1 | // Copyright (C) 2014 Klaralvdalens Datakonsult AB (KDAB). |
2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
3 | |
4 | #include "sphere_p.h" |
5 | |
6 | #include <Qt3DRender/private/qray3d_p.h> |
7 | |
8 | #include <QPair> |
9 | |
10 | #include <math.h> |
11 | #include <algorithm> |
12 | |
13 | QT_BEGIN_NAMESPACE |
14 | |
15 | namespace { |
16 | |
17 | // Algorithms taken from Real-time collision detection, p178-179 |
18 | |
19 | // Intersects ray r = p + td, |d| = 1, with sphere s and, if intersecting, |
20 | // returns true and intersection point q; false otherwise |
21 | bool intersectRaySphere(const Qt3DRender::RayCasting::QRay3D &ray, const Qt3DRender::Render::Sphere &s, Vector3D *q = nullptr) |
22 | { |
23 | if (s.isNull()) |
24 | return false; |
25 | |
26 | const Vector3D p = ray.origin(); |
27 | const Vector3D d = ray.direction(); |
28 | const Vector3D m = p - s.center(); |
29 | const float c = Vector3D::dotProduct(a: m, b: m) - s.radius() * s.radius(); |
30 | |
31 | // If there is definitely at least one real root, there must be an intersection |
32 | if (q == nullptr && c <= 0.0f) |
33 | return true; |
34 | |
35 | const float b = Vector3D::dotProduct(a: m, b: d); |
36 | // Exit if r’s origin outside s (c > 0) and r pointing away from s (b > 0) |
37 | if (c > 0.0f && b > 0.0f) |
38 | return false; |
39 | |
40 | const float discr = b*b - c; |
41 | // A negative discriminant corresponds to ray missing sphere |
42 | if (discr < 0.0f) |
43 | return false; |
44 | |
45 | // If we don't need the intersection point, return early |
46 | if (q == nullptr) |
47 | return true; |
48 | |
49 | // Ray now found to intersect sphere, compute smallest t value of intersection |
50 | float t = -b - sqrt(x: discr); |
51 | |
52 | // If t is negative, ray started inside sphere so clamp t to zero |
53 | if (t < 0.0f) |
54 | t = 0.0f; |
55 | |
56 | *q = p + t * d; |
57 | return true; |
58 | } |
59 | |
60 | inline void constructRitterSphere(Qt3DRender::Render::Sphere &s, const QList<Vector3D> &points) |
61 | { |
62 | //def bounding_sphere(points): |
63 | // dist = lambda a,b: ((a[0] - b[0])**2 + (a[1] - b[1])**2 + (a[2] - b[2])**2)**0.5 |
64 | // x = points[0] |
65 | // y = max(points,key= lambda p: dist(p,x) ) |
66 | // z = max(points,key= lambda p: dist(p,y) ) |
67 | // bounding_sphere = (((y[0]+z[0])/2,(y[1]+z[1])/2,(y[2]+z[2])/2), dist(y,z)/2) |
68 | // |
69 | // exterior_points = [p for p in points if dist(p,bounding_sphere[0]) > bounding_sphere[1] ] |
70 | // while ( len(exterior_points) > 0 ): |
71 | // pt = exterior_points.pop() |
72 | // if (dist(pt, bounding_sphere[0]) > bounding_sphere[1]): |
73 | // bounding_sphere = (bounding_sphere[0],dist(pt,bounding_sphere[0])) |
74 | // |
75 | // return bounding_sphere |
76 | |
77 | const Vector3D x = points[0]; |
78 | const Vector3D y = *std::max_element(first: points.begin(), last: points.end(), comp: [&x](const Vector3D& lhs, const Vector3D& rhs){ return (lhs - x).lengthSquared() < (rhs - x).lengthSquared(); }); |
79 | const Vector3D z = *std::max_element(first: points.begin(), last: points.end(), comp: [&y](const Vector3D& lhs, const Vector3D& rhs){ return (lhs - y).lengthSquared() < (rhs - y).lengthSquared(); }); |
80 | |
81 | const Vector3D center = (y + z) * 0.5f; |
82 | const Vector3D maxDistPt = *std::max_element(first: points.begin(), last: points.end(), comp: [¢er](const Vector3D& lhs, const Vector3D& rhs){ return (lhs - center).lengthSquared() < (rhs - center).lengthSquared(); }); |
83 | const float radius = (maxDistPt - center).length(); |
84 | |
85 | s.setCenter(center); |
86 | s.setRadius(radius); |
87 | } |
88 | |
89 | } // anonymous namespace |
90 | |
91 | namespace Qt3DRender { |
92 | |
93 | namespace Render { |
94 | |
95 | const float Sphere::ms_epsilon = 1.0e-7f; |
96 | |
97 | Sphere Sphere::fromPoints(const QList<Vector3D> &points) |
98 | { |
99 | Sphere s; |
100 | s.initializeFromPoints(points); |
101 | return s; |
102 | } |
103 | |
104 | void Sphere::initializeFromPoints(const QList<Vector3D> &points) |
105 | { |
106 | if (!points.isEmpty()) |
107 | constructRitterSphere(s&: *this, points); |
108 | } |
109 | |
110 | void Sphere::expandToContain(const Vector3D &p) |
111 | { |
112 | if (isNull()) { |
113 | m_center = p; |
114 | m_radius = 0.0f; |
115 | return; |
116 | } |
117 | |
118 | const Vector3D d = p - m_center; |
119 | const float dist2 = d.lengthSquared(); |
120 | |
121 | if (dist2 > m_radius * m_radius) { |
122 | // Expand radius so sphere also contains p |
123 | const float dist = sqrt(x: dist2); |
124 | const float newRadius = 0.5f * (m_radius + dist); |
125 | const float k = (newRadius - m_radius) / dist; |
126 | m_radius = newRadius; |
127 | m_center += k * d; |
128 | } |
129 | } |
130 | |
131 | void Sphere::expandToContain(const Sphere &sphere) |
132 | { |
133 | if (isNull()) { |
134 | *this = sphere; |
135 | return; |
136 | } else if (sphere.isNull()) { |
137 | return; |
138 | } |
139 | |
140 | const Vector3D d(sphere.m_center - m_center); |
141 | const float dist2 = d.lengthSquared(); |
142 | |
143 | const float dr = sphere.m_radius - m_radius; |
144 | if (dr * dr >= dist2) { |
145 | // Larger sphere encloses the smaller. Set our size to the larger |
146 | if (m_radius > sphere.m_radius) |
147 | return; |
148 | else |
149 | *this = sphere; |
150 | } else { |
151 | // The spheres are overlapping or disjoint |
152 | const float dist = sqrt(x: dist2); |
153 | const float newRadius = 0.5f * (dist + m_radius + sphere.m_radius); |
154 | if (dist > ms_epsilon) |
155 | m_center += d * (newRadius - m_radius) / dist; |
156 | m_radius = newRadius; |
157 | } |
158 | } |
159 | |
160 | Sphere Sphere::transformed(const Matrix4x4 &mat) const |
161 | { |
162 | if (isNull()) |
163 | return *this; |
164 | |
165 | // Transform extremities in x, y, and z directions to find extremities |
166 | // of the resulting ellipsoid |
167 | Vector3D x = mat.map(point: m_center + Vector3D(m_radius, 0.0f, 0.0f)); |
168 | Vector3D y = mat.map(point: m_center + Vector3D(0.0f, m_radius, 0.0f)); |
169 | Vector3D z = mat.map(point: m_center + Vector3D(0.0f, 0.0f, m_radius)); |
170 | |
171 | // Transform center and find maximum radius of ellipsoid |
172 | Vector3D c = mat.map(point: m_center); |
173 | float rSquared = qMax(a: qMax(a: (x - c).lengthSquared(), b: (y - c).lengthSquared()), b: (z - c).lengthSquared()); |
174 | return Sphere(c, sqrt(x: rSquared), id()); |
175 | } |
176 | |
177 | Qt3DCore::QNodeId Sphere::id() const |
178 | { |
179 | return m_id; |
180 | } |
181 | |
182 | bool Sphere::intersects(const RayCasting::QRay3D &ray, Vector3D *q, Vector3D *uvw) const |
183 | { |
184 | Q_UNUSED(uvw); |
185 | return intersectRaySphere(ray, s: *this, q); |
186 | } |
187 | |
188 | Sphere::Type Sphere::type() const |
189 | { |
190 | return RayCasting::QBoundingVolume::Sphere; |
191 | } |
192 | |
193 | #ifndef QT_NO_DEBUG_STREAM |
194 | |
195 | QDebug operator<<(QDebug dbg, const Sphere &sphere) |
196 | { |
197 | QDebugStateSaver saver(dbg); |
198 | dbg.nospace() << "Sphere(center(" |
199 | << sphere.center().x() << ", " << sphere.center().y() << ", " |
200 | << sphere.center().z() << ") - radius(" << sphere.radius() << "))" ; |
201 | return dbg; |
202 | } |
203 | |
204 | #endif |
205 | |
206 | } // Render |
207 | |
208 | } // Qt3DRender |
209 | |
210 | QT_END_NAMESPACE |
211 | |