| 1 | /* | 
| 2 |  * Copyright (C) 2008, 2012 Apple Inc. All rights reserved. | 
| 3 |  * | 
| 4 |  * Redistribution and use in source and binary forms, with or without | 
| 5 |  * modification, are permitted provided that the following conditions | 
| 6 |  * are met: | 
| 7 |  * 1. Redistributions of source code must retain the above copyright | 
| 8 |  *    notice, this list of conditions and the following disclaimer. | 
| 9 |  * 2. Redistributions in binary form must reproduce the above copyright | 
| 10 |  *    notice, this list of conditions and the following disclaimer in the | 
| 11 |  *    documentation and/or other materials provided with the distribution. | 
| 12 |  * | 
| 13 |  * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | 
| 14 |  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
| 15 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
| 16 |  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR | 
| 17 |  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
| 18 |  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
| 19 |  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
| 20 |  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | 
| 21 |  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
| 22 |  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
| 23 |  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  | 
| 24 |  */ | 
| 25 |  | 
| 26 | #ifndef AbstractMacroAssembler_h | 
| 27 | #define AbstractMacroAssembler_h | 
| 28 |  | 
| 29 | #include "AssemblerBuffer.h" | 
| 30 | #include "CodeLocation.h" | 
| 31 | #include "MacroAssemblerCodeRef.h" | 
| 32 | #include <wtf/CryptographicallyRandomNumber.h> | 
| 33 | #include <wtf/Noncopyable.h> | 
| 34 | #include <wtf/UnusedParam.h> | 
| 35 |  | 
| 36 | #if ENABLE(ASSEMBLER) | 
| 37 |  | 
| 38 |  | 
| 39 | #if PLATFORM(QT) | 
| 40 | #define ENABLE_JIT_CONSTANT_BLINDING 0 | 
| 41 | #endif | 
| 42 |  | 
| 43 | #ifndef ENABLE_JIT_CONSTANT_BLINDING | 
| 44 | #define ENABLE_JIT_CONSTANT_BLINDING 1 | 
| 45 | #endif | 
| 46 |  | 
| 47 | namespace JSC { | 
| 48 |  | 
| 49 | class JumpReplacementWatchpoint; | 
| 50 | template <typename, template <typename> class> | 
| 51 | class LinkBufferBase; | 
| 52 | template <typename> | 
| 53 | class BranchCompactingLinkBuffer; | 
| 54 | class Watchpoint; | 
| 55 | namespace DFG { | 
| 56 | struct OSRExit; | 
| 57 | } | 
| 58 |  | 
| 59 | template <class AssemblerType> | 
| 60 | class AbstractMacroAssembler { | 
| 61 | public: | 
| 62 |     friend class JITWriteBarrierBase; | 
| 63 |     typedef AssemblerType AssemblerType_T; | 
| 64 |  | 
| 65 |     typedef MacroAssemblerCodePtr CodePtr; | 
| 66 |     typedef MacroAssemblerCodeRef CodeRef; | 
| 67 |  | 
| 68 | #if !CPU(ARM_THUMB2) && !CPU(ARM64) | 
| 69 |     class Jump; | 
| 70 | #endif | 
| 71 |  | 
| 72 |     typedef typename AssemblerType::RegisterID RegisterID; | 
| 73 |     typedef typename AssemblerType::FPRegisterID FPRegisterID; | 
| 74 |  | 
| 75 |     // Section 1: MacroAssembler operand types | 
| 76 |     // | 
| 77 |     // The following types are used as operands to MacroAssembler operations, | 
| 78 |     // describing immediate  and memory operands to the instructions to be planted. | 
| 79 |  | 
| 80 |     enum Scale { | 
| 81 |         TimesOne, | 
| 82 |         TimesTwo, | 
| 83 |         TimesFour, | 
| 84 |         TimesEight, | 
| 85 |     }; | 
| 86 |  | 
| 87 |     // Address: | 
| 88 |     // | 
| 89 |     // Describes a simple base-offset address. | 
| 90 |     struct Address { | 
| 91 |         explicit Address(RegisterID base, int32_t offset = 0) | 
| 92 |             : base(base) | 
| 93 |             , offset(offset) | 
| 94 |         { | 
| 95 |         } | 
| 96 |  | 
| 97 |         RegisterID base; | 
| 98 |         int32_t offset; | 
| 99 |     }; | 
| 100 |  | 
| 101 |     struct ExtendedAddress { | 
| 102 |         explicit ExtendedAddress(RegisterID base, intptr_t offset = 0) | 
| 103 |             : base(base) | 
| 104 |             , offset(offset) | 
| 105 |         { | 
| 106 |         } | 
| 107 |          | 
| 108 |         RegisterID base; | 
| 109 |         intptr_t offset; | 
| 110 |     }; | 
| 111 |  | 
| 112 |     // ImplicitAddress: | 
| 113 |     // | 
| 114 |     // This class is used for explicit 'load' and 'store' operations | 
| 115 |     // (as opposed to situations in which a memory operand is provided | 
| 116 |     // to a generic operation, such as an integer arithmetic instruction). | 
| 117 |     // | 
| 118 |     // In the case of a load (or store) operation we want to permit | 
| 119 |     // addresses to be implicitly constructed, e.g. the two calls: | 
| 120 |     // | 
| 121 |     //     load32(Address(addrReg), destReg); | 
| 122 |     //     load32(addrReg, destReg); | 
| 123 |     // | 
| 124 |     // Are equivalent, and the explicit wrapping of the Address in the former | 
| 125 |     // is unnecessary. | 
| 126 |     struct ImplicitAddress { | 
| 127 |         ImplicitAddress(RegisterID base) | 
| 128 |             : base(base) | 
| 129 |             , offset(0) | 
| 130 |         { | 
| 131 |         } | 
| 132 |  | 
| 133 |         ImplicitAddress(Address address) | 
| 134 |             : base(address.base) | 
| 135 |             , offset(address.offset) | 
| 136 |         { | 
| 137 |         } | 
| 138 |  | 
| 139 |         RegisterID base; | 
| 140 |         int32_t offset; | 
| 141 |     }; | 
| 142 |  | 
| 143 |     // BaseIndex: | 
| 144 |     // | 
| 145 |     // Describes a complex addressing mode. | 
| 146 |     struct BaseIndex { | 
| 147 |         BaseIndex(RegisterID base, RegisterID index, Scale scale, int32_t offset = 0) | 
| 148 |             : base(base) | 
| 149 |             , index(index) | 
| 150 |             , scale(scale) | 
| 151 |             , offset(offset) | 
| 152 |         { | 
| 153 |         } | 
| 154 |  | 
| 155 |         RegisterID base; | 
| 156 |         RegisterID index; | 
| 157 |         Scale scale; | 
| 158 |         int32_t offset; | 
| 159 |     }; | 
| 160 |  | 
| 161 |     // AbsoluteAddress: | 
| 162 |     // | 
| 163 |     // Describes an memory operand given by a pointer.  For regular load & store | 
| 164 |     // operations an unwrapped void* will be used, rather than using this. | 
| 165 |     struct AbsoluteAddress { | 
| 166 |         explicit AbsoluteAddress(const void* ptr) | 
| 167 |             : m_ptr(ptr) | 
| 168 |         { | 
| 169 |         } | 
| 170 |  | 
| 171 |         const void* m_ptr; | 
| 172 |     }; | 
| 173 |  | 
| 174 |     // TrustedImmPtr: | 
| 175 |     // | 
| 176 |     // A pointer sized immediate operand to an instruction - this is wrapped | 
| 177 |     // in a class requiring explicit construction in order to differentiate | 
| 178 |     // from pointers used as absolute addresses to memory operations | 
| 179 |     struct TrustedImmPtr { | 
| 180 |         TrustedImmPtr() { } | 
| 181 |          | 
| 182 |         explicit TrustedImmPtr(const void* value) | 
| 183 |             : m_value(value) | 
| 184 |         { | 
| 185 |         } | 
| 186 |          | 
| 187 |         // This is only here so that TrustedImmPtr(0) does not confuse the C++ | 
| 188 |         // overload handling rules. | 
| 189 |         explicit TrustedImmPtr(int value) | 
| 190 |             : m_value(0) | 
| 191 |         { | 
| 192 |             ASSERT_UNUSED(value, !value); | 
| 193 |         } | 
| 194 |  | 
| 195 |         explicit TrustedImmPtr(size_t value) | 
| 196 |             : m_value(reinterpret_cast<void*>(value)) | 
| 197 |         { | 
| 198 |         } | 
| 199 |  | 
| 200 |         intptr_t asIntptr() | 
| 201 |         { | 
| 202 |             return reinterpret_cast<intptr_t>(m_value); | 
| 203 |         } | 
| 204 |  | 
| 205 |         const void* m_value; | 
| 206 |     }; | 
| 207 |  | 
| 208 |     struct ImmPtr :  | 
| 209 | #if ENABLE(JIT_CONSTANT_BLINDING) | 
| 210 |         private TrustedImmPtr  | 
| 211 | #else | 
| 212 |         public TrustedImmPtr | 
| 213 | #endif | 
| 214 |     { | 
| 215 |         explicit ImmPtr(const void* value) | 
| 216 |             : TrustedImmPtr(value) | 
| 217 |         { | 
| 218 |         } | 
| 219 |  | 
| 220 |         TrustedImmPtr asTrustedImmPtr() { return *this; } | 
| 221 |     }; | 
| 222 |  | 
| 223 |     // TrustedImm32: | 
| 224 |     // | 
| 225 |     // A 32bit immediate operand to an instruction - this is wrapped in a | 
| 226 |     // class requiring explicit construction in order to prevent RegisterIDs | 
| 227 |     // (which are implemented as an enum) from accidentally being passed as | 
| 228 |     // immediate values. | 
| 229 |     struct TrustedImm32 { | 
| 230 |         TrustedImm32() { } | 
| 231 |          | 
| 232 |         explicit TrustedImm32(int32_t value) | 
| 233 |             : m_value(value) | 
| 234 |         { | 
| 235 |         } | 
| 236 |  | 
| 237 | #if !CPU(X86_64) | 
| 238 |         explicit TrustedImm32(TrustedImmPtr ptr) | 
| 239 |             : m_value(ptr.asIntptr()) | 
| 240 |         { | 
| 241 |         } | 
| 242 | #endif | 
| 243 |  | 
| 244 |         int32_t m_value; | 
| 245 |     }; | 
| 246 |  | 
| 247 |  | 
| 248 |     struct Imm32 :  | 
| 249 | #if ENABLE(JIT_CONSTANT_BLINDING) | 
| 250 |         private TrustedImm32  | 
| 251 | #else | 
| 252 |         public TrustedImm32 | 
| 253 | #endif | 
| 254 |     { | 
| 255 |         explicit Imm32(int32_t value) | 
| 256 |             : TrustedImm32(value) | 
| 257 |         { | 
| 258 |         } | 
| 259 | #if !CPU(X86_64) | 
| 260 |         explicit Imm32(TrustedImmPtr ptr) | 
| 261 |             : TrustedImm32(ptr) | 
| 262 |         { | 
| 263 |         } | 
| 264 | #endif | 
| 265 |         const TrustedImm32& asTrustedImm32() const { return *this; } | 
| 266 |  | 
| 267 |     }; | 
| 268 |      | 
| 269 |     // TrustedImm64: | 
| 270 |     // | 
| 271 |     // A 64bit immediate operand to an instruction - this is wrapped in a | 
| 272 |     // class requiring explicit construction in order to prevent RegisterIDs | 
| 273 |     // (which are implemented as an enum) from accidentally being passed as | 
| 274 |     // immediate values. | 
| 275 |     struct TrustedImm64 { | 
| 276 |         TrustedImm64() { } | 
| 277 |          | 
| 278 |         explicit TrustedImm64(int64_t value) | 
| 279 |             : m_value(value) | 
| 280 |         { | 
| 281 |         } | 
| 282 |  | 
| 283 | #if CPU(X86_64) || CPU(ARM64) | 
| 284 |         explicit TrustedImm64(TrustedImmPtr ptr) | 
| 285 |             : m_value(ptr.asIntptr()) | 
| 286 |         { | 
| 287 |         } | 
| 288 | #endif | 
| 289 |  | 
| 290 |         int64_t m_value; | 
| 291 |     }; | 
| 292 |  | 
| 293 |     struct Imm64 :  | 
| 294 | #if ENABLE(JIT_CONSTANT_BLINDING) | 
| 295 |         private TrustedImm64  | 
| 296 | #else | 
| 297 |         public TrustedImm64 | 
| 298 | #endif | 
| 299 |     { | 
| 300 |         explicit Imm64(int64_t value) | 
| 301 |             : TrustedImm64(value) | 
| 302 |         { | 
| 303 |         } | 
| 304 | #if CPU(X86_64) || CPU(ARM64) | 
| 305 |         explicit Imm64(TrustedImmPtr ptr) | 
| 306 |             : TrustedImm64(ptr) | 
| 307 |         { | 
| 308 |         } | 
| 309 | #endif | 
| 310 |         const TrustedImm64& asTrustedImm64() const { return *this; } | 
| 311 |     }; | 
| 312 |      | 
| 313 |     // Section 2: MacroAssembler code buffer handles | 
| 314 |     // | 
| 315 |     // The following types are used to reference items in the code buffer | 
| 316 |     // during JIT code generation.  For example, the type Jump is used to | 
| 317 |     // track the location of a jump instruction so that it may later be | 
| 318 |     // linked to a label marking its destination. | 
| 319 |  | 
| 320 |  | 
| 321 |     // Label: | 
| 322 |     // | 
| 323 |     // A Label records a point in the generated instruction stream, typically such that | 
| 324 |     // it may be used as a destination for a jump. | 
| 325 |     class Label { | 
| 326 |         template<class TemplateAssemblerType> | 
| 327 |         friend class AbstractMacroAssembler; | 
| 328 |         friend struct DFG::OSRExit; | 
| 329 |  | 
| 330 | #if CPU(ARM_THUMB2) || CPU(ARM64) | 
| 331 |         using Jump = typename AssemblerType::template Jump<Label>; | 
| 332 |         friend Jump; | 
| 333 | #else | 
| 334 |         friend class Jump; | 
| 335 | #endif | 
| 336 |         friend class JumpReplacementWatchpoint; | 
| 337 |         friend class MacroAssemblerCodeRef; | 
| 338 |         template <typename, template <typename> class> friend class LinkBufferBase; | 
| 339 |         friend class Watchpoint; | 
| 340 |  | 
| 341 |     public: | 
| 342 |         Label() | 
| 343 |         { | 
| 344 |         } | 
| 345 |  | 
| 346 |         Label(AbstractMacroAssembler<AssemblerType>* masm) | 
| 347 |             : m_label(masm->m_assembler.label()) | 
| 348 |         { | 
| 349 |         } | 
| 350 |          | 
| 351 |         bool isSet() const { return m_label.isSet(); } | 
| 352 |  | 
| 353 |         const AssemblerLabel &label() const { return m_label; } | 
| 354 |     private: | 
| 355 |         AssemblerLabel m_label; | 
| 356 |     }; | 
| 357 |      | 
| 358 |     // ConvertibleLoadLabel: | 
| 359 |     // | 
| 360 |     // A ConvertibleLoadLabel records a loadPtr instruction that can be patched to an addPtr | 
| 361 |     // so that: | 
| 362 |     // | 
| 363 |     // loadPtr(Address(a, i), b) | 
| 364 |     // | 
| 365 |     // becomes: | 
| 366 |     // | 
| 367 |     // addPtr(TrustedImmPtr(i), a, b) | 
| 368 |     class ConvertibleLoadLabel { | 
| 369 |         template<class TemplateAssemblerType> | 
| 370 |         friend class AbstractMacroAssembler; | 
| 371 |         template <typename, template <typename> class> friend class LinkBufferBase; | 
| 372 |          | 
| 373 |     public: | 
| 374 |         ConvertibleLoadLabel() | 
| 375 |         { | 
| 376 |         } | 
| 377 |          | 
| 378 |         ConvertibleLoadLabel(AbstractMacroAssembler<AssemblerType>* masm) | 
| 379 |             : m_label(masm->m_assembler.labelIgnoringWatchpoints()) | 
| 380 |         { | 
| 381 |         } | 
| 382 |          | 
| 383 |         bool isSet() const { return m_label.isSet(); } | 
| 384 |     private: | 
| 385 |         AssemblerLabel m_label; | 
| 386 |     }; | 
| 387 |  | 
| 388 |     // DataLabelPtr: | 
| 389 |     // | 
| 390 |     // A DataLabelPtr is used to refer to a location in the code containing a pointer to be | 
| 391 |     // patched after the code has been generated. | 
| 392 |     class DataLabelPtr { | 
| 393 |         template<class TemplateAssemblerType> | 
| 394 |         friend class AbstractMacroAssembler; | 
| 395 |         template <typename, template <typename> class> friend class LinkBufferBase; | 
| 396 |     public: | 
| 397 |         DataLabelPtr() | 
| 398 |         { | 
| 399 |         } | 
| 400 |  | 
| 401 |         DataLabelPtr(AbstractMacroAssembler<AssemblerType>* masm) | 
| 402 |             : m_label(masm->m_assembler.label()) | 
| 403 |         { | 
| 404 |         } | 
| 405 |          | 
| 406 |         bool isSet() const { return m_label.isSet(); } | 
| 407 |          | 
| 408 |     private: | 
| 409 |         AssemblerLabel m_label; | 
| 410 |     }; | 
| 411 |  | 
| 412 |     // DataLabel32: | 
| 413 |     // | 
| 414 |     // A DataLabelPtr is used to refer to a location in the code containing a pointer to be | 
| 415 |     // patched after the code has been generated. | 
| 416 |     class DataLabel32 { | 
| 417 |         template<class TemplateAssemblerType> | 
| 418 |         friend class AbstractMacroAssembler; | 
| 419 |         template <typename, template <typename> class> friend class LinkBufferBase; | 
| 420 |     public: | 
| 421 |         DataLabel32() | 
| 422 |         { | 
| 423 |         } | 
| 424 |  | 
| 425 |         DataLabel32(AbstractMacroAssembler<AssemblerType>* masm) | 
| 426 |             : m_label(masm->m_assembler.label()) | 
| 427 |         { | 
| 428 |         } | 
| 429 |  | 
| 430 |         AssemblerLabel label() const { return m_label; } | 
| 431 |  | 
| 432 |     private: | 
| 433 |         AssemblerLabel m_label; | 
| 434 |     }; | 
| 435 |  | 
| 436 |     // DataLabelCompact: | 
| 437 |     // | 
| 438 |     // A DataLabelCompact is used to refer to a location in the code containing a | 
| 439 |     // compact immediate to be patched after the code has been generated. | 
| 440 |     class DataLabelCompact { | 
| 441 |         template<class TemplateAssemblerType> | 
| 442 |         friend class AbstractMacroAssembler; | 
| 443 |         template <typename, template <typename> class> friend class LinkBufferBase; | 
| 444 |     public: | 
| 445 |         DataLabelCompact() | 
| 446 |         { | 
| 447 |         } | 
| 448 |          | 
| 449 |         DataLabelCompact(AbstractMacroAssembler<AssemblerType>* masm) | 
| 450 |             : m_label(masm->m_assembler.label()) | 
| 451 |         { | 
| 452 |         } | 
| 453 |      | 
| 454 |         DataLabelCompact(AssemblerLabel label) | 
| 455 |             : m_label(label) | 
| 456 |         { | 
| 457 |         } | 
| 458 |  | 
| 459 |     private: | 
| 460 |         AssemblerLabel m_label; | 
| 461 |     }; | 
| 462 |  | 
| 463 | #if CPU(ARM_THUMB2) || CPU(ARM64) | 
| 464 |     using Jump = typename AssemblerType::template Jump<Label>; | 
| 465 |     friend Jump; | 
| 466 | #endif | 
| 467 |  | 
| 468 |     // Call: | 
| 469 |     // | 
| 470 |     // A Call object is a reference to a call instruction that has been planted | 
| 471 |     // into the code buffer - it is typically used to link the call, setting the | 
| 472 |     // relative offset such that when executed it will call to the desired | 
| 473 |     // destination. | 
| 474 |     class Call { | 
| 475 |         template<class TemplateAssemblerType> | 
| 476 |         friend class AbstractMacroAssembler; | 
| 477 |  | 
| 478 |     public: | 
| 479 |         enum Flags { | 
| 480 |             None = 0x0, | 
| 481 |             Linkable = 0x1, | 
| 482 |             Near = 0x2, | 
| 483 |             LinkableNear = 0x3, | 
| 484 |         }; | 
| 485 |  | 
| 486 |         Call() | 
| 487 |             : m_flags(None) | 
| 488 |         { | 
| 489 |         } | 
| 490 |          | 
| 491 |         Call(AssemblerLabel jmp, Flags flags) | 
| 492 |             : m_label(jmp) | 
| 493 |             , m_flags(flags) | 
| 494 |         { | 
| 495 |         } | 
| 496 |  | 
| 497 |         bool isFlagSet(Flags flag) | 
| 498 |         { | 
| 499 |             return m_flags & flag; | 
| 500 |         } | 
| 501 |  | 
| 502 |         static Call fromTailJump(Jump jump) | 
| 503 |         { | 
| 504 |             return Call(jump.m_label, Linkable); | 
| 505 |         } | 
| 506 |  | 
| 507 |         AssemblerLabel m_label; | 
| 508 |     private: | 
| 509 |         Flags m_flags; | 
| 510 |     }; | 
| 511 |  | 
| 512 |     // Jump: | 
| 513 |     // | 
| 514 |     // A jump object is a reference to a jump instruction that has been planted | 
| 515 |     // into the code buffer - it is typically used to link the jump, setting the | 
| 516 |     // relative offset such that when executed it will jump to the desired | 
| 517 |     // destination. | 
| 518 | #if !CPU(ARM_THUMB2) && !CPU(ARM64) | 
| 519 |     class Jump { | 
| 520 |         template<class TemplateAssemblerType> | 
| 521 |         friend class AbstractMacroAssembler; | 
| 522 |         friend class Call; | 
| 523 |         friend struct DFG::OSRExit; | 
| 524 |         template <typename, template <typename> class> friend class LinkBufferBase; | 
| 525 |     public: | 
| 526 |         Jump() | 
| 527 |         { | 
| 528 |         } | 
| 529 |          | 
| 530 | #if CPU(ARM_THUMB2) | 
| 531 |         // Fixme: this information should be stored in the instruction stream, not in the Jump object. | 
| 532 |         Jump(AssemblerLabel jmp, ARMv7Assembler::JumpType type = ARMv7Assembler::JumpNoCondition, ARMv7Assembler::Condition condition = ARMv7Assembler::ConditionInvalid) | 
| 533 |             : m_label(jmp) | 
| 534 |             , m_type(type) | 
| 535 |             , m_condition(condition) | 
| 536 |         { | 
| 537 |         } | 
| 538 | #elif CPU(ARM64) | 
| 539 |         Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type = ARM64Assembler::JumpNoCondition, ARM64Assembler::Condition condition = ARM64Assembler::ConditionInvalid) | 
| 540 |             : m_label(jmp) | 
| 541 |             , m_type(type) | 
| 542 |             , m_condition(condition) | 
| 543 |         { | 
| 544 |         } | 
| 545 |  | 
| 546 |         Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type, ARM64Assembler::Condition condition, bool is64Bit, ARM64Assembler::RegisterID compareRegister) | 
| 547 |             : m_label(jmp) | 
| 548 |             , m_type(type) | 
| 549 |             , m_condition(condition) | 
| 550 |             , m_is64Bit(is64Bit) | 
| 551 |             , m_compareRegister(compareRegister) | 
| 552 |         { | 
| 553 |             ASSERT((type == ARM64Assembler::JumpCompareAndBranch) || (type == ARM64Assembler::JumpCompareAndBranchFixedSize)); | 
| 554 |         } | 
| 555 |  | 
| 556 |         Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type, ARM64Assembler::Condition condition, unsigned bitNumber, ARM64Assembler::RegisterID compareRegister) | 
| 557 |             : m_label(jmp) | 
| 558 |             , m_type(type) | 
| 559 |             , m_condition(condition) | 
| 560 |             , m_bitNumber(bitNumber) | 
| 561 |             , m_compareRegister(compareRegister) | 
| 562 |         { | 
| 563 |             ASSERT((type == ARM64Assembler::JumpTestBit) || (type == ARM64Assembler::JumpTestBitFixedSize)); | 
| 564 |         } | 
| 565 | #else | 
| 566 |         Jump(AssemblerLabel jmp)     | 
| 567 |             : m_label(jmp) | 
| 568 |         { | 
| 569 |         } | 
| 570 | #endif | 
| 571 |          | 
| 572 |         Label label() const | 
| 573 |         { | 
| 574 |             Label result; | 
| 575 |             result.m_label = m_label; | 
| 576 |             return result; | 
| 577 |         } | 
| 578 |  | 
| 579 |         void link(AbstractMacroAssembler<AssemblerType>* masm) const | 
| 580 |         { | 
| 581 | #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) | 
| 582 |             masm->checkRegisterAllocationAgainstBranchRange(m_label.m_offset, masm->debugOffset()); | 
| 583 | #endif | 
| 584 |  | 
| 585 | #if CPU(ARM_THUMB2) | 
| 586 |             masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition); | 
| 587 | #elif CPU(ARM64) | 
| 588 |             if ((m_type == ARM64Assembler::JumpCompareAndBranch) || (m_type == ARM64Assembler::JumpCompareAndBranchFixedSize)) | 
| 589 |                 masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition, m_is64Bit, m_compareRegister); | 
| 590 |             else if ((m_type == ARM64Assembler::JumpTestBit) || (m_type == ARM64Assembler::JumpTestBitFixedSize)) | 
| 591 |                 masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition, m_bitNumber, m_compareRegister); | 
| 592 |             else | 
| 593 |                 masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition); | 
| 594 | #else | 
| 595 |             masm->m_assembler.linkJump(m_label, masm->m_assembler.label()); | 
| 596 | #endif | 
| 597 |         } | 
| 598 |          | 
| 599 |         void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm) const | 
| 600 |         { | 
| 601 | #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) | 
| 602 |             masm->checkRegisterAllocationAgainstBranchRange(label.m_label.m_offset, m_label.m_offset); | 
| 603 | #endif | 
| 604 |  | 
| 605 | #if CPU(ARM_THUMB2) | 
| 606 |             masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition); | 
| 607 | #elif CPU(ARM64) | 
| 608 |             if ((m_type == ARM64Assembler::JumpCompareAndBranch) || (m_type == ARM64Assembler::JumpCompareAndBranchFixedSize)) | 
| 609 |                 masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition, m_is64Bit, m_compareRegister); | 
| 610 |             else if ((m_type == ARM64Assembler::JumpTestBit) || (m_type == ARM64Assembler::JumpTestBitFixedSize)) | 
| 611 |                 masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition, m_bitNumber, m_compareRegister); | 
| 612 |             else | 
| 613 |                 masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition); | 
| 614 | #else | 
| 615 |             masm->m_assembler.linkJump(m_label, label.m_label); | 
| 616 | #endif | 
| 617 |         } | 
| 618 |  | 
| 619 |         bool isSet() const { return m_label.isSet(); } | 
| 620 |  | 
| 621 |     private: | 
| 622 |         AssemblerLabel m_label; | 
| 623 | #if CPU(ARM_THUMB2) | 
| 624 |         ARMv7Assembler::JumpType m_type; | 
| 625 |         ARMv7Assembler::Condition m_condition; | 
| 626 | #endif | 
| 627 | #if CPU(ARM64) | 
| 628 |         ARM64Assembler::JumpType m_type; | 
| 629 |         ARM64Assembler::Condition m_condition; | 
| 630 |         bool m_is64Bit; | 
| 631 |         unsigned m_bitNumber; | 
| 632 |         ARM64Assembler::RegisterID m_compareRegister; | 
| 633 | #endif | 
| 634 |     }; | 
| 635 | #endif | 
| 636 |  | 
| 637 |     struct PatchableJump { | 
| 638 |         PatchableJump() | 
| 639 |         { | 
| 640 |         } | 
| 641 |  | 
| 642 |         explicit PatchableJump(Jump jump) | 
| 643 |             : m_jump(jump) | 
| 644 |         { | 
| 645 |         } | 
| 646 |  | 
| 647 |         operator Jump&() { return m_jump; } | 
| 648 |  | 
| 649 |         Jump m_jump; | 
| 650 |     }; | 
| 651 |  | 
| 652 |     // JumpList: | 
| 653 |     // | 
| 654 |     // A JumpList is a set of Jump objects. | 
| 655 |     // All jumps in the set will be linked to the same destination. | 
| 656 |     class JumpList { | 
| 657 |         template <typename, template <typename> class> friend class LinkBufferBase; | 
| 658 |  | 
| 659 |     public: | 
| 660 |         typedef Vector<Jump, 2> JumpVector; | 
| 661 |          | 
| 662 |         JumpList() { } | 
| 663 |          | 
| 664 |         JumpList(Jump jump) | 
| 665 |         { | 
| 666 |             append(jump); | 
| 667 |         } | 
| 668 |  | 
| 669 |         void link(AbstractMacroAssembler<AssemblerType>* masm) | 
| 670 |         { | 
| 671 |             size_t size = m_jumps.size(); | 
| 672 |             for (size_t i = 0; i < size; ++i) | 
| 673 |                 m_jumps[i].link(masm); | 
| 674 |             m_jumps.clear(); | 
| 675 |         } | 
| 676 |          | 
| 677 |         void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm) | 
| 678 |         { | 
| 679 |             size_t size = m_jumps.size(); | 
| 680 |             for (size_t i = 0; i < size; ++i) | 
| 681 |                 m_jumps[i].linkTo(label, masm); | 
| 682 |             m_jumps.clear(); | 
| 683 |         } | 
| 684 |          | 
| 685 |         void append(Jump jump) | 
| 686 |         { | 
| 687 |             m_jumps.append(jump); | 
| 688 |         } | 
| 689 |          | 
| 690 |         void append(const JumpList& other) | 
| 691 |         { | 
| 692 |             m_jumps.append(other.m_jumps.begin(), other.m_jumps.size()); | 
| 693 |         } | 
| 694 |  | 
| 695 |         bool empty() | 
| 696 |         { | 
| 697 |             return !m_jumps.size(); | 
| 698 |         } | 
| 699 |          | 
| 700 |         void clear() | 
| 701 |         { | 
| 702 |             m_jumps.clear(); | 
| 703 |         } | 
| 704 |          | 
| 705 |         const JumpVector& jumps() const { return m_jumps; } | 
| 706 |  | 
| 707 |     private: | 
| 708 |         JumpVector m_jumps; | 
| 709 |     }; | 
| 710 |  | 
| 711 |  | 
| 712 |     // Section 3: Misc admin methods | 
| 713 | #if ENABLE(DFG_JIT) | 
| 714 |     Label labelIgnoringWatchpoints() | 
| 715 |     { | 
| 716 |         Label result; | 
| 717 |         result.m_label = m_assembler.labelIgnoringWatchpoints(); | 
| 718 |         return result; | 
| 719 |     } | 
| 720 | #else | 
| 721 |     Label labelIgnoringWatchpoints() | 
| 722 |     { | 
| 723 |         return label(); | 
| 724 |     } | 
| 725 | #endif | 
| 726 |      | 
| 727 |     Label label() | 
| 728 |     { | 
| 729 |         return Label(this); | 
| 730 |     } | 
| 731 |      | 
| 732 |     void padBeforePatch() | 
| 733 |     { | 
| 734 |         // Rely on the fact that asking for a label already does the padding. | 
| 735 |         (void)label(); | 
| 736 |     } | 
| 737 |      | 
| 738 |     Label watchpointLabel() | 
| 739 |     { | 
| 740 |         Label result; | 
| 741 |         result.m_label = m_assembler.labelForWatchpoint(); | 
| 742 |         return result; | 
| 743 |     } | 
| 744 |      | 
| 745 |     Label align() | 
| 746 |     { | 
| 747 |         m_assembler.align(16); | 
| 748 |         return Label(this); | 
| 749 |     } | 
| 750 |  | 
| 751 | #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) | 
| 752 |     class RegisterAllocationOffset { | 
| 753 |     public: | 
| 754 |         RegisterAllocationOffset(unsigned offset) | 
| 755 |             : m_offset(offset) | 
| 756 |         { | 
| 757 |         } | 
| 758 |  | 
| 759 |         void check(unsigned low, unsigned high) | 
| 760 |         { | 
| 761 |             RELEASE_ASSERT_WITH_MESSAGE(!(low <= m_offset && m_offset <= high), "Unsafe branch over register allocation at instruction offset %u in jump offset range %u..%u" , m_offset, low, high); | 
| 762 |         } | 
| 763 |  | 
| 764 |     private: | 
| 765 |         unsigned m_offset; | 
| 766 |     }; | 
| 767 |  | 
| 768 |     void addRegisterAllocationAtOffset(unsigned offset) | 
| 769 |     { | 
| 770 |         m_registerAllocationForOffsets.append(RegisterAllocationOffset(offset)); | 
| 771 |     } | 
| 772 |  | 
| 773 |     void clearRegisterAllocationOffsets() | 
| 774 |     { | 
| 775 |         m_registerAllocationForOffsets.clear(); | 
| 776 |     } | 
| 777 |  | 
| 778 |     void checkRegisterAllocationAgainstBranchRange(unsigned offset1, unsigned offset2) | 
| 779 |     { | 
| 780 |         if (offset1 > offset2) | 
| 781 |             std::swap(offset1, offset2); | 
| 782 |  | 
| 783 |         size_t size = m_registerAllocationForOffsets.size(); | 
| 784 |         for (size_t i = 0; i < size; ++i) | 
| 785 |             m_registerAllocationForOffsets[i].check(offset1, offset2); | 
| 786 |     } | 
| 787 | #endif | 
| 788 |  | 
| 789 |     template<typename T, typename U> | 
| 790 |     static ptrdiff_t differenceBetween(T from, U to) | 
| 791 |     { | 
| 792 |         return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); | 
| 793 |     } | 
| 794 |  | 
| 795 |     static ptrdiff_t differenceBetweenCodePtr(const MacroAssemblerCodePtr& a, const MacroAssemblerCodePtr& b) | 
| 796 |     { | 
| 797 |         return reinterpret_cast<ptrdiff_t>(b.executableAddress()) - reinterpret_cast<ptrdiff_t>(a.executableAddress()); | 
| 798 |     } | 
| 799 |  | 
| 800 |     unsigned debugOffset() { return m_assembler.debugOffset(); } | 
| 801 |  | 
| 802 |     ALWAYS_INLINE static void cacheFlush(void* code, size_t size) | 
| 803 |     { | 
| 804 |         AssemblerType::cacheFlush(code, size); | 
| 805 |     } | 
| 806 | protected: | 
| 807 |     AbstractMacroAssembler() | 
| 808 |         : m_randomSource(cryptographicallyRandomNumber()) | 
| 809 |     { | 
| 810 |     } | 
| 811 |  | 
| 812 |     AssemblerType m_assembler; | 
| 813 |      | 
| 814 |     uint32_t random() | 
| 815 |     { | 
| 816 |         return m_randomSource.getUint32(); | 
| 817 |     } | 
| 818 |  | 
| 819 |     WeakRandom m_randomSource; | 
| 820 |  | 
| 821 | #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) | 
| 822 |     Vector<RegisterAllocationOffset, 10> m_registerAllocationForOffsets; | 
| 823 | #endif | 
| 824 |  | 
| 825 | #if ENABLE(JIT_CONSTANT_BLINDING) | 
| 826 |     static bool scratchRegisterForBlinding() { return false; } | 
| 827 |     static bool shouldBlindForSpecificArch(uint32_t) { return true; } | 
| 828 |     static bool shouldBlindForSpecificArch(uint64_t) { return true; } | 
| 829 | #endif | 
| 830 |  | 
| 831 |     template <typename, template <typename> class> friend class LinkBufferBase; | 
| 832 |     template <typename> friend class BranchCompactingLinkBuffer; | 
| 833 |  | 
| 834 |     static void linkJump(void* code, Jump jump, CodeLocationLabel target) | 
| 835 |     { | 
| 836 |         AssemblerType::linkJump(code, jump.m_label, target.dataLocation()); | 
| 837 |     } | 
| 838 |  | 
| 839 |     static void linkPointer(void* code, AssemblerLabel label, void* value) | 
| 840 |     { | 
| 841 |         AssemblerType::linkPointer(code, label, value); | 
| 842 |     } | 
| 843 |  | 
| 844 |     static void* getLinkerAddress(void* code, AssemblerLabel label) | 
| 845 |     { | 
| 846 |         return AssemblerType::getRelocatedAddress(code, label); | 
| 847 |     } | 
| 848 |  | 
| 849 |     static unsigned getLinkerCallReturnOffset(Call call) | 
| 850 |     { | 
| 851 |         return AssemblerType::getCallReturnOffset(call.m_label); | 
| 852 |     } | 
| 853 |  | 
| 854 |     static void repatchJump(CodeLocationJump jump, CodeLocationLabel destination) | 
| 855 |     { | 
| 856 |         AssemblerType::relinkJump(jump.dataLocation(), destination.dataLocation()); | 
| 857 |     } | 
| 858 |  | 
| 859 |     static void repatchNearCall(CodeLocationNearCall nearCall, CodeLocationLabel destination) | 
| 860 |     { | 
| 861 |         AssemblerType::relinkCall(nearCall.dataLocation(), destination.executableAddress()); | 
| 862 |     } | 
| 863 |  | 
| 864 |     static void repatchCompact(CodeLocationDataLabelCompact dataLabelCompact, int32_t value) | 
| 865 |     { | 
| 866 |         AssemblerType::repatchCompact(dataLabelCompact.dataLocation(), value); | 
| 867 |     } | 
| 868 |      | 
| 869 |     static void repatchInt32(CodeLocationDataLabel32 dataLabel32, int32_t value) | 
| 870 |     { | 
| 871 |         AssemblerType::repatchInt32(dataLabel32.dataLocation(), value); | 
| 872 |     } | 
| 873 |  | 
| 874 |     static void repatchPointer(CodeLocationDataLabelPtr dataLabelPtr, void* value) | 
| 875 |     { | 
| 876 |         AssemblerType::repatchPointer(dataLabelPtr.dataLocation(), value); | 
| 877 |     } | 
| 878 |      | 
| 879 |     static void* readPointer(CodeLocationDataLabelPtr dataLabelPtr) | 
| 880 |     { | 
| 881 |         return AssemblerType::readPointer(dataLabelPtr.dataLocation()); | 
| 882 |     } | 
| 883 |      | 
| 884 |     static void replaceWithLoad(CodeLocationConvertibleLoad label) | 
| 885 |     { | 
| 886 |         AssemblerType::replaceWithLoad(label.dataLocation()); | 
| 887 |     } | 
| 888 |      | 
| 889 |     static void replaceWithAddressComputation(CodeLocationConvertibleLoad label) | 
| 890 |     { | 
| 891 |         AssemblerType::replaceWithAddressComputation(label.dataLocation()); | 
| 892 |     } | 
| 893 | }; | 
| 894 |  | 
| 895 | } // namespace JSC | 
| 896 |  | 
| 897 | #endif // ENABLE(ASSEMBLER) | 
| 898 |  | 
| 899 | #endif // AbstractMacroAssembler_h | 
| 900 |  |