1 | /* |
2 | * Copyright (c) 2007-2011 Intel Corporation. All Rights Reserved. |
3 | * |
4 | * Permission is hereby granted, free of charge, to any person obtaining a |
5 | * copy of this software and associated documentation files (the |
6 | * "Software"), to deal in the Software without restriction, including |
7 | * without limitation the rights to use, copy, modify, merge, publish, |
8 | * distribute, sub license, and/or sell copies of the Software, and to |
9 | * permit persons to whom the Software is furnished to do so, subject to |
10 | * the following conditions: |
11 | * |
12 | * The above copyright notice and this permission notice (including the |
13 | * next paragraph) shall be included in all copies or substantial portions |
14 | * of the Software. |
15 | * |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
17 | * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
18 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. |
19 | * IN NO EVENT SHALL INTEL AND/OR ITS SUPPLIERS BE LIABLE FOR |
20 | * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, |
21 | * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE |
22 | * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
23 | */ |
24 | |
25 | /** |
26 | * \file va_vpp.h |
27 | * \brief The video processing API |
28 | * |
29 | * This file contains the \ref api_vpp "Video processing API". |
30 | */ |
31 | |
32 | #ifndef VA_VPP_H |
33 | #define VA_VPP_H |
34 | |
35 | #ifdef __cplusplus |
36 | extern "C" { |
37 | #endif |
38 | |
39 | /** |
40 | * \defgroup api_vpp Video processing API |
41 | * |
42 | * @{ |
43 | * |
44 | * The video processing API uses the same paradigm as for decoding: |
45 | * - Query for supported filters; |
46 | * - Set up a video processing pipeline; |
47 | * - Send video processing parameters through VA buffers. |
48 | * |
49 | * \section api_vpp_caps Query for supported filters |
50 | * |
51 | * Checking whether video processing is supported can be performed |
52 | * with vaQueryConfigEntrypoints() and the profile argument set to |
53 | * #VAProfileNone. If video processing is supported, then the list of |
54 | * returned entry-points will include #VAEntrypointVideoProc. |
55 | * |
56 | * \code |
57 | * VAEntrypoint *entrypoints; |
58 | * int i, num_entrypoints, supportsVideoProcessing = 0; |
59 | * |
60 | * num_entrypoints = vaMaxNumEntrypoints(); |
61 | * entrypoints = malloc(num_entrypoints * sizeof(entrypoints[0]); |
62 | * vaQueryConfigEntrypoints(va_dpy, VAProfileNone, |
63 | * entrypoints, &num_entrypoints); |
64 | * |
65 | * for (i = 0; !supportsVideoProcessing && i < num_entrypoints; i++) { |
66 | * if (entrypoints[i] == VAEntrypointVideoProc) |
67 | * supportsVideoProcessing = 1; |
68 | * } |
69 | * \endcode |
70 | * |
71 | * Then, the vaQueryVideoProcFilters() function is used to query the |
72 | * list of video processing filters. |
73 | * |
74 | * \code |
75 | * VAProcFilterType filters[VAProcFilterCount]; |
76 | * unsigned int num_filters = VAProcFilterCount; |
77 | * |
78 | * // num_filters shall be initialized to the length of the array |
79 | * vaQueryVideoProcFilters(va_dpy, vpp_ctx, &filters, &num_filters); |
80 | * \endcode |
81 | * |
82 | * Finally, individual filter capabilities can be checked with |
83 | * vaQueryVideoProcFilterCaps(). |
84 | * |
85 | * \code |
86 | * VAProcFilterCap denoise_caps; |
87 | * unsigned int num_denoise_caps = 1; |
88 | * vaQueryVideoProcFilterCaps(va_dpy, vpp_ctx, |
89 | * VAProcFilterNoiseReduction, |
90 | * &denoise_caps, &num_denoise_caps |
91 | * ); |
92 | * |
93 | * VAProcFilterCapDeinterlacing deinterlacing_caps[VAProcDeinterlacingCount]; |
94 | * unsigned int num_deinterlacing_caps = VAProcDeinterlacingCount; |
95 | * vaQueryVideoProcFilterCaps(va_dpy, vpp_ctx, |
96 | * VAProcFilterDeinterlacing, |
97 | * &deinterlacing_caps, &num_deinterlacing_caps |
98 | * ); |
99 | * \endcode |
100 | * |
101 | * \section api_vpp_setup Set up a video processing pipeline |
102 | * |
103 | * A video processing pipeline buffer is created for each source |
104 | * surface we want to process. However, buffers holding filter |
105 | * parameters can be created once and for all. Rationale is to avoid |
106 | * multiple creation/destruction chains of filter buffers and also |
107 | * because filter parameters generally won't change frame after |
108 | * frame. e.g. this makes it possible to implement a checkerboard of |
109 | * videos where the same filters are applied to each video source. |
110 | * |
111 | * The general control flow is demonstrated by the following pseudo-code: |
112 | * \code |
113 | * // Create filters |
114 | * VABufferID denoise_filter, deint_filter; |
115 | * VABufferID filter_bufs[VAProcFilterCount]; |
116 | * unsigned int num_filter_bufs; |
117 | * |
118 | * for (i = 0; i < num_filters; i++) { |
119 | * switch (filters[i]) { |
120 | * case VAProcFilterNoiseReduction: { // Noise reduction filter |
121 | * VAProcFilterParameterBuffer denoise; |
122 | * denoise.type = VAProcFilterNoiseReduction; |
123 | * denoise.value = 0.5; |
124 | * vaCreateBuffer(va_dpy, vpp_ctx, |
125 | * VAProcFilterParameterBufferType, sizeof(denoise), 1, |
126 | * &denoise, &denoise_filter |
127 | * ); |
128 | * filter_bufs[num_filter_bufs++] = denoise_filter; |
129 | * break; |
130 | * } |
131 | * |
132 | * case VAProcFilterDeinterlacing: // Motion-adaptive deinterlacing |
133 | * for (j = 0; j < num_deinterlacing_caps; j++) { |
134 | * VAProcFilterCapDeinterlacing * const cap = &deinterlacing_caps[j]; |
135 | * if (cap->type != VAProcDeinterlacingMotionAdaptive) |
136 | * continue; |
137 | * |
138 | * VAProcFilterParameterBufferDeinterlacing deint; |
139 | * deint.type = VAProcFilterDeinterlacing; |
140 | * deint.algorithm = VAProcDeinterlacingMotionAdaptive; |
141 | * vaCreateBuffer(va_dpy, vpp_ctx, |
142 | * VAProcFilterParameterBufferType, sizeof(deint), 1, |
143 | * &deint, &deint_filter |
144 | * ); |
145 | * filter_bufs[num_filter_bufs++] = deint_filter; |
146 | * } |
147 | * } |
148 | * } |
149 | * \endcode |
150 | * |
151 | * Once the video processing pipeline is set up, the caller shall check the |
152 | * implied capabilities and requirements with vaQueryVideoProcPipelineCaps(). |
153 | * This function can be used to validate the number of reference frames are |
154 | * needed by the specified deinterlacing algorithm, the supported color |
155 | * primaries, etc. |
156 | * \code |
157 | * // Create filters |
158 | * VAProcPipelineCaps pipeline_caps; |
159 | * VASurfaceID *forward_references; |
160 | * unsigned int num_forward_references; |
161 | * VASurfaceID *backward_references; |
162 | * unsigned int num_backward_references; |
163 | * VAProcColorStandardType in_color_standards[VAProcColorStandardCount]; |
164 | * VAProcColorStandardType out_color_standards[VAProcColorStandardCount]; |
165 | * |
166 | * pipeline_caps.input_color_standards = NULL; |
167 | * pipeline_caps.num_input_color_standards = ARRAY_ELEMS(in_color_standards); |
168 | * pipeline_caps.output_color_standards = NULL; |
169 | * pipeline_caps.num_output_color_standards = ARRAY_ELEMS(out_color_standards); |
170 | * vaQueryVideoProcPipelineCaps(va_dpy, vpp_ctx, |
171 | * filter_bufs, num_filter_bufs, |
172 | * &pipeline_caps |
173 | * ); |
174 | * |
175 | * num_forward_references = pipeline_caps.num_forward_references; |
176 | * forward_references = |
177 | * malloc(num__forward_references * sizeof(VASurfaceID)); |
178 | * num_backward_references = pipeline_caps.num_backward_references; |
179 | * backward_references = |
180 | * malloc(num_backward_references * sizeof(VASurfaceID)); |
181 | * \endcode |
182 | * |
183 | * \section api_vpp_submit Send video processing parameters through VA buffers |
184 | * |
185 | * Video processing pipeline parameters are submitted for each source |
186 | * surface to process. Video filter parameters can also change, per-surface. |
187 | * e.g. the list of reference frames used for deinterlacing. |
188 | * |
189 | * \code |
190 | * foreach (iteration) { |
191 | * vaBeginPicture(va_dpy, vpp_ctx, vpp_surface); |
192 | * foreach (surface) { |
193 | * VARectangle output_region; |
194 | * VABufferID pipeline_buf; |
195 | * VAProcPipelineParameterBuffer *pipeline_param; |
196 | * |
197 | * vaCreateBuffer(va_dpy, vpp_ctx, |
198 | * VAProcPipelineParameterBuffer, sizeof(*pipeline_param), 1, |
199 | * NULL, &pipeline_buf |
200 | * ); |
201 | * |
202 | * // Setup output region for this surface |
203 | * // e.g. upper left corner for the first surface |
204 | * output_region.x = BORDER; |
205 | * output_region.y = BORDER; |
206 | * output_region.width = |
207 | * (vpp_surface_width - (Nx_surfaces + 1) * BORDER) / Nx_surfaces; |
208 | * output_region.height = |
209 | * (vpp_surface_height - (Ny_surfaces + 1) * BORDER) / Ny_surfaces; |
210 | * |
211 | * vaMapBuffer(va_dpy, pipeline_buf, &pipeline_param); |
212 | * pipeline_param->surface = surface; |
213 | * pipeline_param->surface_region = NULL; |
214 | * pipeline_param->output_region = &output_region; |
215 | * pipeline_param->output_background_color = 0; |
216 | * if (first surface to render) |
217 | * pipeline_param->output_background_color = 0xff000000; // black |
218 | * pipeline_param->filter_flags = VA_FILTER_SCALING_HQ; |
219 | * pipeline_param->filters = filter_bufs; |
220 | * pipeline_param->num_filters = num_filter_bufs; |
221 | * vaUnmapBuffer(va_dpy, pipeline_buf); |
222 | * |
223 | * // Update reference frames for deinterlacing, if necessary |
224 | * pipeline_param->forward_references = forward_references; |
225 | * pipeline_param->num_forward_references = num_forward_references_used; |
226 | * pipeline_param->backward_references = backward_references; |
227 | * pipeline_param->num_backward_references = num_bacward_references_used; |
228 | * |
229 | * // Apply filters |
230 | * vaRenderPicture(va_dpy, vpp_ctx, &pipeline_buf, 1); |
231 | * } |
232 | * vaEndPicture(va_dpy, vpp_ctx); |
233 | * } |
234 | * \endcode |
235 | */ |
236 | |
237 | /** \brief Video filter types. */ |
238 | typedef enum _VAProcFilterType { |
239 | VAProcFilterNone = 0, |
240 | /** \brief Noise reduction filter. */ |
241 | VAProcFilterNoiseReduction, |
242 | /** \brief Deinterlacing filter. */ |
243 | VAProcFilterDeinterlacing, |
244 | /** \brief Sharpening filter. */ |
245 | VAProcFilterSharpening, |
246 | /** \brief Color balance parameters. */ |
247 | VAProcFilterColorBalance, |
248 | /** \brief Skin Tone Enhancement. */ |
249 | VAProcFilterSkinToneEnhancement, |
250 | /** \brief Total Color Correction. */ |
251 | VAProcFilterTotalColorCorrection, |
252 | /** \brief Human Vision System(HVS) Noise reduction filter. */ |
253 | VAProcFilterHVSNoiseReduction, |
254 | /** \brief High Dynamic Range Tone Mapping. */ |
255 | VAProcFilterHighDynamicRangeToneMapping, |
256 | /** \brief Three-Dimensional Look Up Table (3DLUT). */ |
257 | VAProcFilter3DLUT, |
258 | /** \brief Number of video filters. */ |
259 | VAProcFilterCount |
260 | } VAProcFilterType; |
261 | |
262 | /** \brief Deinterlacing types. */ |
263 | typedef enum _VAProcDeinterlacingType { |
264 | VAProcDeinterlacingNone = 0, |
265 | /** \brief Bob deinterlacing algorithm. */ |
266 | VAProcDeinterlacingBob, |
267 | /** \brief Weave deinterlacing algorithm. */ |
268 | VAProcDeinterlacingWeave, |
269 | /** \brief Motion adaptive deinterlacing algorithm. */ |
270 | VAProcDeinterlacingMotionAdaptive, |
271 | /** \brief Motion compensated deinterlacing algorithm. */ |
272 | VAProcDeinterlacingMotionCompensated, |
273 | /** \brief Number of deinterlacing algorithms. */ |
274 | VAProcDeinterlacingCount |
275 | } VAProcDeinterlacingType; |
276 | |
277 | /** \brief Color balance types. */ |
278 | typedef enum _VAProcColorBalanceType { |
279 | VAProcColorBalanceNone = 0, |
280 | /** \brief Hue. */ |
281 | VAProcColorBalanceHue, |
282 | /** \brief Saturation. */ |
283 | VAProcColorBalanceSaturation, |
284 | /** \brief Brightness. */ |
285 | VAProcColorBalanceBrightness, |
286 | /** \brief Contrast. */ |
287 | VAProcColorBalanceContrast, |
288 | /** \brief Automatically adjusted saturation. */ |
289 | VAProcColorBalanceAutoSaturation, |
290 | /** \brief Automatically adjusted brightness. */ |
291 | VAProcColorBalanceAutoBrightness, |
292 | /** \brief Automatically adjusted contrast. */ |
293 | VAProcColorBalanceAutoContrast, |
294 | /** \brief Number of color balance attributes. */ |
295 | VAProcColorBalanceCount |
296 | } VAProcColorBalanceType; |
297 | |
298 | /** \brief Color standard types. |
299 | * |
300 | * These define a set of color properties corresponding to particular |
301 | * video standards. |
302 | * |
303 | * Where matrix_coefficients is specified, it applies only to YUV data - |
304 | * RGB data always use the identity matrix (matrix_coefficients = 0). |
305 | */ |
306 | typedef enum _VAProcColorStandardType { |
307 | VAProcColorStandardNone = 0, |
308 | /** \brief ITU-R BT.601. |
309 | * |
310 | * It is unspecified whether this will use 525-line or 625-line values; |
311 | * specify the colour primaries and matrix coefficients explicitly if |
312 | * it is known which one is required. |
313 | * |
314 | * Equivalent to: |
315 | * colour_primaries = 5 or 6 |
316 | * transfer_characteristics = 6 |
317 | * matrix_coefficients = 5 or 6 |
318 | */ |
319 | VAProcColorStandardBT601, |
320 | /** \brief ITU-R BT.709. |
321 | * |
322 | * Equivalent to: |
323 | * colour_primaries = 1 |
324 | * transfer_characteristics = 1 |
325 | * matrix_coefficients = 1 |
326 | */ |
327 | VAProcColorStandardBT709, |
328 | /** \brief ITU-R BT.470-2 System M. |
329 | * |
330 | * Equivalent to: |
331 | * colour_primaries = 4 |
332 | * transfer_characteristics = 4 |
333 | * matrix_coefficients = 4 |
334 | */ |
335 | VAProcColorStandardBT470M, |
336 | /** \brief ITU-R BT.470-2 System B, G. |
337 | * |
338 | * Equivalent to: |
339 | * colour_primaries = 5 |
340 | * transfer_characteristics = 5 |
341 | * matrix_coefficients = 5 |
342 | */ |
343 | VAProcColorStandardBT470BG, |
344 | /** \brief SMPTE-170M. |
345 | * |
346 | * Equivalent to: |
347 | * colour_primaries = 6 |
348 | * transfer_characteristics = 6 |
349 | * matrix_coefficients = 6 |
350 | */ |
351 | VAProcColorStandardSMPTE170M, |
352 | /** \brief SMPTE-240M. |
353 | * |
354 | * Equivalent to: |
355 | * colour_primaries = 7 |
356 | * transfer_characteristics = 7 |
357 | * matrix_coefficients = 7 |
358 | */ |
359 | VAProcColorStandardSMPTE240M, |
360 | /** \brief Generic film. |
361 | * |
362 | * Equivalent to: |
363 | * colour_primaries = 8 |
364 | * transfer_characteristics = 1 |
365 | * matrix_coefficients = 1 |
366 | */ |
367 | VAProcColorStandardGenericFilm, |
368 | /** \brief sRGB. |
369 | * |
370 | * Equivalent to: |
371 | * colour_primaries = 1 |
372 | * transfer_characteristics = 13 |
373 | * matrix_coefficients = 0 |
374 | */ |
375 | VAProcColorStandardSRGB, |
376 | /** \brief stRGB. |
377 | * |
378 | * ??? |
379 | */ |
380 | VAProcColorStandardSTRGB, |
381 | /** \brief xvYCC601. |
382 | * |
383 | * Equivalent to: |
384 | * colour_primaries = 1 |
385 | * transfer_characteristics = 11 |
386 | * matrix_coefficients = 5 |
387 | */ |
388 | VAProcColorStandardXVYCC601, |
389 | /** \brief xvYCC709. |
390 | * |
391 | * Equivalent to: |
392 | * colour_primaries = 1 |
393 | * transfer_characteristics = 11 |
394 | * matrix_coefficients = 1 |
395 | */ |
396 | VAProcColorStandardXVYCC709, |
397 | /** \brief ITU-R BT.2020. |
398 | * |
399 | * Equivalent to: |
400 | * colour_primaries = 9 |
401 | * transfer_characteristics = 14 |
402 | * matrix_coefficients = 9 |
403 | */ |
404 | VAProcColorStandardBT2020, |
405 | /** \brief Explicitly specified color properties. |
406 | * |
407 | * Use corresponding color properties section. |
408 | * For example, HDR10 content: |
409 | * colour_primaries = 9 (BT2020) |
410 | * transfer_characteristics = 16 (SMPTE ST2084) |
411 | * matrix_coefficients = 9 |
412 | */ |
413 | VAProcColorStandardExplicit, |
414 | /** \brief Number of color standards. */ |
415 | VAProcColorStandardCount |
416 | } VAProcColorStandardType; |
417 | |
418 | /** \brief Total color correction types. */ |
419 | typedef enum _VAProcTotalColorCorrectionType { |
420 | VAProcTotalColorCorrectionNone = 0, |
421 | /** \brief Red Saturation. */ |
422 | VAProcTotalColorCorrectionRed, |
423 | /** \brief Green Saturation. */ |
424 | VAProcTotalColorCorrectionGreen, |
425 | /** \brief Blue Saturation. */ |
426 | VAProcTotalColorCorrectionBlue, |
427 | /** \brief Cyan Saturation. */ |
428 | VAProcTotalColorCorrectionCyan, |
429 | /** \brief Magenta Saturation. */ |
430 | VAProcTotalColorCorrectionMagenta, |
431 | /** \brief Yellow Saturation. */ |
432 | VAProcTotalColorCorrectionYellow, |
433 | /** \brief Number of color correction attributes. */ |
434 | VAProcTotalColorCorrectionCount |
435 | } VAProcTotalColorCorrectionType; |
436 | |
437 | /** \brief High Dynamic Range Metadata types. */ |
438 | typedef enum _VAProcHighDynamicRangeMetadataType { |
439 | VAProcHighDynamicRangeMetadataNone = 0, |
440 | /** \brief Metadata type for HDR10. */ |
441 | VAProcHighDynamicRangeMetadataHDR10, |
442 | /** \brief Number of Metadata type. */ |
443 | VAProcHighDynamicRangeMetadataTypeCount |
444 | } VAProcHighDynamicRangeMetadataType; |
445 | |
446 | /** \brief Video Processing Mode. */ |
447 | typedef enum _VAProcMode { |
448 | /** |
449 | * \brief Default Mode. |
450 | * In this mode, pipeline is decided in driver to the appropriate mode. |
451 | * e.g. a mode that's a balance between power and performance. |
452 | */ |
453 | VAProcDefaultMode = 0, |
454 | /** |
455 | * \brief Power Saving Mode. |
456 | * In this mode, pipeline is optimized for power saving. |
457 | */ |
458 | VAProcPowerSavingMode, |
459 | /** |
460 | * \brief Performance Mode. |
461 | * In this mode, pipeline is optimized for performance. |
462 | */ |
463 | VAProcPerformanceMode |
464 | } VAProcMode; |
465 | |
466 | /** @name Video blending flags */ |
467 | /**@{*/ |
468 | /** \brief Global alpha blending. */ |
469 | #define VA_BLEND_GLOBAL_ALPHA 0x0001 |
470 | /** \brief Premultiplied alpha blending (RGBA surfaces only). */ |
471 | #define VA_BLEND_PREMULTIPLIED_ALPHA 0x0002 |
472 | /** \brief Luma color key (YUV surfaces only). */ |
473 | #define VA_BLEND_LUMA_KEY 0x0010 |
474 | /**@}*/ |
475 | |
476 | /** \brief Video blending state definition. */ |
477 | typedef struct _VABlendState { |
478 | /** \brief Video blending flags. */ |
479 | unsigned int flags; |
480 | /** |
481 | * \brief Global alpha value. |
482 | * |
483 | * Valid if \flags has VA_BLEND_GLOBAL_ALPHA. |
484 | * Valid range is 0.0 to 1.0 inclusive. |
485 | */ |
486 | float global_alpha; |
487 | /** |
488 | * \brief Minimum luma value. |
489 | * |
490 | * Valid if \flags has VA_BLEND_LUMA_KEY. |
491 | * Valid range is 0.0 to 1.0 inclusive. |
492 | * \ref min_luma shall be set to a sensible value lower than \ref max_luma. |
493 | */ |
494 | float min_luma; |
495 | /** |
496 | * \brief Maximum luma value. |
497 | * |
498 | * Valid if \flags has VA_BLEND_LUMA_KEY. |
499 | * Valid range is 0.0 to 1.0 inclusive. |
500 | * \ref max_luma shall be set to a sensible value larger than \ref min_luma. |
501 | */ |
502 | float max_luma; |
503 | } VABlendState; |
504 | |
505 | /** @name Video pipeline flags */ |
506 | /**@{*/ |
507 | /** \brief Specifies whether to apply subpictures when processing a surface. */ |
508 | #define VA_PROC_PIPELINE_SUBPICTURES 0x00000001 |
509 | /** |
510 | * \brief Specifies whether to apply power or performance |
511 | * optimizations to a pipeline. |
512 | * |
513 | * When processing several surfaces, it may be necessary to prioritize |
514 | * more certain pipelines than others. This flag is only a hint to the |
515 | * video processor so that it can omit certain filters to save power |
516 | * for example. Typically, this flag could be used with video surfaces |
517 | * decoded from a secondary bitstream. |
518 | */ |
519 | #define VA_PROC_PIPELINE_FAST 0x00000002 |
520 | /**@}*/ |
521 | |
522 | /** @name Video filter flags */ |
523 | /**@{*/ |
524 | /** \brief Specifies whether the filter shall be present in the pipeline. */ |
525 | #define VA_PROC_FILTER_MANDATORY 0x00000001 |
526 | /**@}*/ |
527 | |
528 | /** @name Pipeline end flags */ |
529 | /**@{*/ |
530 | /** \brief Specifies the pipeline is the last. */ |
531 | #define VA_PIPELINE_FLAG_END 0x00000004 |
532 | /**@}*/ |
533 | |
534 | /** @name Chroma Siting flag */ |
535 | /**@{*/ |
536 | /** vertical chroma sitting take bit 0-1, horizontal chroma sitting take bit 2-3 |
537 | * vertical chromma siting | horizontal chroma sitting to be chroma sitting */ |
538 | #define VA_CHROMA_SITING_UNKNOWN 0x00 |
539 | /** \brief Chroma samples are co-sited vertically on the top with the luma samples. */ |
540 | #define VA_CHROMA_SITING_VERTICAL_TOP 0x01 |
541 | /** \brief Chroma samples are not co-sited vertically with the luma samples. */ |
542 | #define VA_CHROMA_SITING_VERTICAL_CENTER 0x02 |
543 | /** \brief Chroma samples are co-sited vertically on the bottom with the luma samples. */ |
544 | #define VA_CHROMA_SITING_VERTICAL_BOTTOM 0x03 |
545 | /** \brief Chroma samples are co-sited horizontally on the left with the luma samples. */ |
546 | #define VA_CHROMA_SITING_HORIZONTAL_LEFT 0x04 |
547 | /** \brief Chroma samples are not co-sited horizontally with the luma samples. */ |
548 | #define VA_CHROMA_SITING_HORIZONTAL_CENTER 0x08 |
549 | /**@}*/ |
550 | |
551 | /** |
552 | * This is to indicate that the color-space conversion uses full range or reduced range. |
553 | * VA_SOURCE_RANGE_FULL(Full range): Y/Cb/Cr is in [0, 255]. It is mainly used |
554 | * for JPEG/JFIF formats. The combination with the BT601 flag means that |
555 | * JPEG/JFIF color-space conversion matrix is used. |
556 | * VA_SOURCE_RANGE_REDUCED(Reduced range): Y is in [16, 235] and Cb/Cr is in [16, 240]. |
557 | * It is mainly used for the YUV->RGB color-space conversion in SDTV/HDTV/UHDTV. |
558 | */ |
559 | #define VA_SOURCE_RANGE_UNKNOWN 0 |
560 | #define VA_SOURCE_RANGE_REDUCED 1 |
561 | #define VA_SOURCE_RANGE_FULL 2 |
562 | |
563 | /** @name Tone Mapping flags multiple HDR mode*/ |
564 | /**@{*/ |
565 | /** \brief Tone Mapping from HDR content to HDR display. */ |
566 | #define VA_TONE_MAPPING_HDR_TO_HDR 0x0001 |
567 | /** \brief Tone Mapping from HDR content to SDR display. */ |
568 | #define VA_TONE_MAPPING_HDR_TO_SDR 0x0002 |
569 | /** \brief Tone Mapping from HDR content to EDR display. */ |
570 | #define VA_TONE_MAPPING_HDR_TO_EDR 0x0004 |
571 | /** \brief Tone Mapping from SDR content to HDR display. */ |
572 | #define VA_TONE_MAPPING_SDR_TO_HDR 0x0008 |
573 | /**@}*/ |
574 | |
575 | /** \brief Video processing pipeline capabilities. */ |
576 | typedef struct _VAProcPipelineCaps { |
577 | /** \brief Pipeline flags. See VAProcPipelineParameterBuffer::pipeline_flags. */ |
578 | uint32_t pipeline_flags; |
579 | /** \brief Extra filter flags. See VAProcPipelineParameterBuffer::filter_flags. */ |
580 | uint32_t filter_flags; |
581 | /** \brief Number of forward reference frames that are needed. */ |
582 | uint32_t num_forward_references; |
583 | /** \brief Number of backward reference frames that are needed. */ |
584 | uint32_t num_backward_references; |
585 | /** \brief List of color standards supported on input. */ |
586 | VAProcColorStandardType *input_color_standards; |
587 | /** \brief Number of elements in \ref input_color_standards array. */ |
588 | uint32_t num_input_color_standards; |
589 | /** \brief List of color standards supported on output. */ |
590 | VAProcColorStandardType *output_color_standards; |
591 | /** \brief Number of elements in \ref output_color_standards array. */ |
592 | uint32_t num_output_color_standards; |
593 | |
594 | /** |
595 | * \brief Rotation flags. |
596 | * |
597 | * For each rotation angle supported by the underlying hardware, |
598 | * the corresponding bit is set in \ref rotation_flags. See |
599 | * "Rotation angles" for a description of rotation angles. |
600 | * |
601 | * A value of 0 means the underlying hardware does not support any |
602 | * rotation. Otherwise, a check for a specific rotation angle can be |
603 | * performed as follows: |
604 | * |
605 | * \code |
606 | * VAProcPipelineCaps pipeline_caps; |
607 | * ... |
608 | * vaQueryVideoProcPipelineCaps(va_dpy, vpp_ctx, |
609 | * filter_bufs, num_filter_bufs, |
610 | * &pipeline_caps |
611 | * ); |
612 | * ... |
613 | * if (pipeline_caps.rotation_flags & (1 << VA_ROTATION_xxx)) { |
614 | * // Clockwise rotation by xxx degrees is supported |
615 | * ... |
616 | * } |
617 | * \endcode |
618 | */ |
619 | uint32_t rotation_flags; |
620 | /** \brief Blend flags. See "Video blending flags". */ |
621 | uint32_t blend_flags; |
622 | /** |
623 | * \brief Mirroring flags. |
624 | * |
625 | * For each mirroring direction supported by the underlying hardware, |
626 | * the corresponding bit is set in \ref mirror_flags. See |
627 | * "Mirroring directions" for a description of mirroring directions. |
628 | * |
629 | */ |
630 | uint32_t mirror_flags; |
631 | /** \brief Number of additional output surfaces supported by the pipeline */ |
632 | uint32_t num_additional_outputs; |
633 | |
634 | /** \brief Number of elements in \ref input_pixel_format array. */ |
635 | uint32_t num_input_pixel_formats; |
636 | /** \brief List of input pixel formats in fourcc. */ |
637 | uint32_t *input_pixel_format; |
638 | /** \brief Number of elements in \ref output_pixel_format array. */ |
639 | uint32_t num_output_pixel_formats; |
640 | /** \brief List of output pixel formats in fourcc. */ |
641 | uint32_t *output_pixel_format; |
642 | |
643 | /** \brief Max supported input width in pixels. */ |
644 | uint32_t max_input_width; |
645 | /** \brief Max supported input height in pixels. */ |
646 | uint32_t max_input_height; |
647 | /** \brief Min supported input width in pixels. */ |
648 | uint32_t min_input_width; |
649 | /** \brief Min supported input height in pixels. */ |
650 | uint32_t min_input_height; |
651 | |
652 | /** \brief Max supported output width in pixels. */ |
653 | uint32_t max_output_width; |
654 | /** \brief Max supported output height in pixels. */ |
655 | uint32_t max_output_height; |
656 | /** \brief Min supported output width in pixels. */ |
657 | uint32_t min_output_width; |
658 | /** \brief Min supported output height in pixels. */ |
659 | uint32_t min_output_height; |
660 | /** \brief Reserved bytes for future use, must be zero */ |
661 | #if defined(__AMD64__) || defined(__x86_64__) || defined(__amd64__) || defined(__LP64__) |
662 | uint32_t va_reserved[VA_PADDING_HIGH - 2]; |
663 | #else |
664 | uint32_t va_reserved[VA_PADDING_HIGH]; |
665 | #endif |
666 | } VAProcPipelineCaps; |
667 | |
668 | /** \brief Specification of values supported by the filter. */ |
669 | typedef struct _VAProcFilterValueRange { |
670 | /** \brief Minimum value supported, inclusive. */ |
671 | float min_value; |
672 | /** \brief Maximum value supported, inclusive. */ |
673 | float max_value; |
674 | /** \brief Default value. */ |
675 | float default_value; |
676 | /** \brief Step value that alters the filter behaviour in a sensible way. */ |
677 | float step; |
678 | |
679 | /** \brief Reserved bytes for future use, must be zero */ |
680 | uint32_t va_reserved[VA_PADDING_LOW]; |
681 | } VAProcFilterValueRange; |
682 | |
683 | typedef struct _VAProcColorProperties { |
684 | /** Chroma sample location.\c VA_CHROMA_SITING_VERTICAL_XXX | VA_CHROMA_SITING_HORIZONTAL_XXX */ |
685 | uint8_t chroma_sample_location; |
686 | /** Color range. \c VA_SOURCE_RANGE_XXX*/ |
687 | uint8_t color_range; |
688 | /** Colour primaries. |
689 | * |
690 | * See ISO/IEC 23001-8 or ITU H.273, section 8.1 and table 2. |
691 | * Only used if the color standard in use is \c VAColorStandardExplicit. |
692 | * Below list the typical colour primaries for the reference. |
693 | * --------------------------------------------------------------------------------- |
694 | * | Value | Primaries | Informative Remark | |
695 | * -------------------------------------------------------------------------------- |
696 | * | 1 |primary x y |Rec.ITU-R BT.709-5 | |
697 | * | |green 0.300 0.600 |IEC 61966-2-1(sRGB or sYCC) | |
698 | * | |blue 0.150 0.060 | | |
699 | * | |red 0.640 0.330 | | |
700 | * | |whiteD65 0.3127 0.3290 | | |
701 | * --------------------------------------------------------------------------------- |
702 | * | 6 |primary x y |Rec.ITU-R BT.601-6 525 | |
703 | * | |green 0.310 0.595 | | |
704 | * | |blue 0.155 0.070 | | |
705 | * | |red 0.630 0.340 | | |
706 | * | |whiteD65 0.3127 0.3290 | | |
707 | * --------------------------------------------------------------------------------- |
708 | * | 9 |primary x y |Rec.ITU-R BT.2020 | |
709 | * | |green 0.170 0.797 | | |
710 | * | |blue 0.131 0.046 | | |
711 | * | |red 0.708 0.292 | | |
712 | * | |whiteD65 0.3127 0.3290 | | |
713 | * --------------------------------------------------------------------------------- |
714 | */ |
715 | uint8_t colour_primaries; |
716 | /** Transfer characteristics. |
717 | * |
718 | * See ISO/IEC 23001-8 or ITU H.273, section 8.2 and table 3. |
719 | * Only used if the color standard in use is \c VAColorStandardExplicit. |
720 | * Below list the typical transfer characteristics for the reference. |
721 | * ----------------------------------------------------------- |
722 | * | Value | Informative Remark | |
723 | * ----------------------------------------------------------- |
724 | * | 1 |Rec.ITU-R BT.709-5 | |
725 | * | |colour gamut system | |
726 | * ----------------------------------------------------------- |
727 | * | 4 |Assumed display gamma 2.2 | |
728 | * ----------------------------------------------------------- |
729 | * | 6 |Rec.ITU-R BT.601-6 525 or 625 | |
730 | * ----------------------------------------------------------- |
731 | * | 8 |Linear transfer characteristics | |
732 | * ----------------------------------------------------------- |
733 | * | 13 |IEC 61966-2-1(sRGB or sYCC) | |
734 | * ----------------------------------------------------------- |
735 | * | 14,15 |Rec.ITU-R BT.2020 | |
736 | * ----------------------------------------------------------- |
737 | * | 16 |SMPTE ST 2084 for 10,12,14 and 16bit system | |
738 | * ----------------------------------------------------------- |
739 | */ |
740 | uint8_t transfer_characteristics; |
741 | /** Matrix coefficients. |
742 | * |
743 | * See ISO/IEC 23001-8 or ITU H.273, section 8.3 and table 4. |
744 | * Only used if the color standard in use is \c VAColorStandardExplicit. |
745 | */ |
746 | uint8_t matrix_coefficients; |
747 | /** Reserved bytes for future use, must be zero. */ |
748 | uint8_t reserved[3]; |
749 | } VAProcColorProperties; |
750 | |
751 | /** \brief Describes High Dynamic Range Meta Data for HDR10. |
752 | * |
753 | * Specifies the colour volume(the colour primaries, white point and luminance range) of |
754 | * a display considered to be the mastering display for the associated video content -e.g., |
755 | * the colour volume of a display that was used for viewing while authoring the video content. |
756 | * See ITU-T H.265 D.3.27 Mastering display colour volume SEI message semantics. |
757 | * |
758 | * Specifies upper bounds for the nominal light level of the content. See ITU-T H.265 D.3.35 |
759 | * Content light level information SEI message semantics. |
760 | * |
761 | * This structure can be used to indicate the HDR10 metadata for 1) the content which was authored; |
762 | * 2) the display on which the content will be presented. If it is for display, max_content_light_level |
763 | * and max_pic_average_light_level are ignored. |
764 | */ |
765 | typedef struct _VAHdrMetaDataHDR10 { |
766 | /** |
767 | * \brief X chromaticity coordinate of the mastering display. |
768 | * |
769 | * Index value c equal to 0 should correspond to the green primary. |
770 | * Index value c equal to 1 should correspond to the blue primary. |
771 | * Index value c equal to 2 should correspond to the red primary. |
772 | * The value for display_primaries_x shall be in the range of 0 to 50000 inclusive. |
773 | */ |
774 | uint16_t display_primaries_x[3]; |
775 | /** |
776 | * \brief Y chromaticity coordinate of the mastering display. |
777 | * |
778 | * Index value c equal to 0 should correspond to the green primary. |
779 | * Index value c equal to 1 should correspond to the blue primary. |
780 | * Index value c equal to 2 should correspond to the red primary. |
781 | * The value for display_primaries_y shall be in the range of 0 to 50000 inclusive. |
782 | */ |
783 | uint16_t display_primaries_y[3]; |
784 | /** |
785 | * \brief X chromaticity coordinate of the white point of the mastering display. |
786 | * |
787 | * The value for white_point_x shall be in the range of 0 to 50000 inclusive. |
788 | */ |
789 | uint16_t white_point_x; |
790 | /** |
791 | * \brief Y chromaticity coordinate of the white point of the mastering display. |
792 | * |
793 | * The value for white_point_y shall be in the range of 0 to 50000 inclusive. |
794 | */ |
795 | uint16_t white_point_y; |
796 | /** |
797 | * \brief The maximum display luminance of the mastering display. |
798 | * |
799 | * The value is in units of 0.0001 candelas per square metre. |
800 | */ |
801 | uint32_t max_display_mastering_luminance; |
802 | /** |
803 | * \brief The minumum display luminance of the mastering display. |
804 | * |
805 | * The value is in units of 0.0001 candelas per square metre. |
806 | */ |
807 | uint32_t min_display_mastering_luminance; |
808 | /** |
809 | * \brief The maximum content light level (MaxCLL). |
810 | * |
811 | * The value is in units of 1 candelas per square metre. |
812 | */ |
813 | uint16_t max_content_light_level; |
814 | /** |
815 | * \brief The maximum picture average light level (MaxFALL). |
816 | * |
817 | * The value is in units of 1 candelas per square metre. |
818 | */ |
819 | uint16_t max_pic_average_light_level; |
820 | /** Resevered */ |
821 | uint16_t reserved[VA_PADDING_HIGH]; |
822 | } VAHdrMetaDataHDR10; |
823 | |
824 | /** \brief Capabilities specification for the High Dynamic Range filter. */ |
825 | typedef struct _VAProcFilterCapHighDynamicRange { |
826 | /** \brief high dynamic range type. */ |
827 | VAProcHighDynamicRangeMetadataType metadata_type; |
828 | /** |
829 | * \brief flag for high dynamic range tone mapping |
830 | * |
831 | * The flag is the combination of VA_TONE_MAPPING_XXX_TO_XXX. |
832 | * It could be VA_TONE_MAPPING_HDR_TO_HDR | VA_TONE_MAPPING_HDR_TO_SDR. |
833 | * SDR content to SDR display is always supported by default since it is legacy path. |
834 | */ |
835 | uint16_t caps_flag; |
836 | /** \brief Reserved bytes for future use, must be zero */ |
837 | uint16_t va_reserved[VA_PADDING_HIGH]; |
838 | } VAProcFilterCapHighDynamicRange; |
839 | |
840 | /** \brief High Dynamic Range Meta Data. */ |
841 | typedef struct _VAHdrMetaData { |
842 | /** \brief high dynamic range metadata type, HDR10 etc. */ |
843 | VAProcHighDynamicRangeMetadataType metadata_type; |
844 | /** |
845 | * \brief Pointer to high dynamic range metadata. |
846 | * |
847 | * The pointer could point to VAHdrMetaDataHDR10 or other HDR meta data. |
848 | */ |
849 | void* metadata; |
850 | /** |
851 | * \brief Size of high dynamic range metadata. |
852 | */ |
853 | uint32_t metadata_size; |
854 | /** \brief Reserved bytes for future use, must be zero */ |
855 | uint32_t reserved[VA_PADDING_LOW]; |
856 | } VAHdrMetaData; |
857 | |
858 | /** |
859 | * \brief Video processing pipeline configuration. |
860 | * |
861 | * This buffer defines a video processing pipeline. The actual filters to |
862 | * be applied are provided in the \c filters field, they can be re-used |
863 | * in other processing pipelines. |
864 | * |
865 | * The target surface is specified by the \c render_target argument of |
866 | * \c vaBeginPicture(). The general usage model is described as follows: |
867 | * - \c vaBeginPicture(): specify the target surface that receives the |
868 | * processed output; |
869 | * - \c vaRenderPicture(): specify a surface to be processed and composed |
870 | * into the \c render_target. Use as many \c vaRenderPicture() calls as |
871 | * necessary surfaces to compose ; |
872 | * - \c vaEndPicture(): tell the driver to start processing the surfaces |
873 | * with the requested filters. |
874 | * |
875 | * If a filter (e.g. noise reduction) needs to be applied with different |
876 | * values for multiple surfaces, the application needs to create as many |
877 | * filter parameter buffers as necessary. i.e. the filter parameters shall |
878 | * not change between two calls to \c vaRenderPicture(). |
879 | * |
880 | * For composition usage models, the first surface to process will generally |
881 | * use an opaque background color, i.e. \c output_background_color set with |
882 | * the most significant byte set to \c 0xff. For instance, \c 0xff000000 for |
883 | * a black background. Then, subsequent surfaces would use a transparent |
884 | * background color. |
885 | */ |
886 | typedef struct _VAProcPipelineParameterBuffer { |
887 | /** |
888 | * \brief Source surface ID. |
889 | * |
890 | * ID of the source surface to process. If subpictures are associated |
891 | * with the video surfaces then they shall be rendered to the target |
892 | * surface, if the #VA_PROC_PIPELINE_SUBPICTURES pipeline flag is set. |
893 | */ |
894 | VASurfaceID surface; |
895 | /** |
896 | * \brief Region within the source surface to be processed. |
897 | * |
898 | * Pointer to a #VARectangle defining the region within the source |
899 | * surface to be processed. If NULL, \c surface_region implies the |
900 | * whole surface. |
901 | */ |
902 | const VARectangle *surface_region; |
903 | /** |
904 | * \brief Requested input color standard. |
905 | * |
906 | * Color properties are implicitly converted throughout the processing |
907 | * pipeline. The video processor chooses the best moment to apply |
908 | * this conversion. The set of supported color standards for input shall |
909 | * be queried with vaQueryVideoProcPipelineCaps(). |
910 | * |
911 | * If this is set to VAProcColorStandardExplicit, the color properties |
912 | * are specified explicitly in surface_color_properties instead. |
913 | */ |
914 | VAProcColorStandardType surface_color_standard; |
915 | /** |
916 | * \brief Region within the output surface. |
917 | * |
918 | * Pointer to a #VARectangle defining the region within the output |
919 | * surface that receives the processed pixels. If NULL, \c output_region |
920 | * implies the whole surface. |
921 | * |
922 | * Note that any pixels residing outside the specified region will |
923 | * be filled in with the \ref output_background_color. |
924 | */ |
925 | const VARectangle *output_region; |
926 | /** |
927 | * \brief Background color. |
928 | * |
929 | * Background color used to fill in pixels that reside outside of the |
930 | * specified \ref output_region. The color is specified in ARGB format: |
931 | * [31:24] alpha, [23:16] red, [15:8] green, [7:0] blue. |
932 | * |
933 | * Unless the alpha value is zero or the \ref output_region represents |
934 | * the whole target surface size, implementations shall not render the |
935 | * source surface to the target surface directly. Rather, in order to |
936 | * maintain the exact semantics of \ref output_background_color, the |
937 | * driver shall use a temporary surface and fill it in with the |
938 | * appropriate background color. Next, the driver will blend this |
939 | * temporary surface into the target surface. |
940 | */ |
941 | uint32_t output_background_color; |
942 | /** |
943 | * \brief Requested output color standard. |
944 | * |
945 | * If this is set to VAProcColorStandardExplicit, the color properties |
946 | * are specified explicitly in output_color_properties instead. |
947 | */ |
948 | VAProcColorStandardType output_color_standard; |
949 | /** |
950 | * \brief Pipeline filters. See video pipeline flags. |
951 | * |
952 | * Flags to control the pipeline, like whether to apply subpictures |
953 | * or not, notify the driver that it can opt for power optimizations, |
954 | * should this be needed. |
955 | */ |
956 | uint32_t pipeline_flags; |
957 | /** |
958 | * \brief Extra filter flags. See vaPutSurface() flags. |
959 | * |
960 | * Filter flags are used as a fast path, wherever possible, to use |
961 | * vaPutSurface() flags instead of explicit filter parameter buffers. |
962 | * |
963 | * Allowed filter flags API-wise. Use vaQueryVideoProcPipelineCaps() |
964 | * to check for implementation details: |
965 | * - Bob-deinterlacing: \c VA_FRAME_PICTURE, \c VA_TOP_FIELD, |
966 | * \c VA_BOTTOM_FIELD. Note that any deinterlacing filter |
967 | * (#VAProcFilterDeinterlacing) will override those flags. |
968 | * - Color space conversion: \c VA_SRC_BT601, \c VA_SRC_BT709, |
969 | * \c VA_SRC_SMPTE_240. |
970 | * - Scaling: \c VA_FILTER_SCALING_DEFAULT, \c VA_FILTER_SCALING_FAST, |
971 | * \c VA_FILTER_SCALING_HQ, \c VA_FILTER_SCALING_NL_ANAMORPHIC. |
972 | * - Interpolation Method: \c VA_FILTER_INTERPOLATION_DEFAULT, |
973 | * \c VA_FILTER_INTERPOLATION_NEAREST_NEIGHBOR, |
974 | * \c VA_FILTER_INTERPOLATION_BILINEAR, \c VA_FILTER_INTERPOLATION_ADVANCED. |
975 | */ |
976 | uint32_t filter_flags; |
977 | /** |
978 | * \brief Array of filters to apply to the surface. |
979 | * |
980 | * The list of filters shall be ordered in the same way the driver expects |
981 | * them. i.e. as was returned from vaQueryVideoProcFilters(). |
982 | * Otherwise, a #VA_STATUS_ERROR_INVALID_FILTER_CHAIN is returned |
983 | * from vaRenderPicture() with this buffer. |
984 | * |
985 | * #VA_STATUS_ERROR_UNSUPPORTED_FILTER is returned if the list |
986 | * contains an unsupported filter. |
987 | * |
988 | */ |
989 | VABufferID *filters; |
990 | /** \brief Actual number of filters. */ |
991 | uint32_t num_filters; |
992 | /** \brief Array of forward reference frames (past frames). */ |
993 | VASurfaceID *forward_references; |
994 | /** \brief Number of forward reference frames that were supplied. */ |
995 | uint32_t num_forward_references; |
996 | /** \brief Array of backward reference frames (future frames). */ |
997 | VASurfaceID *backward_references; |
998 | /** \brief Number of backward reference frames that were supplied. */ |
999 | uint32_t num_backward_references; |
1000 | /** |
1001 | * \brief Rotation state. See rotation angles. |
1002 | * |
1003 | * The rotation angle is clockwise. There is no specific rotation |
1004 | * center for this operation. Rather, The source \ref surface is |
1005 | * first rotated by the specified angle and then scaled to fit the |
1006 | * \ref output_region. |
1007 | * |
1008 | * This means that the top-left hand corner (0,0) of the output |
1009 | * (rotated) surface is expressed as follows: |
1010 | * - \ref VA_ROTATION_NONE: (0,0) is the top left corner of the |
1011 | * source surface -- no rotation is performed ; |
1012 | * - \ref VA_ROTATION_90: (0,0) is the bottom-left corner of the |
1013 | * source surface ; |
1014 | * - \ref VA_ROTATION_180: (0,0) is the bottom-right corner of the |
1015 | * source surface -- the surface is flipped around the X axis ; |
1016 | * - \ref VA_ROTATION_270: (0,0) is the top-right corner of the |
1017 | * source surface. |
1018 | * |
1019 | * Check VAProcPipelineCaps::rotation_flags first prior to |
1020 | * defining a specific rotation angle. Otherwise, the hardware can |
1021 | * perfectly ignore this variable if it does not support any |
1022 | * rotation. |
1023 | */ |
1024 | uint32_t rotation_state; |
1025 | /** |
1026 | * \brief blending state. See "Video blending state definition". |
1027 | * |
1028 | * If \ref blend_state is NULL, then default operation mode depends |
1029 | * on the source \ref surface format: |
1030 | * - RGB: per-pixel alpha blending ; |
1031 | * - YUV: no blending, i.e override the underlying pixels. |
1032 | * |
1033 | * Otherwise, \ref blend_state is a pointer to a #VABlendState |
1034 | * structure that shall be live until vaEndPicture(). |
1035 | * |
1036 | * Implementation note: the driver is responsible for checking the |
1037 | * blend state flags against the actual source \ref surface format. |
1038 | * e.g. premultiplied alpha blending is only applicable to RGB |
1039 | * surfaces, and luma keying is only applicable to YUV surfaces. |
1040 | * If a mismatch occurs, then #VA_STATUS_ERROR_INVALID_BLEND_STATE |
1041 | * is returned. |
1042 | */ |
1043 | const VABlendState *blend_state; |
1044 | /** |
1045 | * \bried mirroring state. See "Mirroring directions". |
1046 | * |
1047 | * Mirroring of an image can be performed either along the |
1048 | * horizontal or vertical axis. It is assumed that the rotation |
1049 | * operation is always performed before the mirroring operation. |
1050 | */ |
1051 | uint32_t mirror_state; |
1052 | /** \brief Array of additional output surfaces. */ |
1053 | VASurfaceID *additional_outputs; |
1054 | /** \brief Number of additional output surfaces. */ |
1055 | uint32_t num_additional_outputs; |
1056 | /** |
1057 | * \brief Flag to indicate the input surface flag |
1058 | * |
1059 | * bit0~3: Surface sample type |
1060 | * - 0000: Progressive --> VA_FRAME_PICTURE |
1061 | * - 0001: Single Top Field --> VA_TOP_FIELD |
1062 | * - 0010: Single Bottom Field --> VA_BOTTOM_FIELD |
1063 | * - 0100: Interleaved Top Field First --> VA_TOP_FIELD_FIRST |
1064 | * - 1000: Interleaved Bottom Field First --> VA_BOTTOM_FIELD_FIRST |
1065 | * |
1066 | * For interlaced scaling, examples as follow: |
1067 | * - 1. Interleaved to Interleaved (Suppose input is top field first) |
1068 | * -- set input_surface_flag as VA_TOP_FIELD_FIRST |
1069 | * -- set output_surface_flag as VA_TOP_FIELD_FIRST |
1070 | * - 2. Interleaved to Field (Suppose input is top field first) |
1071 | * An interleaved frame need to be passed twice. |
1072 | * First cycle to get the first field: |
1073 | * -- set input_surface_flag as VA_TOP_FIELD_FIRST |
1074 | * -- set output_surface_flag as VA_TOP_FIELD |
1075 | * Second cycle to get the second field: |
1076 | * -- set input_surface_flag as VA_TOP_FIELD_FIRST |
1077 | * -- set output_surface_flag as VA_BOTTOM_FIELD |
1078 | * - 3. Field to Interleaved (Suppose first field is top field) |
1079 | * -- create two surfaces, one for top field, the other for bottom field |
1080 | * -- set surface with the first field surface id |
1081 | * -- set backward_reference with the second field surface id |
1082 | * -- set input_surface_flag as VA_TOP_FIELD |
1083 | * -- set output_surface_flag as VA_TOP_FIELD_FIRST |
1084 | * - 4. Field to Field: |
1085 | * -- set flag according to each frame. |
1086 | * |
1087 | * bit31: Surface encryption |
1088 | * - 0: non-protected |
1089 | * - 1: protected |
1090 | * |
1091 | * bit4~30 for future |
1092 | */ |
1093 | uint32_t input_surface_flag; |
1094 | /** |
1095 | * \brief Flag to indicate the output surface flag |
1096 | * |
1097 | * bit0~3: Surface sample type |
1098 | * - 0000: Progressive --> VA_FRAME_PICTURE |
1099 | * - 0001: Top Field --> VA_TOP_FIELD |
1100 | * - 0010: Bottom Field --> VA_BOTTOM_FIELD |
1101 | * - 0100: Top Field First --> VA_TOP_FIELD_FIRST |
1102 | * - 1000: Bottom Field First --> VA_BOTTOM_FIELD_FIRST |
1103 | * |
1104 | * bit31: Surface encryption |
1105 | * - 0: non-protected |
1106 | * - 1: protected |
1107 | * |
1108 | * bit4~30 for future |
1109 | */ |
1110 | uint32_t output_surface_flag; |
1111 | /** |
1112 | * \brief Input Color Properties. See "VAProcColorProperties". |
1113 | */ |
1114 | VAProcColorProperties input_color_properties; |
1115 | /** |
1116 | * \brief Output Color Properties. See "VAProcColorProperties". |
1117 | */ |
1118 | VAProcColorProperties output_color_properties; |
1119 | /** |
1120 | * \brief Processing mode. See "VAProcMode". |
1121 | */ |
1122 | VAProcMode processing_mode; |
1123 | /** |
1124 | * \brief Output High Dynamic Metadata. |
1125 | * |
1126 | * If output_metadata is NULL, then output default to SDR. |
1127 | */ |
1128 | VAHdrMetaData *output_hdr_metadata; |
1129 | |
1130 | /** \brief Reserved bytes for future use, must be zero */ |
1131 | #if defined(__AMD64__) || defined(__x86_64__) || defined(__amd64__)|| defined(__LP64__) |
1132 | uint32_t va_reserved[VA_PADDING_LARGE - 16]; |
1133 | #else |
1134 | uint32_t va_reserved[VA_PADDING_LARGE - 13]; |
1135 | #endif |
1136 | } VAProcPipelineParameterBuffer; |
1137 | |
1138 | /** |
1139 | * \brief Filter parameter buffer base. |
1140 | * |
1141 | * This is a helper structure used by driver implementations only. |
1142 | * Users are not supposed to allocate filter parameter buffers of this |
1143 | * type. |
1144 | */ |
1145 | typedef struct _VAProcFilterParameterBufferBase { |
1146 | /** \brief Filter type. */ |
1147 | VAProcFilterType type; |
1148 | } VAProcFilterParameterBufferBase; |
1149 | |
1150 | /** |
1151 | * \brief Default filter parametrization. |
1152 | * |
1153 | * Unless there is a filter-specific parameter buffer, |
1154 | * #VAProcFilterParameterBuffer is the default type to use. |
1155 | */ |
1156 | typedef struct _VAProcFilterParameterBuffer { |
1157 | /** \brief Filter type. */ |
1158 | VAProcFilterType type; |
1159 | /** \brief Value. */ |
1160 | float value; |
1161 | |
1162 | /** \brief Reserved bytes for future use, must be zero */ |
1163 | uint32_t va_reserved[VA_PADDING_LOW]; |
1164 | } VAProcFilterParameterBuffer; |
1165 | |
1166 | /** @name De-interlacing flags */ |
1167 | /**@{*/ |
1168 | /** |
1169 | * \brief Bottom field first in the input frame. |
1170 | * if this is not set then assumes top field first. |
1171 | */ |
1172 | #define VA_DEINTERLACING_BOTTOM_FIELD_FIRST 0x0001 |
1173 | /** |
1174 | * \brief Bottom field used in deinterlacing. |
1175 | * if this is not set then assumes top field is used. |
1176 | */ |
1177 | #define VA_DEINTERLACING_BOTTOM_FIELD 0x0002 |
1178 | /** |
1179 | * \brief A single field is stored in the input frame. |
1180 | * if this is not set then assumes the frame contains two interleaved fields. |
1181 | */ |
1182 | #define VA_DEINTERLACING_ONE_FIELD 0x0004 |
1183 | /** |
1184 | * \brief Film Mode Detection is enabled. If enabled, driver performs inverse |
1185 | * of various pulldowns, such as 3:2 pulldown. |
1186 | * if this is not set then assumes FMD is disabled. |
1187 | */ |
1188 | #define VA_DEINTERLACING_FMD_ENABLE 0x0008 |
1189 | |
1190 | //Scene change parameter for ADI on Linux, if enabled, driver use spatial DI(Bob), instead of ADI. if not, use old behavior for ADI |
1191 | //Input stream is TFF(set flags = 0), SRC0,1,2,3 are interlaced frame (top +bottom fields), DSTs are progressive frames |
1192 | //30i->30p |
1193 | //SRC0 -> BOBDI, no reference, set flag = 0, output DST0 |
1194 | //SRC1 -> ADI, reference frame=SRC0, set flags = 0, call VP, output DST1 |
1195 | //SRC2 -> ADI, reference frame=SRC1, set flags = 0x0010(decimal 16), call VP, output DST2(T4) |
1196 | //SRC3 -> ADI, reference frame=SRC2, set flags = 0, call VP, output DST3 |
1197 | //30i->60p |
1198 | //SRC0 -> BOBDI, no reference, set flag = 0, output DST0 |
1199 | //SRC0 -> BOBDI, no reference, set flag =0x0002, output DST1 |
1200 | |
1201 | //SRC1 -> ADI, reference frame =SRC0, set flags = 0, call VP, output DST2 |
1202 | //SRC1 -> ADI, reference frame =SRC0, set flags = 0x0012(decimal18), call VP, output DST3(B3) |
1203 | |
1204 | //SRC2 -> ADI, reference frame =SRC1, set flags = 0x0010(decimal 16), call VP, output DST4(T4) |
1205 | //SRC2 -> ADI, reference frame =SRC1, set flags = 0x0002, call VP, output DST5 |
1206 | |
1207 | //SRC3 -> ADI, reference frame =SRC2, set flags = 0, call VP, output DST6 |
1208 | //SRC3 -> ADI, reference frame =SRC1, set flags = 0x0002, call VP, output DST7 |
1209 | |
1210 | #define VA_DEINTERLACING_SCD_ENABLE 0x0010 |
1211 | |
1212 | /**@}*/ |
1213 | |
1214 | /** \brief Deinterlacing filter parametrization. */ |
1215 | typedef struct _VAProcFilterParameterBufferDeinterlacing { |
1216 | /** \brief Filter type. Shall be set to #VAProcFilterDeinterlacing. */ |
1217 | VAProcFilterType type; |
1218 | /** \brief Deinterlacing algorithm. */ |
1219 | VAProcDeinterlacingType algorithm; |
1220 | /** \brief Deinterlacing flags. */ |
1221 | uint32_t flags; |
1222 | |
1223 | /** \brief Reserved bytes for future use, must be zero */ |
1224 | uint32_t va_reserved[VA_PADDING_LOW]; |
1225 | } VAProcFilterParameterBufferDeinterlacing; |
1226 | |
1227 | /** |
1228 | * \brief Color balance filter parametrization. |
1229 | * |
1230 | * This buffer defines color balance attributes. A VA buffer can hold |
1231 | * several color balance attributes by creating a VA buffer of desired |
1232 | * number of elements. This can be achieved by the following pseudo-code: |
1233 | * |
1234 | * \code |
1235 | * enum { kHue, kSaturation, kBrightness, kContrast }; |
1236 | * |
1237 | * // Initial color balance parameters |
1238 | * static const VAProcFilterParameterBufferColorBalance colorBalanceParams[4] = |
1239 | * { |
1240 | * [kHue] = |
1241 | * { VAProcFilterColorBalance, VAProcColorBalanceHue, 0.5 }, |
1242 | * [kSaturation] = |
1243 | * { VAProcFilterColorBalance, VAProcColorBalanceSaturation, 0.5 }, |
1244 | * [kBrightness] = |
1245 | * { VAProcFilterColorBalance, VAProcColorBalanceBrightness, 0.5 }, |
1246 | * [kSaturation] = |
1247 | * { VAProcFilterColorBalance, VAProcColorBalanceSaturation, 0.5 } |
1248 | * }; |
1249 | * |
1250 | * // Create buffer |
1251 | * VABufferID colorBalanceBuffer; |
1252 | * vaCreateBuffer(va_dpy, vpp_ctx, |
1253 | * VAProcFilterParameterBufferType, sizeof(*pColorBalanceParam), 4, |
1254 | * colorBalanceParams, |
1255 | * &colorBalanceBuffer |
1256 | * ); |
1257 | * |
1258 | * VAProcFilterParameterBufferColorBalance *pColorBalanceParam; |
1259 | * vaMapBuffer(va_dpy, colorBalanceBuffer, &pColorBalanceParam); |
1260 | * { |
1261 | * // Change brightness only |
1262 | * pColorBalanceBuffer[kBrightness].value = 0.75; |
1263 | * } |
1264 | * vaUnmapBuffer(va_dpy, colorBalanceBuffer); |
1265 | * \endcode |
1266 | */ |
1267 | typedef struct _VAProcFilterParameterBufferColorBalance { |
1268 | /** \brief Filter type. Shall be set to #VAProcFilterColorBalance. */ |
1269 | VAProcFilterType type; |
1270 | /** \brief Color balance attribute. */ |
1271 | VAProcColorBalanceType attrib; |
1272 | /** |
1273 | * \brief Color balance value. |
1274 | * |
1275 | * Special case for automatically adjusted attributes. e.g. |
1276 | * #VAProcColorBalanceAutoSaturation, |
1277 | * #VAProcColorBalanceAutoBrightness, |
1278 | * #VAProcColorBalanceAutoContrast. |
1279 | * - If \ref value is \c 1.0 +/- \c FLT_EPSILON, the attribute is |
1280 | * automatically adjusted and overrides any other attribute of |
1281 | * the same type that would have been set explicitly; |
1282 | * - If \ref value is \c 0.0 +/- \c FLT_EPSILON, the attribute is |
1283 | * disabled and other attribute of the same type is used instead. |
1284 | */ |
1285 | float value; |
1286 | |
1287 | /** \brief Reserved bytes for future use, must be zero */ |
1288 | uint32_t va_reserved[VA_PADDING_LOW]; |
1289 | } VAProcFilterParameterBufferColorBalance; |
1290 | |
1291 | /** \brief Total color correction filter parametrization. */ |
1292 | typedef struct _VAProcFilterParameterBufferTotalColorCorrection { |
1293 | /** \brief Filter type. Shall be set to #VAProcFilterTotalColorCorrection. */ |
1294 | VAProcFilterType type; |
1295 | /** \brief Color to correct. */ |
1296 | VAProcTotalColorCorrectionType attrib; |
1297 | /** \brief Color correction value. */ |
1298 | float value; |
1299 | } VAProcFilterParameterBufferTotalColorCorrection; |
1300 | |
1301 | /** @name Video Processing Human Vision System (HVS) Denoise Mode.*/ |
1302 | /**@{*/ |
1303 | /** |
1304 | * \brief Default Mode. |
1305 | * This mode is decided in driver to the appropriate mode. |
1306 | */ |
1307 | #define VA_PROC_HVS_DENOISE_DEFAULT 0x0000 |
1308 | /** |
1309 | * \brief Auto BDRate Mode. |
1310 | * Indicates auto BD rate improvement in pre-processing (such as before video encoding), ignore Strength. |
1311 | */ |
1312 | #define VA_PROC_HVS_DENOISE_AUTO_BDRATE 0x0001 |
1313 | /** |
1314 | * \brief Auto Subjective Mode. |
1315 | * Indicates auto subjective quality improvement in pre-processing (such as before video encoding), ignore Strength. |
1316 | */ |
1317 | #define VA_PROC_HVS_DENOISE_AUTO_SUBJECTIVE 0x0002 |
1318 | /** |
1319 | * \brief Manual Mode. |
1320 | * Indicates manual mode, allow to adjust the denoise strength manually (need to set Strength explicitly). |
1321 | */ |
1322 | #define VA_PROC_HVS_DENOISE_MANUAL 0x0003 |
1323 | /**@}*/ |
1324 | |
1325 | /** \brief Human Vision System(HVS) Noise reduction filter parametrization. */ |
1326 | typedef struct _VAProcFilterParameterBufferHVSNoiseReduction { |
1327 | /** \brief Filter type. Shall be set to #VAProcFilterHVSNoiseReduction. */ |
1328 | VAProcFilterType type; |
1329 | /** \brief QP for encoding, used for HVS Denoise */ |
1330 | uint16_t qp; |
1331 | /** |
1332 | * \brief QP to Noise Reduction Strength Mode, used for Human Vision System Based Noise Reduction. |
1333 | * Controls Noise Reduction strength of conservative and aggressive mode. |
1334 | * It is an integer from [0-16]. |
1335 | * Value 0 means completely turn off Noise Reduction; |
1336 | * Value 16 means the most aggressive mode of Noise Reduction; |
1337 | * Value 10 is the default value. |
1338 | */ |
1339 | uint16_t strength; |
1340 | /** |
1341 | * \brief HVS Denoise Mode which controls denoise method. |
1342 | * It is a value of VA_PROC_HVS_DENOISE_xxx. |
1343 | * Please see the definition of VA_PROC_HVS_DENOISE_xxx. |
1344 | */ |
1345 | uint16_t mode; |
1346 | /** \brief Reserved bytes for future use, must be zero */ |
1347 | uint16_t va_reserved[VA_PADDING_HIGH - 1]; |
1348 | } VAProcFilterParameterBufferHVSNoiseReduction; |
1349 | |
1350 | /** \brief High Dynamic Range(HDR) Tone Mapping filter parametrization. */ |
1351 | typedef struct _VAProcFilterParameterBufferHDRToneMapping { |
1352 | /** \brief Filter type. Shall be set to #VAProcFilterHighDynamicRangeToneMapping.*/ |
1353 | VAProcFilterType type; |
1354 | /** |
1355 | * \brief High Dynamic Range metadata, could be HDR10 etc. |
1356 | * |
1357 | * This metadata is mainly for the input surface. Given that dynamic metadata is changing |
1358 | * on frame-by-frame or scene-by-scene basis for HDR10 plus, differentiate the metadata |
1359 | * for the input and output. |
1360 | */ |
1361 | VAHdrMetaData data; |
1362 | /** \brief Reserved bytes for future use, must be zero */ |
1363 | uint32_t va_reserved[VA_PADDING_HIGH]; |
1364 | } VAProcFilterParameterBufferHDRToneMapping; |
1365 | |
1366 | /** @name 3DLUT Channel Layout and Mapping */ |
1367 | /**@{*/ |
1368 | /** \brief 3DLUT Channel Layout is unknown. */ |
1369 | #define VA_3DLUT_CHANNEL_UNKNOWN 0x00000000 |
1370 | /** \brief 3DLUT Channel Layout is R, G, B, the default layout. Map RGB to RGB. */ |
1371 | #define VA_3DLUT_CHANNEL_RGB_RGB 0x00000001 |
1372 | /** \brief 3DLUT Channel Layout is Y, U, V. Map YUV to RGB. */ |
1373 | #define VA_3DLUT_CHANNEL_YUV_RGB 0x00000002 |
1374 | /** \brief 3DLUT Channel Layout is V, U, Y. Map VUY to RGB. */ |
1375 | #define VA_3DLUT_CHANNEL_VUY_RGB 0x00000004 |
1376 | /**@}*/ |
1377 | |
1378 | /** |
1379 | * \brief 3DLUT filter parametrization. |
1380 | * |
1381 | * 3DLUT (Three Dimensional Look Up Table) is often used when converting an image or a video frame |
1382 | * from one color representation to another, for example, when converting log and gamma encodings, |
1383 | * changing the color space, applying a color correction, changing the dynamic range, gamut mapping etc. |
1384 | * |
1385 | * This buffer defines 3DLUT attributes and memory layout. The typical 3DLUT has fixed number(lut_size) |
1386 | * per dimension and memory layout is 3 dimensional array as 3dlut[stride_0][stride_1][stride_2] (lut_size |
1387 | * shall be smaller than stride_0/1/2). |
1388 | * |
1389 | * API user should query hardware capability by using the VAProcFilterCap3DLUT to get the 3DLUT attributes |
1390 | * which hardware supports, and use these attributes. For example, if the user queries hardware, the API user |
1391 | * could get caps with 3dlut[33][33][64] (lut_size = 33, lut_stride[0/1/2] = 33/33/64). API user shall not |
1392 | * use the attributes which hardware can not support. |
1393 | * |
1394 | * 3DLUT is usually used to transform input RGB/YUV values in one color space to output RGB values in another |
1395 | * color space. Based on 1) the format and color space of VPP input and output and 2) 3DLUT memory layout and |
1396 | * channel mapping, driver will enable some color space conversion implicitly if needed. For example, the input of |
1397 | * VPP is P010 format in BT2020 color space, the output of VPP is NV12 in BT709 color space and the 3DLUT channel |
1398 | * mapping is VA_3DLUT_CHANNEL_RGB_RGB, driver could build the data pipeline as P010(BT2020)->RGB(BT2020) |
1399 | * ->3DULT(BT709)->NV12(BT709). Please note, the limitation of 3DLUT filter color space is that the color space of |
1400 | * 3DLUT filter input data needs to be same as the input data of VPP; the color space of 3DLUT filter output data |
1401 | * needs to be same as the output data of VPP; format does not have such limitation. |
1402 | */ |
1403 | typedef struct _VAProcFilterParameterBuffer3DLUT { |
1404 | /** \brief Filter type. Shall be set to #VAProcFilter3DLUT.*/ |
1405 | VAProcFilterType type; |
1406 | |
1407 | /** \brief lut_surface contains 3DLUT data in the 3DLUT memory layout, must be linear */ |
1408 | VASurfaceID lut_surface; |
1409 | /** |
1410 | * \brief lut_size is the number of valid points on every dimension of the three dimensional look up table. |
1411 | * The size of LUT (lut_size) shall be same among every dimension of the three dimensional look up table. |
1412 | * The size of LUT (lut_size) shall be smaller than lut_stride[0/1/2]. |
1413 | */ |
1414 | uint16_t lut_size; |
1415 | /** |
1416 | * \brief lut_stride are the number of points on every dimension of the three dimensional look up table. |
1417 | * Three dimension can has 3 different stride, lut3d[lut_stride[0]][lut_stride[1]][lut_stride[2]]. |
1418 | * But the valid point shall start from 0, the range of valid point is [0, lut_size-1] for every dimension. |
1419 | */ |
1420 | uint16_t lut_stride[3]; |
1421 | /** \brief bit_depth is the number of bits for every channel R, G or B (or Y, U, V) */ |
1422 | uint16_t bit_depth; |
1423 | /** \brief num_channel is the number of channels */ |
1424 | uint16_t num_channel; |
1425 | |
1426 | /** \brief channel_mapping defines the mapping of input and output channels, could be one of VA_3DLUT_CHANNEL_XXX*/ |
1427 | uint32_t channel_mapping; |
1428 | |
1429 | /** \brief reserved bytes for future use, must be zero */ |
1430 | uint32_t va_reserved[VA_PADDING_HIGH]; |
1431 | } VAProcFilterParameterBuffer3DLUT; |
1432 | |
1433 | /** \brief Capabilities specification for the 3DLUT filter. */ |
1434 | typedef struct _VAProcFilterCap3DLUT { |
1435 | /** \brief lut_size is the number of valid points on every dimension of the three dimensional look up table. */ |
1436 | uint16_t lut_size; |
1437 | /** \brief lut_stride are the number of points on every dimension of the three dimensional look up table. lut3d[lut_stride[0]][lut_stride[1]][lut_stride[2]]*/ |
1438 | uint16_t lut_stride[3]; |
1439 | /** \brief bit_depth is the number of bits for every channel R, G or B (or Y, U, V) */ |
1440 | uint16_t bit_depth; |
1441 | /** \brief num_channel is the number of channels */ |
1442 | uint16_t num_channel; |
1443 | /** \brief channel_mapping defines the mapping of channels, could be some combination of VA_3DLUT_CHANNEL_XXX*/ |
1444 | uint32_t channel_mapping; |
1445 | |
1446 | /** \brief Reserved bytes for future use, must be zero */ |
1447 | uint32_t va_reserved[VA_PADDING_HIGH]; |
1448 | } VAProcFilterCap3DLUT; |
1449 | |
1450 | /** |
1451 | * \brief Default filter cap specification (single range value). |
1452 | * |
1453 | * Unless there is a filter-specific cap structure, #VAProcFilterCap is the |
1454 | * default type to use for output caps from vaQueryVideoProcFilterCaps(). |
1455 | */ |
1456 | typedef struct _VAProcFilterCap { |
1457 | /** \brief Range of supported values for the filter. */ |
1458 | VAProcFilterValueRange range; |
1459 | |
1460 | /** \brief Reserved bytes for future use, must be zero */ |
1461 | uint32_t va_reserved[VA_PADDING_LOW]; |
1462 | } VAProcFilterCap; |
1463 | |
1464 | /** \brief Capabilities specification for the deinterlacing filter. */ |
1465 | typedef struct _VAProcFilterCapDeinterlacing { |
1466 | /** \brief Deinterlacing algorithm. */ |
1467 | VAProcDeinterlacingType type; |
1468 | |
1469 | /** \brief Reserved bytes for future use, must be zero */ |
1470 | uint32_t va_reserved[VA_PADDING_LOW]; |
1471 | } VAProcFilterCapDeinterlacing; |
1472 | |
1473 | /** \brief Capabilities specification for the color balance filter. */ |
1474 | typedef struct _VAProcFilterCapColorBalance { |
1475 | /** \brief Color balance operation. */ |
1476 | VAProcColorBalanceType type; |
1477 | /** \brief Range of supported values for the specified operation. */ |
1478 | VAProcFilterValueRange range; |
1479 | |
1480 | /** \brief Reserved bytes for future use, must be zero */ |
1481 | uint32_t va_reserved[VA_PADDING_LOW]; |
1482 | } VAProcFilterCapColorBalance; |
1483 | |
1484 | /** \brief Capabilities specification for the Total Color Correction filter. */ |
1485 | typedef struct _VAProcFilterCapTotalColorCorrection { |
1486 | /** \brief Color to correct. */ |
1487 | VAProcTotalColorCorrectionType type; |
1488 | /** \brief Range of supported values for the specified color. */ |
1489 | VAProcFilterValueRange range; |
1490 | } VAProcFilterCapTotalColorCorrection; |
1491 | |
1492 | /** |
1493 | * \brief Queries video processing filters. |
1494 | * |
1495 | * This function returns the list of video processing filters supported |
1496 | * by the driver. The \c filters array is allocated by the user and |
1497 | * \c num_filters shall be initialized to the number of allocated |
1498 | * elements in that array. Upon successful return, the actual number |
1499 | * of filters will be overwritten into \c num_filters. Otherwise, |
1500 | * \c VA_STATUS_ERROR_MAX_NUM_EXCEEDED is returned and \c num_filters |
1501 | * is adjusted to the number of elements that would be returned if enough |
1502 | * space was available. |
1503 | * |
1504 | * The list of video processing filters supported by the driver shall |
1505 | * be ordered in the way they can be iteratively applied. This is needed |
1506 | * for both correctness, i.e. some filters would not mean anything if |
1507 | * applied at the beginning of the pipeline; but also for performance |
1508 | * since some filters can be applied in a single pass (e.g. noise |
1509 | * reduction + deinterlacing). |
1510 | * |
1511 | * @param[in] dpy the VA display |
1512 | * @param[in] context the video processing context |
1513 | * @param[out] filters the output array of #VAProcFilterType elements |
1514 | * @param[in,out] num_filters the number of elements allocated on input, |
1515 | * the number of elements actually filled in on output |
1516 | */ |
1517 | VAStatus |
1518 | vaQueryVideoProcFilters( |
1519 | VADisplay dpy, |
1520 | VAContextID context, |
1521 | VAProcFilterType *filters, |
1522 | unsigned int *num_filters |
1523 | ); |
1524 | |
1525 | /** |
1526 | * \brief Queries video filter capabilities. |
1527 | * |
1528 | * This function returns the list of capabilities supported by the driver |
1529 | * for a specific video filter. The \c filter_caps array is allocated by |
1530 | * the user and \c num_filter_caps shall be initialized to the number |
1531 | * of allocated elements in that array. Upon successful return, the |
1532 | * actual number of filters will be overwritten into \c num_filter_caps. |
1533 | * Otherwise, \c VA_STATUS_ERROR_MAX_NUM_EXCEEDED is returned and |
1534 | * \c num_filter_caps is adjusted to the number of elements that would be |
1535 | * returned if enough space was available. |
1536 | * |
1537 | * @param[in] dpy the VA display |
1538 | * @param[in] context the video processing context |
1539 | * @param[in] type the video filter type |
1540 | * @param[out] filter_caps the output array of #VAProcFilterCap elements |
1541 | * @param[in,out] num_filter_caps the number of elements allocated on input, |
1542 | * the number of elements actually filled in output |
1543 | */ |
1544 | VAStatus |
1545 | vaQueryVideoProcFilterCaps( |
1546 | VADisplay dpy, |
1547 | VAContextID context, |
1548 | VAProcFilterType type, |
1549 | void *filter_caps, |
1550 | unsigned int *num_filter_caps |
1551 | ); |
1552 | |
1553 | /** |
1554 | * \brief Queries video processing pipeline capabilities. |
1555 | * |
1556 | * This function returns the video processing pipeline capabilities. The |
1557 | * \c filters array defines the video processing pipeline and is an array |
1558 | * of buffers holding filter parameters. |
1559 | * |
1560 | * Note: the #VAProcPipelineCaps structure contains user-provided arrays. |
1561 | * If non-NULL, the corresponding \c num_* fields shall be filled in on |
1562 | * input with the number of elements allocated. Upon successful return, |
1563 | * the actual number of elements will be overwritten into the \c num_* |
1564 | * fields. Otherwise, \c VA_STATUS_ERROR_MAX_NUM_EXCEEDED is returned |
1565 | * and \c num_* fields are adjusted to the number of elements that would |
1566 | * be returned if enough space was available. |
1567 | * |
1568 | * @param[in] dpy the VA display |
1569 | * @param[in] context the video processing context |
1570 | * @param[in] filters the array of VA buffers defining the video |
1571 | * processing pipeline |
1572 | * @param[in] num_filters the number of elements in filters |
1573 | * @param[in,out] pipeline_caps the video processing pipeline capabilities |
1574 | */ |
1575 | VAStatus |
1576 | vaQueryVideoProcPipelineCaps( |
1577 | VADisplay dpy, |
1578 | VAContextID context, |
1579 | VABufferID *filters, |
1580 | unsigned int num_filters, |
1581 | VAProcPipelineCaps *pipeline_caps |
1582 | ); |
1583 | |
1584 | /**@}*/ |
1585 | |
1586 | #ifdef __cplusplus |
1587 | } |
1588 | #endif |
1589 | |
1590 | #endif /* VA_VPP_H */ |
1591 | |