| 1 | // Copyright 2010 the V8 project authors. All rights reserved. |
| 2 | // Redistribution and use in source and binary forms, with or without |
| 3 | // modification, are permitted provided that the following conditions are |
| 4 | // met: |
| 5 | // |
| 6 | // * Redistributions of source code must retain the above copyright |
| 7 | // notice, this list of conditions and the following disclaimer. |
| 8 | // * Redistributions in binary form must reproduce the above |
| 9 | // copyright notice, this list of conditions and the following |
| 10 | // disclaimer in the documentation and/or other materials provided |
| 11 | // with the distribution. |
| 12 | // * Neither the name of Google Inc. nor the names of its |
| 13 | // contributors may be used to endorse or promote products derived |
| 14 | // from this software without specific prior written permission. |
| 15 | // |
| 16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 | |
| 28 | #include <climits> |
| 29 | #include <cstdarg> |
| 30 | |
| 31 | #include <double-conversion/bignum.h> |
| 32 | #include <double-conversion/cached-powers.h> |
| 33 | #include <double-conversion/ieee.h> |
| 34 | #include <double-conversion/strtod.h> |
| 35 | |
| 36 | namespace double_conversion { |
| 37 | |
| 38 | // 2^53 = 9007199254740992. |
| 39 | // Any integer with at most 15 decimal digits will hence fit into a double |
| 40 | // (which has a 53bit significand) without loss of precision. |
| 41 | static const int kMaxExactDoubleIntegerDecimalDigits = 15; |
| 42 | // 2^64 = 18446744073709551616 > 10^19 |
| 43 | static const int kMaxUint64DecimalDigits = 19; |
| 44 | |
| 45 | // Max double: 1.7976931348623157 x 10^308 |
| 46 | // Min non-zero double: 4.9406564584124654 x 10^-324 |
| 47 | // Any x >= 10^309 is interpreted as +infinity. |
| 48 | // Any x <= 10^-324 is interpreted as 0. |
| 49 | // Note that 2.5e-324 (despite being smaller than the min double) will be read |
| 50 | // as non-zero (equal to the min non-zero double). |
| 51 | static const int kMaxDecimalPower = 309; |
| 52 | static const int kMinDecimalPower = -324; |
| 53 | |
| 54 | // 2^64 = 18446744073709551616 |
| 55 | static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF); |
| 56 | |
| 57 | |
| 58 | static const double exact_powers_of_ten[] = { |
| 59 | 1.0, // 10^0 |
| 60 | 10.0, |
| 61 | 100.0, |
| 62 | 1000.0, |
| 63 | 10000.0, |
| 64 | 100000.0, |
| 65 | 1000000.0, |
| 66 | 10000000.0, |
| 67 | 100000000.0, |
| 68 | 1000000000.0, |
| 69 | 10000000000.0, // 10^10 |
| 70 | 100000000000.0, |
| 71 | 1000000000000.0, |
| 72 | 10000000000000.0, |
| 73 | 100000000000000.0, |
| 74 | 1000000000000000.0, |
| 75 | 10000000000000000.0, |
| 76 | 100000000000000000.0, |
| 77 | 1000000000000000000.0, |
| 78 | 10000000000000000000.0, |
| 79 | 100000000000000000000.0, // 10^20 |
| 80 | 1000000000000000000000.0, |
| 81 | // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22 |
| 82 | 10000000000000000000000.0 |
| 83 | }; |
| 84 | static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten); |
| 85 | |
| 86 | // Maximum number of significant digits in the decimal representation. |
| 87 | // In fact the value is 772 (see conversions.cc), but to give us some margin |
| 88 | // we round up to 780. |
| 89 | static const int kMaxSignificantDecimalDigits = 780; |
| 90 | |
| 91 | static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) { |
| 92 | for (int i = 0; i < buffer.length(); i++) { |
| 93 | if (buffer[i] != '0') { |
| 94 | return buffer.SubVector(from: i, to: buffer.length()); |
| 95 | } |
| 96 | } |
| 97 | return Vector<const char>(buffer.start(), 0); |
| 98 | } |
| 99 | |
| 100 | |
| 101 | static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) { |
| 102 | for (int i = buffer.length() - 1; i >= 0; --i) { |
| 103 | if (buffer[i] != '0') { |
| 104 | return buffer.SubVector(from: 0, to: i + 1); |
| 105 | } |
| 106 | } |
| 107 | return Vector<const char>(buffer.start(), 0); |
| 108 | } |
| 109 | |
| 110 | |
| 111 | static void CutToMaxSignificantDigits(Vector<const char> buffer, |
| 112 | int exponent, |
| 113 | char* significant_buffer, |
| 114 | int* significant_exponent) { |
| 115 | for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) { |
| 116 | significant_buffer[i] = buffer[i]; |
| 117 | } |
| 118 | // The input buffer has been trimmed. Therefore the last digit must be |
| 119 | // different from '0'. |
| 120 | ASSERT(buffer[buffer.length() - 1] != '0'); |
| 121 | // Set the last digit to be non-zero. This is sufficient to guarantee |
| 122 | // correct rounding. |
| 123 | significant_buffer[kMaxSignificantDecimalDigits - 1] = '1'; |
| 124 | *significant_exponent = |
| 125 | exponent + (buffer.length() - kMaxSignificantDecimalDigits); |
| 126 | } |
| 127 | |
| 128 | |
| 129 | // Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits. |
| 130 | // If possible the input-buffer is reused, but if the buffer needs to be |
| 131 | // modified (due to cutting), then the input needs to be copied into the |
| 132 | // buffer_copy_space. |
| 133 | static void TrimAndCut(Vector<const char> buffer, int exponent, |
| 134 | char* buffer_copy_space, int space_size, |
| 135 | Vector<const char>* trimmed, int* updated_exponent) { |
| 136 | Vector<const char> left_trimmed = TrimLeadingZeros(buffer); |
| 137 | Vector<const char> right_trimmed = TrimTrailingZeros(buffer: left_trimmed); |
| 138 | exponent += left_trimmed.length() - right_trimmed.length(); |
| 139 | if (right_trimmed.length() > kMaxSignificantDecimalDigits) { |
| 140 | (void) space_size; // Mark variable as used. |
| 141 | ASSERT(space_size >= kMaxSignificantDecimalDigits); |
| 142 | CutToMaxSignificantDigits(buffer: right_trimmed, exponent, |
| 143 | significant_buffer: buffer_copy_space, significant_exponent: updated_exponent); |
| 144 | *trimmed = Vector<const char>(buffer_copy_space, |
| 145 | kMaxSignificantDecimalDigits); |
| 146 | } else { |
| 147 | *trimmed = right_trimmed; |
| 148 | *updated_exponent = exponent; |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | |
| 153 | // Reads digits from the buffer and converts them to a uint64. |
| 154 | // Reads in as many digits as fit into a uint64. |
| 155 | // When the string starts with "1844674407370955161" no further digit is read. |
| 156 | // Since 2^64 = 18446744073709551616 it would still be possible read another |
| 157 | // digit if it was less or equal than 6, but this would complicate the code. |
| 158 | static uint64_t ReadUint64(Vector<const char> buffer, |
| 159 | int* number_of_read_digits) { |
| 160 | uint64_t result = 0; |
| 161 | int i = 0; |
| 162 | while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) { |
| 163 | int digit = buffer[i++] - '0'; |
| 164 | ASSERT(0 <= digit && digit <= 9); |
| 165 | result = 10 * result + digit; |
| 166 | } |
| 167 | *number_of_read_digits = i; |
| 168 | return result; |
| 169 | } |
| 170 | |
| 171 | |
| 172 | // Reads a DiyFp from the buffer. |
| 173 | // The returned DiyFp is not necessarily normalized. |
| 174 | // If remaining_decimals is zero then the returned DiyFp is accurate. |
| 175 | // Otherwise it has been rounded and has error of at most 1/2 ulp. |
| 176 | static void ReadDiyFp(Vector<const char> buffer, |
| 177 | DiyFp* result, |
| 178 | int* remaining_decimals) { |
| 179 | int read_digits; |
| 180 | uint64_t significand = ReadUint64(buffer, number_of_read_digits: &read_digits); |
| 181 | if (buffer.length() == read_digits) { |
| 182 | *result = DiyFp(significand, 0); |
| 183 | *remaining_decimals = 0; |
| 184 | } else { |
| 185 | // Round the significand. |
| 186 | if (buffer[read_digits] >= '5') { |
| 187 | significand++; |
| 188 | } |
| 189 | // Compute the binary exponent. |
| 190 | int exponent = 0; |
| 191 | *result = DiyFp(significand, exponent); |
| 192 | *remaining_decimals = buffer.length() - read_digits; |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | |
| 197 | static bool DoubleStrtod(Vector<const char> trimmed, |
| 198 | int exponent, |
| 199 | double* result) { |
| 200 | #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS) |
| 201 | // NB: Qt uses -Werror=unused-parameter which results in compiler error here |
| 202 | // in this branch. Using "(void)x" idiom to prevent the error. |
| 203 | (void)trimmed; |
| 204 | (void)exponent; |
| 205 | (void)result; |
| 206 | |
| 207 | // On x86 the floating-point stack can be 64 or 80 bits wide. If it is |
| 208 | // 80 bits wide (as is the case on Linux) then double-rounding occurs and the |
| 209 | // result is not accurate. |
| 210 | // We know that Windows32 uses 64 bits and is therefore accurate. |
| 211 | // Note that the ARM simulator is compiled for 32bits. It therefore exhibits |
| 212 | // the same problem. |
| 213 | return false; |
| 214 | #else |
| 215 | if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) { |
| 216 | int read_digits; |
| 217 | // The trimmed input fits into a double. |
| 218 | // If the 10^exponent (resp. 10^-exponent) fits into a double too then we |
| 219 | // can compute the result-double simply by multiplying (resp. dividing) the |
| 220 | // two numbers. |
| 221 | // This is possible because IEEE guarantees that floating-point operations |
| 222 | // return the best possible approximation. |
| 223 | if (exponent < 0 && -exponent < kExactPowersOfTenSize) { |
| 224 | // 10^-exponent fits into a double. |
| 225 | *result = static_cast<double>(ReadUint64(buffer: trimmed, number_of_read_digits: &read_digits)); |
| 226 | ASSERT(read_digits == trimmed.length()); |
| 227 | *result /= exact_powers_of_ten[-exponent]; |
| 228 | return true; |
| 229 | } |
| 230 | if (0 <= exponent && exponent < kExactPowersOfTenSize) { |
| 231 | // 10^exponent fits into a double. |
| 232 | *result = static_cast<double>(ReadUint64(buffer: trimmed, number_of_read_digits: &read_digits)); |
| 233 | ASSERT(read_digits == trimmed.length()); |
| 234 | *result *= exact_powers_of_ten[exponent]; |
| 235 | return true; |
| 236 | } |
| 237 | int remaining_digits = |
| 238 | kMaxExactDoubleIntegerDecimalDigits - trimmed.length(); |
| 239 | if ((0 <= exponent) && |
| 240 | (exponent - remaining_digits < kExactPowersOfTenSize)) { |
| 241 | // The trimmed string was short and we can multiply it with |
| 242 | // 10^remaining_digits. As a result the remaining exponent now fits |
| 243 | // into a double too. |
| 244 | *result = static_cast<double>(ReadUint64(buffer: trimmed, number_of_read_digits: &read_digits)); |
| 245 | ASSERT(read_digits == trimmed.length()); |
| 246 | *result *= exact_powers_of_ten[remaining_digits]; |
| 247 | *result *= exact_powers_of_ten[exponent - remaining_digits]; |
| 248 | return true; |
| 249 | } |
| 250 | } |
| 251 | return false; |
| 252 | #endif |
| 253 | } |
| 254 | |
| 255 | |
| 256 | // Returns 10^exponent as an exact DiyFp. |
| 257 | // The given exponent must be in the range [1; kDecimalExponentDistance[. |
| 258 | static DiyFp AdjustmentPowerOfTen(int exponent) { |
| 259 | ASSERT(0 < exponent); |
| 260 | ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance); |
| 261 | // Simply hardcode the remaining powers for the given decimal exponent |
| 262 | // distance. |
| 263 | ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8); |
| 264 | switch (exponent) { |
| 265 | case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60); |
| 266 | case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57); |
| 267 | case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54); |
| 268 | case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50); |
| 269 | case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47); |
| 270 | case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44); |
| 271 | case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40); |
| 272 | default: |
| 273 | UNREACHABLE(); |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | |
| 278 | // If the function returns true then the result is the correct double. |
| 279 | // Otherwise it is either the correct double or the double that is just below |
| 280 | // the correct double. |
| 281 | static bool DiyFpStrtod(Vector<const char> buffer, |
| 282 | int exponent, |
| 283 | double* result) { |
| 284 | DiyFp input; |
| 285 | int remaining_decimals; |
| 286 | ReadDiyFp(buffer, result: &input, remaining_decimals: &remaining_decimals); |
| 287 | // Since we may have dropped some digits the input is not accurate. |
| 288 | // If remaining_decimals is different than 0 than the error is at most |
| 289 | // .5 ulp (unit in the last place). |
| 290 | // We don't want to deal with fractions and therefore keep a common |
| 291 | // denominator. |
| 292 | const int kDenominatorLog = 3; |
| 293 | const int kDenominator = 1 << kDenominatorLog; |
| 294 | // Move the remaining decimals into the exponent. |
| 295 | exponent += remaining_decimals; |
| 296 | uint64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2); |
| 297 | |
| 298 | int old_e = input.e(); |
| 299 | input.Normalize(); |
| 300 | error <<= old_e - input.e(); |
| 301 | |
| 302 | ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent); |
| 303 | if (exponent < PowersOfTenCache::kMinDecimalExponent) { |
| 304 | *result = 0.0; |
| 305 | return true; |
| 306 | } |
| 307 | DiyFp cached_power; |
| 308 | int cached_decimal_exponent; |
| 309 | PowersOfTenCache::GetCachedPowerForDecimalExponent(requested_exponent: exponent, |
| 310 | power: &cached_power, |
| 311 | found_exponent: &cached_decimal_exponent); |
| 312 | |
| 313 | if (cached_decimal_exponent != exponent) { |
| 314 | int adjustment_exponent = exponent - cached_decimal_exponent; |
| 315 | DiyFp adjustment_power = AdjustmentPowerOfTen(exponent: adjustment_exponent); |
| 316 | input.Multiply(other: adjustment_power); |
| 317 | if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) { |
| 318 | // The product of input with the adjustment power fits into a 64 bit |
| 319 | // integer. |
| 320 | ASSERT(DiyFp::kSignificandSize == 64); |
| 321 | } else { |
| 322 | // The adjustment power is exact. There is hence only an error of 0.5. |
| 323 | error += kDenominator / 2; |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | input.Multiply(other: cached_power); |
| 328 | // The error introduced by a multiplication of a*b equals |
| 329 | // error_a + error_b + error_a*error_b/2^64 + 0.5 |
| 330 | // Substituting a with 'input' and b with 'cached_power' we have |
| 331 | // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp), |
| 332 | // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64 |
| 333 | int error_b = kDenominator / 2; |
| 334 | int error_ab = (error == 0 ? 0 : 1); // We round up to 1. |
| 335 | int fixed_error = kDenominator / 2; |
| 336 | error += error_b + error_ab + fixed_error; |
| 337 | |
| 338 | old_e = input.e(); |
| 339 | input.Normalize(); |
| 340 | error <<= old_e - input.e(); |
| 341 | |
| 342 | // See if the double's significand changes if we add/subtract the error. |
| 343 | int order_of_magnitude = DiyFp::kSignificandSize + input.e(); |
| 344 | int effective_significand_size = |
| 345 | Double::SignificandSizeForOrderOfMagnitude(order: order_of_magnitude); |
| 346 | int precision_digits_count = |
| 347 | DiyFp::kSignificandSize - effective_significand_size; |
| 348 | if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) { |
| 349 | // This can only happen for very small denormals. In this case the |
| 350 | // half-way multiplied by the denominator exceeds the range of an uint64. |
| 351 | // Simply shift everything to the right. |
| 352 | int shift_amount = (precision_digits_count + kDenominatorLog) - |
| 353 | DiyFp::kSignificandSize + 1; |
| 354 | input.set_f(input.f() >> shift_amount); |
| 355 | input.set_e(input.e() + shift_amount); |
| 356 | // We add 1 for the lost precision of error, and kDenominator for |
| 357 | // the lost precision of input.f(). |
| 358 | error = (error >> shift_amount) + 1 + kDenominator; |
| 359 | precision_digits_count -= shift_amount; |
| 360 | } |
| 361 | // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too. |
| 362 | ASSERT(DiyFp::kSignificandSize == 64); |
| 363 | ASSERT(precision_digits_count < 64); |
| 364 | uint64_t one64 = 1; |
| 365 | uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1; |
| 366 | uint64_t precision_bits = input.f() & precision_bits_mask; |
| 367 | uint64_t half_way = one64 << (precision_digits_count - 1); |
| 368 | precision_bits *= kDenominator; |
| 369 | half_way *= kDenominator; |
| 370 | DiyFp rounded_input(input.f() >> precision_digits_count, |
| 371 | input.e() + precision_digits_count); |
| 372 | if (precision_bits >= half_way + error) { |
| 373 | rounded_input.set_f(rounded_input.f() + 1); |
| 374 | } |
| 375 | // If the last_bits are too close to the half-way case than we are too |
| 376 | // inaccurate and round down. In this case we return false so that we can |
| 377 | // fall back to a more precise algorithm. |
| 378 | |
| 379 | *result = Double(rounded_input).value(); |
| 380 | if (half_way - error < precision_bits && precision_bits < half_way + error) { |
| 381 | // Too imprecise. The caller will have to fall back to a slower version. |
| 382 | // However the returned number is guaranteed to be either the correct |
| 383 | // double, or the next-lower double. |
| 384 | return false; |
| 385 | } else { |
| 386 | return true; |
| 387 | } |
| 388 | } |
| 389 | |
| 390 | |
| 391 | // Returns |
| 392 | // - -1 if buffer*10^exponent < diy_fp. |
| 393 | // - 0 if buffer*10^exponent == diy_fp. |
| 394 | // - +1 if buffer*10^exponent > diy_fp. |
| 395 | // Preconditions: |
| 396 | // buffer.length() + exponent <= kMaxDecimalPower + 1 |
| 397 | // buffer.length() + exponent > kMinDecimalPower |
| 398 | // buffer.length() <= kMaxDecimalSignificantDigits |
| 399 | static int CompareBufferWithDiyFp(Vector<const char> buffer, |
| 400 | int exponent, |
| 401 | DiyFp diy_fp) { |
| 402 | ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1); |
| 403 | ASSERT(buffer.length() + exponent > kMinDecimalPower); |
| 404 | ASSERT(buffer.length() <= kMaxSignificantDecimalDigits); |
| 405 | // Make sure that the Bignum will be able to hold all our numbers. |
| 406 | // Our Bignum implementation has a separate field for exponents. Shifts will |
| 407 | // consume at most one bigit (< 64 bits). |
| 408 | // ln(10) == 3.3219... |
| 409 | ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits); |
| 410 | Bignum buffer_bignum; |
| 411 | Bignum diy_fp_bignum; |
| 412 | buffer_bignum.AssignDecimalString(value: buffer); |
| 413 | diy_fp_bignum.AssignUInt64(value: diy_fp.f()); |
| 414 | if (exponent >= 0) { |
| 415 | buffer_bignum.MultiplyByPowerOfTen(exponent); |
| 416 | } else { |
| 417 | diy_fp_bignum.MultiplyByPowerOfTen(exponent: -exponent); |
| 418 | } |
| 419 | if (diy_fp.e() > 0) { |
| 420 | diy_fp_bignum.ShiftLeft(shift_amount: diy_fp.e()); |
| 421 | } else { |
| 422 | buffer_bignum.ShiftLeft(shift_amount: -diy_fp.e()); |
| 423 | } |
| 424 | return Bignum::Compare(a: buffer_bignum, b: diy_fp_bignum); |
| 425 | } |
| 426 | |
| 427 | |
| 428 | // Returns true if the guess is the correct double. |
| 429 | // Returns false, when guess is either correct or the next-lower double. |
| 430 | static bool ComputeGuess(Vector<const char> trimmed, int exponent, |
| 431 | double* guess) { |
| 432 | if (trimmed.length() == 0) { |
| 433 | *guess = 0.0; |
| 434 | return true; |
| 435 | } |
| 436 | if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) { |
| 437 | *guess = Double::Infinity(); |
| 438 | return true; |
| 439 | } |
| 440 | if (exponent + trimmed.length() <= kMinDecimalPower) { |
| 441 | *guess = 0.0; |
| 442 | return true; |
| 443 | } |
| 444 | |
| 445 | if (DoubleStrtod(trimmed, exponent, result: guess) || |
| 446 | DiyFpStrtod(buffer: trimmed, exponent, result: guess)) { |
| 447 | return true; |
| 448 | } |
| 449 | if (*guess == Double::Infinity()) { |
| 450 | return true; |
| 451 | } |
| 452 | return false; |
| 453 | } |
| 454 | |
| 455 | double Strtod(Vector<const char> buffer, int exponent) { |
| 456 | char copy_buffer[kMaxSignificantDecimalDigits]; |
| 457 | Vector<const char> trimmed; |
| 458 | int updated_exponent; |
| 459 | TrimAndCut(buffer, exponent, buffer_copy_space: copy_buffer, space_size: kMaxSignificantDecimalDigits, |
| 460 | trimmed: &trimmed, updated_exponent: &updated_exponent); |
| 461 | exponent = updated_exponent; |
| 462 | |
| 463 | double guess; |
| 464 | bool is_correct = ComputeGuess(trimmed, exponent, guess: &guess); |
| 465 | if (is_correct) return guess; |
| 466 | |
| 467 | DiyFp upper_boundary = Double(guess).UpperBoundary(); |
| 468 | int comparison = CompareBufferWithDiyFp(buffer: trimmed, exponent, diy_fp: upper_boundary); |
| 469 | if (comparison < 0) { |
| 470 | return guess; |
| 471 | } else if (comparison > 0) { |
| 472 | return Double(guess).NextDouble(); |
| 473 | } else if ((Double(guess).Significand() & 1) == 0) { |
| 474 | // Round towards even. |
| 475 | return guess; |
| 476 | } else { |
| 477 | return Double(guess).NextDouble(); |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | static float SanitizedDoubletof(double d) { |
| 482 | ASSERT(d >= 0.0); |
| 483 | // ASAN has a sanitize check that disallows casting doubles to floats if |
| 484 | // they are too big. |
| 485 | // https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#available-checks |
| 486 | // The behavior should be covered by IEEE 754, but some projects use this |
| 487 | // flag, so work around it. |
| 488 | float max_finite = 3.4028234663852885981170418348451692544e+38; |
| 489 | // The half-way point between the max-finite and infinity value. |
| 490 | // Since infinity has an even significand everything equal or greater than |
| 491 | // this value should become infinity. |
| 492 | double half_max_finite_infinity = |
| 493 | 3.40282356779733661637539395458142568448e+38; |
| 494 | if (d >= max_finite) { |
| 495 | if (d >= half_max_finite_infinity) { |
| 496 | return Single::Infinity(); |
| 497 | } else { |
| 498 | return max_finite; |
| 499 | } |
| 500 | } else { |
| 501 | return static_cast<float>(d); |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | float Strtof(Vector<const char> buffer, int exponent) { |
| 506 | char copy_buffer[kMaxSignificantDecimalDigits]; |
| 507 | Vector<const char> trimmed; |
| 508 | int updated_exponent; |
| 509 | TrimAndCut(buffer, exponent, buffer_copy_space: copy_buffer, space_size: kMaxSignificantDecimalDigits, |
| 510 | trimmed: &trimmed, updated_exponent: &updated_exponent); |
| 511 | exponent = updated_exponent; |
| 512 | |
| 513 | double double_guess; |
| 514 | bool is_correct = ComputeGuess(trimmed, exponent, guess: &double_guess); |
| 515 | |
| 516 | float float_guess = SanitizedDoubletof(d: double_guess); |
| 517 | if (float_guess == double_guess) { |
| 518 | // This shortcut triggers for integer values. |
| 519 | return float_guess; |
| 520 | } |
| 521 | |
| 522 | // We must catch double-rounding. Say the double has been rounded up, and is |
| 523 | // now a boundary of a float, and rounds up again. This is why we have to |
| 524 | // look at previous too. |
| 525 | // Example (in decimal numbers): |
| 526 | // input: 12349 |
| 527 | // high-precision (4 digits): 1235 |
| 528 | // low-precision (3 digits): |
| 529 | // when read from input: 123 |
| 530 | // when rounded from high precision: 124. |
| 531 | // To do this we simply look at the neigbors of the correct result and see |
| 532 | // if they would round to the same float. If the guess is not correct we have |
| 533 | // to look at four values (since two different doubles could be the correct |
| 534 | // double). |
| 535 | |
| 536 | double double_next = Double(double_guess).NextDouble(); |
| 537 | double double_previous = Double(double_guess).PreviousDouble(); |
| 538 | |
| 539 | float f1 = SanitizedDoubletof(d: double_previous); |
| 540 | float f2 = float_guess; |
| 541 | float f3 = SanitizedDoubletof(d: double_next); |
| 542 | float f4; |
| 543 | if (is_correct) { |
| 544 | f4 = f3; |
| 545 | } else { |
| 546 | double double_next2 = Double(double_next).NextDouble(); |
| 547 | f4 = SanitizedDoubletof(d: double_next2); |
| 548 | } |
| 549 | (void) f2; // Mark variable as used. |
| 550 | ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4); |
| 551 | |
| 552 | // If the guess doesn't lie near a single-precision boundary we can simply |
| 553 | // return its float-value. |
| 554 | if (f1 == f4) { |
| 555 | return float_guess; |
| 556 | } |
| 557 | |
| 558 | ASSERT((f1 != f2 && f2 == f3 && f3 == f4) || |
| 559 | (f1 == f2 && f2 != f3 && f3 == f4) || |
| 560 | (f1 == f2 && f2 == f3 && f3 != f4)); |
| 561 | |
| 562 | // guess and next are the two possible candidates (in the same way that |
| 563 | // double_guess was the lower candidate for a double-precision guess). |
| 564 | float guess = f1; |
| 565 | float next = f4; |
| 566 | DiyFp upper_boundary; |
| 567 | if (guess == 0.0f) { |
| 568 | float min_float = 1e-45f; |
| 569 | upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp(); |
| 570 | } else { |
| 571 | upper_boundary = Single(guess).UpperBoundary(); |
| 572 | } |
| 573 | int comparison = CompareBufferWithDiyFp(buffer: trimmed, exponent, diy_fp: upper_boundary); |
| 574 | if (comparison < 0) { |
| 575 | return guess; |
| 576 | } else if (comparison > 0) { |
| 577 | return next; |
| 578 | } else if ((Single(guess).Significand() & 1) == 0) { |
| 579 | // Round towards even. |
| 580 | return guess; |
| 581 | } else { |
| 582 | return next; |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | } // namespace double_conversion |
| 587 | |