1 | // Copyright 2010 the V8 project authors. All rights reserved. |
2 | // Redistribution and use in source and binary forms, with or without |
3 | // modification, are permitted provided that the following conditions are |
4 | // met: |
5 | // |
6 | // * Redistributions of source code must retain the above copyright |
7 | // notice, this list of conditions and the following disclaimer. |
8 | // * Redistributions in binary form must reproduce the above |
9 | // copyright notice, this list of conditions and the following |
10 | // disclaimer in the documentation and/or other materials provided |
11 | // with the distribution. |
12 | // * Neither the name of Google Inc. nor the names of its |
13 | // contributors may be used to endorse or promote products derived |
14 | // from this software without specific prior written permission. |
15 | // |
16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
20 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | |
28 | #include <cmath> |
29 | |
30 | #include <double-conversion/bignum-dtoa.h> |
31 | |
32 | #include <double-conversion/bignum.h> |
33 | #include <double-conversion/ieee.h> |
34 | |
35 | namespace double_conversion { |
36 | |
37 | static int NormalizedExponent(uint64_t significand, int exponent) { |
38 | ASSERT(significand != 0); |
39 | while ((significand & Double::kHiddenBit) == 0) { |
40 | significand = significand << 1; |
41 | exponent = exponent - 1; |
42 | } |
43 | return exponent; |
44 | } |
45 | |
46 | |
47 | // Forward declarations: |
48 | // Returns an estimation of k such that 10^(k-1) <= v < 10^k. |
49 | static int EstimatePower(int exponent); |
50 | // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator |
51 | // and denominator. |
52 | static void InitialScaledStartValues(uint64_t significand, |
53 | int exponent, |
54 | bool lower_boundary_is_closer, |
55 | int estimated_power, |
56 | bool need_boundary_deltas, |
57 | Bignum* numerator, |
58 | Bignum* denominator, |
59 | Bignum* delta_minus, |
60 | Bignum* delta_plus); |
61 | // Multiplies numerator/denominator so that its values lies in the range 1-10. |
62 | // Returns decimal_point s.t. |
63 | // v = numerator'/denominator' * 10^(decimal_point-1) |
64 | // where numerator' and denominator' are the values of numerator and |
65 | // denominator after the call to this function. |
66 | static void FixupMultiply10(int estimated_power, bool is_even, |
67 | int* decimal_point, |
68 | Bignum* numerator, Bignum* denominator, |
69 | Bignum* delta_minus, Bignum* delta_plus); |
70 | // Generates digits from the left to the right and stops when the generated |
71 | // digits yield the shortest decimal representation of v. |
72 | static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, |
73 | Bignum* delta_minus, Bignum* delta_plus, |
74 | bool is_even, |
75 | Vector<char> buffer, int* length); |
76 | // Generates 'requested_digits' after the decimal point. |
77 | static void BignumToFixed(int requested_digits, int* decimal_point, |
78 | Bignum* numerator, Bignum* denominator, |
79 | Vector<char>(buffer), int* length); |
80 | // Generates 'count' digits of numerator/denominator. |
81 | // Once 'count' digits have been produced rounds the result depending on the |
82 | // remainder (remainders of exactly .5 round upwards). Might update the |
83 | // decimal_point when rounding up (for example for 0.9999). |
84 | static void GenerateCountedDigits(int count, int* decimal_point, |
85 | Bignum* numerator, Bignum* denominator, |
86 | Vector<char>(buffer), int* length); |
87 | |
88 | |
89 | void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, |
90 | Vector<char> buffer, int* length, int* decimal_point) { |
91 | ASSERT(v > 0); |
92 | ASSERT(!Double(v).IsSpecial()); |
93 | uint64_t significand; |
94 | int exponent; |
95 | bool lower_boundary_is_closer; |
96 | if (mode == BIGNUM_DTOA_SHORTEST_SINGLE) { |
97 | float f = static_cast<float>(v); |
98 | ASSERT(f == v); |
99 | significand = Single(f).Significand(); |
100 | exponent = Single(f).Exponent(); |
101 | lower_boundary_is_closer = Single(f).LowerBoundaryIsCloser(); |
102 | } else { |
103 | significand = Double(v).Significand(); |
104 | exponent = Double(v).Exponent(); |
105 | lower_boundary_is_closer = Double(v).LowerBoundaryIsCloser(); |
106 | } |
107 | bool need_boundary_deltas = |
108 | (mode == BIGNUM_DTOA_SHORTEST || mode == BIGNUM_DTOA_SHORTEST_SINGLE); |
109 | |
110 | bool is_even = (significand & 1) == 0; |
111 | int normalized_exponent = NormalizedExponent(significand, exponent); |
112 | // estimated_power might be too low by 1. |
113 | int estimated_power = EstimatePower(exponent: normalized_exponent); |
114 | |
115 | // Shortcut for Fixed. |
116 | // The requested digits correspond to the digits after the point. If the |
117 | // number is much too small, then there is no need in trying to get any |
118 | // digits. |
119 | if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) { |
120 | buffer[0] = '\0'; |
121 | *length = 0; |
122 | // Set decimal-point to -requested_digits. This is what Gay does. |
123 | // Note that it should not have any effect anyways since the string is |
124 | // empty. |
125 | *decimal_point = -requested_digits; |
126 | return; |
127 | } |
128 | |
129 | Bignum numerator; |
130 | Bignum denominator; |
131 | Bignum delta_minus; |
132 | Bignum delta_plus; |
133 | // Make sure the bignum can grow large enough. The smallest double equals |
134 | // 4e-324. In this case the denominator needs fewer than 324*4 binary digits. |
135 | // The maximum double is 1.7976931348623157e308 which needs fewer than |
136 | // 308*4 binary digits. |
137 | ASSERT(Bignum::kMaxSignificantBits >= 324*4); |
138 | InitialScaledStartValues(significand, exponent, lower_boundary_is_closer, |
139 | estimated_power, need_boundary_deltas, |
140 | numerator: &numerator, denominator: &denominator, |
141 | delta_minus: &delta_minus, delta_plus: &delta_plus); |
142 | // We now have v = (numerator / denominator) * 10^estimated_power. |
143 | FixupMultiply10(estimated_power, is_even, decimal_point, |
144 | numerator: &numerator, denominator: &denominator, |
145 | delta_minus: &delta_minus, delta_plus: &delta_plus); |
146 | // We now have v = (numerator / denominator) * 10^(decimal_point-1), and |
147 | // 1 <= (numerator + delta_plus) / denominator < 10 |
148 | switch (mode) { |
149 | case BIGNUM_DTOA_SHORTEST: |
150 | case BIGNUM_DTOA_SHORTEST_SINGLE: |
151 | GenerateShortestDigits(numerator: &numerator, denominator: &denominator, |
152 | delta_minus: &delta_minus, delta_plus: &delta_plus, |
153 | is_even, buffer, length); |
154 | break; |
155 | case BIGNUM_DTOA_FIXED: |
156 | BignumToFixed(requested_digits, decimal_point, |
157 | numerator: &numerator, denominator: &denominator, |
158 | buffer, length); |
159 | break; |
160 | case BIGNUM_DTOA_PRECISION: |
161 | GenerateCountedDigits(count: requested_digits, decimal_point, |
162 | numerator: &numerator, denominator: &denominator, |
163 | buffer, length); |
164 | break; |
165 | default: |
166 | UNREACHABLE(); |
167 | } |
168 | buffer[*length] = '\0'; |
169 | } |
170 | |
171 | |
172 | // The procedure starts generating digits from the left to the right and stops |
173 | // when the generated digits yield the shortest decimal representation of v. A |
174 | // decimal representation of v is a number lying closer to v than to any other |
175 | // double, so it converts to v when read. |
176 | // |
177 | // This is true if d, the decimal representation, is between m- and m+, the |
178 | // upper and lower boundaries. d must be strictly between them if !is_even. |
179 | // m- := (numerator - delta_minus) / denominator |
180 | // m+ := (numerator + delta_plus) / denominator |
181 | // |
182 | // Precondition: 0 <= (numerator+delta_plus) / denominator < 10. |
183 | // If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit |
184 | // will be produced. This should be the standard precondition. |
185 | static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, |
186 | Bignum* delta_minus, Bignum* delta_plus, |
187 | bool is_even, |
188 | Vector<char> buffer, int* length) { |
189 | // Small optimization: if delta_minus and delta_plus are the same just reuse |
190 | // one of the two bignums. |
191 | if (Bignum::Equal(a: *delta_minus, b: *delta_plus)) { |
192 | delta_plus = delta_minus; |
193 | } |
194 | *length = 0; |
195 | for (;;) { |
196 | uint16_t digit; |
197 | digit = numerator->DivideModuloIntBignum(other: *denominator); |
198 | ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. |
199 | // digit = numerator / denominator (integer division). |
200 | // numerator = numerator % denominator. |
201 | buffer[(*length)++] = static_cast<char>(digit + '0'); |
202 | |
203 | // Can we stop already? |
204 | // If the remainder of the division is less than the distance to the lower |
205 | // boundary we can stop. In this case we simply round down (discarding the |
206 | // remainder). |
207 | // Similarly we test if we can round up (using the upper boundary). |
208 | bool in_delta_room_minus; |
209 | bool in_delta_room_plus; |
210 | if (is_even) { |
211 | in_delta_room_minus = Bignum::LessEqual(a: *numerator, b: *delta_minus); |
212 | } else { |
213 | in_delta_room_minus = Bignum::Less(a: *numerator, b: *delta_minus); |
214 | } |
215 | if (is_even) { |
216 | in_delta_room_plus = |
217 | Bignum::PlusCompare(a: *numerator, b: *delta_plus, c: *denominator) >= 0; |
218 | } else { |
219 | in_delta_room_plus = |
220 | Bignum::PlusCompare(a: *numerator, b: *delta_plus, c: *denominator) > 0; |
221 | } |
222 | if (!in_delta_room_minus && !in_delta_room_plus) { |
223 | // Prepare for next iteration. |
224 | numerator->Times10(); |
225 | delta_minus->Times10(); |
226 | // We optimized delta_plus to be equal to delta_minus (if they share the |
227 | // same value). So don't multiply delta_plus if they point to the same |
228 | // object. |
229 | if (delta_minus != delta_plus) { |
230 | delta_plus->Times10(); |
231 | } |
232 | } else if (in_delta_room_minus && in_delta_room_plus) { |
233 | // Let's see if 2*numerator < denominator. |
234 | // If yes, then the next digit would be < 5 and we can round down. |
235 | int compare = Bignum::PlusCompare(a: *numerator, b: *numerator, c: *denominator); |
236 | if (compare < 0) { |
237 | // Remaining digits are less than .5. -> Round down (== do nothing). |
238 | } else if (compare > 0) { |
239 | // Remaining digits are more than .5 of denominator. -> Round up. |
240 | // Note that the last digit could not be a '9' as otherwise the whole |
241 | // loop would have stopped earlier. |
242 | // We still have an assert here in case the preconditions were not |
243 | // satisfied. |
244 | ASSERT(buffer[(*length) - 1] != '9'); |
245 | buffer[(*length) - 1]++; |
246 | } else { |
247 | // Halfway case. |
248 | // TODO(floitsch): need a way to solve half-way cases. |
249 | // For now let's round towards even (since this is what Gay seems to |
250 | // do). |
251 | |
252 | if ((buffer[(*length) - 1] - '0') % 2 == 0) { |
253 | // Round down => Do nothing. |
254 | } else { |
255 | ASSERT(buffer[(*length) - 1] != '9'); |
256 | buffer[(*length) - 1]++; |
257 | } |
258 | } |
259 | return; |
260 | } else if (in_delta_room_minus) { |
261 | // Round down (== do nothing). |
262 | return; |
263 | } else { // in_delta_room_plus |
264 | // Round up. |
265 | // Note again that the last digit could not be '9' since this would have |
266 | // stopped the loop earlier. |
267 | // We still have an ASSERT here, in case the preconditions were not |
268 | // satisfied. |
269 | ASSERT(buffer[(*length) -1] != '9'); |
270 | buffer[(*length) - 1]++; |
271 | return; |
272 | } |
273 | } |
274 | } |
275 | |
276 | |
277 | // Let v = numerator / denominator < 10. |
278 | // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point) |
279 | // from left to right. Once 'count' digits have been produced we decide wether |
280 | // to round up or down. Remainders of exactly .5 round upwards. Numbers such |
281 | // as 9.999999 propagate a carry all the way, and change the |
282 | // exponent (decimal_point), when rounding upwards. |
283 | static void GenerateCountedDigits(int count, int* decimal_point, |
284 | Bignum* numerator, Bignum* denominator, |
285 | Vector<char> buffer, int* length) { |
286 | ASSERT(count >= 0); |
287 | for (int i = 0; i < count - 1; ++i) { |
288 | uint16_t digit; |
289 | digit = numerator->DivideModuloIntBignum(other: *denominator); |
290 | ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. |
291 | // digit = numerator / denominator (integer division). |
292 | // numerator = numerator % denominator. |
293 | buffer[i] = static_cast<char>(digit + '0'); |
294 | // Prepare for next iteration. |
295 | numerator->Times10(); |
296 | } |
297 | // Generate the last digit. |
298 | uint16_t digit; |
299 | digit = numerator->DivideModuloIntBignum(other: *denominator); |
300 | if (Bignum::PlusCompare(a: *numerator, b: *numerator, c: *denominator) >= 0) { |
301 | digit++; |
302 | } |
303 | ASSERT(digit <= 10); |
304 | buffer[count - 1] = static_cast<char>(digit + '0'); |
305 | // Correct bad digits (in case we had a sequence of '9's). Propagate the |
306 | // carry until we hat a non-'9' or til we reach the first digit. |
307 | for (int i = count - 1; i > 0; --i) { |
308 | if (buffer[i] != '0' + 10) break; |
309 | buffer[i] = '0'; |
310 | buffer[i - 1]++; |
311 | } |
312 | if (buffer[0] == '0' + 10) { |
313 | // Propagate a carry past the top place. |
314 | buffer[0] = '1'; |
315 | (*decimal_point)++; |
316 | } |
317 | *length = count; |
318 | } |
319 | |
320 | |
321 | // Generates 'requested_digits' after the decimal point. It might omit |
322 | // trailing '0's. If the input number is too small then no digits at all are |
323 | // generated (ex.: 2 fixed digits for 0.00001). |
324 | // |
325 | // Input verifies: 1 <= (numerator + delta) / denominator < 10. |
326 | static void BignumToFixed(int requested_digits, int* decimal_point, |
327 | Bignum* numerator, Bignum* denominator, |
328 | Vector<char>(buffer), int* length) { |
329 | // Note that we have to look at more than just the requested_digits, since |
330 | // a number could be rounded up. Example: v=0.5 with requested_digits=0. |
331 | // Even though the power of v equals 0 we can't just stop here. |
332 | if (-(*decimal_point) > requested_digits) { |
333 | // The number is definitively too small. |
334 | // Ex: 0.001 with requested_digits == 1. |
335 | // Set decimal-point to -requested_digits. This is what Gay does. |
336 | // Note that it should not have any effect anyways since the string is |
337 | // empty. |
338 | *decimal_point = -requested_digits; |
339 | *length = 0; |
340 | return; |
341 | } else if (-(*decimal_point) == requested_digits) { |
342 | // We only need to verify if the number rounds down or up. |
343 | // Ex: 0.04 and 0.06 with requested_digits == 1. |
344 | ASSERT(*decimal_point == -requested_digits); |
345 | // Initially the fraction lies in range (1, 10]. Multiply the denominator |
346 | // by 10 so that we can compare more easily. |
347 | denominator->Times10(); |
348 | if (Bignum::PlusCompare(a: *numerator, b: *numerator, c: *denominator) >= 0) { |
349 | // If the fraction is >= 0.5 then we have to include the rounded |
350 | // digit. |
351 | buffer[0] = '1'; |
352 | *length = 1; |
353 | (*decimal_point)++; |
354 | } else { |
355 | // Note that we caught most of similar cases earlier. |
356 | *length = 0; |
357 | } |
358 | return; |
359 | } else { |
360 | // The requested digits correspond to the digits after the point. |
361 | // The variable 'needed_digits' includes the digits before the point. |
362 | int needed_digits = (*decimal_point) + requested_digits; |
363 | GenerateCountedDigits(count: needed_digits, decimal_point, |
364 | numerator, denominator, |
365 | buffer, length); |
366 | } |
367 | } |
368 | |
369 | |
370 | // Returns an estimation of k such that 10^(k-1) <= v < 10^k where |
371 | // v = f * 2^exponent and 2^52 <= f < 2^53. |
372 | // v is hence a normalized double with the given exponent. The output is an |
373 | // approximation for the exponent of the decimal approimation .digits * 10^k. |
374 | // |
375 | // The result might undershoot by 1 in which case 10^k <= v < 10^k+1. |
376 | // Note: this property holds for v's upper boundary m+ too. |
377 | // 10^k <= m+ < 10^k+1. |
378 | // (see explanation below). |
379 | // |
380 | // Examples: |
381 | // EstimatePower(0) => 16 |
382 | // EstimatePower(-52) => 0 |
383 | // |
384 | // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0. |
385 | static int EstimatePower(int exponent) { |
386 | // This function estimates log10 of v where v = f*2^e (with e == exponent). |
387 | // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)). |
388 | // Note that f is bounded by its container size. Let p = 53 (the double's |
389 | // significand size). Then 2^(p-1) <= f < 2^p. |
390 | // |
391 | // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close |
392 | // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)). |
393 | // The computed number undershoots by less than 0.631 (when we compute log3 |
394 | // and not log10). |
395 | // |
396 | // Optimization: since we only need an approximated result this computation |
397 | // can be performed on 64 bit integers. On x86/x64 architecture the speedup is |
398 | // not really measurable, though. |
399 | // |
400 | // Since we want to avoid overshooting we decrement by 1e10 so that |
401 | // floating-point imprecisions don't affect us. |
402 | // |
403 | // Explanation for v's boundary m+: the computation takes advantage of |
404 | // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement |
405 | // (even for denormals where the delta can be much more important). |
406 | |
407 | const double k1Log10 = 0.30102999566398114; // 1/lg(10) |
408 | |
409 | // For doubles len(f) == 53 (don't forget the hidden bit). |
410 | const int kSignificandSize = Double::kSignificandSize; |
411 | double estimate = ceil(x: (exponent + kSignificandSize - 1) * k1Log10 - 1e-10); |
412 | return static_cast<int>(estimate); |
413 | } |
414 | |
415 | |
416 | // See comments for InitialScaledStartValues. |
417 | static void InitialScaledStartValuesPositiveExponent( |
418 | uint64_t significand, int exponent, |
419 | int estimated_power, bool need_boundary_deltas, |
420 | Bignum* numerator, Bignum* denominator, |
421 | Bignum* delta_minus, Bignum* delta_plus) { |
422 | // A positive exponent implies a positive power. |
423 | ASSERT(estimated_power >= 0); |
424 | // Since the estimated_power is positive we simply multiply the denominator |
425 | // by 10^estimated_power. |
426 | |
427 | // numerator = v. |
428 | numerator->AssignUInt64(value: significand); |
429 | numerator->ShiftLeft(shift_amount: exponent); |
430 | // denominator = 10^estimated_power. |
431 | denominator->AssignPowerUInt16(base: 10, exponent: estimated_power); |
432 | |
433 | if (need_boundary_deltas) { |
434 | // Introduce a common denominator so that the deltas to the boundaries are |
435 | // integers. |
436 | denominator->ShiftLeft(shift_amount: 1); |
437 | numerator->ShiftLeft(shift_amount: 1); |
438 | // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common |
439 | // denominator (of 2) delta_plus equals 2^e. |
440 | delta_plus->AssignUInt16(value: 1); |
441 | delta_plus->ShiftLeft(shift_amount: exponent); |
442 | // Same for delta_minus. The adjustments if f == 2^p-1 are done later. |
443 | delta_minus->AssignUInt16(value: 1); |
444 | delta_minus->ShiftLeft(shift_amount: exponent); |
445 | } |
446 | } |
447 | |
448 | |
449 | // See comments for InitialScaledStartValues |
450 | static void InitialScaledStartValuesNegativeExponentPositivePower( |
451 | uint64_t significand, int exponent, |
452 | int estimated_power, bool need_boundary_deltas, |
453 | Bignum* numerator, Bignum* denominator, |
454 | Bignum* delta_minus, Bignum* delta_plus) { |
455 | // v = f * 2^e with e < 0, and with estimated_power >= 0. |
456 | // This means that e is close to 0 (have a look at how estimated_power is |
457 | // computed). |
458 | |
459 | // numerator = significand |
460 | // since v = significand * 2^exponent this is equivalent to |
461 | // numerator = v * / 2^-exponent |
462 | numerator->AssignUInt64(value: significand); |
463 | // denominator = 10^estimated_power * 2^-exponent (with exponent < 0) |
464 | denominator->AssignPowerUInt16(base: 10, exponent: estimated_power); |
465 | denominator->ShiftLeft(shift_amount: -exponent); |
466 | |
467 | if (need_boundary_deltas) { |
468 | // Introduce a common denominator so that the deltas to the boundaries are |
469 | // integers. |
470 | denominator->ShiftLeft(shift_amount: 1); |
471 | numerator->ShiftLeft(shift_amount: 1); |
472 | // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common |
473 | // denominator (of 2) delta_plus equals 2^e. |
474 | // Given that the denominator already includes v's exponent the distance |
475 | // to the boundaries is simply 1. |
476 | delta_plus->AssignUInt16(value: 1); |
477 | // Same for delta_minus. The adjustments if f == 2^p-1 are done later. |
478 | delta_minus->AssignUInt16(value: 1); |
479 | } |
480 | } |
481 | |
482 | |
483 | // See comments for InitialScaledStartValues |
484 | static void InitialScaledStartValuesNegativeExponentNegativePower( |
485 | uint64_t significand, int exponent, |
486 | int estimated_power, bool need_boundary_deltas, |
487 | Bignum* numerator, Bignum* denominator, |
488 | Bignum* delta_minus, Bignum* delta_plus) { |
489 | // Instead of multiplying the denominator with 10^estimated_power we |
490 | // multiply all values (numerator and deltas) by 10^-estimated_power. |
491 | |
492 | // Use numerator as temporary container for power_ten. |
493 | Bignum* power_ten = numerator; |
494 | power_ten->AssignPowerUInt16(base: 10, exponent: -estimated_power); |
495 | |
496 | if (need_boundary_deltas) { |
497 | // Since power_ten == numerator we must make a copy of 10^estimated_power |
498 | // before we complete the computation of the numerator. |
499 | // delta_plus = delta_minus = 10^estimated_power |
500 | delta_plus->AssignBignum(other: *power_ten); |
501 | delta_minus->AssignBignum(other: *power_ten); |
502 | } |
503 | |
504 | // numerator = significand * 2 * 10^-estimated_power |
505 | // since v = significand * 2^exponent this is equivalent to |
506 | // numerator = v * 10^-estimated_power * 2 * 2^-exponent. |
507 | // Remember: numerator has been abused as power_ten. So no need to assign it |
508 | // to itself. |
509 | ASSERT(numerator == power_ten); |
510 | numerator->MultiplyByUInt64(factor: significand); |
511 | |
512 | // denominator = 2 * 2^-exponent with exponent < 0. |
513 | denominator->AssignUInt16(value: 1); |
514 | denominator->ShiftLeft(shift_amount: -exponent); |
515 | |
516 | if (need_boundary_deltas) { |
517 | // Introduce a common denominator so that the deltas to the boundaries are |
518 | // integers. |
519 | numerator->ShiftLeft(shift_amount: 1); |
520 | denominator->ShiftLeft(shift_amount: 1); |
521 | // With this shift the boundaries have their correct value, since |
522 | // delta_plus = 10^-estimated_power, and |
523 | // delta_minus = 10^-estimated_power. |
524 | // These assignments have been done earlier. |
525 | // The adjustments if f == 2^p-1 (lower boundary is closer) are done later. |
526 | } |
527 | } |
528 | |
529 | |
530 | // Let v = significand * 2^exponent. |
531 | // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator |
532 | // and denominator. The functions GenerateShortestDigits and |
533 | // GenerateCountedDigits will then convert this ratio to its decimal |
534 | // representation d, with the required accuracy. |
535 | // Then d * 10^estimated_power is the representation of v. |
536 | // (Note: the fraction and the estimated_power might get adjusted before |
537 | // generating the decimal representation.) |
538 | // |
539 | // The initial start values consist of: |
540 | // - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power. |
541 | // - a scaled (common) denominator. |
542 | // optionally (used by GenerateShortestDigits to decide if it has the shortest |
543 | // decimal converting back to v): |
544 | // - v - m-: the distance to the lower boundary. |
545 | // - m+ - v: the distance to the upper boundary. |
546 | // |
547 | // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator. |
548 | // |
549 | // Let ep == estimated_power, then the returned values will satisfy: |
550 | // v / 10^ep = numerator / denominator. |
551 | // v's boundarys m- and m+: |
552 | // m- / 10^ep == v / 10^ep - delta_minus / denominator |
553 | // m+ / 10^ep == v / 10^ep + delta_plus / denominator |
554 | // Or in other words: |
555 | // m- == v - delta_minus * 10^ep / denominator; |
556 | // m+ == v + delta_plus * 10^ep / denominator; |
557 | // |
558 | // Since 10^(k-1) <= v < 10^k (with k == estimated_power) |
559 | // or 10^k <= v < 10^(k+1) |
560 | // we then have 0.1 <= numerator/denominator < 1 |
561 | // or 1 <= numerator/denominator < 10 |
562 | // |
563 | // It is then easy to kickstart the digit-generation routine. |
564 | // |
565 | // The boundary-deltas are only filled if the mode equals BIGNUM_DTOA_SHORTEST |
566 | // or BIGNUM_DTOA_SHORTEST_SINGLE. |
567 | |
568 | static void InitialScaledStartValues(uint64_t significand, |
569 | int exponent, |
570 | bool lower_boundary_is_closer, |
571 | int estimated_power, |
572 | bool need_boundary_deltas, |
573 | Bignum* numerator, |
574 | Bignum* denominator, |
575 | Bignum* delta_minus, |
576 | Bignum* delta_plus) { |
577 | if (exponent >= 0) { |
578 | InitialScaledStartValuesPositiveExponent( |
579 | significand, exponent, estimated_power, need_boundary_deltas, |
580 | numerator, denominator, delta_minus, delta_plus); |
581 | } else if (estimated_power >= 0) { |
582 | InitialScaledStartValuesNegativeExponentPositivePower( |
583 | significand, exponent, estimated_power, need_boundary_deltas, |
584 | numerator, denominator, delta_minus, delta_plus); |
585 | } else { |
586 | InitialScaledStartValuesNegativeExponentNegativePower( |
587 | significand, exponent, estimated_power, need_boundary_deltas, |
588 | numerator, denominator, delta_minus, delta_plus); |
589 | } |
590 | |
591 | if (need_boundary_deltas && lower_boundary_is_closer) { |
592 | // The lower boundary is closer at half the distance of "normal" numbers. |
593 | // Increase the common denominator and adapt all but the delta_minus. |
594 | denominator->ShiftLeft(shift_amount: 1); // *2 |
595 | numerator->ShiftLeft(shift_amount: 1); // *2 |
596 | delta_plus->ShiftLeft(shift_amount: 1); // *2 |
597 | } |
598 | } |
599 | |
600 | |
601 | // This routine multiplies numerator/denominator so that its values lies in the |
602 | // range 1-10. That is after a call to this function we have: |
603 | // 1 <= (numerator + delta_plus) /denominator < 10. |
604 | // Let numerator the input before modification and numerator' the argument |
605 | // after modification, then the output-parameter decimal_point is such that |
606 | // numerator / denominator * 10^estimated_power == |
607 | // numerator' / denominator' * 10^(decimal_point - 1) |
608 | // In some cases estimated_power was too low, and this is already the case. We |
609 | // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k == |
610 | // estimated_power) but do not touch the numerator or denominator. |
611 | // Otherwise the routine multiplies the numerator and the deltas by 10. |
612 | static void FixupMultiply10(int estimated_power, bool is_even, |
613 | int* decimal_point, |
614 | Bignum* numerator, Bignum* denominator, |
615 | Bignum* delta_minus, Bignum* delta_plus) { |
616 | bool in_range; |
617 | if (is_even) { |
618 | // For IEEE doubles half-way cases (in decimal system numbers ending with 5) |
619 | // are rounded to the closest floating-point number with even significand. |
620 | in_range = Bignum::PlusCompare(a: *numerator, b: *delta_plus, c: *denominator) >= 0; |
621 | } else { |
622 | in_range = Bignum::PlusCompare(a: *numerator, b: *delta_plus, c: *denominator) > 0; |
623 | } |
624 | if (in_range) { |
625 | // Since numerator + delta_plus >= denominator we already have |
626 | // 1 <= numerator/denominator < 10. Simply update the estimated_power. |
627 | *decimal_point = estimated_power + 1; |
628 | } else { |
629 | *decimal_point = estimated_power; |
630 | numerator->Times10(); |
631 | if (Bignum::Equal(a: *delta_minus, b: *delta_plus)) { |
632 | delta_minus->Times10(); |
633 | delta_plus->AssignBignum(other: *delta_minus); |
634 | } else { |
635 | delta_minus->Times10(); |
636 | delta_plus->Times10(); |
637 | } |
638 | } |
639 | } |
640 | |
641 | } // namespace double_conversion |
642 | |