7;
31 minMarkerPerimeterRate = 0.03;
32 maxMarkerPerimeterRate = 4.;
33 polygonalApproxAccuracyRate = 0.03;
34 minCornerDistanceRate = 0.05;
35 minDistanceToBorder = 3;
36 minMarkerDistanceRate = 0.125;
37 cornerRefinementMethod = (int)CORNER_REFINE_NONE;
38 cornerRefinementWinSize = 5;
39 relativeCornerRefinmentWinSize = 0.3f;
40 cornerRefinementMaxIterations = 30;
41 cornerRefinementMinAccuracy = 0.1;
42 markerBorderBits = 1;
43 perspectiveRemovePixelPerCell = 4;
44 perspectiveRemoveIgnoredMarginPerCell = 0.13;
45 maxErroneousBitsInBorderRate = 0.35;
46 minOtsuStdDev = 5.0;
47 errorCorrectionRate = 0.6;
48 aprilTagQuadDecimate = 0.0;
49 aprilTagQuadSigma = 0.0;
50 aprilTagMinClusterPixels = 5;
51 aprilTagMaxNmaxima = 10;
52 aprilTagCriticalRad = (float)(10* CV_PI /180);
53 aprilTagMaxLineFitMse = 10.0;
54 aprilTagMinWhiteBlackDiff = 5;
55 aprilTagDeglitch = 0;
56 detectInvertedMarker = false;
57 useAruco3Detection = false;
58 minSideLengthCanonicalImg = 32;
59 minMarkerLengthRatioOriginalImg = 0.0;
60 }
61
62 /** @brief Read a new set of DetectorParameters from FileNode (use FileStorage.root()).
63 */
64 CV_WRAP bool readDetectorParameters(const FileNode& fn);
65
66 /** @brief Write a set of DetectorParameters to FileStorage
67 */
68 CV_WRAP bool writeDetectorParameters(FileStorage& fs, const String& name = String());
69
70 /// minimum window size for adaptive thresholding before finding contours (default 3).
71 CV_PROP_RW int adaptiveThreshWinSizeMin;
72
73 /// maximum window size for adaptive thresholding before finding contours (default 23).
74 CV_PROP_RW int adaptiveThreshWinSizeMax;
75
76 /// increments from adaptiveThreshWinSizeMin to adaptiveThreshWinSizeMax during the thresholding (default 10).
77 CV_PROP_RW int adaptiveThreshWinSizeStep;
78
79 /// constant for adaptive thresholding before finding contours (default 7)
80 CV_PROP_RW double adaptiveThreshConstant;
81
82 /** @brief determine minimum perimeter for marker contour to be detected.
83 *
84 * This is defined as a rate respect to the maximum dimension of the input image (default 0.03).
85 */
86 CV_PROP_RW double minMarkerPerimeterRate;
87
88 /** @brief determine maximum perimeter for marker contour to be detected.
89 *
90 * This is defined as a rate respect to the maximum dimension of the input image (default 4.0).
91 */
92 CV_PROP_RW double maxMarkerPerimeterRate;
93
94 /// minimum accuracy during the polygonal approximation process to determine which contours are squares. (default 0.03)
95 CV_PROP_RW double polygonalApproxAccuracyRate;
96
97 /// minimum distance between corners for detected markers relative to its perimeter (default 0.05)
98 CV_PROP_RW double minCornerDistanceRate;
99
100 /// minimum distance of any corner to the image border for detected markers (in pixels) (default 3)
101 CV_PROP_RW int minDistanceToBorder;
102
103 /** @brief minimum average distance between the corners of the two markers to be grouped (default 0.125).
104 *
105 * The rate is relative to the smaller perimeter of the two markers.
106 * Two markers are grouped if average distance between the corners of the two markers is less than
107 * min(MarkerPerimeter1, MarkerPerimeter2)*minMarkerDistanceRate.
108 *
109 * default value is 0.125 because 0.125*MarkerPerimeter = (MarkerPerimeter / 4) * 0.5 = half the side of the marker.
110 *
111 * @note default value was changed from 0.05 after 4.8.1 release, because the filtering algorithm has been changed.
112 * Now a few candidates from the same group can be added to the list of candidates if they are far from each other.
113 * @sa minGroupDistance.
114 */
115 CV_PROP_RW double minMarkerDistanceRate;
116
117 /** @brief minimum average distance between the corners of the two markers in group to add them to the list of candidates
118 *
119 * The average distance between the corners of the two markers is calculated relative to its module size (default 0.21).
120 */
121 CV_PROP_RW float minGroupDistance = 0.21f;
122
123 /** @brief default value CORNER_REFINE_NONE */
124 CV_PROP_RW int cornerRefinementMethod;
125
126 /** @brief maximum window size for the corner refinement process (in pixels) (default 5).
127 *
128 * The window size may decrease if the ArUco marker is too small, check relativeCornerRefinmentWinSize.
129 * The final window size is calculated as:
130 * min(cornerRefinementWinSize, averageArucoModuleSize*relativeCornerRefinmentWinSize),
131 * where averageArucoModuleSize is average module size of ArUco marker in pixels.
132 * (ArUco marker is composed of black and white modules)
133 */
134 CV_PROP_RW int cornerRefinementWinSize;
135
136 /** @brief Dynamic window size for corner refinement relative to Aruco module size (default 0.3).
137 *
138 * The final window size is calculated as:
139 * min(cornerRefinementWinSize, averageArucoModuleSize*relativeCornerRefinmentWinSize),
140 * where averageArucoModuleSize is average module size of ArUco marker in pixels.
141 * (ArUco marker is composed of black and white modules)
142 * In the case of markers located far from each other, it may be useful to increase the value of the parameter to 0.4-0.5.
143 * In the case of markers located close to each other, it may be useful to decrease the parameter value to 0.1-0.2.
144 */
145 CV_PROP_RW float relativeCornerRefinmentWinSize;
146
147 /// maximum number of iterations for stop criteria of the corner refinement process (default 30).
148 CV_PROP_RW int cornerRefinementMaxIterations;
149
150 /// minimum error for the stop cristeria of the corner refinement process (default: 0.1)
151 CV_PROP_RW double cornerRefinementMinAccuracy;
152
153 /// number of bits of the marker border, i.e. marker border width (default 1).
154 CV_PROP_RW int markerBorderBits;
155
156 /// number of bits (per dimension) for each cell of the marker when removing the perspective (default 4).
157 CV_PROP_RW int perspectiveRemovePixelPerCell;
158
159 /** @brief width of the margin of pixels on each cell not considered for the determination of the cell bit.
160 *
161 * Represents the rate respect to the total size of the cell, i.e. perspectiveRemovePixelPerCell (default 0.13)
162 */
163 CV_PROP_RW double perspectiveRemoveIgnoredMarginPerCell;
164
165 /** @brief maximum number of accepted erroneous bits in the border (i.e. number of allowed white bits in the border).
166 *
167 * Represented as a rate respect to the total number of bits per marker (default 0.35).
168 */
169 CV_PROP_RW double maxErroneousBitsInBorderRate;
170
171 /** @brief minimun standard deviation in pixels values during the decodification step to apply Otsu
172 * thresholding (otherwise, all the bits are set to 0 or 1 depending on mean higher than 128 or not) (default 5.0)
173 */
174 CV_PROP_RW double minOtsuStdDev;
175
176 /// error correction rate respect to the maximun error correction capability for each dictionary (default 0.6).
177 CV_PROP_RW double errorCorrectionRate;
178
179 /** @brief April :: User-configurable parameters.
180 *
181 * Detection of quads can be done on a lower-resolution image, improving speed at a cost of
182 * pose accuracy and a slight decrease in detection rate. Decoding the binary payload is still
183 */
184 CV_PROP_RW float aprilTagQuadDecimate;
185
186 /// what Gaussian blur should be applied to the segmented image (used for quad detection?)
187 CV_PROP_RW float aprilTagQuadSigma;
188
189 // April :: Internal variables
190 /// reject quads containing too few pixels (default 5).
191 CV_PROP_RW int aprilTagMinClusterPixels;
192
193 /// how many corner candidates to consider when segmenting a group of pixels into a quad (default 10).
194 CV_PROP_RW int aprilTagMaxNmaxima;
195
196 /** @brief reject quads where pairs of edges have angles that are close to straight or close to 180 degrees.
197 *
198 * Zero means that no quads are rejected. (In radians) (default 10*PI/180)
199 */
200 CV_PROP_RW float aprilTagCriticalRad;
201
202 /// when fitting lines to the contours, what is the maximum mean squared error
203 CV_PROP_RW float aprilTagMaxLineFitMse;
204
205 /** @brief add an extra check that the white model must be (overall) brighter than the black model.
206 *
207 * When we build our model of black & white pixels, we add an extra check that the white model must be (overall)
208 * brighter than the black model. How much brighter? (in pixel values, [0,255]), (default 5)
209 */
210 CV_PROP_RW int aprilTagMinWhiteBlackDiff;
211
212 /// should the thresholded image be deglitched? Only useful for very noisy images (default 0).
213 CV_PROP_RW int aprilTagDeglitch;
214
215 /** @brief to check if there is a white marker.
216 *
217 * In order to generate a "white" marker just invert a normal marker by using a tilde, ~markerImage. (default false)
218 */
219 CV_PROP_RW bool detectInvertedMarker;
220
221 /** @brief enable the new and faster Aruco detection strategy.
222 *
223 * Proposed in the paper:
224 * Romero-Ramirez et al: Speeded up detection of squared fiducial markers (2018)
225 * https://www.researchgate.net/publication/325787310_Speeded_Up_Detection_of_Squared_Fiducial_Markers
226 */
227 CV_PROP_RW bool useAruco3Detection;
228
229 /// minimum side length of a marker in the canonical image. Latter is the binarized image in which contours are searched.
230 CV_PROP_RW int minSideLengthCanonicalImg;
231
232 /// range [0,1], eq (2) from paper. The parameter tau_i has a direct influence on the processing speed.
233 CV_PROP_RW float minMarkerLengthRatioOriginalImg;
234};
235
236/** @brief struct RefineParameters is used by ArucoDetector
237 */
238struct CV_EXPORTS_W_SIMPLE RefineParameters {
239 CV_WRAP RefineParameters(float minRepDistance = 10.f, float errorCorrectionRate = 3.f, bool checkAllOrders = true);
240
241
242 /** @brief Read a new set of RefineParameters from FileNode (use FileStorage.root()).
243 */
244 CV_WRAP bool readRefineParameters(const FileNode& fn);
245
246 /** @brief Write a set of RefineParameters to FileStorage
247 */
248 CV_WRAP bool writeRefineParameters(FileStorage& fs, const String& name = String());
249
250 /** @brief minRepDistance minimum distance between the corners of the rejected candidate and the reprojected marker
251 in order to consider it as a correspondence.
252 */
253 CV_PROP_RW float minRepDistance;
254
255 /** @brief minRepDistance rate of allowed erroneous bits respect to the error correction capability of the used dictionary.
256 *
257 * -1 ignores the error correction step.
258 */
259 CV_PROP_RW float errorCorrectionRate;
260
261 /** @brief checkAllOrders consider the four posible corner orders in the rejectedCorners array.
262 *
263 * If it set to false, only the provided corner order is considered (default true).
264 */
265 CV_PROP_RW bool checkAllOrders;
266};
267
268/** @brief The main functionality of ArucoDetector class is detection of markers in an image with detectMarkers() method.
269 *
270 * After detecting some markers in the image, you can try to find undetected markers from this dictionary with
271 * refineDetectedMarkers() method.
272 *
273 * @see DetectorParameters, RefineParameters
274 */
275class CV_EXPORTS_W ArucoDetector : public Algorithm
276{
277public:
278 /** @brief Basic ArucoDetector constructor
279 *
280 * @param dictionary indicates the type of markers that will be searched
281 * @param detectorParams marker detection parameters
282 * @param refineParams marker refine detection parameters
283 */
284 CV_WRAP ArucoDetector(const Dictionary &dictionary = getPredefinedDictionary(name: cv::aruco::DICT_4X4_50),
285 const DetectorParameters &detectorParams = DetectorParameters(),
286 const RefineParameters& refineParams = RefineParameters());
287
288 /** @brief Basic marker detection
289 *
290 * @param image input image
291 * @param corners vector of detected marker corners. For each marker, its four corners
292 * are provided, (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers,
293 * the dimensions of this array is Nx4. The order of the corners is clockwise.
294 * @param ids vector of identifiers of the detected markers. The identifier is of type int
295 * (e.g. std::vector<int>). For N detected markers, the size of ids is also N.
296 * The identifiers have the same order than the markers in the imgPoints array.
297 * @param rejectedImgPoints contains the imgPoints of those squares whose inner code has not a
298 * correct codification. Useful for debugging purposes.
299 *
300 * Performs marker detection in the input image. Only markers included in the specific dictionary
301 * are searched. For each detected marker, it returns the 2D position of its corner in the image
302 * and its corresponding identifier.
303 * Note that this function does not perform pose estimation.
304 * @note The function does not correct lens distortion or takes it into account. It's recommended to undistort
305 * input image with corresponding camera model, if camera parameters are known
306 * @sa undistort, estimatePoseSingleMarkers, estimatePoseBoard
307 */
308 CV_WRAP void detectMarkers(InputArray image, OutputArrayOfArrays corners, OutputArray ids,
309 OutputArrayOfArrays rejectedImgPoints = noArray()) const;
310
311 /** @brief Refine not detected markers based on the already detected and the board layout
312 *
313 * @param image input image
314 * @param board layout of markers in the board.
315 * @param detectedCorners vector of already detected marker corners.
316 * @param detectedIds vector of already detected marker identifiers.
317 * @param rejectedCorners vector of rejected candidates during the marker detection process.
318 * @param cameraMatrix optional input 3x3 floating-point camera matrix
319 * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$
320 * @param distCoeffs optional vector of distortion coefficients
321 * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements
322 * @param recoveredIdxs Optional array to returns the indexes of the recovered candidates in the
323 * original rejectedCorners array.
324 *
325 * This function tries to find markers that were not detected in the basic detecMarkers function.
326 * First, based on the current detected marker and the board layout, the function interpolates
327 * the position of the missing markers. Then it tries to find correspondence between the reprojected
328 * markers and the rejected candidates based on the minRepDistance and errorCorrectionRate parameters.
329 * If camera parameters and distortion coefficients are provided, missing markers are reprojected
330 * using projectPoint function. If not, missing marker projections are interpolated using global
331 * homography, and all the marker corners in the board must have the same Z coordinate.
332 */
333 CV_WRAP void refineDetectedMarkers(InputArray image, const Board &board,
334 InputOutputArrayOfArrays detectedCorners,
335 InputOutputArray detectedIds, InputOutputArrayOfArrays rejectedCorners,
336 InputArray cameraMatrix = noArray(), InputArray distCoeffs = noArray(),
337 OutputArray recoveredIdxs = noArray()) const;
338
339 CV_WRAP const Dictionary& getDictionary() const;
340 CV_WRAP void setDictionary(const Dictionary& dictionary);
341
342 CV_WRAP const DetectorParameters& getDetectorParameters() const;
343 CV_WRAP void setDetectorParameters(const DetectorParameters& detectorParameters);
344
345 CV_WRAP const RefineParameters& getRefineParameters() const;
346 CV_WRAP void setRefineParameters(const RefineParameters& refineParameters);
347
348 /** @brief Stores algorithm parameters in a file storage
349 */
350 virtual void write(FileStorage& fs) const override;
351
352 /** @brief simplified API for language bindings
353 */
354 CV_WRAP inline void write(FileStorage& fs, const String& name) { Algorithm::write(fs, name); }
355
356 /** @brief Reads algorithm parameters from a file storage
357 */
358 CV_WRAP virtual void read(const FileNode& fn) override;
359protected:
360 struct ArucoDetectorImpl;
361 Ptr<ArucoDetectorImpl> arucoDetectorImpl;
362};
363
364/** @brief Draw detected markers in image
365 *
366 * @param image input/output image. It must have 1 or 3 channels. The number of channels is not altered.
367 * @param corners positions of marker corners on input image.
368 * (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers, the dimensions of
369 * this array should be Nx4. The order of the corners should be clockwise.
370 * @param ids vector of identifiers for markers in markersCorners .
371 * Optional, if not provided, ids are not painted.
372 * @param borderColor color of marker borders. Rest of colors (text color and first corner color)
373 * are calculated based on this one to improve visualization.
374 *
375 * Given an array of detected marker corners and its corresponding ids, this functions draws
376 * the markers in the image. The marker borders are painted and the markers identifiers if provided.
377 * Useful for debugging purposes.
378 */
379CV_EXPORTS_W void drawDetectedMarkers(InputOutputArray image, InputArrayOfArrays corners,
380 InputArray ids = noArray(), Scalar borderColor = Scalar(0, 255, 0));
381
382/** @brief Generate a canonical marker image
383 *
384 * @param dictionary dictionary of markers indicating the type of markers
385 * @param id identifier of the marker that will be returned. It has to be a valid id in the specified dictionary.
386 * @param sidePixels size of the image in pixels
387 * @param img output image with the marker
388 * @param borderBits width of the marker border.
389 *
390 * This function returns a marker image in its canonical form (i.e. ready to be printed)
391 */
392CV_EXPORTS_W void generateImageMarker(const Dictionary &dictionary, int id, int sidePixels, OutputArray img,
393 int borderBits = 1);
394
395//! @}
396
397}
398}
399
400#endif
401

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of opencv/modules/objdetect/include/opencv2/objdetect/aruco_detector.hpp