| 1 | /**************************************************************************** |
| 2 | ** |
| 3 | ** Copyright (C) 2015 Konstantin Ritt. |
| 4 | ** Contact: https://www.qt.io/licensing/ |
| 5 | ** |
| 6 | ** This file is part of the Qt3D module of the Qt Toolkit. |
| 7 | ** |
| 8 | ** $QT_BEGIN_LICENSE:LGPL$ |
| 9 | ** Commercial License Usage |
| 10 | ** Licensees holding valid commercial Qt licenses may use this file in |
| 11 | ** accordance with the commercial license agreement provided with the |
| 12 | ** Software or, alternatively, in accordance with the terms contained in |
| 13 | ** a written agreement between you and The Qt Company. For licensing terms |
| 14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
| 15 | ** information use the contact form at https://www.qt.io/contact-us. |
| 16 | ** |
| 17 | ** GNU Lesser General Public License Usage |
| 18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
| 19 | ** General Public License version 3 as published by the Free Software |
| 20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
| 21 | ** packaging of this file. Please review the following information to |
| 22 | ** ensure the GNU Lesser General Public License version 3 requirements |
| 23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
| 24 | ** |
| 25 | ** GNU General Public License Usage |
| 26 | ** Alternatively, this file may be used under the terms of the GNU |
| 27 | ** General Public License version 2.0 or (at your option) the GNU General |
| 28 | ** Public license version 3 or any later version approved by the KDE Free |
| 29 | ** Qt Foundation. The licenses are as published by the Free Software |
| 30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
| 31 | ** included in the packaging of this file. Please review the following |
| 32 | ** information to ensure the GNU General Public License requirements will |
| 33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
| 34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
| 35 | ** |
| 36 | ** $QT_END_LICENSE$ |
| 37 | ** |
| 38 | ****************************************************************************/ |
| 39 | |
| 40 | #ifndef QT3DCORE_QMATH3D_P_H |
| 41 | #define QT3DCORE_QMATH3D_P_H |
| 42 | |
| 43 | // |
| 44 | // W A R N I N G |
| 45 | // ------------- |
| 46 | // |
| 47 | // This file is not part of the Qt3D API. It exists purely as an |
| 48 | // implementation detail. This header file may change from version to |
| 49 | // version without notice, or even be removed. |
| 50 | // |
| 51 | // We mean it. |
| 52 | // |
| 53 | #include <QtGui/qmatrix4x4.h> |
| 54 | #include <QtGui/qquaternion.h> |
| 55 | #include <QtGui/qvector3d.h> |
| 56 | #include <Qt3DCore/private/sqt_p.h> |
| 57 | |
| 58 | #include <cmath> |
| 59 | |
| 60 | QT_BEGIN_NAMESPACE |
| 61 | |
| 62 | inline void composeQMatrix4x4(const QVector3D &position, const QQuaternion &orientation, const QVector3D &scale, QMatrix4x4 &m) |
| 63 | { |
| 64 | const QMatrix3x3 rot3x3(orientation.toRotationMatrix()); |
| 65 | |
| 66 | // set up final matrix with scale, rotation and translation |
| 67 | m(0, 0) = scale.x() * rot3x3(0, 0); m(0, 1) = scale.y() * rot3x3(0, 1); m(0, 2) = scale.z() * rot3x3(0, 2); m(0, 3) = position.x(); |
| 68 | m(1, 0) = scale.x() * rot3x3(1, 0); m(1, 1) = scale.y() * rot3x3(1, 1); m(1, 2) = scale.z() * rot3x3(1, 2); m(1, 3) = position.y(); |
| 69 | m(2, 0) = scale.x() * rot3x3(2, 0); m(2, 1) = scale.y() * rot3x3(2, 1); m(2, 2) = scale.z() * rot3x3(2, 2); m(2, 3) = position.z(); |
| 70 | // no projection term |
| 71 | m(3, 0) = 0.0f; m(3, 1) = 0.0f; m(3, 2) = 0.0f; m(3, 3) = 1.0f; |
| 72 | } |
| 73 | |
| 74 | inline void decomposeQMatrix3x3(const QMatrix3x3 &m, QMatrix3x3 &Q, QVector3D &D, QVector3D &U) |
| 75 | { |
| 76 | // Factor M = QR = QDU where Q is orthogonal, D is diagonal, |
| 77 | // and U is upper triangular with ones on its diagonal. |
| 78 | // Algorithm uses Gram-Schmidt orthogonalization (the QR algorithm). |
| 79 | // |
| 80 | // If M = [ m0 | m1 | m2 ] and Q = [ q0 | q1 | q2 ], then |
| 81 | // q0 = m0/|m0| |
| 82 | // q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0| |
| 83 | // q2 = (m2-(q0*m2)q0-(q1*m2)q1)/|m2-(q0*m2)q0-(q1*m2)q1| |
| 84 | // |
| 85 | // where |V| indicates length of vector V and A*B indicates dot |
| 86 | // product of vectors A and B. The matrix R has entries |
| 87 | // |
| 88 | // r00 = q0*m0 r01 = q0*m1 r02 = q0*m2 |
| 89 | // r10 = 0 r11 = q1*m1 r12 = q1*m2 |
| 90 | // r20 = 0 r21 = 0 r22 = q2*m2 |
| 91 | // |
| 92 | // so D = diag(r00,r11,r22) and U has entries u01 = r01/r00, |
| 93 | // u02 = r02/r00, and u12 = r12/r11. |
| 94 | |
| 95 | // Q = rotation |
| 96 | // D = scaling |
| 97 | // U = shear |
| 98 | |
| 99 | // D stores the three diagonal entries r00, r11, r22 |
| 100 | // U stores the entries U[0] = u01, U[1] = u02, U[2] = u12 |
| 101 | |
| 102 | // build orthogonal matrix Q |
| 103 | float invLen = 1.0f / std::sqrt(x: m(0, 0) * m(0, 0) + m(1, 0) * m(1, 0) + m(2, 0) * m(2, 0)); |
| 104 | Q(0, 0) = m(0, 0) * invLen; |
| 105 | Q(1, 0) = m(1, 0) * invLen; |
| 106 | Q(2, 0) = m(2, 0) * invLen; |
| 107 | |
| 108 | float dot = Q(0, 0) * m(0, 1) + Q(1, 0) * m(1, 1) + Q(2, 0) * m(2, 1); |
| 109 | Q(0, 1) = m(0, 1) - dot * Q(0, 0); |
| 110 | Q(1, 1) = m(1, 1) - dot * Q(1, 0); |
| 111 | Q(2, 1) = m(2, 1) - dot * Q(2, 0); |
| 112 | invLen = 1.0f / std::sqrt(x: Q(0, 1) * Q(0, 1) + Q(1, 1) * Q(1, 1) + Q(2, 1) * Q(2, 1)); |
| 113 | Q(0, 1) *= invLen; |
| 114 | Q(1, 1) *= invLen; |
| 115 | Q(2, 1) *= invLen; |
| 116 | |
| 117 | dot = Q(0, 0) * m(0, 2) + Q(1, 0) * m(1, 2) + Q(2, 0) * m(2, 2); |
| 118 | Q(0, 2) = m(0, 2) - dot * Q(0, 0); |
| 119 | Q(1, 2) = m(1, 2) - dot * Q(1, 0); |
| 120 | Q(2, 2) = m(2, 2) - dot * Q(2, 0); |
| 121 | dot = Q(0, 1) * m(0, 2) + Q(1, 1) * m(1, 2) + Q(2, 1) * m(2, 2); |
| 122 | Q(0, 2) -= dot * Q(0, 1); |
| 123 | Q(1, 2) -= dot * Q(1, 1); |
| 124 | Q(2, 2) -= dot * Q(2, 1); |
| 125 | invLen = 1.0f / std::sqrt(x: Q(0, 2) * Q(0, 2) + Q(1, 2) * Q(1, 2) + Q(2, 2) * Q(2, 2)); |
| 126 | Q(0, 2) *= invLen; |
| 127 | Q(1, 2) *= invLen; |
| 128 | Q(2, 2) *= invLen; |
| 129 | |
| 130 | // guarantee that orthogonal matrix has determinant 1 (no reflections) |
| 131 | const float det = Q(0, 0) * Q(1, 1) * Q(2, 2) + Q(0, 1) * Q(1, 2) * Q(2, 0) + |
| 132 | Q(0, 2) * Q(1, 0) * Q(2, 1) - Q(0, 2) * Q(1, 1) * Q(2, 0) - |
| 133 | Q(0, 1) * Q(1, 0) * Q(2, 2) - Q(0, 0) * Q(1, 2) * Q(2, 1); |
| 134 | if (det < 0.0f) |
| 135 | Q *= -1.0f; |
| 136 | |
| 137 | // build "right" matrix R |
| 138 | QMatrix3x3 R(Qt::Uninitialized); |
| 139 | R(0, 0) = Q(0, 0) * m(0, 0) + Q(1, 0) * m(1, 0) + Q(2, 0) * m(2, 0); |
| 140 | R(0, 1) = Q(0, 0) * m(0, 1) + Q(1, 0) * m(1, 1) + Q(2, 0) * m(2, 1); |
| 141 | R(1, 1) = Q(0, 1) * m(0, 1) + Q(1, 1) * m(1, 1) + Q(2, 1) * m(2, 1); |
| 142 | R(0, 2) = Q(0, 0) * m(0, 2) + Q(1, 0) * m(1, 2) + Q(2, 0) * m(2, 2); |
| 143 | R(1, 2) = Q(0, 1) * m(0, 2) + Q(1, 1) * m(1, 2) + Q(2, 1) * m(2, 2); |
| 144 | R(2, 2) = Q(0, 2) * m(0, 2) + Q(1, 2) * m(1, 2) + Q(2, 2) * m(2, 2); |
| 145 | |
| 146 | // the scaling component |
| 147 | D[0] = R(0, 0); |
| 148 | D[1] = R(1, 1); |
| 149 | D[2] = R(2, 2); |
| 150 | |
| 151 | // the shear component |
| 152 | U[0] = R(0, 1) / D[0]; |
| 153 | U[1] = R(0, 2) / D[0]; |
| 154 | U[2] = R(1, 2) / D[1]; |
| 155 | } |
| 156 | |
| 157 | inline bool hasScale(const QMatrix4x4 &m) |
| 158 | { |
| 159 | // If the columns are orthonormal and form a right-handed system, then there is no scale |
| 160 | float t(m.determinant()); |
| 161 | if (!qFuzzyIsNull(f: t - 1.0f)) |
| 162 | return true; |
| 163 | t = m(0, 0) * m(0, 0) + m(1, 0) * m(1, 0) + m(2, 0) * m(2, 0); |
| 164 | if (!qFuzzyIsNull(f: t - 1.0f)) |
| 165 | return true; |
| 166 | t = m(0, 1) * m(0, 1) + m(1, 1) * m(1, 1) + m(2, 1) * m(2, 1); |
| 167 | if (!qFuzzyIsNull(f: t - 1.0f)) |
| 168 | return true; |
| 169 | t = m(0, 2) * m(0, 2) + m(1, 2) * m(1, 2) + m(2, 2) * m(2, 2); |
| 170 | if (!qFuzzyIsNull(f: t - 1.0f)) |
| 171 | return true; |
| 172 | return false; |
| 173 | } |
| 174 | |
| 175 | inline void decomposeQMatrix4x4(const QMatrix4x4 &m, QVector3D &position, QQuaternion &orientation, QVector3D &scale) |
| 176 | { |
| 177 | Q_ASSERT(m.isAffine()); |
| 178 | |
| 179 | const QMatrix3x3 m3x3(m.toGenericMatrix<3, 3>()); |
| 180 | |
| 181 | QMatrix3x3 rot3x3(Qt::Uninitialized); |
| 182 | if (hasScale(m)) { |
| 183 | decomposeQMatrix3x3(m: m3x3, Q&: rot3x3, D&: scale, U&: position); |
| 184 | } else { |
| 185 | // we know there is no scaling part; no need for QDU decomposition |
| 186 | scale = QVector3D(1.0f, 1.0f, 1.0f); |
| 187 | rot3x3 = m3x3; |
| 188 | } |
| 189 | orientation = QQuaternion::fromRotationMatrix(rot3x3); |
| 190 | position = QVector3D(m(0, 3), m(1, 3), m(2, 3)); |
| 191 | } |
| 192 | |
| 193 | inline void decomposeQMatrix4x4(const QMatrix4x4 &m, Qt3DCore::Sqt &sqt) |
| 194 | { |
| 195 | Q_ASSERT(m.isAffine()); |
| 196 | |
| 197 | const QMatrix3x3 m3x3(m.toGenericMatrix<3, 3>()); |
| 198 | |
| 199 | QMatrix3x3 rot3x3(Qt::Uninitialized); |
| 200 | if (hasScale(m)) { |
| 201 | decomposeQMatrix3x3(m: m3x3, Q&: rot3x3, D&: sqt.scale, U&: sqt.translation); |
| 202 | } else { |
| 203 | // we know there is no scaling part; no need for QDU decomposition |
| 204 | sqt.scale = QVector3D(1.0f, 1.0f, 1.0f); |
| 205 | rot3x3 = m3x3; |
| 206 | } |
| 207 | sqt.rotation = QQuaternion::fromRotationMatrix(rot3x3); |
| 208 | sqt.translation = QVector3D(m(0, 3), m(1, 3), m(2, 3)); |
| 209 | } |
| 210 | |
| 211 | QT_END_NAMESPACE |
| 212 | |
| 213 | #endif // QT3DCORE_QMATH3D_P_H |
| 214 | |