| 1 | /**************************************************************************** |
| 2 | ** |
| 3 | ** Copyright (C) 2019 The Qt Company Ltd. |
| 4 | ** Contact: https://www.qt.io/licensing/ |
| 5 | ** |
| 6 | ** This file is part of the QtCore module of the Qt Toolkit. |
| 7 | ** |
| 8 | ** $QT_BEGIN_LICENSE:LGPL$ |
| 9 | ** Commercial License Usage |
| 10 | ** Licensees holding valid commercial Qt licenses may use this file in |
| 11 | ** accordance with the commercial license agreement provided with the |
| 12 | ** Software or, alternatively, in accordance with the terms contained in |
| 13 | ** a written agreement between you and The Qt Company. For licensing terms |
| 14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
| 15 | ** information use the contact form at https://www.qt.io/contact-us. |
| 16 | ** |
| 17 | ** GNU Lesser General Public License Usage |
| 18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
| 19 | ** General Public License version 3 as published by the Free Software |
| 20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
| 21 | ** packaging of this file. Please review the following information to |
| 22 | ** ensure the GNU Lesser General Public License version 3 requirements |
| 23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
| 24 | ** |
| 25 | ** GNU General Public License Usage |
| 26 | ** Alternatively, this file may be used under the terms of the GNU |
| 27 | ** General Public License version 2.0 or (at your option) the GNU General |
| 28 | ** Public license version 3 or any later version approved by the KDE Free |
| 29 | ** Qt Foundation. The licenses are as published by the Free Software |
| 30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
| 31 | ** included in the packaging of this file. Please review the following |
| 32 | ** information to ensure the GNU General Public License requirements will |
| 33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
| 34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
| 35 | ** |
| 36 | ** $QT_END_LICENSE$ |
| 37 | ** |
| 38 | ****************************************************************************/ |
| 39 | |
| 40 | #include "qnumeric.h" |
| 41 | #include "qnumeric_p.h" |
| 42 | #include <string.h> |
| 43 | |
| 44 | QT_BEGIN_NAMESPACE |
| 45 | |
| 46 | /*! |
| 47 | Returns \c true if the double \a {d} is equivalent to infinity. |
| 48 | \relates <QtGlobal> |
| 49 | \sa qInf() |
| 50 | */ |
| 51 | Q_CORE_EXPORT bool qIsInf(double d) { return qt_is_inf(d); } |
| 52 | |
| 53 | /*! |
| 54 | Returns \c true if the double \a {d} is not a number (NaN). |
| 55 | \relates <QtGlobal> |
| 56 | */ |
| 57 | Q_CORE_EXPORT bool qIsNaN(double d) { return qt_is_nan(d); } |
| 58 | |
| 59 | /*! |
| 60 | Returns \c true if the double \a {d} is a finite number. |
| 61 | \relates <QtGlobal> |
| 62 | */ |
| 63 | Q_CORE_EXPORT bool qIsFinite(double d) { return qt_is_finite(d); } |
| 64 | |
| 65 | /*! |
| 66 | Returns \c true if the float \a {f} is equivalent to infinity. |
| 67 | \relates <QtGlobal> |
| 68 | \sa qInf() |
| 69 | */ |
| 70 | Q_CORE_EXPORT bool qIsInf(float f) { return qt_is_inf(f); } |
| 71 | |
| 72 | /*! |
| 73 | Returns \c true if the float \a {f} is not a number (NaN). |
| 74 | \relates <QtGlobal> |
| 75 | */ |
| 76 | Q_CORE_EXPORT bool qIsNaN(float f) { return qt_is_nan(f); } |
| 77 | |
| 78 | /*! |
| 79 | Returns \c true if the float \a {f} is a finite number. |
| 80 | \relates <QtGlobal> |
| 81 | */ |
| 82 | Q_CORE_EXPORT bool qIsFinite(float f) { return qt_is_finite(f); } |
| 83 | |
| 84 | #if QT_CONFIG(signaling_nan) |
| 85 | /*! |
| 86 | Returns the bit pattern of a signalling NaN as a double. |
| 87 | \relates <QtGlobal> |
| 88 | */ |
| 89 | Q_CORE_EXPORT double qSNaN() { return qt_snan(); } |
| 90 | #endif |
| 91 | |
| 92 | /*! |
| 93 | Returns the bit pattern of a quiet NaN as a double. |
| 94 | \relates <QtGlobal> |
| 95 | \sa qIsNaN() |
| 96 | */ |
| 97 | Q_CORE_EXPORT double qQNaN() { return qt_qnan(); } |
| 98 | |
| 99 | /*! |
| 100 | Returns the bit pattern for an infinite number as a double. |
| 101 | \relates <QtGlobal> |
| 102 | \sa qIsInf() |
| 103 | */ |
| 104 | Q_CORE_EXPORT double qInf() { return qt_inf(); } |
| 105 | |
| 106 | /*! |
| 107 | \relates <QtGlobal> |
| 108 | Classifies a floating-point value. |
| 109 | |
| 110 | The return values are defined in \c{<cmath>}: returns one of the following, |
| 111 | determined by the floating-point class of \a val: |
| 112 | \list |
| 113 | \li FP_NAN not a number |
| 114 | \li FP_INFINITE infinities (positive or negative) |
| 115 | \li FP_ZERO zero (positive or negative) |
| 116 | \li FP_NORMAL finite with a full mantissa |
| 117 | \li FP_SUBNORMAL finite with a reduced mantissa |
| 118 | \endlist |
| 119 | */ |
| 120 | Q_CORE_EXPORT int qFpClassify(double val) { return qt_fpclassify(d: val); } |
| 121 | |
| 122 | /*! |
| 123 | \overload |
| 124 | */ |
| 125 | Q_CORE_EXPORT int qFpClassify(float val) { return qt_fpclassify(f: val); } |
| 126 | |
| 127 | |
| 128 | /*! |
| 129 | \internal |
| 130 | */ |
| 131 | static inline quint32 f2i(float f) |
| 132 | { |
| 133 | quint32 i; |
| 134 | memcpy(dest: &i, src: &f, n: sizeof(f)); |
| 135 | return i; |
| 136 | } |
| 137 | |
| 138 | /*! |
| 139 | Returns the number of representable floating-point numbers between \a a and \a b. |
| 140 | |
| 141 | This function provides an alternative way of doing approximated comparisons of floating-point |
| 142 | numbers similar to qFuzzyCompare(). However, it returns the distance between two numbers, which |
| 143 | gives the caller a possibility to choose the accepted error. Errors are relative, so for |
| 144 | instance the distance between 1.0E-5 and 1.00001E-5 will give 110, while the distance between |
| 145 | 1.0E36 and 1.00001E36 will give 127. |
| 146 | |
| 147 | This function is useful if a floating point comparison requires a certain precision. |
| 148 | Therefore, if \a a and \a b are equal it will return 0. The maximum value it will return for 32-bit |
| 149 | floating point numbers is 4,278,190,078. This is the distance between \c{-FLT_MAX} and |
| 150 | \c{+FLT_MAX}. |
| 151 | |
| 152 | The function does not give meaningful results if any of the arguments are \c Infinite or \c NaN. |
| 153 | You can check for this by calling qIsFinite(). |
| 154 | |
| 155 | The return value can be considered as the "error", so if you for instance want to compare |
| 156 | two 32-bit floating point numbers and all you need is an approximated 24-bit precision, you can |
| 157 | use this function like this: |
| 158 | |
| 159 | \snippet code/src_corelib_global_qnumeric.cpp 0 |
| 160 | |
| 161 | \sa qFuzzyCompare() |
| 162 | \since 5.2 |
| 163 | \relates <QtGlobal> |
| 164 | */ |
| 165 | Q_CORE_EXPORT quint32 qFloatDistance(float a, float b) |
| 166 | { |
| 167 | static const quint32 smallestPositiveFloatAsBits = 0x00000001; // denormalized, (SMALLEST), (1.4E-45) |
| 168 | /* Assumes: |
| 169 | * IEE754 format. |
| 170 | * Integers and floats have the same endian |
| 171 | */ |
| 172 | Q_STATIC_ASSERT(sizeof(quint32) == sizeof(float)); |
| 173 | Q_ASSERT(qIsFinite(a) && qIsFinite(b)); |
| 174 | if (a == b) |
| 175 | return 0; |
| 176 | if ((a < 0) != (b < 0)) { |
| 177 | // if they have different signs |
| 178 | if (a < 0) |
| 179 | a = -a; |
| 180 | else /*if (b < 0)*/ |
| 181 | b = -b; |
| 182 | return qFloatDistance(a: 0.0F, b: a) + qFloatDistance(a: 0.0F, b); |
| 183 | } |
| 184 | if (a < 0) { |
| 185 | a = -a; |
| 186 | b = -b; |
| 187 | } |
| 188 | // at this point a and b should not be negative |
| 189 | |
| 190 | // 0 is special |
| 191 | if (!a) |
| 192 | return f2i(f: b) - smallestPositiveFloatAsBits + 1; |
| 193 | if (!b) |
| 194 | return f2i(f: a) - smallestPositiveFloatAsBits + 1; |
| 195 | |
| 196 | // finally do the common integer subtraction |
| 197 | return a > b ? f2i(f: a) - f2i(f: b) : f2i(f: b) - f2i(f: a); |
| 198 | } |
| 199 | |
| 200 | |
| 201 | /*! |
| 202 | \internal |
| 203 | */ |
| 204 | static inline quint64 d2i(double d) |
| 205 | { |
| 206 | quint64 i; |
| 207 | memcpy(dest: &i, src: &d, n: sizeof(d)); |
| 208 | return i; |
| 209 | } |
| 210 | |
| 211 | /*! |
| 212 | Returns the number of representable floating-point numbers between \a a and \a b. |
| 213 | |
| 214 | This function serves the same purpose as \c{qFloatDistance(float, float)}, but |
| 215 | returns the distance between two \c double numbers. Since the range is larger |
| 216 | than for two \c float numbers (\c{[-DBL_MAX,DBL_MAX]}), the return type is quint64. |
| 217 | |
| 218 | |
| 219 | \sa qFuzzyCompare() |
| 220 | \since 5.2 |
| 221 | \relates <QtGlobal> |
| 222 | */ |
| 223 | Q_CORE_EXPORT quint64 qFloatDistance(double a, double b) |
| 224 | { |
| 225 | static const quint64 smallestPositiveFloatAsBits = 0x1; // denormalized, (SMALLEST) |
| 226 | /* Assumes: |
| 227 | * IEE754 format double precision |
| 228 | * Integers and floats have the same endian |
| 229 | */ |
| 230 | Q_STATIC_ASSERT(sizeof(quint64) == sizeof(double)); |
| 231 | Q_ASSERT(qIsFinite(a) && qIsFinite(b)); |
| 232 | if (a == b) |
| 233 | return 0; |
| 234 | if ((a < 0) != (b < 0)) { |
| 235 | // if they have different signs |
| 236 | if (a < 0) |
| 237 | a = -a; |
| 238 | else /*if (b < 0)*/ |
| 239 | b = -b; |
| 240 | return qFloatDistance(a: 0.0, b: a) + qFloatDistance(a: 0.0, b); |
| 241 | } |
| 242 | if (a < 0) { |
| 243 | a = -a; |
| 244 | b = -b; |
| 245 | } |
| 246 | // at this point a and b should not be negative |
| 247 | |
| 248 | // 0 is special |
| 249 | if (!a) |
| 250 | return d2i(d: b) - smallestPositiveFloatAsBits + 1; |
| 251 | if (!b) |
| 252 | return d2i(d: a) - smallestPositiveFloatAsBits + 1; |
| 253 | |
| 254 | // finally do the common integer subtraction |
| 255 | return a > b ? d2i(d: a) - d2i(d: b) : d2i(d: b) - d2i(d: a); |
| 256 | } |
| 257 | |
| 258 | |
| 259 | QT_END_NAMESPACE |
| 260 | |