1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2016 The Qt Company Ltd. |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the plugins of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | #include "qtiffhandler_p.h" |
41 | #include <qvariant.h> |
42 | #include <qcolorspace.h> |
43 | #include <qdebug.h> |
44 | #include <qimage.h> |
45 | #include <qglobal.h> |
46 | extern "C" { |
47 | #include "tiffio.h" |
48 | } |
49 | |
50 | #include <memory> |
51 | |
52 | QT_BEGIN_NAMESPACE |
53 | |
54 | tsize_t qtiffReadProc(thandle_t fd, tdata_t buf, tsize_t size) |
55 | { |
56 | QIODevice *device = static_cast<QIODevice *>(fd); |
57 | return device->isReadable() ? device->read(data: static_cast<char *>(buf), maxlen: size) : -1; |
58 | } |
59 | |
60 | tsize_t qtiffWriteProc(thandle_t fd, tdata_t buf, tsize_t size) |
61 | { |
62 | return static_cast<QIODevice *>(fd)->write(data: static_cast<char *>(buf), len: size); |
63 | } |
64 | |
65 | toff_t qtiffSeekProc(thandle_t fd, toff_t off, int whence) |
66 | { |
67 | QIODevice *device = static_cast<QIODevice *>(fd); |
68 | switch (whence) { |
69 | case SEEK_SET: |
70 | device->seek(pos: off); |
71 | break; |
72 | case SEEK_CUR: |
73 | device->seek(pos: device->pos() + off); |
74 | break; |
75 | case SEEK_END: |
76 | device->seek(pos: device->size() + off); |
77 | break; |
78 | } |
79 | |
80 | return device->pos(); |
81 | } |
82 | |
83 | int qtiffCloseProc(thandle_t /*fd*/) |
84 | { |
85 | return 0; |
86 | } |
87 | |
88 | toff_t qtiffSizeProc(thandle_t fd) |
89 | { |
90 | return static_cast<QIODevice *>(fd)->size(); |
91 | } |
92 | |
93 | int qtiffMapProc(thandle_t /*fd*/, tdata_t* /*pbase*/, toff_t* /*psize*/) |
94 | { |
95 | return 0; |
96 | } |
97 | |
98 | void qtiffUnmapProc(thandle_t /*fd*/, tdata_t /*base*/, toff_t /*size*/) |
99 | { |
100 | } |
101 | |
102 | |
103 | class QTiffHandlerPrivate |
104 | { |
105 | public: |
106 | QTiffHandlerPrivate(); |
107 | ~QTiffHandlerPrivate(); |
108 | |
109 | static bool canRead(QIODevice *device); |
110 | bool openForRead(QIODevice *device); |
111 | bool readHeaders(QIODevice *device); |
112 | void close(); |
113 | |
114 | TIFF *tiff; |
115 | int compression; |
116 | QImageIOHandler::Transformations transformation; |
117 | QImage::Format format; |
118 | QSize size; |
119 | uint16_t photometric; |
120 | bool grayscale; |
121 | bool headersRead; |
122 | int currentDirectory; |
123 | int directoryCount; |
124 | }; |
125 | |
126 | static QImageIOHandler::Transformations exif2Qt(int exifOrientation) |
127 | { |
128 | switch (exifOrientation) { |
129 | case 1: // normal |
130 | return QImageIOHandler::TransformationNone; |
131 | case 2: // mirror horizontal |
132 | return QImageIOHandler::TransformationMirror; |
133 | case 3: // rotate 180 |
134 | return QImageIOHandler::TransformationRotate180; |
135 | case 4: // mirror vertical |
136 | return QImageIOHandler::TransformationFlip; |
137 | case 5: // mirror horizontal and rotate 270 CW |
138 | return QImageIOHandler::TransformationFlipAndRotate90; |
139 | case 6: // rotate 90 CW |
140 | return QImageIOHandler::TransformationRotate90; |
141 | case 7: // mirror horizontal and rotate 90 CW |
142 | return QImageIOHandler::TransformationMirrorAndRotate90; |
143 | case 8: // rotate 270 CW |
144 | return QImageIOHandler::TransformationRotate270; |
145 | } |
146 | qWarning(msg: "Invalid EXIF orientation" ); |
147 | return QImageIOHandler::TransformationNone; |
148 | } |
149 | |
150 | static int qt2Exif(QImageIOHandler::Transformations transformation) |
151 | { |
152 | switch (transformation) { |
153 | case QImageIOHandler::TransformationNone: |
154 | return 1; |
155 | case QImageIOHandler::TransformationMirror: |
156 | return 2; |
157 | case QImageIOHandler::TransformationRotate180: |
158 | return 3; |
159 | case QImageIOHandler::TransformationFlip: |
160 | return 4; |
161 | case QImageIOHandler::TransformationFlipAndRotate90: |
162 | return 5; |
163 | case QImageIOHandler::TransformationRotate90: |
164 | return 6; |
165 | case QImageIOHandler::TransformationMirrorAndRotate90: |
166 | return 7; |
167 | case QImageIOHandler::TransformationRotate270: |
168 | return 8; |
169 | } |
170 | qWarning(msg: "Invalid Qt image transformation" ); |
171 | return 1; |
172 | } |
173 | |
174 | QTiffHandlerPrivate::QTiffHandlerPrivate() |
175 | : tiff(0) |
176 | , compression(QTiffHandler::NoCompression) |
177 | , transformation(QImageIOHandler::TransformationNone) |
178 | , format(QImage::Format_Invalid) |
179 | , photometric(false) |
180 | , grayscale(false) |
181 | , headersRead(false) |
182 | , currentDirectory(0) |
183 | , directoryCount(0) |
184 | { |
185 | } |
186 | |
187 | QTiffHandlerPrivate::~QTiffHandlerPrivate() |
188 | { |
189 | close(); |
190 | } |
191 | |
192 | void QTiffHandlerPrivate::close() |
193 | { |
194 | if (tiff) |
195 | TIFFClose(tif: tiff); |
196 | tiff = 0; |
197 | } |
198 | |
199 | bool QTiffHandlerPrivate::canRead(QIODevice *device) |
200 | { |
201 | if (!device) { |
202 | qWarning(msg: "QTiffHandler::canRead() called with no device" ); |
203 | return false; |
204 | } |
205 | |
206 | // current implementation uses TIFFClientOpen which needs to be |
207 | // able to seek, so sequential devices are not supported |
208 | char h[4]; |
209 | if (device->peek(data: h, maxlen: 4) != 4) |
210 | return false; |
211 | if ((h[0] == 0x49 && h[1] == 0x49) && (h[2] == 0x2a || h[2] == 0x2b) && h[3] == 0) |
212 | return true; // Little endian, classic or bigtiff |
213 | if ((h[0] == 0x4d && h[1] == 0x4d) && h[2] == 0 && (h[3] == 0x2a || h[3] == 0x2b)) |
214 | return true; // Big endian, classic or bigtiff |
215 | return false; |
216 | } |
217 | |
218 | bool QTiffHandlerPrivate::openForRead(QIODevice *device) |
219 | { |
220 | if (tiff) |
221 | return true; |
222 | |
223 | if (!canRead(device)) |
224 | return false; |
225 | |
226 | tiff = TIFFClientOpen("foo" , |
227 | "r" , |
228 | device, |
229 | qtiffReadProc, |
230 | qtiffWriteProc, |
231 | qtiffSeekProc, |
232 | qtiffCloseProc, |
233 | qtiffSizeProc, |
234 | qtiffMapProc, |
235 | qtiffUnmapProc); |
236 | |
237 | if (!tiff) { |
238 | return false; |
239 | } |
240 | return true; |
241 | } |
242 | |
243 | bool QTiffHandlerPrivate::readHeaders(QIODevice *device) |
244 | { |
245 | if (headersRead) |
246 | return true; |
247 | |
248 | if (!openForRead(device)) |
249 | return false; |
250 | |
251 | TIFFSetDirectory(tiff, currentDirectory); |
252 | |
253 | uint32_t width; |
254 | uint32_t height; |
255 | if (!TIFFGetField(tif: tiff, TIFFTAG_IMAGEWIDTH, &width) |
256 | || !TIFFGetField(tif: tiff, TIFFTAG_IMAGELENGTH, &height) |
257 | || !TIFFGetField(tif: tiff, TIFFTAG_PHOTOMETRIC, &photometric)) { |
258 | close(); |
259 | return false; |
260 | } |
261 | size = QSize(width, height); |
262 | |
263 | uint16_t orientationTag; |
264 | if (TIFFGetField(tif: tiff, TIFFTAG_ORIENTATION, &orientationTag)) |
265 | transformation = exif2Qt(exifOrientation: orientationTag); |
266 | |
267 | // BitsPerSample defaults to 1 according to the TIFF spec. |
268 | uint16_t bitPerSample; |
269 | if (!TIFFGetField(tif: tiff, TIFFTAG_BITSPERSAMPLE, &bitPerSample)) |
270 | bitPerSample = 1; |
271 | uint16_t samplesPerPixel; // they may be e.g. grayscale with 2 samples per pixel |
272 | if (!TIFFGetField(tif: tiff, TIFFTAG_SAMPLESPERPIXEL, &samplesPerPixel)) |
273 | samplesPerPixel = 1; |
274 | |
275 | grayscale = photometric == PHOTOMETRIC_MINISBLACK || photometric == PHOTOMETRIC_MINISWHITE; |
276 | |
277 | if (grayscale && bitPerSample == 1 && samplesPerPixel == 1) |
278 | format = QImage::Format_Mono; |
279 | else if (photometric == PHOTOMETRIC_MINISBLACK && bitPerSample == 8 && samplesPerPixel == 1) |
280 | format = QImage::Format_Grayscale8; |
281 | else if (photometric == PHOTOMETRIC_MINISBLACK && bitPerSample == 16 && samplesPerPixel == 1) |
282 | format = QImage::Format_Grayscale16; |
283 | else if ((grayscale || photometric == PHOTOMETRIC_PALETTE) && bitPerSample == 8 && samplesPerPixel == 1) |
284 | format = QImage::Format_Indexed8; |
285 | else if (samplesPerPixel < 4) |
286 | if (bitPerSample == 16 && photometric == PHOTOMETRIC_RGB) |
287 | format = QImage::Format_RGBX64; |
288 | else |
289 | format = QImage::Format_RGB32; |
290 | else { |
291 | uint16_t count; |
292 | uint16_t *; |
293 | // If there is any definition of the alpha-channel, libtiff will return premultiplied |
294 | // data to us. If there is none, libtiff will not touch it and we assume it to be |
295 | // non-premultiplied, matching behavior of tested image editors, and how older Qt |
296 | // versions used to save it. |
297 | bool premultiplied = true; |
298 | bool gotField = TIFFGetField(tif: tiff, TIFFTAG_EXTRASAMPLES, &count, &extrasamples); |
299 | if (!gotField || !count || extrasamples[0] == EXTRASAMPLE_UNSPECIFIED) |
300 | premultiplied = false; |
301 | |
302 | if (bitPerSample == 16 && photometric == PHOTOMETRIC_RGB) { |
303 | // We read 64-bit raw, so unassoc remains unpremultiplied. |
304 | if (gotField && count && extrasamples[0] == EXTRASAMPLE_UNASSALPHA) |
305 | premultiplied = false; |
306 | if (premultiplied) |
307 | format = QImage::Format_RGBA64_Premultiplied; |
308 | else |
309 | format = QImage::Format_RGBA64; |
310 | } else { |
311 | if (premultiplied) |
312 | format = QImage::Format_ARGB32_Premultiplied; |
313 | else |
314 | format = QImage::Format_ARGB32; |
315 | } |
316 | } |
317 | |
318 | headersRead = true; |
319 | return true; |
320 | } |
321 | |
322 | QTiffHandler::QTiffHandler() |
323 | : QImageIOHandler() |
324 | , d(new QTiffHandlerPrivate) |
325 | { |
326 | } |
327 | |
328 | bool QTiffHandler::canRead() const |
329 | { |
330 | if (d->tiff) |
331 | return true; |
332 | if (QTiffHandlerPrivate::canRead(device: device())) { |
333 | setFormat("tiff" ); |
334 | return true; |
335 | } |
336 | return false; |
337 | } |
338 | |
339 | bool QTiffHandler::canRead(QIODevice *device) |
340 | { |
341 | return QTiffHandlerPrivate::canRead(device); |
342 | } |
343 | |
344 | bool QTiffHandler::read(QImage *image) |
345 | { |
346 | // Open file and read headers if it hasn't already been done. |
347 | if (!d->readHeaders(device: device())) |
348 | return false; |
349 | |
350 | QImage::Format format = d->format; |
351 | |
352 | if (image->size() == d->size && image->format() != format) |
353 | image->reinterpretAsFormat(f: format); |
354 | |
355 | if (image->size() != d->size || image->format() != format) |
356 | *image = QImage(d->size, format); |
357 | |
358 | if (image->isNull()) { |
359 | d->close(); |
360 | return false; |
361 | } |
362 | |
363 | TIFF *const tiff = d->tiff; |
364 | const quint32 width = d->size.width(); |
365 | const quint32 height = d->size.height(); |
366 | |
367 | // Setup color tables |
368 | if (format == QImage::Format_Mono || format == QImage::Format_Indexed8) { |
369 | if (format == QImage::Format_Mono) { |
370 | QVector<QRgb> colortable(2); |
371 | if (d->photometric == PHOTOMETRIC_MINISBLACK) { |
372 | colortable[0] = 0xff000000; |
373 | colortable[1] = 0xffffffff; |
374 | } else { |
375 | colortable[0] = 0xffffffff; |
376 | colortable[1] = 0xff000000; |
377 | } |
378 | image->setColorTable(colortable); |
379 | } else if (format == QImage::Format_Indexed8) { |
380 | const uint16_t tableSize = 256; |
381 | QVector<QRgb> qtColorTable(tableSize); |
382 | if (d->grayscale) { |
383 | for (int i = 0; i<tableSize; ++i) { |
384 | const int c = (d->photometric == PHOTOMETRIC_MINISBLACK) ? i : (255 - i); |
385 | qtColorTable[i] = qRgb(r: c, g: c, b: c); |
386 | } |
387 | } else { |
388 | // create the color table |
389 | uint16_t *redTable = 0; |
390 | uint16_t *greenTable = 0; |
391 | uint16_t *blueTable = 0; |
392 | if (!TIFFGetField(tif: tiff, TIFFTAG_COLORMAP, &redTable, &greenTable, &blueTable)) { |
393 | d->close(); |
394 | return false; |
395 | } |
396 | if (!redTable || !greenTable || !blueTable) { |
397 | d->close(); |
398 | return false; |
399 | } |
400 | |
401 | for (int i = 0; i<tableSize ;++i) { |
402 | // emulate libtiff behavior for 16->8 bit color map conversion: just ignore the lower 8 bits |
403 | const int red = redTable[i] >> 8; |
404 | const int green = greenTable[i] >> 8; |
405 | const int blue = blueTable[i] >> 8; |
406 | qtColorTable[i] = qRgb(r: red, g: green, b: blue); |
407 | } |
408 | } |
409 | image->setColorTable(qtColorTable); |
410 | // free redTable, greenTable and greenTable done by libtiff |
411 | } |
412 | } |
413 | bool format8bit = (format == QImage::Format_Mono || format == QImage::Format_Indexed8 || format == QImage::Format_Grayscale8); |
414 | bool format16bit = (format == QImage::Format_Grayscale16); |
415 | bool format64bit = (format == QImage::Format_RGBX64 || format == QImage::Format_RGBA64 || format == QImage::Format_RGBA64_Premultiplied); |
416 | |
417 | // Formats we read directly, instead of over RGBA32: |
418 | if (format8bit || format16bit || format64bit) { |
419 | int bytesPerPixel = image->depth() / 8; |
420 | if (format == QImage::Format_RGBX64) |
421 | bytesPerPixel = 6; |
422 | if (TIFFIsTiled(tiff)) { |
423 | quint32 tileWidth, tileLength; |
424 | TIFFGetField(tif: tiff, TIFFTAG_TILEWIDTH, &tileWidth); |
425 | TIFFGetField(tif: tiff, TIFFTAG_TILELENGTH, &tileLength); |
426 | if (!tileWidth || !tileLength || tileWidth % 16 || tileLength % 16) { |
427 | d->close(); |
428 | return false; |
429 | } |
430 | quint32 byteWidth = (format == QImage::Format_Mono) ? (width + 7)/8 : (width * bytesPerPixel); |
431 | quint32 byteTileWidth = (format == QImage::Format_Mono) ? tileWidth/8 : (tileWidth * bytesPerPixel); |
432 | tmsize_t byteTileSize = TIFFTileSize(tif: tiff); |
433 | uchar *buf = (uchar *)_TIFFmalloc(s: byteTileSize); |
434 | if (!buf || byteTileSize / tileLength < byteTileWidth) { |
435 | _TIFFfree(p: buf); |
436 | d->close(); |
437 | return false; |
438 | } |
439 | for (quint32 y = 0; y < height; y += tileLength) { |
440 | for (quint32 x = 0; x < width; x += tileWidth) { |
441 | if (TIFFReadTile(tif: tiff, buf, x, y, z: 0, s: 0) < 0) { |
442 | _TIFFfree(p: buf); |
443 | d->close(); |
444 | return false; |
445 | } |
446 | quint32 linesToCopy = qMin(a: tileLength, b: height - y); |
447 | quint32 byteOffset = (format == QImage::Format_Mono) ? x/8 : (x * bytesPerPixel); |
448 | quint32 widthToCopy = qMin(a: byteTileWidth, b: byteWidth - byteOffset); |
449 | for (quint32 i = 0; i < linesToCopy; i++) { |
450 | ::memcpy(dest: image->scanLine(y + i) + byteOffset, src: buf + (i * byteTileWidth), n: widthToCopy); |
451 | } |
452 | } |
453 | } |
454 | _TIFFfree(p: buf); |
455 | } else { |
456 | if (image->bytesPerLine() < TIFFScanlineSize(tif: tiff)) { |
457 | d->close(); |
458 | return false; |
459 | } |
460 | for (uint32_t y=0; y<height; ++y) { |
461 | if (TIFFReadScanline(tif: tiff, buf: image->scanLine(y), row: y, sample: 0) < 0) { |
462 | d->close(); |
463 | return false; |
464 | } |
465 | } |
466 | } |
467 | if (format == QImage::Format_RGBX64) |
468 | rgb48fixup(image); |
469 | } else { |
470 | const int stopOnError = 1; |
471 | if (TIFFReadRGBAImageOriented(tiff, width, height, reinterpret_cast<uint32_t *>(image->bits()), qt2Exif(transformation: d->transformation), stopOnError)) { |
472 | for (uint32_t y=0; y<height; ++y) |
473 | convert32BitOrder(buffer: image->scanLine(y), width); |
474 | } else { |
475 | d->close(); |
476 | return false; |
477 | } |
478 | } |
479 | |
480 | |
481 | float resX = 0; |
482 | float resY = 0; |
483 | uint16_t resUnit; |
484 | if (!TIFFGetField(tif: tiff, TIFFTAG_RESOLUTIONUNIT, &resUnit)) |
485 | resUnit = RESUNIT_INCH; |
486 | |
487 | if (TIFFGetField(tif: tiff, TIFFTAG_XRESOLUTION, &resX) |
488 | && TIFFGetField(tif: tiff, TIFFTAG_YRESOLUTION, &resY)) { |
489 | |
490 | switch(resUnit) { |
491 | case RESUNIT_CENTIMETER: |
492 | image->setDotsPerMeterX(qRound(d: resX * 100)); |
493 | image->setDotsPerMeterY(qRound(d: resY * 100)); |
494 | break; |
495 | case RESUNIT_INCH: |
496 | image->setDotsPerMeterX(qRound(d: resX * (100 / 2.54))); |
497 | image->setDotsPerMeterY(qRound(d: resY * (100 / 2.54))); |
498 | break; |
499 | default: |
500 | // do nothing as defaults have already |
501 | // been set within the QImage class |
502 | break; |
503 | } |
504 | } |
505 | |
506 | uint32_t count; |
507 | void *profile; |
508 | if (TIFFGetField(tif: tiff, TIFFTAG_ICCPROFILE, &count, &profile)) { |
509 | QByteArray iccProfile(reinterpret_cast<const char *>(profile), count); |
510 | image->setColorSpace(QColorSpace::fromIccProfile(iccProfile)); |
511 | } |
512 | // We do not handle colorimetric metadat not on ICC profile form, it seems to be a lot |
513 | // less common, and would need additional API in QColorSpace. |
514 | |
515 | return true; |
516 | } |
517 | |
518 | static bool checkGrayscale(const QVector<QRgb> &colorTable) |
519 | { |
520 | if (colorTable.size() != 256) |
521 | return false; |
522 | |
523 | const bool increasing = (colorTable.at(i: 0) == 0xff000000); |
524 | for (int i = 0; i < 256; ++i) { |
525 | if ((increasing && colorTable.at(i) != qRgb(r: i, g: i, b: i)) |
526 | || (!increasing && colorTable.at(i) != qRgb(r: 255 - i, g: 255 - i, b: 255 - i))) |
527 | return false; |
528 | } |
529 | return true; |
530 | } |
531 | |
532 | static QVector<QRgb> effectiveColorTable(const QImage &image) |
533 | { |
534 | QVector<QRgb> colors; |
535 | switch (image.format()) { |
536 | case QImage::Format_Indexed8: |
537 | colors = image.colorTable(); |
538 | break; |
539 | case QImage::Format_Alpha8: |
540 | colors.resize(asize: 256); |
541 | for (int i = 0; i < 256; ++i) |
542 | colors[i] = qRgba(r: 0, g: 0, b: 0, a: i); |
543 | break; |
544 | case QImage::Format_Grayscale8: |
545 | case QImage::Format_Grayscale16: |
546 | colors.resize(asize: 256); |
547 | for (int i = 0; i < 256; ++i) |
548 | colors[i] = qRgb(r: i, g: i, b: i); |
549 | break; |
550 | default: |
551 | Q_UNREACHABLE(); |
552 | } |
553 | return colors; |
554 | } |
555 | |
556 | static quint32 defaultStripSize(TIFF *tiff) |
557 | { |
558 | // Aim for 4MB strips |
559 | qint64 scanSize = qMax(a: qint64(1), b: qint64(TIFFScanlineSize(tif: tiff))); |
560 | qint64 numRows = (4 * 1024 * 1024) / scanSize; |
561 | quint32 reqSize = static_cast<quint32>(qBound(min: qint64(1), val: numRows, max: qint64(UINT_MAX))); |
562 | return TIFFDefaultStripSize(tif: tiff, request: reqSize); |
563 | } |
564 | |
565 | bool QTiffHandler::write(const QImage &image) |
566 | { |
567 | if (!device()->isWritable()) |
568 | return false; |
569 | |
570 | TIFF *const tiff = TIFFClientOpen("foo" , |
571 | "wB" , |
572 | device(), |
573 | qtiffReadProc, |
574 | qtiffWriteProc, |
575 | qtiffSeekProc, |
576 | qtiffCloseProc, |
577 | qtiffSizeProc, |
578 | qtiffMapProc, |
579 | qtiffUnmapProc); |
580 | if (!tiff) |
581 | return false; |
582 | |
583 | const int width = image.width(); |
584 | const int height = image.height(); |
585 | const int compression = d->compression; |
586 | |
587 | if (!TIFFSetField(tiff, TIFFTAG_IMAGEWIDTH, width) |
588 | || !TIFFSetField(tiff, TIFFTAG_IMAGELENGTH, height) |
589 | || !TIFFSetField(tiff, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG)) { |
590 | TIFFClose(tif: tiff); |
591 | return false; |
592 | } |
593 | |
594 | // set the resolution |
595 | bool resolutionSet = false; |
596 | const int dotPerMeterX = image.dotsPerMeterX(); |
597 | const int dotPerMeterY = image.dotsPerMeterY(); |
598 | if ((dotPerMeterX % 100) == 0 |
599 | && (dotPerMeterY % 100) == 0) { |
600 | resolutionSet = TIFFSetField(tiff, TIFFTAG_RESOLUTIONUNIT, RESUNIT_CENTIMETER) |
601 | && TIFFSetField(tiff, TIFFTAG_XRESOLUTION, dotPerMeterX/100.0) |
602 | && TIFFSetField(tiff, TIFFTAG_YRESOLUTION, dotPerMeterY/100.0); |
603 | } else { |
604 | resolutionSet = TIFFSetField(tiff, TIFFTAG_RESOLUTIONUNIT, RESUNIT_INCH) |
605 | && TIFFSetField(tiff, TIFFTAG_XRESOLUTION, static_cast<float>(image.logicalDpiX())) |
606 | && TIFFSetField(tiff, TIFFTAG_YRESOLUTION, static_cast<float>(image.logicalDpiY())); |
607 | } |
608 | if (!resolutionSet) { |
609 | TIFFClose(tif: tiff); |
610 | return false; |
611 | } |
612 | // set the orienataion |
613 | bool orientationSet = false; |
614 | orientationSet = TIFFSetField(tiff, TIFFTAG_ORIENTATION, qt2Exif(transformation: d->transformation)); |
615 | if (!orientationSet) { |
616 | TIFFClose(tif: tiff); |
617 | return false; |
618 | } |
619 | // set color space |
620 | if (image.colorSpace().isValid()) { |
621 | QByteArray iccProfile = image.colorSpace().iccProfile(); |
622 | if (!TIFFSetField(tiff, TIFFTAG_ICCPROFILE, iccProfile.size(), reinterpret_cast<const void *>(iccProfile.constData()))) { |
623 | TIFFClose(tif: tiff); |
624 | return false; |
625 | } |
626 | } |
627 | // configure image depth |
628 | const QImage::Format format = image.format(); |
629 | if (format == QImage::Format_Mono || format == QImage::Format_MonoLSB) { |
630 | uint16_t photometric = PHOTOMETRIC_MINISBLACK; |
631 | if (image.colorTable().at(i: 0) == 0xffffffff) |
632 | photometric = PHOTOMETRIC_MINISWHITE; |
633 | if (!TIFFSetField(tiff, TIFFTAG_PHOTOMETRIC, photometric) |
634 | || !TIFFSetField(tiff, TIFFTAG_COMPRESSION, compression == NoCompression ? COMPRESSION_NONE : COMPRESSION_LZW) |
635 | || !TIFFSetField(tiff, TIFFTAG_BITSPERSAMPLE, 1) |
636 | || !TIFFSetField(tiff, TIFFTAG_ROWSPERSTRIP, defaultStripSize(tiff))) { |
637 | TIFFClose(tif: tiff); |
638 | return false; |
639 | } |
640 | |
641 | // try to do the conversion in chunks no greater than 16 MB |
642 | const int chunks = int(image.sizeInBytes() / (1024 * 1024 * 16)) + 1; |
643 | const int chunkHeight = qMax(a: height / chunks, b: 1); |
644 | |
645 | int y = 0; |
646 | while (y < height) { |
647 | QImage chunk = image.copy(x: 0, y, w: width, h: qMin(a: chunkHeight, b: height - y)).convertToFormat(f: QImage::Format_Mono); |
648 | |
649 | int chunkStart = y; |
650 | int chunkEnd = y + chunk.height(); |
651 | while (y < chunkEnd) { |
652 | if (TIFFWriteScanline(tif: tiff, buf: reinterpret_cast<uint32_t *>(chunk.scanLine(y - chunkStart)), row: y) != 1) { |
653 | TIFFClose(tif: tiff); |
654 | return false; |
655 | } |
656 | ++y; |
657 | } |
658 | } |
659 | TIFFClose(tif: tiff); |
660 | } else if (format == QImage::Format_Indexed8 |
661 | || format == QImage::Format_Grayscale8 |
662 | || format == QImage::Format_Grayscale16 |
663 | || format == QImage::Format_Alpha8) { |
664 | QVector<QRgb> colorTable = effectiveColorTable(image); |
665 | bool isGrayscale = checkGrayscale(colorTable); |
666 | if (isGrayscale) { |
667 | uint16_t photometric = PHOTOMETRIC_MINISBLACK; |
668 | if (colorTable.at(i: 0) == 0xffffffff) |
669 | photometric = PHOTOMETRIC_MINISWHITE; |
670 | if (!TIFFSetField(tiff, TIFFTAG_PHOTOMETRIC, photometric) |
671 | || !TIFFSetField(tiff, TIFFTAG_COMPRESSION, compression == NoCompression ? COMPRESSION_NONE : COMPRESSION_LZW) |
672 | || !TIFFSetField(tiff, TIFFTAG_BITSPERSAMPLE, image.depth()) |
673 | || !TIFFSetField(tiff, TIFFTAG_ROWSPERSTRIP, defaultStripSize(tiff))) { |
674 | TIFFClose(tif: tiff); |
675 | return false; |
676 | } |
677 | } else { |
678 | if (!TIFFSetField(tiff, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_PALETTE) |
679 | || !TIFFSetField(tiff, TIFFTAG_COMPRESSION, compression == NoCompression ? COMPRESSION_NONE : COMPRESSION_LZW) |
680 | || !TIFFSetField(tiff, TIFFTAG_BITSPERSAMPLE, 8) |
681 | || !TIFFSetField(tiff, TIFFTAG_ROWSPERSTRIP, defaultStripSize(tiff))) { |
682 | TIFFClose(tif: tiff); |
683 | return false; |
684 | } |
685 | //// write the color table |
686 | // allocate the color tables |
687 | const int tableSize = colorTable.size(); |
688 | Q_ASSERT(tableSize <= 256); |
689 | QVarLengthArray<uint16_t> redTable(tableSize); |
690 | QVarLengthArray<uint16_t> greenTable(tableSize); |
691 | QVarLengthArray<uint16_t> blueTable(tableSize); |
692 | |
693 | // set the color table |
694 | for (int i = 0; i<tableSize; ++i) { |
695 | const QRgb color = colorTable.at(i); |
696 | redTable[i] = qRed(rgb: color) * 257; |
697 | greenTable[i] = qGreen(rgb: color) * 257; |
698 | blueTable[i] = qBlue(rgb: color) * 257; |
699 | } |
700 | |
701 | const bool setColorTableSuccess = TIFFSetField(tiff, TIFFTAG_COLORMAP, redTable.data(), greenTable.data(), blueTable.data()); |
702 | |
703 | if (!setColorTableSuccess) { |
704 | TIFFClose(tif: tiff); |
705 | return false; |
706 | } |
707 | } |
708 | |
709 | //// write the data |
710 | for (int y = 0; y < height; ++y) { |
711 | if (TIFFWriteScanline(tif: tiff, buf: const_cast<uchar *>(image.scanLine(y)), row: y) != 1) { |
712 | TIFFClose(tif: tiff); |
713 | return false; |
714 | } |
715 | } |
716 | TIFFClose(tif: tiff); |
717 | } else if (format == QImage::Format_RGBX64) { |
718 | if (!TIFFSetField(tiff, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB) |
719 | || !TIFFSetField(tiff, TIFFTAG_COMPRESSION, compression == NoCompression ? COMPRESSION_NONE : COMPRESSION_LZW) |
720 | || !TIFFSetField(tiff, TIFFTAG_SAMPLESPERPIXEL, 3) |
721 | || !TIFFSetField(tiff, TIFFTAG_BITSPERSAMPLE, 16) |
722 | || !TIFFSetField(tiff, TIFFTAG_ROWSPERSTRIP, TIFFDefaultStripSize(tif: tiff, request: 0))) { |
723 | TIFFClose(tif: tiff); |
724 | return false; |
725 | } |
726 | std::unique_ptr<quint16[]> rgb48line(new quint16[width * 3]); |
727 | for (int y = 0; y < height; ++y) { |
728 | const quint16 *srcLine = reinterpret_cast<const quint16 *>(image.constScanLine(y)); |
729 | for (int x = 0; x < width; ++x) { |
730 | rgb48line[x * 3 + 0] = srcLine[x * 4 + 0]; |
731 | rgb48line[x * 3 + 1] = srcLine[x * 4 + 1]; |
732 | rgb48line[x * 3 + 2] = srcLine[x * 4 + 2]; |
733 | } |
734 | |
735 | if (TIFFWriteScanline(tif: tiff, buf: (void*)rgb48line.get(), row: y) != 1) { |
736 | TIFFClose(tif: tiff); |
737 | return false; |
738 | } |
739 | } |
740 | TIFFClose(tif: tiff); |
741 | } else if (format == QImage::Format_RGBA64 |
742 | || format == QImage::Format_RGBA64_Premultiplied) { |
743 | const bool premultiplied = image.format() != QImage::Format_RGBA64; |
744 | const uint16_t = premultiplied ? EXTRASAMPLE_ASSOCALPHA : EXTRASAMPLE_UNASSALPHA; |
745 | if (!TIFFSetField(tiff, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB) |
746 | || !TIFFSetField(tiff, TIFFTAG_COMPRESSION, compression == NoCompression ? COMPRESSION_NONE : COMPRESSION_LZW) |
747 | || !TIFFSetField(tiff, TIFFTAG_SAMPLESPERPIXEL, 4) |
748 | || !TIFFSetField(tiff, TIFFTAG_BITSPERSAMPLE, 16) |
749 | || !TIFFSetField(tiff, TIFFTAG_EXTRASAMPLES, 1, &extrasamples) |
750 | || !TIFFSetField(tiff, TIFFTAG_ROWSPERSTRIP, TIFFDefaultStripSize(tif: tiff, request: 0))) { |
751 | TIFFClose(tif: tiff); |
752 | return false; |
753 | } |
754 | for (int y = 0; y < height; ++y) { |
755 | if (TIFFWriteScanline(tif: tiff, buf: (void*)image.scanLine(y), row: y) != 1) { |
756 | TIFFClose(tif: tiff); |
757 | return false; |
758 | } |
759 | } |
760 | TIFFClose(tif: tiff); |
761 | } else if (!image.hasAlphaChannel()) { |
762 | if (!TIFFSetField(tiff, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB) |
763 | || !TIFFSetField(tiff, TIFFTAG_COMPRESSION, compression == NoCompression ? COMPRESSION_NONE : COMPRESSION_LZW) |
764 | || !TIFFSetField(tiff, TIFFTAG_SAMPLESPERPIXEL, 3) |
765 | || !TIFFSetField(tiff, TIFFTAG_BITSPERSAMPLE, 8) |
766 | || !TIFFSetField(tiff, TIFFTAG_ROWSPERSTRIP, defaultStripSize(tiff))) { |
767 | TIFFClose(tif: tiff); |
768 | return false; |
769 | } |
770 | // try to do the RGB888 conversion in chunks no greater than 16 MB |
771 | const int chunks = int(image.sizeInBytes() / (1024 * 1024 * 16)) + 1; |
772 | const int chunkHeight = qMax(a: height / chunks, b: 1); |
773 | |
774 | int y = 0; |
775 | while (y < height) { |
776 | const QImage chunk = image.copy(x: 0, y, w: width, h: qMin(a: chunkHeight, b: height - y)).convertToFormat(f: QImage::Format_RGB888); |
777 | |
778 | int chunkStart = y; |
779 | int chunkEnd = y + chunk.height(); |
780 | while (y < chunkEnd) { |
781 | if (TIFFWriteScanline(tif: tiff, buf: (void*)chunk.scanLine(y - chunkStart), row: y) != 1) { |
782 | TIFFClose(tif: tiff); |
783 | return false; |
784 | } |
785 | ++y; |
786 | } |
787 | } |
788 | TIFFClose(tif: tiff); |
789 | } else { |
790 | const bool premultiplied = image.format() != QImage::Format_ARGB32 |
791 | && image.format() != QImage::Format_RGBA8888; |
792 | const uint16_t = premultiplied ? EXTRASAMPLE_ASSOCALPHA : EXTRASAMPLE_UNASSALPHA; |
793 | if (!TIFFSetField(tiff, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB) |
794 | || !TIFFSetField(tiff, TIFFTAG_COMPRESSION, compression == NoCompression ? COMPRESSION_NONE : COMPRESSION_LZW) |
795 | || !TIFFSetField(tiff, TIFFTAG_SAMPLESPERPIXEL, 4) |
796 | || !TIFFSetField(tiff, TIFFTAG_BITSPERSAMPLE, 8) |
797 | || !TIFFSetField(tiff, TIFFTAG_EXTRASAMPLES, 1, &extrasamples) |
798 | || !TIFFSetField(tiff, TIFFTAG_ROWSPERSTRIP, defaultStripSize(tiff))) { |
799 | TIFFClose(tif: tiff); |
800 | return false; |
801 | } |
802 | // try to do the RGBA8888 conversion in chunks no greater than 16 MB |
803 | const int chunks = int(image.sizeInBytes() / (1024 * 1024 * 16)) + 1; |
804 | const int chunkHeight = qMax(a: height / chunks, b: 1); |
805 | |
806 | const QImage::Format format = premultiplied ? QImage::Format_RGBA8888_Premultiplied |
807 | : QImage::Format_RGBA8888; |
808 | int y = 0; |
809 | while (y < height) { |
810 | const QImage chunk = image.copy(x: 0, y, w: width, h: qMin(a: chunkHeight, b: height - y)).convertToFormat(f: format); |
811 | |
812 | int chunkStart = y; |
813 | int chunkEnd = y + chunk.height(); |
814 | while (y < chunkEnd) { |
815 | if (TIFFWriteScanline(tif: tiff, buf: (void*)chunk.scanLine(y - chunkStart), row: y) != 1) { |
816 | TIFFClose(tif: tiff); |
817 | return false; |
818 | } |
819 | ++y; |
820 | } |
821 | } |
822 | TIFFClose(tif: tiff); |
823 | } |
824 | |
825 | return true; |
826 | } |
827 | |
828 | QVariant QTiffHandler::option(ImageOption option) const |
829 | { |
830 | if (option == Size && canRead()) { |
831 | if (d->readHeaders(device: device())) |
832 | return d->size; |
833 | } else if (option == CompressionRatio) { |
834 | return d->compression; |
835 | } else if (option == ImageFormat) { |
836 | if (d->readHeaders(device: device())) |
837 | return d->format; |
838 | } else if (option == ImageTransformation) { |
839 | if (d->readHeaders(device: device())) |
840 | return int(d->transformation); |
841 | } |
842 | return QVariant(); |
843 | } |
844 | |
845 | void QTiffHandler::setOption(ImageOption option, const QVariant &value) |
846 | { |
847 | if (option == CompressionRatio && value.type() == QVariant::Int) |
848 | d->compression = qBound(min: 0, val: value.toInt(), max: 1); |
849 | if (option == ImageTransformation) { |
850 | int transformation = value.toInt(); |
851 | if (transformation > 0 && transformation < 8) |
852 | d->transformation = QImageIOHandler::Transformations(transformation); |
853 | } |
854 | } |
855 | |
856 | bool QTiffHandler::supportsOption(ImageOption option) const |
857 | { |
858 | return option == CompressionRatio |
859 | || option == Size |
860 | || option == ImageFormat |
861 | || option == ImageTransformation |
862 | || option == TransformedByDefault; |
863 | } |
864 | |
865 | bool QTiffHandler::jumpToNextImage() |
866 | { |
867 | if (!ensureHaveDirectoryCount()) |
868 | return false; |
869 | if (d->currentDirectory >= d->directoryCount - 1) |
870 | return false; |
871 | |
872 | d->headersRead = false; |
873 | ++d->currentDirectory; |
874 | return true; |
875 | } |
876 | |
877 | bool QTiffHandler::jumpToImage(int imageNumber) |
878 | { |
879 | if (!ensureHaveDirectoryCount()) |
880 | return false; |
881 | if (imageNumber < 0 || imageNumber >= d->directoryCount) |
882 | return false; |
883 | |
884 | if (d->currentDirectory != imageNumber) { |
885 | d->headersRead = false; |
886 | d->currentDirectory = imageNumber; |
887 | } |
888 | return true; |
889 | } |
890 | |
891 | int QTiffHandler::imageCount() const |
892 | { |
893 | if (!ensureHaveDirectoryCount()) |
894 | return 1; |
895 | |
896 | return d->directoryCount; |
897 | } |
898 | |
899 | int QTiffHandler::currentImageNumber() const |
900 | { |
901 | return d->currentDirectory; |
902 | } |
903 | |
904 | void QTiffHandler::convert32BitOrder(void *buffer, int width) |
905 | { |
906 | uint32_t *target = reinterpret_cast<uint32_t *>(buffer); |
907 | for (int32_t x=0; x<width; ++x) { |
908 | uint32_t p = target[x]; |
909 | // convert between ARGB and ABGR |
910 | target[x] = (p & 0xff000000) |
911 | | ((p & 0x00ff0000) >> 16) |
912 | | (p & 0x0000ff00) |
913 | | ((p & 0x000000ff) << 16); |
914 | } |
915 | } |
916 | |
917 | void QTiffHandler::rgb48fixup(QImage *image) |
918 | { |
919 | Q_ASSERT(image->depth() == 64); |
920 | const int h = image->height(); |
921 | const int w = image->width(); |
922 | uchar *scanline = image->bits(); |
923 | const qsizetype bpl = image->bytesPerLine(); |
924 | for (int y = 0; y < h; ++y) { |
925 | quint16 *dst = reinterpret_cast<uint16_t *>(scanline); |
926 | for (int x = w - 1; x >= 0; --x) { |
927 | dst[x * 4 + 3] = 0xffff; |
928 | dst[x * 4 + 2] = dst[x * 3 + 2]; |
929 | dst[x * 4 + 1] = dst[x * 3 + 1]; |
930 | dst[x * 4 + 0] = dst[x * 3 + 0]; |
931 | } |
932 | scanline += bpl; |
933 | } |
934 | } |
935 | |
936 | bool QTiffHandler::ensureHaveDirectoryCount() const |
937 | { |
938 | if (d->directoryCount > 0) |
939 | return true; |
940 | |
941 | TIFF *tiff = TIFFClientOpen("foo" , |
942 | "r" , |
943 | device(), |
944 | qtiffReadProc, |
945 | qtiffWriteProc, |
946 | qtiffSeekProc, |
947 | qtiffCloseProc, |
948 | qtiffSizeProc, |
949 | qtiffMapProc, |
950 | qtiffUnmapProc); |
951 | if (!tiff) { |
952 | device()->reset(); |
953 | return false; |
954 | } |
955 | |
956 | do { |
957 | ++d->directoryCount; |
958 | } while (TIFFReadDirectory(tif: tiff)); |
959 | TIFFClose(tif: tiff); |
960 | device()->reset(); |
961 | return true; |
962 | } |
963 | |
964 | QT_END_NAMESPACE |
965 | |