1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2017 The Qt Company Ltd and/or its subsidiary(-ies). |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the Qt3D module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | #include "objgeometryloader.h" |
41 | |
42 | #include <QtCore/QLoggingCategory> |
43 | #include <QtCore/QRegularExpression> |
44 | |
45 | QT_BEGIN_NAMESPACE |
46 | |
47 | namespace Qt3DRender { |
48 | |
49 | Q_LOGGING_CATEGORY(ObjGeometryLoaderLog, "Qt3D.ObjGeometryLoader" , QtWarningMsg) |
50 | |
51 | static void addFaceVertex(const FaceIndices &faceIndices, |
52 | QVector<FaceIndices>& faceIndexVector, |
53 | QHash<FaceIndices, unsigned int>& faceIndexMap); |
54 | |
55 | inline uint qHash(const FaceIndices &faceIndices) |
56 | { |
57 | return faceIndices.positionIndex |
58 | + 10 * faceIndices.texCoordIndex |
59 | + 100 * faceIndices.normalIndex; |
60 | } |
61 | |
62 | bool ObjGeometryLoader::doLoad(QIODevice *ioDev, const QString &subMesh) |
63 | { |
64 | // Parse faces taking into account each vertex in a face can index different indices |
65 | // for the positions, normals and texture coords; |
66 | // Generate unique vertices (in OpenGL parlance) and output to points, texCoords, |
67 | // normals and calculate mapping from faces to unique indices |
68 | QVector<QVector3D> positions; |
69 | QVector<QVector3D> normals; |
70 | QVector<QVector2D> texCoords; |
71 | QHash<FaceIndices, unsigned int> faceIndexMap; |
72 | QVector<FaceIndices> faceIndexVector; |
73 | |
74 | bool skipping = false; |
75 | int positionsOffset = 0; |
76 | int normalsOffset = 0; |
77 | int texCoordsOffset = 0; |
78 | |
79 | QRegularExpression subMeshMatch(subMesh); |
80 | if (!subMeshMatch.isValid()) |
81 | subMeshMatch.setPattern(QLatin1String("^(" ) + subMesh + QLatin1String(")$" )); |
82 | Q_ASSERT(subMeshMatch.isValid()); |
83 | |
84 | char lineBuffer[1024]; |
85 | const char *line; |
86 | QByteArray longLine; |
87 | while (!ioDev->atEnd()) { |
88 | // try to read into lineBuffer first, if the line fits (common case) we can do this without expensive allocations |
89 | // if not, fall back to dynamically allocated QByteArrays |
90 | auto lineSize = ioDev->readLine(data: lineBuffer, maxlen: sizeof(lineBuffer)); |
91 | if (lineSize == sizeof(lineBuffer) - 1 && lineBuffer[lineSize - 1] != '\n') { |
92 | longLine = QByteArray(lineBuffer, lineSize); |
93 | longLine += ioDev->readLine(); |
94 | line = longLine.constData(); |
95 | lineSize = longLine.size(); |
96 | } else { |
97 | line = lineBuffer; |
98 | } |
99 | |
100 | if (lineSize > 0 && line[0] != '#') { |
101 | if (line[lineSize - 1] == '\n') |
102 | --lineSize; // chop newline |
103 | if (line[lineSize - 1] == '\r') |
104 | --lineSize; // chop newline also for CRLF format |
105 | while (line[lineSize - 1] == ' ' || line[lineSize - 1] == '\t') |
106 | --lineSize; // chop trailing spaces |
107 | |
108 | const ByteArraySplitter tokens(line, line + lineSize, ' ', Qt::SkipEmptyParts); |
109 | |
110 | if (qstrncmp(str1: tokens.charPtrAt(index: 0), str2: "v " , len: 2) == 0) { |
111 | if (tokens.size() < 4) { |
112 | qCWarning(ObjGeometryLoaderLog) << "Unsupported number of components in vertex" ; |
113 | } else { |
114 | if (!skipping) { |
115 | const float x = tokens.floatAt(index: 1); |
116 | const float y = tokens.floatAt(index: 2); |
117 | const float z = tokens.floatAt(index: 3); |
118 | positions.append(t: QVector3D(x, y, z)); |
119 | } else { |
120 | positionsOffset++; |
121 | } |
122 | } |
123 | } else if (m_loadTextureCoords && qstrncmp(str1: tokens.charPtrAt(index: 0), str2: "vt " , len: 3) == 0) { |
124 | if (tokens.size() < 3) { |
125 | qCWarning(ObjGeometryLoaderLog) << "Unsupported number of components in texture coordinate" ; |
126 | } else { |
127 | if (!skipping) { |
128 | // Process texture coordinate |
129 | const float s = tokens.floatAt(index: 1); |
130 | const float t = tokens.floatAt(index: 2); |
131 | texCoords.append(t: QVector2D(s, t)); |
132 | } else { |
133 | ++texCoordsOffset; |
134 | } |
135 | } |
136 | } else if (qstrncmp(str1: tokens.charPtrAt(index: 0), str2: "vn " , len: 3) == 0) { |
137 | if (tokens.size() < 4) { |
138 | qCWarning(ObjGeometryLoaderLog) << "Unsupported number of components in vertex normal" ; |
139 | } else { |
140 | if (!skipping) { |
141 | const float x = tokens.floatAt(index: 1); |
142 | const float y = tokens.floatAt(index: 2); |
143 | const float z = tokens.floatAt(index: 3); |
144 | normals.append(t: QVector3D(x, y, z)); |
145 | } else { |
146 | ++normalsOffset; |
147 | } |
148 | } |
149 | } else if (!skipping && tokens.size() >= 4 && qstrncmp(str1: tokens.charPtrAt(index: 0), str2: "f " , len: 2) == 0) { |
150 | // Process face |
151 | int faceVertices = tokens.size() - 1; |
152 | |
153 | QVarLengthArray<FaceIndices, 4> face; // try to avoid allocations in the common case of triangulated data |
154 | face.reserve(asize: faceVertices); |
155 | |
156 | for (int i = 0; i < faceVertices; i++) { |
157 | FaceIndices faceIndices; |
158 | const ByteArraySplitter indices = tokens.splitterAt(index: i + 1, delimiter: '/', splitBehavior: Qt::KeepEmptyParts); |
159 | switch (indices.size()) { |
160 | case 3: |
161 | faceIndices.normalIndex = indices.intAt(index: 2) - 1 - normalsOffset; // fall through |
162 | Q_FALLTHROUGH(); |
163 | case 2: |
164 | faceIndices.texCoordIndex = indices.intAt(index: 1) - 1 - texCoordsOffset; // fall through |
165 | Q_FALLTHROUGH(); |
166 | case 1: |
167 | faceIndices.positionIndex = indices.intAt(index: 0) - 1 - positionsOffset; |
168 | break; |
169 | default: |
170 | qCWarning(ObjGeometryLoaderLog) << "Unsupported number of indices in face element" ; |
171 | } |
172 | |
173 | face.append(t: faceIndices); |
174 | } |
175 | |
176 | // If number of edges in face is greater than 3, |
177 | // decompose into triangles as a triangle fan. |
178 | FaceIndices v0 = face[0]; |
179 | FaceIndices v1 = face[1]; |
180 | FaceIndices v2 = face[2]; |
181 | |
182 | // First face |
183 | addFaceVertex(faceIndices: v0, faceIndexVector, faceIndexMap); |
184 | addFaceVertex(faceIndices: v1, faceIndexVector, faceIndexMap); |
185 | addFaceVertex(faceIndices: v2, faceIndexVector, faceIndexMap); |
186 | |
187 | for (int i = 3; i < face.size(); ++i) { |
188 | v1 = v2; |
189 | v2 = face[i]; |
190 | addFaceVertex(faceIndices: v0, faceIndexVector, faceIndexMap); |
191 | addFaceVertex(faceIndices: v1, faceIndexVector, faceIndexMap); |
192 | addFaceVertex(faceIndices: v2, faceIndexVector, faceIndexMap); |
193 | } |
194 | |
195 | // end of face |
196 | } else if (qstrncmp(str1: tokens.charPtrAt(index: 0), str2: "o " , len: 2) == 0) { |
197 | if (tokens.size() < 2) { |
198 | qCWarning(ObjGeometryLoaderLog) << "Missing submesh name" ; |
199 | } else { |
200 | if (!subMesh.isEmpty() ) { |
201 | const QString objName = tokens.stringAt(index: 1); |
202 | QRegularExpressionMatch match = subMeshMatch.match(subject: objName); |
203 | skipping = !match.hasMatch(); |
204 | } |
205 | } |
206 | } |
207 | } // empty input line |
208 | } // while (!ioDev->atEnd()) |
209 | |
210 | // Iterate over the faceIndexMap and pull out pos, texCoord and normal data |
211 | // thereby generating unique vertices of data (by OpenGL definition) |
212 | const int vertexCount = faceIndexMap.size(); |
213 | const bool hasTexCoords = !texCoords.isEmpty(); |
214 | const bool hasNormals = !normals.isEmpty(); |
215 | |
216 | m_points.resize(asize: vertexCount); |
217 | m_texCoords.clear(); |
218 | if (hasTexCoords) |
219 | m_texCoords.resize(asize: vertexCount); |
220 | m_normals.clear(); |
221 | if (hasNormals) |
222 | m_normals.resize(asize: vertexCount); |
223 | |
224 | for (auto it = faceIndexMap.cbegin(), endIt = faceIndexMap.cend(); it != endIt; ++it) { |
225 | const uint positionIndex = it.key().positionIndex; |
226 | const uint texCoordIndex = it.key().texCoordIndex; |
227 | const uint normalIndex = it.key().normalIndex; |
228 | |
229 | m_points[it.value()] = (positionIndex < uint(positions.size())) ? positions[positionIndex] : QVector3D(); |
230 | if (hasTexCoords) |
231 | m_texCoords[it.value()] = (texCoordIndex < uint(texCoords.size())) ? texCoords[texCoordIndex] : QVector2D(); |
232 | if (hasNormals) |
233 | m_normals[it.value()] = (normalIndex < uint(normals.size())) ? normals[normalIndex] : QVector3D(); |
234 | } |
235 | |
236 | // Now iterate over the face indices and lookup the unique vertex index |
237 | const int indexCount = faceIndexVector.size(); |
238 | m_indices.clear(); |
239 | m_indices.reserve(asize: indexCount); |
240 | for (const FaceIndices faceIndices : qAsConst(t&: faceIndexVector)) { |
241 | const unsigned int i = faceIndexMap.value(akey: faceIndices); |
242 | m_indices.append(t: i); |
243 | } |
244 | |
245 | return true; |
246 | } |
247 | |
248 | static void addFaceVertex(const FaceIndices &faceIndices, |
249 | QVector<FaceIndices>& faceIndexVector, |
250 | QHash<FaceIndices, unsigned int>&faceIndexMap) |
251 | { |
252 | if (faceIndices.positionIndex != std::numeric_limits<unsigned int>::max()) { |
253 | faceIndexVector.append(t: faceIndices); |
254 | if (!faceIndexMap.contains(akey: faceIndices)) |
255 | faceIndexMap.insert(akey: faceIndices, avalue: faceIndexMap.size()); |
256 | } else { |
257 | qCWarning(ObjGeometryLoaderLog) << "Missing position index" ; |
258 | } |
259 | } |
260 | |
261 | } // namespace Qt3DRender |
262 | |
263 | QT_END_NAMESPACE |
264 | |