| 1 | /**************************************************************************** |
| 2 | ** |
| 3 | ** Copyright (C) 2018 The Qt Company Ltd. |
| 4 | ** Copyright (C) 2018 Intel Corporation. |
| 5 | ** Contact: https://www.qt.io/licensing/ |
| 6 | ** |
| 7 | ** This file is part of the QtGui module of the Qt Toolkit. |
| 8 | ** |
| 9 | ** $QT_BEGIN_LICENSE:LGPL$ |
| 10 | ** Commercial License Usage |
| 11 | ** Licensees holding valid commercial Qt licenses may use this file in |
| 12 | ** accordance with the commercial license agreement provided with the |
| 13 | ** Software or, alternatively, in accordance with the terms contained in |
| 14 | ** a written agreement between you and The Qt Company. For licensing terms |
| 15 | ** and conditions see https://www.qt.io/terms-conditions. For further |
| 16 | ** information use the contact form at https://www.qt.io/contact-us. |
| 17 | ** |
| 18 | ** GNU Lesser General Public License Usage |
| 19 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
| 20 | ** General Public License version 3 as published by the Free Software |
| 21 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
| 22 | ** packaging of this file. Please review the following information to |
| 23 | ** ensure the GNU Lesser General Public License version 3 requirements |
| 24 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
| 25 | ** |
| 26 | ** GNU General Public License Usage |
| 27 | ** Alternatively, this file may be used under the terms of the GNU |
| 28 | ** General Public License version 2.0 or (at your option) the GNU General |
| 29 | ** Public license version 3 or any later version approved by the KDE Free |
| 30 | ** Qt Foundation. The licenses are as published by the Free Software |
| 31 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
| 32 | ** included in the packaging of this file. Please review the following |
| 33 | ** information to ensure the GNU General Public License requirements will |
| 34 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
| 35 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
| 36 | ** |
| 37 | ** $QT_END_LICENSE$ |
| 38 | ** |
| 39 | ****************************************************************************/ |
| 40 | |
| 41 | #include "qdrawhelper_p.h" |
| 42 | #include "qdrawhelper_x86_p.h" |
| 43 | #include "qdrawingprimitive_sse2_p.h" |
| 44 | #include "qrgba64_p.h" |
| 45 | |
| 46 | #if defined(QT_COMPILER_SUPPORTS_AVX2) |
| 47 | |
| 48 | QT_BEGIN_NAMESPACE |
| 49 | |
| 50 | enum { |
| 51 | FixedScale = 1 << 16, |
| 52 | HalfPoint = 1 << 15 |
| 53 | }; |
| 54 | |
| 55 | // Vectorized blend functions: |
| 56 | |
| 57 | // See BYTE_MUL_SSE2 for details. |
| 58 | inline static void Q_DECL_VECTORCALL |
| 59 | BYTE_MUL_AVX2(__m256i &pixelVector, __m256i alphaChannel, __m256i colorMask, __m256i half) |
| 60 | { |
| 61 | __m256i pixelVectorAG = _mm256_srli_epi16(a: pixelVector, count: 8); |
| 62 | __m256i pixelVectorRB = _mm256_and_si256(a: pixelVector, b: colorMask); |
| 63 | |
| 64 | pixelVectorAG = _mm256_mullo_epi16(a: pixelVectorAG, b: alphaChannel); |
| 65 | pixelVectorRB = _mm256_mullo_epi16(a: pixelVectorRB, b: alphaChannel); |
| 66 | |
| 67 | pixelVectorRB = _mm256_add_epi16(a: pixelVectorRB, b: _mm256_srli_epi16(a: pixelVectorRB, count: 8)); |
| 68 | pixelVectorAG = _mm256_add_epi16(a: pixelVectorAG, b: _mm256_srli_epi16(a: pixelVectorAG, count: 8)); |
| 69 | pixelVectorRB = _mm256_add_epi16(a: pixelVectorRB, b: half); |
| 70 | pixelVectorAG = _mm256_add_epi16(a: pixelVectorAG, b: half); |
| 71 | |
| 72 | pixelVectorRB = _mm256_srli_epi16(a: pixelVectorRB, count: 8); |
| 73 | pixelVectorAG = _mm256_andnot_si256(a: colorMask, b: pixelVectorAG); |
| 74 | |
| 75 | pixelVector = _mm256_or_si256(a: pixelVectorAG, b: pixelVectorRB); |
| 76 | } |
| 77 | |
| 78 | inline static void Q_DECL_VECTORCALL |
| 79 | BYTE_MUL_RGB64_AVX2(__m256i &pixelVector, __m256i alphaChannel, __m256i colorMask, __m256i half) |
| 80 | { |
| 81 | __m256i pixelVectorAG = _mm256_srli_epi32(a: pixelVector, count: 16); |
| 82 | __m256i pixelVectorRB = _mm256_and_si256(a: pixelVector, b: colorMask); |
| 83 | |
| 84 | pixelVectorAG = _mm256_mullo_epi32(a: pixelVectorAG, b: alphaChannel); |
| 85 | pixelVectorRB = _mm256_mullo_epi32(a: pixelVectorRB, b: alphaChannel); |
| 86 | |
| 87 | pixelVectorRB = _mm256_add_epi32(a: pixelVectorRB, b: _mm256_srli_epi32(a: pixelVectorRB, count: 16)); |
| 88 | pixelVectorAG = _mm256_add_epi32(a: pixelVectorAG, b: _mm256_srli_epi32(a: pixelVectorAG, count: 16)); |
| 89 | pixelVectorRB = _mm256_add_epi32(a: pixelVectorRB, b: half); |
| 90 | pixelVectorAG = _mm256_add_epi32(a: pixelVectorAG, b: half); |
| 91 | |
| 92 | pixelVectorRB = _mm256_srli_epi32(a: pixelVectorRB, count: 16); |
| 93 | pixelVectorAG = _mm256_andnot_si256(a: colorMask, b: pixelVectorAG); |
| 94 | |
| 95 | pixelVector = _mm256_or_si256(a: pixelVectorAG, b: pixelVectorRB); |
| 96 | } |
| 97 | |
| 98 | // See INTERPOLATE_PIXEL_255_SSE2 for details. |
| 99 | inline static void Q_DECL_VECTORCALL |
| 100 | INTERPOLATE_PIXEL_255_AVX2(__m256i srcVector, __m256i &dstVector, __m256i alphaChannel, __m256i oneMinusAlphaChannel, __m256i colorMask, __m256i half) |
| 101 | { |
| 102 | const __m256i srcVectorAG = _mm256_srli_epi16(a: srcVector, count: 8); |
| 103 | const __m256i dstVectorAG = _mm256_srli_epi16(a: dstVector, count: 8); |
| 104 | const __m256i srcVectorRB = _mm256_and_si256(a: srcVector, b: colorMask); |
| 105 | const __m256i dstVectorRB = _mm256_and_si256(a: dstVector, b: colorMask); |
| 106 | const __m256i srcVectorAGalpha = _mm256_mullo_epi16(a: srcVectorAG, b: alphaChannel); |
| 107 | const __m256i srcVectorRBalpha = _mm256_mullo_epi16(a: srcVectorRB, b: alphaChannel); |
| 108 | const __m256i dstVectorAGoneMinusAlpha = _mm256_mullo_epi16(a: dstVectorAG, b: oneMinusAlphaChannel); |
| 109 | const __m256i dstVectorRBoneMinusAlpha = _mm256_mullo_epi16(a: dstVectorRB, b: oneMinusAlphaChannel); |
| 110 | __m256i finalAG = _mm256_add_epi16(a: srcVectorAGalpha, b: dstVectorAGoneMinusAlpha); |
| 111 | __m256i finalRB = _mm256_add_epi16(a: srcVectorRBalpha, b: dstVectorRBoneMinusAlpha); |
| 112 | finalAG = _mm256_add_epi16(a: finalAG, b: _mm256_srli_epi16(a: finalAG, count: 8)); |
| 113 | finalRB = _mm256_add_epi16(a: finalRB, b: _mm256_srli_epi16(a: finalRB, count: 8)); |
| 114 | finalAG = _mm256_add_epi16(a: finalAG, b: half); |
| 115 | finalRB = _mm256_add_epi16(a: finalRB, b: half); |
| 116 | finalAG = _mm256_andnot_si256(a: colorMask, b: finalAG); |
| 117 | finalRB = _mm256_srli_epi16(a: finalRB, count: 8); |
| 118 | |
| 119 | dstVector = _mm256_or_si256(a: finalAG, b: finalRB); |
| 120 | } |
| 121 | |
| 122 | inline static void Q_DECL_VECTORCALL |
| 123 | INTERPOLATE_PIXEL_RGB64_AVX2(__m256i srcVector, __m256i &dstVector, __m256i alphaChannel, __m256i oneMinusAlphaChannel, __m256i colorMask, __m256i half) |
| 124 | { |
| 125 | const __m256i srcVectorAG = _mm256_srli_epi32(a: srcVector, count: 16); |
| 126 | const __m256i dstVectorAG = _mm256_srli_epi32(a: dstVector, count: 16); |
| 127 | const __m256i srcVectorRB = _mm256_and_si256(a: srcVector, b: colorMask); |
| 128 | const __m256i dstVectorRB = _mm256_and_si256(a: dstVector, b: colorMask); |
| 129 | const __m256i srcVectorAGalpha = _mm256_mullo_epi32(a: srcVectorAG, b: alphaChannel); |
| 130 | const __m256i srcVectorRBalpha = _mm256_mullo_epi32(a: srcVectorRB, b: alphaChannel); |
| 131 | const __m256i dstVectorAGoneMinusAlpha = _mm256_mullo_epi32(a: dstVectorAG, b: oneMinusAlphaChannel); |
| 132 | const __m256i dstVectorRBoneMinusAlpha = _mm256_mullo_epi32(a: dstVectorRB, b: oneMinusAlphaChannel); |
| 133 | __m256i finalAG = _mm256_add_epi32(a: srcVectorAGalpha, b: dstVectorAGoneMinusAlpha); |
| 134 | __m256i finalRB = _mm256_add_epi32(a: srcVectorRBalpha, b: dstVectorRBoneMinusAlpha); |
| 135 | finalAG = _mm256_add_epi32(a: finalAG, b: _mm256_srli_epi32(a: finalAG, count: 16)); |
| 136 | finalRB = _mm256_add_epi32(a: finalRB, b: _mm256_srli_epi32(a: finalRB, count: 16)); |
| 137 | finalAG = _mm256_add_epi32(a: finalAG, b: half); |
| 138 | finalRB = _mm256_add_epi32(a: finalRB, b: half); |
| 139 | finalAG = _mm256_andnot_si256(a: colorMask, b: finalAG); |
| 140 | finalRB = _mm256_srli_epi32(a: finalRB, count: 16); |
| 141 | |
| 142 | dstVector = _mm256_or_si256(a: finalAG, b: finalRB); |
| 143 | } |
| 144 | |
| 145 | |
| 146 | // See BLEND_SOURCE_OVER_ARGB32_SSE2 for details. |
| 147 | inline static void Q_DECL_VECTORCALL BLEND_SOURCE_OVER_ARGB32_AVX2(quint32 *dst, const quint32 *src, const int length) |
| 148 | { |
| 149 | const __m256i half = _mm256_set1_epi16(w: 0x80); |
| 150 | const __m256i one = _mm256_set1_epi16(w: 0xff); |
| 151 | const __m256i colorMask = _mm256_set1_epi32(i: 0x00ff00ff); |
| 152 | const __m256i alphaMask = _mm256_set1_epi32(i: 0xff000000); |
| 153 | const __m256i offsetMask = _mm256_setr_epi32(i0: 0, i1: 1, i2: 2, i3: 3, i4: 4, i5: 5, i6: 6, i7: 7); |
| 154 | const __m256i alphaShuffleMask = _mm256_set_epi8(b31: char(0xff),b30: 15,b29: char(0xff),b28: 15,b27: char(0xff),b26: 11,b25: char(0xff),b24: 11,b23: char(0xff),b22: 7,b21: char(0xff),b20: 7,b19: char(0xff),b18: 3,b17: char(0xff),b16: 3, |
| 155 | b15: char(0xff),b14: 15,b13: char(0xff),b12: 15,b11: char(0xff),b10: 11,b09: char(0xff),b08: 11,b07: char(0xff),b06: 7,b05: char(0xff),b04: 7,b03: char(0xff),b02: 3,b01: char(0xff),b00: 3); |
| 156 | |
| 157 | const int minusOffsetToAlignDstOn32Bytes = (reinterpret_cast<quintptr>(dst) >> 2) & 0x7; |
| 158 | |
| 159 | int x = 0; |
| 160 | // Prologue to handle all pixels until dst is 32-byte aligned in one step. |
| 161 | if (minusOffsetToAlignDstOn32Bytes != 0 && x < (length - 7)) { |
| 162 | const __m256i prologueMask = _mm256_sub_epi32(a: _mm256_set1_epi32(i: minusOffsetToAlignDstOn32Bytes - 1), b: offsetMask); |
| 163 | const __m256i srcVector = _mm256_maskload_epi32(X: (const int *)&src[x - minusOffsetToAlignDstOn32Bytes], M: prologueMask); |
| 164 | const __m256i prologueAlphaMask = _mm256_blendv_epi8(V1: _mm256_setzero_si256(), V2: alphaMask, M: prologueMask); |
| 165 | if (!_mm256_testz_si256(a: srcVector, b: prologueAlphaMask)) { |
| 166 | if (_mm256_testc_si256(a: srcVector, b: prologueAlphaMask)) { |
| 167 | _mm256_maskstore_epi32(X: (int *)&dst[x - minusOffsetToAlignDstOn32Bytes], M: prologueMask, Y: srcVector); |
| 168 | } else { |
| 169 | __m256i alphaChannel = _mm256_shuffle_epi8(a: srcVector, b: alphaShuffleMask); |
| 170 | alphaChannel = _mm256_sub_epi16(a: one, b: alphaChannel); |
| 171 | __m256i dstVector = _mm256_maskload_epi32(X: (int *)&dst[x - minusOffsetToAlignDstOn32Bytes], M: prologueMask); |
| 172 | BYTE_MUL_AVX2(pixelVector&: dstVector, alphaChannel, colorMask, half); |
| 173 | dstVector = _mm256_add_epi8(a: dstVector, b: srcVector); |
| 174 | _mm256_maskstore_epi32(X: (int *)&dst[x - minusOffsetToAlignDstOn32Bytes], M: prologueMask, Y: dstVector); |
| 175 | } |
| 176 | } |
| 177 | x += (8 - minusOffsetToAlignDstOn32Bytes); |
| 178 | } |
| 179 | |
| 180 | for (; x < (length - 7); x += 8) { |
| 181 | const __m256i srcVector = _mm256_lddqu_si256(p: (const __m256i *)&src[x]); |
| 182 | if (!_mm256_testz_si256(a: srcVector, b: alphaMask)) { |
| 183 | if (_mm256_testc_si256(a: srcVector, b: alphaMask)) { |
| 184 | _mm256_store_si256(p: (__m256i *)&dst[x], a: srcVector); |
| 185 | } else { |
| 186 | __m256i alphaChannel = _mm256_shuffle_epi8(a: srcVector, b: alphaShuffleMask); |
| 187 | alphaChannel = _mm256_sub_epi16(a: one, b: alphaChannel); |
| 188 | __m256i dstVector = _mm256_load_si256(p: (__m256i *)&dst[x]); |
| 189 | BYTE_MUL_AVX2(pixelVector&: dstVector, alphaChannel, colorMask, half); |
| 190 | dstVector = _mm256_add_epi8(a: dstVector, b: srcVector); |
| 191 | _mm256_store_si256(p: (__m256i *)&dst[x], a: dstVector); |
| 192 | } |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | // Epilogue to handle all remaining pixels in one step. |
| 197 | if (x < length) { |
| 198 | const __m256i epilogueMask = _mm256_add_epi32(a: offsetMask, b: _mm256_set1_epi32(i: x - length)); |
| 199 | const __m256i srcVector = _mm256_maskload_epi32(X: (const int *)&src[x], M: epilogueMask); |
| 200 | const __m256i epilogueAlphaMask = _mm256_blendv_epi8(V1: _mm256_setzero_si256(), V2: alphaMask, M: epilogueMask); |
| 201 | if (!_mm256_testz_si256(a: srcVector, b: epilogueAlphaMask)) { |
| 202 | if (_mm256_testc_si256(a: srcVector, b: epilogueAlphaMask)) { |
| 203 | _mm256_maskstore_epi32(X: (int *)&dst[x], M: epilogueMask, Y: srcVector); |
| 204 | } else { |
| 205 | __m256i alphaChannel = _mm256_shuffle_epi8(a: srcVector, b: alphaShuffleMask); |
| 206 | alphaChannel = _mm256_sub_epi16(a: one, b: alphaChannel); |
| 207 | __m256i dstVector = _mm256_maskload_epi32(X: (int *)&dst[x], M: epilogueMask); |
| 208 | BYTE_MUL_AVX2(pixelVector&: dstVector, alphaChannel, colorMask, half); |
| 209 | dstVector = _mm256_add_epi8(a: dstVector, b: srcVector); |
| 210 | _mm256_maskstore_epi32(X: (int *)&dst[x], M: epilogueMask, Y: dstVector); |
| 211 | } |
| 212 | } |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | |
| 217 | // See BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_SSE2 for details. |
| 218 | inline static void Q_DECL_VECTORCALL |
| 219 | BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(quint32 *dst, const quint32 *src, const int length, const int const_alpha) |
| 220 | { |
| 221 | int x = 0; |
| 222 | |
| 223 | ALIGNMENT_PROLOGUE_32BYTES(dst, x, length) |
| 224 | blend_pixel(dst&: dst[x], src: src[x], const_alpha); |
| 225 | |
| 226 | const __m256i half = _mm256_set1_epi16(w: 0x80); |
| 227 | const __m256i one = _mm256_set1_epi16(w: 0xff); |
| 228 | const __m256i colorMask = _mm256_set1_epi32(i: 0x00ff00ff); |
| 229 | const __m256i alphaMask = _mm256_set1_epi32(i: 0xff000000); |
| 230 | const __m256i alphaShuffleMask = _mm256_set_epi8(b31: char(0xff),b30: 15,b29: char(0xff),b28: 15,b27: char(0xff),b26: 11,b25: char(0xff),b24: 11,b23: char(0xff),b22: 7,b21: char(0xff),b20: 7,b19: char(0xff),b18: 3,b17: char(0xff),b16: 3, |
| 231 | b15: char(0xff),b14: 15,b13: char(0xff),b12: 15,b11: char(0xff),b10: 11,b09: char(0xff),b08: 11,b07: char(0xff),b06: 7,b05: char(0xff),b04: 7,b03: char(0xff),b02: 3,b01: char(0xff),b00: 3); |
| 232 | const __m256i constAlphaVector = _mm256_set1_epi16(w: const_alpha); |
| 233 | for (; x < (length - 7); x += 8) { |
| 234 | __m256i srcVector = _mm256_lddqu_si256(p: (const __m256i *)&src[x]); |
| 235 | if (!_mm256_testz_si256(a: srcVector, b: alphaMask)) { |
| 236 | BYTE_MUL_AVX2(pixelVector&: srcVector, alphaChannel: constAlphaVector, colorMask, half); |
| 237 | |
| 238 | __m256i alphaChannel = _mm256_shuffle_epi8(a: srcVector, b: alphaShuffleMask); |
| 239 | alphaChannel = _mm256_sub_epi16(a: one, b: alphaChannel); |
| 240 | __m256i dstVector = _mm256_load_si256(p: (__m256i *)&dst[x]); |
| 241 | BYTE_MUL_AVX2(pixelVector&: dstVector, alphaChannel, colorMask, half); |
| 242 | dstVector = _mm256_add_epi8(a: dstVector, b: srcVector); |
| 243 | _mm256_store_si256(p: (__m256i *)&dst[x], a: dstVector); |
| 244 | } |
| 245 | } |
| 246 | SIMD_EPILOGUE(x, length, 7) |
| 247 | blend_pixel(dst&: dst[x], src: src[x], const_alpha); |
| 248 | } |
| 249 | |
| 250 | void qt_blend_argb32_on_argb32_avx2(uchar *destPixels, int dbpl, |
| 251 | const uchar *srcPixels, int sbpl, |
| 252 | int w, int h, |
| 253 | int const_alpha) |
| 254 | { |
| 255 | if (const_alpha == 256) { |
| 256 | for (int y = 0; y < h; ++y) { |
| 257 | const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels); |
| 258 | quint32 *dst = reinterpret_cast<quint32 *>(destPixels); |
| 259 | BLEND_SOURCE_OVER_ARGB32_AVX2(dst, src, length: w); |
| 260 | destPixels += dbpl; |
| 261 | srcPixels += sbpl; |
| 262 | } |
| 263 | } else if (const_alpha != 0) { |
| 264 | const_alpha = (const_alpha * 255) >> 8; |
| 265 | for (int y = 0; y < h; ++y) { |
| 266 | const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels); |
| 267 | quint32 *dst = reinterpret_cast<quint32 *>(destPixels); |
| 268 | BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(dst, src, length: w, const_alpha); |
| 269 | destPixels += dbpl; |
| 270 | srcPixels += sbpl; |
| 271 | } |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | void qt_blend_rgb32_on_rgb32_avx2(uchar *destPixels, int dbpl, |
| 276 | const uchar *srcPixels, int sbpl, |
| 277 | int w, int h, |
| 278 | int const_alpha) |
| 279 | { |
| 280 | if (const_alpha == 256) { |
| 281 | for (int y = 0; y < h; ++y) { |
| 282 | const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels); |
| 283 | quint32 *dst = reinterpret_cast<quint32 *>(destPixels); |
| 284 | ::memcpy(dest: dst, src: src, n: w * sizeof(uint)); |
| 285 | srcPixels += sbpl; |
| 286 | destPixels += dbpl; |
| 287 | } |
| 288 | return; |
| 289 | } |
| 290 | if (const_alpha == 0) |
| 291 | return; |
| 292 | |
| 293 | const __m256i half = _mm256_set1_epi16(w: 0x80); |
| 294 | const __m256i colorMask = _mm256_set1_epi32(i: 0x00ff00ff); |
| 295 | |
| 296 | const_alpha = (const_alpha * 255) >> 8; |
| 297 | int one_minus_const_alpha = 255 - const_alpha; |
| 298 | const __m256i constAlphaVector = _mm256_set1_epi16(w: const_alpha); |
| 299 | const __m256i oneMinusConstAlpha = _mm256_set1_epi16(w: one_minus_const_alpha); |
| 300 | for (int y = 0; y < h; ++y) { |
| 301 | const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels); |
| 302 | quint32 *dst = reinterpret_cast<quint32 *>(destPixels); |
| 303 | int x = 0; |
| 304 | |
| 305 | // First, align dest to 32 bytes: |
| 306 | ALIGNMENT_PROLOGUE_32BYTES(dst, x, w) |
| 307 | dst[x] = INTERPOLATE_PIXEL_255(x: src[x], a: const_alpha, y: dst[x], b: one_minus_const_alpha); |
| 308 | |
| 309 | // 2) interpolate pixels with AVX2 |
| 310 | for (; x < (w - 7); x += 8) { |
| 311 | const __m256i srcVector = _mm256_lddqu_si256(p: (const __m256i *)&src[x]); |
| 312 | __m256i dstVector = _mm256_load_si256(p: (__m256i *)&dst[x]); |
| 313 | INTERPOLATE_PIXEL_255_AVX2(srcVector, dstVector, alphaChannel: constAlphaVector, oneMinusAlphaChannel: oneMinusConstAlpha, colorMask, half); |
| 314 | _mm256_store_si256(p: (__m256i *)&dst[x], a: dstVector); |
| 315 | } |
| 316 | |
| 317 | // 3) Epilogue |
| 318 | SIMD_EPILOGUE(x, w, 7) |
| 319 | dst[x] = INTERPOLATE_PIXEL_255(x: src[x], a: const_alpha, y: dst[x], b: one_minus_const_alpha); |
| 320 | |
| 321 | srcPixels += sbpl; |
| 322 | destPixels += dbpl; |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | static Q_NEVER_INLINE |
| 327 | void Q_DECL_VECTORCALL qt_memfillXX_avx2(uchar *dest, __m256i value256, qsizetype bytes) |
| 328 | { |
| 329 | __m128i value128 = _mm256_castsi256_si128(a: value256); |
| 330 | |
| 331 | // main body |
| 332 | __m256i *dst256 = reinterpret_cast<__m256i *>(dest); |
| 333 | uchar *end = dest + bytes; |
| 334 | while (reinterpret_cast<uchar *>(dst256 + 4) <= end) { |
| 335 | _mm256_storeu_si256(p: dst256 + 0, a: value256); |
| 336 | _mm256_storeu_si256(p: dst256 + 1, a: value256); |
| 337 | _mm256_storeu_si256(p: dst256 + 2, a: value256); |
| 338 | _mm256_storeu_si256(p: dst256 + 3, a: value256); |
| 339 | dst256 += 4; |
| 340 | } |
| 341 | |
| 342 | // first epilogue: fewer than 128 bytes / 32 entries |
| 343 | bytes = end - reinterpret_cast<uchar *>(dst256); |
| 344 | switch (bytes / sizeof(value256)) { |
| 345 | case 3: _mm256_storeu_si256(p: dst256++, a: value256); Q_FALLTHROUGH(); |
| 346 | case 2: _mm256_storeu_si256(p: dst256++, a: value256); Q_FALLTHROUGH(); |
| 347 | case 1: _mm256_storeu_si256(p: dst256++, a: value256); |
| 348 | } |
| 349 | |
| 350 | // second epilogue: fewer than 32 bytes |
| 351 | __m128i *dst128 = reinterpret_cast<__m128i *>(dst256); |
| 352 | if (bytes & sizeof(value128)) |
| 353 | _mm_storeu_si128(p: dst128++, b: value128); |
| 354 | |
| 355 | // third epilogue: fewer than 16 bytes |
| 356 | if (bytes & 8) |
| 357 | _mm_storel_epi64(p: reinterpret_cast<__m128i *>(end - 8), a: value128); |
| 358 | } |
| 359 | |
| 360 | void qt_memfill64_avx2(quint64 *dest, quint64 value, qsizetype count) |
| 361 | { |
| 362 | #if defined(Q_CC_GNU) && !defined(Q_CC_CLANG) && !defined(Q_CC_INTEL) |
| 363 | // work around https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80820 |
| 364 | __m128i value64 = _mm_set_epi64x(0, value); // _mm_cvtsi64_si128(value); |
| 365 | # ifdef Q_PROCESSOR_X86_64 |
| 366 | asm ("" : "+x" (value64)); |
| 367 | # endif |
| 368 | __m256i value256 = _mm256_broadcastq_epi64(value64); |
| 369 | #else |
| 370 | __m256i value256 = _mm256_set1_epi64x(q: value); |
| 371 | #endif |
| 372 | |
| 373 | qt_memfillXX_avx2(dest: reinterpret_cast<uchar *>(dest), value256, bytes: count * sizeof(quint64)); |
| 374 | } |
| 375 | |
| 376 | void qt_memfill32_avx2(quint32 *dest, quint32 value, qsizetype count) |
| 377 | { |
| 378 | if (count % 2) { |
| 379 | // odd number of pixels, round to even |
| 380 | *dest++ = value; |
| 381 | --count; |
| 382 | } |
| 383 | qt_memfillXX_avx2(dest: reinterpret_cast<uchar *>(dest), value256: _mm256_set1_epi32(i: value), bytes: count * sizeof(quint32)); |
| 384 | } |
| 385 | |
| 386 | void QT_FASTCALL comp_func_SourceOver_avx2(uint *destPixels, const uint *srcPixels, int length, uint const_alpha) |
| 387 | { |
| 388 | Q_ASSERT(const_alpha < 256); |
| 389 | |
| 390 | const quint32 *src = (const quint32 *) srcPixels; |
| 391 | quint32 *dst = (quint32 *) destPixels; |
| 392 | |
| 393 | if (const_alpha == 255) |
| 394 | BLEND_SOURCE_OVER_ARGB32_AVX2(dst, src, length); |
| 395 | else |
| 396 | BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(dst, src, length, const_alpha); |
| 397 | } |
| 398 | |
| 399 | #if QT_CONFIG(raster_64bit) |
| 400 | void QT_FASTCALL comp_func_SourceOver_rgb64_avx2(QRgba64 *dst, const QRgba64 *src, int length, uint const_alpha) |
| 401 | { |
| 402 | Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255] |
| 403 | const __m256i half = _mm256_set1_epi32(i: 0x8000); |
| 404 | const __m256i one = _mm256_set1_epi32(i: 0xffff); |
| 405 | const __m256i colorMask = _mm256_set1_epi32(i: 0x0000ffff); |
| 406 | __m256i alphaMask = _mm256_set1_epi32(i: 0xff000000); |
| 407 | alphaMask = _mm256_unpacklo_epi8(a: alphaMask, b: alphaMask); |
| 408 | const __m256i alphaShuffleMask = _mm256_set_epi8(b31: char(0xff),b30: char(0xff),b29: 15,b28: 14,b27: char(0xff),b26: char(0xff),b25: 15,b24: 14,b23: char(0xff),b22: char(0xff),b21: 7,b20: 6,b19: char(0xff),b18: char(0xff),b17: 7,b16: 6, |
| 409 | b15: char(0xff),b14: char(0xff),b13: 15,b12: 14,b11: char(0xff),b10: char(0xff),b09: 15,b08: 14,b07: char(0xff),b06: char(0xff),b05: 7,b04: 6,b03: char(0xff),b02: char(0xff),b01: 7,b00: 6); |
| 410 | |
| 411 | if (const_alpha == 255) { |
| 412 | int x = 0; |
| 413 | for (; x < length && (quintptr(dst + x) & 31); ++x) |
| 414 | blend_pixel(dst&: dst[x], src: src[x]); |
| 415 | for (; x < length - 3; x += 4) { |
| 416 | const __m256i srcVector = _mm256_lddqu_si256(p: (const __m256i *)&src[x]); |
| 417 | if (!_mm256_testz_si256(a: srcVector, b: alphaMask)) { |
| 418 | // Not all transparent |
| 419 | if (_mm256_testc_si256(a: srcVector, b: alphaMask)) { |
| 420 | // All opaque |
| 421 | _mm256_store_si256(p: (__m256i *)&dst[x], a: srcVector); |
| 422 | } else { |
| 423 | __m256i alphaChannel = _mm256_shuffle_epi8(a: srcVector, b: alphaShuffleMask); |
| 424 | alphaChannel = _mm256_sub_epi32(a: one, b: alphaChannel); |
| 425 | __m256i dstVector = _mm256_load_si256(p: (__m256i *)&dst[x]); |
| 426 | BYTE_MUL_RGB64_AVX2(pixelVector&: dstVector, alphaChannel, colorMask, half); |
| 427 | dstVector = _mm256_add_epi16(a: dstVector, b: srcVector); |
| 428 | _mm256_store_si256(p: (__m256i *)&dst[x], a: dstVector); |
| 429 | } |
| 430 | } |
| 431 | } |
| 432 | SIMD_EPILOGUE(x, length, 3) |
| 433 | blend_pixel(dst&: dst[x], src: src[x]); |
| 434 | } else { |
| 435 | const __m256i constAlphaVector = _mm256_set1_epi32(i: const_alpha | (const_alpha << 8)); |
| 436 | int x = 0; |
| 437 | for (; x < length && (quintptr(dst + x) & 31); ++x) |
| 438 | blend_pixel(dst&: dst[x], src: src[x], const_alpha); |
| 439 | for (; x < length - 3; x += 4) { |
| 440 | __m256i srcVector = _mm256_lddqu_si256(p: (const __m256i *)&src[x]); |
| 441 | if (!_mm256_testz_si256(a: srcVector, b: alphaMask)) { |
| 442 | // Not all transparent |
| 443 | BYTE_MUL_RGB64_AVX2(pixelVector&: srcVector, alphaChannel: constAlphaVector, colorMask, half); |
| 444 | |
| 445 | __m256i alphaChannel = _mm256_shuffle_epi8(a: srcVector, b: alphaShuffleMask); |
| 446 | alphaChannel = _mm256_sub_epi32(a: one, b: alphaChannel); |
| 447 | __m256i dstVector = _mm256_load_si256(p: (__m256i *)&dst[x]); |
| 448 | BYTE_MUL_RGB64_AVX2(pixelVector&: dstVector, alphaChannel, colorMask, half); |
| 449 | dstVector = _mm256_add_epi16(a: dstVector, b: srcVector); |
| 450 | _mm256_store_si256(p: (__m256i *)&dst[x], a: dstVector); |
| 451 | } |
| 452 | } |
| 453 | SIMD_EPILOGUE(x, length, 3) |
| 454 | blend_pixel(dst&: dst[x], src: src[x], const_alpha); |
| 455 | } |
| 456 | } |
| 457 | #endif |
| 458 | |
| 459 | void QT_FASTCALL comp_func_Source_avx2(uint *dst, const uint *src, int length, uint const_alpha) |
| 460 | { |
| 461 | if (const_alpha == 255) { |
| 462 | ::memcpy(dest: dst, src: src, n: length * sizeof(uint)); |
| 463 | } else { |
| 464 | const int ialpha = 255 - const_alpha; |
| 465 | |
| 466 | int x = 0; |
| 467 | |
| 468 | // 1) prologue, align on 32 bytes |
| 469 | ALIGNMENT_PROLOGUE_32BYTES(dst, x, length) |
| 470 | dst[x] = INTERPOLATE_PIXEL_255(x: src[x], a: const_alpha, y: dst[x], b: ialpha); |
| 471 | |
| 472 | // 2) interpolate pixels with AVX2 |
| 473 | const __m256i half = _mm256_set1_epi16(w: 0x80); |
| 474 | const __m256i colorMask = _mm256_set1_epi32(i: 0x00ff00ff); |
| 475 | const __m256i constAlphaVector = _mm256_set1_epi16(w: const_alpha); |
| 476 | const __m256i oneMinusConstAlpha = _mm256_set1_epi16(w: ialpha); |
| 477 | for (; x < length - 7; x += 8) { |
| 478 | const __m256i srcVector = _mm256_lddqu_si256(p: (const __m256i *)&src[x]); |
| 479 | __m256i dstVector = _mm256_load_si256(p: (__m256i *)&dst[x]); |
| 480 | INTERPOLATE_PIXEL_255_AVX2(srcVector, dstVector, alphaChannel: constAlphaVector, oneMinusAlphaChannel: oneMinusConstAlpha, colorMask, half); |
| 481 | _mm256_store_si256(p: (__m256i *)&dst[x], a: dstVector); |
| 482 | } |
| 483 | |
| 484 | // 3) Epilogue |
| 485 | SIMD_EPILOGUE(x, length, 7) |
| 486 | dst[x] = INTERPOLATE_PIXEL_255(x: src[x], a: const_alpha, y: dst[x], b: ialpha); |
| 487 | } |
| 488 | } |
| 489 | |
| 490 | #if QT_CONFIG(raster_64bit) |
| 491 | void QT_FASTCALL comp_func_Source_rgb64_avx2(QRgba64 *dst, const QRgba64 *src, int length, uint const_alpha) |
| 492 | { |
| 493 | Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255] |
| 494 | if (const_alpha == 255) { |
| 495 | ::memcpy(dest: dst, src: src, n: length * sizeof(QRgba64)); |
| 496 | } else { |
| 497 | const uint ca = const_alpha | (const_alpha << 8); // adjust to [0-65535] |
| 498 | const uint cia = 65535 - ca; |
| 499 | |
| 500 | int x = 0; |
| 501 | |
| 502 | // 1) prologue, align on 32 bytes |
| 503 | for (; x < length && (quintptr(dst + x) & 31); ++x) |
| 504 | dst[x] = interpolate65535(x: src[x], alpha1: ca, y: dst[x], alpha2: cia); |
| 505 | |
| 506 | // 2) interpolate pixels with AVX2 |
| 507 | const __m256i half = _mm256_set1_epi32(i: 0x8000); |
| 508 | const __m256i colorMask = _mm256_set1_epi32(i: 0x0000ffff); |
| 509 | const __m256i constAlphaVector = _mm256_set1_epi32(i: ca); |
| 510 | const __m256i oneMinusConstAlpha = _mm256_set1_epi32(i: cia); |
| 511 | for (; x < length - 3; x += 4) { |
| 512 | const __m256i srcVector = _mm256_lddqu_si256(p: (const __m256i *)&src[x]); |
| 513 | __m256i dstVector = _mm256_load_si256(p: (__m256i *)&dst[x]); |
| 514 | INTERPOLATE_PIXEL_RGB64_AVX2(srcVector, dstVector, alphaChannel: constAlphaVector, oneMinusAlphaChannel: oneMinusConstAlpha, colorMask, half); |
| 515 | _mm256_store_si256(p: (__m256i *)&dst[x], a: dstVector); |
| 516 | } |
| 517 | |
| 518 | // 3) Epilogue |
| 519 | SIMD_EPILOGUE(x, length, 3) |
| 520 | dst[x] = interpolate65535(x: src[x], alpha1: ca, y: dst[x], alpha2: cia); |
| 521 | } |
| 522 | } |
| 523 | #endif |
| 524 | |
| 525 | void QT_FASTCALL comp_func_solid_SourceOver_avx2(uint *destPixels, int length, uint color, uint const_alpha) |
| 526 | { |
| 527 | if ((const_alpha & qAlpha(rgb: color)) == 255) { |
| 528 | qt_memfill32(destPixels, color, length); |
| 529 | } else { |
| 530 | if (const_alpha != 255) |
| 531 | color = BYTE_MUL(x: color, a: const_alpha); |
| 532 | |
| 533 | const quint32 minusAlphaOfColor = qAlpha(rgb: ~color); |
| 534 | int x = 0; |
| 535 | |
| 536 | quint32 *dst = (quint32 *) destPixels; |
| 537 | const __m256i colorVector = _mm256_set1_epi32(i: color); |
| 538 | const __m256i colorMask = _mm256_set1_epi32(i: 0x00ff00ff); |
| 539 | const __m256i half = _mm256_set1_epi16(w: 0x80); |
| 540 | const __m256i minusAlphaOfColorVector = _mm256_set1_epi16(w: minusAlphaOfColor); |
| 541 | |
| 542 | ALIGNMENT_PROLOGUE_32BYTES(dst, x, length) |
| 543 | destPixels[x] = color + BYTE_MUL(x: destPixels[x], a: minusAlphaOfColor); |
| 544 | |
| 545 | for (; x < length - 7; x += 8) { |
| 546 | __m256i dstVector = _mm256_load_si256(p: (__m256i *)&dst[x]); |
| 547 | BYTE_MUL_AVX2(pixelVector&: dstVector, alphaChannel: minusAlphaOfColorVector, colorMask, half); |
| 548 | dstVector = _mm256_add_epi8(a: colorVector, b: dstVector); |
| 549 | _mm256_store_si256(p: (__m256i *)&dst[x], a: dstVector); |
| 550 | } |
| 551 | SIMD_EPILOGUE(x, length, 7) |
| 552 | destPixels[x] = color + BYTE_MUL(x: destPixels[x], a: minusAlphaOfColor); |
| 553 | } |
| 554 | } |
| 555 | |
| 556 | #if QT_CONFIG(raster_64bit) |
| 557 | void QT_FASTCALL comp_func_solid_SourceOver_rgb64_avx2(QRgba64 *destPixels, int length, QRgba64 color, uint const_alpha) |
| 558 | { |
| 559 | Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255] |
| 560 | if (const_alpha == 255 && color.isOpaque()) { |
| 561 | qt_memfill64((quint64*)destPixels, color, length); |
| 562 | } else { |
| 563 | if (const_alpha != 255) |
| 564 | color = multiplyAlpha255(rgba64: color, alpha255: const_alpha); |
| 565 | |
| 566 | const uint minusAlphaOfColor = 65535 - color.alpha(); |
| 567 | int x = 0; |
| 568 | quint64 *dst = (quint64 *) destPixels; |
| 569 | const __m256i colorVector = _mm256_set1_epi64x(q: color); |
| 570 | const __m256i colorMask = _mm256_set1_epi32(i: 0x0000ffff); |
| 571 | const __m256i half = _mm256_set1_epi32(i: 0x8000); |
| 572 | const __m256i minusAlphaOfColorVector = _mm256_set1_epi32(i: minusAlphaOfColor); |
| 573 | |
| 574 | for (; x < length && (quintptr(dst + x) & 31); ++x) |
| 575 | destPixels[x] = color + multiplyAlpha65535(rgba64: destPixels[x], alpha65535: minusAlphaOfColor); |
| 576 | |
| 577 | for (; x < length - 3; x += 4) { |
| 578 | __m256i dstVector = _mm256_load_si256(p: (__m256i *)&dst[x]); |
| 579 | BYTE_MUL_RGB64_AVX2(pixelVector&: dstVector, alphaChannel: minusAlphaOfColorVector, colorMask, half); |
| 580 | dstVector = _mm256_add_epi16(a: colorVector, b: dstVector); |
| 581 | _mm256_store_si256(p: (__m256i *)&dst[x], a: dstVector); |
| 582 | } |
| 583 | SIMD_EPILOGUE(x, length, 3) |
| 584 | destPixels[x] = color + multiplyAlpha65535(rgba64: destPixels[x], alpha65535: minusAlphaOfColor); |
| 585 | } |
| 586 | } |
| 587 | #endif |
| 588 | |
| 589 | #define interpolate_4_pixels_16_avx2(tlr1, tlr2, blr1, blr2, distx, disty, colorMask, v_256, b) \ |
| 590 | { \ |
| 591 | /* Correct for later unpack */ \ |
| 592 | const __m256i vdistx = _mm256_permute4x64_epi64(distx, _MM_SHUFFLE(3, 1, 2, 0)); \ |
| 593 | const __m256i vdisty = _mm256_permute4x64_epi64(disty, _MM_SHUFFLE(3, 1, 2, 0)); \ |
| 594 | \ |
| 595 | __m256i dxdy = _mm256_mullo_epi16 (vdistx, vdisty); \ |
| 596 | const __m256i distx_ = _mm256_slli_epi16(vdistx, 4); \ |
| 597 | const __m256i disty_ = _mm256_slli_epi16(vdisty, 4); \ |
| 598 | __m256i idxidy = _mm256_add_epi16(dxdy, _mm256_sub_epi16(v_256, _mm256_add_epi16(distx_, disty_))); \ |
| 599 | __m256i dxidy = _mm256_sub_epi16(distx_, dxdy); \ |
| 600 | __m256i idxdy = _mm256_sub_epi16(disty_, dxdy); \ |
| 601 | \ |
| 602 | __m256i tlr1AG = _mm256_srli_epi16(tlr1, 8); \ |
| 603 | __m256i tlr1RB = _mm256_and_si256(tlr1, colorMask); \ |
| 604 | __m256i tlr2AG = _mm256_srli_epi16(tlr2, 8); \ |
| 605 | __m256i tlr2RB = _mm256_and_si256(tlr2, colorMask); \ |
| 606 | __m256i blr1AG = _mm256_srli_epi16(blr1, 8); \ |
| 607 | __m256i blr1RB = _mm256_and_si256(blr1, colorMask); \ |
| 608 | __m256i blr2AG = _mm256_srli_epi16(blr2, 8); \ |
| 609 | __m256i blr2RB = _mm256_and_si256(blr2, colorMask); \ |
| 610 | \ |
| 611 | __m256i odxidy1 = _mm256_unpacklo_epi32(idxidy, dxidy); \ |
| 612 | __m256i odxidy2 = _mm256_unpackhi_epi32(idxidy, dxidy); \ |
| 613 | tlr1AG = _mm256_mullo_epi16(tlr1AG, odxidy1); \ |
| 614 | tlr1RB = _mm256_mullo_epi16(tlr1RB, odxidy1); \ |
| 615 | tlr2AG = _mm256_mullo_epi16(tlr2AG, odxidy2); \ |
| 616 | tlr2RB = _mm256_mullo_epi16(tlr2RB, odxidy2); \ |
| 617 | __m256i odxdy1 = _mm256_unpacklo_epi32(idxdy, dxdy); \ |
| 618 | __m256i odxdy2 = _mm256_unpackhi_epi32(idxdy, dxdy); \ |
| 619 | blr1AG = _mm256_mullo_epi16(blr1AG, odxdy1); \ |
| 620 | blr1RB = _mm256_mullo_epi16(blr1RB, odxdy1); \ |
| 621 | blr2AG = _mm256_mullo_epi16(blr2AG, odxdy2); \ |
| 622 | blr2RB = _mm256_mullo_epi16(blr2RB, odxdy2); \ |
| 623 | \ |
| 624 | /* Add the values, and shift to only keep 8 significant bits per colors */ \ |
| 625 | __m256i topAG = _mm256_hadd_epi32(tlr1AG, tlr2AG); \ |
| 626 | __m256i topRB = _mm256_hadd_epi32(tlr1RB, tlr2RB); \ |
| 627 | __m256i botAG = _mm256_hadd_epi32(blr1AG, blr2AG); \ |
| 628 | __m256i botRB = _mm256_hadd_epi32(blr1RB, blr2RB); \ |
| 629 | __m256i rAG = _mm256_add_epi16(topAG, botAG); \ |
| 630 | __m256i rRB = _mm256_add_epi16(topRB, botRB); \ |
| 631 | rRB = _mm256_srli_epi16(rRB, 8); \ |
| 632 | /* Correct for hadd */ \ |
| 633 | rAG = _mm256_permute4x64_epi64(rAG, _MM_SHUFFLE(3, 1, 2, 0)); \ |
| 634 | rRB = _mm256_permute4x64_epi64(rRB, _MM_SHUFFLE(3, 1, 2, 0)); \ |
| 635 | _mm256_storeu_si256((__m256i*)(b), _mm256_blendv_epi8(rAG, rRB, colorMask)); \ |
| 636 | } |
| 637 | |
| 638 | inline void fetchTransformedBilinear_pixelBounds(int, int l1, int l2, int &v1, int &v2) |
| 639 | { |
| 640 | if (v1 < l1) |
| 641 | v2 = v1 = l1; |
| 642 | else if (v1 >= l2) |
| 643 | v2 = v1 = l2; |
| 644 | else |
| 645 | v2 = v1 + 1; |
| 646 | Q_ASSERT(v1 >= l1 && v1 <= l2); |
| 647 | Q_ASSERT(v2 >= l1 && v2 <= l2); |
| 648 | } |
| 649 | |
| 650 | void QT_FASTCALL intermediate_adder_avx2(uint *b, uint *end, const IntermediateBuffer &intermediate, int offset, int &fx, int fdx); |
| 651 | |
| 652 | void QT_FASTCALL fetchTransformedBilinearARGB32PM_simple_scale_helper_avx2(uint *b, uint *end, const QTextureData &image, |
| 653 | int &fx, int &fy, int fdx, int /*fdy*/) |
| 654 | { |
| 655 | int y1 = (fy >> 16); |
| 656 | int y2; |
| 657 | fetchTransformedBilinear_pixelBounds(image.height, l1: image.y1, l2: image.y2 - 1, v1&: y1, v2&: y2); |
| 658 | const uint *s1 = (const uint *)image.scanLine(y: y1); |
| 659 | const uint *s2 = (const uint *)image.scanLine(y: y2); |
| 660 | |
| 661 | const int disty = (fy & 0x0000ffff) >> 8; |
| 662 | const int idisty = 256 - disty; |
| 663 | const int length = end - b; |
| 664 | |
| 665 | // The intermediate buffer is generated in the positive direction |
| 666 | const int adjust = (fdx < 0) ? fdx * length : 0; |
| 667 | const int offset = (fx + adjust) >> 16; |
| 668 | int x = offset; |
| 669 | |
| 670 | IntermediateBuffer intermediate; |
| 671 | // count is the size used in the intermediate_buffer. |
| 672 | int count = (qint64(length) * qAbs(t: fdx) + FixedScale - 1) / FixedScale + 2; |
| 673 | // length is supposed to be <= BufferSize either because data->m11 < 1 or |
| 674 | // data->m11 < 2, and any larger buffers split |
| 675 | Q_ASSERT(count <= BufferSize + 2); |
| 676 | int f = 0; |
| 677 | int lim = qMin(a: count, b: image.x2 - x); |
| 678 | if (x < image.x1) { |
| 679 | Q_ASSERT(x < image.x2); |
| 680 | uint t = s1[image.x1]; |
| 681 | uint b = s2[image.x1]; |
| 682 | quint32 rb = (((t & 0xff00ff) * idisty + (b & 0xff00ff) * disty) >> 8) & 0xff00ff; |
| 683 | quint32 ag = ((((t>>8) & 0xff00ff) * idisty + ((b>>8) & 0xff00ff) * disty) >> 8) & 0xff00ff; |
| 684 | do { |
| 685 | intermediate.buffer_rb[f] = rb; |
| 686 | intermediate.buffer_ag[f] = ag; |
| 687 | f++; |
| 688 | x++; |
| 689 | } while (x < image.x1 && f < lim); |
| 690 | } |
| 691 | |
| 692 | const __m256i disty_ = _mm256_set1_epi16(w: disty); |
| 693 | const __m256i idisty_ = _mm256_set1_epi16(w: idisty); |
| 694 | const __m256i colorMask = _mm256_set1_epi32(i: 0x00ff00ff); |
| 695 | |
| 696 | lim -= 7; |
| 697 | for (; f < lim; x += 8, f += 8) { |
| 698 | // Load 8 pixels from s1, and split the alpha-green and red-blue component |
| 699 | __m256i top = _mm256_loadu_si256(p: (const __m256i*)((const uint *)(s1)+x)); |
| 700 | __m256i topAG = _mm256_srli_epi16(a: top, count: 8); |
| 701 | __m256i topRB = _mm256_and_si256(a: top, b: colorMask); |
| 702 | // Multiplies each color component by idisty |
| 703 | topAG = _mm256_mullo_epi16 (a: topAG, b: idisty_); |
| 704 | topRB = _mm256_mullo_epi16 (a: topRB, b: idisty_); |
| 705 | |
| 706 | // Same for the s2 vector |
| 707 | __m256i bottom = _mm256_loadu_si256(p: (const __m256i*)((const uint *)(s2)+x)); |
| 708 | __m256i bottomAG = _mm256_srli_epi16(a: bottom, count: 8); |
| 709 | __m256i bottomRB = _mm256_and_si256(a: bottom, b: colorMask); |
| 710 | bottomAG = _mm256_mullo_epi16 (a: bottomAG, b: disty_); |
| 711 | bottomRB = _mm256_mullo_epi16 (a: bottomRB, b: disty_); |
| 712 | |
| 713 | // Add the values, and shift to only keep 8 significant bits per colors |
| 714 | __m256i rAG =_mm256_add_epi16(a: topAG, b: bottomAG); |
| 715 | rAG = _mm256_srli_epi16(a: rAG, count: 8); |
| 716 | _mm256_storeu_si256(p: (__m256i*)(&intermediate.buffer_ag[f]), a: rAG); |
| 717 | __m256i rRB =_mm256_add_epi16(a: topRB, b: bottomRB); |
| 718 | rRB = _mm256_srli_epi16(a: rRB, count: 8); |
| 719 | _mm256_storeu_si256(p: (__m256i*)(&intermediate.buffer_rb[f]), a: rRB); |
| 720 | } |
| 721 | |
| 722 | for (; f < count; f++) { // Same as above but without simd |
| 723 | x = qMin(a: x, b: image.x2 - 1); |
| 724 | |
| 725 | uint t = s1[x]; |
| 726 | uint b = s2[x]; |
| 727 | |
| 728 | intermediate.buffer_rb[f] = (((t & 0xff00ff) * idisty + (b & 0xff00ff) * disty) >> 8) & 0xff00ff; |
| 729 | intermediate.buffer_ag[f] = ((((t>>8) & 0xff00ff) * idisty + ((b>>8) & 0xff00ff) * disty) >> 8) & 0xff00ff; |
| 730 | x++; |
| 731 | } |
| 732 | |
| 733 | // Now interpolate the values from the intermediate_buffer to get the final result. |
| 734 | intermediate_adder_avx2(b, end, intermediate, offset, fx, fdx); |
| 735 | } |
| 736 | |
| 737 | void QT_FASTCALL intermediate_adder_avx2(uint *b, uint *end, const IntermediateBuffer &intermediate, int offset, int &fx, int fdx) |
| 738 | { |
| 739 | fx -= offset * FixedScale; |
| 740 | |
| 741 | const __m128i v_fdx = _mm_set1_epi32(i: fdx * 4); |
| 742 | const __m128i v_blend = _mm_set1_epi32(i: 0x00800080); |
| 743 | const __m128i vdx_shuffle = _mm_set_epi8(b15: char(0x80), b14: 13, b13: char(0x80), b12: 13, b11: char(0x80), b10: 9, b9: char(0x80), b8: 9, |
| 744 | b7: char(0x80), b6: 5, b5: char(0x80), b4: 5, b3: char(0x80), b2: 1, b1: char(0x80), b0: 1); |
| 745 | __m128i v_fx = _mm_setr_epi32(i0: fx, i1: fx + fdx, i2: fx + fdx + fdx, i3: fx + fdx + fdx + fdx); |
| 746 | |
| 747 | while (b < end - 3) { |
| 748 | const __m128i offset = _mm_srli_epi32(a: v_fx, count: 16); |
| 749 | __m256i vrb = _mm256_i32gather_epi64((const long long *)intermediate.buffer_rb, offset, 4); |
| 750 | __m256i vag = _mm256_i32gather_epi64((const long long *)intermediate.buffer_ag, offset, 4); |
| 751 | |
| 752 | __m128i vdx = _mm_shuffle_epi8(a: v_fx, b: vdx_shuffle); |
| 753 | __m128i vidx = _mm_sub_epi16(a: _mm_set1_epi16(w: 256), b: vdx); |
| 754 | __m256i vmulx = _mm256_castsi128_si256(a: _mm_unpacklo_epi32(a: vidx, b: vdx)); |
| 755 | vmulx = _mm256_inserti128_si256(vmulx, _mm_unpackhi_epi32(vidx, vdx), 1); |
| 756 | |
| 757 | vrb = _mm256_mullo_epi16(a: vrb, b: vmulx); |
| 758 | vag = _mm256_mullo_epi16(a: vag, b: vmulx); |
| 759 | |
| 760 | __m256i vrbag = _mm256_hadd_epi32(a: vrb, b: vag); |
| 761 | vrbag = _mm256_permute4x64_epi64(vrbag, _MM_SHUFFLE(3, 1, 2, 0)); |
| 762 | |
| 763 | __m128i rb = _mm256_castsi256_si128(a: vrbag); |
| 764 | __m128i ag = _mm256_extracti128_si256(vrbag, 1); |
| 765 | rb = _mm_srli_epi16(a: rb, count: 8); |
| 766 | |
| 767 | _mm_storeu_si128(p: (__m128i*)b, b: _mm_blendv_epi8(V1: ag, V2: rb, M: v_blend)); |
| 768 | |
| 769 | b += 4; |
| 770 | v_fx = _mm_add_epi32(a: v_fx, b: v_fdx); |
| 771 | } |
| 772 | fx = _mm_cvtsi128_si32(a: v_fx); |
| 773 | while (b < end) { |
| 774 | const int x = (fx >> 16); |
| 775 | |
| 776 | const uint distx = (fx & 0x0000ffff) >> 8; |
| 777 | const uint idistx = 256 - distx; |
| 778 | const uint rb = (intermediate.buffer_rb[x] * idistx + intermediate.buffer_rb[x + 1] * distx) & 0xff00ff00; |
| 779 | const uint ag = (intermediate.buffer_ag[x] * idistx + intermediate.buffer_ag[x + 1] * distx) & 0xff00ff00; |
| 780 | *b = (rb >> 8) | ag; |
| 781 | b++; |
| 782 | fx += fdx; |
| 783 | } |
| 784 | fx += offset * FixedScale; |
| 785 | } |
| 786 | |
| 787 | void QT_FASTCALL fetchTransformedBilinearARGB32PM_downscale_helper_avx2(uint *b, uint *end, const QTextureData &image, |
| 788 | int &fx, int &fy, int fdx, int /*fdy*/) |
| 789 | { |
| 790 | int y1 = (fy >> 16); |
| 791 | int y2; |
| 792 | fetchTransformedBilinear_pixelBounds(image.height, l1: image.y1, l2: image.y2 - 1, v1&: y1, v2&: y2); |
| 793 | const uint *s1 = (const uint *)image.scanLine(y: y1); |
| 794 | const uint *s2 = (const uint *)image.scanLine(y: y2); |
| 795 | const int disty8 = (fy & 0x0000ffff) >> 8; |
| 796 | const int disty4 = (disty8 + 0x08) >> 4; |
| 797 | |
| 798 | const qint64 min_fx = qint64(image.x1) * FixedScale; |
| 799 | const qint64 max_fx = qint64(image.x2 - 1) * FixedScale; |
| 800 | while (b < end) { |
| 801 | int x1 = (fx >> 16); |
| 802 | int x2; |
| 803 | fetchTransformedBilinear_pixelBounds(image.width, l1: image.x1, l2: image.x2 - 1, v1&: x1, v2&: x2); |
| 804 | if (x1 != x2) |
| 805 | break; |
| 806 | uint top = s1[x1]; |
| 807 | uint bot = s2[x1]; |
| 808 | *b = INTERPOLATE_PIXEL_256(x: top, a: 256 - disty8, y: bot, b: disty8); |
| 809 | fx += fdx; |
| 810 | ++b; |
| 811 | } |
| 812 | uint *boundedEnd = end; |
| 813 | if (fdx > 0) |
| 814 | boundedEnd = qMin(a: boundedEnd, b: b + (max_fx - fx) / fdx); |
| 815 | else if (fdx < 0) |
| 816 | boundedEnd = qMin(a: boundedEnd, b: b + (min_fx - fx) / fdx); |
| 817 | |
| 818 | // A fast middle part without boundary checks |
| 819 | const __m256i vdistShuffle = |
| 820 | _mm256_setr_epi8(b31: 0, b30: char(0x80), b29: 0, b28: char(0x80), b27: 4, b26: char(0x80), b25: 4, b24: char(0x80), b23: 8, b22: char(0x80), b21: 8, b20: char(0x80), b19: 12, b18: char(0x80), b17: 12, b16: char(0x80), |
| 821 | b15: 0, b14: char(0x80), b13: 0, b12: char(0x80), b11: 4, b10: char(0x80), b09: 4, b08: char(0x80), b07: 8, b06: char(0x80), b05: 8, b04: char(0x80), b03: 12, b02: char(0x80), b01: 12, b00: char(0x80)); |
| 822 | const __m256i colorMask = _mm256_set1_epi32(i: 0x00ff00ff); |
| 823 | const __m256i v_256 = _mm256_set1_epi16(w: 256); |
| 824 | const __m256i v_disty = _mm256_set1_epi16(w: disty4); |
| 825 | const __m256i v_fdx = _mm256_set1_epi32(i: fdx * 8); |
| 826 | const __m256i v_fx_r = _mm256_set1_epi32(i: 0x08); |
| 827 | const __m256i v_index = _mm256_setr_epi32(i0: 0, i1: 1, i2: 2, i3: 3, i4: 4, i5: 5, i6: 6, i7: 7); |
| 828 | __m256i v_fx = _mm256_set1_epi32(i: fx); |
| 829 | v_fx = _mm256_add_epi32(a: v_fx, b: _mm256_mullo_epi32(a: _mm256_set1_epi32(i: fdx), b: v_index)); |
| 830 | |
| 831 | while (b < boundedEnd - 7) { |
| 832 | const __m256i offset = _mm256_srli_epi32(a: v_fx, count: 16); |
| 833 | const __m128i offsetLo = _mm256_castsi256_si128(a: offset); |
| 834 | const __m128i offsetHi = _mm256_extracti128_si256(offset, 1); |
| 835 | const __m256i toplo = _mm256_i32gather_epi64((const long long *)s1, offsetLo, 4); |
| 836 | const __m256i tophi = _mm256_i32gather_epi64((const long long *)s1, offsetHi, 4); |
| 837 | const __m256i botlo = _mm256_i32gather_epi64((const long long *)s2, offsetLo, 4); |
| 838 | const __m256i bothi = _mm256_i32gather_epi64((const long long *)s2, offsetHi, 4); |
| 839 | |
| 840 | __m256i v_distx = _mm256_srli_epi16(a: v_fx, count: 8); |
| 841 | v_distx = _mm256_srli_epi16(a: _mm256_add_epi32(a: v_distx, b: v_fx_r), count: 4); |
| 842 | v_distx = _mm256_shuffle_epi8(a: v_distx, b: vdistShuffle); |
| 843 | |
| 844 | interpolate_4_pixels_16_avx2(toplo, tophi, botlo, bothi, v_distx, v_disty, colorMask, v_256, b); |
| 845 | b += 8; |
| 846 | v_fx = _mm256_add_epi32(a: v_fx, b: v_fdx); |
| 847 | } |
| 848 | fx = _mm_extract_epi32(_mm256_castsi256_si128(v_fx) , 0); |
| 849 | |
| 850 | while (b < boundedEnd) { |
| 851 | int x = (fx >> 16); |
| 852 | int distx8 = (fx & 0x0000ffff) >> 8; |
| 853 | *b = interpolate_4_pixels(t: s1 + x, b: s2 + x, distx: distx8, disty: disty8); |
| 854 | fx += fdx; |
| 855 | ++b; |
| 856 | } |
| 857 | |
| 858 | while (b < end) { |
| 859 | int x1 = (fx >> 16); |
| 860 | int x2; |
| 861 | fetchTransformedBilinear_pixelBounds(image.width, l1: image.x1, l2: image.x2 - 1, v1&: x1, v2&: x2); |
| 862 | uint tl = s1[x1]; |
| 863 | uint tr = s1[x2]; |
| 864 | uint bl = s2[x1]; |
| 865 | uint br = s2[x2]; |
| 866 | int distx8 = (fx & 0x0000ffff) >> 8; |
| 867 | *b = interpolate_4_pixels(tl, tr, bl, br, distx: distx8, disty: disty8); |
| 868 | fx += fdx; |
| 869 | ++b; |
| 870 | } |
| 871 | } |
| 872 | |
| 873 | void QT_FASTCALL fetchTransformedBilinearARGB32PM_fast_rotate_helper_avx2(uint *b, uint *end, const QTextureData &image, |
| 874 | int &fx, int &fy, int fdx, int fdy) |
| 875 | { |
| 876 | const qint64 min_fx = qint64(image.x1) * FixedScale; |
| 877 | const qint64 max_fx = qint64(image.x2 - 1) * FixedScale; |
| 878 | const qint64 min_fy = qint64(image.y1) * FixedScale; |
| 879 | const qint64 max_fy = qint64(image.y2 - 1) * FixedScale; |
| 880 | // first handle the possibly bounded part in the beginning |
| 881 | while (b < end) { |
| 882 | int x1 = (fx >> 16); |
| 883 | int x2; |
| 884 | int y1 = (fy >> 16); |
| 885 | int y2; |
| 886 | fetchTransformedBilinear_pixelBounds(image.width, l1: image.x1, l2: image.x2 - 1, v1&: x1, v2&: x2); |
| 887 | fetchTransformedBilinear_pixelBounds(image.height, l1: image.y1, l2: image.y2 - 1, v1&: y1, v2&: y2); |
| 888 | if (x1 != x2 && y1 != y2) |
| 889 | break; |
| 890 | const uint *s1 = (const uint *)image.scanLine(y: y1); |
| 891 | const uint *s2 = (const uint *)image.scanLine(y: y2); |
| 892 | uint tl = s1[x1]; |
| 893 | uint tr = s1[x2]; |
| 894 | uint bl = s2[x1]; |
| 895 | uint br = s2[x2]; |
| 896 | int distx = (fx & 0x0000ffff) >> 8; |
| 897 | int disty = (fy & 0x0000ffff) >> 8; |
| 898 | *b = interpolate_4_pixels(tl, tr, bl, br, distx, disty); |
| 899 | fx += fdx; |
| 900 | fy += fdy; |
| 901 | ++b; |
| 902 | } |
| 903 | uint *boundedEnd = end; |
| 904 | if (fdx > 0) |
| 905 | boundedEnd = qMin(a: boundedEnd, b: b + (max_fx - fx) / fdx); |
| 906 | else if (fdx < 0) |
| 907 | boundedEnd = qMin(a: boundedEnd, b: b + (min_fx - fx) / fdx); |
| 908 | if (fdy > 0) |
| 909 | boundedEnd = qMin(a: boundedEnd, b: b + (max_fy - fy) / fdy); |
| 910 | else if (fdy < 0) |
| 911 | boundedEnd = qMin(a: boundedEnd, b: b + (min_fy - fy) / fdy); |
| 912 | |
| 913 | // until boundedEnd we can now have a fast middle part without boundary checks |
| 914 | const __m256i vdistShuffle = |
| 915 | _mm256_setr_epi8(b31: 0, b30: char(0x80), b29: 0, b28: char(0x80), b27: 4, b26: char(0x80), b25: 4, b24: char(0x80), b23: 8, b22: char(0x80), b21: 8, b20: char(0x80), b19: 12, b18: char(0x80), b17: 12, b16: char(0x80), |
| 916 | b15: 0, b14: char(0x80), b13: 0, b12: char(0x80), b11: 4, b10: char(0x80), b09: 4, b08: char(0x80), b07: 8, b06: char(0x80), b05: 8, b04: char(0x80), b03: 12, b02: char(0x80), b01: 12, b00: char(0x80)); |
| 917 | const __m256i colorMask = _mm256_set1_epi32(i: 0x00ff00ff); |
| 918 | const __m256i v_256 = _mm256_set1_epi16(w: 256); |
| 919 | const __m256i v_fdx = _mm256_set1_epi32(i: fdx * 8); |
| 920 | const __m256i v_fdy = _mm256_set1_epi32(i: fdy * 8); |
| 921 | const __m256i v_fxy_r = _mm256_set1_epi32(i: 0x08); |
| 922 | const __m256i v_index = _mm256_setr_epi32(i0: 0, i1: 1, i2: 2, i3: 3, i4: 4, i5: 5, i6: 6, i7: 7); |
| 923 | __m256i v_fx = _mm256_set1_epi32(i: fx); |
| 924 | __m256i v_fy = _mm256_set1_epi32(i: fy); |
| 925 | v_fx = _mm256_add_epi32(a: v_fx, b: _mm256_mullo_epi32(a: _mm256_set1_epi32(i: fdx), b: v_index)); |
| 926 | v_fy = _mm256_add_epi32(a: v_fy, b: _mm256_mullo_epi32(a: _mm256_set1_epi32(i: fdy), b: v_index)); |
| 927 | |
| 928 | const uchar *textureData = image.imageData; |
| 929 | const qsizetype bytesPerLine = image.bytesPerLine; |
| 930 | const __m256i vbpl = _mm256_set1_epi16(w: bytesPerLine/4); |
| 931 | |
| 932 | while (b < boundedEnd - 7) { |
| 933 | const __m256i vy = _mm256_packs_epi32(a: _mm256_srli_epi32(a: v_fy, count: 16), b: _mm256_setzero_si256()); |
| 934 | // 8x16bit * 8x16bit -> 8x32bit |
| 935 | __m256i offset = _mm256_unpacklo_epi16(a: _mm256_mullo_epi16(a: vy, b: vbpl), b: _mm256_mulhi_epi16(a: vy, b: vbpl)); |
| 936 | offset = _mm256_add_epi32(a: offset, b: _mm256_srli_epi32(a: v_fx, count: 16)); |
| 937 | const __m128i offsetLo = _mm256_castsi256_si128(a: offset); |
| 938 | const __m128i offsetHi = _mm256_extracti128_si256(offset, 1); |
| 939 | const uint *topData = (const uint *)(textureData); |
| 940 | const uint *botData = (const uint *)(textureData + bytesPerLine); |
| 941 | const __m256i toplo = _mm256_i32gather_epi64((const long long *)topData, offsetLo, 4); |
| 942 | const __m256i tophi = _mm256_i32gather_epi64((const long long *)topData, offsetHi, 4); |
| 943 | const __m256i botlo = _mm256_i32gather_epi64((const long long *)botData, offsetLo, 4); |
| 944 | const __m256i bothi = _mm256_i32gather_epi64((const long long *)botData, offsetHi, 4); |
| 945 | |
| 946 | __m256i v_distx = _mm256_srli_epi16(a: v_fx, count: 8); |
| 947 | __m256i v_disty = _mm256_srli_epi16(a: v_fy, count: 8); |
| 948 | v_distx = _mm256_srli_epi16(a: _mm256_add_epi32(a: v_distx, b: v_fxy_r), count: 4); |
| 949 | v_disty = _mm256_srli_epi16(a: _mm256_add_epi32(a: v_disty, b: v_fxy_r), count: 4); |
| 950 | v_distx = _mm256_shuffle_epi8(a: v_distx, b: vdistShuffle); |
| 951 | v_disty = _mm256_shuffle_epi8(a: v_disty, b: vdistShuffle); |
| 952 | |
| 953 | interpolate_4_pixels_16_avx2(toplo, tophi, botlo, bothi, v_distx, v_disty, colorMask, v_256, b); |
| 954 | b += 8; |
| 955 | v_fx = _mm256_add_epi32(a: v_fx, b: v_fdx); |
| 956 | v_fy = _mm256_add_epi32(a: v_fy, b: v_fdy); |
| 957 | } |
| 958 | fx = _mm_extract_epi32(_mm256_castsi256_si128(v_fx) , 0); |
| 959 | fy = _mm_extract_epi32(_mm256_castsi256_si128(v_fy) , 0); |
| 960 | |
| 961 | while (b < boundedEnd) { |
| 962 | int x = (fx >> 16); |
| 963 | int y = (fy >> 16); |
| 964 | |
| 965 | const uint *s1 = (const uint *)image.scanLine(y); |
| 966 | const uint *s2 = (const uint *)image.scanLine(y: y + 1); |
| 967 | |
| 968 | int distx = (fx & 0x0000ffff) >> 8; |
| 969 | int disty = (fy & 0x0000ffff) >> 8; |
| 970 | *b = interpolate_4_pixels(t: s1 + x, b: s2 + x, distx, disty); |
| 971 | |
| 972 | fx += fdx; |
| 973 | fy += fdy; |
| 974 | ++b; |
| 975 | } |
| 976 | |
| 977 | while (b < end) { |
| 978 | int x1 = (fx >> 16); |
| 979 | int x2; |
| 980 | int y1 = (fy >> 16); |
| 981 | int y2; |
| 982 | |
| 983 | fetchTransformedBilinear_pixelBounds(image.width, l1: image.x1, l2: image.x2 - 1, v1&: x1, v2&: x2); |
| 984 | fetchTransformedBilinear_pixelBounds(image.height, l1: image.y1, l2: image.y2 - 1, v1&: y1, v2&: y2); |
| 985 | |
| 986 | const uint *s1 = (const uint *)image.scanLine(y: y1); |
| 987 | const uint *s2 = (const uint *)image.scanLine(y: y2); |
| 988 | |
| 989 | uint tl = s1[x1]; |
| 990 | uint tr = s1[x2]; |
| 991 | uint bl = s2[x1]; |
| 992 | uint br = s2[x2]; |
| 993 | |
| 994 | int distx = (fx & 0x0000ffff) >> 8; |
| 995 | int disty = (fy & 0x0000ffff) >> 8; |
| 996 | *b = interpolate_4_pixels(tl, tr, bl, br, distx, disty); |
| 997 | |
| 998 | fx += fdx; |
| 999 | fy += fdy; |
| 1000 | ++b; |
| 1001 | } |
| 1002 | } |
| 1003 | |
| 1004 | static inline __m256i epilogueMaskFromCount(qsizetype count) |
| 1005 | { |
| 1006 | Q_ASSERT(count > 0); |
| 1007 | static const __m256i offsetMask = _mm256_setr_epi32(i0: 0, i1: 1, i2: 2, i3: 3, i4: 4, i5: 5, i6: 6, i7: 7); |
| 1008 | return _mm256_add_epi32(a: offsetMask, b: _mm256_set1_epi32(i: -count)); |
| 1009 | } |
| 1010 | |
| 1011 | template<bool RGBA> |
| 1012 | static void convertARGBToARGB32PM_avx2(uint *buffer, const uint *src, qsizetype count) |
| 1013 | { |
| 1014 | qsizetype i = 0; |
| 1015 | const __m256i alphaMask = _mm256_set1_epi32(i: 0xff000000); |
| 1016 | const __m256i rgbaMask = _mm256_broadcastsi128_si256(X: _mm_setr_epi8(b0: 2, b1: 1, b2: 0, b3: 3, b4: 6, b5: 5, b6: 4, b7: 7, b8: 10, b9: 9, b10: 8, b11: 11, b12: 14, b13: 13, b14: 12, b15: 15)); |
| 1017 | const __m256i shuffleMask = _mm256_broadcastsi128_si256(X: _mm_setr_epi8(b0: 6, b1: 7, b2: 6, b3: 7, b4: 6, b5: 7, b6: 6, b7: 7, b8: 14, b9: 15, b10: 14, b11: 15, b12: 14, b13: 15, b14: 14, b15: 15)); |
| 1018 | const __m256i half = _mm256_set1_epi16(w: 0x0080); |
| 1019 | const __m256i zero = _mm256_setzero_si256(); |
| 1020 | |
| 1021 | for (; i < count - 7; i += 8) { |
| 1022 | __m256i srcVector = _mm256_loadu_si256(p: reinterpret_cast<const __m256i *>(src + i)); |
| 1023 | if (!_mm256_testz_si256(a: srcVector, b: alphaMask)) { |
| 1024 | // keep the two _mm_test[zc]_siXXX next to each other |
| 1025 | bool cf = _mm256_testc_si256(a: srcVector, b: alphaMask); |
| 1026 | if (RGBA) |
| 1027 | srcVector = _mm256_shuffle_epi8(a: srcVector, b: rgbaMask); |
| 1028 | if (!cf) { |
| 1029 | __m256i src1 = _mm256_unpacklo_epi8(a: srcVector, b: zero); |
| 1030 | __m256i src2 = _mm256_unpackhi_epi8(a: srcVector, b: zero); |
| 1031 | __m256i alpha1 = _mm256_shuffle_epi8(a: src1, b: shuffleMask); |
| 1032 | __m256i alpha2 = _mm256_shuffle_epi8(a: src2, b: shuffleMask); |
| 1033 | src1 = _mm256_mullo_epi16(a: src1, b: alpha1); |
| 1034 | src2 = _mm256_mullo_epi16(a: src2, b: alpha2); |
| 1035 | src1 = _mm256_add_epi16(a: src1, b: _mm256_srli_epi16(a: src1, count: 8)); |
| 1036 | src2 = _mm256_add_epi16(a: src2, b: _mm256_srli_epi16(a: src2, count: 8)); |
| 1037 | src1 = _mm256_add_epi16(a: src1, b: half); |
| 1038 | src2 = _mm256_add_epi16(a: src2, b: half); |
| 1039 | src1 = _mm256_srli_epi16(a: src1, count: 8); |
| 1040 | src2 = _mm256_srli_epi16(a: src2, count: 8); |
| 1041 | src1 = _mm256_blend_epi16(src1, alpha1, 0x88); |
| 1042 | src2 = _mm256_blend_epi16(src2, alpha2, 0x88); |
| 1043 | srcVector = _mm256_packus_epi16(a: src1, b: src2); |
| 1044 | _mm256_storeu_si256(p: reinterpret_cast<__m256i *>(buffer + i), a: srcVector); |
| 1045 | } else { |
| 1046 | if (buffer != src || RGBA) |
| 1047 | _mm256_storeu_si256(p: reinterpret_cast<__m256i *>(buffer + i), a: srcVector); |
| 1048 | } |
| 1049 | } else { |
| 1050 | _mm256_storeu_si256(p: reinterpret_cast<__m256i *>(buffer + i), a: zero); |
| 1051 | } |
| 1052 | } |
| 1053 | |
| 1054 | if (i < count) { |
| 1055 | const __m256i epilogueMask = epilogueMaskFromCount(count: count - i); |
| 1056 | __m256i srcVector = _mm256_maskload_epi32(X: reinterpret_cast<const int *>(src + i), M: epilogueMask); |
| 1057 | const __m256i epilogueAlphaMask = _mm256_blendv_epi8(V1: _mm256_setzero_si256(), V2: alphaMask, M: epilogueMask); |
| 1058 | |
| 1059 | if (!_mm256_testz_si256(a: srcVector, b: epilogueAlphaMask)) { |
| 1060 | // keep the two _mm_test[zc]_siXXX next to each other |
| 1061 | bool cf = _mm256_testc_si256(a: srcVector, b: epilogueAlphaMask); |
| 1062 | if (RGBA) |
| 1063 | srcVector = _mm256_shuffle_epi8(a: srcVector, b: rgbaMask); |
| 1064 | if (!cf) { |
| 1065 | __m256i src1 = _mm256_unpacklo_epi8(a: srcVector, b: zero); |
| 1066 | __m256i src2 = _mm256_unpackhi_epi8(a: srcVector, b: zero); |
| 1067 | __m256i alpha1 = _mm256_shuffle_epi8(a: src1, b: shuffleMask); |
| 1068 | __m256i alpha2 = _mm256_shuffle_epi8(a: src2, b: shuffleMask); |
| 1069 | src1 = _mm256_mullo_epi16(a: src1, b: alpha1); |
| 1070 | src2 = _mm256_mullo_epi16(a: src2, b: alpha2); |
| 1071 | src1 = _mm256_add_epi16(a: src1, b: _mm256_srli_epi16(a: src1, count: 8)); |
| 1072 | src2 = _mm256_add_epi16(a: src2, b: _mm256_srli_epi16(a: src2, count: 8)); |
| 1073 | src1 = _mm256_add_epi16(a: src1, b: half); |
| 1074 | src2 = _mm256_add_epi16(a: src2, b: half); |
| 1075 | src1 = _mm256_srli_epi16(a: src1, count: 8); |
| 1076 | src2 = _mm256_srli_epi16(a: src2, count: 8); |
| 1077 | src1 = _mm256_blend_epi16(src1, alpha1, 0x88); |
| 1078 | src2 = _mm256_blend_epi16(src2, alpha2, 0x88); |
| 1079 | srcVector = _mm256_packus_epi16(a: src1, b: src2); |
| 1080 | _mm256_maskstore_epi32(X: reinterpret_cast<int *>(buffer + i), M: epilogueMask, Y: srcVector); |
| 1081 | } else { |
| 1082 | if (buffer != src || RGBA) |
| 1083 | _mm256_maskstore_epi32(X: reinterpret_cast<int *>(buffer + i), M: epilogueMask, Y: srcVector); |
| 1084 | } |
| 1085 | } else { |
| 1086 | _mm256_maskstore_epi32(X: reinterpret_cast<int *>(buffer + i), M: epilogueMask, Y: zero); |
| 1087 | } |
| 1088 | } |
| 1089 | } |
| 1090 | |
| 1091 | void QT_FASTCALL convertARGB32ToARGB32PM_avx2(uint *buffer, int count, const QVector<QRgb> *) |
| 1092 | { |
| 1093 | convertARGBToARGB32PM_avx2<false>(buffer, src: buffer, count); |
| 1094 | } |
| 1095 | |
| 1096 | void QT_FASTCALL convertRGBA8888ToARGB32PM_avx2(uint *buffer, int count, const QVector<QRgb> *) |
| 1097 | { |
| 1098 | convertARGBToARGB32PM_avx2<true>(buffer, src: buffer, count); |
| 1099 | } |
| 1100 | |
| 1101 | const uint *QT_FASTCALL fetchARGB32ToARGB32PM_avx2(uint *buffer, const uchar *src, int index, int count, |
| 1102 | const QVector<QRgb> *, QDitherInfo *) |
| 1103 | { |
| 1104 | convertARGBToARGB32PM_avx2<false>(buffer, src: reinterpret_cast<const uint *>(src) + index, count); |
| 1105 | return buffer; |
| 1106 | } |
| 1107 | |
| 1108 | const uint *QT_FASTCALL fetchRGBA8888ToARGB32PM_avx2(uint *buffer, const uchar *src, int index, int count, |
| 1109 | const QVector<QRgb> *, QDitherInfo *) |
| 1110 | { |
| 1111 | convertARGBToARGB32PM_avx2<true>(buffer, src: reinterpret_cast<const uint *>(src) + index, count); |
| 1112 | return buffer; |
| 1113 | } |
| 1114 | |
| 1115 | template<bool RGBA> |
| 1116 | static void convertARGBToRGBA64PM_avx2(QRgba64 *buffer, const uint *src, qsizetype count) |
| 1117 | { |
| 1118 | qsizetype i = 0; |
| 1119 | const __m256i alphaMask = _mm256_set1_epi32(i: 0xff000000); |
| 1120 | const __m256i rgbaMask = _mm256_broadcastsi128_si256(X: _mm_setr_epi8(b0: 2, b1: 1, b2: 0, b3: 3, b4: 6, b5: 5, b6: 4, b7: 7, b8: 10, b9: 9, b10: 8, b11: 11, b12: 14, b13: 13, b14: 12, b15: 15)); |
| 1121 | const __m256i shuffleMask = _mm256_broadcastsi128_si256(X: _mm_setr_epi8(b0: 6, b1: 7, b2: 6, b3: 7, b4: 6, b5: 7, b6: 6, b7: 7, b8: 14, b9: 15, b10: 14, b11: 15, b12: 14, b13: 15, b14: 14, b15: 15)); |
| 1122 | const __m256i zero = _mm256_setzero_si256(); |
| 1123 | |
| 1124 | for (; i < count - 7; i += 8) { |
| 1125 | __m256i dst1, dst2; |
| 1126 | __m256i srcVector = _mm256_loadu_si256(p: reinterpret_cast<const __m256i *>(src + i)); |
| 1127 | if (!_mm256_testz_si256(a: srcVector, b: alphaMask)) { |
| 1128 | // keep the two _mm_test[zc]_siXXX next to each other |
| 1129 | bool cf = _mm256_testc_si256(a: srcVector, b: alphaMask); |
| 1130 | if (!RGBA) |
| 1131 | srcVector = _mm256_shuffle_epi8(a: srcVector, b: rgbaMask); |
| 1132 | |
| 1133 | // The two unpack instructions unpack the low and upper halves of |
| 1134 | // each 128-bit half of the 256-bit register. Here's the tracking |
| 1135 | // of what's where: (p is 32-bit, P is 64-bit) |
| 1136 | // as loaded: [ p1, p2, p3, p4; p5, p6, p7, p8 ] |
| 1137 | // after permute4x64 [ p1, p2, p5, p6; p3, p4, p7, p8 ] |
| 1138 | // after unpacklo/hi [ P1, P2; P3, P4 ] [ P5, P6; P7, P8 ] |
| 1139 | srcVector = _mm256_permute4x64_epi64(srcVector, _MM_SHUFFLE(3, 1, 2, 0)); |
| 1140 | |
| 1141 | const __m256i src1 = _mm256_unpacklo_epi8(a: srcVector, b: srcVector); |
| 1142 | const __m256i src2 = _mm256_unpackhi_epi8(a: srcVector, b: srcVector); |
| 1143 | if (!cf) { |
| 1144 | const __m256i alpha1 = _mm256_shuffle_epi8(a: src1, b: shuffleMask); |
| 1145 | const __m256i alpha2 = _mm256_shuffle_epi8(a: src2, b: shuffleMask); |
| 1146 | dst1 = _mm256_mulhi_epu16(a: src1, b: alpha1); |
| 1147 | dst2 = _mm256_mulhi_epu16(a: src2, b: alpha2); |
| 1148 | dst1 = _mm256_add_epi16(a: dst1, b: _mm256_srli_epi16(a: dst1, count: 15)); |
| 1149 | dst2 = _mm256_add_epi16(a: dst2, b: _mm256_srli_epi16(a: dst2, count: 15)); |
| 1150 | dst1 = _mm256_blend_epi16(dst1, src1, 0x88); |
| 1151 | dst2 = _mm256_blend_epi16(dst2, src2, 0x88); |
| 1152 | } else { |
| 1153 | dst1 = src1; |
| 1154 | dst2 = src2; |
| 1155 | } |
| 1156 | } else { |
| 1157 | dst1 = dst2 = zero; |
| 1158 | } |
| 1159 | _mm256_storeu_si256(p: reinterpret_cast<__m256i *>(buffer + i), a: dst1); |
| 1160 | _mm256_storeu_si256(p: reinterpret_cast<__m256i *>(buffer + i) + 1, a: dst2); |
| 1161 | } |
| 1162 | |
| 1163 | if (i < count) { |
| 1164 | __m256i epilogueMask = epilogueMaskFromCount(count: count - i); |
| 1165 | const __m256i epilogueAlphaMask = _mm256_blendv_epi8(V1: _mm256_setzero_si256(), V2: alphaMask, M: epilogueMask); |
| 1166 | __m256i dst1, dst2; |
| 1167 | __m256i srcVector = _mm256_maskload_epi32(X: reinterpret_cast<const int *>(src + i), M: epilogueMask); |
| 1168 | |
| 1169 | if (!_mm256_testz_si256(a: srcVector, b: epilogueAlphaMask)) { |
| 1170 | // keep the two _mm_test[zc]_siXXX next to each other |
| 1171 | bool cf = _mm256_testc_si256(a: srcVector, b: epilogueAlphaMask); |
| 1172 | if (!RGBA) |
| 1173 | srcVector = _mm256_shuffle_epi8(a: srcVector, b: rgbaMask); |
| 1174 | srcVector = _mm256_permute4x64_epi64(srcVector, _MM_SHUFFLE(3, 1, 2, 0)); |
| 1175 | const __m256i src1 = _mm256_unpacklo_epi8(a: srcVector, b: srcVector); |
| 1176 | const __m256i src2 = _mm256_unpackhi_epi8(a: srcVector, b: srcVector); |
| 1177 | if (!cf) { |
| 1178 | const __m256i alpha1 = _mm256_shuffle_epi8(a: src1, b: shuffleMask); |
| 1179 | const __m256i alpha2 = _mm256_shuffle_epi8(a: src2, b: shuffleMask); |
| 1180 | dst1 = _mm256_mulhi_epu16(a: src1, b: alpha1); |
| 1181 | dst2 = _mm256_mulhi_epu16(a: src2, b: alpha2); |
| 1182 | dst1 = _mm256_add_epi16(a: dst1, b: _mm256_srli_epi16(a: dst1, count: 15)); |
| 1183 | dst2 = _mm256_add_epi16(a: dst2, b: _mm256_srli_epi16(a: dst2, count: 15)); |
| 1184 | dst1 = _mm256_blend_epi16(dst1, src1, 0x88); |
| 1185 | dst2 = _mm256_blend_epi16(dst2, src2, 0x88); |
| 1186 | } else { |
| 1187 | dst1 = src1; |
| 1188 | dst2 = src2; |
| 1189 | } |
| 1190 | } else { |
| 1191 | dst1 = dst2 = zero; |
| 1192 | } |
| 1193 | epilogueMask = _mm256_permute4x64_epi64(epilogueMask, _MM_SHUFFLE(3, 1, 2, 0)); |
| 1194 | _mm256_maskstore_epi64(X: reinterpret_cast<qint64 *>(buffer + i), |
| 1195 | M: _mm256_unpacklo_epi32(a: epilogueMask, b: epilogueMask), |
| 1196 | Y: dst1); |
| 1197 | _mm256_maskstore_epi64(X: reinterpret_cast<qint64 *>(buffer + i + 4), |
| 1198 | M: _mm256_unpackhi_epi32(a: epilogueMask, b: epilogueMask), |
| 1199 | Y: dst2); |
| 1200 | } |
| 1201 | } |
| 1202 | |
| 1203 | const QRgba64 * QT_FASTCALL convertARGB32ToRGBA64PM_avx2(QRgba64 *buffer, const uint *src, int count, |
| 1204 | const QVector<QRgb> *, QDitherInfo *) |
| 1205 | { |
| 1206 | convertARGBToRGBA64PM_avx2<false>(buffer, src, count); |
| 1207 | return buffer; |
| 1208 | } |
| 1209 | |
| 1210 | const QRgba64 * QT_FASTCALL convertRGBA8888ToRGBA64PM_avx2(QRgba64 *buffer, const uint *src, int count, |
| 1211 | const QVector<QRgb> *, QDitherInfo *) |
| 1212 | { |
| 1213 | convertARGBToRGBA64PM_avx2<true>(buffer, src, count); |
| 1214 | return buffer; |
| 1215 | } |
| 1216 | |
| 1217 | const QRgba64 *QT_FASTCALL fetchARGB32ToRGBA64PM_avx2(QRgba64 *buffer, const uchar *src, int index, int count, |
| 1218 | const QVector<QRgb> *, QDitherInfo *) |
| 1219 | { |
| 1220 | convertARGBToRGBA64PM_avx2<false>(buffer, src: reinterpret_cast<const uint *>(src) + index, count); |
| 1221 | return buffer; |
| 1222 | } |
| 1223 | |
| 1224 | const QRgba64 *QT_FASTCALL fetchRGBA8888ToRGBA64PM_avx2(QRgba64 *buffer, const uchar *src, int index, int count, |
| 1225 | const QVector<QRgb> *, QDitherInfo *) |
| 1226 | { |
| 1227 | convertARGBToRGBA64PM_avx2<true>(buffer, src: reinterpret_cast<const uint *>(src) + index, count); |
| 1228 | return buffer; |
| 1229 | } |
| 1230 | |
| 1231 | QT_END_NAMESPACE |
| 1232 | |
| 1233 | #endif |
| 1234 | |