1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2015 Konstantin Ritt. |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the Qt3D module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | #ifndef QT3DCORE_QMATH3D_P_H |
41 | #define QT3DCORE_QMATH3D_P_H |
42 | |
43 | // |
44 | // W A R N I N G |
45 | // ------------- |
46 | // |
47 | // This file is not part of the Qt3D API. It exists purely as an |
48 | // implementation detail. This header file may change from version to |
49 | // version without notice, or even be removed. |
50 | // |
51 | // We mean it. |
52 | // |
53 | #include <QtGui/qmatrix4x4.h> |
54 | #include <QtGui/qquaternion.h> |
55 | #include <QtGui/qvector3d.h> |
56 | #include <Qt3DCore/private/sqt_p.h> |
57 | |
58 | #include <cmath> |
59 | |
60 | QT_BEGIN_NAMESPACE |
61 | |
62 | inline void composeQMatrix4x4(const QVector3D &position, const QQuaternion &orientation, const QVector3D &scale, QMatrix4x4 &m) |
63 | { |
64 | const QMatrix3x3 rot3x3(orientation.toRotationMatrix()); |
65 | |
66 | // set up final matrix with scale, rotation and translation |
67 | m(0, 0) = scale.x() * rot3x3(0, 0); m(0, 1) = scale.y() * rot3x3(0, 1); m(0, 2) = scale.z() * rot3x3(0, 2); m(0, 3) = position.x(); |
68 | m(1, 0) = scale.x() * rot3x3(1, 0); m(1, 1) = scale.y() * rot3x3(1, 1); m(1, 2) = scale.z() * rot3x3(1, 2); m(1, 3) = position.y(); |
69 | m(2, 0) = scale.x() * rot3x3(2, 0); m(2, 1) = scale.y() * rot3x3(2, 1); m(2, 2) = scale.z() * rot3x3(2, 2); m(2, 3) = position.z(); |
70 | // no projection term |
71 | m(3, 0) = 0.0f; m(3, 1) = 0.0f; m(3, 2) = 0.0f; m(3, 3) = 1.0f; |
72 | } |
73 | |
74 | inline void decomposeQMatrix3x3(const QMatrix3x3 &m, QMatrix3x3 &Q, QVector3D &D, QVector3D &U) |
75 | { |
76 | // Factor M = QR = QDU where Q is orthogonal, D is diagonal, |
77 | // and U is upper triangular with ones on its diagonal. |
78 | // Algorithm uses Gram-Schmidt orthogonalization (the QR algorithm). |
79 | // |
80 | // If M = [ m0 | m1 | m2 ] and Q = [ q0 | q1 | q2 ], then |
81 | // q0 = m0/|m0| |
82 | // q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0| |
83 | // q2 = (m2-(q0*m2)q0-(q1*m2)q1)/|m2-(q0*m2)q0-(q1*m2)q1| |
84 | // |
85 | // where |V| indicates length of vector V and A*B indicates dot |
86 | // product of vectors A and B. The matrix R has entries |
87 | // |
88 | // r00 = q0*m0 r01 = q0*m1 r02 = q0*m2 |
89 | // r10 = 0 r11 = q1*m1 r12 = q1*m2 |
90 | // r20 = 0 r21 = 0 r22 = q2*m2 |
91 | // |
92 | // so D = diag(r00,r11,r22) and U has entries u01 = r01/r00, |
93 | // u02 = r02/r00, and u12 = r12/r11. |
94 | |
95 | // Q = rotation |
96 | // D = scaling |
97 | // U = shear |
98 | |
99 | // D stores the three diagonal entries r00, r11, r22 |
100 | // U stores the entries U[0] = u01, U[1] = u02, U[2] = u12 |
101 | |
102 | // build orthogonal matrix Q |
103 | float invLen = 1.0f / std::sqrt(x: m(0, 0) * m(0, 0) + m(1, 0) * m(1, 0) + m(2, 0) * m(2, 0)); |
104 | Q(0, 0) = m(0, 0) * invLen; |
105 | Q(1, 0) = m(1, 0) * invLen; |
106 | Q(2, 0) = m(2, 0) * invLen; |
107 | |
108 | float dot = Q(0, 0) * m(0, 1) + Q(1, 0) * m(1, 1) + Q(2, 0) * m(2, 1); |
109 | Q(0, 1) = m(0, 1) - dot * Q(0, 0); |
110 | Q(1, 1) = m(1, 1) - dot * Q(1, 0); |
111 | Q(2, 1) = m(2, 1) - dot * Q(2, 0); |
112 | invLen = 1.0f / std::sqrt(x: Q(0, 1) * Q(0, 1) + Q(1, 1) * Q(1, 1) + Q(2, 1) * Q(2, 1)); |
113 | Q(0, 1) *= invLen; |
114 | Q(1, 1) *= invLen; |
115 | Q(2, 1) *= invLen; |
116 | |
117 | dot = Q(0, 0) * m(0, 2) + Q(1, 0) * m(1, 2) + Q(2, 0) * m(2, 2); |
118 | Q(0, 2) = m(0, 2) - dot * Q(0, 0); |
119 | Q(1, 2) = m(1, 2) - dot * Q(1, 0); |
120 | Q(2, 2) = m(2, 2) - dot * Q(2, 0); |
121 | dot = Q(0, 1) * m(0, 2) + Q(1, 1) * m(1, 2) + Q(2, 1) * m(2, 2); |
122 | Q(0, 2) -= dot * Q(0, 1); |
123 | Q(1, 2) -= dot * Q(1, 1); |
124 | Q(2, 2) -= dot * Q(2, 1); |
125 | invLen = 1.0f / std::sqrt(x: Q(0, 2) * Q(0, 2) + Q(1, 2) * Q(1, 2) + Q(2, 2) * Q(2, 2)); |
126 | Q(0, 2) *= invLen; |
127 | Q(1, 2) *= invLen; |
128 | Q(2, 2) *= invLen; |
129 | |
130 | // guarantee that orthogonal matrix has determinant 1 (no reflections) |
131 | const float det = Q(0, 0) * Q(1, 1) * Q(2, 2) + Q(0, 1) * Q(1, 2) * Q(2, 0) + |
132 | Q(0, 2) * Q(1, 0) * Q(2, 1) - Q(0, 2) * Q(1, 1) * Q(2, 0) - |
133 | Q(0, 1) * Q(1, 0) * Q(2, 2) - Q(0, 0) * Q(1, 2) * Q(2, 1); |
134 | if (det < 0.0f) |
135 | Q *= -1.0f; |
136 | |
137 | // build "right" matrix R |
138 | QMatrix3x3 R(Qt::Uninitialized); |
139 | R(0, 0) = Q(0, 0) * m(0, 0) + Q(1, 0) * m(1, 0) + Q(2, 0) * m(2, 0); |
140 | R(0, 1) = Q(0, 0) * m(0, 1) + Q(1, 0) * m(1, 1) + Q(2, 0) * m(2, 1); |
141 | R(1, 1) = Q(0, 1) * m(0, 1) + Q(1, 1) * m(1, 1) + Q(2, 1) * m(2, 1); |
142 | R(0, 2) = Q(0, 0) * m(0, 2) + Q(1, 0) * m(1, 2) + Q(2, 0) * m(2, 2); |
143 | R(1, 2) = Q(0, 1) * m(0, 2) + Q(1, 1) * m(1, 2) + Q(2, 1) * m(2, 2); |
144 | R(2, 2) = Q(0, 2) * m(0, 2) + Q(1, 2) * m(1, 2) + Q(2, 2) * m(2, 2); |
145 | |
146 | // the scaling component |
147 | D[0] = R(0, 0); |
148 | D[1] = R(1, 1); |
149 | D[2] = R(2, 2); |
150 | |
151 | // the shear component |
152 | U[0] = R(0, 1) / D[0]; |
153 | U[1] = R(0, 2) / D[0]; |
154 | U[2] = R(1, 2) / D[1]; |
155 | } |
156 | |
157 | inline bool hasScale(const QMatrix4x4 &m) |
158 | { |
159 | // If the columns are orthonormal and form a right-handed system, then there is no scale |
160 | float t(m.determinant()); |
161 | if (!qFuzzyIsNull(f: t - 1.0f)) |
162 | return true; |
163 | t = m(0, 0) * m(0, 0) + m(1, 0) * m(1, 0) + m(2, 0) * m(2, 0); |
164 | if (!qFuzzyIsNull(f: t - 1.0f)) |
165 | return true; |
166 | t = m(0, 1) * m(0, 1) + m(1, 1) * m(1, 1) + m(2, 1) * m(2, 1); |
167 | if (!qFuzzyIsNull(f: t - 1.0f)) |
168 | return true; |
169 | t = m(0, 2) * m(0, 2) + m(1, 2) * m(1, 2) + m(2, 2) * m(2, 2); |
170 | if (!qFuzzyIsNull(f: t - 1.0f)) |
171 | return true; |
172 | return false; |
173 | } |
174 | |
175 | inline void decomposeQMatrix4x4(const QMatrix4x4 &m, QVector3D &position, QQuaternion &orientation, QVector3D &scale) |
176 | { |
177 | Q_ASSERT(m.isAffine()); |
178 | |
179 | const QMatrix3x3 m3x3(m.toGenericMatrix<3, 3>()); |
180 | |
181 | QMatrix3x3 rot3x3(Qt::Uninitialized); |
182 | if (hasScale(m)) { |
183 | decomposeQMatrix3x3(m: m3x3, Q&: rot3x3, D&: scale, U&: position); |
184 | } else { |
185 | // we know there is no scaling part; no need for QDU decomposition |
186 | scale = QVector3D(1.0f, 1.0f, 1.0f); |
187 | rot3x3 = m3x3; |
188 | } |
189 | orientation = QQuaternion::fromRotationMatrix(rot3x3); |
190 | position = QVector3D(m(0, 3), m(1, 3), m(2, 3)); |
191 | } |
192 | |
193 | inline void decomposeQMatrix4x4(const QMatrix4x4 &m, Qt3DCore::Sqt &sqt) |
194 | { |
195 | Q_ASSERT(m.isAffine()); |
196 | |
197 | const QMatrix3x3 m3x3(m.toGenericMatrix<3, 3>()); |
198 | |
199 | QMatrix3x3 rot3x3(Qt::Uninitialized); |
200 | if (hasScale(m)) { |
201 | decomposeQMatrix3x3(m: m3x3, Q&: rot3x3, D&: sqt.scale, U&: sqt.translation); |
202 | } else { |
203 | // we know there is no scaling part; no need for QDU decomposition |
204 | sqt.scale = QVector3D(1.0f, 1.0f, 1.0f); |
205 | rot3x3 = m3x3; |
206 | } |
207 | sqt.rotation = QQuaternion::fromRotationMatrix(rot3x3); |
208 | sqt.translation = QVector3D(m(0, 3), m(1, 3), m(2, 3)); |
209 | } |
210 | |
211 | QT_END_NAMESPACE |
212 | |
213 | #endif // QT3DCORE_QMATH3D_P_H |
214 | |