| 1 | // Copyright (C) 2017 Klaralvdalens Datakonsult AB (KDAB). |
| 2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 3 | |
| 4 | #include "animationutils_p.h" |
| 5 | #include <Qt3DAnimation/private/handler_p.h> |
| 6 | #include <Qt3DAnimation/private/managers_p.h> |
| 7 | #include <Qt3DAnimation/private/clipblendnode_p.h> |
| 8 | #include <Qt3DAnimation/private/clipblendnodevisitor_p.h> |
| 9 | #include <Qt3DAnimation/private/clipblendvalue_p.h> |
| 10 | #include <QtGui/qvector2d.h> |
| 11 | #include <QtGui/qvector3d.h> |
| 12 | #include <QtGui/qvector4d.h> |
| 13 | #include <QtGui/qquaternion.h> |
| 14 | #include <QtGui/qcolor.h> |
| 15 | #include <QtCore/qvariant.h> |
| 16 | #include <QtCore/qvarlengtharray.h> |
| 17 | #include <Qt3DAnimation/private/animationlogging_p.h> |
| 18 | |
| 19 | #include <numeric> |
| 20 | |
| 21 | QT_BEGIN_NAMESPACE |
| 22 | |
| 23 | namespace { |
| 24 | const auto slerpThreshold = 0.01f; |
| 25 | } |
| 26 | |
| 27 | namespace Qt3DAnimation { |
| 28 | namespace Animation { |
| 29 | |
| 30 | inline QVector<float> valueToVector(const QVector3D &value) |
| 31 | { |
| 32 | return { value.x(), value.y(), value.z() }; |
| 33 | } |
| 34 | |
| 35 | inline QVector<float> valueToVector(const QQuaternion &value) |
| 36 | { |
| 37 | return { value.scalar(), value.x(), value.y(), value.z() }; |
| 38 | } |
| 39 | |
| 40 | ClipEvaluationData evaluationDataForClip(AnimationClip *clip, |
| 41 | const AnimatorEvaluationData &animatorData) |
| 42 | { |
| 43 | // global time values expected in seconds |
| 44 | ClipEvaluationData result; |
| 45 | result.currentLoop = animatorData.currentLoop; |
| 46 | result.localTime = localTimeFromElapsedTime(t_current_local: animatorData.currentTime, t_elapsed_global: animatorData.elapsedTime, |
| 47 | playbackRate: animatorData.playbackRate, duration: clip->duration(), |
| 48 | loopCount: animatorData.loopCount, currentLoop&: result.currentLoop); |
| 49 | result.isFinalFrame = isFinalFrame(localTime: result.localTime, duration: clip->duration(), |
| 50 | currentLoop: result.currentLoop, loopCount: animatorData.loopCount, |
| 51 | playbackRate: animatorData.playbackRate); |
| 52 | const bool hasNormalizedTime = isValidNormalizedTime(t: animatorData.normalizedLocalTime); |
| 53 | result.normalizedLocalTime = hasNormalizedTime ? animatorData.normalizedLocalTime |
| 54 | : result.localTime / clip->duration(); |
| 55 | return result; |
| 56 | } |
| 57 | |
| 58 | double localTimeFromElapsedTime(double t_current_local, |
| 59 | double t_elapsed_global, |
| 60 | double playbackRate, |
| 61 | double duration, |
| 62 | int loopCount, |
| 63 | int ¤tLoop) |
| 64 | { |
| 65 | // Calculate the new local time. |
| 66 | // playhead + rate * dt |
| 67 | // where playhead is completed loops * duration + current loop local time |
| 68 | double t_local = currentLoop * duration + t_current_local + playbackRate * t_elapsed_global; |
| 69 | double loopNumber = 0; |
| 70 | if (loopCount == 1) { |
| 71 | t_local = qBound(min: 0.0, val: t_local, max: duration); |
| 72 | } else if (loopCount < 0) { |
| 73 | // Loops forever |
| 74 | (void) std::modf(x: t_local / duration, iptr: &loopNumber); |
| 75 | t_local = std::fmod(x: t_local, y: duration); |
| 76 | } else { |
| 77 | // N loops |
| 78 | t_local = qBound(min: 0.0, val: t_local, max: double(loopCount) * duration); |
| 79 | (void) std::modf(x: t_local / duration, iptr: &loopNumber); |
| 80 | t_local = std::fmod(x: t_local, y: duration); |
| 81 | |
| 82 | // Ensure we clamp to end of final loop |
| 83 | |
| 84 | if (int(loopNumber) == loopCount || int(loopNumber) < 0) { |
| 85 | loopNumber = loopCount - 1; |
| 86 | t_local = playbackRate >= 0.0 ? duration : 0.0; |
| 87 | } |
| 88 | } |
| 89 | |
| 90 | qCDebug(Jobs) << "current loop =" << loopNumber |
| 91 | << "t =" << t_local |
| 92 | << "duration =" << duration; |
| 93 | |
| 94 | currentLoop = int(loopNumber); |
| 95 | |
| 96 | return t_local; |
| 97 | } |
| 98 | |
| 99 | double phaseFromElapsedTime(double t_current_local, |
| 100 | double t_elapsed_global, |
| 101 | double playbackRate, |
| 102 | double duration, |
| 103 | int loopCount, |
| 104 | int ¤tLoop) |
| 105 | { |
| 106 | const double t_local = localTimeFromElapsedTime(t_current_local, t_elapsed_global, playbackRate, |
| 107 | duration, loopCount, currentLoop); |
| 108 | return t_local / duration; |
| 109 | } |
| 110 | |
| 111 | /*! |
| 112 | \internal |
| 113 | |
| 114 | Calculates the indices required to map from the component ordering within the |
| 115 | provided \a channel, into the standard channel orderings expected by Qt types. |
| 116 | |
| 117 | For example, given a channel representing a rotation with the components ordered |
| 118 | as X, Y, Z, Y, this function will return the indices [3, 0, 1, 2] which can then |
| 119 | later be used as part of the format vector in the formatClipResults() function to |
| 120 | remap the channels into the standard W, X, Y, Z order required by QQuaternion. |
| 121 | */ |
| 122 | ComponentIndices channelComponentsToIndices(const Channel &channel, |
| 123 | int dataType, |
| 124 | qsizetype expectedComponentCount, |
| 125 | qsizetype offset) |
| 126 | { |
| 127 | static const QList<char> standardSuffixes = { 'X', 'Y', 'Z', 'W' }; |
| 128 | static const QList<char> quaternionSuffixes = { 'W', 'X', 'Y', 'Z' }; |
| 129 | static const QList<char> colorSuffixesRGB = { 'R', 'G', 'B' }; |
| 130 | static const QList<char> colorSuffixesRGBA = { 'R', 'G', 'B', 'A' }; |
| 131 | |
| 132 | switch (dataType) { |
| 133 | case QMetaType::QQuaternion: |
| 134 | return channelComponentsToIndicesHelper(channelGroup: channel, expectedComponentCount, |
| 135 | offset, suffixes: quaternionSuffixes); |
| 136 | case QMetaType::QColor: |
| 137 | if (expectedComponentCount == 3) |
| 138 | return channelComponentsToIndicesHelper(channelGroup: channel, expectedComponentCount, |
| 139 | offset, suffixes: colorSuffixesRGB); |
| 140 | Q_ASSERT(expectedComponentCount == 4); |
| 141 | return channelComponentsToIndicesHelper(channelGroup: channel, expectedComponentCount, |
| 142 | offset, suffixes: colorSuffixesRGBA); |
| 143 | default: |
| 144 | return channelComponentsToIndicesHelper(channelGroup: channel, expectedComponentCount, |
| 145 | offset, suffixes: standardSuffixes); |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | ComponentIndices channelComponentsToIndicesHelper(const Channel &channel, |
| 150 | qsizetype expectedComponentCount, |
| 151 | qsizetype offset, |
| 152 | const QList<char> &suffixes) |
| 153 | { |
| 154 | const qsizetype actualComponentCount = channel.channelComponents.size(); |
| 155 | if (actualComponentCount != expectedComponentCount) { |
| 156 | qWarning() << "Data type expects" << expectedComponentCount |
| 157 | << "but found" << actualComponentCount << "components in the animation clip" ; |
| 158 | } |
| 159 | |
| 160 | ComponentIndices indices(expectedComponentCount); |
| 161 | |
| 162 | // Generate the set of channel suffixes |
| 163 | QList<char> channelSuffixes; |
| 164 | channelSuffixes.reserve(asize: expectedComponentCount); |
| 165 | for (qsizetype i = 0; i < expectedComponentCount; ++i) { |
| 166 | const QString &componentName = channel.channelComponents[i].name; |
| 167 | |
| 168 | // An unset component name indicates that the no mapping is necessary |
| 169 | // and the index can be used as-is. |
| 170 | if (componentName.isEmpty()) { |
| 171 | indices[i] = i + offset; |
| 172 | continue; |
| 173 | } |
| 174 | |
| 175 | char channelSuffix = componentName.at(i: componentName.size() - 1).toLatin1(); |
| 176 | channelSuffixes.push_back(t: channelSuffix); |
| 177 | } |
| 178 | |
| 179 | // We can short-circuit if the channels were all unnamed (in order) |
| 180 | if (channelSuffixes.isEmpty()) |
| 181 | return indices; |
| 182 | |
| 183 | // Find index of standard index in channel indexes |
| 184 | for (qsizetype i = 0; i < expectedComponentCount; ++i) { |
| 185 | qsizetype index = channelSuffixes.indexOf(t: suffixes[i]); |
| 186 | if (index != -1) |
| 187 | indices[i] = index + offset; |
| 188 | else |
| 189 | indices[i] = -1; |
| 190 | } |
| 191 | |
| 192 | return indices; |
| 193 | } |
| 194 | |
| 195 | ClipResults evaluateClipAtLocalTime(AnimationClip *clip, float localTime) |
| 196 | { |
| 197 | QVector<float> channelResults; |
| 198 | Q_ASSERT(clip); |
| 199 | |
| 200 | // Ensure we have enough storage to hold the evaluations |
| 201 | channelResults.resize(size: clip->channelCount()); |
| 202 | |
| 203 | // Iterate over channels and evaluate the fcurves |
| 204 | const auto &channels = clip->channels(); |
| 205 | int i = 0; |
| 206 | for (const Channel &channel : channels) { |
| 207 | if (channel.name.contains(QStringLiteral("Rotation" )) && |
| 208 | channel.channelComponents.size() == 4) { |
| 209 | |
| 210 | // Try to SLERP |
| 211 | const int nbKeyframes = channel.channelComponents[0].fcurve.keyframeCount(); |
| 212 | const bool canSlerp = std::find_if(first: std::begin(cont: channel.channelComponents)+1, |
| 213 | last: std::end(cont: channel.channelComponents), |
| 214 | pred: [nbKeyframes](const ChannelComponent &v) { |
| 215 | return v.fcurve.keyframeCount() != nbKeyframes; |
| 216 | }) == std::end(cont: channel.channelComponents); |
| 217 | |
| 218 | if (!canSlerp) { |
| 219 | // Interpolate per component |
| 220 | for (const auto &channelComponent : std::as_const(t: channel.channelComponents)) { |
| 221 | const int lowerKeyframeBound = channelComponent.fcurve.lowerKeyframeBound(localTime); |
| 222 | channelResults[i++] = channelComponent.fcurve.evaluateAtTime(localTime, lowerBound: lowerKeyframeBound); |
| 223 | } |
| 224 | } else { |
| 225 | // There's only one keyframe. We cant compute omega. Interpolate per component |
| 226 | if (channel.channelComponents[0].fcurve.keyframeCount() == 1) { |
| 227 | for (const auto &channelComponent : std::as_const(t: channel.channelComponents)) |
| 228 | channelResults[i++] = channelComponent.fcurve.keyframe(index: 0).value; |
| 229 | } else { |
| 230 | auto quaternionFromChannel = [channel](const int keyframe) { |
| 231 | const float w = channel.channelComponents[0].fcurve.keyframe(index: keyframe).value; |
| 232 | const float x = channel.channelComponents[1].fcurve.keyframe(index: keyframe).value; |
| 233 | const float y = channel.channelComponents[2].fcurve.keyframe(index: keyframe).value; |
| 234 | const float z = channel.channelComponents[3].fcurve.keyframe(index: keyframe).value; |
| 235 | QQuaternion quat{w,x,y,z}; |
| 236 | quat.normalize(); |
| 237 | return quat; |
| 238 | }; |
| 239 | |
| 240 | const int lowerKeyframeBound = std::max(a: 0, b: channel.channelComponents[0].fcurve.lowerKeyframeBound(localTime)); |
| 241 | const auto lowerQuat = quaternionFromChannel(lowerKeyframeBound); |
| 242 | const auto higherQuat = quaternionFromChannel(lowerKeyframeBound + 1); |
| 243 | auto cosHalfTheta = QQuaternion::dotProduct(q1: lowerQuat, q2: higherQuat); |
| 244 | // If the two keyframe quaternions are equal, just return the first one as the interpolated value. |
| 245 | if (std::abs(x: cosHalfTheta) >= 1.0f) { |
| 246 | channelResults[i++] = lowerQuat.scalar(); |
| 247 | channelResults[i++] = lowerQuat.x(); |
| 248 | channelResults[i++] = lowerQuat.y(); |
| 249 | channelResults[i++] = lowerQuat.z(); |
| 250 | } else { |
| 251 | const auto sinHalfTheta = std::sqrt(x: 1.0f - std::pow(x: cosHalfTheta,y: 2.0f)); |
| 252 | if (std::abs(x: sinHalfTheta) < ::slerpThreshold) { |
| 253 | auto initial_i = i; |
| 254 | for (const auto &channelComponent : std::as_const(t: channel.channelComponents)) |
| 255 | channelResults[i++] = channelComponent.fcurve.evaluateAtTime(localTime, lowerBound: lowerKeyframeBound); |
| 256 | |
| 257 | // Normalize the resulting quaternion |
| 258 | QQuaternion quat{channelResults[initial_i], channelResults[initial_i+1], channelResults[initial_i+2], channelResults[initial_i+3]}; |
| 259 | quat.normalize(); |
| 260 | channelResults[initial_i+0] = quat.scalar(); |
| 261 | channelResults[initial_i+1] = quat.x(); |
| 262 | channelResults[initial_i+2] = quat.y(); |
| 263 | channelResults[initial_i+3] = quat.z(); |
| 264 | } else { |
| 265 | const auto reverseQ1 = cosHalfTheta < 0 ? -1.0f : 1.0f; |
| 266 | cosHalfTheta *= reverseQ1; |
| 267 | const auto halfTheta = std::acos(x: cosHalfTheta); |
| 268 | for (const auto &channelComponent : std::as_const(t: channel.channelComponents)) |
| 269 | channelResults[i++] = channelComponent.fcurve.evaluateAtTimeAsSlerp(localTime, |
| 270 | lowerBound: lowerKeyframeBound, |
| 271 | halfTheta, |
| 272 | sinHalfTheta, |
| 273 | reverseQ1); |
| 274 | } |
| 275 | } |
| 276 | } |
| 277 | } |
| 278 | } else { |
| 279 | // If the channel is not a Rotation, apply linear interpolation per channel component |
| 280 | // TODO How do we handle other interpolations. For exammple, color interpolation |
| 281 | // in a linear perceptual way or other non linear spaces? |
| 282 | for (const auto &channelComponent : std::as_const(t: channel.channelComponents)) { |
| 283 | const int lowerKeyframeBound = channelComponent.fcurve.lowerKeyframeBound(localTime); |
| 284 | channelResults[i++] = channelComponent.fcurve.evaluateAtTime(localTime, lowerBound: lowerKeyframeBound); |
| 285 | } |
| 286 | } |
| 287 | } |
| 288 | return channelResults; |
| 289 | } |
| 290 | |
| 291 | ClipResults evaluateClipAtPhase(AnimationClip *clip, float phase) |
| 292 | { |
| 293 | // Calculate the clip local time from the phase and clip duration |
| 294 | const double localTime = phase * clip->duration(); |
| 295 | return evaluateClipAtLocalTime(clip, localTime); |
| 296 | } |
| 297 | |
| 298 | template<typename Container> |
| 299 | Container mapChannelResultsToContainer(const MappingData &mappingData, |
| 300 | const QVector<float> &channelResults) |
| 301 | { |
| 302 | Container r; |
| 303 | r.reserve(channelResults.size()); |
| 304 | |
| 305 | const ComponentIndices channelIndices = mappingData.channelIndices; |
| 306 | for (const int channelIndex : channelIndices) |
| 307 | r.push_back(channelResults.at(i: channelIndex)); |
| 308 | |
| 309 | return r; |
| 310 | } |
| 311 | |
| 312 | QVariant buildPropertyValue(const MappingData &mappingData, const QVector<float> &channelResults) |
| 313 | { |
| 314 | const int vectorOfFloatType = qMetaTypeId<QList<float>>(); |
| 315 | |
| 316 | if (mappingData.type == vectorOfFloatType) |
| 317 | return QVariant::fromValue(value: channelResults); |
| 318 | |
| 319 | switch (mappingData.type) { |
| 320 | case QMetaType::Float: |
| 321 | case QMetaType::Double: { |
| 322 | return QVariant::fromValue(value: channelResults[mappingData.channelIndices[0]]); |
| 323 | } |
| 324 | |
| 325 | case QMetaType::QVector2D: { |
| 326 | const QVector2D vector(channelResults[mappingData.channelIndices[0]], |
| 327 | channelResults[mappingData.channelIndices[1]]); |
| 328 | return QVariant::fromValue(value: vector); |
| 329 | } |
| 330 | |
| 331 | case QMetaType::QVector3D: { |
| 332 | const QVector3D vector(channelResults[mappingData.channelIndices[0]], |
| 333 | channelResults[mappingData.channelIndices[1]], |
| 334 | channelResults[mappingData.channelIndices[2]]); |
| 335 | return QVariant::fromValue(value: vector); |
| 336 | } |
| 337 | |
| 338 | case QMetaType::QVector4D: { |
| 339 | const QVector4D vector(channelResults[mappingData.channelIndices[0]], |
| 340 | channelResults[mappingData.channelIndices[1]], |
| 341 | channelResults[mappingData.channelIndices[2]], |
| 342 | channelResults[mappingData.channelIndices[3]]); |
| 343 | return QVariant::fromValue(value: vector); |
| 344 | } |
| 345 | |
| 346 | case QMetaType::QQuaternion: { |
| 347 | QQuaternion q(channelResults[mappingData.channelIndices[0]], |
| 348 | channelResults[mappingData.channelIndices[1]], |
| 349 | channelResults[mappingData.channelIndices[2]], |
| 350 | channelResults[mappingData.channelIndices[3]]); |
| 351 | q.normalize(); |
| 352 | return QVariant::fromValue(value: q); |
| 353 | } |
| 354 | |
| 355 | case QMetaType::QColor: { |
| 356 | // A color can either be a vec3 or a vec4 |
| 357 | const QColor color = |
| 358 | QColor::fromRgbF(r: channelResults[mappingData.channelIndices[0]], |
| 359 | g: channelResults[mappingData.channelIndices[1]], |
| 360 | b: channelResults[mappingData.channelIndices[2]], |
| 361 | a: mappingData.channelIndices.size() > 3 ? channelResults[mappingData.channelIndices[3]] : 1.0f); |
| 362 | return QVariant::fromValue(value: color); |
| 363 | } |
| 364 | |
| 365 | case QMetaType::QVariantList: { |
| 366 | const QVariantList results = mapChannelResultsToContainer<QVariantList>( |
| 367 | mappingData, channelResults); |
| 368 | return QVariant::fromValue(value: results); |
| 369 | } |
| 370 | |
| 371 | default: |
| 372 | qWarning() << "Unhandled animation type" << mappingData.type; |
| 373 | break; |
| 374 | } |
| 375 | |
| 376 | return QVariant(); |
| 377 | } |
| 378 | |
| 379 | AnimationRecord prepareAnimationRecord(Qt3DCore::QNodeId animatorId, |
| 380 | const QVector<MappingData> &mappingDataVec, |
| 381 | const QVector<float> &channelResults, |
| 382 | bool finalFrame, |
| 383 | float normalizedLocalTime) |
| 384 | { |
| 385 | AnimationRecord record; |
| 386 | record.finalFrame = finalFrame; |
| 387 | record.animatorId = animatorId; |
| 388 | record.normalizedTime = normalizedLocalTime; |
| 389 | |
| 390 | QVarLengthArray<Skeleton *, 4> dirtySkeletons; |
| 391 | |
| 392 | // Iterate over the mappings |
| 393 | for (const MappingData &mappingData : mappingDataVec) { |
| 394 | if (!mappingData.propertyName) |
| 395 | continue; |
| 396 | |
| 397 | // Build the new value from the channel/fcurve evaluation results |
| 398 | const QVariant v = buildPropertyValue(mappingData, channelResults); |
| 399 | if (!v.isValid()) |
| 400 | continue; |
| 401 | |
| 402 | // TODO: Avoid wrapping joint transform components up in a variant, just |
| 403 | // to immediately unwrap them again. Refactor buildPropertyValue() to call |
| 404 | // helper functions that we can call directly here for joints. |
| 405 | if (mappingData.skeleton && mappingData.jointIndex != -1) { |
| 406 | // Remember that this skeleton is dirty. We will ask each dirty skeleton |
| 407 | // to send its set of local poses to observers below. |
| 408 | if (!dirtySkeletons.contains(t: mappingData.skeleton)) |
| 409 | dirtySkeletons.push_back(t: mappingData.skeleton); |
| 410 | |
| 411 | switch (mappingData.jointTransformComponent) { |
| 412 | case Scale: |
| 413 | mappingData.skeleton->setJointScale(jointIndex: mappingData.jointIndex, scale: v.value<QVector3D>()); |
| 414 | break; |
| 415 | |
| 416 | case Rotation: |
| 417 | mappingData.skeleton->setJointRotation(jointIndex: mappingData.jointIndex, rotation: v.value<QQuaternion>()); |
| 418 | break; |
| 419 | |
| 420 | case Translation: |
| 421 | mappingData.skeleton->setJointTranslation(jointIndex: mappingData.jointIndex, translation: v.value<QVector3D>()); |
| 422 | break; |
| 423 | |
| 424 | default: |
| 425 | Q_UNREACHABLE(); |
| 426 | break; |
| 427 | } |
| 428 | } else { |
| 429 | record.targetChanges.push_back(t: {mappingData.targetId, mappingData.propertyName, v}); |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | for (const auto skeleton : dirtySkeletons) |
| 434 | record.skeletonChanges.push_back(t: {skeleton->peerId(), skeleton->joints()}); |
| 435 | |
| 436 | return record; |
| 437 | } |
| 438 | |
| 439 | QVector<AnimationCallbackAndValue> prepareCallbacks(const QVector<MappingData> &mappingDataVec, |
| 440 | const QVector<float> &channelResults) |
| 441 | { |
| 442 | QVector<AnimationCallbackAndValue> callbacks; |
| 443 | for (const MappingData &mappingData : mappingDataVec) { |
| 444 | if (!mappingData.callback) |
| 445 | continue; |
| 446 | const QVariant v = buildPropertyValue(mappingData, channelResults); |
| 447 | if (v.isValid()) { |
| 448 | AnimationCallbackAndValue callback; |
| 449 | callback.callback = mappingData.callback; |
| 450 | callback.flags = mappingData.callbackFlags; |
| 451 | callback.value = v; |
| 452 | callbacks.append(t: callback); |
| 453 | } |
| 454 | } |
| 455 | return callbacks; |
| 456 | } |
| 457 | |
| 458 | // TODO: Optimize this even more by combining the work done here with the functions: |
| 459 | // buildRequiredChannelsAndTypes() and assignChannelComponentIndices(). We are |
| 460 | // currently repeating the iteration over mappings and extracting/generating |
| 461 | // channel names, types and joint indices. |
| 462 | QVector<MappingData> buildPropertyMappings(const QVector<ChannelMapping *> &channelMappings, |
| 463 | const QVector<ChannelNameAndType> &channelNamesAndTypes, |
| 464 | const QVector<ComponentIndices> &channelComponentIndices, |
| 465 | const QVector<QBitArray> &sourceClipMask) |
| 466 | { |
| 467 | // Accumulate the required number of mappings |
| 468 | int maxMappingDatas = 0; |
| 469 | for (const auto mapping : channelMappings) { |
| 470 | switch (mapping->mappingType()) { |
| 471 | case ChannelMapping::ChannelMappingType: |
| 472 | case ChannelMapping::CallbackMappingType: |
| 473 | ++maxMappingDatas; |
| 474 | break; |
| 475 | |
| 476 | case ChannelMapping::SkeletonMappingType: { |
| 477 | Skeleton *skeleton = mapping->skeleton(); |
| 478 | maxMappingDatas += 3 * skeleton->jointCount(); // S, R, T |
| 479 | break; |
| 480 | } |
| 481 | } |
| 482 | } |
| 483 | QVector<MappingData> mappingDataVec; |
| 484 | mappingDataVec.reserve(asize: maxMappingDatas); |
| 485 | |
| 486 | // Iterate over the mappings |
| 487 | for (const auto mapping : channelMappings) { |
| 488 | switch (mapping->mappingType()) { |
| 489 | case ChannelMapping::ChannelMappingType: |
| 490 | case ChannelMapping::CallbackMappingType: { |
| 491 | // Populate the data we need, easy stuff first |
| 492 | MappingData mappingData; |
| 493 | mappingData.targetId = mapping->targetId(); |
| 494 | mappingData.propertyName = mapping->propertyName(); |
| 495 | mappingData.type = mapping->type(); |
| 496 | mappingData.callback = mapping->callback(); |
| 497 | mappingData.callbackFlags = mapping->callbackFlags(); |
| 498 | |
| 499 | if (mappingData.type == static_cast<int>(QMetaType::UnknownType)) { |
| 500 | qWarning() << "Unknown type for node id =" << mappingData.targetId |
| 501 | << "and property =" << mapping->propertyName() |
| 502 | << "and callback =" << mapping->callback(); |
| 503 | continue; |
| 504 | } |
| 505 | |
| 506 | // Try to find matching channel name and type |
| 507 | const ChannelNameAndType nameAndType = { mapping->channelName(), |
| 508 | mapping->type(), |
| 509 | mapping->componentCount(), |
| 510 | mapping->peerId() |
| 511 | }; |
| 512 | const qsizetype index = channelNamesAndTypes.indexOf(t: nameAndType); |
| 513 | if (index != -1) { |
| 514 | // Do we have any animation data for this channel? If not, don't bother |
| 515 | // adding a mapping for it. |
| 516 | const bool hasChannelIndices = sourceClipMask[index].count(on: true) != 0; |
| 517 | if (!hasChannelIndices) |
| 518 | continue; |
| 519 | |
| 520 | // We got one! |
| 521 | mappingData.channelIndices = channelComponentIndices[index]; |
| 522 | mappingDataVec.push_back(t: mappingData); |
| 523 | } |
| 524 | break; |
| 525 | } |
| 526 | |
| 527 | case ChannelMapping::SkeletonMappingType: { |
| 528 | const QList<ChannelNameAndType> jointProperties |
| 529 | = { { QLatin1String("Location" ), static_cast<int>(QMetaType::QVector3D), Translation }, |
| 530 | { QLatin1String("Rotation" ), static_cast<int>(QMetaType::QQuaternion), Rotation }, |
| 531 | { QLatin1String("Scale" ), static_cast<int>(QMetaType::QVector3D), Scale } }; |
| 532 | const QHash<QString, const char *> channelNameToPropertyName |
| 533 | = { { QLatin1String("Location" ), "translation" }, |
| 534 | { QLatin1String("Rotation" ), "rotation" }, |
| 535 | { QLatin1String("Scale" ), "scale" } }; |
| 536 | Skeleton *skeleton = mapping->skeleton(); |
| 537 | const int jointCount = skeleton->jointCount(); |
| 538 | for (int jointIndex = 0; jointIndex < jointCount; ++jointIndex) { |
| 539 | // Populate the data we need, easy stuff first |
| 540 | MappingData mappingData; |
| 541 | mappingData.targetId = mapping->skeletonId(); |
| 542 | mappingData.skeleton = mapping->skeleton(); |
| 543 | |
| 544 | const qsizetype propertyCount = jointProperties.size(); |
| 545 | for (qsizetype propertyIndex = 0; propertyIndex < propertyCount; ++propertyIndex) { |
| 546 | // Get the name, type and index |
| 547 | ChannelNameAndType nameAndType = jointProperties[propertyIndex]; |
| 548 | nameAndType.jointIndex = jointIndex; |
| 549 | nameAndType.mappingId = mapping->peerId(); |
| 550 | |
| 551 | // Try to find matching channel name and type |
| 552 | const qsizetype index = channelNamesAndTypes.indexOf(t: nameAndType); |
| 553 | if (index == -1) |
| 554 | continue; |
| 555 | |
| 556 | // Do we have any animation data for this channel? If not, don't bother |
| 557 | // adding a mapping for it. |
| 558 | const bool hasChannelIndices = sourceClipMask[index].count(on: true) != 0; |
| 559 | if (!hasChannelIndices) |
| 560 | continue; |
| 561 | |
| 562 | if (index != -1) { |
| 563 | // We got one! |
| 564 | mappingData.propertyName = channelNameToPropertyName[nameAndType.name]; |
| 565 | mappingData.type = nameAndType.type; |
| 566 | mappingData.channelIndices = channelComponentIndices[index]; |
| 567 | mappingData.jointIndex = jointIndex; |
| 568 | |
| 569 | // Convert property name for joint transform components to |
| 570 | // an enumerated type so we can avoid the string comparisons |
| 571 | // when sending the change events after evaluation. |
| 572 | // TODO: Replace this logic as we now do it in buildRequiredChannelsAndTypes() |
| 573 | if (qstrcmp(str1: mappingData.propertyName, str2: "scale" ) == 0) |
| 574 | mappingData.jointTransformComponent = Scale; |
| 575 | else if (qstrcmp(str1: mappingData.propertyName, str2: "rotation" ) == 0) |
| 576 | mappingData.jointTransformComponent = Rotation; |
| 577 | else if (qstrcmp(str1: mappingData.propertyName, str2: "translation" ) == 0) |
| 578 | mappingData.jointTransformComponent = Translation; |
| 579 | |
| 580 | mappingDataVec.push_back(t: mappingData); |
| 581 | } |
| 582 | } |
| 583 | } |
| 584 | break; |
| 585 | } |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | return mappingDataVec; |
| 590 | } |
| 591 | |
| 592 | QVector<ChannelNameAndType> buildRequiredChannelsAndTypes(Handler *handler, |
| 593 | const ChannelMapper *mapper) |
| 594 | { |
| 595 | ChannelMappingManager *mappingManager = handler->channelMappingManager(); |
| 596 | const auto mappingIds = mapper->mappingIds(); |
| 597 | |
| 598 | // Reserve enough storage assuming each mapping is for a different channel. |
| 599 | // May be overkill but avoids potential for multiple allocations |
| 600 | QVector<ChannelNameAndType> namesAndTypes; |
| 601 | namesAndTypes.reserve(asize: mappingIds.size()); |
| 602 | |
| 603 | // Iterate through the mappings and add ones not already used by an earlier mapping. |
| 604 | // We could add them all then sort and remove duplicates. However, our approach has the |
| 605 | // advantage of keeping the blend tree format more consistent with the mapping |
| 606 | // orderings which will have better cache locality when generating events. |
| 607 | for (const Qt3DCore::QNodeId &mappingId : mappingIds) { |
| 608 | // Get the mapping object |
| 609 | ChannelMapping *mapping = mappingManager->lookupResource(id: mappingId); |
| 610 | Q_ASSERT(mapping); |
| 611 | |
| 612 | switch (mapping->mappingType()) { |
| 613 | case ChannelMapping::ChannelMappingType: |
| 614 | case ChannelMapping::CallbackMappingType: { |
| 615 | // Get the name and type |
| 616 | const ChannelNameAndType nameAndType{ mapping->channelName(), |
| 617 | mapping->type(), |
| 618 | mapping->componentCount(), |
| 619 | mappingId }; |
| 620 | |
| 621 | // Add if not already contained |
| 622 | if (!namesAndTypes.contains(t: nameAndType)) |
| 623 | namesAndTypes.push_back(t: nameAndType); |
| 624 | |
| 625 | break; |
| 626 | } |
| 627 | |
| 628 | case ChannelMapping::SkeletonMappingType: { |
| 629 | // Add an entry for each scale/rotation/translation property of each joint index |
| 630 | // of the target skeleton. |
| 631 | const QList<ChannelNameAndType> jointProperties |
| 632 | = { { QLatin1String("Location" ), static_cast<int>(QMetaType::QVector3D), Translation }, |
| 633 | { QLatin1String("Rotation" ), static_cast<int>(QMetaType::QQuaternion), Rotation }, |
| 634 | { QLatin1String("Scale" ), static_cast<int>(QMetaType::QVector3D), Scale } }; |
| 635 | Skeleton *skeleton = handler->skeletonManager()->lookupResource(id: mapping->skeletonId()); |
| 636 | const int jointCount = skeleton->jointCount(); |
| 637 | for (int jointIndex = 0; jointIndex < jointCount; ++jointIndex) { |
| 638 | const qsizetype propertyCount = jointProperties.size(); |
| 639 | for (int propertyIndex = 0; propertyIndex < propertyCount; ++propertyIndex) { |
| 640 | // Get the name, type and index |
| 641 | ChannelNameAndType nameAndType = jointProperties[propertyIndex]; |
| 642 | nameAndType.jointName = skeleton->jointName(jointIndex); |
| 643 | nameAndType.jointIndex = jointIndex; |
| 644 | nameAndType.mappingId = mappingId; |
| 645 | |
| 646 | // Add if not already contained |
| 647 | if (!namesAndTypes.contains(t: nameAndType)) |
| 648 | namesAndTypes.push_back(t: nameAndType); |
| 649 | } |
| 650 | } |
| 651 | |
| 652 | break; |
| 653 | } |
| 654 | } |
| 655 | } |
| 656 | |
| 657 | return namesAndTypes; |
| 658 | } |
| 659 | |
| 660 | QVector<ComponentIndices> assignChannelComponentIndices(const QVector<ChannelNameAndType> &namesAndTypes) |
| 661 | { |
| 662 | QVector<ComponentIndices> channelComponentIndices; |
| 663 | channelComponentIndices.reserve(asize: namesAndTypes.size()); |
| 664 | |
| 665 | int baseIndex = 0; |
| 666 | for (const auto &entry : namesAndTypes) { |
| 667 | // Populate indices in order |
| 668 | const int componentCount = entry.componentCount; |
| 669 | ComponentIndices indices(componentCount); |
| 670 | std::iota(first: indices.begin(), last: indices.end(), value: baseIndex); |
| 671 | |
| 672 | // Append to the results |
| 673 | channelComponentIndices.push_back(t: indices); |
| 674 | |
| 675 | // Increment baseIndex |
| 676 | baseIndex += componentCount; |
| 677 | } |
| 678 | |
| 679 | return channelComponentIndices; |
| 680 | } |
| 681 | |
| 682 | QVector<Qt3DCore::QNodeId> gatherValueNodesToEvaluate(Handler *handler, |
| 683 | Qt3DCore::QNodeId blendTreeRootId) |
| 684 | { |
| 685 | Q_ASSERT(handler); |
| 686 | Q_ASSERT(blendTreeRootId.isNull() == false); |
| 687 | |
| 688 | // We need the ClipBlendNodeManager to be able to lookup nodes from their Ids |
| 689 | ClipBlendNodeManager *nodeManager = handler->clipBlendNodeManager(); |
| 690 | |
| 691 | // Visit the tree in a pre-order manner and collect the dependencies |
| 692 | QVector<Qt3DCore::QNodeId> clipIds; |
| 693 | ClipBlendNodeVisitor visitor(nodeManager, |
| 694 | ClipBlendNodeVisitor::PreOrder, |
| 695 | ClipBlendNodeVisitor::VisitOnlyDependencies); |
| 696 | |
| 697 | auto func = [&clipIds, nodeManager] (ClipBlendNode *blendNode) { |
| 698 | // Check if this is a value node itself |
| 699 | if (blendNode->blendType() == ClipBlendNode::ValueType) |
| 700 | clipIds.append(t: blendNode->peerId()); |
| 701 | |
| 702 | const auto dependencyIds = blendNode->currentDependencyIds(); |
| 703 | for (const auto &dependencyId : dependencyIds) { |
| 704 | // Look up the blend node and if it's a value type (clip), |
| 705 | // add it to the set of value node ids that need to be evaluated |
| 706 | ClipBlendNode *node = nodeManager->lookupNode(id: dependencyId); |
| 707 | if (node && node->blendType() == ClipBlendNode::ValueType) |
| 708 | clipIds.append(t: dependencyId); |
| 709 | } |
| 710 | }; |
| 711 | visitor.traverse(rootId: blendTreeRootId, visitFunction: func); |
| 712 | |
| 713 | // Sort and remove duplicates |
| 714 | std::sort(first: clipIds.begin(), last: clipIds.end()); |
| 715 | auto last = std::unique(first: clipIds.begin(), last: clipIds.end()); |
| 716 | clipIds.erase(abegin: last, aend: clipIds.end()); |
| 717 | return clipIds; |
| 718 | } |
| 719 | |
| 720 | ClipFormat generateClipFormatIndices(const QVector<ChannelNameAndType> &targetChannels, |
| 721 | const QVector<ComponentIndices> &targetIndices, |
| 722 | const AnimationClip *clip) |
| 723 | { |
| 724 | Q_ASSERT(targetChannels.size() == targetIndices.size()); |
| 725 | |
| 726 | // Reserve enough storage for all the format indices |
| 727 | const qsizetype channelCount = targetChannels.size(); |
| 728 | ClipFormat f; |
| 729 | f.namesAndTypes.resize(size: channelCount); |
| 730 | f.formattedComponentIndices.resize(size: channelCount); |
| 731 | f.sourceClipMask.resize(size: channelCount); |
| 732 | qsizetype indexCount = 0; |
| 733 | for (const auto &targetIndexVec : std::as_const(t: targetIndices)) |
| 734 | indexCount += targetIndexVec.size(); |
| 735 | ComponentIndices &sourceIndices = f.sourceClipIndices; |
| 736 | sourceIndices.resize(size: indexCount); |
| 737 | |
| 738 | // Iterate through the target channels |
| 739 | auto formatIt = sourceIndices.begin(); |
| 740 | for (qsizetype i = 0; i < channelCount; ++i) { |
| 741 | // Find the index of the channel from the clip |
| 742 | const ChannelNameAndType &targetChannel = targetChannels[i]; |
| 743 | const qsizetype clipChannelIndex = clip->channelIndex(channelName: targetChannel.name, |
| 744 | jointIndex: targetChannel.jointIndex); |
| 745 | const qsizetype componentCount = targetIndices[i].size(); |
| 746 | |
| 747 | if (clipChannelIndex != -1) { |
| 748 | // Found a matching channel in the clip. Populate the corresponding |
| 749 | // entries in the format vector with the *source indices* |
| 750 | // needed to build the formatted results. |
| 751 | const qsizetype baseIndex = clip->channelComponentBaseIndex(channelGroupIndex: clipChannelIndex); |
| 752 | const auto channelIndices = channelComponentsToIndices(channel: clip->channels()[clipChannelIndex], |
| 753 | dataType: targetChannel.type, |
| 754 | expectedComponentCount: targetChannel.componentCount, |
| 755 | offset: baseIndex); |
| 756 | std::copy(first: channelIndices.begin(), last: channelIndices.end(), result: formatIt); |
| 757 | |
| 758 | f.sourceClipMask[i].resize(size: componentCount); |
| 759 | for (qsizetype j = 0; j < componentCount; ++j) |
| 760 | f.sourceClipMask[i].setBit(i: j, val: channelIndices[j] != -1); |
| 761 | } else { |
| 762 | // No such channel in this clip. We'll use default values when |
| 763 | // mapping from the clip to the formatted clip results. |
| 764 | std::fill(first: formatIt, last: formatIt + componentCount, value: -1); |
| 765 | f.sourceClipMask[i].fill(aval: false, asize: componentCount); |
| 766 | } |
| 767 | |
| 768 | f.formattedComponentIndices[i] = targetIndices[i]; |
| 769 | f.namesAndTypes[i] = targetChannels[i]; |
| 770 | formatIt += componentCount; |
| 771 | } |
| 772 | |
| 773 | return f; |
| 774 | } |
| 775 | |
| 776 | ClipResults formatClipResults(const ClipResults &rawClipResults, |
| 777 | const ComponentIndices &format) |
| 778 | { |
| 779 | // Resize the output to match the number of indices |
| 780 | const qsizetype elementCount = format.size(); |
| 781 | ClipResults formattedClipResults(elementCount); |
| 782 | |
| 783 | // Perform a gather operation to format the data |
| 784 | |
| 785 | // TODO: For large numbers of components do this in parallel with |
| 786 | // for e.g. a parallel_for() like construct |
| 787 | // TODO: We could potentially avoid having holes in these intermediate |
| 788 | // vectors by adjusting the component indices stored in the MappingData |
| 789 | // and format vectors. Needs careful investigation! |
| 790 | for (qsizetype i = 0; i < elementCount; ++i) { |
| 791 | if (format[i] == -1) |
| 792 | continue; |
| 793 | formattedClipResults[i] = rawClipResults[format[i]]; |
| 794 | } |
| 795 | |
| 796 | return formattedClipResults; |
| 797 | } |
| 798 | |
| 799 | ClipResults evaluateBlendTree(Handler *handler, |
| 800 | BlendedClipAnimator *animator, |
| 801 | Qt3DCore::QNodeId blendTreeRootId) |
| 802 | { |
| 803 | Q_ASSERT(handler); |
| 804 | Q_ASSERT(blendTreeRootId.isNull() == false); |
| 805 | const Qt3DCore::QNodeId animatorId = animator->peerId(); |
| 806 | |
| 807 | // We need the ClipBlendNodeManager to be able to lookup nodes from their Ids |
| 808 | ClipBlendNodeManager *nodeManager = handler->clipBlendNodeManager(); |
| 809 | |
| 810 | // Visit the tree in a post-order manner and for each interior node call |
| 811 | // blending function. We only need to visit the nodes that affect the blend |
| 812 | // tree at this time. |
| 813 | ClipBlendNodeVisitor visitor(nodeManager, |
| 814 | ClipBlendNodeVisitor::PostOrder, |
| 815 | ClipBlendNodeVisitor::VisitOnlyDependencies); |
| 816 | |
| 817 | // TODO: When jobs can spawn other jobs we could evaluate subtrees of |
| 818 | // the blend tree in parallel. Since it's just a dependency tree, it maps |
| 819 | // simply onto the dependencies between jobs. |
| 820 | auto func = [animatorId] (ClipBlendNode *blendNode) { |
| 821 | // Look up the blend node and if it's an interior node, perform |
| 822 | // the blend operation |
| 823 | if (blendNode->blendType() != ClipBlendNode::ValueType) |
| 824 | blendNode->blend(animatorId); |
| 825 | }; |
| 826 | visitor.traverse(rootId: blendTreeRootId, visitFunction: func); |
| 827 | |
| 828 | // The clip results stored in the root node for this animator |
| 829 | // now represent the result of the blend tree evaluation |
| 830 | ClipBlendNode *blendTreeRootNode = nodeManager->lookupNode(id: blendTreeRootId); |
| 831 | Q_ASSERT(blendTreeRootNode); |
| 832 | return blendTreeRootNode->clipResults(animatorId); |
| 833 | } |
| 834 | |
| 835 | QVector<float> defaultValueForChannel(Handler *handler, |
| 836 | const ChannelNameAndType &channelDescription) |
| 837 | { |
| 838 | QVector<float> result; |
| 839 | |
| 840 | // Does the channel repesent a joint in a skeleton or is it a general channel? |
| 841 | ChannelMappingManager *mappingManager = handler->channelMappingManager(); |
| 842 | const ChannelMapping *mapping = mappingManager->lookupResource(id: channelDescription.mappingId); |
| 843 | switch (mapping->mappingType()) { |
| 844 | case ChannelMapping::SkeletonMappingType: { |
| 845 | // Default channel values for a joint in a skeleton, should be taken |
| 846 | // from the default pose of the joint itself. I.e. if a joint is not |
| 847 | // explicitly animated, then it should retain it's initial rest pose. |
| 848 | Skeleton *skeleton = mapping->skeleton(); |
| 849 | const int jointIndex = channelDescription.jointIndex; |
| 850 | switch (channelDescription.jointTransformComponent) { |
| 851 | case Translation: |
| 852 | result = valueToVector(value: skeleton->jointTranslation(jointIndex)); |
| 853 | break; |
| 854 | |
| 855 | case Rotation: |
| 856 | result = valueToVector(value: skeleton->jointRotation(jointIndex)); |
| 857 | break; |
| 858 | |
| 859 | case Scale: |
| 860 | result = valueToVector(value: skeleton->jointScale(jointIndex)); |
| 861 | break; |
| 862 | |
| 863 | case NoTransformComponent: |
| 864 | Q_UNREACHABLE(); |
| 865 | break; |
| 866 | } |
| 867 | break; |
| 868 | } |
| 869 | |
| 870 | case ChannelMapping::ChannelMappingType: |
| 871 | case ChannelMapping::CallbackMappingType: { |
| 872 | // Do our best to provide a sensible default value. |
| 873 | if (channelDescription.type == QMetaType::QQuaternion) { |
| 874 | result = valueToVector(value: QQuaternion()); // (1, 0, 0, 0) |
| 875 | break; |
| 876 | } |
| 877 | |
| 878 | if (channelDescription.name.toLower() == QLatin1String("scale" )) { |
| 879 | result = valueToVector(value: QVector3D(1.0f, 1.0f, 1.0f)); |
| 880 | break; |
| 881 | } |
| 882 | |
| 883 | // Everything else gets all zeros |
| 884 | const int componentCount = mapping->componentCount(); |
| 885 | result = QVector<float>(componentCount, 0.0f); |
| 886 | break; |
| 887 | } |
| 888 | |
| 889 | } |
| 890 | |
| 891 | return result; |
| 892 | } |
| 893 | |
| 894 | void applyComponentDefaultValues(const QVector<ComponentValue> &componentDefaults, |
| 895 | ClipResults &formattedClipResults) |
| 896 | { |
| 897 | for (const auto &componentDefault : componentDefaults) |
| 898 | formattedClipResults[componentDefault.componentIndex] = componentDefault.value; |
| 899 | } |
| 900 | |
| 901 | } // Animation |
| 902 | } // Qt3DAnimation |
| 903 | |
| 904 | QT_END_NAMESPACE |
| 905 | |