| 1 | //===- llvm/ADT/TinyPtrVector.h - 'Normally tiny' vectors -------*- C++ -*-===// | 
| 2 | // | 
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
| 4 | // See https://llvm.org/LICENSE.txt for license information. | 
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
| 6 | // | 
| 7 | //===----------------------------------------------------------------------===// | 
| 8 |  | 
| 9 | #ifndef LLVM_ADT_TINYPTRVECTOR_H | 
| 10 | #define LLVM_ADT_TINYPTRVECTOR_H | 
| 11 |  | 
| 12 | #include "llvm/ADT/ArrayRef.h" | 
| 13 | #include "llvm/ADT/PointerUnion.h" | 
| 14 | #include "llvm/ADT/SmallVector.h" | 
| 15 | #include <cassert> | 
| 16 | #include <cstddef> | 
| 17 | #include <iterator> | 
| 18 | #include <type_traits> | 
| 19 |  | 
| 20 | namespace llvm { | 
| 21 |  | 
| 22 | /// TinyPtrVector - This class is specialized for cases where there are | 
| 23 | /// normally 0 or 1 element in a vector, but is general enough to go beyond that | 
| 24 | /// when required. | 
| 25 | /// | 
| 26 | /// NOTE: This container doesn't allow you to store a null pointer into it. | 
| 27 | /// | 
| 28 | template <typename EltTy> | 
| 29 | class TinyPtrVector { | 
| 30 | public: | 
| 31 |   using VecTy = SmallVector<EltTy, 4>; | 
| 32 |   using value_type = typename VecTy::value_type; | 
| 33 |   // EltTy must be the first pointer type so that is<EltTy> is true for the | 
| 34 |   // default-constructed PtrUnion. This allows an empty TinyPtrVector to | 
| 35 |   // naturally vend a begin/end iterator of type EltTy* without an additional | 
| 36 |   // check for the empty state. | 
| 37 |   using PtrUnion = PointerUnion<EltTy, VecTy *>; | 
| 38 |  | 
| 39 | private: | 
| 40 |   PtrUnion Val; | 
| 41 |  | 
| 42 | public: | 
| 43 |   TinyPtrVector() = default; | 
| 44 |  | 
| 45 |   ~TinyPtrVector() { | 
| 46 |     if (VecTy *V = dyn_cast_if_present<VecTy *>(Val)) | 
| 47 |       delete V; | 
| 48 |   } | 
| 49 |  | 
| 50 |   TinyPtrVector(const TinyPtrVector &RHS) : Val(RHS.Val) { | 
| 51 |     if (VecTy *V = dyn_cast_if_present<VecTy *>(Val)) | 
| 52 |       Val = new VecTy(*V); | 
| 53 |   } | 
| 54 |  | 
| 55 |   TinyPtrVector &operator=(const TinyPtrVector &RHS) { | 
| 56 |     if (this == &RHS) | 
| 57 |       return *this; | 
| 58 |     if (RHS.empty()) { | 
| 59 |       this->clear(); | 
| 60 |       return *this; | 
| 61 |     } | 
| 62 |  | 
| 63 |     // Try to squeeze into the single slot. If it won't fit, allocate a copied | 
| 64 |     // vector. | 
| 65 |     if (isa<EltTy>(Val)) { | 
| 66 |       if (RHS.size() == 1) | 
| 67 |         Val = RHS.front(); | 
| 68 |       else | 
| 69 |         Val = new VecTy(*cast<VecTy *>(RHS.Val)); | 
| 70 |       return *this; | 
| 71 |     } | 
| 72 |  | 
| 73 |     // If we have a full vector allocated, try to re-use it. | 
| 74 |     if (isa<EltTy>(RHS.Val)) { | 
| 75 |       cast<VecTy *>(Val)->clear(); | 
| 76 |       cast<VecTy *>(Val)->push_back(RHS.front()); | 
| 77 |     } else { | 
| 78 |       *cast<VecTy *>(Val) = *cast<VecTy *>(RHS.Val); | 
| 79 |     } | 
| 80 |     return *this; | 
| 81 |   } | 
| 82 |  | 
| 83 |   TinyPtrVector(TinyPtrVector &&RHS) : Val(RHS.Val) { | 
| 84 |     RHS.Val = (EltTy)nullptr; | 
| 85 |   } | 
| 86 |  | 
| 87 |   TinyPtrVector &operator=(TinyPtrVector &&RHS) { | 
| 88 |     if (this == &RHS) | 
| 89 |       return *this; | 
| 90 |     if (RHS.empty()) { | 
| 91 |       this->clear(); | 
| 92 |       return *this; | 
| 93 |     } | 
| 94 |  | 
| 95 |     // If this vector has been allocated on the heap, re-use it if cheap. If it | 
| 96 |     // would require more copying, just delete it and we'll steal the other | 
| 97 |     // side. | 
| 98 |     if (VecTy *V = dyn_cast_if_present<VecTy *>(Val)) { | 
| 99 |       if (isa<EltTy>(RHS.Val)) { | 
| 100 |         V->clear(); | 
| 101 |         V->push_back(RHS.front()); | 
| 102 |         RHS.Val = EltTy(); | 
| 103 |         return *this; | 
| 104 |       } | 
| 105 |       delete V; | 
| 106 |     } | 
| 107 |  | 
| 108 |     Val = RHS.Val; | 
| 109 |     RHS.Val = EltTy(); | 
| 110 |     return *this; | 
| 111 |   } | 
| 112 |  | 
| 113 |   TinyPtrVector(std::initializer_list<EltTy> IL) | 
| 114 |       : Val(IL.size() == 0 | 
| 115 |                 ? PtrUnion() | 
| 116 |                 : IL.size() == 1 ? PtrUnion(*IL.begin()) | 
| 117 |                                  : PtrUnion(new VecTy(IL.begin(), IL.end()))) {} | 
| 118 |  | 
| 119 |   /// Constructor from an ArrayRef. | 
| 120 |   /// | 
| 121 |   /// This also is a constructor for individual array elements due to the single | 
| 122 |   /// element constructor for ArrayRef. | 
| 123 |   explicit TinyPtrVector(ArrayRef<EltTy> Elts) | 
| 124 |       : Val(Elts.empty() | 
| 125 |                 ? PtrUnion() | 
| 126 |                 : Elts.size() == 1 | 
| 127 |                       ? PtrUnion(Elts[0]) | 
| 128 |                       : PtrUnion(new VecTy(Elts.begin(), Elts.end()))) {} | 
| 129 |  | 
| 130 |   TinyPtrVector(size_t Count, EltTy Value) | 
| 131 |       : Val(Count == 0 ? PtrUnion() | 
| 132 |                        : Count == 1 ? PtrUnion(Value) | 
| 133 |                                     : PtrUnion(new VecTy(Count, Value))) {} | 
| 134 |  | 
| 135 |   // implicit conversion operator to ArrayRef. | 
| 136 |   operator ArrayRef<EltTy>() const { | 
| 137 |     if (Val.isNull()) | 
| 138 |       return std::nullopt; | 
| 139 |     if (isa<EltTy>(Val)) | 
| 140 |       return *Val.getAddrOfPtr1(); | 
| 141 |     return *cast<VecTy *>(Val); | 
| 142 |   } | 
| 143 |  | 
| 144 |   // implicit conversion operator to MutableArrayRef. | 
| 145 |   operator MutableArrayRef<EltTy>() { | 
| 146 |     if (Val.isNull()) | 
| 147 |       return std::nullopt; | 
| 148 |     if (isa<EltTy>(Val)) | 
| 149 |       return *Val.getAddrOfPtr1(); | 
| 150 |     return *cast<VecTy *>(Val); | 
| 151 |   } | 
| 152 |  | 
| 153 |   // Implicit conversion to ArrayRef<U> if EltTy* implicitly converts to U*. | 
| 154 |   template < | 
| 155 |       typename U, | 
| 156 |       std::enable_if_t<std::is_convertible<ArrayRef<EltTy>, ArrayRef<U>>::value, | 
| 157 |                        bool> = false> | 
| 158 |   operator ArrayRef<U>() const { | 
| 159 |     return operator ArrayRef<EltTy>(); | 
| 160 |   } | 
| 161 |  | 
| 162 |   bool empty() const { | 
| 163 |     // This vector can be empty if it contains no element, or if it | 
| 164 |     // contains a pointer to an empty vector. | 
| 165 |     if (Val.isNull()) return true; | 
| 166 |     if (VecTy *Vec = dyn_cast_if_present<VecTy *>(Val)) | 
| 167 |       return Vec->empty(); | 
| 168 |     return false; | 
| 169 |   } | 
| 170 |  | 
| 171 |   unsigned size() const { | 
| 172 |     if (empty()) | 
| 173 |       return 0; | 
| 174 |     if (isa<EltTy>(Val)) | 
| 175 |       return 1; | 
| 176 |     return cast<VecTy *>(Val)->size(); | 
| 177 |   } | 
| 178 |  | 
| 179 |   using iterator = EltTy *; | 
| 180 |   using const_iterator = const EltTy *; | 
| 181 |   using reverse_iterator = std::reverse_iterator<iterator>; | 
| 182 |   using const_reverse_iterator = std::reverse_iterator<const_iterator>; | 
| 183 |  | 
| 184 |   iterator begin() { | 
| 185 |     if (isa<EltTy>(Val)) | 
| 186 |       return Val.getAddrOfPtr1(); | 
| 187 |  | 
| 188 |     return cast<VecTy *>(Val)->begin(); | 
| 189 |   } | 
| 190 |  | 
| 191 |   iterator end() { | 
| 192 |     if (isa<EltTy>(Val)) | 
| 193 |       return begin() + (Val.isNull() ? 0 : 1); | 
| 194 |  | 
| 195 |     return cast<VecTy *>(Val)->end(); | 
| 196 |   } | 
| 197 |  | 
| 198 |   const_iterator begin() const { | 
| 199 |     return (const_iterator)const_cast<TinyPtrVector*>(this)->begin(); | 
| 200 |   } | 
| 201 |  | 
| 202 |   const_iterator end() const { | 
| 203 |     return (const_iterator)const_cast<TinyPtrVector*>(this)->end(); | 
| 204 |   } | 
| 205 |  | 
| 206 |   reverse_iterator rbegin() { return reverse_iterator(end()); } | 
| 207 |   reverse_iterator rend() { return reverse_iterator(begin()); } | 
| 208 |  | 
| 209 |   const_reverse_iterator rbegin() const { | 
| 210 |     return const_reverse_iterator(end()); | 
| 211 |   } | 
| 212 |  | 
| 213 |   const_reverse_iterator rend() const { | 
| 214 |     return const_reverse_iterator(begin()); | 
| 215 |   } | 
| 216 |  | 
| 217 |   EltTy operator[](unsigned i) const { | 
| 218 |     assert(!Val.isNull() && "can't index into an empty vector" ); | 
| 219 |     if (isa<EltTy>(Val)) { | 
| 220 |       assert(i == 0 && "tinyvector index out of range" ); | 
| 221 |       return cast<EltTy>(Val); | 
| 222 |     } | 
| 223 |  | 
| 224 |     assert(i < cast<VecTy *>(Val)->size() && "tinyvector index out of range" ); | 
| 225 |     return (*cast<VecTy *>(Val))[i]; | 
| 226 |   } | 
| 227 |  | 
| 228 |   EltTy front() const { | 
| 229 |     assert(!empty() && "vector empty" ); | 
| 230 |     if (isa<EltTy>(Val)) | 
| 231 |       return cast<EltTy>(Val); | 
| 232 |     return cast<VecTy *>(Val)->front(); | 
| 233 |   } | 
| 234 |  | 
| 235 |   EltTy back() const { | 
| 236 |     assert(!empty() && "vector empty" ); | 
| 237 |     if (isa<EltTy>(Val)) | 
| 238 |       return cast<EltTy>(Val); | 
| 239 |     return cast<VecTy *>(Val)->back(); | 
| 240 |   } | 
| 241 |  | 
| 242 |   void push_back(EltTy NewVal) { | 
| 243 |     // If we have nothing, add something. | 
| 244 |     if (Val.isNull()) { | 
| 245 |       Val = NewVal; | 
| 246 |       assert(!Val.isNull() && "Can't add a null value" ); | 
| 247 |       return; | 
| 248 |     } | 
| 249 |  | 
| 250 |     // If we have a single value, convert to a vector. | 
| 251 |     if (isa<EltTy>(Val)) { | 
| 252 |       EltTy V = cast<EltTy>(Val); | 
| 253 |       Val = new VecTy(); | 
| 254 |       cast<VecTy *>(Val)->push_back(V); | 
| 255 |     } | 
| 256 |  | 
| 257 |     // Add the new value, we know we have a vector. | 
| 258 |     cast<VecTy *>(Val)->push_back(NewVal); | 
| 259 |   } | 
| 260 |  | 
| 261 |   void pop_back() { | 
| 262 |     // If we have a single value, convert to empty. | 
| 263 |     if (isa<EltTy>(Val)) | 
| 264 |       Val = (EltTy)nullptr; | 
| 265 |     else if (VecTy *Vec = cast<VecTy *>(Val)) | 
| 266 |       Vec->pop_back(); | 
| 267 |   } | 
| 268 |  | 
| 269 |   void clear() { | 
| 270 |     // If we have a single value, convert to empty. | 
| 271 |     if (isa<EltTy>(Val)) { | 
| 272 |       Val = EltTy(); | 
| 273 |     } else if (VecTy *Vec = dyn_cast_if_present<VecTy *>(Val)) { | 
| 274 |       // If we have a vector form, just clear it. | 
| 275 |       Vec->clear(); | 
| 276 |     } | 
| 277 |     // Otherwise, we're already empty. | 
| 278 |   } | 
| 279 |  | 
| 280 |   iterator erase(iterator I) { | 
| 281 |     assert(I >= begin() && "Iterator to erase is out of bounds." ); | 
| 282 |     assert(I < end() && "Erasing at past-the-end iterator." ); | 
| 283 |  | 
| 284 |     // If we have a single value, convert to empty. | 
| 285 |     if (isa<EltTy>(Val)) { | 
| 286 |       if (I == begin()) | 
| 287 |         Val = EltTy(); | 
| 288 |     } else if (VecTy *Vec = dyn_cast_if_present<VecTy *>(Val)) { | 
| 289 |       // multiple items in a vector; just do the erase, there is no | 
| 290 |       // benefit to collapsing back to a pointer | 
| 291 |       return Vec->erase(I); | 
| 292 |     } | 
| 293 |     return end(); | 
| 294 |   } | 
| 295 |  | 
| 296 |   iterator erase(iterator S, iterator E) { | 
| 297 |     assert(S >= begin() && "Range to erase is out of bounds." ); | 
| 298 |     assert(S <= E && "Trying to erase invalid range." ); | 
| 299 |     assert(E <= end() && "Trying to erase past the end." ); | 
| 300 |  | 
| 301 |     if (isa<EltTy>(Val)) { | 
| 302 |       if (S == begin() && S != E) | 
| 303 |         Val = EltTy(); | 
| 304 |     } else if (VecTy *Vec = dyn_cast_if_present<VecTy *>(Val)) { | 
| 305 |       return Vec->erase(S, E); | 
| 306 |     } | 
| 307 |     return end(); | 
| 308 |   } | 
| 309 |  | 
| 310 |   iterator insert(iterator I, const EltTy &Elt) { | 
| 311 |     assert(I >= this->begin() && "Insertion iterator is out of bounds." ); | 
| 312 |     assert(I <= this->end() && "Inserting past the end of the vector." ); | 
| 313 |     if (I == end()) { | 
| 314 |       push_back(NewVal: Elt); | 
| 315 |       return std::prev(end()); | 
| 316 |     } | 
| 317 |     assert(!Val.isNull() && "Null value with non-end insert iterator." ); | 
| 318 |     if (isa<EltTy>(Val)) { | 
| 319 |       EltTy V = cast<EltTy>(Val); | 
| 320 |       assert(I == begin()); | 
| 321 |       Val = Elt; | 
| 322 |       push_back(NewVal: V); | 
| 323 |       return begin(); | 
| 324 |     } | 
| 325 |  | 
| 326 |     return cast<VecTy *>(Val)->insert(I, Elt); | 
| 327 |   } | 
| 328 |  | 
| 329 |   template<typename ItTy> | 
| 330 |   iterator insert(iterator I, ItTy From, ItTy To) { | 
| 331 |     assert(I >= this->begin() && "Insertion iterator is out of bounds." ); | 
| 332 |     assert(I <= this->end() && "Inserting past the end of the vector." ); | 
| 333 |     if (From == To) | 
| 334 |       return I; | 
| 335 |  | 
| 336 |     // If we have a single value, convert to a vector. | 
| 337 |     ptrdiff_t Offset = I - begin(); | 
| 338 |     if (Val.isNull()) { | 
| 339 |       if (std::next(From) == To) { | 
| 340 |         Val = *From; | 
| 341 |         return begin(); | 
| 342 |       } | 
| 343 |  | 
| 344 |       Val = new VecTy(); | 
| 345 |     } else if (isa<EltTy>(Val)) { | 
| 346 |       EltTy V = cast<EltTy>(Val); | 
| 347 |       Val = new VecTy(); | 
| 348 |       cast<VecTy *>(Val)->push_back(V); | 
| 349 |     } | 
| 350 |     return cast<VecTy *>(Val)->insert(begin() + Offset, From, To); | 
| 351 |   } | 
| 352 | }; | 
| 353 |  | 
| 354 | } // end namespace llvm | 
| 355 |  | 
| 356 | #endif // LLVM_ADT_TINYPTRVECTOR_H | 
| 357 |  |