1/*
2 * Copyright (c) 2007-2009 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the
6 * "Software"), to deal in the Software without restriction, including
7 * without limitation the rights to use, copy, modify, merge, publish,
8 * distribute, sub license, and/or sell copies of the Software, and to
9 * permit persons to whom the Software is furnished to do so, subject to
10 * the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the
13 * next paragraph) shall be included in all copies or substantial portions
14 * of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
18 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
19 * IN NO EVENT SHALL INTEL AND/OR ITS SUPPLIERS BE LIABLE FOR
20 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
21 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
22 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24/*
25 * Video Acceleration (VA) API Specification
26 *
27 * Rev. 0.30
28 * <jonathan.bian@intel.com>
29 *
30 * Revision History:
31 * rev 0.10 (12/10/2006 Jonathan Bian) - Initial draft
32 * rev 0.11 (12/15/2006 Jonathan Bian) - Fixed some errors
33 * rev 0.12 (02/05/2007 Jonathan Bian) - Added VC-1 data structures for slice level decode
34 * rev 0.13 (02/28/2007 Jonathan Bian) - Added GetDisplay()
35 * rev 0.14 (04/13/2007 Jonathan Bian) - Fixed MPEG-2 PictureParameter structure, cleaned up a few funcs.
36 * rev 0.15 (04/20/2007 Jonathan Bian) - Overhauled buffer management
37 * rev 0.16 (05/02/2007 Jonathan Bian) - Added error codes and fixed some issues with configuration
38 * rev 0.17 (05/07/2007 Jonathan Bian) - Added H.264/AVC data structures for slice level decode.
39 * rev 0.18 (05/14/2007 Jonathan Bian) - Added data structures for MPEG-4 slice level decode
40 * and MPEG-2 motion compensation.
41 * rev 0.19 (08/06/2007 Jonathan Bian) - Removed extra type for bitplane data.
42 * rev 0.20 (08/08/2007 Jonathan Bian) - Added missing fields to VC-1 PictureParameter structure.
43 * rev 0.21 (08/20/2007 Jonathan Bian) - Added image and subpicture support.
44 * rev 0.22 (08/27/2007 Jonathan Bian) - Added support for chroma-keying and global alpha.
45 * rev 0.23 (09/11/2007 Jonathan Bian) - Fixed some issues with images and subpictures.
46 * rev 0.24 (09/18/2007 Jonathan Bian) - Added display attributes.
47 * rev 0.25 (10/18/2007 Jonathan Bian) - Changed to use IDs only for some types.
48 * rev 0.26 (11/07/2007 Waldo Bastian) - Change vaCreateBuffer semantics
49 * rev 0.27 (11/19/2007 Matt Sottek) - Added DeriveImage
50 * rev 0.28 (12/06/2007 Jonathan Bian) - Added new versions of PutImage and AssociateSubpicture
51 * to enable scaling
52 * rev 0.29 (02/07/2008 Jonathan Bian) - VC1 parameter fixes,
53 * added VA_STATUS_ERROR_RESOLUTION_NOT_SUPPORTED
54 * rev 0.30 (03/01/2009 Jonathan Bian) - Added encoding support for H.264 BP and MPEG-4 SP and fixes
55 * for ISO C conformance.
56 * rev 0.31 (09/02/2009 Gwenole Beauchesne) - VC-1/H264 fields change for VDPAU and XvBA backend
57 * Application needs to relink with the new library.
58 *
59 * rev 0.31.1 (03/29/2009) - Data structure for JPEG encode
60 * rev 0.31.2 (01/13/2011 Anthony Pabon)- Added a flag to indicate Subpicture coordinates are screen
61 * screen relative rather than source video relative.
62 * rev 0.32.0 (01/13/2011 Xiang Haihao) - Add profile into VAPictureParameterBufferVC1
63 * update VAAPI to 0.32.0
64 *
65 * Acknowledgements:
66 * Some concepts borrowed from XvMC and XvImage.
67 * Waldo Bastian (Intel), Matt Sottek (Intel), Austin Yuan (Intel), and Gwenole Beauchesne (SDS)
68 * contributed to various aspects of the API.
69 */
70
71/**
72 * \file va.h
73 * \brief The Core API
74 *
75 * This file contains the \ref api_core "Core API".
76 */
77
78#ifndef _VA_H_
79#define _VA_H_
80
81#include <stddef.h>
82#include <stdint.h>
83#include <va/va_version.h>
84
85#ifdef __cplusplus
86extern "C" {
87#endif
88
89#if defined(__GNUC__) && !defined(__COVERITY__)
90#define va_deprecated __attribute__((deprecated))
91#if __GNUC__ >= 6
92#define va_deprecated_enum va_deprecated
93#else
94#define va_deprecated_enum
95#endif
96#else
97#define va_deprecated
98#define va_deprecated_enum
99#endif
100
101/**
102 * \mainpage Video Acceleration (VA) API
103 *
104 * \section intro Introduction
105 *
106 * The main motivation for VA-API (Video Acceleration API) is to
107 * enable hardware accelerated video decode and encode at various
108 * entry-points (VLD, IDCT, Motion Compensation etc.) for the
109 * prevailing coding standards today (MPEG-2, MPEG-4 ASP/H.263, MPEG-4
110 * AVC/H.264, VC-1/VMW3, and JPEG, HEVC/H265, VP8, VP9) and video pre/post
111 * processing
112 *
113 * VA-API is split into several modules:
114 * - \ref api_core
115 * - Encoder (H264, HEVC, JPEG, MPEG2, VP8, VP9)
116 * - \ref api_enc_h264
117 * - \ref api_enc_hevc
118 * - \ref api_enc_jpeg
119 * - \ref api_enc_mpeg2
120 * - \ref api_enc_vp8
121 * - \ref api_enc_vp9
122 * - \ref api_enc_av1
123 * - Decoder (HEVC, JPEG, VP8, VP9, AV1)
124 * - \ref api_dec_hevc
125 * - \ref api_dec_jpeg
126 * - \ref api_dec_vp8
127 * - \ref api_dec_vp9
128 * - \ref api_dec_av1
129 * - \ref api_vpp
130 * - \ref api_prot
131 * - FEI (H264, HEVC)
132 * - \ref api_fei
133 * - \ref api_fei_h264
134 * - \ref api_fei_hevc
135 *
136 * \section threading Multithreading Guide
137 * All VAAPI functions implemented in libva are thread-safe. For any VAAPI
138 * function that requires the implementation of a backend (e.g. hardware driver),
139 * the backend must ensure that its implementation is also thread-safe. If the
140 * backend implementation of a VAAPI function is not thread-safe then this should
141 * be considered as a bug against the backend implementation.
142 *
143 * It is assumed that none of the VAAPI functions will be called from signal
144 * handlers.
145 *
146 * Thread-safety in this context means that when VAAPI is being called by multiple
147 * concurrent threads, it will not crash or hang the OS, and VAAPI internal
148 * data structures will not be corrupted. When multiple threads are operating on
149 * the same VAAPI objects, it is the application's responsibility to synchronize
150 * these operations in order to generate the expected results. For example, using
151 * a single VAContext from multiple threads may generate unexpected results.
152 *
153 * Following pseudo code illustrates a multithreaded transcoding scenario, where
154 * one thread is handling the decoding operation and another thread is handling
155 * the encoding operation, while synchronizing the use of a common pool of
156 * surfaces.
157 *
158 * \code
159 * // Initialization
160 * dpy = vaGetDisplayDRM(fd);
161 * vaInitialize(dpy, ...);
162 *
163 * // Create surfaces required for decoding and subsequence encoding
164 * vaCreateSurfaces(dpy, VA_RT_FORMAT_YUV420, width, height, &surfaces[0], ...);
165 *
166 * // Set up a queue for the surfaces shared between decode and encode threads
167 * surface_queue = queue_create();
168 *
169 * // Create decode_thread
170 * pthread_create(&decode_thread, NULL, decode, ...);
171 *
172 * // Create encode_thread
173 * pthread_create(&encode_thread, NULL, encode, ...);
174 *
175 * // Decode thread function
176 * decode() {
177 * // Find the decode entrypoint for H.264
178 * vaQueryConfigEntrypoints(dpy, h264_profile, entrypoints, ...);
179 *
180 * // Create a config for H.264 decode
181 * vaCreateConfig(dpy, h264_profile, VAEntrypointVLD, ...);
182 *
183 * // Create a context for decode
184 * vaCreateContext(dpy, config, width, height, VA_PROGRESSIVE, surfaces,
185 * num_surfaces, &decode_context);
186 *
187 * // Decode frames in the bitstream
188 * for (;;) {
189 * // Parse one frame and decode
190 * vaBeginPicture(dpy, decode_context, surfaces[surface_index]);
191 * vaRenderPicture(dpy, decode_context, buf, ...);
192 * vaEndPicture(dpy, decode_context);
193 * // Poll the decoding status and enqueue the surface in display order after
194 * // decoding is complete
195 * vaQuerySurfaceStatus();
196 * enqueue(surface_queue, surface_index);
197 * }
198 * }
199 *
200 * // Encode thread function
201 * encode() {
202 * // Find the encode entrypoint for HEVC
203 * vaQueryConfigEntrypoints(dpy, hevc_profile, entrypoints, ...);
204 *
205 * // Create a config for HEVC encode
206 * vaCreateConfig(dpy, hevc_profile, VAEntrypointEncSlice, ...);
207 *
208 * // Create a context for encode
209 * vaCreateContext(dpy, config, width, height, VA_PROGRESSIVE, surfaces,
210 * num_surfaces, &encode_context);
211 *
212 * // Encode frames produced by the decoder
213 * for (;;) {
214 * // Dequeue the surface enqueued by the decoder
215 * surface_index = dequeue(surface_queue);
216 * // Encode using this surface as the source
217 * vaBeginPicture(dpy, encode_context, surfaces[surface_index]);
218 * vaRenderPicture(dpy, encode_context, buf, ...);
219 * vaEndPicture(dpy, encode_context);
220 * }
221 * }
222 * \endcode
223 */
224
225/**
226 * \defgroup api_core Core API
227 *
228 * @{
229 */
230
231/**
232Overview
233
234The VA API is intended to provide an interface between a video decode/encode/processing
235application (client) and a hardware accelerator (server), to off-load
236video decode/encode/processing operations from the host to the hardware accelerator at various
237entry-points.
238
239The basic operation steps are:
240
241- Negotiate a mutually acceptable configuration with the server to lock
242 down profile, entrypoints, and other attributes that will not change on
243 a frame-by-frame basis.
244- Create a video decode, encode or processing context which represents a
245 "virtualized" hardware device
246- Get and fill the render buffers with the corresponding data (depending on
247 profiles and entrypoints)
248- Pass the render buffers to the server to handle the current frame
249
250Initialization & Configuration Management
251
252- Find out supported profiles
253- Find out entrypoints for a given profile
254- Find out configuration attributes for a given profile/entrypoint pair
255- Create a configuration for use by the application
256
257*/
258
259typedef void* VADisplay; /* window system dependent */
260
261typedef int VAStatus; /** Return status type from functions */
262/** Values for the return status */
263#define VA_STATUS_SUCCESS 0x00000000
264#define VA_STATUS_ERROR_OPERATION_FAILED 0x00000001
265#define VA_STATUS_ERROR_ALLOCATION_FAILED 0x00000002
266#define VA_STATUS_ERROR_INVALID_DISPLAY 0x00000003
267#define VA_STATUS_ERROR_INVALID_CONFIG 0x00000004
268#define VA_STATUS_ERROR_INVALID_CONTEXT 0x00000005
269#define VA_STATUS_ERROR_INVALID_SURFACE 0x00000006
270#define VA_STATUS_ERROR_INVALID_BUFFER 0x00000007
271#define VA_STATUS_ERROR_INVALID_IMAGE 0x00000008
272#define VA_STATUS_ERROR_INVALID_SUBPICTURE 0x00000009
273#define VA_STATUS_ERROR_ATTR_NOT_SUPPORTED 0x0000000a
274#define VA_STATUS_ERROR_MAX_NUM_EXCEEDED 0x0000000b
275#define VA_STATUS_ERROR_UNSUPPORTED_PROFILE 0x0000000c
276#define VA_STATUS_ERROR_UNSUPPORTED_ENTRYPOINT 0x0000000d
277#define VA_STATUS_ERROR_UNSUPPORTED_RT_FORMAT 0x0000000e
278#define VA_STATUS_ERROR_UNSUPPORTED_BUFFERTYPE 0x0000000f
279#define VA_STATUS_ERROR_SURFACE_BUSY 0x00000010
280#define VA_STATUS_ERROR_FLAG_NOT_SUPPORTED 0x00000011
281#define VA_STATUS_ERROR_INVALID_PARAMETER 0x00000012
282#define VA_STATUS_ERROR_RESOLUTION_NOT_SUPPORTED 0x00000013
283#define VA_STATUS_ERROR_UNIMPLEMENTED 0x00000014
284#define VA_STATUS_ERROR_SURFACE_IN_DISPLAYING 0x00000015
285#define VA_STATUS_ERROR_INVALID_IMAGE_FORMAT 0x00000016
286#define VA_STATUS_ERROR_DECODING_ERROR 0x00000017
287#define VA_STATUS_ERROR_ENCODING_ERROR 0x00000018
288/**
289 * \brief An invalid/unsupported value was supplied.
290 *
291 * This is a catch-all error code for invalid or unsupported values.
292 * e.g. value exceeding the valid range, invalid type in the context
293 * of generic attribute values.
294 */
295#define VA_STATUS_ERROR_INVALID_VALUE 0x00000019
296/** \brief An unsupported filter was supplied. */
297#define VA_STATUS_ERROR_UNSUPPORTED_FILTER 0x00000020
298/** \brief An invalid filter chain was supplied. */
299#define VA_STATUS_ERROR_INVALID_FILTER_CHAIN 0x00000021
300/** \brief Indicate HW busy (e.g. run multiple encoding simultaneously). */
301#define VA_STATUS_ERROR_HW_BUSY 0x00000022
302/** \brief An unsupported memory type was supplied. */
303#define VA_STATUS_ERROR_UNSUPPORTED_MEMORY_TYPE 0x00000024
304/** \brief Indicate allocated buffer size is not enough for input or output. */
305#define VA_STATUS_ERROR_NOT_ENOUGH_BUFFER 0x00000025
306/** \brief Indicate an operation isn't completed because time-out interval elapsed. */
307#define VA_STATUS_ERROR_TIMEDOUT 0x00000026
308#define VA_STATUS_ERROR_UNKNOWN 0xFFFFFFFF
309
310/**
311 * 1. De-interlacing flags for vaPutSurface()
312 * 2. Surface sample type for input/output surface flag
313 * - Progressive: VA_FRAME_PICTURE
314 * - Interleaved: VA_TOP_FIELD_FIRST, VA_BOTTOM_FIELD_FIRST
315 * - Field: VA_TOP_FIELD, VA_BOTTOM_FIELD
316*/
317#define VA_FRAME_PICTURE 0x00000000
318#define VA_TOP_FIELD 0x00000001
319#define VA_BOTTOM_FIELD 0x00000002
320#define VA_TOP_FIELD_FIRST 0x00000004
321#define VA_BOTTOM_FIELD_FIRST 0x00000008
322
323/**
324 * Enabled the positioning/cropping/blending feature:
325 * 1, specify the video playback position in the isurface
326 * 2, specify the cropping info for video playback
327 * 3, encoded video will blend with background color
328 */
329#define VA_ENABLE_BLEND 0x00000004 /* video area blend with the constant color */
330
331/**
332 * Clears the drawable with background color.
333 * for hardware overlay based implementation this flag
334 * can be used to turn off the overlay
335 */
336#define VA_CLEAR_DRAWABLE 0x00000008
337
338/** Color space conversion flags for vaPutSurface() */
339#define VA_SRC_COLOR_MASK 0x000000f0
340#define VA_SRC_BT601 0x00000010
341#define VA_SRC_BT709 0x00000020
342#define VA_SRC_SMPTE_240 0x00000040
343
344/** Scaling flags for vaPutSurface() */
345#define VA_FILTER_SCALING_DEFAULT 0x00000000
346#define VA_FILTER_SCALING_FAST 0x00000100
347#define VA_FILTER_SCALING_HQ 0x00000200
348#define VA_FILTER_SCALING_NL_ANAMORPHIC 0x00000300
349#define VA_FILTER_SCALING_MASK 0x00000f00
350
351/** Interpolation method for scaling */
352#define VA_FILTER_INTERPOLATION_DEFAULT 0x00000000
353#define VA_FILTER_INTERPOLATION_NEAREST_NEIGHBOR 0x00001000
354#define VA_FILTER_INTERPOLATION_BILINEAR 0x00002000
355#define VA_FILTER_INTERPOLATION_ADVANCED 0x00003000
356#define VA_FILTER_INTERPOLATION_MASK 0x0000f000
357
358/** Padding size in 4-bytes */
359#define VA_PADDING_LOW 4
360#define VA_PADDING_MEDIUM 8
361#define VA_PADDING_HIGH 16
362#define VA_PADDING_LARGE 32
363
364/** operation options */
365/** synchronization, block call, output should be ready after execution function return*/
366#define VA_EXEC_SYNC 0x0
367/** asynchronization,application should call additonal sync operation to access output */
368#define VA_EXEC_ASYNC 0x1
369
370/** operation mode */
371#define VA_EXEC_MODE_DEFAULT 0x0
372#define VA_EXEC_MODE_POWER_SAVING 0x1
373#define VA_EXEC_MODE_PERFORMANCE 0x2
374
375/* Values used to describe device features. */
376/** The feature is not supported by the device.
377 *
378 * Any corresponding feature flag must not be set.
379 */
380#define VA_FEATURE_NOT_SUPPORTED 0
381/** The feature is supported by the device.
382 *
383 * The user may decide whether or not to use this feature.
384 *
385 * Note that support for a feature only indicates that the hardware
386 * is able to use it; whether it is actually a positive change to
387 * enable it in a given situation will depend on other factors
388 * including the input provided by the user.
389 */
390#define VA_FEATURE_SUPPORTED 1
391/** The feature is required by the device.
392 *
393 * The device does not support not enabling this feature, so any
394 * corresponding feature flag must be set and any additional
395 * configuration needed by the feature must be supplied.
396 */
397#define VA_FEATURE_REQUIRED 2
398
399/**
400 * Returns a short english description of error_status
401 */
402const char *vaErrorStr(VAStatus error_status);
403
404typedef struct _VARectangle {
405 int16_t x;
406 int16_t y;
407 uint16_t width;
408 uint16_t height;
409} VARectangle;
410
411/** \brief Generic motion vector data structure. */
412typedef struct _VAMotionVector {
413 /** \mv0[0]: horizontal motion vector for past reference */
414 /** \mv0[1]: vertical motion vector for past reference */
415 /** \mv1[0]: horizontal motion vector for future reference */
416 /** \mv1[1]: vertical motion vector for future reference */
417 int16_t mv0[2]; /* past reference */
418 int16_t mv1[2]; /* future reference */
419} VAMotionVector;
420
421/** Type of a message callback, used for both error and info log. */
422typedef void (*VAMessageCallback)(void *user_context, const char *message);
423
424/**
425 * Set the callback for error messages, or NULL for no logging.
426 * Returns the previous one, or NULL if it was disabled.
427 */
428VAMessageCallback vaSetErrorCallback(VADisplay dpy, VAMessageCallback callback, void *user_context);
429
430/**
431 * Set the callback for info messages, or NULL for no logging.
432 * Returns the previous one, or NULL if it was disabled.
433 */
434VAMessageCallback vaSetInfoCallback(VADisplay dpy, VAMessageCallback callback, void *user_context);
435
436/**
437 * Initialization:
438 * A display must be obtained by calling vaGetDisplay() before calling
439 * vaInitialize() and other functions. This connects the API to the
440 * native window system.
441 * For X Windows, native_dpy would be from XOpenDisplay()
442 */
443typedef void* VANativeDisplay; /* window system dependent */
444
445int vaDisplayIsValid(VADisplay dpy);
446
447/**
448 * Set the override driver name instead of queried driver driver.
449 */
450VAStatus vaSetDriverName(VADisplay dpy,
451 char *driver_name
452 );
453
454/**
455 * Initialize the library
456 */
457VAStatus vaInitialize(
458 VADisplay dpy,
459 int *major_version, /* out */
460 int *minor_version /* out */
461);
462
463/**
464 * After this call, all library internal resources will be cleaned up
465 */
466VAStatus vaTerminate(
467 VADisplay dpy
468);
469
470/**
471 * vaQueryVendorString returns a pointer to a zero-terminated string
472 * describing some aspects of the VA implemenation on a specific
473 * hardware accelerator. The format of the returned string is vendor
474 * specific and at the discretion of the implementer.
475 * e.g. for the Intel GMA500 implementation, an example would be:
476 * "Intel GMA500 - 2.0.0.32L.0005"
477 */
478const char *vaQueryVendorString(
479 VADisplay dpy
480);
481
482typedef int (*VAPrivFunc)(void);
483
484/**
485 * Return a function pointer given a function name in the library.
486 * This allows private interfaces into the library
487 */
488VAPrivFunc vaGetLibFunc(
489 VADisplay dpy,
490 const char *func
491);
492
493/** Currently defined profiles */
494typedef enum {
495 /** \brief Profile ID used for video processing. */
496 VAProfileNone = -1,
497 VAProfileMPEG2Simple = 0,
498 VAProfileMPEG2Main = 1,
499 VAProfileMPEG4Simple = 2,
500 VAProfileMPEG4AdvancedSimple = 3,
501 VAProfileMPEG4Main = 4,
502 VAProfileH264Baseline va_deprecated_enum = 5,
503 VAProfileH264Main = 6,
504 VAProfileH264High = 7,
505 VAProfileVC1Simple = 8,
506 VAProfileVC1Main = 9,
507 VAProfileVC1Advanced = 10,
508 VAProfileH263Baseline = 11,
509 VAProfileJPEGBaseline = 12,
510 VAProfileH264ConstrainedBaseline = 13,
511 VAProfileVP8Version0_3 = 14,
512 VAProfileH264MultiviewHigh = 15,
513 VAProfileH264StereoHigh = 16,
514 VAProfileHEVCMain = 17,
515 VAProfileHEVCMain10 = 18,
516 VAProfileVP9Profile0 = 19,
517 VAProfileVP9Profile1 = 20,
518 VAProfileVP9Profile2 = 21,
519 VAProfileVP9Profile3 = 22,
520 VAProfileHEVCMain12 = 23,
521 VAProfileHEVCMain422_10 = 24,
522 VAProfileHEVCMain422_12 = 25,
523 VAProfileHEVCMain444 = 26,
524 VAProfileHEVCMain444_10 = 27,
525 VAProfileHEVCMain444_12 = 28,
526 VAProfileHEVCSccMain = 29,
527 VAProfileHEVCSccMain10 = 30,
528 VAProfileHEVCSccMain444 = 31,
529 VAProfileAV1Profile0 = 32,
530 VAProfileAV1Profile1 = 33,
531 VAProfileHEVCSccMain444_10 = 34,
532 /** \brief Profile ID used for protected video playback. */
533 VAProfileProtected = 35
534} VAProfile;
535
536/**
537 * Currently defined entrypoints
538 */
539typedef enum {
540 VAEntrypointVLD = 1,
541 VAEntrypointIZZ = 2,
542 VAEntrypointIDCT = 3,
543 VAEntrypointMoComp = 4,
544 VAEntrypointDeblocking = 5,
545 VAEntrypointEncSlice = 6, /* slice level encode */
546 VAEntrypointEncPicture = 7, /* pictuer encode, JPEG, etc */
547 /*
548 * For an implementation that supports a low power/high performance variant
549 * for slice level encode, it can choose to expose the
550 * VAEntrypointEncSliceLP entrypoint. Certain encoding tools may not be
551 * available with this entrypoint (e.g. interlace, MBAFF) and the
552 * application can query the encoding configuration attributes to find
553 * out more details if this entrypoint is supported.
554 */
555 VAEntrypointEncSliceLP = 8,
556 VAEntrypointVideoProc = 10, /**< Video pre/post-processing. */
557 /**
558 * \brief VAEntrypointFEI
559 *
560 * The purpose of FEI (Flexible Encoding Infrastructure) is to allow applications to
561 * have more controls and trade off quality for speed with their own IPs.
562 * The application can optionally provide input to ENC for extra encode control
563 * and get the output from ENC. Application can chose to modify the ENC
564 * output/PAK input during encoding, but the performance impact is significant.
565 *
566 * On top of the existing buffers for normal encode, there will be
567 * one extra input buffer (VAEncMiscParameterFEIFrameControl) and
568 * three extra output buffers (VAEncFEIMVBufferType, VAEncFEIMBModeBufferType
569 * and VAEncFEIDistortionBufferType) for VAEntrypointFEI entry function.
570 * If separate PAK is set, two extra input buffers
571 * (VAEncFEIMVBufferType, VAEncFEIMBModeBufferType) are needed for PAK input.
572 **/
573 VAEntrypointFEI = 11,
574 /**
575 * \brief VAEntrypointStats
576 *
577 * A pre-processing function for getting some statistics and motion vectors is added,
578 * and some extra controls for Encode pipeline are provided. The application can
579 * optionally call the statistics function to get motion vectors and statistics like
580 * variances, distortions before calling Encode function via this entry point.
581 *
582 * Checking whether Statistics is supported can be performed with vaQueryConfigEntrypoints().
583 * If Statistics entry point is supported, then the list of returned entry-points will
584 * include #VAEntrypointStats. Supported pixel format, maximum resolution and statistics
585 * specific attributes can be obtained via normal attribute query. One input buffer
586 * (VAStatsStatisticsParameterBufferType) and one or two output buffers
587 * (VAStatsStatisticsBufferType, VAStatsStatisticsBottomFieldBufferType (for interlace only)
588 * and VAStatsMVBufferType) are needed for this entry point.
589 **/
590 VAEntrypointStats = 12,
591 /**
592 * \brief VAEntrypointProtectedTEEComm
593 *
594 * A function for communicating with TEE (Trusted Execution Environment).
595 **/
596 VAEntrypointProtectedTEEComm = 13,
597 /**
598 * \brief VAEntrypointProtectedContent
599 *
600 * A function for protected content to decrypt encrypted content.
601 **/
602 VAEntrypointProtectedContent = 14,
603} VAEntrypoint;
604
605/** Currently defined configuration attribute types */
606typedef enum {
607 VAConfigAttribRTFormat = 0,
608 VAConfigAttribSpatialResidual = 1,
609 VAConfigAttribSpatialClipping = 2,
610 VAConfigAttribIntraResidual = 3,
611 VAConfigAttribEncryption = 4,
612 VAConfigAttribRateControl = 5,
613
614 /** @name Attributes for decoding */
615 /**@{*/
616 /**
617 * \brief Slice Decoding mode. Read/write.
618 *
619 * This attribute determines what mode the driver supports for slice
620 * decoding, through vaGetConfigAttributes(); and what mode the user
621 * will be providing to the driver, through vaCreateConfig(), if the
622 * driver supports those. If this attribute is not set by the user then
623 * it is assumed that VA_DEC_SLICE_MODE_NORMAL mode is used.
624 *
625 * See \c VA_DEC_SLICE_MODE_xxx for the list of slice decoding modes.
626 */
627 VAConfigAttribDecSliceMode = 6,
628 /**
629 * \brief JPEG decoding attribute. Read-only.
630 *
631 * This attribute exposes a number of capabilities of the underlying
632 * JPEG implementation. The attribute value is partitioned into fields as defined in the
633 * VAConfigAttribValDecJPEG union.
634 */
635 VAConfigAttribDecJPEG = 7,
636 /**
637 * \brief Decode processing support. Read/write.
638 *
639 * This attribute determines if the driver supports video processing
640 * with decoding using the decoding context in a single call, through
641 * vaGetConfigAttributes(); and if the user may use this feature,
642 * through vaCreateConfig(), if the driver supports the user scenario.
643 * The user will essentially create a regular decode VAContext. Therefore,
644 * the parameters of vaCreateContext() such as picture_width, picture_height
645 * and render_targets are in relation to the decode output parameters
646 * (not processing output parameters) as normal.
647 * If this attribute is not set by the user then it is assumed that no
648 * extra processing is done after decoding for this decode context.
649 *
650 * Since essentially the application is creating a decoder config and context,
651 * all function calls that take in the config (e.g. vaQuerySurfaceAttributes())
652 * or context are in relation to the decoder, except those video processing
653 * function specified in the next paragraph.
654 *
655 * Once the decode config and context are created, the user must further
656 * query the supported processing filters using vaQueryVideoProcFilters(),
657 * vaQueryVideoProcFilterCaps(), vaQueryVideoProcPipelineCaps() by specifying
658 * the created decode context. The user must provide processing information
659 * and extra processing output surfaces as "additional_outputs" to the driver
660 * through VAProcPipelineParameterBufferType. The render_target specified
661 * at vaBeginPicture() time refers to the decode output surface. The
662 * target surface for the output of processing needs to be a different
663 * surface since the decode process requires the original reconstructed buffer.
664 * The “surface” member of VAProcPipelineParameterBuffer should be set to the
665 * same as “render_target” set in vaBeginPicture(), but the driver may choose
666 * to ignore this parameter.
667 */
668 VAConfigAttribDecProcessing = 8,
669 /** @name Attributes for encoding */
670 /**@{*/
671 /**
672 * \brief Packed headers mode. Read/write.
673 *
674 * This attribute determines what packed headers the driver supports,
675 * through vaGetConfigAttributes(); and what packed headers the user
676 * will be providing to the driver, through vaCreateConfig(), if the
677 * driver supports those.
678 *
679 * See \c VA_ENC_PACKED_HEADER_xxx for the list of packed headers.
680 */
681 VAConfigAttribEncPackedHeaders = 10,
682 /**
683 * \brief Interlaced mode. Read/write.
684 *
685 * This attribute determines what kind of interlaced encoding mode
686 * the driver supports.
687 *
688 * See \c VA_ENC_INTERLACED_xxx for the list of interlaced modes.
689 */
690 VAConfigAttribEncInterlaced = 11,
691 /**
692 * \brief Maximum number of reference frames. Read-only.
693 *
694 * This attribute determines the maximum number of reference
695 * frames supported for encoding.
696 *
697 * Note: for H.264 encoding, the value represents the maximum number
698 * of reference frames for both the reference picture list 0 (bottom
699 * 16 bits) and the reference picture list 1 (top 16 bits).
700 */
701 VAConfigAttribEncMaxRefFrames = 13,
702 /**
703 * \brief Maximum number of slices per frame. Read-only.
704 *
705 * This attribute determines the maximum number of slices the
706 * driver can support to encode a single frame.
707 */
708 VAConfigAttribEncMaxSlices = 14,
709 /**
710 * \brief Slice structure. Read-only.
711 *
712 * This attribute determines slice structures supported by the
713 * driver for encoding. This attribute is a hint to the user so
714 * that he can choose a suitable surface size and how to arrange
715 * the encoding process of multiple slices per frame.
716 *
717 * More specifically, for H.264 encoding, this attribute
718 * determines the range of accepted values to
719 * VAEncSliceParameterBufferH264::macroblock_address and
720 * VAEncSliceParameterBufferH264::num_macroblocks.
721 *
722 * See \c VA_ENC_SLICE_STRUCTURE_xxx for the supported slice
723 * structure types.
724 */
725 VAConfigAttribEncSliceStructure = 15,
726 /**
727 * \brief Macroblock information. Read-only.
728 *
729 * This attribute determines whether the driver supports extra
730 * encoding information per-macroblock. e.g. QP.
731 *
732 * More specifically, for H.264 encoding, if the driver returns a non-zero
733 * value for this attribute, this means the application can create
734 * additional #VAEncMacroblockParameterBufferH264 buffers referenced
735 * through VAEncSliceParameterBufferH264::macroblock_info.
736 */
737 VAConfigAttribEncMacroblockInfo = 16,
738 /**
739 * \brief Maximum picture width. Read-only.
740 *
741 * This attribute determines the maximum picture width the driver supports
742 * for a given configuration.
743 */
744 VAConfigAttribMaxPictureWidth = 18,
745 /**
746 * \brief Maximum picture height. Read-only.
747 *
748 * This attribute determines the maximum picture height the driver supports
749 * for a given configuration.
750 */
751 VAConfigAttribMaxPictureHeight = 19,
752 /**
753 * \brief JPEG encoding attribute. Read-only.
754 *
755 * This attribute exposes a number of capabilities of the underlying
756 * JPEG implementation. The attribute value is partitioned into fields as defined in the
757 * VAConfigAttribValEncJPEG union.
758 */
759 VAConfigAttribEncJPEG = 20,
760 /**
761 * \brief Encoding quality range attribute. Read-only.
762 *
763 * This attribute conveys whether the driver supports different quality level settings
764 * for encoding. A value less than or equal to 1 means that the encoder only has a single
765 * quality setting, and a value greater than 1 represents the number of quality levels
766 * that can be configured. e.g. a value of 2 means there are two distinct quality levels.
767 */
768 VAConfigAttribEncQualityRange = 21,
769 /**
770 * \brief Encoding quantization attribute. Read-only.
771 *
772 * This attribute conveys whether the driver supports certain types of quantization methods
773 * for encoding (e.g. trellis). See \c VA_ENC_QUANTIZATION_xxx for the list of quantization methods
774 */
775 VAConfigAttribEncQuantization = 22,
776 /**
777 * \brief Encoding intra refresh attribute. Read-only.
778 *
779 * This attribute conveys whether the driver supports certain types of intra refresh methods
780 * for encoding (e.g. adaptive intra refresh or rolling intra refresh).
781 * See \c VA_ENC_INTRA_REFRESH_xxx for intra refresh methods
782 */
783 VAConfigAttribEncIntraRefresh = 23,
784 /**
785 * \brief Encoding skip frame attribute. Read-only.
786 *
787 * This attribute conveys whether the driver supports sending skip frame parameters
788 * (VAEncMiscParameterTypeSkipFrame) to the encoder's rate control, when the user has
789 * externally skipped frames.
790 */
791 VAConfigAttribEncSkipFrame = 24,
792 /**
793 * \brief Encoding region-of-interest (ROI) attribute. Read-only.
794 *
795 * This attribute conveys whether the driver supports region-of-interest (ROI) encoding,
796 * based on user provided ROI rectangles. The attribute value is partitioned into fields
797 * as defined in the VAConfigAttribValEncROI union.
798 *
799 * If ROI encoding is supported, the ROI information is passed to the driver using
800 * VAEncMiscParameterTypeROI.
801 */
802 VAConfigAttribEncROI = 25,
803 /**
804 * \brief Encoding extended rate control attribute. Read-only.
805 *
806 * This attribute conveys whether the driver supports any extended rate control features
807 * The attribute value is partitioned into fields as defined in the
808 * VAConfigAttribValEncRateControlExt union.
809 */
810 VAConfigAttribEncRateControlExt = 26,
811 /**
812 * \brief Processing rate reporting attribute. Read-only.
813 *
814 * This attribute conveys whether the driver supports reporting of
815 * encode/decode processing rate based on certain set of parameters
816 * (i.e. levels, I frame internvals) for a given configuration.
817 * If this is supported, vaQueryProcessingRate() can be used to get
818 * encode or decode processing rate.
819 * See \c VA_PROCESSING_RATE_xxx for encode/decode processing rate
820 */
821 VAConfigAttribProcessingRate = 27,
822 /**
823 * \brief Encoding dirty rectangle. Read-only.
824 *
825 * This attribute conveys whether the driver supports dirty rectangle.
826 * encoding, based on user provided ROI rectangles which indicate the rectangular areas
827 * where the content has changed as compared to the previous picture. The regions of the
828 * picture that are not covered by dirty rect rectangles are assumed to have not changed
829 * compared to the previous picture. The encoder may do some optimizations based on
830 * this information. The attribute value returned indicates the number of regions that
831 * are supported. e.g. A value of 0 means dirty rect encoding is not supported. If dirty
832 * rect encoding is supported, the ROI information is passed to the driver using
833 * VAEncMiscParameterTypeDirtyRect.
834 */
835 VAConfigAttribEncDirtyRect = 28,
836 /**
837 * \brief Parallel Rate Control (hierachical B) attribute. Read-only.
838 *
839 * This attribute conveys whether the encoder supports parallel rate control.
840 * It is a integer value 0 - unsupported, > 0 - maximum layer supported.
841 * This is the way when hireachical B frames are encoded, multiple independent B frames
842 * on the same layer may be processed at same time. If supported, app may enable it by
843 * setting enable_parallel_brc in VAEncMiscParameterRateControl,and the number of B frames
844 * per layer per GOP will be passed to driver through VAEncMiscParameterParallelRateControl
845 * structure.Currently three layers are defined.
846 */
847 VAConfigAttribEncParallelRateControl = 29,
848 /**
849 * \brief Dynamic Scaling Attribute. Read-only.
850 *
851 * This attribute conveys whether encoder is capable to determine dynamic frame
852 * resolutions adaptive to bandwidth utilization and processing power, etc.
853 * It is a boolean value 0 - unsupported, 1 - supported.
854 * If it is supported,for VP9, suggested frame resolution can be retrieved from VACodedBufferVP9Status.
855 */
856 VAConfigAttribEncDynamicScaling = 30,
857 /**
858 * \brief frame size tolerance support
859 * it indicates the tolerance of frame size
860 */
861 VAConfigAttribFrameSizeToleranceSupport = 31,
862 /**
863 * \brief Encode function type for FEI.
864 *
865 * This attribute conveys whether the driver supports different function types for encode.
866 * It can be VA_FEI_FUNCTION_ENC, VA_FEI_FUNCTION_PAK, or VA_FEI_FUNCTION_ENC_PAK. Currently
867 * it is for FEI entry point only.
868 * Default is VA_FEI_FUNCTION_ENC_PAK.
869 */
870 VAConfigAttribFEIFunctionType = 32,
871 /**
872 * \brief Maximum number of FEI MV predictors. Read-only.
873 *
874 * This attribute determines the maximum number of MV predictors the driver
875 * can support to encode a single frame. 0 means no MV predictor is supported.
876 * Currently it is for FEI entry point only.
877 */
878 VAConfigAttribFEIMVPredictors = 33,
879 /**
880 * \brief Statistics attribute. Read-only.
881 *
882 * This attribute exposes a number of capabilities of the VAEntrypointStats entry
883 * point. The attribute value is partitioned into fields as defined in the
884 * VAConfigAttribValStats union. Currently it is for VAEntrypointStats only.
885 */
886 VAConfigAttribStats = 34,
887 /**
888 * \brief Tile Support Attribute. Read-only.
889 *
890 * This attribute conveys whether encoder is capable to support tiles.
891 * If not supported, the tile related parameters sent to encoder, such as
892 * tiling structure, should be ignored. 0 - unsupported, 1 - supported.
893 */
894 VAConfigAttribEncTileSupport = 35,
895 /**
896 * \brief whether accept rouding setting from application. Read-only.
897 * This attribute is for encode quality, if it is report,
898 * application can change the rounding setting by VAEncMiscParameterTypeCustomRoundingControl
899 */
900 VAConfigAttribCustomRoundingControl = 36,
901 /**
902 * \brief Encoding QP info block size attribute. Read-only.
903 * This attribute conveys the block sizes that underlying driver
904 * support for QP info for buffer #VAEncQpBuffer.
905 */
906 VAConfigAttribQPBlockSize = 37,
907 /**
908 * \brief encode max frame size attribute. Read-only
909 * attribute value \c VAConfigAttribValMaxFrameSize represent max frame size support
910 */
911 VAConfigAttribMaxFrameSize = 38,
912 /** \brief inter frame prediction directrion attribute. Read-only.
913 * this attribute conveys the prediction direction (backward or forword) for specific config
914 * the value could be VA_PREDICTION_DIRECTION_XXXX. it can be combined with VAConfigAttribEncMaxRefFrames
915 * to describe reference list , and the prediction direction. if this attrib is not present,both direction
916 * should be supported, no restriction.
917 * for example: normal HEVC encoding , maximum reference frame number in reflist 0 and reflist 1 is deduced
918 * by VAConfigAttribEncMaxRefFrames. so there are typical P frame, B frame,
919 * if VAConfigAttribPredictionDirection is also present. it will stipulate prediction direction in both
920 * reference list. if only one prediction direction present(such as PREVIOUS),all reference frame should be
921 * previous frame (PoC < current).
922 */
923 VAConfigAttribPredictionDirection = 39,
924 /** \brief combined submission of multiple frames from different streams, it is optimization for different HW
925 * implementation, multiple frames encode/decode can improve HW concurrency
926 */
927 VAConfigAttribMultipleFrame = 40,
928 /** \brief priority setting for the context. Read-Write
929 * attribute value is \c VAConfigAttribValContextPriority
930 * this setting also could be update by \c VAContextParameterUpdateBuffer
931 */
932 VAConfigAttribContextPriority = 41,
933 /** \brief AV1 decoding features. Read-only.
934 *
935 * This attribute describes the supported features of an
936 * AV1 decoder configuration. The value returned uses the
937 * VAConfigAttribValDecAV1Features type.
938 */
939 VAConfigAttribDecAV1Features = 42,
940 /** \brief TEE could be any HW secure device. Read-only */
941 VAConfigAttribTEEType = 43,
942 /** \brief TEE type client is a specific module supporting specific functions in TEE. Read-only*/
943 VAConfigAttribTEETypeClient = 44,
944 /**
945 * \brief Cipher algorithm of the protected content session.
946 *
947 * This attribute specifies the cipher algorithm of the protected content session. It
948 * could be \c VA_PC_CIPHER_AES, etc....
949 */
950 VAConfigAttribProtectedContentCipherAlgorithm = 45,
951 /**
952 * \brief Cipher block size of the protected content session.
953 *
954 * This attribute specifies the block size of the protected content session. It could be
955 * \c VA_PC_BLOCK_SIZE_128, \c VA_PC_BLOCK_SIZE_192, or \c VA_PC_BLOCK_SIZE_256, etc....
956 */
957 VAConfigAttribProtectedContentCipherBlockSize = 46,
958 /**
959 * \brief Cipher mode of the protected content session.
960 *
961 * This attribute specifies the cipher mode of the protected content session. It could
962 * be \c VA_PC_CIPHER_MODE_ECB, \c VA_PC_CIPHER_MODE_CBC, \c VA_PC_CIPHER_MODE_CTR, etc...
963 */
964 VAConfigAttribProtectedContentCipherMode = 47,
965 /**
966 * \brief Decryption sample type of the protected content session.
967 *
968 * This attribute specifies the decryption sample type of the protected content session.
969 * It could be \c VA_PC_SAMPLE_TYPE_FULLSAMPLE or \c VA_PC_SAMPLE_TYPE_SUBSAMPLE.
970 */
971 VAConfigAttribProtectedContentCipherSampleType = 48,
972 /**
973 * \brief Special usage attribute of the protected session.
974 *
975 * The attribute specifies the flow for the protected session could be used. For
976 * example, it could be \c VA_PC_USAGE_DEFAULT, \c VA_PC_USAGE_WIDEVINE, etc....
977 */
978 VAConfigAttribProtectedContentUsage = 49,
979
980 /** \brief HEVC/H.265 encoding features. Read-only.
981 *
982 * This attribute describes the supported features of an
983 * HEVC/H.265 encoder configuration. The value returned uses the
984 * VAConfigAttribValEncHEVCFeatures type.
985 *
986 * If this attribute is supported by a driver then it must also
987 * support the VAConfigAttribEncHEVCBlockSizes attribute.
988 */
989 VAConfigAttribEncHEVCFeatures = 50,
990 /** \brief HEVC/H.265 encoding block sizes. Read-only.
991 *
992 * This attribute describes the supported coding tree and transform
993 * block sizes of an HEVC/H.265 encoder configuration. The value
994 * returned uses the VAConfigAttribValEncHEVCBlockSizes type.
995 *
996 * If this attribute is supported by a driver then it must also
997 * support the VAConfigAttribEncHEVCFeatures attribute.
998 */
999 VAConfigAttribEncHEVCBlockSizes = 51,
1000 /**
1001 * \brief AV1 encoding attribute. Read-only.
1002 *
1003 * This attribute exposes a number of capabilities of the underlying
1004 * AV1 implementation. The attribute value is partitioned into fields as defined in the
1005 * VAConfigAttribValEncAV1 union.
1006 */
1007 VAConfigAttribEncAV1 = 52,
1008 /**
1009 * \brief AV1 encoding attribute extend1. Read-only.
1010 *
1011 * This attribute exposes a number of capabilities of the underlying
1012 * AV1 implementation. The attribute value is partitioned into fields as defined in the
1013 * VAConfigAttribValEncAV1Ext1 union.
1014 */
1015 VAConfigAttribEncAV1Ext1 = 53,
1016 /**
1017 * \brief AV1 encoding attribute extend2. Read-only.
1018 *
1019 * This attribute exposes a number of capabilities of the underlying
1020 * AV1 implementation. The attribute value is partitioned into fields as defined in the
1021 * VAConfigAttribValEncAV1Ext2 union.
1022 */
1023 VAConfigAttribEncAV1Ext2 = 54,
1024 /**@}*/
1025 VAConfigAttribTypeMax
1026} VAConfigAttribType;
1027
1028/**
1029 * Configuration attributes
1030 * If there is more than one value for an attribute, a default
1031 * value will be assigned to the attribute if the client does not
1032 * specify the attribute when creating a configuration
1033 */
1034typedef struct _VAConfigAttrib {
1035 VAConfigAttribType type;
1036 uint32_t value; /* OR'd flags (bits) for this attribute */
1037} VAConfigAttrib;
1038
1039/* Attribute values for VAConfigAttribRTFormat. */
1040
1041#define VA_RT_FORMAT_YUV420 0x00000001 ///< YUV 4:2:0 8-bit.
1042#define VA_RT_FORMAT_YUV422 0x00000002 ///< YUV 4:2:2 8-bit.
1043#define VA_RT_FORMAT_YUV444 0x00000004 ///< YUV 4:4:4 8-bit.
1044#define VA_RT_FORMAT_YUV411 0x00000008 ///< YUV 4:1:1 8-bit.
1045#define VA_RT_FORMAT_YUV400 0x00000010 ///< Greyscale 8-bit.
1046#define VA_RT_FORMAT_YUV420_10 0x00000100 ///< YUV 4:2:0 10-bit.
1047#define VA_RT_FORMAT_YUV422_10 0x00000200 ///< YUV 4:2:2 10-bit.
1048#define VA_RT_FORMAT_YUV444_10 0x00000400 ///< YUV 4:4:4 10-bit.
1049#define VA_RT_FORMAT_YUV420_12 0x00001000 ///< YUV 4:2:0 12-bit.
1050#define VA_RT_FORMAT_YUV422_12 0x00002000 ///< YUV 4:2:2 12-bit.
1051#define VA_RT_FORMAT_YUV444_12 0x00004000 ///< YUV 4:4:4 12-bit.
1052
1053#define VA_RT_FORMAT_RGB16 0x00010000 ///< Packed RGB, 16 bits per pixel.
1054#define VA_RT_FORMAT_RGB32 0x00020000 ///< Packed RGB, 32 bits per pixel, 8 bits per colour sample.
1055#define VA_RT_FORMAT_RGBP 0x00100000 ///< Planar RGB, 8 bits per sample.
1056#define VA_RT_FORMAT_RGB32_10 0x00200000 ///< Packed RGB, 32 bits per pixel, 10 bits per colour sample.
1057
1058#define VA_RT_FORMAT_PROTECTED 0x80000000
1059
1060#define VA_RT_FORMAT_RGB32_10BPP VA_RT_FORMAT_RGB32_10 ///< @deprecated use VA_RT_FORMAT_RGB32_10 instead.
1061#define VA_RT_FORMAT_YUV420_10BPP VA_RT_FORMAT_YUV420_10 ///< @deprecated use VA_RT_FORMAT_YUV420_10 instead.
1062
1063/** @name Attribute values for VAConfigAttribRateControl */
1064/**@{*/
1065/** \brief Driver does not support any form of rate control. */
1066#define VA_RC_NONE 0x00000001
1067/** \brief Constant bitrate. */
1068#define VA_RC_CBR 0x00000002
1069/** \brief Variable bitrate. */
1070#define VA_RC_VBR 0x00000004
1071/** \brief Video conference mode. */
1072#define VA_RC_VCM 0x00000008
1073/** \brief Constant QP. */
1074#define VA_RC_CQP 0x00000010
1075/** \brief Variable bitrate with peak rate higher than average bitrate. */
1076#define VA_RC_VBR_CONSTRAINED 0x00000020
1077/** \brief Intelligent Constant Quality. Provided an initial ICQ_quality_factor,
1078 * adjusts QP at a frame and MB level based on motion to improve subjective quality. */
1079#define VA_RC_ICQ 0x00000040
1080/** \brief Macroblock based rate control. Per MB control is decided
1081 * internally in the encoder. It may be combined with other RC modes, except CQP. */
1082#define VA_RC_MB 0x00000080
1083/** \brief Constant Frame Size, it is used for small tolerent */
1084#define VA_RC_CFS 0x00000100
1085/** \brief Parallel BRC, for hierachical B.
1086 *
1087 * For hierachical B, B frames can be refered by other B frames.
1088 * Currently three layers of hierachy are defined:
1089 * B0 - regular B, no reference to other B frames.
1090 * B1 - reference to only I, P and regular B0 frames.
1091 * B2 - reference to any other frames, including B1.
1092 * In Hierachical B structure, B frames on the same layer can be processed
1093 * simultaneously. And BRC would adjust accordingly. This is so called
1094 * Parallel BRC. */
1095#define VA_RC_PARALLEL 0x00000200
1096/** \brief Quality defined VBR
1097 * Use Quality factor to determine the good enough QP for each MB such that
1098 * good enough quality can be obtained without waste of bits
1099 * for this BRC mode, you must set all legacy VBR parameters
1100 * and reuse quality_factor in \c VAEncMiscParameterRateControl
1101 * */
1102#define VA_RC_QVBR 0x00000400
1103/** \brief Average VBR
1104 * Average variable bitrate control algorithm focuses on overall encoding
1105 * quality while meeting the specified target bitrate, within the accuracy
1106 * range, after a convergence period.
1107 * bits_per_second in VAEncMiscParameterRateControl is target bitrate for AVBR.
1108 * Convergence is specified in the unit of frame.
1109 * window_size in VAEncMiscParameterRateControl is equal to convergence for AVBR.
1110 * Accuracy is in the range of [1,100], 1 means one percent, and so on.
1111 * target_percentage in VAEncMiscParameterRateControl is equal to accuracy for AVBR.
1112 * */
1113#define VA_RC_AVBR 0x00000800
1114/** \brief Transport Controlled BRC
1115 * Specific bitrate control for real time streaming.
1116 * TCBRC can instantly react to channel change to remove or significantly reduce the delay.
1117 * Application (transport) provides channel feedback to driver through TargetFrameSize.
1118 * When channel condition is very good (almost no constraint on instant frame size),
1119 * the app should set target frame size as zero. Otherwise, channel capacity divided by fps
1120 * should be used.
1121 * */
1122#define VA_RC_TCBRC 0x00001000
1123
1124/**@}*/
1125
1126/** @name Attribute values for VAConfigAttribDecSliceMode */
1127/**@{*/
1128/** \brief Driver supports normal mode for slice decoding */
1129#define VA_DEC_SLICE_MODE_NORMAL 0x00000001
1130/** \brief Driver supports base mode for slice decoding */
1131#define VA_DEC_SLICE_MODE_BASE 0x00000002
1132
1133/** @name Attribute values for VAConfigAttribDecJPEG */
1134/**@{*/
1135typedef union _VAConfigAttribValDecJPEG {
1136 struct {
1137 /** \brief Set to (1 << VA_ROTATION_xxx) for supported rotation angles. */
1138 uint32_t rotation : 4;
1139 /** \brief Reserved for future use. */
1140 uint32_t reserved : 28;
1141 } bits;
1142 uint32_t value;
1143} VAConfigAttribValDecJPEG;
1144/** @name Attribute values for VAConfigAttribDecProcessing */
1145/**@{*/
1146/** \brief No decoding + processing in a single decoding call. */
1147#define VA_DEC_PROCESSING_NONE 0x00000000
1148/** \brief Decode + processing in a single decoding call. */
1149#define VA_DEC_PROCESSING 0x00000001
1150/**@}*/
1151
1152/** @name Attribute values for VAConfigAttribEncPackedHeaders */
1153/**@{*/
1154/** \brief Driver does not support any packed headers mode. */
1155#define VA_ENC_PACKED_HEADER_NONE 0x00000000
1156/**
1157 * \brief Driver supports packed sequence headers. e.g. SPS for H.264.
1158 *
1159 * Application must provide it to driver once this flag is returned through
1160 * vaGetConfigAttributes()
1161 */
1162#define VA_ENC_PACKED_HEADER_SEQUENCE 0x00000001
1163/**
1164 * \brief Driver supports packed picture headers. e.g. PPS for H.264.
1165 *
1166 * Application must provide it to driver once this falg is returned through
1167 * vaGetConfigAttributes()
1168 */
1169#define VA_ENC_PACKED_HEADER_PICTURE 0x00000002
1170/**
1171 * \brief Driver supports packed slice headers. e.g. slice_header() for H.264.
1172 *
1173 * Application must provide it to driver once this flag is returned through
1174 * vaGetConfigAttributes()
1175 */
1176#define VA_ENC_PACKED_HEADER_SLICE 0x00000004
1177/**
1178 * \brief Driver supports misc packed headers. e.g. SEI for H.264.
1179 *
1180 * @deprecated
1181 * This is a deprecated packed header flag, All applications can use
1182 * \c VA_ENC_PACKED_HEADER_RAW_DATA to pass the corresponding packed
1183 * header data buffer to the driver
1184 */
1185#define VA_ENC_PACKED_HEADER_MISC 0x00000008
1186/** \brief Driver supports raw packed header, see VAEncPackedHeaderRawData */
1187#define VA_ENC_PACKED_HEADER_RAW_DATA 0x00000010
1188/**@}*/
1189
1190/** @name Attribute values for VAConfigAttribEncInterlaced */
1191/**@{*/
1192/** \brief Driver does not support interlaced coding. */
1193#define VA_ENC_INTERLACED_NONE 0x00000000
1194/** \brief Driver supports interlaced frame coding. */
1195#define VA_ENC_INTERLACED_FRAME 0x00000001
1196/** \brief Driver supports interlaced field coding. */
1197#define VA_ENC_INTERLACED_FIELD 0x00000002
1198/** \brief Driver supports macroblock adaptive frame field coding. */
1199#define VA_ENC_INTERLACED_MBAFF 0x00000004
1200/** \brief Driver supports picture adaptive frame field coding. */
1201#define VA_ENC_INTERLACED_PAFF 0x00000008
1202/**@}*/
1203
1204/** @name Attribute values for VAConfigAttribEncSliceStructure */
1205/**@{*/
1206/** \brief Driver supports a power-of-two number of rows per slice. */
1207#define VA_ENC_SLICE_STRUCTURE_POWER_OF_TWO_ROWS 0x00000001
1208/** \brief Driver supports an arbitrary number of macroblocks per slice. */
1209#define VA_ENC_SLICE_STRUCTURE_ARBITRARY_MACROBLOCKS 0x00000002
1210/** \brief Driver support 1 row per slice */
1211#define VA_ENC_SLICE_STRUCTURE_EQUAL_ROWS 0x00000004
1212/** \brief Driver support max encoded slice size per slice */
1213#define VA_ENC_SLICE_STRUCTURE_MAX_SLICE_SIZE 0x00000008
1214/** \brief Driver supports an arbitrary number of rows per slice. */
1215#define VA_ENC_SLICE_STRUCTURE_ARBITRARY_ROWS 0x00000010
1216/** \brief Driver supports any number of rows per slice but they must be the same
1217* for all slices except for the last one, which must be equal or smaller
1218* to the previous slices. */
1219#define VA_ENC_SLICE_STRUCTURE_EQUAL_MULTI_ROWS 0x00000020
1220/**@}*/
1221
1222/** \brief Attribute value for VAConfigAttribMaxFrameSize */
1223typedef union _VAConfigAttribValMaxFrameSize {
1224 struct {
1225 /** \brief support max frame size
1226 * if max_frame_size == 1, VAEncMiscParameterTypeMaxFrameSize/VAEncMiscParameterBufferMaxFrameSize
1227 * could be used to set the frame size, if multiple_pass also equal 1, VAEncMiscParameterTypeMultiPassFrameSize
1228 * VAEncMiscParameterBufferMultiPassFrameSize could be used to set frame size and pass information
1229 */
1230 uint32_t max_frame_size : 1;
1231 /** \brief multiple_pass support */
1232 uint32_t multiple_pass : 1;
1233 /** \brief reserved bits for future, must be zero*/
1234 uint32_t reserved : 30;
1235 } bits;
1236 uint32_t value;
1237} VAConfigAttribValMaxFrameSize;
1238
1239/** \brief Attribute value for VAConfigAttribEncJPEG */
1240typedef union _VAConfigAttribValEncJPEG {
1241 struct {
1242 /** \brief set to 1 for arithmatic coding. */
1243 uint32_t arithmatic_coding_mode : 1;
1244 /** \brief set to 1 for progressive dct. */
1245 uint32_t progressive_dct_mode : 1;
1246 /** \brief set to 1 for non-interleaved. */
1247 uint32_t non_interleaved_mode : 1;
1248 /** \brief set to 1 for differential. */
1249 uint32_t differential_mode : 1;
1250 uint32_t max_num_components : 3;
1251 uint32_t max_num_scans : 4;
1252 uint32_t max_num_huffman_tables : 3;
1253 uint32_t max_num_quantization_tables : 3;
1254 } bits;
1255 uint32_t value;
1256} VAConfigAttribValEncJPEG;
1257
1258/** @name Attribute values for VAConfigAttribEncQuantization */
1259/**@{*/
1260/** \brief Driver does not support special types of quantization */
1261#define VA_ENC_QUANTIZATION_NONE 0x00000000
1262/** \brief Driver supports trellis quantization */
1263#define VA_ENC_QUANTIZATION_TRELLIS_SUPPORTED 0x00000001
1264/**@}*/
1265
1266/** @name Attribute values for VAConfigAttribPredictionDirection */
1267/**@{*/
1268/** \brief Driver support forward reference frame (inter frame for vpx, P frame for H26x MPEG)
1269 * can work with the VAConfigAttribEncMaxRefFrames. for example: low delay B frame of HEVC.
1270 * these value can be OR'd together. typical value should be VA_PREDICTION_DIRECTION_PREVIOUS
1271 * or VA_PREDICTION_DIRECTION_PREVIOUS | VA_PREDICTION_DIRECTION_FUTURE, theoretically, there
1272 * are no stream only include future reference frame.
1273 */
1274#define VA_PREDICTION_DIRECTION_PREVIOUS 0x00000001
1275/** \brief Driver support backward prediction frame/slice */
1276#define VA_PREDICTION_DIRECTION_FUTURE 0x00000002
1277/** \brief Dirver require both reference list must be not empty for inter frame */
1278#define VA_PREDICTION_DIRECTION_BI_NOT_EMPTY 0x00000004
1279/**@}*/
1280
1281/** @name Attribute values for VAConfigAttribEncIntraRefresh */
1282/**@{*/
1283/** \brief Driver does not support intra refresh */
1284#define VA_ENC_INTRA_REFRESH_NONE 0x00000000
1285/** \brief Driver supports column based rolling intra refresh */
1286#define VA_ENC_INTRA_REFRESH_ROLLING_COLUMN 0x00000001
1287/** \brief Driver supports row based rolling intra refresh */
1288#define VA_ENC_INTRA_REFRESH_ROLLING_ROW 0x00000002
1289/** \brief Driver supports adaptive intra refresh */
1290#define VA_ENC_INTRA_REFRESH_ADAPTIVE 0x00000010
1291/** \brief Driver supports cyclic intra refresh */
1292#define VA_ENC_INTRA_REFRESH_CYCLIC 0x00000020
1293/** \brief Driver supports intra refresh of P frame*/
1294#define VA_ENC_INTRA_REFRESH_P_FRAME 0x00010000
1295/** \brief Driver supports intra refresh of B frame */
1296#define VA_ENC_INTRA_REFRESH_B_FRAME 0x00020000
1297/** \brief Driver supports intra refresh of multiple reference encoder */
1298#define VA_ENC_INTRA_REFRESH_MULTI_REF 0x00040000
1299
1300/**@}*/
1301
1302/** \brief Attribute value for VAConfigAttribEncROI */
1303typedef union _VAConfigAttribValEncROI {
1304 struct {
1305 /** \brief The number of ROI regions supported, 0 if ROI is not supported. */
1306 uint32_t num_roi_regions : 8;
1307 /**
1308 * \brief A flag indicates whether ROI priority is supported
1309 *
1310 * \ref roi_rc_priority_support equal to 1 specifies the underlying driver supports
1311 * ROI priority when VAConfigAttribRateControl != VA_RC_CQP, user can use \c roi_value
1312 * in #VAEncROI to set ROI priority. \ref roi_rc_priority_support equal to 0 specifies
1313 * the underlying driver doesn't support ROI priority.
1314 *
1315 * User should ignore \ref roi_rc_priority_support when VAConfigAttribRateControl == VA_RC_CQP
1316 * because ROI delta QP is always required when VAConfigAttribRateControl == VA_RC_CQP.
1317 */
1318 uint32_t roi_rc_priority_support : 1;
1319 /**
1320 * \brief A flag indicates whether ROI delta QP is supported
1321 *
1322 * \ref roi_rc_qp_delta_support equal to 1 specifies the underlying driver supports
1323 * ROI delta QP when VAConfigAttribRateControl != VA_RC_CQP, user can use \c roi_value
1324 * in #VAEncROI to set ROI delta QP. \ref roi_rc_qp_delta_support equal to 0 specifies
1325 * the underlying driver doesn't support ROI delta QP.
1326 *
1327 * User should ignore \ref roi_rc_qp_delta_support when VAConfigAttribRateControl == VA_RC_CQP
1328 * because ROI delta QP is always required when VAConfigAttribRateControl == VA_RC_CQP.
1329 */
1330 uint32_t roi_rc_qp_delta_support : 1;
1331 uint32_t reserved : 22;
1332 } bits;
1333 uint32_t value;
1334} VAConfigAttribValEncROI;
1335
1336/** \brief Attribute value for VAConfigAttribEncRateControlExt */
1337typedef union _VAConfigAttribValEncRateControlExt {
1338 struct {
1339 /**
1340 * \brief The maximum number of temporal layers minus 1
1341 *
1342 * \ref max_num_temporal_layers_minus1 plus 1 specifies the maximum number of temporal
1343 * layers that supported by the underlying driver. \ref max_num_temporal_layers_minus1
1344 * equal to 0 implies the underlying driver doesn't support encoding with temporal layer.
1345 */
1346 uint32_t max_num_temporal_layers_minus1 : 8;
1347
1348 /**
1349 * /brief support temporal layer bit-rate control flag
1350 *
1351 * \ref temporal_layer_bitrate_control_flag equal to 1 specifies the underlying driver
1352 * can support bit-rate control per temporal layer when (#VAConfigAttribRateControl == #VA_RC_CBR ||
1353 * #VAConfigAttribRateControl == #VA_RC_VBR).
1354 *
1355 * The underlying driver must set \ref temporal_layer_bitrate_control_flag to 0 when
1356 * \c max_num_temporal_layers_minus1 is equal to 0
1357 *
1358 * To use bit-rate control per temporal layer, an application must send the right layer
1359 * structure via #VAEncMiscParameterTemporalLayerStructure at the beginning of a coded sequence
1360 * and then followed by #VAEncMiscParameterRateControl and #VAEncMiscParameterFrameRate structures
1361 * for each layer, using the \c temporal_id field as the layer identifier. Otherwise
1362 * the driver doesn't use bitrate control per temporal layer if an application doesn't send the
1363 * layer structure via #VAEncMiscParameterTemporalLayerStructure to the driver. The driver returns
1364 * VA_STATUS_ERROR_INVALID_PARAMETER if an application sends a wrong layer structure or doesn't send
1365 * #VAEncMiscParameterRateControl and #VAEncMiscParameterFrameRate for each layer.
1366 *
1367 * The driver will ignore #VAEncMiscParameterTemporalLayerStructure and the \c temporal_id field
1368 * in #VAEncMiscParameterRateControl and #VAEncMiscParameterFrameRate if
1369 * \ref temporal_layer_bitrate_control_flag is equal to 0 or #VAConfigAttribRateControl == #VA_RC_CQP
1370 */
1371 uint32_t temporal_layer_bitrate_control_flag : 1;
1372 uint32_t reserved : 23;
1373 } bits;
1374 uint32_t value;
1375} VAConfigAttribValEncRateControlExt;
1376
1377/** \brief Attribute value for VAConfigAttribMultipleFrame*/
1378typedef union _VAConfigAttribValMultipleFrame {
1379 struct {
1380 /** \brief max num of concurrent frames from different stream */
1381 uint32_t max_num_concurrent_frames : 8;
1382 /** \brief indicate whether all stream must support same quality level
1383 * if mixed_quality_level == 0, same quality level setting for multple streams is required
1384 * if mixed_quality_level == 1, different stream can have different quality level*/
1385 uint32_t mixed_quality_level : 1;
1386 /** \brief reserved bit for future, must be zero */
1387 uint32_t reserved : 23;
1388 } bits;
1389 uint32_t value;
1390} VAConfigAttribValMultipleFrame;
1391
1392/** brief Attribute value VAConfigAttribValContextPriority */
1393typedef union _VAConfigAttribValContextPriority {
1394 struct {
1395 /** \brief the priority , for the Query operation (read) it represents highest priority
1396 * for the set operation (write), value should be [0~highest priority] , 0 is lowest priority*/
1397 uint32_t priority : 16;
1398 /** \brief reserved bits for future, must be zero*/
1399 uint32_t reserved : 16;
1400 } bits;
1401 uint32_t value;
1402} VAConfigAttribValContextPriority;
1403
1404/** @name Attribute values for VAConfigAttribProtectedContentCipherAlgorithm */
1405/** \brief AES cipher */
1406#define VA_PC_CIPHER_AES 0x00000001
1407
1408/** @name Attribute values for VAConfigAttribProtectedContentCipherBlockSize */
1409/** \brief 128 bits block size */
1410#define VA_PC_BLOCK_SIZE_128 0x00000001
1411/** \brief 192 bits block size */
1412#define VA_PC_BLOCK_SIZE_192 0x00000002
1413/** \brief 256 bits block size */
1414#define VA_PC_BLOCK_SIZE_256 0x00000004
1415
1416/** @name Attribute values for VAConfigAttribProtectedContentCipherMode */
1417/** \brief AES ECB */
1418#define VA_PC_CIPHER_MODE_ECB 0x00000001
1419/** \brief AES CBC */
1420#define VA_PC_CIPHER_MODE_CBC 0x00000002
1421/** \brief AES CTR */
1422#define VA_PC_CIPHER_MODE_CTR 0x00000004
1423
1424/** @name Attribute values for VAConfigAttribProtectedContentCipherSampleType */
1425/** \brief Full sample */
1426#define VA_PC_SAMPLE_TYPE_FULLSAMPLE 0x00000001
1427/** \brief Sub sample */
1428#define VA_PC_SAMPLE_TYPE_SUBSAMPLE 0x00000002
1429
1430/** @name Attribute values for VAConfigAttribProtectedContentUsage */
1431/** \brief Default usage */
1432#define VA_PC_USAGE_DEFAULT 0x00000000
1433/** \brief Widevine */
1434#define VA_PC_USAGE_WIDEVINE 0x00000001
1435
1436/** @name Attribute values for VAConfigAttribProcessingRate. */
1437/**@{*/
1438/** \brief Driver does not support processing rate report */
1439#define VA_PROCESSING_RATE_NONE 0x00000000
1440/** \brief Driver supports encode processing rate report */
1441#define VA_PROCESSING_RATE_ENCODE 0x00000001
1442/** \brief Driver supports decode processing rate report */
1443#define VA_PROCESSING_RATE_DECODE 0x00000002
1444/**@}*/
1445/**
1446 * if an attribute is not applicable for a given
1447 * profile/entrypoint pair, then set the value to the following
1448 */
1449#define VA_ATTRIB_NOT_SUPPORTED 0x80000000
1450
1451/** Get maximum number of profiles supported by the implementation */
1452int vaMaxNumProfiles(
1453 VADisplay dpy
1454);
1455
1456/** Get maximum number of entrypoints supported by the implementation */
1457int vaMaxNumEntrypoints(
1458 VADisplay dpy
1459);
1460
1461/** Get maximum number of attributs supported by the implementation */
1462int vaMaxNumConfigAttributes(
1463 VADisplay dpy
1464);
1465
1466/**
1467 * Query supported profiles
1468 * The caller must provide a "profile_list" array that can hold at
1469 * least vaMaxNumProfile() entries. The actual number of profiles
1470 * returned in "profile_list" is returned in "num_profile".
1471 */
1472VAStatus vaQueryConfigProfiles(
1473 VADisplay dpy,
1474 VAProfile *profile_list, /* out */
1475 int *num_profiles /* out */
1476);
1477
1478/**
1479 * Query supported entrypoints for a given profile
1480 * The caller must provide an "entrypoint_list" array that can hold at
1481 * least vaMaxNumEntrypoints() entries. The actual number of entrypoints
1482 * returned in "entrypoint_list" is returned in "num_entrypoints".
1483 */
1484VAStatus vaQueryConfigEntrypoints(
1485 VADisplay dpy,
1486 VAProfile profile,
1487 VAEntrypoint *entrypoint_list, /* out */
1488 int *num_entrypoints /* out */
1489);
1490
1491/**
1492 * Get attributes for a given profile/entrypoint pair
1493 * The caller must provide an "attrib_list" with all attributes to be
1494 * retrieved. Upon return, the attributes in "attrib_list" have been
1495 * updated with their value. Unknown attributes or attributes that are
1496 * not supported for the given profile/entrypoint pair will have their
1497 * value set to VA_ATTRIB_NOT_SUPPORTED
1498 */
1499VAStatus vaGetConfigAttributes(
1500 VADisplay dpy,
1501 VAProfile profile,
1502 VAEntrypoint entrypoint,
1503 VAConfigAttrib *attrib_list, /* in/out */
1504 int num_attribs
1505);
1506
1507/** Generic ID type, can be re-typed for specific implementation */
1508typedef unsigned int VAGenericID;
1509
1510typedef VAGenericID VAConfigID;
1511
1512/**
1513 * Create a configuration for the video decode/encode/processing pipeline
1514 * it passes in the attribute list that specifies the attributes it cares
1515 * about, with the rest taking default values.
1516 */
1517VAStatus vaCreateConfig(
1518 VADisplay dpy,
1519 VAProfile profile,
1520 VAEntrypoint entrypoint,
1521 VAConfigAttrib *attrib_list,
1522 int num_attribs,
1523 VAConfigID *config_id /* out */
1524);
1525
1526/**
1527 * Free resources associdated with a given config
1528 */
1529VAStatus vaDestroyConfig(
1530 VADisplay dpy,
1531 VAConfigID config_id
1532);
1533
1534/**
1535 * Query all attributes for a given configuration
1536 * The profile of the configuration is returned in "profile"
1537 * The entrypoint of the configuration is returned in "entrypoint"
1538 * The caller must provide an "attrib_list" array that can hold at least
1539 * vaMaxNumConfigAttributes() entries. The actual number of attributes
1540 * returned in "attrib_list" is returned in "num_attribs"
1541 */
1542VAStatus vaQueryConfigAttributes(
1543 VADisplay dpy,
1544 VAConfigID config_id,
1545 VAProfile *profile, /* out */
1546 VAEntrypoint *entrypoint, /* out */
1547 VAConfigAttrib *attrib_list,/* out */
1548 int *num_attribs /* out */
1549);
1550
1551
1552/**
1553 * Contexts and Surfaces
1554 *
1555 * Context represents a "virtual" video decode, encode or video processing
1556 * pipeline. Surfaces are render targets for a given context. The data in the
1557 * surfaces are not accessible to the client except if derived image is supported
1558 * and the internal data format of the surface is implementation specific.
1559 *
1560 * Surfaces are provided as a hint of what surfaces will be used when the context
1561 * is created through vaCreateContext(). A surface may be used by different contexts
1562 * at the same time as soon as application can make sure the operations are synchronized
1563 * between different contexts, e.g. a surface is used as the output of a decode context
1564 * and the input of a video process context. Surfaces can only be destroyed after all
1565 * contexts using these surfaces have been destroyed.
1566 *
1567 * Both contexts and surfaces are identified by unique IDs and its
1568 * implementation specific internals are kept opaque to the clients
1569 */
1570
1571typedef VAGenericID VAContextID;
1572
1573typedef VAGenericID VASurfaceID;
1574
1575#define VA_INVALID_ID 0xffffffff
1576#define VA_INVALID_SURFACE VA_INVALID_ID
1577
1578/** \brief Generic value types. */
1579typedef enum {
1580 VAGenericValueTypeInteger = 1, /**< 32-bit signed integer. */
1581 VAGenericValueTypeFloat, /**< 32-bit floating-point value. */
1582 VAGenericValueTypePointer, /**< Generic pointer type */
1583 VAGenericValueTypeFunc /**< Pointer to function */
1584} VAGenericValueType;
1585
1586/** \brief Generic function type. */
1587typedef void (*VAGenericFunc)(void);
1588
1589/** \brief Generic value. */
1590typedef struct _VAGenericValue {
1591 /** \brief Value type. See #VAGenericValueType. */
1592 VAGenericValueType type;
1593 /** \brief Value holder. */
1594 union {
1595 /** \brief 32-bit signed integer. */
1596 int32_t i;
1597 /** \brief 32-bit float. */
1598 float f;
1599 /** \brief Generic pointer. */
1600 void *p;
1601 /** \brief Pointer to function. */
1602 VAGenericFunc fn;
1603 } value;
1604} VAGenericValue;
1605
1606/** @name Surface attribute flags */
1607/**@{*/
1608/** \brief Surface attribute is not supported. */
1609#define VA_SURFACE_ATTRIB_NOT_SUPPORTED 0x00000000
1610/** \brief Surface attribute can be got through vaQuerySurfaceAttributes(). */
1611#define VA_SURFACE_ATTRIB_GETTABLE 0x00000001
1612/** \brief Surface attribute can be set through vaCreateSurfaces(). */
1613#define VA_SURFACE_ATTRIB_SETTABLE 0x00000002
1614/**@}*/
1615
1616/** \brief Surface attribute types. */
1617typedef enum {
1618 VASurfaceAttribNone = 0,
1619 /**
1620 * \brief Pixel format as a FOURCC (int, read/write).
1621 *
1622 * When vaQuerySurfaceAttributes() is called, the driver will return one
1623 * PixelFormat attribute per supported pixel format.
1624 *
1625 * When provided as an input to vaCreateSurfaces(), the driver will
1626 * allocate a surface with the provided pixel format.
1627 */
1628 VASurfaceAttribPixelFormat,
1629 /** \brief Minimal width in pixels (int, read-only). */
1630 VASurfaceAttribMinWidth,
1631 /** \brief Maximal width in pixels (int, read-only). */
1632 VASurfaceAttribMaxWidth,
1633 /** \brief Minimal height in pixels (int, read-only). */
1634 VASurfaceAttribMinHeight,
1635 /** \brief Maximal height in pixels (int, read-only). */
1636 VASurfaceAttribMaxHeight,
1637 /** \brief Surface memory type expressed in bit fields (int, read/write). */
1638 VASurfaceAttribMemoryType,
1639 /** \brief External buffer descriptor (pointer, write).
1640 *
1641 * Refer to the documentation for the memory type being created to
1642 * determine what descriptor structure to pass here. If not otherwise
1643 * stated, the common VASurfaceAttribExternalBuffers should be used.
1644 */
1645 VASurfaceAttribExternalBufferDescriptor,
1646 /** \brief Surface usage hint, gives the driver a hint of intended usage
1647 * to optimize allocation (e.g. tiling) (int, read/write). */
1648 VASurfaceAttribUsageHint,
1649 /** \brief List of possible DRM format modifiers (pointer, write).
1650 *
1651 * The value must be a pointer to a VADRMFormatModifierList. This can only
1652 * be used when allocating a new buffer, it's invalid to use this attribute
1653 * when importing an existing buffer.
1654 */
1655 VASurfaceAttribDRMFormatModifiers,
1656 /** \brief Number of surface attributes. */
1657 VASurfaceAttribCount
1658} VASurfaceAttribType;
1659
1660/** \brief Surface attribute. */
1661typedef struct _VASurfaceAttrib {
1662 /** \brief Type. */
1663 VASurfaceAttribType type;
1664 /** \brief Flags. See "Surface attribute flags". */
1665 uint32_t flags;
1666 /** \brief Value. See "Surface attribute types" for the expected types. */
1667 VAGenericValue value;
1668} VASurfaceAttrib;
1669
1670/**
1671 * @name VASurfaceAttribMemoryType values in bit fields.
1672 * Bit 0:7 are reserved for generic types, Bit 31:28 are reserved for
1673 * Linux DRM, Bit 23:20 are reserved for Android. DRM and Android specific
1674 * types are defined in DRM and Android header files.
1675 */
1676/**@{*/
1677/** \brief VA memory type (default) is supported. */
1678#define VA_SURFACE_ATTRIB_MEM_TYPE_VA 0x00000001
1679/** \brief V4L2 buffer memory type is supported. */
1680#define VA_SURFACE_ATTRIB_MEM_TYPE_V4L2 0x00000002
1681/** \brief User pointer memory type is supported. */
1682#define VA_SURFACE_ATTRIB_MEM_TYPE_USER_PTR 0x00000004
1683/**@}*/
1684
1685/**
1686 * \brief VASurfaceAttribExternalBuffers structure for
1687 * the VASurfaceAttribExternalBufferDescriptor attribute.
1688 */
1689typedef struct _VASurfaceAttribExternalBuffers {
1690 /** \brief pixel format in fourcc. */
1691 uint32_t pixel_format;
1692 /** \brief width in pixels. */
1693 uint32_t width;
1694 /** \brief height in pixels. */
1695 uint32_t height;
1696 /** \brief total size of the buffer in bytes. */
1697 uint32_t data_size;
1698 /** \brief number of planes for planar layout */
1699 uint32_t num_planes;
1700 /** \brief pitch for each plane in bytes */
1701 uint32_t pitches[4];
1702 /** \brief offset for each plane in bytes */
1703 uint32_t offsets[4];
1704 /** \brief buffer handles or user pointers */
1705 uintptr_t *buffers;
1706 /** \brief number of elements in the "buffers" array */
1707 uint32_t num_buffers;
1708 /** \brief flags. See "Surface external buffer descriptor flags". */
1709 uint32_t flags;
1710 /** \brief reserved for passing private data */
1711 void *private_data;
1712} VASurfaceAttribExternalBuffers;
1713
1714/** @name VASurfaceAttribExternalBuffers flags */
1715/**@{*/
1716/** \brief Enable memory tiling */
1717#define VA_SURFACE_EXTBUF_DESC_ENABLE_TILING 0x00000001
1718/** \brief Memory is cacheable */
1719#define VA_SURFACE_EXTBUF_DESC_CACHED 0x00000002
1720/** \brief Memory is non-cacheable */
1721#define VA_SURFACE_EXTBUF_DESC_UNCACHED 0x00000004
1722/** \brief Memory is write-combined */
1723#define VA_SURFACE_EXTBUF_DESC_WC 0x00000008
1724/** \brief Memory is protected */
1725#define VA_SURFACE_EXTBUF_DESC_PROTECTED 0x80000000
1726
1727/** @name VASurfaceAttribUsageHint attribute usage hint flags */
1728/**@{*/
1729/** \brief Surface usage not indicated. */
1730#define VA_SURFACE_ATTRIB_USAGE_HINT_GENERIC 0x00000000
1731/** \brief Surface used by video decoder. */
1732#define VA_SURFACE_ATTRIB_USAGE_HINT_DECODER 0x00000001
1733/** \brief Surface used by video encoder. */
1734#define VA_SURFACE_ATTRIB_USAGE_HINT_ENCODER 0x00000002
1735/** \brief Surface read by video post-processing. */
1736#define VA_SURFACE_ATTRIB_USAGE_HINT_VPP_READ 0x00000004
1737/** \brief Surface written by video post-processing. */
1738#define VA_SURFACE_ATTRIB_USAGE_HINT_VPP_WRITE 0x00000008
1739/** \brief Surface used for display. */
1740#define VA_SURFACE_ATTRIB_USAGE_HINT_DISPLAY 0x00000010
1741/** \brief Surface used for export to third-party APIs, e.g. via
1742 * vaExportSurfaceHandle(). */
1743#define VA_SURFACE_ATTRIB_USAGE_HINT_EXPORT 0x00000020
1744
1745/**@}*/
1746
1747/**
1748 * \brief Queries surface attributes for the supplied config.
1749 *
1750 * This function queries for all supported attributes for the
1751 * supplied VA @config. In particular, if the underlying hardware
1752 * supports the creation of VA surfaces in various formats, then
1753 * this function will enumerate all pixel formats that are supported.
1754 *
1755 * The \c attrib_list array is allocated by the user and \c
1756 * num_attribs shall be initialized to the number of allocated
1757 * elements in that array. Upon successful return, the actual number
1758 * of attributes will be overwritten into \c num_attribs. Otherwise,
1759 * \c VA_STATUS_ERROR_MAX_NUM_EXCEEDED is returned and \c num_attribs
1760 * is adjusted to the number of elements that would be returned if
1761 * enough space was available.
1762 *
1763 * Note: it is perfectly valid to pass NULL to the \c attrib_list
1764 * argument when vaQuerySurfaceAttributes() is used to determine the
1765 * actual number of elements that need to be allocated.
1766 *
1767 * @param[in] dpy the VA display
1768 * @param[in] config the config identifying a codec or a video
1769 * processing pipeline
1770 * @param[out] attrib_list the output array of #VASurfaceAttrib elements
1771 * @param[in,out] num_attribs the number of elements allocated on
1772 * input, the number of elements actually filled in output
1773 */
1774VAStatus
1775vaQuerySurfaceAttributes(
1776 VADisplay dpy,
1777 VAConfigID config,
1778 VASurfaceAttrib *attrib_list,
1779 unsigned int *num_attribs
1780);
1781
1782/**
1783 * \brief Creates an array of surfaces
1784 *
1785 * Creates an array of surfaces. The optional list of attributes shall
1786 * be constructed based on what the underlying hardware could expose
1787 * through vaQuerySurfaceAttributes().
1788 *
1789 * @param[in] dpy the VA display
1790 * @param[in] format the desired surface format. See \c VA_RT_FORMAT_*
1791 * @param[in] width the surface width
1792 * @param[in] height the surface height
1793 * @param[out] surfaces the array of newly created surfaces
1794 * @param[in] num_surfaces the number of surfaces to create
1795 * @param[in] attrib_list the list of (optional) attributes, or \c NULL
1796 * @param[in] num_attribs the number of attributes supplied in
1797 * \c attrib_list, or zero
1798 */
1799VAStatus
1800vaCreateSurfaces(
1801 VADisplay dpy,
1802 unsigned int format,
1803 unsigned int width,
1804 unsigned int height,
1805 VASurfaceID *surfaces,
1806 unsigned int num_surfaces,
1807 VASurfaceAttrib *attrib_list,
1808 unsigned int num_attribs
1809);
1810
1811/**
1812 * vaDestroySurfaces - Destroy resources associated with surfaces.
1813 * Surfaces can only be destroyed after all contexts using these surfaces have been
1814 * destroyed.
1815 * dpy: display
1816 * surfaces: array of surfaces to destroy
1817 * num_surfaces: number of surfaces in the array to be destroyed.
1818 */
1819VAStatus vaDestroySurfaces(
1820 VADisplay dpy,
1821 VASurfaceID *surfaces,
1822 int num_surfaces
1823);
1824
1825#define VA_PROGRESSIVE 0x1
1826/**
1827 * vaCreateContext - Create a context
1828 * dpy: display
1829 * config_id: configuration for the context
1830 * picture_width: coded picture width
1831 * picture_height: coded picture height
1832 * flag: any combination of the following:
1833 * VA_PROGRESSIVE (only progressive frame pictures in the sequence when set)
1834 * render_targets: a hint for render targets (surfaces) tied to the context
1835 * num_render_targets: number of render targets in the above array
1836 * context: created context id upon return
1837 */
1838VAStatus vaCreateContext(
1839 VADisplay dpy,
1840 VAConfigID config_id,
1841 int picture_width,
1842 int picture_height,
1843 int flag,
1844 VASurfaceID *render_targets,
1845 int num_render_targets,
1846 VAContextID *context /* out */
1847);
1848
1849/**
1850 * vaDestroyContext - Destroy a context
1851 * dpy: display
1852 * context: context to be destroyed
1853 */
1854VAStatus vaDestroyContext(
1855 VADisplay dpy,
1856 VAContextID context
1857);
1858
1859//Multi-frame context
1860typedef VAGenericID VAMFContextID;
1861/**
1862 * vaCreateMFContext - Create a multi-frame context
1863 * interface encapsulating common for all streams memory objects and structures
1864 * required for single GPU task submission from several VAContextID's.
1865 * Allocation: This call only creates an instance, doesn't allocate any additional memory.
1866 * Support identification: Application can identify multi-frame feature support by ability
1867 * to create multi-frame context. If driver supports multi-frame - call successful,
1868 * mf_context != NULL and VAStatus = VA_STATUS_SUCCESS, otherwise if multi-frame processing
1869 * not supported driver returns VA_STATUS_ERROR_UNIMPLEMENTED and mf_context = NULL.
1870 * return values:
1871 * VA_STATUS_SUCCESS - operation successful.
1872 * VA_STATUS_ERROR_UNIMPLEMENTED - no support for multi-frame.
1873 * dpy: display adapter.
1874 * mf_context: Multi-Frame context encapsulating all associated context
1875 * for multi-frame submission.
1876 */
1877VAStatus vaCreateMFContext(
1878 VADisplay dpy,
1879 VAMFContextID *mf_context /* out */
1880);
1881
1882/**
1883 * vaMFAddContext - Provide ability to associate each context used for
1884 * Multi-Frame submission and common Multi-Frame context.
1885 * Try to add context to understand if it is supported.
1886 * Allocation: this call allocates and/or reallocates all memory objects
1887 * common for all contexts associated with particular Multi-Frame context.
1888 * All memory required for each context(pixel buffers, internal driver
1889 * buffers required for processing) allocated during standard vaCreateContext call for each context.
1890 * Runtime dependency - if current implementation doesn't allow to run different entry points/profile,
1891 * first context added will set entry point/profile for whole Multi-Frame context,
1892 * all other entry points and profiles can be rejected to be added.
1893 * Return values:
1894 * VA_STATUS_SUCCESS - operation successful, context was added.
1895 * VA_STATUS_ERROR_OPERATION_FAILED - something unexpected happened - application have to close
1896 * current mf_context and associated contexts and start working with new ones.
1897 * VA_STATUS_ERROR_INVALID_CONTEXT - ContextID is invalid, means:
1898 * 1 - mf_context is not valid context or
1899 * 2 - driver can't suport different VAEntrypoint or VAProfile simultaneosly
1900 * and current context contradicts with previously added, application can continue with current mf_context
1901 * and other contexts passed this call, rejected context can continue work in stand-alone
1902 * mode or other mf_context.
1903 * VA_STATUS_ERROR_UNSUPPORTED_ENTRYPOINT - particular context being added was created with with
1904 * unsupported VAEntrypoint. Application can continue with current mf_context
1905 * and other contexts passed this call, rejected context can continue work in stand-alone
1906 * mode.
1907 * VA_STATUS_ERROR_UNSUPPORTED_PROFILE - Current context with Particular VAEntrypoint is supported
1908 * but VAProfile is not supported. Application can continue with current mf_context
1909 * and other contexts passed this call, rejected context can continue work in stand-alone
1910 * mode.
1911 * dpy: display adapter.
1912 * context: context being associated with Multi-Frame context.
1913 * mf_context: - multi-frame context used to associate contexts for multi-frame submission.
1914 */
1915VAStatus vaMFAddContext(
1916 VADisplay dpy,
1917 VAMFContextID mf_context,
1918 VAContextID context
1919);
1920
1921/**
1922 * vaMFReleaseContext - Removes context from multi-frame and
1923 * association with multi-frame context.
1924 * After association removed vaEndPicture will submit tasks, but not vaMFSubmit.
1925 * Return values:
1926 * VA_STATUS_SUCCESS - operation successful, context was removed.
1927 * VA_STATUS_ERROR_OPERATION_FAILED - something unexpected happened.
1928 * application need to destroy this VAMFContextID and all assotiated VAContextID
1929 * dpy: display
1930 * mf_context: VAMFContextID where context is added
1931 * context: VAContextID to be added
1932 */
1933VAStatus vaMFReleaseContext(
1934 VADisplay dpy,
1935 VAMFContextID mf_context,
1936 VAContextID context
1937);
1938
1939/**
1940 * Buffers
1941 * Buffers are used to pass various types of data from the
1942 * client to the server. The server maintains a data store
1943 * for each buffer created, and the client idenfies a buffer
1944 * through a unique buffer id assigned by the server.
1945 */
1946
1947typedef VAGenericID VABufferID;
1948
1949typedef enum {
1950 VAPictureParameterBufferType = 0,
1951 VAIQMatrixBufferType = 1,
1952 VABitPlaneBufferType = 2,
1953 VASliceGroupMapBufferType = 3,
1954 VASliceParameterBufferType = 4,
1955 VASliceDataBufferType = 5,
1956 VAMacroblockParameterBufferType = 6,
1957 VAResidualDataBufferType = 7,
1958 VADeblockingParameterBufferType = 8,
1959 VAImageBufferType = 9,
1960 VAProtectedSliceDataBufferType = 10,
1961 VAQMatrixBufferType = 11,
1962 VAHuffmanTableBufferType = 12,
1963 VAProbabilityBufferType = 13,
1964
1965 /* Following are encode buffer types */
1966 VAEncCodedBufferType = 21,
1967 VAEncSequenceParameterBufferType = 22,
1968 VAEncPictureParameterBufferType = 23,
1969 VAEncSliceParameterBufferType = 24,
1970 VAEncPackedHeaderParameterBufferType = 25,
1971 VAEncPackedHeaderDataBufferType = 26,
1972 VAEncMiscParameterBufferType = 27,
1973 VAEncMacroblockParameterBufferType = 28,
1974 VAEncMacroblockMapBufferType = 29,
1975
1976 /**
1977 * \brief Encoding QP buffer
1978 *
1979 * This buffer contains QP per MB for encoding. Currently
1980 * VAEncQPBufferH264 is defined for H.264 encoding, see
1981 * #VAEncQPBufferH264 for details
1982 */
1983 VAEncQPBufferType = 30,
1984 /* Following are video processing buffer types */
1985 /**
1986 * \brief Video processing pipeline parameter buffer.
1987 *
1988 * This buffer describes the video processing pipeline. See
1989 * #VAProcPipelineParameterBuffer for details.
1990 */
1991 VAProcPipelineParameterBufferType = 41,
1992 /**
1993 * \brief Video filter parameter buffer.
1994 *
1995 * This buffer describes the video filter parameters. All buffers
1996 * inherit from #VAProcFilterParameterBufferBase, thus including
1997 * a unique filter buffer type.
1998 *
1999 * The default buffer used by most filters is #VAProcFilterParameterBuffer.
2000 * Filters requiring advanced parameters include, but are not limited to,
2001 * deinterlacing (#VAProcFilterParameterBufferDeinterlacing),
2002 * color balance (#VAProcFilterParameterBufferColorBalance), etc.
2003 */
2004 VAProcFilterParameterBufferType = 42,
2005 /**
2006 * \brief FEI specific buffer types
2007 */
2008 VAEncFEIMVBufferType = 43,
2009 VAEncFEIMBCodeBufferType = 44,
2010 VAEncFEIDistortionBufferType = 45,
2011 VAEncFEIMBControlBufferType = 46,
2012 VAEncFEIMVPredictorBufferType = 47,
2013 VAStatsStatisticsParameterBufferType = 48,
2014 /** \brief Statistics output for VAEntrypointStats progressive and top field of interlaced case*/
2015 VAStatsStatisticsBufferType = 49,
2016 /** \brief Statistics output for VAEntrypointStats bottom field of interlaced case*/
2017 VAStatsStatisticsBottomFieldBufferType = 50,
2018 VAStatsMVBufferType = 51,
2019 VAStatsMVPredictorBufferType = 52,
2020 /** Force MB's to be non skip for encode.it's per-mb control buffer, The width of the MB map
2021 * Surface is (width of the Picture in MB unit) * 1 byte, multiple of 64 bytes.
2022 * The height is (height of the picture in MB unit). The picture is either
2023 * frame or non-interleaved top or bottom field. If the application provides this
2024 *surface, it will override the "skipCheckDisable" setting in VAEncMiscParameterEncQuality.
2025 */
2026 VAEncMacroblockDisableSkipMapBufferType = 53,
2027 /**
2028 * \brief HEVC FEI CTB level cmd buffer
2029 * it is CTB level information for future usage.
2030 */
2031 VAEncFEICTBCmdBufferType = 54,
2032 /**
2033 * \brief HEVC FEI CU level data buffer
2034 * it's CTB level information for future usage
2035 */
2036 VAEncFEICURecordBufferType = 55,
2037 /** decode stream out buffer, intermedia data of decode, it may include MV, MB mode etc.
2038 * it can be used to detect motion and analyze the frame contain */
2039 VADecodeStreamoutBufferType = 56,
2040
2041 /** \brief HEVC Decoding Subset Parameter buffer type
2042 *
2043 * The subsets parameter buffer is concatenation with one or multiple
2044 * subset entry point offsets. All the offset values are layed out one
2045 * by one according to slice order with first slice segment first, second
2046 * slice segment second, etc... The entry number is indicated by parameter
2047 * \ref num_entry_point_offsets. And the first entry position of the entry
2048 * point offsets for any slice segment is indicated by parameter
2049 * entry_offset_to_subset_array in VAPictureParameterBufferHEVC data structure.
2050 */
2051 VASubsetsParameterBufferType = 57,
2052 /** \brief adjust context parameters dynamically
2053 *
2054 * this parameter is used to update context parameters, detail parameter is in
2055 * \c VAContextParameterUpdateBuffer
2056 */
2057 VAContextParameterUpdateBufferType = 58,
2058 /**
2059 * \brief Protected session execution buffer type
2060 *
2061 * It's for TEE execution usage (vaProtectedSessionExecute()). The buffer structure is in
2062 * \c VAProtectedSessionExecuteBuffer
2063 */
2064 VAProtectedSessionExecuteBufferType = 59,
2065
2066 /** \brief Encryption parameters buffer for protected content session.
2067 *
2068 * Refer to \c VAEncryptionParameters
2069 */
2070 VAEncryptionParameterBufferType = 60,
2071
2072 VABufferTypeMax
2073} VABufferType;
2074
2075/** \brief update the context parameter
2076 * this structure is used to update context parameters, such as priority of the context
2077 * backend driver should keep the parameter unchanged if there no new
2078 * parameter updated.
2079 */
2080typedef struct _VAContextParameterUpdateBuffer {
2081 union {
2082 struct {
2083 /** \brief indicate whether context priority changed */
2084 uint32_t context_priority_update : 1;
2085 /** \brief Reserved bits for future use, must be zero */
2086 uint32_t reserved : 31;
2087 } bits;
2088 uint32_t value;
2089 } flags;
2090 /** \brief task/context priority */
2091 VAConfigAttribValContextPriority context_priority;
2092 /** \brief Reserved bytes for future use, must be zero */
2093 uint32_t reserved[VA_PADDING_MEDIUM];
2094} VAContextParameterUpdateBuffer;
2095
2096/**
2097 * These ENCRYPTION_TYPEs are used for the attribute values for
2098 * \c VAConfigAttribEncryption and for encryption_type in
2099 * VAEncryptionParameters.
2100 *
2101 * When used for \c VAConfigAttribEncryption, it be used via
2102 * vaQueryConfigEntrypoints to check which type are supported for specific
2103 * profile or not.
2104 *
2105 * When used for encryption_type in VAEncryptionParameters, it tells driver
2106 * the parameters in VAEncryptionParameters are used for which encryption type.
2107 */
2108#define VA_ENCRYPTION_TYPE_FULLSAMPLE_CTR 0x00000001 /* AES CTR fullsample */
2109#define VA_ENCRYPTION_TYPE_FULLSAMPLE_CBC 0x00000002 /* AES CBC fullsample */
2110#define VA_ENCRYPTION_TYPE_SUBSAMPLE_CTR 0x00000004 /* AES CTR fullsample */
2111#define VA_ENCRYPTION_TYPE_SUBSAMPLE_CBC 0x00000008 /* AES CBC fullsample */
2112
2113/** \brief structure for encrypted segment info. */
2114typedef struct _VAEncryptionSegmentInfo {
2115 /** \brief The offset relative to the start of the bitstream input in
2116 * bytes of the start of the segment */
2117 uint32_t segment_start_offset;
2118 /** \brief The length of the segments in bytes */
2119 uint32_t segment_length;
2120 /** \brief The length in bytes of the remainder of an incomplete block
2121 * from a previous segment*/
2122 uint32_t partial_aes_block_size;
2123 /** \brief The length in bytes of the initial clear data */
2124 uint32_t init_byte_length;
2125 /** \brief This will be AES counter for secure decode and secure encode
2126 * when numSegments equals 1, valid size is specified by
2127 * \c key_blob_size */
2128 uint8_t aes_cbc_iv_or_ctr[64];
2129 /** \brief Reserved bytes for future use, must be zero */
2130 uint32_t va_reserved[VA_PADDING_MEDIUM];
2131} VAEncryptionSegmentInfo;
2132
2133/** \brief Encryption parameters buffer for VAEncryptionParameterBufferType */
2134typedef struct _VAEncryptionParameters {
2135 /** \brief Encryption type, refer to \c VA_ENCRYPTION_TYPE_FULLSAMPLE_CTR,
2136 * \c VA_ENCRYPTION_TYPE_FULLSAMPLE_CBC, \c VA_ENCRYPTION_TYPE_SUBSAMPLE_CTR,
2137 * or \c VA_ENCRYPTION_TYPE_SUBSAMPLE_CBC */
2138 uint32_t encryption_type;
2139 /** \brief The number of sengments */
2140 uint32_t num_segments;
2141 /** \brief Pointer of segments */
2142 VAEncryptionSegmentInfo *segment_info;
2143 /** \brief The status report index reserved for CENC fullsample workload.
2144 * The related structures and definitions are vendor specific.
2145 */
2146 uint32_t status_report_index;
2147 /** \brief CENC counter length */
2148 uint32_t size_of_length;
2149 /** \brief Wrapped decrypt blob (Snd)kb, valid size is specified by
2150 * \c key_blob_size */
2151 uint8_t wrapped_decrypt_blob[64];
2152 /** \brief Wrapped Key blob info (Sne)kb, valid size is specified by
2153 * \c key_blob_size */
2154 uint8_t wrapped_encrypt_blob[64];
2155 /** \brief key blob size
2156 * It could be \c VA_PC_BLOCK_SIZE_128, \c VA_PC_BLOCK_SIZE_192, or
2157 * \c VA_PC_BLOCK_SIZE_256
2158 */
2159 uint32_t key_blob_size;
2160 /** \brief Indicates the number of 16-byte BLOCKS that are encrypted in any
2161 * given encrypted region of segments.
2162 * If this value is zero:
2163 * 1. All bytes in encrypted region of segments are encrypted, i.e. the
2164 * CENC or CBC1 scheme is being used
2165 * 2. blocks_stripe_clear must also be zero.
2166 * If this value is non-zero, blocks_stripe_clear must also be non-zero.
2167 */
2168 uint32_t blocks_stripe_encrypted;
2169 /** \brief Indicates the number of 16-byte BLOCKS that are clear in any given
2170 * encrypted region of segments, as defined by the CENS and CBCS schemes in
2171 * the common encryption spec.
2172 * If this value is zero, all bytes in encrypted region of segments are
2173 * encrypted, i.e. the CENC or CBC1 scheme is being used.
2174 */
2175 uint32_t blocks_stripe_clear;
2176 /** \brief Reserved bytes for future use, must be zero */
2177 uint32_t va_reserved[VA_PADDING_MEDIUM];
2178} VAEncryptionParameters;
2179
2180/**
2181 * Processing rate parameter for encode.
2182 */
2183typedef struct _VAProcessingRateParameterEnc {
2184 /** \brief Profile level */
2185 uint8_t level_idc;
2186 uint8_t reserved[3];
2187 /** \brief quality level. When set to 0, default quality
2188 * level is used.
2189 */
2190 uint32_t quality_level;
2191 /** \brief Period between I frames. */
2192 uint32_t intra_period;
2193 /** \brief Period between I/P frames. */
2194 uint32_t ip_period;
2195} VAProcessingRateParameterEnc;
2196
2197/**
2198 * Processing rate parameter for decode.
2199 */
2200typedef struct _VAProcessingRateParameterDec {
2201 /** \brief Profile level */
2202 uint8_t level_idc;
2203 uint8_t reserved0[3];
2204 uint32_t reserved;
2205} VAProcessingRateParameterDec;
2206
2207typedef struct _VAProcessingRateParameter {
2208 union {
2209 VAProcessingRateParameterEnc proc_buf_enc;
2210 VAProcessingRateParameterDec proc_buf_dec;
2211 };
2212} VAProcessingRateParameter;
2213
2214/**
2215 * \brief Queries processing rate for the supplied config.
2216 *
2217 * This function queries the processing rate based on parameters in
2218 * \c proc_buf for the given \c config. Upon successful return, the processing
2219 * rate value will be stored in \c processing_rate. Processing rate is
2220 * specified as the number of macroblocks/CTU per second.
2221 *
2222 * If NULL is passed to the \c proc_buf, the default processing rate for the
2223 * given configuration will be returned.
2224 *
2225 * @param[in] dpy the VA display
2226 * @param[in] config the config identifying a codec or a video
2227 * processing pipeline
2228 * @param[in] proc_buf the buffer that contains the parameters for
2229 either the encode or decode processing rate
2230 * @param[out] processing_rate processing rate in number of macroblocks per
2231 second constrained by parameters specified in proc_buf
2232 *
2233 */
2234VAStatus
2235vaQueryProcessingRate(
2236 VADisplay dpy,
2237 VAConfigID config,
2238 VAProcessingRateParameter *proc_buf,
2239 unsigned int *processing_rate
2240);
2241
2242typedef enum {
2243 VAEncMiscParameterTypeFrameRate = 0,
2244 VAEncMiscParameterTypeRateControl = 1,
2245 VAEncMiscParameterTypeMaxSliceSize = 2,
2246 VAEncMiscParameterTypeAIR = 3,
2247 /** \brief Buffer type used to express a maximum frame size (in bits). */
2248 VAEncMiscParameterTypeMaxFrameSize = 4,
2249 /** \brief Buffer type used for HRD parameters. */
2250 VAEncMiscParameterTypeHRD = 5,
2251 VAEncMiscParameterTypeQualityLevel = 6,
2252 /** \brief Buffer type used for Rolling intra refresh */
2253 VAEncMiscParameterTypeRIR = 7,
2254 /** \brief Buffer type used for quantization parameters, it's per-sequence parameter*/
2255 VAEncMiscParameterTypeQuantization = 8,
2256 /** \brief Buffer type used for sending skip frame parameters to the encoder's
2257 * rate control, when the user has externally skipped frames. */
2258 VAEncMiscParameterTypeSkipFrame = 9,
2259 /** \brief Buffer type used for region-of-interest (ROI) parameters. */
2260 VAEncMiscParameterTypeROI = 10,
2261 /** \brief Buffer type used to express a maximum frame size (in bytes) settings for multiple pass. */
2262 VAEncMiscParameterTypeMultiPassFrameSize = 11,
2263 /** \brief Buffer type used for temporal layer structure */
2264 VAEncMiscParameterTypeTemporalLayerStructure = 12,
2265 /** \brief Buffer type used for dirty region-of-interest (ROI) parameters. */
2266 VAEncMiscParameterTypeDirtyRect = 13,
2267 /** \brief Buffer type used for parallel BRC parameters. */
2268 VAEncMiscParameterTypeParallelBRC = 14,
2269 /** \brief Set MB partion mode mask and Half-pel/Quant-pel motion search */
2270 VAEncMiscParameterTypeSubMbPartPel = 15,
2271 /** \brief set encode quality tuning */
2272 VAEncMiscParameterTypeEncQuality = 16,
2273 /** \brief Buffer type used for encoder rounding offset parameters. */
2274 VAEncMiscParameterTypeCustomRoundingControl = 17,
2275 /** \brief Buffer type used for FEI input frame level parameters */
2276 VAEncMiscParameterTypeFEIFrameControl = 18,
2277 /** \brief encode extension buffer, ect. MPEG2 Sequence extenstion data */
2278 VAEncMiscParameterTypeExtensionData = 19
2279} VAEncMiscParameterType;
2280
2281/** \brief Packed header type. */
2282typedef enum {
2283 /** \brief Packed sequence header. */
2284 VAEncPackedHeaderSequence = 1,
2285 /** \brief Packed picture header. */
2286 VAEncPackedHeaderPicture = 2,
2287 /** \brief Packed slice header. */
2288 VAEncPackedHeaderSlice = 3,
2289 /**
2290 * \brief Packed raw header.
2291 *
2292 * Packed raw data header can be used by the client to insert a header
2293 * into the bitstream data buffer at the point it is passed, the driver
2294 * will handle the raw packed header based on "has_emulation_bytes" field
2295 * in the packed header parameter structure.
2296 */
2297 VAEncPackedHeaderRawData = 4,
2298 /**
2299 * \brief Misc packed header. See codec-specific definitions.
2300 *
2301 * @deprecated
2302 * This is a deprecated packed header type. All applications can use
2303 * \c VAEncPackedHeaderRawData to insert a codec-specific packed header
2304 */
2305 VAEncPackedHeaderMiscMask va_deprecated_enum = 0x80000000,
2306} VAEncPackedHeaderType;
2307
2308/** \brief Packed header parameter. */
2309typedef struct _VAEncPackedHeaderParameterBuffer {
2310 /** Type of the packed header buffer. See #VAEncPackedHeaderType. */
2311 uint32_t type;
2312 /** \brief Size of the #VAEncPackedHeaderDataBuffer in bits. */
2313 uint32_t bit_length;
2314 /** \brief Flag: buffer contains start code emulation prevention bytes? */
2315 uint8_t has_emulation_bytes;
2316
2317 /** \brief Reserved bytes for future use, must be zero */
2318 uint32_t va_reserved[VA_PADDING_LOW];
2319} VAEncPackedHeaderParameterBuffer;
2320
2321/**
2322 * For application, e.g. set a new bitrate
2323 * VABufferID buf_id;
2324 * VAEncMiscParameterBuffer *misc_param;
2325 * VAEncMiscParameterRateControl *misc_rate_ctrl;
2326 *
2327 * vaCreateBuffer(dpy, context, VAEncMiscParameterBufferType,
2328 * sizeof(VAEncMiscParameterBuffer) + sizeof(VAEncMiscParameterRateControl),
2329 * 1, NULL, &buf_id);
2330 *
2331 * vaMapBuffer(dpy,buf_id,(void **)&misc_param);
2332 * misc_param->type = VAEncMiscParameterTypeRateControl;
2333 * misc_rate_ctrl= (VAEncMiscParameterRateControl *)misc_param->data;
2334 * misc_rate_ctrl->bits_per_second = 6400000;
2335 * vaUnmapBuffer(dpy, buf_id);
2336 * vaRenderPicture(dpy, context, &buf_id, 1);
2337 */
2338typedef struct _VAEncMiscParameterBuffer {
2339 VAEncMiscParameterType type;
2340 uint32_t data[];
2341} VAEncMiscParameterBuffer;
2342
2343/** \brief Temporal layer Structure*/
2344typedef struct _VAEncMiscParameterTemporalLayerStructure {
2345 /** \brief The number of temporal layers */
2346 uint32_t number_of_layers;
2347 /** \brief The length of the array defining frame layer membership. Should be 1-32 */
2348 uint32_t periodicity;
2349 /**
2350 * \brief The array indicating the layer id for each frame
2351 *
2352 * The layer id for the first frame in a coded sequence is always 0, so layer_id[] specifies the layer
2353 * ids for frames starting from the 2nd frame.
2354 */
2355 uint32_t layer_id[32];
2356
2357 /** \brief Reserved bytes for future use, must be zero */
2358 uint32_t va_reserved[VA_PADDING_LOW];
2359} VAEncMiscParameterTemporalLayerStructure;
2360
2361
2362/** \brief Rate control parameters */
2363typedef struct _VAEncMiscParameterRateControl {
2364 /** The maximum bit-rate which the the rate controller should generate. */
2365 uint32_t bits_per_second;
2366 /** The target bit-rate which the rate controller should generate, as a percentage of the
2367 * maximum bit-rate.
2368 *
2369 * In CBR mode this value is ignored (treated as 100%).
2370 */
2371 uint32_t target_percentage;
2372 /** Rate control window size in milliseconds.
2373 *
2374 * The rate controller will attempt to guarantee that the target and maximum bit-rates are
2375 * correct over this window.
2376 */
2377 uint32_t window_size;
2378 /** Initial quantiser value used at the start of the stream.
2379 *
2380 * Ignored if set to zero.
2381 */
2382 uint32_t initial_qp;
2383 /** Minimum quantiser value to use.
2384 *
2385 * The quantiser will not go below the value - if this limit is hit, the output bitrate may
2386 * be lower than the target. Ignored if set to zero.
2387 */
2388 uint32_t min_qp;
2389 /** Basic unit size.
2390 *
2391 * Only used by some drivers - see driver documentation for details. Set to zero if unused.
2392 */
2393 uint32_t basic_unit_size;
2394 union {
2395 struct {
2396 /** Force rate controller reset.
2397 *
2398 * The next frame will be treated as the start of a new stream, with all rate
2399 * controller state reset to its initial values.
2400 */
2401 uint32_t reset : 1;
2402 /** Disable frame skip in rate control mode. */
2403 uint32_t disable_frame_skip : 1;
2404 /** Disable bit stuffing in rate control mode. */
2405 uint32_t disable_bit_stuffing : 1;
2406 /** Macroblock-level rate control.
2407 *
2408 * 0: use default, 1: always enable, 2: always disable, other: reserved.
2409 *
2410 * This feature is only available if VAConfigAttribRateControl has the
2411 * \ref VA_RC_MB bit set.
2412 */
2413 uint32_t mb_rate_control : 4;
2414 /** The temporal layer that these rate control parameters apply to. */
2415 uint32_t temporal_id : 8;
2416 /** Ensure that intra frames also conform to the constant frame size. */
2417 uint32_t cfs_I_frames : 1;
2418 /** Enable parallel rate control for hierarchical B frames.
2419 *
2420 * See \ref VA_RC_PARALLEL.
2421 */
2422 uint32_t enable_parallel_brc : 1;
2423 uint32_t enable_dynamic_scaling : 1;
2424 /** Frame tolerance mode.
2425 *
2426 * Indicates the tolerance the application has to variations in the frame size.
2427 * For example, wireless display scenarios may require very steady bit rate to
2428 * reduce buffering time. It affects the rate control algorithm used,
2429 * but may or may not have an effect based on the combination of other BRC
2430 * parameters. Only valid when the driver reports support for
2431 * #VAConfigAttribFrameSizeToleranceSupport.
2432 *
2433 * equals 0 -- normal mode;
2434 * equals 1 -- maps to sliding window;
2435 * equals 2 -- maps to low delay mode;
2436 * other -- invalid.
2437 */
2438 uint32_t frame_tolerance_mode : 2;
2439 /** Reserved for future use, must be zero. */
2440 uint32_t reserved : 12;
2441 } bits;
2442 uint32_t value;
2443 } rc_flags;
2444 /** Initial quality factor used in ICQ mode.
2445 *
2446 * This value must be between 1 and 51.
2447 * this value will be deprecated in future, to use quality_factor instead of it.
2448 */
2449 uint32_t ICQ_quality_factor;
2450 /** Maximum quantiser value to use.
2451 *
2452 * The quantiser will not go above this value - if this limit is hit, the output bitrate
2453 * may exceed the target. Ignored if set to zero.
2454 */
2455 uint32_t max_qp;
2456 /** Quality factor
2457 *
2458 * the range will be different for different codec
2459 */
2460 uint32_t quality_factor;
2461 /** Target frame size
2462 *
2463 * Desired frame size in bytes.
2464 * This parameter can be used in some RC modes (like Transport Controlled BRC)
2465 * where feedback from the app is required.
2466 * Zero value means no limits.
2467 *
2468 */
2469 uint32_t target_frame_size;
2470 /** Reserved bytes for future use, must be zero. */
2471 uint32_t va_reserved[VA_PADDING_LOW];
2472} VAEncMiscParameterRateControl;
2473
2474/** Encode framerate parameters.
2475 *
2476 * Sets the encode framerate used by the rate controller. This should be
2477 * provided in all modes using a bitrate target (variable framerate is not
2478 * supported).
2479 */
2480typedef struct _VAEncMiscParameterFrameRate {
2481 /** Encode framerate.
2482 *
2483 * The framerate is specified as a number of frames per second, as a
2484 * fraction. The denominator of the fraction is given in the top half
2485 * (the high two bytes) of the framerate field, and the numerator is
2486 * given in the bottom half (the low two bytes).
2487 *
2488 * That is:
2489 * denominator = framerate >> 16 & 0xffff;
2490 * numerator = framerate & 0xffff;
2491 * fps = numerator / denominator;
2492 *
2493 * For example, if framerate is set to (100 << 16 | 750), this is
2494 * 750 / 100, hence 7.5fps.
2495 *
2496 * If the denominator is zero (the high two bytes are both zero) then
2497 * it takes the value one instead, so the framerate is just the integer
2498 * in the low 2 bytes.
2499 */
2500 uint32_t framerate;
2501 union {
2502 struct {
2503 /** The temporal layer that these framerate parameters apply to. */
2504 uint32_t temporal_id : 8;
2505 /** Reserved for future use, must be zero. */
2506 uint32_t reserved : 24;
2507 } bits;
2508 uint32_t value;
2509 } framerate_flags;
2510
2511 /** \brief Reserved bytes for future use, must be zero */
2512 uint32_t va_reserved[VA_PADDING_LOW];
2513} VAEncMiscParameterFrameRate;
2514
2515/**
2516 * Allow a maximum slice size to be specified (in bits).
2517 * The encoder will attempt to make sure that individual slices do not exceed this size
2518 * Or to signal applicate if the slice size exceed this size, see "status" of VACodedBufferSegment
2519 */
2520typedef struct _VAEncMiscParameterMaxSliceSize {
2521 uint32_t max_slice_size;
2522
2523 /** \brief Reserved bytes for future use, must be zero */
2524 uint32_t va_reserved[VA_PADDING_LOW];
2525} VAEncMiscParameterMaxSliceSize;
2526
2527typedef struct _VAEncMiscParameterAIR {
2528 uint32_t air_num_mbs;
2529 uint32_t air_threshold;
2530 uint32_t air_auto; /* if set to 1 then hardware auto-tune the AIR threshold */
2531
2532 /** \brief Reserved bytes for future use, must be zero */
2533 uint32_t va_reserved[VA_PADDING_LOW];
2534} VAEncMiscParameterAIR;
2535
2536/*
2537 * \brief Rolling intra refresh data structure for encoding.
2538 */
2539typedef struct _VAEncMiscParameterRIR {
2540 union {
2541 struct
2542 /**
2543 * \brief Indicate if intra refresh is enabled in column/row.
2544 *
2545 * App should query VAConfigAttribEncIntraRefresh to confirm RIR support
2546 * by the driver before sending this structure.
2547 */
2548 {
2549 /* \brief enable RIR in column */
2550 uint32_t enable_rir_column : 1;
2551 /* \brief enable RIR in row */
2552 uint32_t enable_rir_row : 1;
2553 uint32_t reserved : 30;
2554 } bits;
2555 uint32_t value;
2556 } rir_flags;
2557 /**
2558 * \brief Indicates the column or row location in MB. It is ignored if
2559 * rir_flags is 0.
2560 */
2561 uint16_t intra_insertion_location;
2562 /**
2563 * \brief Indicates the number of columns or rows in MB. It is ignored if
2564 * rir_flags is 0.
2565 */
2566 uint16_t intra_insert_size;
2567 /**
2568 * \brief indicates the Qp difference for inserted intra columns or rows.
2569 * App can use this to adjust intra Qp based on bitrate & max frame size.
2570 */
2571 uint8_t qp_delta_for_inserted_intra;
2572 /** \brief Reserved bytes for future use, must be zero */
2573 uint32_t va_reserved[VA_PADDING_LOW];
2574} VAEncMiscParameterRIR;
2575
2576/** HRD / VBV buffering parameters for encoding.
2577 *
2578 * This sets the HRD / VBV parameters which will be used by the rate
2579 * controller for encoding. It should be specified in modes using a bitrate
2580 * target when the buffering of the output stream needs to be constrained.
2581 *
2582 * If not provided, the encoder may use arbitrary amounts of buffering.
2583 */
2584typedef struct _VAEncMiscParameterHRD {
2585 /** The initial fullness of the HRD coded picture buffer, in bits.
2586 *
2587 * This sets how full the CPB is when encoding begins - that is, how much
2588 * buffering will happen on the decoder side before the first frame.
2589 * The CPB fullness will be reset to this value after any rate control
2590 * reset (a change in parameters or an explicit reset).
2591 *
2592 * For H.264, it should match the value of initial_cpb_removal_delay in
2593 * buffering_period SEI messages.
2594 */
2595 uint32_t initial_buffer_fullness;
2596 /** The HRD coded picture buffer size, in bits.
2597 *
2598 * For H.264, it should match the value of cpb_size_value_minus1 in the VUI
2599 * parameters.
2600 */
2601 uint32_t buffer_size;
2602
2603 /** \brief Reserved bytes for future use, must be zero */
2604 uint32_t va_reserved[VA_PADDING_LOW];
2605} VAEncMiscParameterHRD;
2606
2607/**
2608 * \brief Defines a maximum frame size (in bits).
2609 *
2610 * This misc parameter buffer defines the maximum size of a frame (in
2611 * bits). The encoder will try to make sure that each frame does not
2612 * exceed this size. Otherwise, if the frame size exceeds this size,
2613 * the \c status flag of #VACodedBufferSegment will contain
2614 * #VA_CODED_BUF_STATUS_FRAME_SIZE_OVERFLOW.
2615 */
2616typedef struct _VAEncMiscParameterBufferMaxFrameSize {
2617 /** \brief Type. Shall be set to #VAEncMiscParameterTypeMaxFrameSize. */
2618 /** duplicated with VAEncMiscParameterBuffer, should be deprecated*/
2619 va_deprecated VAEncMiscParameterType type;
2620 /** \brief Maximum size of a frame (in bits). */
2621 uint32_t max_frame_size;
2622
2623 /** \brief Reserved bytes for future use, must be zero */
2624 uint32_t va_reserved[VA_PADDING_LOW];
2625} VAEncMiscParameterBufferMaxFrameSize;
2626
2627/**
2628 * \brief Maximum frame size (in bytes) settings for multiple pass.
2629 *
2630 * This misc parameter buffer defines the maximum size of a frame (in
2631 * bytes) settings for multiple pass. currently only AVC encoder can
2632 * support this settings in multiple pass case. If the frame size exceeds
2633 * this size, the encoder will do more pak passes to adjust the QP value
2634 * to control the frame size.
2635 */
2636typedef struct _VAEncMiscParameterBufferMultiPassFrameSize {
2637 /** \brief Type. Shall be set to #VAEncMiscParameterTypeMultiPassMaxFrameSize. */
2638 /** duplicated with VAEncMiscParameterBuffer, should be deprecated*/
2639 va_deprecated VAEncMiscParameterType type;
2640 /** \brief Maximum size of a frame (in byte) */
2641 uint32_t max_frame_size;
2642 /** \brief Reserved bytes for future use, must be zero */
2643 uint32_t reserved;
2644 /** \brief number of passes, every pass has different QP, currently AVC encoder can support up to 4 passes */
2645 uint8_t num_passes;
2646 /** \brief delta QP list for every pass */
2647 uint8_t *delta_qp;
2648
2649 /** \brief Reserved bytes for future use, must be zero */
2650 unsigned long va_reserved[VA_PADDING_LOW];
2651} VAEncMiscParameterBufferMultiPassFrameSize;
2652
2653/**
2654 * \brief Encoding quality level.
2655 *
2656 * The encoding quality could be set through this structure, if the implementation
2657 * supports multiple quality levels. The quality level set through this structure is
2658 * persistent over the entire coded sequence, or until a new structure is being sent.
2659 * The quality level range can be queried through the VAConfigAttribEncQualityRange
2660 * attribute. A lower value means higher quality, and a value of 1 represents the highest
2661 * quality. The quality level setting is used as a trade-off between quality and speed/power
2662 * consumption, with higher quality corresponds to lower speed and higher power consumption.
2663 */
2664typedef struct _VAEncMiscParameterBufferQualityLevel {
2665 /** \brief Encoding quality level setting. When set to 0, default quality
2666 * level is used.
2667 */
2668 uint32_t quality_level;
2669
2670 /** \brief Reserved bytes for future use, must be zero */
2671 uint32_t va_reserved[VA_PADDING_LOW];
2672} VAEncMiscParameterBufferQualityLevel;
2673
2674/**
2675 * \brief Quantization settings for encoding.
2676 *
2677 * Some encoders support special types of quantization such as trellis, and this structure
2678 * can be used by the app to control these special types of quantization by the encoder.
2679 */
2680typedef struct _VAEncMiscParameterQuantization {
2681 union {
2682 /* if no flags is set then quantization is determined by the driver */
2683 struct {
2684 /* \brief disable trellis for all frames/fields */
2685 uint32_t disable_trellis : 1;
2686 /* \brief enable trellis for I frames/fields */
2687 uint32_t enable_trellis_I : 1;
2688 /* \brief enable trellis for P frames/fields */
2689 uint32_t enable_trellis_P : 1;
2690 /* \brief enable trellis for B frames/fields */
2691 uint32_t enable_trellis_B : 1;
2692 uint32_t reserved : 28;
2693 } bits;
2694 uint32_t value;
2695 } quantization_flags;
2696 uint32_t va_reserved;
2697} VAEncMiscParameterQuantization;
2698
2699/**
2700 * \brief Encoding skip frame.
2701 *
2702 * The application may choose to skip frames externally to the encoder (e.g. drop completely or
2703 * code as all skip's). For rate control purposes the encoder will need to know the size and number
2704 * of skipped frames. Skip frame(s) indicated through this structure is applicable only to the
2705 * current frame. It is allowed for the application to still send in packed headers for the driver to
2706 * pack, although no frame will be encoded (e.g. for HW to encrypt the frame).
2707 */
2708typedef struct _VAEncMiscParameterSkipFrame {
2709 /** \brief Indicates skip frames as below.
2710 * 0: Encode as normal, no skip.
2711 * 1: One or more frames were skipped prior to the current frame, encode the current frame as normal.
2712 * 2: The current frame is to be skipped, do not encode it but pack/encrypt the packed header contents
2713 * (all except VAEncPackedHeaderSlice) which could contain actual frame contents (e.g. pack the frame
2714 * in VAEncPackedHeaderPicture). */
2715 uint8_t skip_frame_flag;
2716 /** \brief The number of frames skipped prior to the current frame. Valid when skip_frame_flag = 1. */
2717 uint8_t num_skip_frames;
2718 /** \brief When skip_frame_flag = 1, the size of the skipped frames in bits. When skip_frame_flag = 2,
2719 * the size of the current skipped frame that is to be packed/encrypted in bits. */
2720 uint32_t size_skip_frames;
2721
2722 /** \brief Reserved bytes for future use, must be zero */
2723 uint32_t va_reserved[VA_PADDING_LOW];
2724} VAEncMiscParameterSkipFrame;
2725
2726/**
2727 * \brief Encoding region-of-interest (ROI).
2728 *
2729 * The encoding ROI can be set through VAEncMiscParameterBufferROI, if the implementation
2730 * supports ROI input. The ROI set through this structure is applicable only to the
2731 * current frame or field, so must be sent every frame or field to be applied. The number of
2732 * supported ROIs can be queried through the VAConfigAttribEncROI. The encoder will use the
2733 * ROI information to adjust the QP values of the MB's that fall within the ROIs.
2734 */
2735typedef struct _VAEncROI {
2736 /** \brief Defines the ROI boundary in pixels, the driver will map it to appropriate
2737 * codec coding units. It is relative to frame coordinates for the frame case and
2738 * to field coordinates for the field case. */
2739 VARectangle roi_rectangle;
2740 /**
2741 * \brief ROI value
2742 *
2743 * \ref roi_value specifies ROI delta QP or ROI priority.
2744 * -- ROI delta QP is the value that will be added on top of the frame level QP.
2745 * -- ROI priority specifies the priority of a region, it can be positive (more important)
2746 * or negative (less important) values and is compared with non-ROI region (taken as value 0),
2747 * E.g. ROI region with \ref roi_value -3 is less important than the non-ROI region (\ref roi_value
2748 * implied to be 0) which is less important than ROI region with roi_value +2. For overlapping
2749 * regions, the roi_value that is first in the ROI array will have priority.
2750 *
2751 * \ref roi_value always specifes ROI delta QP when VAConfigAttribRateControl == VA_RC_CQP, no matter
2752 * the value of \c roi_value_is_qp_delta in #VAEncMiscParameterBufferROI.
2753 *
2754 * \ref roi_value depends on \c roi_value_is_qp_delta in #VAEncMiscParameterBufferROI when
2755 * VAConfigAttribRateControl != VA_RC_CQP. \ref roi_value specifies ROI_delta QP if \c roi_value_is_qp_delta
2756 * in VAEncMiscParameterBufferROI is 1, otherwise \ref roi_value specifies ROI priority.
2757 */
2758 int8_t roi_value;
2759} VAEncROI;
2760
2761typedef struct _VAEncMiscParameterBufferROI {
2762 /** \brief Number of ROIs being sent.*/
2763 uint32_t num_roi;
2764
2765 /** \brief Valid when VAConfigAttribRateControl != VA_RC_CQP, then the encoder's
2766 * rate control will determine actual delta QPs. Specifies the max/min allowed delta
2767 * QPs. */
2768 int8_t max_delta_qp;
2769 int8_t min_delta_qp;
2770
2771 /** \brief Pointer to a VAEncROI array with num_roi elements. It is relative to frame
2772 * coordinates for the frame case and to field coordinates for the field case.*/
2773 VAEncROI *roi;
2774 union {
2775 struct {
2776 /**
2777 * \brief An indication for roi value.
2778 *
2779 * \ref roi_value_is_qp_delta equal to 1 indicates \c roi_value in #VAEncROI should
2780 * be used as ROI delta QP. \ref roi_value_is_qp_delta equal to 0 indicates \c roi_value
2781 * in #VAEncROI should be used as ROI priority.
2782 *
2783 * \ref roi_value_is_qp_delta is only available when VAConfigAttribRateControl != VA_RC_CQP,
2784 * the setting must comply with \c roi_rc_priority_support and \c roi_rc_qp_delta_support in
2785 * #VAConfigAttribValEncROI. The underlying driver should ignore this field
2786 * when VAConfigAttribRateControl == VA_RC_CQP.
2787 */
2788 uint32_t roi_value_is_qp_delta : 1;
2789 uint32_t reserved : 31;
2790 } bits;
2791 uint32_t value;
2792 } roi_flags;
2793
2794 /** \brief Reserved bytes for future use, must be zero */
2795 uint32_t va_reserved[VA_PADDING_LOW];
2796} VAEncMiscParameterBufferROI;
2797/*
2798 * \brief Dirty rectangle data structure for encoding.
2799 *
2800 * The encoding dirty rect can be set through VAEncMiscParameterBufferDirtyRect, if the
2801 * implementation supports dirty rect input. The rect set through this structure is applicable
2802 * only to the current frame or field, so must be sent every frame or field to be applied.
2803 * The number of supported rects can be queried through the VAConfigAttribEncDirtyRect. The
2804 * encoder will use the rect information to know those rectangle areas have changed while the
2805 * areas not covered by dirty rect rectangles are assumed to have not changed compared to the
2806 * previous picture. The encoder may do some internal optimizations.
2807 */
2808typedef struct _VAEncMiscParameterBufferDirtyRect {
2809 /** \brief Number of Rectangle being sent.*/
2810 uint32_t num_roi_rectangle;
2811
2812 /** \brief Pointer to a VARectangle array with num_roi_rectangle elements.*/
2813 VARectangle *roi_rectangle;
2814} VAEncMiscParameterBufferDirtyRect;
2815
2816/** \brief Attribute value for VAConfigAttribEncParallelRateControl */
2817typedef struct _VAEncMiscParameterParallelRateControl {
2818 /** brief Number of layers*/
2819 uint32_t num_layers;
2820 /** brief Number of B frames per layer per GOP.
2821 *
2822 * it should be allocated by application, and the is num_layers.
2823 * num_b_in_gop[0] is the number of regular B which refers to only I or P frames. */
2824 uint32_t *num_b_in_gop;
2825} VAEncMiscParameterParallelRateControl;
2826
2827/** per frame encoder quality controls, once set they will persist for all future frames
2828 *till it is updated again. */
2829typedef struct _VAEncMiscParameterEncQuality {
2830 union {
2831 struct {
2832 /** Use raw frames for reference instead of reconstructed frames.
2833 * it only impact motion estimation (ME) stage, and will not impact MC stage
2834 * so the reconstruct picture will can match with decode side */
2835 uint32_t useRawPicForRef : 1;
2836 /** Disables skip check for ME stage, it will increase the bistream size
2837 * but will improve the qulity */
2838 uint32_t skipCheckDisable : 1;
2839 /** Indicates app will override default driver FTQ settings using FTQEnable.
2840 * FTQ is forward transform quantization */
2841 uint32_t FTQOverride : 1;
2842 /** Enables/disables FTQ. */
2843 uint32_t FTQEnable : 1;
2844 /** Indicates the app will provide the Skip Threshold LUT to use when FTQ is
2845 * enabled (FTQSkipThresholdLUT), else default driver thresholds will be used. */
2846 uint32_t FTQSkipThresholdLUTInput : 1;
2847 /** Indicates the app will provide the Skip Threshold LUT to use when FTQ is
2848 * disabled (NonFTQSkipThresholdLUT), else default driver thresholds will be used. */
2849 uint32_t NonFTQSkipThresholdLUTInput : 1;
2850 uint32_t ReservedBit : 1;
2851 /** Control to enable the ME mode decision algorithm to bias to fewer B Direct/Skip types.
2852 * Applies only to B frames, all other frames will ignore this setting. */
2853 uint32_t directBiasAdjustmentEnable : 1;
2854 /** Enables global motion bias. global motion also is called HME (Heirarchical Motion Estimation )
2855 * HME is used to handle large motions and avoiding local minima in the video encoding process
2856 * down scaled the input and reference picture, then do ME. the result will be a predictor to next level HME or ME
2857 * current interface divide the HME to 3 level. UltraHME , SuperHME, and HME, result of UltraHME will be input of SurperHME,
2858 * result of superHME will be a input for HME. HME result will be input of ME. it is a switch for HMEMVCostScalingFactor
2859 * can change the HME bias inside RDO stage*/
2860 uint32_t globalMotionBiasAdjustmentEnable : 1;
2861 /** MV cost scaling ratio for HME ( predictors. It is used when
2862 * globalMotionBiasAdjustmentEnable == 1, else it is ignored. Values are:
2863 * 0: set MV cost to be 0 for HME predictor.
2864 * 1: scale MV cost to be 1/2 of the default value for HME predictor.
2865 * 2: scale MV cost to be 1/4 of the default value for HME predictor.
2866 * 3: scale MV cost to be 1/8 of the default value for HME predictor. */
2867 uint32_t HMEMVCostScalingFactor : 2;
2868 /**disable HME, if it is disabled. Super*ultraHME should also be disabled */
2869 uint32_t HMEDisable : 1;
2870 /**disable Super HME, if it is disabled, ultraHME should be disabled */
2871 uint32_t SuperHMEDisable : 1;
2872 /** disable Ultra HME */
2873 uint32_t UltraHMEDisable : 1;
2874 /** disable panic mode. Panic mode happened when there are extreme BRC (bit rate control) requirement
2875 * frame size cant achieve the target of BRC. when Panic mode is triggered, Coefficients will
2876 * be set to zero. disable panic mode will improve quality but will impact BRC */
2877 uint32_t PanicModeDisable : 1;
2878 /** Force RepartitionCheck
2879 * 0: DEFAULT - follow driver default settings.
2880 * 1: FORCE_ENABLE - enable this feature totally for all cases.
2881 * 2: FORCE_DISABLE - disable this feature totally for all cases. */
2882 uint32_t ForceRepartitionCheck : 2;
2883
2884 };
2885 uint32_t encControls;
2886 };
2887
2888 /** Maps QP to skip thresholds when FTQ is enabled. Valid range is 0-255. */
2889 uint8_t FTQSkipThresholdLUT[52];
2890 /** Maps QP to skip thresholds when FTQ is disabled. Valid range is 0-65535. */
2891 uint16_t NonFTQSkipThresholdLUT[52];
2892
2893 uint32_t reserved[VA_PADDING_HIGH]; // Reserved for future use.
2894
2895} VAEncMiscParameterEncQuality;
2896
2897/**
2898 * \brief Custom Encoder Rounding Offset Control.
2899 * Application may use this structure to set customized rounding
2900 * offset parameters for quantization.
2901 * Valid when \c VAConfigAttribCustomRoundingControl equals 1.
2902 */
2903typedef struct _VAEncMiscParameterCustomRoundingControl {
2904 union {
2905 struct {
2906 /** \brief Enable customized rounding offset for intra blocks.
2907 * If 0, default value would be taken by driver for intra
2908 * rounding offset.
2909 */
2910 uint32_t enable_custom_rouding_intra : 1 ;
2911
2912 /** \brief Intra rounding offset
2913 * Ignored if \c enable_custom_rouding_intra equals 0.
2914 */
2915 uint32_t rounding_offset_intra : 7;
2916
2917 /** \brief Enable customized rounding offset for inter blocks.
2918 * If 0, default value would be taken by driver for inter
2919 * rounding offset.
2920 */
2921 uint32_t enable_custom_rounding_inter : 1 ;
2922
2923 /** \brief Inter rounding offset
2924 * Ignored if \c enable_custom_rouding_inter equals 0.
2925 */
2926 uint32_t rounding_offset_inter : 7;
2927
2928 /* Reserved */
2929 uint32_t reserved : 16;
2930 } bits;
2931 uint32_t value;
2932 } rounding_offset_setting;
2933} VAEncMiscParameterCustomRoundingControl;
2934
2935/**
2936 * There will be cases where the bitstream buffer will not have enough room to hold
2937 * the data for the entire slice, and the following flags will be used in the slice
2938 * parameter to signal to the server for the possible cases.
2939 * If a slice parameter buffer and slice data buffer pair is sent to the server with
2940 * the slice data partially in the slice data buffer (BEGIN and MIDDLE cases below),
2941 * then a slice parameter and data buffer needs to be sent again to complete this slice.
2942 */
2943#define VA_SLICE_DATA_FLAG_ALL 0x00 /* whole slice is in the buffer */
2944#define VA_SLICE_DATA_FLAG_BEGIN 0x01 /* The beginning of the slice is in the buffer but the end if not */
2945#define VA_SLICE_DATA_FLAG_MIDDLE 0x02 /* Neither beginning nor end of the slice is in the buffer */
2946#define VA_SLICE_DATA_FLAG_END 0x04 /* end of the slice is in the buffer */
2947
2948/* Codec-independent Slice Parameter Buffer base */
2949typedef struct _VASliceParameterBufferBase {
2950 uint32_t slice_data_size; /* number of bytes in the slice data buffer for this slice */
2951 uint32_t slice_data_offset; /* the offset to the first byte of slice data */
2952 uint32_t slice_data_flag; /* see VA_SLICE_DATA_FLAG_XXX definitions */
2953} VASliceParameterBufferBase;
2954
2955/**********************************
2956 * JPEG common data structures
2957 **********************************/
2958/**
2959 * \brief Huffman table for JPEG decoding.
2960 *
2961 * This structure holds the complete Huffman tables. This is an
2962 * aggregation of all Huffman table (DHT) segments maintained by the
2963 * application. i.e. up to 2 Huffman tables are stored in there for
2964 * baseline profile.
2965 *
2966 * The #load_huffman_table array can be used as a hint to notify the
2967 * VA driver implementation about which table(s) actually changed
2968 * since the last submission of this buffer.
2969 */
2970typedef struct _VAHuffmanTableBufferJPEGBaseline {
2971 /** \brief Specifies which #huffman_table is valid. */
2972 uint8_t load_huffman_table[2];
2973 /** \brief Huffman tables indexed by table identifier (Th). */
2974 struct {
2975 /** @name DC table (up to 12 categories) */
2976 /**@{*/
2977 /** \brief Number of Huffman codes of length i + 1 (Li). */
2978 uint8_t num_dc_codes[16];
2979 /** \brief Value associated with each Huffman code (Vij). */
2980 uint8_t dc_values[12];
2981 /**@}*/
2982 /** @name AC table (2 special codes + up to 16 * 10 codes) */
2983 /**@{*/
2984 /** \brief Number of Huffman codes of length i + 1 (Li). */
2985 uint8_t num_ac_codes[16];
2986 /** \brief Value associated with each Huffman code (Vij). */
2987 uint8_t ac_values[162];
2988 /** \brief Padding to 4-byte boundaries. Must be set to zero. */
2989 uint8_t pad[2];
2990 /**@}*/
2991 } huffman_table[2];
2992
2993 /** \brief Reserved bytes for future use, must be zero */
2994 uint32_t va_reserved[VA_PADDING_LOW];
2995} VAHuffmanTableBufferJPEGBaseline;
2996
2997/****************************
2998 * MPEG-2 data structures
2999 ****************************/
3000
3001/* MPEG-2 Picture Parameter Buffer */
3002/*
3003 * For each frame or field, and before any slice data, a single
3004 * picture parameter buffer must be send.
3005 */
3006typedef struct _VAPictureParameterBufferMPEG2 {
3007 uint16_t horizontal_size;
3008 uint16_t vertical_size;
3009 VASurfaceID forward_reference_picture;
3010 VASurfaceID backward_reference_picture;
3011 /* meanings of the following fields are the same as in the standard */
3012 int32_t picture_coding_type;
3013 int32_t f_code; /* pack all four fcode into this */
3014 union {
3015 struct {
3016 uint32_t intra_dc_precision : 2;
3017 uint32_t picture_structure : 2;
3018 uint32_t top_field_first : 1;
3019 uint32_t frame_pred_frame_dct : 1;
3020 uint32_t concealment_motion_vectors : 1;
3021 uint32_t q_scale_type : 1;
3022 uint32_t intra_vlc_format : 1;
3023 uint32_t alternate_scan : 1;
3024 uint32_t repeat_first_field : 1;
3025 uint32_t progressive_frame : 1;
3026 uint32_t is_first_field : 1; /* indicate whether the current field
3027 * is the first field for field picture
3028 */
3029 } bits;
3030 uint32_t value;
3031 } picture_coding_extension;
3032
3033 /** \brief Reserved bytes for future use, must be zero */
3034 uint32_t va_reserved[VA_PADDING_LOW];
3035} VAPictureParameterBufferMPEG2;
3036
3037/** MPEG-2 Inverse Quantization Matrix Buffer */
3038typedef struct _VAIQMatrixBufferMPEG2 {
3039 /** \brief Same as the MPEG-2 bitstream syntax element. */
3040 int32_t load_intra_quantiser_matrix;
3041 /** \brief Same as the MPEG-2 bitstream syntax element. */
3042 int32_t load_non_intra_quantiser_matrix;
3043 /** \brief Same as the MPEG-2 bitstream syntax element. */
3044 int32_t load_chroma_intra_quantiser_matrix;
3045 /** \brief Same as the MPEG-2 bitstream syntax element. */
3046 int32_t load_chroma_non_intra_quantiser_matrix;
3047 /** \brief Luminance intra matrix, in zig-zag scan order. */
3048 uint8_t intra_quantiser_matrix[64];
3049 /** \brief Luminance non-intra matrix, in zig-zag scan order. */
3050 uint8_t non_intra_quantiser_matrix[64];
3051 /** \brief Chroma intra matrix, in zig-zag scan order. */
3052 uint8_t chroma_intra_quantiser_matrix[64];
3053 /** \brief Chroma non-intra matrix, in zig-zag scan order. */
3054 uint8_t chroma_non_intra_quantiser_matrix[64];
3055
3056 /** \brief Reserved bytes for future use, must be zero */
3057 uint32_t va_reserved[VA_PADDING_LOW];
3058} VAIQMatrixBufferMPEG2;
3059
3060/** MPEG-2 Slice Parameter Buffer */
3061typedef struct _VASliceParameterBufferMPEG2 {
3062 uint32_t slice_data_size;/* number of bytes in the slice data buffer for this slice */
3063 uint32_t slice_data_offset;/* the offset to the first byte of slice data */
3064 uint32_t slice_data_flag; /* see VA_SLICE_DATA_FLAG_XXX defintions */
3065 uint32_t macroblock_offset;/* the offset to the first bit of MB from the first byte of slice data */
3066 uint32_t slice_horizontal_position;
3067 uint32_t slice_vertical_position;
3068 int32_t quantiser_scale_code;
3069 int32_t intra_slice_flag;
3070
3071 /** \brief Reserved bytes for future use, must be zero */
3072 uint32_t va_reserved[VA_PADDING_LOW];
3073} VASliceParameterBufferMPEG2;
3074
3075/** MPEG-2 Macroblock Parameter Buffer */
3076typedef struct _VAMacroblockParameterBufferMPEG2 {
3077 uint16_t macroblock_address;
3078 /*
3079 * macroblock_address (in raster scan order)
3080 * top-left: 0
3081 * bottom-right: picture-height-in-mb*picture-width-in-mb - 1
3082 */
3083 uint8_t macroblock_type; /* see definition below */
3084 union {
3085 struct {
3086 uint32_t frame_motion_type : 2;
3087 uint32_t field_motion_type : 2;
3088 uint32_t dct_type : 1;
3089 } bits;
3090 uint32_t value;
3091 } macroblock_modes;
3092 uint8_t motion_vertical_field_select;
3093 /*
3094 * motion_vertical_field_select:
3095 * see section 6.3.17.2 in the spec
3096 * only the lower 4 bits are used
3097 * bit 0: first vector forward
3098 * bit 1: first vector backward
3099 * bit 2: second vector forward
3100 * bit 3: second vector backward
3101 */
3102 int16_t PMV[2][2][2]; /* see Table 7-7 in the spec */
3103 uint16_t coded_block_pattern;
3104 /*
3105 * The bitplanes for coded_block_pattern are described
3106 * in Figure 6.10-12 in the spec
3107 */
3108
3109 /* Number of skipped macroblocks after this macroblock */
3110 uint16_t num_skipped_macroblocks;
3111
3112 /** \brief Reserved bytes for future use, must be zero */
3113 uint32_t va_reserved[VA_PADDING_LOW];
3114} VAMacroblockParameterBufferMPEG2;
3115
3116/*
3117 * OR'd flags for macroblock_type (section 6.3.17.1 in the spec)
3118 */
3119#define VA_MB_TYPE_MOTION_FORWARD 0x02
3120#define VA_MB_TYPE_MOTION_BACKWARD 0x04
3121#define VA_MB_TYPE_MOTION_PATTERN 0x08
3122#define VA_MB_TYPE_MOTION_INTRA 0x10
3123
3124/**
3125 * MPEG-2 Residual Data Buffer
3126 * For each macroblock, there wil be 64 shorts (16-bit) in the
3127 * residual data buffer
3128 */
3129
3130/****************************
3131 * MPEG-4 Part 2 data structures
3132 ****************************/
3133
3134/* MPEG-4 Picture Parameter Buffer */
3135/*
3136 * For each frame or field, and before any slice data, a single
3137 * picture parameter buffer must be send.
3138 */
3139typedef struct _VAPictureParameterBufferMPEG4 {
3140 uint16_t vop_width;
3141 uint16_t vop_height;
3142 VASurfaceID forward_reference_picture;
3143 VASurfaceID backward_reference_picture;
3144 union {
3145 struct {
3146 uint32_t short_video_header : 1;
3147 uint32_t chroma_format : 2;
3148 uint32_t interlaced : 1;
3149 uint32_t obmc_disable : 1;
3150 uint32_t sprite_enable : 2;
3151 uint32_t sprite_warping_accuracy : 2;
3152 uint32_t quant_type : 1;
3153 uint32_t quarter_sample : 1;
3154 uint32_t data_partitioned : 1;
3155 uint32_t reversible_vlc : 1;
3156 uint32_t resync_marker_disable : 1;
3157 } bits;
3158 uint32_t value;
3159 } vol_fields;
3160 uint8_t no_of_sprite_warping_points;
3161 int16_t sprite_trajectory_du[3];
3162 int16_t sprite_trajectory_dv[3];
3163 uint8_t quant_precision;
3164 union {
3165 struct {
3166 uint32_t vop_coding_type : 2;
3167 uint32_t backward_reference_vop_coding_type : 2;
3168 uint32_t vop_rounding_type : 1;
3169 uint32_t intra_dc_vlc_thr : 3;
3170 uint32_t top_field_first : 1;
3171 uint32_t alternate_vertical_scan_flag : 1;
3172 } bits;
3173 uint32_t value;
3174 } vop_fields;
3175 uint8_t vop_fcode_forward;
3176 uint8_t vop_fcode_backward;
3177 uint16_t vop_time_increment_resolution;
3178 /* short header related */
3179 uint8_t num_gobs_in_vop;
3180 uint8_t num_macroblocks_in_gob;
3181 /* for direct mode prediction */
3182 int16_t TRB;
3183 int16_t TRD;
3184
3185 /** \brief Reserved bytes for future use, must be zero */
3186 uint32_t va_reserved[VA_PADDING_LOW];
3187} VAPictureParameterBufferMPEG4;
3188
3189/** MPEG-4 Inverse Quantization Matrix Buffer */
3190typedef struct _VAIQMatrixBufferMPEG4 {
3191 /** Same as the MPEG-4:2 bitstream syntax element. */
3192 int32_t load_intra_quant_mat;
3193 /** Same as the MPEG-4:2 bitstream syntax element. */
3194 int32_t load_non_intra_quant_mat;
3195 /** The matrix for intra blocks, in zig-zag scan order. */
3196 uint8_t intra_quant_mat[64];
3197 /** The matrix for non-intra blocks, in zig-zag scan order. */
3198 uint8_t non_intra_quant_mat[64];
3199
3200 /** \brief Reserved bytes for future use, must be zero */
3201 uint32_t va_reserved[VA_PADDING_LOW];
3202} VAIQMatrixBufferMPEG4;
3203
3204/** MPEG-4 Slice Parameter Buffer */
3205typedef struct _VASliceParameterBufferMPEG4 {
3206 uint32_t slice_data_size;/* number of bytes in the slice data buffer for this slice */
3207 uint32_t slice_data_offset;/* the offset to the first byte of slice data */
3208 uint32_t slice_data_flag; /* see VA_SLICE_DATA_FLAG_XXX defintions */
3209 uint32_t macroblock_offset;/* the offset to the first bit of MB from the first byte of slice data */
3210 uint32_t macroblock_number;
3211 int32_t quant_scale;
3212
3213 /** \brief Reserved bytes for future use, must be zero */
3214 uint32_t va_reserved[VA_PADDING_LOW];
3215} VASliceParameterBufferMPEG4;
3216
3217/**
3218 VC-1 data structures
3219*/
3220
3221typedef enum /* see 7.1.1.32 */
3222{
3223 VAMvMode1Mv = 0,
3224 VAMvMode1MvHalfPel = 1,
3225 VAMvMode1MvHalfPelBilinear = 2,
3226 VAMvModeMixedMv = 3,
3227 VAMvModeIntensityCompensation = 4
3228} VAMvModeVC1;
3229
3230/** VC-1 Picture Parameter Buffer */
3231/*
3232 * For each picture, and before any slice data, a picture parameter
3233 * buffer must be send. Multiple picture parameter buffers may be
3234 * sent for a single picture. In that case picture parameters will
3235 * apply to all slice data that follow it until a new picture
3236 * parameter buffer is sent.
3237 *
3238 * Notes:
3239 * pic_quantizer_type should be set to the applicable quantizer
3240 * type as defined by QUANTIZER (J.1.19) and either
3241 * PQUANTIZER (7.1.1.8) or PQINDEX (7.1.1.6)
3242 */
3243typedef struct _VAPictureParameterBufferVC1 {
3244 VASurfaceID forward_reference_picture;
3245 VASurfaceID backward_reference_picture;
3246 /* if out-of-loop post-processing is done on the render
3247 target, then we need to keep the in-loop decoded
3248 picture as a reference picture */
3249 VASurfaceID inloop_decoded_picture;
3250
3251 /* sequence layer for AP or meta data for SP and MP */
3252 union {
3253 struct {
3254 uint32_t pulldown : 1; /* SEQUENCE_LAYER::PULLDOWN */
3255 uint32_t interlace : 1; /* SEQUENCE_LAYER::INTERLACE */
3256 uint32_t tfcntrflag : 1; /* SEQUENCE_LAYER::TFCNTRFLAG */
3257 uint32_t finterpflag : 1; /* SEQUENCE_LAYER::FINTERPFLAG */
3258 uint32_t psf : 1; /* SEQUENCE_LAYER::PSF */
3259 uint32_t multires : 1; /* METADATA::MULTIRES */
3260 uint32_t overlap : 1; /* METADATA::OVERLAP */
3261 uint32_t syncmarker : 1; /* METADATA::SYNCMARKER */
3262 uint32_t rangered : 1; /* METADATA::RANGERED */
3263 uint32_t max_b_frames : 3; /* METADATA::MAXBFRAMES */
3264 uint32_t profile : 2; /* SEQUENCE_LAYER::PROFILE or The MSB of METADATA::PROFILE */
3265 } bits;
3266 uint32_t value;
3267 } sequence_fields;
3268
3269 uint16_t coded_width; /* ENTRY_POINT_LAYER::CODED_WIDTH */
3270 uint16_t coded_height; /* ENTRY_POINT_LAYER::CODED_HEIGHT */
3271 union {
3272 struct {
3273 uint32_t broken_link : 1; /* ENTRY_POINT_LAYER::BROKEN_LINK */
3274 uint32_t closed_entry : 1; /* ENTRY_POINT_LAYER::CLOSED_ENTRY */
3275 uint32_t panscan_flag : 1; /* ENTRY_POINT_LAYER::PANSCAN_FLAG */
3276 uint32_t loopfilter : 1; /* ENTRY_POINT_LAYER::LOOPFILTER */
3277 } bits;
3278 uint32_t value;
3279 } entrypoint_fields;
3280 uint8_t conditional_overlap_flag; /* ENTRY_POINT_LAYER::CONDOVER */
3281 uint8_t fast_uvmc_flag; /* ENTRY_POINT_LAYER::FASTUVMC */
3282 union {
3283 struct {
3284 uint32_t luma_flag : 1; /* ENTRY_POINT_LAYER::RANGE_MAPY_FLAG */
3285 uint32_t luma : 3; /* ENTRY_POINT_LAYER::RANGE_MAPY */
3286 uint32_t chroma_flag : 1; /* ENTRY_POINT_LAYER::RANGE_MAPUV_FLAG */
3287 uint32_t chroma : 3; /* ENTRY_POINT_LAYER::RANGE_MAPUV */
3288 } bits;
3289 uint32_t value;
3290 } range_mapping_fields;
3291
3292 uint8_t b_picture_fraction; /* Index for PICTURE_LAYER::BFRACTION value in Table 40 (7.1.1.14) */
3293 uint8_t cbp_table; /* PICTURE_LAYER::CBPTAB/ICBPTAB */
3294 uint8_t mb_mode_table; /* PICTURE_LAYER::MBMODETAB */
3295 uint8_t range_reduction_frame;/* PICTURE_LAYER::RANGEREDFRM */
3296 uint8_t rounding_control; /* PICTURE_LAYER::RNDCTRL */
3297 uint8_t post_processing; /* PICTURE_LAYER::POSTPROC */
3298 uint8_t picture_resolution_index; /* PICTURE_LAYER::RESPIC */
3299 uint8_t luma_scale; /* PICTURE_LAYER::LUMSCALE */
3300 uint8_t luma_shift; /* PICTURE_LAYER::LUMSHIFT */
3301
3302 union {
3303 struct {
3304 uint32_t picture_type : 3; /* PICTURE_LAYER::PTYPE */
3305 uint32_t frame_coding_mode : 3; /* PICTURE_LAYER::FCM */
3306 uint32_t top_field_first : 1; /* PICTURE_LAYER::TFF */
3307 uint32_t is_first_field : 1; /* set to 1 if it is the first field */
3308 uint32_t intensity_compensation : 1; /* PICTURE_LAYER::INTCOMP */
3309 } bits;
3310 uint32_t value;
3311 } picture_fields;
3312 union {
3313 struct {
3314 uint32_t mv_type_mb : 1; /* PICTURE::MVTYPEMB */
3315 uint32_t direct_mb : 1; /* PICTURE::DIRECTMB */
3316 uint32_t skip_mb : 1; /* PICTURE::SKIPMB */
3317 uint32_t field_tx : 1; /* PICTURE::FIELDTX */
3318 uint32_t forward_mb : 1; /* PICTURE::FORWARDMB */
3319 uint32_t ac_pred : 1; /* PICTURE::ACPRED */
3320 uint32_t overflags : 1; /* PICTURE::OVERFLAGS */
3321 } flags;
3322 uint32_t value;
3323 } raw_coding;
3324 union {
3325 struct {
3326 uint32_t bp_mv_type_mb : 1; /* PICTURE::MVTYPEMB */
3327 uint32_t bp_direct_mb : 1; /* PICTURE::DIRECTMB */
3328 uint32_t bp_skip_mb : 1; /* PICTURE::SKIPMB */
3329 uint32_t bp_field_tx : 1; /* PICTURE::FIELDTX */
3330 uint32_t bp_forward_mb : 1; /* PICTURE::FORWARDMB */
3331 uint32_t bp_ac_pred : 1; /* PICTURE::ACPRED */
3332 uint32_t bp_overflags : 1; /* PICTURE::OVERFLAGS */
3333 } flags;
3334 uint32_t value;
3335 } bitplane_present; /* signal what bitplane is being passed via the bitplane buffer */
3336 union {
3337 struct {
3338 uint32_t reference_distance_flag : 1;/* PICTURE_LAYER::REFDIST_FLAG */
3339 uint32_t reference_distance : 5;/* PICTURE_LAYER::REFDIST */
3340 uint32_t num_reference_pictures: 1;/* PICTURE_LAYER::NUMREF */
3341 uint32_t reference_field_pic_indicator : 1;/* PICTURE_LAYER::REFFIELD */
3342 } bits;
3343 uint32_t value;
3344 } reference_fields;
3345 union {
3346 struct {
3347 uint32_t mv_mode : 3; /* PICTURE_LAYER::MVMODE */
3348 uint32_t mv_mode2 : 3; /* PICTURE_LAYER::MVMODE2 */
3349 uint32_t mv_table : 3; /* PICTURE_LAYER::MVTAB/IMVTAB */
3350 uint32_t two_mv_block_pattern_table: 2; /* PICTURE_LAYER::2MVBPTAB */
3351 uint32_t four_mv_switch : 1; /* PICTURE_LAYER::4MVSWITCH */
3352 uint32_t four_mv_block_pattern_table : 2; /* PICTURE_LAYER::4MVBPTAB */
3353 uint32_t extended_mv_flag : 1; /* ENTRY_POINT_LAYER::EXTENDED_MV */
3354 uint32_t extended_mv_range : 2; /* PICTURE_LAYER::MVRANGE */
3355 uint32_t extended_dmv_flag : 1; /* ENTRY_POINT_LAYER::EXTENDED_DMV */
3356 uint32_t extended_dmv_range : 2; /* PICTURE_LAYER::DMVRANGE */
3357 } bits;
3358 uint32_t value;
3359 } mv_fields;
3360 union {
3361 struct {
3362 uint32_t dquant : 2; /* ENTRY_POINT_LAYER::DQUANT */
3363 uint32_t quantizer : 2; /* ENTRY_POINT_LAYER::QUANTIZER */
3364 uint32_t half_qp : 1; /* PICTURE_LAYER::HALFQP */
3365 uint32_t pic_quantizer_scale : 5;/* PICTURE_LAYER::PQUANT */
3366 uint32_t pic_quantizer_type : 1;/* PICTURE_LAYER::PQUANTIZER */
3367 uint32_t dq_frame : 1; /* VOPDQUANT::DQUANTFRM */
3368 uint32_t dq_profile : 2; /* VOPDQUANT::DQPROFILE */
3369 uint32_t dq_sb_edge : 2; /* VOPDQUANT::DQSBEDGE */
3370 uint32_t dq_db_edge : 2; /* VOPDQUANT::DQDBEDGE */
3371 uint32_t dq_binary_level : 1; /* VOPDQUANT::DQBILEVEL */
3372 uint32_t alt_pic_quantizer : 5;/* VOPDQUANT::ALTPQUANT */
3373 } bits;
3374 uint32_t value;
3375 } pic_quantizer_fields;
3376 union {
3377 struct {
3378 uint32_t variable_sized_transform_flag : 1;/* ENTRY_POINT_LAYER::VSTRANSFORM */
3379 uint32_t mb_level_transform_type_flag : 1;/* PICTURE_LAYER::TTMBF */
3380 uint32_t frame_level_transform_type : 2;/* PICTURE_LAYER::TTFRM */
3381 uint32_t transform_ac_codingset_idx1 : 2;/* PICTURE_LAYER::TRANSACFRM */
3382 uint32_t transform_ac_codingset_idx2 : 2;/* PICTURE_LAYER::TRANSACFRM2 */
3383 uint32_t intra_transform_dc_table : 1;/* PICTURE_LAYER::TRANSDCTAB */
3384 } bits;
3385 uint32_t value;
3386 } transform_fields;
3387
3388 uint8_t luma_scale2; /* PICTURE_LAYER::LUMSCALE2 */
3389 uint8_t luma_shift2; /* PICTURE_LAYER::LUMSHIFT2 */
3390 uint8_t intensity_compensation_field; /* Index for PICTURE_LAYER::INTCOMPFIELD value in Table 109 (9.1.1.48) */
3391
3392 /** \brief Reserved bytes for future use, must be zero */
3393 uint32_t va_reserved[VA_PADDING_MEDIUM - 1];
3394} VAPictureParameterBufferVC1;
3395
3396/** VC-1 Bitplane Buffer
3397There will be at most three bitplanes coded in any picture header. To send
3398the bitplane data more efficiently, each byte is divided in two nibbles, with
3399each nibble carrying three bitplanes for one macroblock. The following table
3400shows the bitplane data arrangement within each nibble based on the picture
3401type.
3402
3403Picture Type Bit3 Bit2 Bit1 Bit0
3404I or BI OVERFLAGS ACPRED FIELDTX
3405P MYTYPEMB SKIPMB DIRECTMB
3406B FORWARDMB SKIPMB DIRECTMB
3407
3408Within each byte, the lower nibble is for the first MB and the upper nibble is
3409for the second MB. E.g. the lower nibble of the first byte in the bitplane
3410buffer is for Macroblock #1 and the upper nibble of the first byte is for
3411Macroblock #2 in the first row.
3412*/
3413
3414/* VC-1 Slice Parameter Buffer */
3415typedef struct _VASliceParameterBufferVC1 {
3416 uint32_t slice_data_size;/* number of bytes in the slice data buffer for this slice */
3417 uint32_t slice_data_offset;/* the offset to the first byte of slice data */
3418 uint32_t slice_data_flag; /* see VA_SLICE_DATA_FLAG_XXX defintions */
3419 uint32_t macroblock_offset;/* the offset to the first bit of MB from the first byte of slice data */
3420 uint32_t slice_vertical_position;
3421
3422 /** \brief Reserved bytes for future use, must be zero */
3423 uint32_t va_reserved[VA_PADDING_LOW];
3424} VASliceParameterBufferVC1;
3425
3426/* VC-1 Slice Data Buffer */
3427/*
3428This is simplely a buffer containing raw bit-stream bytes
3429*/
3430
3431/****************************
3432 * H.264/AVC data structures
3433 ****************************/
3434
3435typedef struct _VAPictureH264 {
3436 VASurfaceID picture_id;
3437 uint32_t frame_idx;
3438 uint32_t flags;
3439 int32_t TopFieldOrderCnt;
3440 int32_t BottomFieldOrderCnt;
3441
3442 /** \brief Reserved bytes for future use, must be zero */
3443 uint32_t va_reserved[VA_PADDING_LOW];
3444} VAPictureH264;
3445/* flags in VAPictureH264 could be OR of the following */
3446#define VA_PICTURE_H264_INVALID 0x00000001
3447#define VA_PICTURE_H264_TOP_FIELD 0x00000002
3448#define VA_PICTURE_H264_BOTTOM_FIELD 0x00000004
3449#define VA_PICTURE_H264_SHORT_TERM_REFERENCE 0x00000008
3450#define VA_PICTURE_H264_LONG_TERM_REFERENCE 0x00000010
3451
3452/** H.264 Picture Parameter Buffer */
3453/*
3454 * For each picture, and before any slice data, a single
3455 * picture parameter buffer must be send.
3456 */
3457typedef struct _VAPictureParameterBufferH264 {
3458 VAPictureH264 CurrPic;
3459 VAPictureH264 ReferenceFrames[16]; /* in DPB */
3460 uint16_t picture_width_in_mbs_minus1;
3461 uint16_t picture_height_in_mbs_minus1;
3462 uint8_t bit_depth_luma_minus8;
3463 uint8_t bit_depth_chroma_minus8;
3464 uint8_t num_ref_frames;
3465 union {
3466 struct {
3467 uint32_t chroma_format_idc : 2;
3468 uint32_t residual_colour_transform_flag : 1; /* Renamed to separate_colour_plane_flag in newer standard versions. */
3469 uint32_t gaps_in_frame_num_value_allowed_flag : 1;
3470 uint32_t frame_mbs_only_flag : 1;
3471 uint32_t mb_adaptive_frame_field_flag : 1;
3472 uint32_t direct_8x8_inference_flag : 1;
3473 uint32_t MinLumaBiPredSize8x8 : 1; /* see A.3.3.2 */
3474 uint32_t log2_max_frame_num_minus4 : 4;
3475 uint32_t pic_order_cnt_type : 2;
3476 uint32_t log2_max_pic_order_cnt_lsb_minus4 : 4;
3477 uint32_t delta_pic_order_always_zero_flag : 1;
3478 } bits;
3479 uint32_t value;
3480 } seq_fields;
3481 // FMO is not supported.
3482 va_deprecated uint8_t num_slice_groups_minus1;
3483 va_deprecated uint8_t slice_group_map_type;
3484 va_deprecated uint16_t slice_group_change_rate_minus1;
3485 int8_t pic_init_qp_minus26;
3486 int8_t pic_init_qs_minus26;
3487 int8_t chroma_qp_index_offset;
3488 int8_t second_chroma_qp_index_offset;
3489 union {
3490 struct {
3491 uint32_t entropy_coding_mode_flag : 1;
3492 uint32_t weighted_pred_flag : 1;
3493 uint32_t weighted_bipred_idc : 2;
3494 uint32_t transform_8x8_mode_flag : 1;
3495 uint32_t field_pic_flag : 1;
3496 uint32_t constrained_intra_pred_flag : 1;
3497 uint32_t pic_order_present_flag : 1; /* Renamed to bottom_field_pic_order_in_frame_present_flag in newer standard versions. */
3498 uint32_t deblocking_filter_control_present_flag : 1;
3499 uint32_t redundant_pic_cnt_present_flag : 1;
3500 uint32_t reference_pic_flag : 1; /* nal_ref_idc != 0 */
3501 } bits;
3502 uint32_t value;
3503 } pic_fields;
3504 uint16_t frame_num;
3505
3506 /** \brief Reserved bytes for future use, must be zero */
3507 uint32_t va_reserved[VA_PADDING_MEDIUM];
3508} VAPictureParameterBufferH264;
3509
3510/** H.264 Inverse Quantization Matrix Buffer */
3511typedef struct _VAIQMatrixBufferH264 {
3512 /** \brief 4x4 scaling list, in raster scan order. */
3513 uint8_t ScalingList4x4[6][16];
3514 /** \brief 8x8 scaling list, in raster scan order. */
3515 uint8_t ScalingList8x8[2][64];
3516
3517 /** \brief Reserved bytes for future use, must be zero */
3518 uint32_t va_reserved[VA_PADDING_LOW];
3519} VAIQMatrixBufferH264;
3520
3521/** H.264 Slice Parameter Buffer */
3522typedef struct _VASliceParameterBufferH264 {
3523 uint32_t slice_data_size;/* number of bytes in the slice data buffer for this slice */
3524 /** \brief Byte offset to the NAL Header Unit for this slice. */
3525 uint32_t slice_data_offset;
3526 uint32_t slice_data_flag; /* see VA_SLICE_DATA_FLAG_XXX defintions */
3527 /**
3528 * \brief Bit offset from NAL Header Unit to the begining of slice_data().
3529 *
3530 * This bit offset is relative to and includes the NAL unit byte
3531 * and represents the number of bits parsed in the slice_header()
3532 * after the removal of any emulation prevention bytes in
3533 * there. However, the slice data buffer passed to the hardware is
3534 * the original bitstream, thus including any emulation prevention
3535 * bytes.
3536 */
3537 uint16_t slice_data_bit_offset;
3538 uint16_t first_mb_in_slice;
3539 uint8_t slice_type;
3540 uint8_t direct_spatial_mv_pred_flag;
3541 /**
3542 * H264/AVC syntax element
3543 *
3544 * if num_ref_idx_active_override_flag equals 0, host decoder should
3545 * set its value to num_ref_idx_l0_default_active_minus1.
3546 */
3547 uint8_t num_ref_idx_l0_active_minus1;
3548 /**
3549 * H264/AVC syntax element
3550 *
3551 * if num_ref_idx_active_override_flag equals 0, host decoder should
3552 * set its value to num_ref_idx_l1_default_active_minus1.
3553 */
3554 uint8_t num_ref_idx_l1_active_minus1;
3555 uint8_t cabac_init_idc;
3556 int8_t slice_qp_delta;
3557 uint8_t disable_deblocking_filter_idc;
3558 int8_t slice_alpha_c0_offset_div2;
3559 int8_t slice_beta_offset_div2;
3560 VAPictureH264 RefPicList0[32]; /* See 8.2.4.2 */
3561 VAPictureH264 RefPicList1[32]; /* See 8.2.4.2 */
3562 uint8_t luma_log2_weight_denom;
3563 uint8_t chroma_log2_weight_denom;
3564 uint8_t luma_weight_l0_flag;
3565 int16_t luma_weight_l0[32];
3566 int16_t luma_offset_l0[32];
3567 uint8_t chroma_weight_l0_flag;
3568 int16_t chroma_weight_l0[32][2];
3569 int16_t chroma_offset_l0[32][2];
3570 uint8_t luma_weight_l1_flag;
3571 int16_t luma_weight_l1[32];
3572 int16_t luma_offset_l1[32];
3573 uint8_t chroma_weight_l1_flag;
3574 int16_t chroma_weight_l1[32][2];
3575 int16_t chroma_offset_l1[32][2];
3576
3577 /** \brief Reserved bytes for future use, must be zero */
3578 uint32_t va_reserved[VA_PADDING_LOW];
3579} VASliceParameterBufferH264;
3580
3581/****************************
3582 * Common encode data structures
3583 ****************************/
3584typedef enum {
3585 VAEncPictureTypeIntra = 0,
3586 VAEncPictureTypePredictive = 1,
3587 VAEncPictureTypeBidirectional = 2,
3588} VAEncPictureType;
3589
3590/**
3591 * \brief Encode Slice Parameter Buffer.
3592 *
3593 * @deprecated
3594 * This is a deprecated encode slice parameter buffer, All applications
3595 * \c can use VAEncSliceParameterBufferXXX (XXX = MPEG2, HEVC, H264, JPEG)
3596 */
3597typedef struct _VAEncSliceParameterBuffer {
3598 uint32_t start_row_number; /* starting MB row number for this slice */
3599 uint32_t slice_height; /* slice height measured in MB */
3600 union {
3601 struct {
3602 uint32_t is_intra : 1;
3603 uint32_t disable_deblocking_filter_idc : 2;
3604 uint32_t uses_long_term_ref : 1;
3605 uint32_t is_long_term_ref : 1;
3606 } bits;
3607 uint32_t value;
3608 } slice_flags;
3609
3610 /** \brief Reserved bytes for future use, must be zero */
3611 uint32_t va_reserved[VA_PADDING_LOW];
3612} VAEncSliceParameterBuffer;
3613
3614
3615/****************************
3616 * H.263 specific encode data structures
3617 ****************************/
3618
3619typedef struct _VAEncSequenceParameterBufferH263 {
3620 uint32_t intra_period;
3621 uint32_t bits_per_second;
3622 uint32_t frame_rate;
3623 uint32_t initial_qp;
3624 uint32_t min_qp;
3625
3626 /** \brief Reserved bytes for future use, must be zero */
3627 uint32_t va_reserved[VA_PADDING_LOW];
3628} VAEncSequenceParameterBufferH263;
3629
3630typedef struct _VAEncPictureParameterBufferH263 {
3631 VASurfaceID reference_picture;
3632 VASurfaceID reconstructed_picture;
3633 VABufferID coded_buf;
3634 uint16_t picture_width;
3635 uint16_t picture_height;
3636 VAEncPictureType picture_type;
3637
3638 /** \brief Reserved bytes for future use, must be zero */
3639 uint32_t va_reserved[VA_PADDING_LOW];
3640} VAEncPictureParameterBufferH263;
3641
3642/****************************
3643 * MPEG-4 specific encode data structures
3644 ****************************/
3645
3646typedef struct _VAEncSequenceParameterBufferMPEG4 {
3647 uint8_t profile_and_level_indication;
3648 uint32_t intra_period;
3649 uint32_t video_object_layer_width;
3650 uint32_t video_object_layer_height;
3651 uint32_t vop_time_increment_resolution;
3652 uint32_t fixed_vop_rate;
3653 uint32_t fixed_vop_time_increment;
3654 uint32_t bits_per_second;
3655 uint32_t frame_rate;
3656 uint32_t initial_qp;
3657 uint32_t min_qp;
3658
3659 /** \brief Reserved bytes for future use, must be zero */
3660 uint32_t va_reserved[VA_PADDING_LOW];
3661} VAEncSequenceParameterBufferMPEG4;
3662
3663typedef struct _VAEncPictureParameterBufferMPEG4 {
3664 VASurfaceID reference_picture;
3665 VASurfaceID reconstructed_picture;
3666 VABufferID coded_buf;
3667 uint16_t picture_width;
3668 uint16_t picture_height;
3669 uint32_t modulo_time_base; /* number of 1s */
3670 uint32_t vop_time_increment;
3671 VAEncPictureType picture_type;
3672
3673 /** \brief Reserved bytes for future use, must be zero */
3674 uint32_t va_reserved[VA_PADDING_LOW];
3675} VAEncPictureParameterBufferMPEG4;
3676
3677
3678
3679/** Buffer functions */
3680
3681/**
3682 * Creates a buffer for "num_elements" elements of "size" bytes and
3683 * initalize with "data".
3684 * if "data" is null, then the contents of the buffer data store
3685 * are undefined.
3686 * Basically there are two ways to get buffer data to the server side. One is
3687 * to call vaCreateBuffer() with a non-null "data", which results the data being
3688 * copied to the data store on the server side. A different method that
3689 * eliminates this copy is to pass null as "data" when calling vaCreateBuffer(),
3690 * and then use vaMapBuffer() to map the data store from the server side to the
3691 * client address space for access.
3692 * The user must call vaDestroyBuffer() to destroy a buffer.
3693 * Note: image buffers are created by the library, not the client. Please see
3694 * vaCreateImage on how image buffers are managed.
3695 */
3696VAStatus vaCreateBuffer(
3697 VADisplay dpy,
3698 VAContextID context,
3699 VABufferType type, /* in */
3700 unsigned int size, /* in */
3701 unsigned int num_elements, /* in */
3702 void *data, /* in */
3703 VABufferID *buf_id /* out */
3704);
3705
3706/**
3707 * Create a buffer for given width & height get unit_size, pitch, buf_id for 2D buffer
3708 * for permb qp buffer, it will return unit_size for one MB or LCU and the pitch for alignments
3709 * can call vaMapBuffer with this Buffer ID to get virtual address.
3710 * e.g. AVC 1080P encode, 1920x1088, the size in MB is 120x68,but inside driver,
3711 * maybe it should align with 256, and one byte present one Qp.so, call the function.
3712 * then get unit_size = 1, pitch = 256. call vaMapBuffer to get the virtual address (pBuf).
3713 * then read write the memory like 2D. the size is 256x68, application can only use 120x68
3714 * pBuf + 256 is the start of next line.
3715 * different driver implementation maybe return different unit_size and pitch
3716 */
3717VAStatus vaCreateBuffer2(
3718 VADisplay dpy,
3719 VAContextID context,
3720 VABufferType type,
3721 unsigned int width,
3722 unsigned int height,
3723 unsigned int *unit_size,
3724 unsigned int *pitch,
3725 VABufferID *buf_id
3726);
3727
3728/**
3729 * Convey to the server how many valid elements are in the buffer.
3730 * e.g. if multiple slice parameters are being held in a single buffer,
3731 * this will communicate to the server the number of slice parameters
3732 * that are valid in the buffer.
3733 */
3734VAStatus vaBufferSetNumElements(
3735 VADisplay dpy,
3736 VABufferID buf_id, /* in */
3737 unsigned int num_elements /* in */
3738);
3739
3740
3741/**
3742 * device independent data structure for codedbuffer
3743 */
3744
3745/*
3746 * FICTURE_AVE_QP(bit7-0): The average Qp value used during this frame
3747 * LARGE_SLICE(bit8):At least one slice in the current frame was large
3748 * enough for the encoder to attempt to limit its size.
3749 * SLICE_OVERFLOW(bit9): At least one slice in the current frame has
3750 * exceeded the maximum slice size specified.
3751 * BITRATE_OVERFLOW(bit10): The peak bitrate was exceeded for this frame.
3752 * BITRATE_HIGH(bit11): The frame size got within the safety margin of the maximum size (VCM only)
3753 * AIR_MB_OVER_THRESHOLD: the number of MBs adapted to Intra MB
3754 */
3755#define VA_CODED_BUF_STATUS_PICTURE_AVE_QP_MASK 0xff
3756#define VA_CODED_BUF_STATUS_LARGE_SLICE_MASK 0x100
3757#define VA_CODED_BUF_STATUS_SLICE_OVERFLOW_MASK 0x200
3758#define VA_CODED_BUF_STATUS_BITRATE_OVERFLOW 0x400
3759#define VA_CODED_BUF_STATUS_BITRATE_HIGH 0x800
3760/**
3761 * \brief The frame has exceeded the maximum requested size.
3762 *
3763 * This flag indicates that the encoded frame size exceeds the value
3764 * specified through a misc parameter buffer of type
3765 * #VAEncMiscParameterTypeMaxFrameSize.
3766 */
3767#define VA_CODED_BUF_STATUS_FRAME_SIZE_OVERFLOW 0x1000
3768/**
3769 * \brief the bitstream is bad or corrupt.
3770 */
3771#define VA_CODED_BUF_STATUS_BAD_BITSTREAM 0x8000
3772#define VA_CODED_BUF_STATUS_AIR_MB_OVER_THRESHOLD 0xff0000
3773
3774/**
3775 * \brief The coded buffer segment status contains frame encoding passes number
3776 *
3777 * This is the mask to get the number of encoding passes from the coded
3778 * buffer segment status.
3779 * NUMBER_PASS(bit24~bit27): the number for encoding passes executed for the coded frame.
3780 *
3781 */
3782#define VA_CODED_BUF_STATUS_NUMBER_PASSES_MASK 0xf000000
3783
3784/**
3785 * \brief The coded buffer segment contains a single NAL unit.
3786 *
3787 * This flag indicates that the coded buffer segment contains a
3788 * single NAL unit. This flag might be useful to the user for
3789 * processing the coded buffer.
3790 */
3791#define VA_CODED_BUF_STATUS_SINGLE_NALU 0x10000000
3792
3793/**
3794 * \brief Coded buffer segment.
3795 *
3796 * #VACodedBufferSegment is an element of a linked list describing
3797 * some information on the coded buffer. The coded buffer segment
3798 * could contain either a single NAL unit, or more than one NAL unit.
3799 * It is recommended (but not required) to return a single NAL unit
3800 * in a coded buffer segment, and the implementation should set the
3801 * VA_CODED_BUF_STATUS_SINGLE_NALU status flag if that is the case.
3802 */
3803typedef struct _VACodedBufferSegment {
3804 /**
3805 * \brief Size of the data buffer in this segment (in bytes).
3806 */
3807 uint32_t size;
3808 /** \brief Bit offset into the data buffer where the video data starts. */
3809 uint32_t bit_offset;
3810 /** \brief Status set by the driver. See \c VA_CODED_BUF_STATUS_*. */
3811 uint32_t status;
3812 /** \brief Reserved for future use. */
3813 uint32_t reserved;
3814 /** \brief Pointer to the start of the data buffer. */
3815 void *buf;
3816 /**
3817 * \brief Pointer to the next #VACodedBufferSegment element,
3818 * or \c NULL if there is none.
3819 */
3820 void *next;
3821
3822 /** \brief Reserved bytes for future use, must be zero */
3823 uint32_t va_reserved[VA_PADDING_LOW];
3824} VACodedBufferSegment;
3825
3826/**
3827 * Map data store of the buffer into the client's address space
3828 * vaCreateBuffer() needs to be called with "data" set to NULL before
3829 * calling vaMapBuffer()
3830 *
3831 * if buffer type is VAEncCodedBufferType, pbuf points to link-list of
3832 * VACodedBufferSegment, and the list is terminated if "next" is NULL
3833 */
3834VAStatus vaMapBuffer(
3835 VADisplay dpy,
3836 VABufferID buf_id, /* in */
3837 void **pbuf /* out */
3838);
3839
3840/**
3841 * After client making changes to a mapped data store, it needs to
3842 * "Unmap" it to let the server know that the data is ready to be
3843 * consumed by the server
3844 */
3845VAStatus vaUnmapBuffer(
3846 VADisplay dpy,
3847 VABufferID buf_id /* in */
3848);
3849
3850/**
3851 * After this call, the buffer is deleted and this buffer_id is no longer valid
3852 *
3853 * A buffer can be re-used and sent to the server by another Begin/Render/End
3854 * sequence if vaDestroyBuffer() is not called with this buffer.
3855 *
3856 * Note re-using a shared buffer (e.g. a slice data buffer) between the host and the
3857 * hardware accelerator can result in performance dropping.
3858 */
3859VAStatus vaDestroyBuffer(
3860 VADisplay dpy,
3861 VABufferID buffer_id
3862);
3863
3864/** \brief VA buffer information */
3865typedef struct {
3866 /** \brief Buffer handle */
3867 uintptr_t handle;
3868 /** \brief Buffer type (See \ref VABufferType). */
3869 uint32_t type;
3870 /**
3871 * \brief Buffer memory type (See \ref VASurfaceAttribMemoryType).
3872 *
3873 * On input to vaAcquireBufferHandle(), this field can serve as a hint
3874 * to specify the set of memory types the caller is interested in.
3875 * On successful return from vaAcquireBufferHandle(), the field is
3876 * updated with the best matching memory type.
3877 */
3878 uint32_t mem_type;
3879 /** \brief Size of the underlying buffer. */
3880 size_t mem_size;
3881
3882 /** \brief Reserved bytes for future use, must be zero */
3883 uint32_t va_reserved[VA_PADDING_LOW];
3884} VABufferInfo;
3885
3886/**
3887 * \brief Acquires buffer handle for external API usage
3888 *
3889 * Locks the VA buffer object \ref buf_id for external API usage like
3890 * EGL or OpenCL (OCL). This function is a synchronization point. This
3891 * means that any pending operation is guaranteed to be completed
3892 * prior to returning from the function.
3893 *
3894 * If the referenced VA buffer object is the backing store of a VA
3895 * surface, then this function acts as if vaSyncSurface() on the
3896 * parent surface was called first.
3897 *
3898 * The \ref VABufferInfo argument shall be zero'ed on input. On
3899 * successful output, the data structure is filled in with all the
3900 * necessary buffer level implementation details like handle, type,
3901 * memory type and memory size.
3902 *
3903 * Note: the external API implementation, or the application, can
3904 * express the memory types it is interested in by filling in the \ref
3905 * mem_type field accordingly. On successful output, the memory type
3906 * that fits best the request and that was used is updated in the \ref
3907 * VABufferInfo data structure. If none of the supplied memory types
3908 * is supported, then a \ref VA_STATUS_ERROR_UNSUPPORTED_MEMORY_TYPE
3909 * error is returned.
3910 *
3911 * The \ref VABufferInfo data is valid until vaReleaseBufferHandle()
3912 * is called. Besides, no additional operation is allowed on any of
3913 * the buffer parent object until vaReleaseBufferHandle() is called.
3914 * e.g. decoding into a VA surface backed with the supplied VA buffer
3915 * object \ref buf_id would fail with a \ref VA_STATUS_ERROR_SURFACE_BUSY
3916 * error.
3917 *
3918 * Possible errors:
3919 * - \ref VA_STATUS_ERROR_UNIMPLEMENTED: the VA driver implementation
3920 * does not support this interface
3921 * - \ref VA_STATUS_ERROR_INVALID_DISPLAY: an invalid display was supplied
3922 * - \ref VA_STATUS_ERROR_INVALID_BUFFER: an invalid buffer was supplied
3923 * - \ref VA_STATUS_ERROR_UNSUPPORTED_BUFFERTYPE: the implementation
3924 * does not support exporting buffers of the specified type
3925 * - \ref VA_STATUS_ERROR_UNSUPPORTED_MEMORY_TYPE: none of the requested
3926 * memory types in \ref VABufferInfo.mem_type was supported
3927 *
3928 * @param[in] dpy the VA display
3929 * @param[in] buf_id the VA buffer
3930 * @param[in,out] buf_info the associated VA buffer information
3931 * @return VA_STATUS_SUCCESS if successful
3932 */
3933VAStatus
3934vaAcquireBufferHandle(VADisplay dpy, VABufferID buf_id, VABufferInfo *buf_info);
3935
3936/**
3937 * \brief Releases buffer after usage from external API
3938 *
3939 * Unlocks the VA buffer object \ref buf_id from external API usage like
3940 * EGL or OpenCL (OCL). This function is a synchronization point. This
3941 * means that any pending operation is guaranteed to be completed
3942 * prior to returning from the function.
3943 *
3944 * The \ref VABufferInfo argument shall point to the original data
3945 * structure that was obtained from vaAcquireBufferHandle(), unaltered.
3946 * This is necessary so that the VA driver implementation could
3947 * deallocate any resources that were needed.
3948 *
3949 * In any case, returning from this function invalidates any contents
3950 * in \ref VABufferInfo. i.e. the underlyng buffer handle is no longer
3951 * valid. Therefore, VA driver implementations are free to reset this
3952 * data structure to safe defaults.
3953 *
3954 * Possible errors:
3955 * - \ref VA_STATUS_ERROR_UNIMPLEMENTED: the VA driver implementation
3956 * does not support this interface
3957 * - \ref VA_STATUS_ERROR_INVALID_DISPLAY: an invalid display was supplied
3958 * - \ref VA_STATUS_ERROR_INVALID_BUFFER: an invalid buffer was supplied
3959 * - \ref VA_STATUS_ERROR_UNSUPPORTED_BUFFERTYPE: the implementation
3960 * does not support exporting buffers of the specified type
3961 *
3962 * @param[in] dpy the VA display
3963 * @param[in] buf_id the VA buffer
3964 * @return VA_STATUS_SUCCESS if successful
3965 */
3966VAStatus
3967vaReleaseBufferHandle(VADisplay dpy, VABufferID buf_id);
3968
3969/** @name vaExportSurfaceHandle() flags
3970 *
3971 * @{
3972 */
3973/** Export surface to be read by external API. */
3974#define VA_EXPORT_SURFACE_READ_ONLY 0x0001
3975/** Export surface to be written by external API. */
3976#define VA_EXPORT_SURFACE_WRITE_ONLY 0x0002
3977/** Export surface to be both read and written by external API. */
3978#define VA_EXPORT_SURFACE_READ_WRITE 0x0003
3979/** Export surface with separate layers.
3980 *
3981 * For example, NV12 surfaces should be exported as two separate
3982 * planes for luma and chroma.
3983 */
3984#define VA_EXPORT_SURFACE_SEPARATE_LAYERS 0x0004
3985/** Export surface with composed layers.
3986 *
3987 * For example, NV12 surfaces should be exported as a single NV12
3988 * composed object.
3989 */
3990#define VA_EXPORT_SURFACE_COMPOSED_LAYERS 0x0008
3991
3992/** @} */
3993
3994/**
3995 * \brief Export a handle to a surface for use with an external API
3996 *
3997 * The exported handles are owned by the caller, and the caller is
3998 * responsible for freeing them when no longer needed (e.g. by closing
3999 * DRM PRIME file descriptors).
4000 *
4001 * This does not perform any synchronisation. If the contents of the
4002 * surface will be read, vaSyncSurface() must be called before doing so.
4003 * If the contents of the surface are written, then all operations must
4004 * be completed externally before using the surface again by via VA-API
4005 * functions.
4006 *
4007 * @param[in] dpy VA display.
4008 * @param[in] surface_id Surface to export.
4009 * @param[in] mem_type Memory type to export to.
4010 * @param[in] flags Combination of flags to apply
4011 * (VA_EXPORT_SURFACE_*).
4012 * @param[out] descriptor Pointer to the descriptor structure to fill
4013 * with the handle details. The type of this structure depends on
4014 * the value of mem_type.
4015 *
4016 * @return Status code:
4017 * - VA_STATUS_SUCCESS: Success.
4018 * - VA_STATUS_ERROR_INVALID_DISPLAY: The display is not valid.
4019 * - VA_STATUS_ERROR_UNIMPLEMENTED: The driver does not implement
4020 * this interface.
4021 * - VA_STATUS_ERROR_INVALID_SURFACE: The surface is not valid, or
4022 * the surface is not exportable in the specified way.
4023 * - VA_STATUS_ERROR_UNSUPPORTED_MEMORY_TYPE: The driver does not
4024 * support exporting surfaces to the specified memory type.
4025 */
4026VAStatus vaExportSurfaceHandle(VADisplay dpy,
4027 VASurfaceID surface_id,
4028 uint32_t mem_type, uint32_t flags,
4029 void *descriptor);
4030
4031/**
4032 * Render (Video Decode/Encode/Processing) Pictures
4033 *
4034 * A picture represents either a frame or a field.
4035 *
4036 * The Begin/Render/End sequence sends the video decode/encode/processing buffers
4037 * to the server
4038 */
4039
4040/**
4041 * Get ready for a video pipeline
4042 * - decode a picture to a target surface
4043 * - encode a picture from a target surface
4044 * - process a picture to a target surface
4045 */
4046VAStatus vaBeginPicture(
4047 VADisplay dpy,
4048 VAContextID context,
4049 VASurfaceID render_target
4050);
4051
4052/**
4053 * Send video decode, encode or processing buffers to the server.
4054 */
4055VAStatus vaRenderPicture(
4056 VADisplay dpy,
4057 VAContextID context,
4058 VABufferID *buffers,
4059 int num_buffers
4060);
4061
4062/**
4063 * Make the end of rendering for a picture.
4064 * The server should start processing all pending operations for this
4065 * surface. This call is non-blocking. The client can start another
4066 * Begin/Render/End sequence on a different render target.
4067 * if VAContextID used in this function previously successfully passed
4068 * vaMFAddContext call, real processing will be started during vaMFSubmit
4069 */
4070VAStatus vaEndPicture(
4071 VADisplay dpy,
4072 VAContextID context
4073);
4074
4075/**
4076 * Make the end of rendering for a pictures in contexts passed with submission.
4077 * The server should start processing all pending operations for contexts.
4078 * All contexts passed should be associated through vaMFAddContext
4079 * and call sequence Begin/Render/End performed.
4080 * This call is non-blocking. The client can start another
4081 * Begin/Render/End/vaMFSubmit sequence on a different render targets.
4082 * Return values:
4083 * VA_STATUS_SUCCESS - operation successful, context was removed.
4084 * VA_STATUS_ERROR_INVALID_CONTEXT - mf_context or one of contexts are invalid
4085 * due to mf_context not created or one of contexts not assotiated with mf_context
4086 * through vaAddContext.
4087 * VA_STATUS_ERROR_INVALID_PARAMETER - one of context has not submitted it's frame
4088 * through vaBeginPicture vaRenderPicture vaEndPicture call sequence.
4089 * dpy: display
4090 * mf_context: Multi-Frame context
4091 * contexts: list of contexts submitting their tasks for multi-frame operation.
4092 * num_contexts: number of passed contexts.
4093 */
4094VAStatus vaMFSubmit(
4095 VADisplay dpy,
4096 VAMFContextID mf_context,
4097 VAContextID * contexts,
4098 int num_contexts
4099);
4100
4101/*
4102
4103Synchronization
4104
4105*/
4106
4107/**
4108 * This function blocks until all pending operations on the render target
4109 * have been completed. Upon return it is safe to use the render target for a
4110 * different picture.
4111 */
4112VAStatus vaSyncSurface(
4113 VADisplay dpy,
4114 VASurfaceID render_target
4115);
4116
4117/** \brief Indicates an infinite timeout. */
4118#define VA_TIMEOUT_INFINITE 0xFFFFFFFFFFFFFFFF
4119
4120/**
4121 * \brief Synchronizes pending operations associated with the supplied surface.
4122 *
4123 * This function blocks during specified timeout (in nanoseconds) until
4124 * all pending operations on the render target have been completed.
4125 * If timeout is zero, the function returns immediately.
4126 *
4127 * Possible errors:
4128 * - \ref VA_STATUS_ERROR_UNIMPLEMENTED: the VA driver implementation
4129 * does not support this interface
4130 * - \ref VA_STATUS_ERROR_INVALID_DISPLAY: an invalid display was supplied
4131 * - \ref VA_STATUS_ERROR_INVALID_SURFACE: an invalid surface was supplied
4132 * - \ref VA_STATUS_ERROR_TIMEDOUT: synchronization is still in progress,
4133 * client should call the function again to complete synchronization
4134 *
4135 * @param[in] dpy the VA display
4136 * @param[in] surface the surface for which synchronization is performed
4137 * @param[in] timeout_ns the timeout in nanoseconds
4138 *
4139 */
4140VAStatus vaSyncSurface2(
4141 VADisplay dpy,
4142 VASurfaceID surface,
4143 uint64_t timeout_ns
4144);
4145
4146typedef enum {
4147 VASurfaceRendering = 1, /* Rendering in progress */
4148 VASurfaceDisplaying = 2, /* Displaying in progress (not safe to render into it) */
4149 /* this status is useful if surface is used as the source */
4150 /* of an overlay */
4151 VASurfaceReady = 4, /* not being rendered or displayed */
4152 VASurfaceSkipped = 8 /* Indicate a skipped frame during encode */
4153} VASurfaceStatus;
4154
4155/**
4156 * Find out any pending ops on the render target
4157 */
4158VAStatus vaQuerySurfaceStatus(
4159 VADisplay dpy,
4160 VASurfaceID render_target,
4161 VASurfaceStatus *status /* out */
4162);
4163
4164typedef enum {
4165 VADecodeSliceMissing = 0,
4166 VADecodeMBError = 1,
4167} VADecodeErrorType;
4168
4169/**
4170 * Client calls vaQuerySurfaceError with VA_STATUS_ERROR_DECODING_ERROR, server side returns
4171 * an array of structure VASurfaceDecodeMBErrors, and the array is terminated by setting status=-1
4172*/
4173typedef struct _VASurfaceDecodeMBErrors {
4174 int32_t status; /* 1 if hardware has returned detailed info below, -1 means this record is invalid */
4175 uint32_t start_mb; /* start mb address with errors */
4176 uint32_t end_mb; /* end mb address with errors */
4177 VADecodeErrorType decode_error_type;
4178 uint32_t num_mb; /* number of mbs with errors */
4179 /** \brief Reserved bytes for future use, must be zero */
4180 uint32_t va_reserved[VA_PADDING_LOW - 1];
4181} VASurfaceDecodeMBErrors;
4182
4183/**
4184 * After the application gets VA_STATUS_ERROR_DECODING_ERROR after calling vaSyncSurface(),
4185 * it can call vaQuerySurfaceError to find out further details on the particular error.
4186 * VA_STATUS_ERROR_DECODING_ERROR should be passed in as "error_status",
4187 * upon the return, error_info will point to an array of _VASurfaceDecodeMBErrors structure,
4188 * which is allocated and filled by libVA with detailed information on the missing or error macroblocks.
4189 * The array is terminated if "status==-1" is detected.
4190 */
4191VAStatus vaQuerySurfaceError(
4192 VADisplay dpy,
4193 VASurfaceID surface,
4194 VAStatus error_status,
4195 void **error_info
4196);
4197
4198/**
4199 * \brief Synchronizes pending operations associated with the supplied buffer.
4200 *
4201 * This function blocks during specified timeout (in nanoseconds) until
4202 * all pending operations on the supplied buffer have been completed.
4203 * If timeout is zero, the function returns immediately.
4204 *
4205 * Possible errors:
4206 * - \ref VA_STATUS_ERROR_UNIMPLEMENTED: the VA driver implementation
4207 * does not support this interface
4208 * - \ref VA_STATUS_ERROR_INVALID_DISPLAY: an invalid display was supplied
4209 * - \ref VA_STATUS_ERROR_INVALID_BUFFER: an invalid buffer was supplied
4210 * - \ref VA_STATUS_ERROR_TIMEDOUT: synchronization is still in progress,
4211 * client should call the function again to complete synchronization
4212 *
4213 * @param[in] dpy the VA display
4214 * @param[in] buf_id the buffer for which synchronization is performed
4215 * @param[in] timeout_ns the timeout in nanoseconds
4216 *
4217 */
4218VAStatus vaSyncBuffer(
4219 VADisplay dpy,
4220 VABufferID buf_id,
4221 uint64_t timeout_ns
4222);
4223
4224/**
4225 * Notes about synchronization interfaces:
4226 * vaSyncSurface:
4227 * 1. Allows to synchronize output surface (i.e. from decoding or VP)
4228 * 2. Allows to synchronize all bitstreams being encoded from the given input surface (1->N pipelines).
4229 *
4230 * vaSyncSurface2:
4231 * 1. The same as vaSyncSurface but allows to specify a timeout
4232 *
4233 * vaSyncBuffer:
4234 * 1. Allows to synchronize output buffer (e.g. bitstream from encoding).
4235 * Comparing to vaSyncSurface this function synchronizes given bitstream only.
4236 */
4237
4238/**
4239 * Images and Subpictures
4240 * VAImage is used to either get the surface data to client memory, or
4241 * to copy image data in client memory to a surface.
4242 * Both images, subpictures and surfaces follow the same 2D coordinate system where origin
4243 * is at the upper left corner with positive X to the right and positive Y down
4244 */
4245#define VA_FOURCC(ch0, ch1, ch2, ch3) \
4246 ((unsigned long)(unsigned char) (ch0) | ((unsigned long)(unsigned char) (ch1) << 8) | \
4247 ((unsigned long)(unsigned char) (ch2) << 16) | ((unsigned long)(unsigned char) (ch3) << 24 ))
4248
4249/* Pre-defined fourcc codes. */
4250
4251/** NV12: two-plane 8-bit YUV 4:2:0.
4252 * The first plane contains Y, the second plane contains U and V in pairs of bytes.
4253 */
4254#define VA_FOURCC_NV12 0x3231564E
4255/** NV21: two-plane 8-bit YUV 4:2:0.
4256 * Same as NV12, but with U and V swapped.
4257 */
4258#define VA_FOURCC_NV21 0x3132564E
4259
4260/** AI44: packed 4-bit YA.
4261 *
4262 * The bottom half of each byte contains luma, the top half contains alpha.
4263 */
4264#define VA_FOURCC_AI44 0x34344149
4265
4266/** RGBA: packed 8-bit RGBA.
4267 *
4268 * Four bytes per pixel: red, green, blue, alpha.
4269 */
4270#define VA_FOURCC_RGBA 0x41424752
4271/** RGBX: packed 8-bit RGB.
4272 *
4273 * Four bytes per pixel: red, green, blue, unspecified.
4274 */
4275#define VA_FOURCC_RGBX 0x58424752
4276/** BGRA: packed 8-bit RGBA.
4277 *
4278 * Four bytes per pixel: blue, green, red, alpha.
4279 */
4280#define VA_FOURCC_BGRA 0x41524742
4281/** BGRX: packed 8-bit RGB.
4282 *
4283 * Four bytes per pixel: blue, green, red, unspecified.
4284 */
4285#define VA_FOURCC_BGRX 0x58524742
4286/** ARGB: packed 8-bit RGBA.
4287 *
4288 * Four bytes per pixel: alpha, red, green, blue.
4289 */
4290#define VA_FOURCC_ARGB 0x42475241
4291/** XRGB: packed 8-bit RGB.
4292 *
4293 * Four bytes per pixel: unspecified, red, green, blue.
4294 */
4295#define VA_FOURCC_XRGB 0x42475258
4296/** ABGR: packed 8-bit RGBA.
4297 *
4298 * Four bytes per pixel: alpha, blue, green, red.
4299 */
4300#define VA_FOURCC_ABGR 0x52474241
4301/** XBGR: packed 8-bit RGB.
4302 *
4303 * Four bytes per pixel: unspecified, blue, green, red.
4304 */
4305#define VA_FOURCC_XBGR 0x52474258
4306
4307/** UYUV: packed 8-bit YUV 4:2:2.
4308 *
4309 * Four bytes per pair of pixels: U, Y, U, V.
4310 */
4311#define VA_FOURCC_UYVY 0x59565955
4312/** YUY2: packed 8-bit YUV 4:2:2.
4313 *
4314 * Four bytes per pair of pixels: Y, U, Y, V.
4315 */
4316#define VA_FOURCC_YUY2 0x32595559
4317/** AYUV: packed 8-bit YUVA 4:4:4.
4318 *
4319 * Four bytes per pixel: A, Y, U, V.
4320 */
4321#define VA_FOURCC_AYUV 0x56555941
4322/** NV11: two-plane 8-bit YUV 4:1:1.
4323 *
4324 * The first plane contains Y, the second plane contains U and V in pairs of bytes.
4325 */
4326#define VA_FOURCC_NV11 0x3131564e
4327/** YV12: three-plane 8-bit YUV 4:2:0.
4328 *
4329 * The three planes contain Y, V and U respectively.
4330 */
4331#define VA_FOURCC_YV12 0x32315659
4332/** P208: two-plane 8-bit YUV 4:2:2.
4333 *
4334 * The first plane contains Y, the second plane contains U and V in pairs of bytes.
4335 */
4336#define VA_FOURCC_P208 0x38303250
4337/** I420: three-plane 8-bit YUV 4:2:0.
4338 *
4339 * The three planes contain Y, U and V respectively.
4340 */
4341#define VA_FOURCC_I420 0x30323449
4342/** YV24: three-plane 8-bit YUV 4:4:4.
4343 *
4344 * The three planes contain Y, V and U respectively.
4345 */
4346#define VA_FOURCC_YV24 0x34325659
4347/** YV32: four-plane 8-bit YUVA 4:4:4
4348 *
4349 * The four planes contain Y, V, U and A respectively.
4350 */
4351#define VA_FOURCC_YV32 0x32335659
4352/** Y800: 8-bit greyscale.
4353 */
4354#define VA_FOURCC_Y800 0x30303859
4355/** IMC3: three-plane 8-bit YUV 4:2:0.
4356 *
4357 * Equivalent to YV12, but with the additional constraint that the pitch of all three planes
4358 * must be the same.
4359 */
4360#define VA_FOURCC_IMC3 0x33434D49
4361/** 411P: three-plane 8-bit YUV 4:1:1.
4362 *
4363 * The three planes contain Y, U and V respectively.
4364 */
4365#define VA_FOURCC_411P 0x50313134
4366/** 411R: three-plane 8-bit YUV.
4367 *
4368 * The subsampling is the transpose of 4:1:1 - full chroma appears on every fourth line.
4369 * The three planes contain Y, U and V respectively.
4370 */
4371#define VA_FOURCC_411R 0x52313134
4372/** 422H: three-plane 8-bit YUV 4:2:2.
4373 *
4374 * The three planes contain Y, U and V respectively.
4375 */
4376#define VA_FOURCC_422H 0x48323234
4377/** 422V: three-plane 8-bit YUV 4:4:0.
4378 *
4379 * The three planes contain Y, U and V respectively.
4380 */
4381#define VA_FOURCC_422V 0x56323234
4382/** 444P: three-plane 8-bit YUV 4:4:4.
4383 *
4384 * The three planes contain Y, U and V respectively.
4385 */
4386#define VA_FOURCC_444P 0x50343434
4387
4388/** RGBP: three-plane 8-bit RGB.
4389 *
4390 * The three planes contain red, green and blue respectively.
4391 */
4392#define VA_FOURCC_RGBP 0x50424752
4393/** BGRP: three-plane 8-bit RGB.
4394 *
4395 * The three planes contain blue, green and red respectively.
4396 */
4397#define VA_FOURCC_BGRP 0x50524742
4398/** RG16: packed 5/6-bit RGB.
4399 *
4400 * Each pixel is a two-byte little-endian value.
4401 * Red, green and blue are found in bits 15:11, 10:5, 4:0 respectively.
4402 */
4403#define VA_FOURCC_RGB565 0x36314752
4404/** BG16: packed 5/6-bit RGB.
4405 *
4406 * Each pixel is a two-byte little-endian value.
4407 * Blue, green and red are found in bits 15:11, 10:5, 4:0 respectively.
4408 */
4409#define VA_FOURCC_BGR565 0x36314742
4410
4411/** Y210: packed 10-bit YUV 4:2:2.
4412 *
4413 * Eight bytes represent a pair of pixels. Each sample is a two-byte little-endian value,
4414 * with the bottom six bits ignored. The samples are in the order Y, U, Y, V.
4415 */
4416#define VA_FOURCC_Y210 0x30313259
4417/** Y212: packed 12-bit YUV 4:2:2.
4418 *
4419 * Eight bytes represent a pair of pixels. Each sample is a two-byte little-endian value.
4420 * The samples are in the order Y, U, Y, V.
4421 */
4422#define VA_FOURCC_Y212 0x32313259
4423/** Y216: packed 16-bit YUV 4:2:2.
4424 *
4425 * Eight bytes represent a pair of pixels. Each sample is a two-byte little-endian value.
4426 * The samples are in the order Y, U, Y, V.
4427 */
4428#define VA_FOURCC_Y216 0x36313259
4429/** Y410: packed 10-bit YUVA 4:4:4.
4430 *
4431 * Each pixel is a four-byte little-endian value.
4432 * A, V, Y, U are found in bits 31:30, 29:20, 19:10, 9:0 respectively.
4433 */
4434#define VA_FOURCC_Y410 0x30313459
4435/** Y412 packed 12-bit YUVA 4:4:4.
4436 *
4437 * Each pixel is a set of four samples, each of which is a two-byte little-endian value.
4438 * The samples are in the order A, V, Y, U.
4439 */
4440#define VA_FOURCC_Y412 0x32313459
4441/** Y416: packed 16-bit YUVA 4:4:4.
4442 *
4443 * Each pixel is a set of four samples, each of which is a two-byte little-endian value.
4444 * The samples are in the order A, V, Y, U.
4445 */
4446#define VA_FOURCC_Y416 0x36313459
4447
4448/** YV16: three-plane 8-bit YUV 4:2:2.
4449 *
4450 * The three planes contain Y, V and U respectively.
4451 */
4452#define VA_FOURCC_YV16 0x36315659
4453/** P010: two-plane 10-bit YUV 4:2:0.
4454 *
4455 * Each sample is a two-byte little-endian value with the bottom six bits ignored.
4456 * The first plane contains Y, the second plane contains U and V in pairs of samples.
4457 */
4458#define VA_FOURCC_P010 0x30313050
4459/** P012: two-plane 12-bit YUV 4:2:0.
4460 *
4461 * Each sample is a two-byte little-endian value with the bottom four bits ignored.
4462 * The first plane contains Y, the second plane contains U and V in pairs of samples.
4463 */
4464#define VA_FOURCC_P012 0x32313050
4465/** P016: two-plane 16-bit YUV 4:2:0.
4466 *
4467 * Each sample is a two-byte little-endian value. The first plane contains Y, the second
4468 * plane contains U and V in pairs of samples.
4469 */
4470#define VA_FOURCC_P016 0x36313050
4471
4472/** I010: three-plane 10-bit YUV 4:2:0.
4473 *
4474 * Each sample is a two-byte little-endian value with the top six bits ignored.
4475 * The three planes contain Y, V and U respectively.
4476 */
4477#define VA_FOURCC_I010 0x30313049
4478
4479/** IYUV: three-plane 8-bit YUV 4:2:0.
4480 *
4481 * @deprecated Use I420 instead.
4482 */
4483#define VA_FOURCC_IYUV 0x56555949
4484/**
4485 * 10-bit Pixel RGB formats.
4486 */
4487#define VA_FOURCC_A2R10G10B10 0x30335241 /* VA_FOURCC('A','R','3','0') */
4488/**
4489 * 10-bit Pixel BGR formats.
4490 */
4491#define VA_FOURCC_A2B10G10R10 0x30334241 /* VA_FOURCC('A','B','3','0') */
4492/**
4493 * 10-bit Pixel RGB formats without alpha.
4494 */
4495#define VA_FOURCC_X2R10G10B10 0x30335258 /* VA_FOURCC('X','R','3','0') */
4496/**
4497 * 10-bit Pixel BGR formats without alpha.
4498 */
4499#define VA_FOURCC_X2B10G10R10 0x30334258 /* VA_FOURCC('X','B','3','0') */
4500
4501/** Y8: 8-bit greyscale.
4502 *
4503 * Only a single sample, 8 bit Y plane for monochrome images
4504 */
4505#define VA_FOURCC_Y8 0x20203859
4506/** Y16: 16-bit greyscale.
4507 *
4508 * Only a single sample, 16 bit Y plane for monochrome images
4509 */
4510#define VA_FOURCC_Y16 0x20363159
4511/** VYUV: packed 8-bit YUV 4:2:2.
4512 *
4513 * Four bytes per pair of pixels: V, Y, U, V.
4514 */
4515#define VA_FOURCC_VYUY 0x59555956
4516/** YVYU: packed 8-bit YUV 4:2:2.
4517 *
4518 * Four bytes per pair of pixels: Y, V, Y, U.
4519 */
4520#define VA_FOURCC_YVYU 0x55595659
4521/** AGRB64: three-plane 16-bit ARGB 16:16:16:16
4522 *
4523 * The four planes contain: alpha, red, green, blue respectively.
4524 */
4525#define VA_FOURCC_ARGB64 0x34475241
4526/** ABGR64: three-plane 16-bit ABGR 16:16:16:16
4527 *
4528 * The four planes contain: alpha, blue, green, red respectively.
4529 */
4530#define VA_FOURCC_ABGR64 0x34474241
4531/** XYUV: packed 8-bit YUVX 4:4:4.
4532 *
4533 * Four bytes per pixel: X, Y, U, V.
4534 */
4535#define VA_FOURCC_XYUV 0x56555958
4536
4537/* byte order */
4538#define VA_LSB_FIRST 1
4539#define VA_MSB_FIRST 2
4540
4541typedef struct _VAImageFormat {
4542 uint32_t fourcc;
4543 uint32_t byte_order; /* VA_LSB_FIRST, VA_MSB_FIRST */
4544 uint32_t bits_per_pixel;
4545 /* for RGB formats */
4546 uint32_t depth; /* significant bits per pixel */
4547 uint32_t red_mask;
4548 uint32_t green_mask;
4549 uint32_t blue_mask;
4550 uint32_t alpha_mask;
4551
4552 /** \brief Reserved bytes for future use, must be zero */
4553 uint32_t va_reserved[VA_PADDING_LOW];
4554} VAImageFormat;
4555
4556typedef VAGenericID VAImageID;
4557
4558typedef struct _VAImage {
4559 VAImageID image_id; /* uniquely identify this image */
4560 VAImageFormat format;
4561 VABufferID buf; /* image data buffer */
4562 /*
4563 * Image data will be stored in a buffer of type VAImageBufferType to facilitate
4564 * data store on the server side for optimal performance. The buffer will be
4565 * created by the CreateImage function, and proper storage allocated based on the image
4566 * size and format. This buffer is managed by the library implementation, and
4567 * accessed by the client through the buffer Map/Unmap functions.
4568 */
4569 uint16_t width;
4570 uint16_t height;
4571 uint32_t data_size;
4572 uint32_t num_planes; /* can not be greater than 3 */
4573 /*
4574 * An array indicating the scanline pitch in bytes for each plane.
4575 * Each plane may have a different pitch. Maximum 3 planes for planar formats
4576 */
4577 uint32_t pitches[3];
4578 /*
4579 * An array indicating the byte offset from the beginning of the image data
4580 * to the start of each plane.
4581 */
4582 uint32_t offsets[3];
4583
4584 /* The following fields are only needed for paletted formats */
4585 int32_t num_palette_entries; /* set to zero for non-palette images */
4586 /*
4587 * Each component is one byte and entry_bytes indicates the number of components in
4588 * each entry (eg. 3 for YUV palette entries). set to zero for non-palette images
4589 */
4590 int32_t entry_bytes;
4591 /*
4592 * An array of ascii characters describing the order of the components within the bytes.
4593 * Only entry_bytes characters of the string are used.
4594 */
4595 int8_t component_order[4];
4596
4597 /** \brief Reserved bytes for future use, must be zero */
4598 uint32_t va_reserved[VA_PADDING_LOW];
4599} VAImage;
4600
4601/** Get maximum number of image formats supported by the implementation */
4602int vaMaxNumImageFormats(
4603 VADisplay dpy
4604);
4605
4606/**
4607 * Query supported image formats
4608 * The caller must provide a "format_list" array that can hold at
4609 * least vaMaxNumImageFormats() entries. The actual number of formats
4610 * returned in "format_list" is returned in "num_formats".
4611 */
4612VAStatus vaQueryImageFormats(
4613 VADisplay dpy,
4614 VAImageFormat *format_list, /* out */
4615 int *num_formats /* out */
4616);
4617
4618/**
4619 * Create a VAImage structure
4620 * The width and height fields returned in the VAImage structure may get
4621 * enlarged for some YUV formats. Upon return from this function,
4622 * image->buf has been created and proper storage allocated by the library.
4623 * The client can access the image through the Map/Unmap calls.
4624 */
4625VAStatus vaCreateImage(
4626 VADisplay dpy,
4627 VAImageFormat *format,
4628 int width,
4629 int height,
4630 VAImage *image /* out */
4631);
4632
4633/**
4634 * Should call DestroyImage before destroying the surface it is bound to
4635 */
4636VAStatus vaDestroyImage(
4637 VADisplay dpy,
4638 VAImageID image
4639);
4640
4641VAStatus vaSetImagePalette(
4642 VADisplay dpy,
4643 VAImageID image,
4644 /*
4645 * pointer to an array holding the palette data. The size of the array is
4646 * num_palette_entries * entry_bytes in size. The order of the components
4647 * in the palette is described by the component_order in VAImage struct
4648 */
4649 unsigned char *palette
4650);
4651
4652/**
4653 * Retrive surface data into a VAImage
4654 * Image must be in a format supported by the implementation
4655 */
4656VAStatus vaGetImage(
4657 VADisplay dpy,
4658 VASurfaceID surface,
4659 int x, /* coordinates of the upper left source pixel */
4660 int y,
4661 unsigned int width, /* width and height of the region */
4662 unsigned int height,
4663 VAImageID image
4664);
4665
4666/**
4667 * Copy data from a VAImage to a surface
4668 * Image must be in a format supported by the implementation
4669 * Returns a VA_STATUS_ERROR_SURFACE_BUSY if the surface
4670 * shouldn't be rendered into when this is called
4671 */
4672VAStatus vaPutImage(
4673 VADisplay dpy,
4674 VASurfaceID surface,
4675 VAImageID image,
4676 int src_x,
4677 int src_y,
4678 unsigned int src_width,
4679 unsigned int src_height,
4680 int dest_x,
4681 int dest_y,
4682 unsigned int dest_width,
4683 unsigned int dest_height
4684);
4685
4686/**
4687 * Derive an VAImage from an existing surface.
4688 * This interface will derive a VAImage and corresponding image buffer from
4689 * an existing VA Surface. The image buffer can then be mapped/unmapped for
4690 * direct CPU access. This operation is only possible on implementations with
4691 * direct rendering capabilities and internal surface formats that can be
4692 * represented with a VAImage. When the operation is not possible this interface
4693 * will return VA_STATUS_ERROR_OPERATION_FAILED. Clients should then fall back
4694 * to using vaCreateImage + vaPutImage to accomplish the same task in an
4695 * indirect manner.
4696 *
4697 * Implementations should only return success when the resulting image buffer
4698 * would be useable with vaMap/Unmap.
4699 *
4700 * When directly accessing a surface special care must be taken to insure
4701 * proper synchronization with the graphics hardware. Clients should call
4702 * vaQuerySurfaceStatus to insure that a surface is not the target of concurrent
4703 * rendering or currently being displayed by an overlay.
4704 *
4705 * Additionally nothing about the contents of a surface should be assumed
4706 * following a vaPutSurface. Implementations are free to modify the surface for
4707 * scaling or subpicture blending within a call to vaPutImage.
4708 *
4709 * Calls to vaPutImage or vaGetImage using the same surface from which the image
4710 * has been derived will return VA_STATUS_ERROR_SURFACE_BUSY. vaPutImage or
4711 * vaGetImage with other surfaces is supported.
4712 *
4713 * An image created with vaDeriveImage should be freed with vaDestroyImage. The
4714 * image and image buffer structures will be destroyed; however, the underlying
4715 * surface will remain unchanged until freed with vaDestroySurfaces.
4716 */
4717VAStatus vaDeriveImage(
4718 VADisplay dpy,
4719 VASurfaceID surface,
4720 VAImage *image /* out */
4721);
4722
4723/**
4724 * Subpictures
4725 * Subpicture is a special type of image that can be blended
4726 * with a surface during vaPutSurface(). Subpicture can be used to render
4727 * DVD sub-titles or closed captioning text etc.
4728 */
4729
4730typedef VAGenericID VASubpictureID;
4731
4732/** Get maximum number of subpicture formats supported by the implementation */
4733int vaMaxNumSubpictureFormats(
4734 VADisplay dpy
4735);
4736
4737/** flags for subpictures */
4738#define VA_SUBPICTURE_CHROMA_KEYING 0x0001
4739#define VA_SUBPICTURE_GLOBAL_ALPHA 0x0002
4740#define VA_SUBPICTURE_DESTINATION_IS_SCREEN_COORD 0x0004
4741/**
4742 * Query supported subpicture formats
4743 * The caller must provide a "format_list" array that can hold at
4744 * least vaMaxNumSubpictureFormats() entries. The flags arrary holds the flag
4745 * for each format to indicate additional capabilities for that format. The actual
4746 * number of formats returned in "format_list" is returned in "num_formats".
4747 * flags: returned value to indicate addtional capabilities
4748 * VA_SUBPICTURE_CHROMA_KEYING - supports chroma-keying
4749 * VA_SUBPICTURE_GLOBAL_ALPHA - supports global alpha
4750 * VA_SUBPICTURE_DESTINATION_IS_SCREEN_COORD - supports unscaled screen relative subpictures for On Screen Display
4751 */
4752
4753VAStatus vaQuerySubpictureFormats(
4754 VADisplay dpy,
4755 VAImageFormat *format_list, /* out */
4756 unsigned int *flags, /* out */
4757 unsigned int *num_formats /* out */
4758);
4759
4760/**
4761 * Subpictures are created with an image associated.
4762 */
4763VAStatus vaCreateSubpicture(
4764 VADisplay dpy,
4765 VAImageID image,
4766 VASubpictureID *subpicture /* out */
4767);
4768
4769/**
4770 * Destroy the subpicture before destroying the image it is assocated to
4771 */
4772VAStatus vaDestroySubpicture(
4773 VADisplay dpy,
4774 VASubpictureID subpicture
4775);
4776
4777/**
4778 * Bind an image to the subpicture. This image will now be associated with
4779 * the subpicture instead of the one at creation.
4780 */
4781VAStatus vaSetSubpictureImage(
4782 VADisplay dpy,
4783 VASubpictureID subpicture,
4784 VAImageID image
4785);
4786
4787/**
4788 * If chromakey is enabled, then the area where the source value falls within
4789 * the chromakey [min, max] range is transparent
4790 * The chromakey component format is the following:
4791 * For RGB: [0:7] Red [8:15] Blue [16:23] Green
4792 * For YUV: [0:7] V [8:15] U [16:23] Y
4793 * The chromakey mask can be used to mask out certain components for chromakey
4794 * comparision
4795 */
4796VAStatus vaSetSubpictureChromakey(
4797 VADisplay dpy,
4798 VASubpictureID subpicture,
4799 unsigned int chromakey_min,
4800 unsigned int chromakey_max,
4801 unsigned int chromakey_mask
4802);
4803
4804/**
4805 * Global alpha value is between 0 and 1. A value of 1 means fully opaque and
4806 * a value of 0 means fully transparent. If per-pixel alpha is also specified then
4807 * the overall alpha is per-pixel alpha multiplied by the global alpha
4808 */
4809VAStatus vaSetSubpictureGlobalAlpha(
4810 VADisplay dpy,
4811 VASubpictureID subpicture,
4812 float global_alpha
4813);
4814
4815/**
4816 * vaAssociateSubpicture associates the subpicture with target_surfaces.
4817 * It defines the region mapping between the subpicture and the target
4818 * surfaces through source and destination rectangles (with the same width and height).
4819 * Both will be displayed at the next call to vaPutSurface. Additional
4820 * associations before the call to vaPutSurface simply overrides the association.
4821 */
4822VAStatus vaAssociateSubpicture(
4823 VADisplay dpy,
4824 VASubpictureID subpicture,
4825 VASurfaceID *target_surfaces,
4826 int num_surfaces,
4827 int16_t src_x, /* upper left offset in subpicture */
4828 int16_t src_y,
4829 uint16_t src_width,
4830 uint16_t src_height,
4831 int16_t dest_x, /* upper left offset in surface */
4832 int16_t dest_y,
4833 uint16_t dest_width,
4834 uint16_t dest_height,
4835 /*
4836 * whether to enable chroma-keying, global-alpha, or screen relative mode
4837 * see VA_SUBPICTURE_XXX values
4838 */
4839 uint32_t flags
4840);
4841
4842/**
4843 * vaDeassociateSubpicture removes the association of the subpicture with target_surfaces.
4844 */
4845VAStatus vaDeassociateSubpicture(
4846 VADisplay dpy,
4847 VASubpictureID subpicture,
4848 VASurfaceID *target_surfaces,
4849 int num_surfaces
4850);
4851
4852/**
4853 * Display attributes
4854 * Display attributes are used to control things such as contrast, hue, saturation,
4855 * brightness etc. in the rendering process. The application can query what
4856 * attributes are supported by the driver, and then set the appropriate attributes
4857 * before calling vaPutSurface()
4858 *
4859 * Display attributes can also be used to query/set platform or display adaptor (vaDisplay)
4860 * related information. These attributes do not depend on vaConfig, and could not be used
4861 * for vaPutSurface. Application can use vaQueryDisplayAttributes/vaGetDisplayAttributes
4862 * at anytime after vaInitialize, but (for settable attributes) vaSetDisplayAttributes should be
4863 * called after vaInitialize and before any other function call.
4864 *
4865 * To distinguish these two types of display attributes, display adaptor related attributes
4866 * should be marked as "HW attribute" in the description.
4867 */
4868
4869/* PowerVR IEP Lite attributes */
4870typedef enum {
4871 VADISPLAYATTRIB_BLE_OFF = 0x00,
4872 VADISPLAYATTRIB_BLE_LOW,
4873 VADISPLAYATTRIB_BLE_MEDIUM,
4874 VADISPLAYATTRIB_BLE_HIGH,
4875 VADISPLAYATTRIB_BLE_NONE,
4876} VADisplayAttribBLEMode;
4877
4878/** attribute value for VADisplayAttribRotation */
4879#define VA_ROTATION_NONE 0x00000000
4880#define VA_ROTATION_90 0x00000001
4881#define VA_ROTATION_180 0x00000002
4882#define VA_ROTATION_270 0x00000003
4883/**@}*/
4884
4885/**
4886 * @name Mirroring directions
4887 *
4888 * Those values could be used for VADisplayAttribMirror attribute or
4889 * VAProcPipelineParameterBuffer::mirror_state.
4890
4891 */
4892/**@{*/
4893/** \brief No Mirroring. */
4894#define VA_MIRROR_NONE 0x00000000
4895/** \brief Horizontal Mirroring. */
4896#define VA_MIRROR_HORIZONTAL 0x00000001
4897/** \brief Vertical Mirroring. */
4898#define VA_MIRROR_VERTICAL 0x00000002
4899/**@}*/
4900
4901/** attribute value for VADisplayAttribOutOfLoopDeblock */
4902#define VA_OOL_DEBLOCKING_FALSE 0x00000000
4903#define VA_OOL_DEBLOCKING_TRUE 0x00000001
4904
4905/** Render mode */
4906#define VA_RENDER_MODE_UNDEFINED 0
4907#define VA_RENDER_MODE_LOCAL_OVERLAY 1
4908#define VA_RENDER_MODE_LOCAL_GPU 2
4909#define VA_RENDER_MODE_EXTERNAL_OVERLAY 4
4910#define VA_RENDER_MODE_EXTERNAL_GPU 8
4911
4912/** Render device */
4913#define VA_RENDER_DEVICE_UNDEFINED 0
4914#define VA_RENDER_DEVICE_LOCAL 1
4915#define VA_RENDER_DEVICE_EXTERNAL 2
4916
4917/**\brief sub device info
4918 * Sub-device is the concept basing on the "device" behind "vaDisplay".
4919 * If a device could be divided to several sub devices, the task of
4920 * decode/encode/vpp could be assigned on one sub-device. So, application
4921 * could choose the sub device before any other operations. After that,
4922 * all of the task execution/resource allocation will be dispatched to
4923 * the sub device. If application does not choose the sub device, driver
4924 * will assign one as default.
4925 *
4926 * If the value == VA_ATTRIB_NOT_SUPPORTED, it mean that the attribute
4927 * is unsupport or UNKNOWN.
4928 */
4929
4930typedef union _VADisplayAttribValSubDevice {
4931 struct {
4932 /** \brief current sub device index, read - write */
4933 uint32_t current_sub_device : 4;
4934 /** \brief sub devices count, read - only */
4935 uint32_t sub_device_count : 4;
4936 /** \brief reserved bits for future, must be zero*/
4937 uint32_t reserved : 8;
4938 /** \brief bit mask to indicate which sub_device is available, read only
4939 * \code
4940 * VADisplayAttribValSubDevice reg;
4941 * VADisplayAttribute reg_attr;
4942 * reg_attr.type = VADisplayAttribSubDevice;
4943 * vaGetDisplayAttributes(dpy, &reg_attr, 1);
4944 * reg.value = reg_attr.value;
4945 *
4946 * for(int i = 0; i < reg.bits.sub_device_count; i ++ ){
4947 * if((1<<i) & reg.bits.sub_device_mask){
4948 * printf("sub device %d can be selected", i);
4949 * }
4950 *}
4951 * \endcode
4952 */
4953 uint32_t sub_device_mask : 16;
4954 } bits;
4955 uint32_t value;
4956} VADisplayAttribValSubDevice;
4957
4958/** Currently defined display attribute types */
4959typedef enum {
4960 VADisplayAttribBrightness = 0,
4961 VADisplayAttribContrast = 1,
4962 VADisplayAttribHue = 2,
4963 VADisplayAttribSaturation = 3,
4964 /* client can specifiy a background color for the target window
4965 * the new feature of video conference,
4966 * the uncovered area of the surface is filled by this color
4967 * also it will blend with the decoded video color
4968 */
4969 VADisplayAttribBackgroundColor = 4,
4970 /*
4971 * this is a gettable only attribute. For some implementations that use the
4972 * hardware overlay, after PutSurface is called, the surface can not be
4973 * re-used until after the subsequent PutSurface call. If this is the case
4974 * then the value for this attribute will be set to 1 so that the client
4975 * will not attempt to re-use the surface right after returning from a call
4976 * to PutSurface.
4977 *
4978 * Don't use it, use flag VASurfaceDisplaying of vaQuerySurfaceStatus since
4979 * driver may use overlay or GPU alternatively
4980 */
4981 VADisplayAttribDirectSurface = 5,
4982 VADisplayAttribRotation = 6,
4983 VADisplayAttribOutofLoopDeblock = 7,
4984
4985 /* PowerVR IEP Lite specific attributes */
4986 VADisplayAttribBLEBlackMode = 8,
4987 VADisplayAttribBLEWhiteMode = 9,
4988 VADisplayAttribBlueStretch = 10,
4989 VADisplayAttribSkinColorCorrection = 11,
4990 /*
4991 * For type VADisplayAttribCSCMatrix, "value" field is a pointer to the color
4992 * conversion matrix. Each element in the matrix is float-point
4993 */
4994 VADisplayAttribCSCMatrix = 12,
4995 /* specify the constant color used to blend with video surface
4996 * Cd = Cv*Cc*Ac + Cb *(1 - Ac) C means the constant RGB
4997 * d: the final color to overwrite into the frame buffer
4998 * v: decoded video after color conversion,
4999 * c: video color specified by VADisplayAttribBlendColor
5000 * b: background color of the drawable
5001 */
5002 VADisplayAttribBlendColor = 13,
5003 /*
5004 * Indicate driver to skip painting color key or not.
5005 * only applicable if the render is overlay
5006 */
5007 VADisplayAttribOverlayAutoPaintColorKey = 14,
5008 /*
5009 * customized overlay color key, the format is RGB888
5010 * [23:16] = Red, [15:08] = Green, [07:00] = Blue.
5011 */
5012 VADisplayAttribOverlayColorKey = 15,
5013 /*
5014 * The hint for the implementation of vaPutSurface
5015 * normally, the driver could use an overlay or GPU to render the surface on the screen
5016 * this flag provides APP the flexibity to switch the render dynamically
5017 */
5018 VADisplayAttribRenderMode = 16,
5019 /*
5020 * specify if vaPutSurface needs to render into specified monitors
5021 * one example is that one external monitor (e.g. HDMI) is enabled,
5022 * but the window manager is not aware of it, and there is no associated drawable
5023 */
5024 VADisplayAttribRenderDevice = 17,
5025 /*
5026 * specify vaPutSurface render area if there is no drawable on the monitor
5027 */
5028 VADisplayAttribRenderRect = 18,
5029 /*
5030 * HW attribute, read/write, specify the sub device configure
5031 */
5032 VADisplayAttribSubDevice = 19,
5033 /*
5034 * HW attribute. read only. specify whether vaCopy support on current HW
5035 * The value of each bit should equal to 1 << VA_EXEC_MODE_XXX to represent
5036 * modes of vaCopy
5037 */
5038 VADisplayAttribCopy = 20,
5039} VADisplayAttribType;
5040
5041/* flags for VADisplayAttribute */
5042#define VA_DISPLAY_ATTRIB_NOT_SUPPORTED 0x0000
5043#define VA_DISPLAY_ATTRIB_GETTABLE 0x0001
5044#define VA_DISPLAY_ATTRIB_SETTABLE 0x0002
5045
5046typedef struct _VADisplayAttribute {
5047 VADisplayAttribType type;
5048 int32_t min_value;
5049 int32_t max_value;
5050 int32_t value; /* used by the set/get attribute functions */
5051 /* flags can be VA_DISPLAY_ATTRIB_GETTABLE or VA_DISPLAY_ATTRIB_SETTABLE or OR'd together */
5052 uint32_t flags;
5053
5054 /** \brief Reserved bytes for future use, must be zero */
5055 uint32_t va_reserved[VA_PADDING_LOW];
5056} VADisplayAttribute;
5057
5058/** Get maximum number of display attributs supported by the implementation */
5059int vaMaxNumDisplayAttributes(
5060 VADisplay dpy
5061);
5062
5063/**
5064 * Query display attributes
5065 * The caller must provide a "attr_list" array that can hold at
5066 * least vaMaxNumDisplayAttributes() entries. The actual number of attributes
5067 * returned in "attr_list" is returned in "num_attributes".
5068 */
5069VAStatus vaQueryDisplayAttributes(
5070 VADisplay dpy,
5071 VADisplayAttribute *attr_list, /* out */
5072 int *num_attributes /* out */
5073);
5074
5075/**
5076 * Get display attributes
5077 * This function returns the current attribute values in "attr_list".
5078 * Only attributes returned with VA_DISPLAY_ATTRIB_GETTABLE set in the "flags" field
5079 * from vaQueryDisplayAttributes() can have their values retrieved.
5080 */
5081VAStatus vaGetDisplayAttributes(
5082 VADisplay dpy,
5083 VADisplayAttribute *attr_list, /* in/out */
5084 int num_attributes
5085);
5086
5087/**
5088 * Set display attributes
5089 * Only attributes returned with VA_DISPLAY_ATTRIB_SETTABLE set in the "flags" field
5090 * from vaQueryDisplayAttributes() can be set. If the attribute is not settable or
5091 * the value is out of range, the function returns VA_STATUS_ERROR_ATTR_NOT_SUPPORTED
5092 */
5093VAStatus vaSetDisplayAttributes(
5094 VADisplay dpy,
5095 VADisplayAttribute *attr_list,
5096 int num_attributes
5097);
5098
5099/****************************
5100 * HEVC data structures
5101 ****************************/
5102/**
5103 * \brief Description of picture properties of those in DPB surfaces.
5104 *
5105 * If only progressive scan is supported, each surface contains one whole
5106 * frame picture.
5107 * Otherwise, each surface contains two fields of whole picture.
5108 * In this case, two entries of ReferenceFrames[] may share same picture_id
5109 * value.
5110 */
5111typedef struct _VAPictureHEVC {
5112 /** \brief reconstructed picture buffer surface index
5113 * invalid when taking value VA_INVALID_SURFACE.
5114 */
5115 VASurfaceID picture_id;
5116 /** \brief picture order count.
5117 * in HEVC, POCs for top and bottom fields of same picture should
5118 * take different values.
5119 */
5120 int32_t pic_order_cnt;
5121 /* described below */
5122 uint32_t flags;
5123
5124 /** \brief Reserved bytes for future use, must be zero */
5125 uint32_t va_reserved[VA_PADDING_LOW];
5126} VAPictureHEVC;
5127
5128/* flags in VAPictureHEVC could be OR of the following */
5129#define VA_PICTURE_HEVC_INVALID 0x00000001
5130/** \brief indication of interlace scan picture.
5131 * should take same value for all the pictures in sequence.
5132 */
5133#define VA_PICTURE_HEVC_FIELD_PIC 0x00000002
5134/** \brief polarity of the field picture.
5135 * top field takes even lines of buffer surface.
5136 * bottom field takes odd lines of buffer surface.
5137 */
5138#define VA_PICTURE_HEVC_BOTTOM_FIELD 0x00000004
5139/** \brief Long term reference picture */
5140#define VA_PICTURE_HEVC_LONG_TERM_REFERENCE 0x00000008
5141/**
5142 * VA_PICTURE_HEVC_RPS_ST_CURR_BEFORE, VA_PICTURE_HEVC_RPS_ST_CURR_AFTER
5143 * and VA_PICTURE_HEVC_RPS_LT_CURR of any picture in ReferenceFrames[] should
5144 * be exclusive. No more than one of them can be set for any picture.
5145 * Sum of NumPocStCurrBefore, NumPocStCurrAfter and NumPocLtCurr
5146 * equals NumPocTotalCurr, which should be equal to or smaller than 8.
5147 * Application should provide valid values for both short format and long format.
5148 * The pictures in DPB with any of these three flags turned on are referred by
5149 * the current picture.
5150 */
5151/** \brief RefPicSetStCurrBefore of HEVC spec variable
5152 * Number of ReferenceFrames[] entries with this bit set equals
5153 * NumPocStCurrBefore.
5154 */
5155#define VA_PICTURE_HEVC_RPS_ST_CURR_BEFORE 0x00000010
5156/** \brief RefPicSetStCurrAfter of HEVC spec variable
5157 * Number of ReferenceFrames[] entries with this bit set equals
5158 * NumPocStCurrAfter.
5159 */
5160#define VA_PICTURE_HEVC_RPS_ST_CURR_AFTER 0x00000020
5161/** \brief RefPicSetLtCurr of HEVC spec variable
5162 * Number of ReferenceFrames[] entries with this bit set equals
5163 * NumPocLtCurr.
5164 */
5165#define VA_PICTURE_HEVC_RPS_LT_CURR 0x00000040
5166
5167typedef enum {
5168 VACopyObjectSurface = 0,
5169 VACopyObjectBuffer = 1,
5170} VACopyObjectType;
5171
5172typedef struct _VACopyObject {
5173 VACopyObjectType obj_type; // type of object.
5174 union {
5175 VASurfaceID surface_id;
5176 VABufferID buffer_id;
5177 } object;
5178
5179 uint32_t va_reserved[VA_PADDING_MEDIUM];
5180} VACopyObject;
5181
5182typedef union _VACopyOption {
5183 struct {
5184 /** \brief va copy synchronization, the value should be /c VA_EXEC_SYNC or /c VA_EXEC_ASYNC */
5185 uint32_t va_copy_sync : 2;
5186 /** \brief va copy mode, the value should be VA_EXEC_MODE_XXX */
5187 uint32_t va_copy_mode : 4;
5188 uint32_t reserved : 26;
5189 } bits;
5190 uint32_t value;
5191} VACopyOption;
5192
5193/** \brief Copies an object.
5194 *
5195 * Copies specified object (surface or buffer). If non-blocking copy
5196 * is requested (VA_COPY_NONBLOCK), then need vaSyncBuffer or vaSyncSurface/vaSyncSurface2
5197 * to sync the destination object.
5198 *
5199 * @param[in] dpy the VA display
5200 * @param[in] dst Destination object to copy to
5201 * @param[in] src Source object to copy from
5202 * @param[in] option VA copy option
5203 * @return VA_STATUS_SUCCESS if successful
5204 */
5205VAStatus vaCopy(VADisplay dpy, VACopyObject * dst, VACopyObject * src, VACopyOption option);
5206
5207#include <va/va_dec_hevc.h>
5208#include <va/va_dec_jpeg.h>
5209#include <va/va_dec_vp8.h>
5210#include <va/va_dec_vp9.h>
5211#include <va/va_dec_av1.h>
5212#include <va/va_enc_hevc.h>
5213#include <va/va_fei_hevc.h>
5214#include <va/va_enc_h264.h>
5215#include <va/va_enc_jpeg.h>
5216#include <va/va_enc_mpeg2.h>
5217#include <va/va_enc_vp8.h>
5218#include <va/va_enc_vp9.h>
5219#include <va/va_enc_av1.h>
5220#include <va/va_fei.h>
5221#include <va/va_fei_h264.h>
5222#include <va/va_vpp.h>
5223#include <va/va_prot.h>
5224
5225/**@}*/
5226
5227#ifdef __cplusplus
5228}
5229#endif
5230
5231#endif /* _VA_H_ */
5232

source code of include/va/va.h