1//===- ArrayRef.h - Array Reference Wrapper ---------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef LLVM_ADT_ARRAYREF_H
10#define LLVM_ADT_ARRAYREF_H
11
12#include "llvm/ADT/Hashing.h"
13#include "llvm/ADT/SmallVector.h"
14#include "llvm/ADT/STLExtras.h"
15#include "llvm/Support/Compiler.h"
16#include <algorithm>
17#include <array>
18#include <cassert>
19#include <cstddef>
20#include <initializer_list>
21#include <iterator>
22#include <memory>
23#include <type_traits>
24#include <vector>
25
26namespace llvm {
27 template<typename T> class [[nodiscard]] MutableArrayRef;
28
29 /// ArrayRef - Represent a constant reference to an array (0 or more elements
30 /// consecutively in memory), i.e. a start pointer and a length. It allows
31 /// various APIs to take consecutive elements easily and conveniently.
32 ///
33 /// This class does not own the underlying data, it is expected to be used in
34 /// situations where the data resides in some other buffer, whose lifetime
35 /// extends past that of the ArrayRef. For this reason, it is not in general
36 /// safe to store an ArrayRef.
37 ///
38 /// This is intended to be trivially copyable, so it should be passed by
39 /// value.
40 template<typename T>
41 class LLVM_GSL_POINTER [[nodiscard]] ArrayRef {
42 public:
43 using value_type = T;
44 using pointer = value_type *;
45 using const_pointer = const value_type *;
46 using reference = value_type &;
47 using const_reference = const value_type &;
48 using iterator = const_pointer;
49 using const_iterator = const_pointer;
50 using reverse_iterator = std::reverse_iterator<iterator>;
51 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
52 using size_type = size_t;
53 using difference_type = ptrdiff_t;
54
55 private:
56 /// The start of the array, in an external buffer.
57 const T *Data = nullptr;
58
59 /// The number of elements.
60 size_type Length = 0;
61
62 public:
63 /// @name Constructors
64 /// @{
65
66 /// Construct an empty ArrayRef.
67 /*implicit*/ ArrayRef() = default;
68
69 /// Construct an empty ArrayRef from std::nullopt.
70 /*implicit*/ ArrayRef(std::nullopt_t) {}
71
72 /// Construct an ArrayRef from a single element.
73 /*implicit*/ ArrayRef(const T &OneElt)
74 : Data(&OneElt), Length(1) {}
75
76 /// Construct an ArrayRef from a pointer and length.
77 constexpr /*implicit*/ ArrayRef(const T *data, size_t length)
78 : Data(data), Length(length) {}
79
80 /// Construct an ArrayRef from a range.
81 constexpr ArrayRef(const T *begin, const T *end)
82 : Data(begin), Length(end - begin) {
83 assert(begin <= end);
84 }
85
86 /// Construct an ArrayRef from a SmallVector. This is templated in order to
87 /// avoid instantiating SmallVectorTemplateCommon<T> whenever we
88 /// copy-construct an ArrayRef.
89 template<typename U>
90 /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec)
91 : Data(Vec.data()), Length(Vec.size()) {
92 }
93
94 /// Construct an ArrayRef from a std::vector.
95 template<typename A>
96 /*implicit*/ ArrayRef(const std::vector<T, A> &Vec)
97 : Data(Vec.data()), Length(Vec.size()) {}
98
99 /// Construct an ArrayRef from a std::array
100 template <size_t N>
101 /*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr)
102 : Data(Arr.data()), Length(N) {}
103
104 /// Construct an ArrayRef from a C array.
105 template <size_t N>
106 /*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {}
107
108 /// Construct an ArrayRef from a std::initializer_list.
109#if LLVM_GNUC_PREREQ(9, 0, 0)
110// Disable gcc's warning in this constructor as it generates an enormous amount
111// of messages. Anyone using ArrayRef should already be aware of the fact that
112// it does not do lifetime extension.
113#pragma GCC diagnostic push
114#pragma GCC diagnostic ignored "-Winit-list-lifetime"
115#endif
116 constexpr /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec)
117 : Data(Vec.begin() == Vec.end() ? (T *)nullptr : Vec.begin()),
118 Length(Vec.size()) {}
119#if LLVM_GNUC_PREREQ(9, 0, 0)
120#pragma GCC diagnostic pop
121#endif
122
123 /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to
124 /// ensure that only ArrayRefs of pointers can be converted.
125 template <typename U>
126 ArrayRef(const ArrayRef<U *> &A,
127 std::enable_if_t<std::is_convertible<U *const *, T const *>::value>
128 * = nullptr)
129 : Data(A.data()), Length(A.size()) {}
130
131 /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is
132 /// templated in order to avoid instantiating SmallVectorTemplateCommon<T>
133 /// whenever we copy-construct an ArrayRef.
134 template <typename U, typename DummyT>
135 /*implicit*/ ArrayRef(
136 const SmallVectorTemplateCommon<U *, DummyT> &Vec,
137 std::enable_if_t<std::is_convertible<U *const *, T const *>::value> * =
138 nullptr)
139 : Data(Vec.data()), Length(Vec.size()) {}
140
141 /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE
142 /// to ensure that only vectors of pointers can be converted.
143 template <typename U, typename A>
144 ArrayRef(const std::vector<U *, A> &Vec,
145 std::enable_if_t<std::is_convertible<U *const *, T const *>::value>
146 * = nullptr)
147 : Data(Vec.data()), Length(Vec.size()) {}
148
149 /// @}
150 /// @name Simple Operations
151 /// @{
152
153 iterator begin() const { return Data; }
154 iterator end() const { return Data + Length; }
155
156 reverse_iterator rbegin() const { return reverse_iterator(end()); }
157 reverse_iterator rend() const { return reverse_iterator(begin()); }
158
159 /// empty - Check if the array is empty.
160 bool empty() const { return Length == 0; }
161
162 const T *data() const { return Data; }
163
164 /// size - Get the array size.
165 size_t size() const { return Length; }
166
167 /// front - Get the first element.
168 const T &front() const {
169 assert(!empty());
170 return Data[0];
171 }
172
173 /// back - Get the last element.
174 const T &back() const {
175 assert(!empty());
176 return Data[Length-1];
177 }
178
179 // copy - Allocate copy in Allocator and return ArrayRef<T> to it.
180 template <typename Allocator> MutableArrayRef<T> copy(Allocator &A) {
181 T *Buff = A.template Allocate<T>(Length);
182 std::uninitialized_copy(begin(), end(), Buff);
183 return MutableArrayRef<T>(Buff, Length);
184 }
185
186 /// equals - Check for element-wise equality.
187 bool equals(ArrayRef RHS) const {
188 if (Length != RHS.Length)
189 return false;
190 return std::equal(begin(), end(), RHS.begin());
191 }
192
193 /// slice(n, m) - Chop off the first N elements of the array, and keep M
194 /// elements in the array.
195 ArrayRef<T> slice(size_t N, size_t M) const {
196 assert(N+M <= size() && "Invalid specifier");
197 return ArrayRef<T>(data()+N, M);
198 }
199
200 /// slice(n) - Chop off the first N elements of the array.
201 ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); }
202
203 /// Drop the first \p N elements of the array.
204 ArrayRef<T> drop_front(size_t N = 1) const {
205 assert(size() >= N && "Dropping more elements than exist");
206 return slice(N, size() - N);
207 }
208
209 /// Drop the last \p N elements of the array.
210 ArrayRef<T> drop_back(size_t N = 1) const {
211 assert(size() >= N && "Dropping more elements than exist");
212 return slice(0, size() - N);
213 }
214
215 /// Return a copy of *this with the first N elements satisfying the
216 /// given predicate removed.
217 template <class PredicateT> ArrayRef<T> drop_while(PredicateT Pred) const {
218 return ArrayRef<T>(find_if_not(*this, Pred), end());
219 }
220
221 /// Return a copy of *this with the first N elements not satisfying
222 /// the given predicate removed.
223 template <class PredicateT> ArrayRef<T> drop_until(PredicateT Pred) const {
224 return ArrayRef<T>(find_if(*this, Pred), end());
225 }
226
227 /// Return a copy of *this with only the first \p N elements.
228 ArrayRef<T> take_front(size_t N = 1) const {
229 if (N >= size())
230 return *this;
231 return drop_back(N: size() - N);
232 }
233
234 /// Return a copy of *this with only the last \p N elements.
235 ArrayRef<T> take_back(size_t N = 1) const {
236 if (N >= size())
237 return *this;
238 return drop_front(N: size() - N);
239 }
240
241 /// Return the first N elements of this Array that satisfy the given
242 /// predicate.
243 template <class PredicateT> ArrayRef<T> take_while(PredicateT Pred) const {
244 return ArrayRef<T>(begin(), find_if_not(*this, Pred));
245 }
246
247 /// Return the first N elements of this Array that don't satisfy the
248 /// given predicate.
249 template <class PredicateT> ArrayRef<T> take_until(PredicateT Pred) const {
250 return ArrayRef<T>(begin(), find_if(*this, Pred));
251 }
252
253 /// @}
254 /// @name Operator Overloads
255 /// @{
256 const T &operator[](size_t Index) const {
257 assert(Index < Length && "Invalid index!");
258 return Data[Index];
259 }
260
261 /// Disallow accidental assignment from a temporary.
262 ///
263 /// The declaration here is extra complicated so that "arrayRef = {}"
264 /// continues to select the move assignment operator.
265 template <typename U>
266 std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> &
267 operator=(U &&Temporary) = delete;
268
269 /// Disallow accidental assignment from a temporary.
270 ///
271 /// The declaration here is extra complicated so that "arrayRef = {}"
272 /// continues to select the move assignment operator.
273 template <typename U>
274 std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> &
275 operator=(std::initializer_list<U>) = delete;
276
277 /// @}
278 /// @name Expensive Operations
279 /// @{
280 std::vector<T> vec() const {
281 return std::vector<T>(Data, Data+Length);
282 }
283
284 /// @}
285 /// @name Conversion operators
286 /// @{
287 operator std::vector<T>() const {
288 return std::vector<T>(Data, Data+Length);
289 }
290
291 /// @}
292 };
293
294 /// MutableArrayRef - Represent a mutable reference to an array (0 or more
295 /// elements consecutively in memory), i.e. a start pointer and a length. It
296 /// allows various APIs to take and modify consecutive elements easily and
297 /// conveniently.
298 ///
299 /// This class does not own the underlying data, it is expected to be used in
300 /// situations where the data resides in some other buffer, whose lifetime
301 /// extends past that of the MutableArrayRef. For this reason, it is not in
302 /// general safe to store a MutableArrayRef.
303 ///
304 /// This is intended to be trivially copyable, so it should be passed by
305 /// value.
306 template<typename T>
307 class [[nodiscard]] MutableArrayRef : public ArrayRef<T> {
308 public:
309 using value_type = T;
310 using pointer = value_type *;
311 using const_pointer = const value_type *;
312 using reference = value_type &;
313 using const_reference = const value_type &;
314 using iterator = pointer;
315 using const_iterator = const_pointer;
316 using reverse_iterator = std::reverse_iterator<iterator>;
317 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
318 using size_type = size_t;
319 using difference_type = ptrdiff_t;
320
321 /// Construct an empty MutableArrayRef.
322 /*implicit*/ MutableArrayRef() = default;
323
324 /// Construct an empty MutableArrayRef from std::nullopt.
325 /*implicit*/ MutableArrayRef(std::nullopt_t) : ArrayRef<T>() {}
326
327 /// Construct a MutableArrayRef from a single element.
328 /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {}
329
330 /// Construct a MutableArrayRef from a pointer and length.
331 /*implicit*/ MutableArrayRef(T *data, size_t length)
332 : ArrayRef<T>(data, length) {}
333
334 /// Construct a MutableArrayRef from a range.
335 MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {}
336
337 /// Construct a MutableArrayRef from a SmallVector.
338 /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec)
339 : ArrayRef<T>(Vec) {}
340
341 /// Construct a MutableArrayRef from a std::vector.
342 /*implicit*/ MutableArrayRef(std::vector<T> &Vec)
343 : ArrayRef<T>(Vec) {}
344
345 /// Construct a MutableArrayRef from a std::array
346 template <size_t N>
347 /*implicit*/ constexpr MutableArrayRef(std::array<T, N> &Arr)
348 : ArrayRef<T>(Arr) {}
349
350 /// Construct a MutableArrayRef from a C array.
351 template <size_t N>
352 /*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {}
353
354 T *data() const { return const_cast<T*>(ArrayRef<T>::data()); }
355
356 iterator begin() const { return data(); }
357 iterator end() const { return data() + this->size(); }
358
359 reverse_iterator rbegin() const { return reverse_iterator(end()); }
360 reverse_iterator rend() const { return reverse_iterator(begin()); }
361
362 /// front - Get the first element.
363 T &front() const {
364 assert(!this->empty());
365 return data()[0];
366 }
367
368 /// back - Get the last element.
369 T &back() const {
370 assert(!this->empty());
371 return data()[this->size()-1];
372 }
373
374 /// slice(n, m) - Chop off the first N elements of the array, and keep M
375 /// elements in the array.
376 MutableArrayRef<T> slice(size_t N, size_t M) const {
377 assert(N + M <= this->size() && "Invalid specifier");
378 return MutableArrayRef<T>(this->data() + N, M);
379 }
380
381 /// slice(n) - Chop off the first N elements of the array.
382 MutableArrayRef<T> slice(size_t N) const {
383 return slice(N, this->size() - N);
384 }
385
386 /// Drop the first \p N elements of the array.
387 MutableArrayRef<T> drop_front(size_t N = 1) const {
388 assert(this->size() >= N && "Dropping more elements than exist");
389 return slice(N, this->size() - N);
390 }
391
392 MutableArrayRef<T> drop_back(size_t N = 1) const {
393 assert(this->size() >= N && "Dropping more elements than exist");
394 return slice(0, this->size() - N);
395 }
396
397 /// Return a copy of *this with the first N elements satisfying the
398 /// given predicate removed.
399 template <class PredicateT>
400 MutableArrayRef<T> drop_while(PredicateT Pred) const {
401 return MutableArrayRef<T>(find_if_not(*this, Pred), end());
402 }
403
404 /// Return a copy of *this with the first N elements not satisfying
405 /// the given predicate removed.
406 template <class PredicateT>
407 MutableArrayRef<T> drop_until(PredicateT Pred) const {
408 return MutableArrayRef<T>(find_if(*this, Pred), end());
409 }
410
411 /// Return a copy of *this with only the first \p N elements.
412 MutableArrayRef<T> take_front(size_t N = 1) const {
413 if (N >= this->size())
414 return *this;
415 return drop_back(N: this->size() - N);
416 }
417
418 /// Return a copy of *this with only the last \p N elements.
419 MutableArrayRef<T> take_back(size_t N = 1) const {
420 if (N >= this->size())
421 return *this;
422 return drop_front(N: this->size() - N);
423 }
424
425 /// Return the first N elements of this Array that satisfy the given
426 /// predicate.
427 template <class PredicateT>
428 MutableArrayRef<T> take_while(PredicateT Pred) const {
429 return MutableArrayRef<T>(begin(), find_if_not(*this, Pred));
430 }
431
432 /// Return the first N elements of this Array that don't satisfy the
433 /// given predicate.
434 template <class PredicateT>
435 MutableArrayRef<T> take_until(PredicateT Pred) const {
436 return MutableArrayRef<T>(begin(), find_if(*this, Pred));
437 }
438
439 /// @}
440 /// @name Operator Overloads
441 /// @{
442 T &operator[](size_t Index) const {
443 assert(Index < this->size() && "Invalid index!");
444 return data()[Index];
445 }
446 };
447
448 /// This is a MutableArrayRef that owns its array.
449 template <typename T> class OwningArrayRef : public MutableArrayRef<T> {
450 public:
451 OwningArrayRef() = default;
452 OwningArrayRef(size_t Size) : MutableArrayRef<T>(new T[Size], Size) {}
453
454 OwningArrayRef(ArrayRef<T> Data)
455 : MutableArrayRef<T>(new T[Data.size()], Data.size()) {
456 std::copy(Data.begin(), Data.end(), this->begin());
457 }
458
459 OwningArrayRef(OwningArrayRef &&Other) { *this = std::move(Other); }
460
461 OwningArrayRef &operator=(OwningArrayRef &&Other) {
462 delete[] this->data();
463 this->MutableArrayRef<T>::operator=(Other);
464 Other.MutableArrayRef<T>::operator=(MutableArrayRef<T>());
465 return *this;
466 }
467
468 ~OwningArrayRef() { delete[] this->data(); }
469 };
470
471 /// @name ArrayRef Deduction guides
472 /// @{
473 /// Deduction guide to construct an ArrayRef from a single element.
474 template <typename T> ArrayRef(const T &OneElt) -> ArrayRef<T>;
475
476 /// Deduction guide to construct an ArrayRef from a pointer and length
477 template <typename T> ArrayRef(const T *data, size_t length) -> ArrayRef<T>;
478
479 /// Deduction guide to construct an ArrayRef from a range
480 template <typename T> ArrayRef(const T *data, const T *end) -> ArrayRef<T>;
481
482 /// Deduction guide to construct an ArrayRef from a SmallVector
483 template <typename T> ArrayRef(const SmallVectorImpl<T> &Vec) -> ArrayRef<T>;
484
485 /// Deduction guide to construct an ArrayRef from a SmallVector
486 template <typename T, unsigned N>
487 ArrayRef(const SmallVector<T, N> &Vec) -> ArrayRef<T>;
488
489 /// Deduction guide to construct an ArrayRef from a std::vector
490 template <typename T> ArrayRef(const std::vector<T> &Vec) -> ArrayRef<T>;
491
492 /// Deduction guide to construct an ArrayRef from a std::array
493 template <typename T, std::size_t N>
494 ArrayRef(const std::array<T, N> &Vec) -> ArrayRef<T>;
495
496 /// Deduction guide to construct an ArrayRef from an ArrayRef (const)
497 template <typename T> ArrayRef(const ArrayRef<T> &Vec) -> ArrayRef<T>;
498
499 /// Deduction guide to construct an ArrayRef from an ArrayRef
500 template <typename T> ArrayRef(ArrayRef<T> &Vec) -> ArrayRef<T>;
501
502 /// Deduction guide to construct an ArrayRef from a C array.
503 template <typename T, size_t N> ArrayRef(const T (&Arr)[N]) -> ArrayRef<T>;
504
505 /// @}
506
507 /// @name ArrayRef Convenience constructors
508 /// @{
509 /// Construct an ArrayRef from a single element.
510 template <typename T>
511 LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef")
512 ArrayRef<T> makeArrayRef(const T &OneElt) {
513 return OneElt;
514 }
515
516 /// Construct an ArrayRef from a pointer and length.
517 template <typename T>
518 LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef")
519 ArrayRef<T> makeArrayRef(const T *data, size_t length) {
520 return ArrayRef<T>(data, length);
521 }
522
523 /// Construct an ArrayRef from a range.
524 template <typename T>
525 LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef")
526 ArrayRef<T> makeArrayRef(const T *begin, const T *end) {
527 return ArrayRef<T>(begin, end);
528 }
529
530 /// Construct an ArrayRef from a SmallVector.
531 template <typename T>
532 LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef")
533 ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) {
534 return Vec;
535 }
536
537 /// Construct an ArrayRef from a SmallVector.
538 template <typename T, unsigned N>
539 LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef")
540 ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) {
541 return Vec;
542 }
543
544 /// Construct an ArrayRef from a std::vector.
545 template <typename T>
546 LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef")
547 ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) {
548 return Vec;
549 }
550
551 /// Construct an ArrayRef from a std::array.
552 template <typename T, std::size_t N>
553 LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef")
554 ArrayRef<T> makeArrayRef(const std::array<T, N> &Arr) {
555 return Arr;
556 }
557
558 /// Construct an ArrayRef from an ArrayRef (no-op) (const)
559 template <typename T>
560 LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef")
561 ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) {
562 return Vec;
563 }
564
565 /// Construct an ArrayRef from an ArrayRef (no-op)
566 template <typename T>
567 LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef")
568 ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) {
569 return Vec;
570 }
571
572 /// Construct an ArrayRef from a C array.
573 template <typename T, size_t N>
574 LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef")
575 ArrayRef<T> makeArrayRef(const T (&Arr)[N]) {
576 return ArrayRef<T>(Arr);
577 }
578
579 /// @name MutableArrayRef Deduction guides
580 /// @{
581 /// Deduction guide to construct a `MutableArrayRef` from a single element
582 template <class T> MutableArrayRef(T &OneElt) -> MutableArrayRef<T>;
583
584 /// Deduction guide to construct a `MutableArrayRef` from a pointer and
585 /// length.
586 template <class T>
587 MutableArrayRef(T *data, size_t length) -> MutableArrayRef<T>;
588
589 /// Deduction guide to construct a `MutableArrayRef` from a `SmallVector`.
590 template <class T>
591 MutableArrayRef(SmallVectorImpl<T> &Vec) -> MutableArrayRef<T>;
592
593 template <class T, unsigned N>
594 MutableArrayRef(SmallVector<T, N> &Vec) -> MutableArrayRef<T>;
595
596 /// Deduction guide to construct a `MutableArrayRef` from a `std::vector`.
597 template <class T> MutableArrayRef(std::vector<T> &Vec) -> MutableArrayRef<T>;
598
599 /// Deduction guide to construct a `MutableArrayRef` from a `std::array`.
600 template <class T, std::size_t N>
601 MutableArrayRef(std::array<T, N> &Vec) -> MutableArrayRef<T>;
602
603 /// Deduction guide to construct a `MutableArrayRef` from a C array.
604 template <typename T, size_t N>
605 MutableArrayRef(T (&Arr)[N]) -> MutableArrayRef<T>;
606
607 /// @}
608
609 /// Construct a MutableArrayRef from a single element.
610 template <typename T>
611 LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef")
612 MutableArrayRef<T> makeMutableArrayRef(T &OneElt) {
613 return OneElt;
614 }
615
616 /// Construct a MutableArrayRef from a pointer and length.
617 template <typename T>
618 LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef")
619 MutableArrayRef<T> makeMutableArrayRef(T *data, size_t length) {
620 return MutableArrayRef<T>(data, length);
621 }
622
623 /// Construct a MutableArrayRef from a SmallVector.
624 template <typename T>
625 LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef")
626 MutableArrayRef<T> makeMutableArrayRef(SmallVectorImpl<T> &Vec) {
627 return Vec;
628 }
629
630 /// Construct a MutableArrayRef from a SmallVector.
631 template <typename T, unsigned N>
632 LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef")
633 MutableArrayRef<T> makeMutableArrayRef(SmallVector<T, N> &Vec) {
634 return Vec;
635 }
636
637 /// Construct a MutableArrayRef from a std::vector.
638 template <typename T>
639 LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef")
640 MutableArrayRef<T> makeMutableArrayRef(std::vector<T> &Vec) {
641 return Vec;
642 }
643
644 /// Construct a MutableArrayRef from a std::array.
645 template <typename T, std::size_t N>
646 LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef")
647 MutableArrayRef<T> makeMutableArrayRef(std::array<T, N> &Arr) {
648 return Arr;
649 }
650
651 /// Construct a MutableArrayRef from a MutableArrayRef (no-op) (const)
652 template <typename T>
653 LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef")
654 MutableArrayRef<T> makeMutableArrayRef(const MutableArrayRef<T> &Vec) {
655 return Vec;
656 }
657
658 /// Construct a MutableArrayRef from a C array.
659 template <typename T, size_t N>
660 LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef")
661 MutableArrayRef<T> makeMutableArrayRef(T (&Arr)[N]) {
662 return MutableArrayRef<T>(Arr);
663 }
664
665 /// @}
666 /// @name ArrayRef Comparison Operators
667 /// @{
668
669 template<typename T>
670 inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) {
671 return LHS.equals(RHS);
672 }
673
674 template <typename T>
675 inline bool operator==(SmallVectorImpl<T> &LHS, ArrayRef<T> RHS) {
676 return ArrayRef<T>(LHS).equals(RHS);
677 }
678
679 template <typename T>
680 inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) {
681 return !(LHS == RHS);
682 }
683
684 template <typename T>
685 inline bool operator!=(SmallVectorImpl<T> &LHS, ArrayRef<T> RHS) {
686 return !(LHS == RHS);
687 }
688
689 /// @}
690
691 template <typename T> hash_code hash_value(ArrayRef<T> S) {
692 return hash_combine_range(S.begin(), S.end());
693 }
694
695 // Provide DenseMapInfo for ArrayRefs.
696 template <typename T> struct DenseMapInfo<ArrayRef<T>, void> {
697 static inline ArrayRef<T> getEmptyKey() {
698 return ArrayRef<T>(
699 reinterpret_cast<const T *>(~static_cast<uintptr_t>(0)), size_t(0));
700 }
701
702 static inline ArrayRef<T> getTombstoneKey() {
703 return ArrayRef<T>(
704 reinterpret_cast<const T *>(~static_cast<uintptr_t>(1)), size_t(0));
705 }
706
707 static unsigned getHashValue(ArrayRef<T> Val) {
708 assert(Val.data() != getEmptyKey().data() &&
709 "Cannot hash the empty key!");
710 assert(Val.data() != getTombstoneKey().data() &&
711 "Cannot hash the tombstone key!");
712 return (unsigned)(hash_value(Val));
713 }
714
715 static bool isEqual(ArrayRef<T> LHS, ArrayRef<T> RHS) {
716 if (RHS.data() == getEmptyKey().data())
717 return LHS.data() == getEmptyKey().data();
718 if (RHS.data() == getTombstoneKey().data())
719 return LHS.data() == getTombstoneKey().data();
720 return LHS == RHS;
721 }
722 };
723
724} // end namespace llvm
725
726#endif // LLVM_ADT_ARRAYREF_H
727

source code of include/llvm-17/llvm/ADT/ArrayRef.h