| 1 | /**************************************************************************** | 
| 2 | ** | 
| 3 | ** Copyright (C) 2012 Digia Plc and/or its subsidiary(-ies). | 
| 4 | ** Copyright (C) 2015 Klaralvdalens Datakonsult AB (KDAB). | 
| 5 | ** Contact: https://www.qt.io/licensing/ | 
| 6 | ** | 
| 7 | ** This file is part of the Qt3D module of the Qt Toolkit. | 
| 8 | ** | 
| 9 | ** $QT_BEGIN_LICENSE:LGPL$ | 
| 10 | ** Commercial License Usage | 
| 11 | ** Licensees holding valid commercial Qt licenses may use this file in | 
| 12 | ** accordance with the commercial license agreement provided with the | 
| 13 | ** Software or, alternatively, in accordance with the terms contained in | 
| 14 | ** a written agreement between you and The Qt Company. For licensing terms | 
| 15 | ** and conditions see https://www.qt.io/terms-conditions. For further | 
| 16 | ** information use the contact form at https://www.qt.io/contact-us. | 
| 17 | ** | 
| 18 | ** GNU Lesser General Public License Usage | 
| 19 | ** Alternatively, this file may be used under the terms of the GNU Lesser | 
| 20 | ** General Public License version 3 as published by the Free Software | 
| 21 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the | 
| 22 | ** packaging of this file. Please review the following information to | 
| 23 | ** ensure the GNU Lesser General Public License version 3 requirements | 
| 24 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. | 
| 25 | ** | 
| 26 | ** GNU General Public License Usage | 
| 27 | ** Alternatively, this file may be used under the terms of the GNU | 
| 28 | ** General Public License version 2.0 or (at your option) the GNU General | 
| 29 | ** Public license version 3 or any later version approved by the KDE Free | 
| 30 | ** Qt Foundation. The licenses are as published by the Free Software | 
| 31 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 | 
| 32 | ** included in the packaging of this file. Please review the following | 
| 33 | ** information to ensure the GNU General Public License requirements will | 
| 34 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and | 
| 35 | ** https://www.gnu.org/licenses/gpl-3.0.html. | 
| 36 | ** | 
| 37 | ** $QT_END_LICENSE$ | 
| 38 | ** | 
| 39 | ****************************************************************************/ | 
| 40 |  | 
| 41 | #include <Qt3DRender/private/qray3d_p.h> | 
| 42 | #include <QtCore/qdebug.h> | 
| 43 |  | 
| 44 | QT_BEGIN_NAMESPACE | 
| 45 |  | 
| 46 | namespace Qt3DRender { | 
| 47 | namespace RayCasting { | 
| 48 |  | 
| 49 | /*! | 
| 50 |     \namespace Qt3DRender::RayCasting | 
| 51 |     \internal | 
| 52 | */ | 
| 53 |  | 
| 54 | /*! | 
| 55 |     \internal | 
| 56 |     \class Qt3DRender::RayCasting::QRay3D | 
| 57 |     \inmodule Qt3DRender | 
| 58 |     \brief The QRay3D class defines a directional line in 3D space extending through an origin point. | 
| 59 |     \since 5.5 | 
| 60 |     \ingroup qt3d | 
| 61 |     \ingroup qt3d::math | 
| 62 |  | 
| 63 |     A ray is defined by the origin() point and the direction() vector. | 
| 64 |     Rays are infinite in length, extending out from origin() in | 
| 65 |     both directions.  If the direction() is zero length, then the | 
| 66 |     behavior of the class is undefined. | 
| 67 |  | 
| 68 |     A ray can be thought of as a one-dimensional co-ordinate system. | 
| 69 |     If the co-ordinate is \b t then the origin() point is at | 
| 70 |     \b t = 0, the point origin() + direction() is at \b t = 1, | 
| 71 |     and the point origin() - direction() is at \b t = -1. | 
| 72 |     The point() method can be used to obtain the position of a point | 
| 73 |     within this one-dimensional co-ordinate system. The projectedDistance() | 
| 74 |     method can be used to convert a point into a value in this | 
| 75 |     one-dimensional co-ordinate system. | 
| 76 | */ | 
| 77 |  | 
| 78 | /*! | 
| 79 |     \fn Qt3DRender::RayCasting::QRay3D::QRay3D() | 
| 80 |  | 
| 81 |     Construct a default ray with an origin() of (0, 0, 0), a | 
| 82 |     direction() of (0, 0, 1) and a distance of 1. | 
| 83 | */ | 
| 84 | QRay3D::QRay3D() | 
| 85 |     : m_direction(0.0f, 0.0f, 1.0f) | 
| 86 |     , m_distance(1.0f) | 
| 87 | { | 
| 88 | } | 
| 89 |  | 
| 90 | /*! | 
| 91 |     \fn Qt3DRender::RayCasting::QRay3D::QRay3D(const Vector3D &origin, const Vector3D &direction, float distance) | 
| 92 |  | 
| 93 |     Construct a ray given its defining \a origin, \a direction and \a distance. | 
| 94 |     The \a direction does not need to be normalized. | 
| 95 |  | 
| 96 |     To construct a ray that passes through two points, use the following: | 
| 97 |  | 
| 98 |     \code | 
| 99 |     QRay3D thruAB(pointA, pointB - pointA); | 
| 100 |     \endcode | 
| 101 | */ | 
| 102 | QRay3D::QRay3D(const Vector3D &origin, const Vector3D &direction, float distance) | 
| 103 |     : m_origin(origin) | 
| 104 |     , m_direction(direction.normalized()) | 
| 105 |     , m_distance(distance) | 
| 106 | {} | 
| 107 |  | 
| 108 | QRay3D::~QRay3D() | 
| 109 | { | 
| 110 | } | 
| 111 |  | 
| 112 | /*! | 
| 113 |     \fn QVector3D Qt3DRender::RayCasting::QRay3D::origin() const | 
| 114 |  | 
| 115 |     Returns the origin of this ray.  The default value is (0, 0, 0). | 
| 116 |  | 
| 117 |     \sa setOrigin(), direction() | 
| 118 | */ | 
| 119 | Vector3D QRay3D::origin() const | 
| 120 | { | 
| 121 |     return m_origin; | 
| 122 | } | 
| 123 |  | 
| 124 | /*! | 
| 125 |     \fn void Qt3DRender::RayCasting::QRay3D::setOrigin(const Vector3D &value) | 
| 126 |  | 
| 127 |     Sets the origin point of this ray to \a value. | 
| 128 |  | 
| 129 |     \sa origin(), setDirection() | 
| 130 |  */ | 
| 131 | void QRay3D::setOrigin(const Vector3D &value) | 
| 132 | { | 
| 133 |     m_origin = value; | 
| 134 | } | 
| 135 |  | 
| 136 | /*! | 
| 137 |     \fn QVector3D Qt3DRender::RayCasting::QRay3D::direction() const | 
| 138 |  | 
| 139 |     Returns the direction vector of this ray.  The default value is (0, 0, 1). | 
| 140 |  | 
| 141 |     \sa setDirection(), origin() | 
| 142 | */ | 
| 143 | Vector3D QRay3D::direction() const | 
| 144 | { | 
| 145 |     return m_direction; | 
| 146 | } | 
| 147 |  | 
| 148 | /*! | 
| 149 |     \fn void Qt3DRender::RayCasting::QRay3D::setDirection(const Vector3D &direction) | 
| 150 |  | 
| 151 |     Sets the direction vector of this ray to \a direction. | 
| 152 |  | 
| 153 |     \sa direction(), setOrigin() | 
| 154 | */ | 
| 155 | void QRay3D::setDirection(const Vector3D &value) | 
| 156 | { | 
| 157 |     if (value.isNull()) | 
| 158 |         return; | 
| 159 |  | 
| 160 |     m_direction = value.normalized(); | 
| 161 | } | 
| 162 |  | 
| 163 | float QRay3D::distance() const | 
| 164 | { | 
| 165 |     return m_distance; | 
| 166 | } | 
| 167 |  | 
| 168 | void QRay3D::setDistance(float distance) | 
| 169 | { | 
| 170 |     m_distance = distance; | 
| 171 | } | 
| 172 |  | 
| 173 | Vector3D QRay3D::point(float t) const | 
| 174 | { | 
| 175 |     return m_origin + t * m_direction; | 
| 176 | } | 
| 177 |  | 
| 178 | QRay3D &QRay3D::transform(const Matrix4x4 &matrix) | 
| 179 | { | 
| 180 |     m_origin = matrix * m_origin; | 
| 181 |     m_direction = matrix.mapVector(vector: m_direction).normalized(); | 
| 182 |  | 
| 183 |     return *this; | 
| 184 | } | 
| 185 |  | 
| 186 | QRay3D QRay3D::transformed(const Matrix4x4 &matrix) const | 
| 187 | { | 
| 188 |     return QRay3D(matrix * m_origin, matrix.mapVector(vector: m_direction).normalized()); | 
| 189 | } | 
| 190 |  | 
| 191 | bool QRay3D::operator==(const QRay3D &other) const | 
| 192 | { | 
| 193 |     return m_origin == other.origin() && m_direction == other.direction(); | 
| 194 | } | 
| 195 |  | 
| 196 | bool QRay3D::operator!=(const QRay3D &other) const | 
| 197 | { | 
| 198 |     return !(*this == other); | 
| 199 | } | 
| 200 |  | 
| 201 | /*! | 
| 202 |     Returns \c true if \a point lies on this ray; \c false otherwise. | 
| 203 | */ | 
| 204 | bool QRay3D::contains(const Vector3D &point) const | 
| 205 | { | 
| 206 |     Vector3D  ppVec(point - m_origin); | 
| 207 |     if (ppVec.isNull()) // point coincides with origin | 
| 208 |         return true; | 
| 209 |     const float dot = Vector3D ::dotProduct(a: ppVec, b: m_direction); | 
| 210 |     if (qFuzzyIsNull(f: dot)) | 
| 211 |         return false; | 
| 212 |     return qFuzzyCompare(p1: dot*dot, p2: ppVec.lengthSquared() * m_direction.lengthSquared()); | 
| 213 | } | 
| 214 |  | 
| 215 | /*! | 
| 216 |     Returns \c true if \a ray lies on this ray; \c false otherwise. If true, | 
| 217 |     this implies that the two rays are actually the same, but with | 
| 218 |     different origin() points or an inverted direction(). | 
| 219 | */ | 
| 220 | bool QRay3D::contains(const QRay3D &ray) const | 
| 221 | { | 
| 222 |     const float dot = Vector3D ::dotProduct(a: m_direction, b: ray.direction()); | 
| 223 |     if (!qFuzzyCompare(p1: dot*dot, p2: m_direction.lengthSquared() * ray.direction().lengthSquared())) | 
| 224 |         return false; | 
| 225 |     return contains(point: ray.origin()); | 
| 226 | } | 
| 227 |  | 
| 228 | /*! | 
| 229 |     \fn QVector3D Qt3DRender::RayCasting::QRay3D::point(float t) const | 
| 230 |  | 
| 231 |     Returns the point on the ray defined by moving \a t units | 
| 232 |     along the ray in the direction of the direction() vector. | 
| 233 |     Note that \a t may be negative in which case the point returned | 
| 234 |     will lie behind the origin() point with respect to the | 
| 235 |     direction() vector. | 
| 236 |  | 
| 237 |     The units for \a t are defined by direction().  The return value | 
| 238 |     is precisely origin() + t * direction(). | 
| 239 |  | 
| 240 |     \sa projectedDistance(), distance() | 
| 241 | */ | 
| 242 |  | 
| 243 | /*! | 
| 244 |     Returns the number of direction() units along the ray from origin() | 
| 245 |     to \a point.  Essentially, this function computes the value t, where | 
| 246 |     \a point = origin() + t * direction().  If \a point is not on the ray, | 
| 247 |     then the closest point that is on the ray will be used instead. | 
| 248 |  | 
| 249 |     If the return value is positive, then \a point lies in front of | 
| 250 |     the origin() with respect to the direction() vector.  If the return | 
| 251 |     value is negative, then \a point lies behind the origin() with | 
| 252 |     respect to the direction() vector. | 
| 253 |  | 
| 254 |     \sa point(), project() | 
| 255 | */ | 
| 256 | float QRay3D::projectedDistance(const Vector3D  &point) const | 
| 257 | { | 
| 258 |     Q_ASSERT(!m_direction.isNull()); | 
| 259 |  | 
| 260 |     return Vector3D ::dotProduct(a: point - m_origin, b: m_direction) / | 
| 261 |                 m_direction.lengthSquared(); | 
| 262 | } | 
| 263 |  | 
| 264 | /*! | 
| 265 |     Returns the projection of \a vector onto this ray.  In the | 
| 266 |     following diagram, the dotted line is the ray, and V is the | 
| 267 |     \a vector.  The return value will be the vector V': | 
| 268 |  | 
| 269 |     \image qray3d-project.png | 
| 270 |  | 
| 271 |     \sa projectedDistance() | 
| 272 | */ | 
| 273 | Vector3D  QRay3D::project(const Vector3D &vector) const | 
| 274 | { | 
| 275 |     Vector3D  norm = m_direction.normalized(); | 
| 276 |     return Vector3D ::dotProduct(a: vector, b: norm) * norm; | 
| 277 | } | 
| 278 |  | 
| 279 | /*! | 
| 280 |     Returns the minimum distance from this ray to \a point, or equivalently | 
| 281 |     the length of a line perpendicular to this ray which passes through | 
| 282 |     \a point.  If \a point is on the ray, then this function will return zero. | 
| 283 |  | 
| 284 |     \sa point() | 
| 285 | */ | 
| 286 | float QRay3D::distance(const Vector3D  &point) const | 
| 287 | { | 
| 288 |     float t = projectedDistance(point); | 
| 289 |     return (point - (m_origin + t * m_direction)).length(); | 
| 290 | } | 
| 291 |  | 
| 292 | /*! | 
| 293 |     \fn Qt3DRender::RayCasting::QRay3D &Qt3DRender::RayCasting::QRay3D::transform(const Matrix4x4 &matrix) | 
| 294 |  | 
| 295 |     Transforms this ray using \a matrix, replacing origin() and | 
| 296 |     direction() with the transformed versions. | 
| 297 |  | 
| 298 |     \sa transformed() | 
| 299 | */ | 
| 300 |  | 
| 301 | /*! | 
| 302 |     \fn Qt3DRender::RayCasting::QRay3D Qt3DRender::RayCasting::QRay3D::transformed(const Matrix4x4 &matrix) const | 
| 303 |  | 
| 304 |     Returns a new ray that is formed by transforming origin() | 
| 305 |     and direction() using \a matrix. | 
| 306 |  | 
| 307 |     \sa transform() | 
| 308 | */ | 
| 309 |  | 
| 310 | /*! | 
| 311 |     \fn bool Qt3DRender::RayCasting::QRay3D::operator==(const QRay3D &other) const | 
| 312 |  | 
| 313 |     Returns \c true if this ray is the same as \a other; \c false otherwise. | 
| 314 |  | 
| 315 |     \sa operator!=() | 
| 316 | */ | 
| 317 |  | 
| 318 | /*! | 
| 319 |     \fn bool Qt3DRender::RayCasting::QRay3D::operator!=(const QRay3D &other) const | 
| 320 |  | 
| 321 |     Returns \c true if this ray is not the same as \a other; \c false otherwise. | 
| 322 |  | 
| 323 |     \sa operator==() | 
| 324 | */ | 
| 325 |  | 
| 326 | /*! | 
| 327 |     \fn bool qFuzzyCompare(const Qt3DRender::RayCasting::QRay3D &ray1, const Qt3DRender::RayCasting::QRay3D &ray2) | 
| 328 |     \relates  Qt3DRender::RayCasting::QRay3D | 
| 329 |  | 
| 330 |     Returns \c true if \a ray1 and \a ray2 are almost equal; \c false | 
| 331 |     otherwise. | 
| 332 | */ | 
| 333 |  | 
| 334 | #ifndef QT_NO_DEBUG_STREAM | 
| 335 |  | 
| 336 | QDebug operator<<(QDebug dbg, const QRay3D &ray) | 
| 337 | { | 
| 338 |     QDebugStateSaver saver(dbg); | 
| 339 |     dbg.nospace() << "QRay3D(origin("  | 
| 340 |         << ray.origin().x() << ", "  << ray.origin().y() << ", "  | 
| 341 |         << ray.origin().z() << ") - direction("  | 
| 342 |         << ray.direction().x() << ", "  << ray.direction().y() << ", "  | 
| 343 |         << ray.direction().z() << ") - distance("  << ray.distance() << "))" ; | 
| 344 |     return dbg; | 
| 345 | } | 
| 346 |  | 
| 347 | #endif | 
| 348 |  | 
| 349 | #ifndef QT_NO_DATASTREAM | 
| 350 |  | 
| 351 | /*! | 
| 352 |     \relates Qt3DRender::RayCasting::QRay3D | 
| 353 |  | 
| 354 |     Writes the given \a ray to the given \a stream and returns a | 
| 355 |     reference to the stream. | 
| 356 | */ | 
| 357 | QDataStream &operator<<(QDataStream &stream, const QRay3D &ray) | 
| 358 | { | 
| 359 |     stream << convertToQVector3D(v: ray.origin()); | 
| 360 |     stream << convertToQVector3D(v: ray.direction()); | 
| 361 |     if (stream.version() >= QDataStream::Qt_5_11) | 
| 362 |         stream << ray.distance(); | 
| 363 |     return stream; | 
| 364 | } | 
| 365 |  | 
| 366 | /*! | 
| 367 |     \relates Qt3DRender::RayCasting::QRay3D | 
| 368 |  | 
| 369 |     Reads a 3D ray from the given \a stream into the given \a ray | 
| 370 |     and returns a reference to the stream. | 
| 371 | */ | 
| 372 | QDataStream &operator>>(QDataStream &stream, QRay3D &ray) | 
| 373 | { | 
| 374 |     QVector3D origin, direction; | 
| 375 |     float distance = 1.f; | 
| 376 |  | 
| 377 |     stream >> origin; | 
| 378 |     stream >> direction; | 
| 379 |     if (stream.version() >= QDataStream::Qt_5_11) | 
| 380 |         stream >> distance; | 
| 381 |     ray = QRay3D(Vector3D(origin), Vector3D(direction), distance); | 
| 382 |     return stream; | 
| 383 | } | 
| 384 |  | 
| 385 | #endif // QT_NO_DATASTREAM | 
| 386 |  | 
| 387 | }  // namespace RayCasting | 
| 388 | }  // namespace Qt3DRender | 
| 389 |  | 
| 390 | QT_END_NAMESPACE | 
| 391 |  |