| 1 | /* |
| 2 | * Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors |
| 3 | * http://code.google.com/p/poly2tri/ |
| 4 | * |
| 5 | * All rights reserved. |
| 6 | * |
| 7 | * Redistribution and use in source and binary forms, with or without modification, |
| 8 | * are permitted provided that the following conditions are met: |
| 9 | * |
| 10 | * * Redistributions of source code must retain the above copyright notice, |
| 11 | * this list of conditions and the following disclaimer. |
| 12 | * * Redistributions in binary form must reproduce the above copyright notice, |
| 13 | * this list of conditions and the following disclaimer in the documentation |
| 14 | * and/or other materials provided with the distribution. |
| 15 | * * Neither the name of Poly2Tri nor the names of its contributors may be |
| 16 | * used to endorse or promote products derived from this software without specific |
| 17 | * prior written permission. |
| 18 | * |
| 19 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| 23 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 24 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 25 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 26 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 27 | * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| 28 | * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 29 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | */ |
| 31 | #include "shapes.h" |
| 32 | #include <iostream> |
| 33 | |
| 34 | namespace p2t { |
| 35 | |
| 36 | Triangle::Triangle(Point& a, Point& b, Point& c) |
| 37 | { |
| 38 | points_[0] = &a; points_[1] = &b; points_[2] = &c; |
| 39 | neighbors_[0] = NULL; neighbors_[1] = NULL; neighbors_[2] = NULL; |
| 40 | constrained_edge[0] = constrained_edge[1] = constrained_edge[2] = false; |
| 41 | delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false; |
| 42 | interior_ = false; |
| 43 | } |
| 44 | |
| 45 | // Update neighbor pointers |
| 46 | void Triangle::MarkNeighbor(Point* p1, Point* p2, Triangle* t) |
| 47 | { |
| 48 | if ((p1 == points_[2] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[2])) |
| 49 | neighbors_[0] = t; |
| 50 | else if ((p1 == points_[0] && p2 == points_[2]) || (p1 == points_[2] && p2 == points_[0])) |
| 51 | neighbors_[1] = t; |
| 52 | else if ((p1 == points_[0] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[0])) |
| 53 | neighbors_[2] = t; |
| 54 | else |
| 55 | assert(0); |
| 56 | } |
| 57 | |
| 58 | // Exhaustive search to update neighbor pointers |
| 59 | void Triangle::MarkNeighbor(Triangle& t) |
| 60 | { |
| 61 | if (t.Contains(p: points_[1], q: points_[2])) { |
| 62 | neighbors_[0] = &t; |
| 63 | t.MarkNeighbor(p1: points_[1], p2: points_[2], t: this); |
| 64 | } else if (t.Contains(p: points_[0], q: points_[2])) { |
| 65 | neighbors_[1] = &t; |
| 66 | t.MarkNeighbor(p1: points_[0], p2: points_[2], t: this); |
| 67 | } else if (t.Contains(p: points_[0], q: points_[1])) { |
| 68 | neighbors_[2] = &t; |
| 69 | t.MarkNeighbor(p1: points_[0], p2: points_[1], t: this); |
| 70 | } |
| 71 | } |
| 72 | |
| 73 | /** |
| 74 | * Clears all references to all other triangles and points |
| 75 | */ |
| 76 | void Triangle::Clear() |
| 77 | { |
| 78 | Triangle *t; |
| 79 | for (int i=0; i<3; i++) |
| 80 | { |
| 81 | t = neighbors_[i]; |
| 82 | if (t != NULL) |
| 83 | { |
| 84 | t->ClearNeighbor( triangle: this ); |
| 85 | } |
| 86 | } |
| 87 | ClearNeighbors(); |
| 88 | points_[0]=points_[1]=points_[2] = NULL; |
| 89 | } |
| 90 | |
| 91 | void Triangle::ClearNeighbor(Triangle *triangle ) |
| 92 | { |
| 93 | if (neighbors_[0] == triangle) |
| 94 | { |
| 95 | neighbors_[0] = NULL; |
| 96 | } |
| 97 | else if (neighbors_[1] == triangle) |
| 98 | { |
| 99 | neighbors_[1] = NULL; |
| 100 | } |
| 101 | else |
| 102 | { |
| 103 | neighbors_[2] = NULL; |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | void Triangle::ClearNeighbors() |
| 108 | { |
| 109 | neighbors_[0] = NULL; |
| 110 | neighbors_[1] = NULL; |
| 111 | neighbors_[2] = NULL; |
| 112 | } |
| 113 | |
| 114 | void Triangle::ClearDelunayEdges() |
| 115 | { |
| 116 | delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false; |
| 117 | } |
| 118 | |
| 119 | Point* Triangle::OppositePoint(Triangle& t, Point& p) |
| 120 | { |
| 121 | Point *cw = t.PointCW(point&: p); |
| 122 | return PointCW(point&: *cw); |
| 123 | } |
| 124 | |
| 125 | // Legalized triangle by rotating clockwise around point(0) |
| 126 | void Triangle::Legalize(Point& point) |
| 127 | { |
| 128 | points_[1] = points_[0]; |
| 129 | points_[0] = points_[2]; |
| 130 | points_[2] = &point; |
| 131 | } |
| 132 | |
| 133 | // Legalize triagnle by rotating clockwise around oPoint |
| 134 | void Triangle::Legalize(Point& opoint, Point& npoint) |
| 135 | { |
| 136 | if (&opoint == points_[0]) { |
| 137 | points_[1] = points_[0]; |
| 138 | points_[0] = points_[2]; |
| 139 | points_[2] = &npoint; |
| 140 | } else if (&opoint == points_[1]) { |
| 141 | points_[2] = points_[1]; |
| 142 | points_[1] = points_[0]; |
| 143 | points_[0] = &npoint; |
| 144 | } else if (&opoint == points_[2]) { |
| 145 | points_[0] = points_[2]; |
| 146 | points_[2] = points_[1]; |
| 147 | points_[1] = &npoint; |
| 148 | } else { |
| 149 | assert(0); |
| 150 | } |
| 151 | } |
| 152 | |
| 153 | int Triangle::Index(const Point* p) |
| 154 | { |
| 155 | if (p == points_[0]) { |
| 156 | return 0; |
| 157 | } else if (p == points_[1]) { |
| 158 | return 1; |
| 159 | } else if (p == points_[2]) { |
| 160 | return 2; |
| 161 | } |
| 162 | assert(0); |
| 163 | } |
| 164 | |
| 165 | int Triangle::EdgeIndex(const Point* p1, const Point* p2) |
| 166 | { |
| 167 | if (points_[0] == p1) { |
| 168 | if (points_[1] == p2) { |
| 169 | return 2; |
| 170 | } else if (points_[2] == p2) { |
| 171 | return 1; |
| 172 | } |
| 173 | } else if (points_[1] == p1) { |
| 174 | if (points_[2] == p2) { |
| 175 | return 0; |
| 176 | } else if (points_[0] == p2) { |
| 177 | return 2; |
| 178 | } |
| 179 | } else if (points_[2] == p1) { |
| 180 | if (points_[0] == p2) { |
| 181 | return 1; |
| 182 | } else if (points_[1] == p2) { |
| 183 | return 0; |
| 184 | } |
| 185 | } |
| 186 | return -1; |
| 187 | } |
| 188 | |
| 189 | void Triangle::MarkConstrainedEdge(const int index) |
| 190 | { |
| 191 | constrained_edge[index] = true; |
| 192 | } |
| 193 | |
| 194 | void Triangle::MarkConstrainedEdge(Edge& edge) |
| 195 | { |
| 196 | MarkConstrainedEdge(p: edge.p, q: edge.q); |
| 197 | } |
| 198 | |
| 199 | // Mark edge as constrained |
| 200 | void Triangle::MarkConstrainedEdge(Point* p, Point* q) |
| 201 | { |
| 202 | if ((q == points_[0] && p == points_[1]) || (q == points_[1] && p == points_[0])) { |
| 203 | constrained_edge[2] = true; |
| 204 | } else if ((q == points_[0] && p == points_[2]) || (q == points_[2] && p == points_[0])) { |
| 205 | constrained_edge[1] = true; |
| 206 | } else if ((q == points_[1] && p == points_[2]) || (q == points_[2] && p == points_[1])) { |
| 207 | constrained_edge[0] = true; |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | // The point counter-clockwise to given point |
| 212 | Point* Triangle::PointCW(Point& point) |
| 213 | { |
| 214 | if (&point == points_[0]) { |
| 215 | return points_[2]; |
| 216 | } else if (&point == points_[1]) { |
| 217 | return points_[0]; |
| 218 | } else if (&point == points_[2]) { |
| 219 | return points_[1]; |
| 220 | } |
| 221 | assert(0); |
| 222 | } |
| 223 | |
| 224 | // The point counter-clockwise to given point |
| 225 | Point* Triangle::PointCCW(Point& point) |
| 226 | { |
| 227 | if (&point == points_[0]) { |
| 228 | return points_[1]; |
| 229 | } else if (&point == points_[1]) { |
| 230 | return points_[2]; |
| 231 | } else if (&point == points_[2]) { |
| 232 | return points_[0]; |
| 233 | } |
| 234 | assert(0); |
| 235 | } |
| 236 | |
| 237 | // The neighbor clockwise to given point |
| 238 | Triangle* Triangle::NeighborCW(Point& point) |
| 239 | { |
| 240 | if (&point == points_[0]) { |
| 241 | return neighbors_[1]; |
| 242 | } else if (&point == points_[1]) { |
| 243 | return neighbors_[2]; |
| 244 | } |
| 245 | return neighbors_[0]; |
| 246 | } |
| 247 | |
| 248 | // The neighbor counter-clockwise to given point |
| 249 | Triangle* Triangle::NeighborCCW(Point& point) |
| 250 | { |
| 251 | if (&point == points_[0]) { |
| 252 | return neighbors_[2]; |
| 253 | } else if (&point == points_[1]) { |
| 254 | return neighbors_[0]; |
| 255 | } |
| 256 | return neighbors_[1]; |
| 257 | } |
| 258 | |
| 259 | bool Triangle::GetConstrainedEdgeCCW(Point& p) |
| 260 | { |
| 261 | if (&p == points_[0]) { |
| 262 | return constrained_edge[2]; |
| 263 | } else if (&p == points_[1]) { |
| 264 | return constrained_edge[0]; |
| 265 | } |
| 266 | return constrained_edge[1]; |
| 267 | } |
| 268 | |
| 269 | bool Triangle::GetConstrainedEdgeCW(Point& p) |
| 270 | { |
| 271 | if (&p == points_[0]) { |
| 272 | return constrained_edge[1]; |
| 273 | } else if (&p == points_[1]) { |
| 274 | return constrained_edge[2]; |
| 275 | } |
| 276 | return constrained_edge[0]; |
| 277 | } |
| 278 | |
| 279 | void Triangle::SetConstrainedEdgeCCW(Point& p, bool ce) |
| 280 | { |
| 281 | if (&p == points_[0]) { |
| 282 | constrained_edge[2] = ce; |
| 283 | } else if (&p == points_[1]) { |
| 284 | constrained_edge[0] = ce; |
| 285 | } else { |
| 286 | constrained_edge[1] = ce; |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | void Triangle::SetConstrainedEdgeCW(Point& p, bool ce) |
| 291 | { |
| 292 | if (&p == points_[0]) { |
| 293 | constrained_edge[1] = ce; |
| 294 | } else if (&p == points_[1]) { |
| 295 | constrained_edge[2] = ce; |
| 296 | } else { |
| 297 | constrained_edge[0] = ce; |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | bool Triangle::GetDelunayEdgeCCW(Point& p) |
| 302 | { |
| 303 | if (&p == points_[0]) { |
| 304 | return delaunay_edge[2]; |
| 305 | } else if (&p == points_[1]) { |
| 306 | return delaunay_edge[0]; |
| 307 | } |
| 308 | return delaunay_edge[1]; |
| 309 | } |
| 310 | |
| 311 | bool Triangle::GetDelunayEdgeCW(Point& p) |
| 312 | { |
| 313 | if (&p == points_[0]) { |
| 314 | return delaunay_edge[1]; |
| 315 | } else if (&p == points_[1]) { |
| 316 | return delaunay_edge[2]; |
| 317 | } |
| 318 | return delaunay_edge[0]; |
| 319 | } |
| 320 | |
| 321 | void Triangle::SetDelunayEdgeCCW(Point& p, bool e) |
| 322 | { |
| 323 | if (&p == points_[0]) { |
| 324 | delaunay_edge[2] = e; |
| 325 | } else if (&p == points_[1]) { |
| 326 | delaunay_edge[0] = e; |
| 327 | } else { |
| 328 | delaunay_edge[1] = e; |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | void Triangle::SetDelunayEdgeCW(Point& p, bool e) |
| 333 | { |
| 334 | if (&p == points_[0]) { |
| 335 | delaunay_edge[1] = e; |
| 336 | } else if (&p == points_[1]) { |
| 337 | delaunay_edge[2] = e; |
| 338 | } else { |
| 339 | delaunay_edge[0] = e; |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | // The neighbor across to given point |
| 344 | Triangle& Triangle::NeighborAcross(Point& opoint) |
| 345 | { |
| 346 | if (&opoint == points_[0]) { |
| 347 | return *neighbors_[0]; |
| 348 | } else if (&opoint == points_[1]) { |
| 349 | return *neighbors_[1]; |
| 350 | } |
| 351 | return *neighbors_[2]; |
| 352 | } |
| 353 | |
| 354 | void Triangle::DebugPrint() |
| 355 | { |
| 356 | using namespace std; |
| 357 | cout << points_[0]->x << "," << points_[0]->y << " " ; |
| 358 | cout << points_[1]->x << "," << points_[1]->y << " " ; |
| 359 | cout << points_[2]->x << "," << points_[2]->y << endl; |
| 360 | } |
| 361 | |
| 362 | } |
| 363 | |
| 364 | |