1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2019 The Qt Company Ltd. |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the QtCore module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | #include "qnumeric.h" |
41 | #include "qnumeric_p.h" |
42 | #include <string.h> |
43 | |
44 | QT_BEGIN_NAMESPACE |
45 | |
46 | /*! |
47 | Returns \c true if the double \a {d} is equivalent to infinity. |
48 | \relates <QtGlobal> |
49 | \sa qInf() |
50 | */ |
51 | Q_CORE_EXPORT bool qIsInf(double d) { return qt_is_inf(d); } |
52 | |
53 | /*! |
54 | Returns \c true if the double \a {d} is not a number (NaN). |
55 | \relates <QtGlobal> |
56 | */ |
57 | Q_CORE_EXPORT bool qIsNaN(double d) { return qt_is_nan(d); } |
58 | |
59 | /*! |
60 | Returns \c true if the double \a {d} is a finite number. |
61 | \relates <QtGlobal> |
62 | */ |
63 | Q_CORE_EXPORT bool qIsFinite(double d) { return qt_is_finite(d); } |
64 | |
65 | /*! |
66 | Returns \c true if the float \a {f} is equivalent to infinity. |
67 | \relates <QtGlobal> |
68 | \sa qInf() |
69 | */ |
70 | Q_CORE_EXPORT bool qIsInf(float f) { return qt_is_inf(f); } |
71 | |
72 | /*! |
73 | Returns \c true if the float \a {f} is not a number (NaN). |
74 | \relates <QtGlobal> |
75 | */ |
76 | Q_CORE_EXPORT bool qIsNaN(float f) { return qt_is_nan(f); } |
77 | |
78 | /*! |
79 | Returns \c true if the float \a {f} is a finite number. |
80 | \relates <QtGlobal> |
81 | */ |
82 | Q_CORE_EXPORT bool qIsFinite(float f) { return qt_is_finite(f); } |
83 | |
84 | #if QT_CONFIG(signaling_nan) |
85 | /*! |
86 | Returns the bit pattern of a signalling NaN as a double. |
87 | \relates <QtGlobal> |
88 | */ |
89 | Q_CORE_EXPORT double qSNaN() { return qt_snan(); } |
90 | #endif |
91 | |
92 | /*! |
93 | Returns the bit pattern of a quiet NaN as a double. |
94 | \relates <QtGlobal> |
95 | \sa qIsNaN() |
96 | */ |
97 | Q_CORE_EXPORT double qQNaN() { return qt_qnan(); } |
98 | |
99 | /*! |
100 | Returns the bit pattern for an infinite number as a double. |
101 | \relates <QtGlobal> |
102 | \sa qIsInf() |
103 | */ |
104 | Q_CORE_EXPORT double qInf() { return qt_inf(); } |
105 | |
106 | /*! |
107 | \relates <QtGlobal> |
108 | Classifies a floating-point value. |
109 | |
110 | The return values are defined in \c{<cmath>}: returns one of the following, |
111 | determined by the floating-point class of \a val: |
112 | \list |
113 | \li FP_NAN not a number |
114 | \li FP_INFINITE infinities (positive or negative) |
115 | \li FP_ZERO zero (positive or negative) |
116 | \li FP_NORMAL finite with a full mantissa |
117 | \li FP_SUBNORMAL finite with a reduced mantissa |
118 | \endlist |
119 | */ |
120 | Q_CORE_EXPORT int qFpClassify(double val) { return qt_fpclassify(d: val); } |
121 | |
122 | /*! |
123 | \overload |
124 | */ |
125 | Q_CORE_EXPORT int qFpClassify(float val) { return qt_fpclassify(f: val); } |
126 | |
127 | |
128 | /*! |
129 | \internal |
130 | */ |
131 | static inline quint32 f2i(float f) |
132 | { |
133 | quint32 i; |
134 | memcpy(dest: &i, src: &f, n: sizeof(f)); |
135 | return i; |
136 | } |
137 | |
138 | /*! |
139 | Returns the number of representable floating-point numbers between \a a and \a b. |
140 | |
141 | This function provides an alternative way of doing approximated comparisons of floating-point |
142 | numbers similar to qFuzzyCompare(). However, it returns the distance between two numbers, which |
143 | gives the caller a possibility to choose the accepted error. Errors are relative, so for |
144 | instance the distance between 1.0E-5 and 1.00001E-5 will give 110, while the distance between |
145 | 1.0E36 and 1.00001E36 will give 127. |
146 | |
147 | This function is useful if a floating point comparison requires a certain precision. |
148 | Therefore, if \a a and \a b are equal it will return 0. The maximum value it will return for 32-bit |
149 | floating point numbers is 4,278,190,078. This is the distance between \c{-FLT_MAX} and |
150 | \c{+FLT_MAX}. |
151 | |
152 | The function does not give meaningful results if any of the arguments are \c Infinite or \c NaN. |
153 | You can check for this by calling qIsFinite(). |
154 | |
155 | The return value can be considered as the "error", so if you for instance want to compare |
156 | two 32-bit floating point numbers and all you need is an approximated 24-bit precision, you can |
157 | use this function like this: |
158 | |
159 | \snippet code/src_corelib_global_qnumeric.cpp 0 |
160 | |
161 | \sa qFuzzyCompare() |
162 | \since 5.2 |
163 | \relates <QtGlobal> |
164 | */ |
165 | Q_CORE_EXPORT quint32 qFloatDistance(float a, float b) |
166 | { |
167 | static const quint32 smallestPositiveFloatAsBits = 0x00000001; // denormalized, (SMALLEST), (1.4E-45) |
168 | /* Assumes: |
169 | * IEE754 format. |
170 | * Integers and floats have the same endian |
171 | */ |
172 | Q_STATIC_ASSERT(sizeof(quint32) == sizeof(float)); |
173 | Q_ASSERT(qIsFinite(a) && qIsFinite(b)); |
174 | if (a == b) |
175 | return 0; |
176 | if ((a < 0) != (b < 0)) { |
177 | // if they have different signs |
178 | if (a < 0) |
179 | a = -a; |
180 | else /*if (b < 0)*/ |
181 | b = -b; |
182 | return qFloatDistance(a: 0.0F, b: a) + qFloatDistance(a: 0.0F, b); |
183 | } |
184 | if (a < 0) { |
185 | a = -a; |
186 | b = -b; |
187 | } |
188 | // at this point a and b should not be negative |
189 | |
190 | // 0 is special |
191 | if (!a) |
192 | return f2i(f: b) - smallestPositiveFloatAsBits + 1; |
193 | if (!b) |
194 | return f2i(f: a) - smallestPositiveFloatAsBits + 1; |
195 | |
196 | // finally do the common integer subtraction |
197 | return a > b ? f2i(f: a) - f2i(f: b) : f2i(f: b) - f2i(f: a); |
198 | } |
199 | |
200 | |
201 | /*! |
202 | \internal |
203 | */ |
204 | static inline quint64 d2i(double d) |
205 | { |
206 | quint64 i; |
207 | memcpy(dest: &i, src: &d, n: sizeof(d)); |
208 | return i; |
209 | } |
210 | |
211 | /*! |
212 | Returns the number of representable floating-point numbers between \a a and \a b. |
213 | |
214 | This function serves the same purpose as \c{qFloatDistance(float, float)}, but |
215 | returns the distance between two \c double numbers. Since the range is larger |
216 | than for two \c float numbers (\c{[-DBL_MAX,DBL_MAX]}), the return type is quint64. |
217 | |
218 | |
219 | \sa qFuzzyCompare() |
220 | \since 5.2 |
221 | \relates <QtGlobal> |
222 | */ |
223 | Q_CORE_EXPORT quint64 qFloatDistance(double a, double b) |
224 | { |
225 | static const quint64 smallestPositiveFloatAsBits = 0x1; // denormalized, (SMALLEST) |
226 | /* Assumes: |
227 | * IEE754 format double precision |
228 | * Integers and floats have the same endian |
229 | */ |
230 | Q_STATIC_ASSERT(sizeof(quint64) == sizeof(double)); |
231 | Q_ASSERT(qIsFinite(a) && qIsFinite(b)); |
232 | if (a == b) |
233 | return 0; |
234 | if ((a < 0) != (b < 0)) { |
235 | // if they have different signs |
236 | if (a < 0) |
237 | a = -a; |
238 | else /*if (b < 0)*/ |
239 | b = -b; |
240 | return qFloatDistance(a: 0.0, b: a) + qFloatDistance(a: 0.0, b); |
241 | } |
242 | if (a < 0) { |
243 | a = -a; |
244 | b = -b; |
245 | } |
246 | // at this point a and b should not be negative |
247 | |
248 | // 0 is special |
249 | if (!a) |
250 | return d2i(d: b) - smallestPositiveFloatAsBits + 1; |
251 | if (!b) |
252 | return d2i(d: a) - smallestPositiveFloatAsBits + 1; |
253 | |
254 | // finally do the common integer subtraction |
255 | return a > b ? d2i(d: a) - d2i(d: b) : d2i(d: b) - d2i(d: a); |
256 | } |
257 | |
258 | |
259 | QT_END_NAMESPACE |
260 | |