| 1 | // Copyright (C) 2014 Klaralvdalens Datakonsult AB (KDAB). |
| 2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 3 | |
| 4 | #include "sphere_p.h" |
| 5 | |
| 6 | #include <Qt3DRender/private/qray3d_p.h> |
| 7 | |
| 8 | #include <QPair> |
| 9 | |
| 10 | #include <math.h> |
| 11 | #include <algorithm> |
| 12 | |
| 13 | QT_BEGIN_NAMESPACE |
| 14 | |
| 15 | namespace { |
| 16 | |
| 17 | // Algorithms taken from Real-time collision detection, p178-179 |
| 18 | |
| 19 | // Intersects ray r = p + td, |d| = 1, with sphere s and, if intersecting, |
| 20 | // returns true and intersection point q; false otherwise |
| 21 | bool intersectRaySphere(const Qt3DRender::RayCasting::QRay3D &ray, const Qt3DRender::Render::Sphere &s, Vector3D *q = nullptr) |
| 22 | { |
| 23 | if (s.isNull()) |
| 24 | return false; |
| 25 | |
| 26 | const Vector3D p = ray.origin(); |
| 27 | const Vector3D d = ray.direction(); |
| 28 | const Vector3D m = p - s.center(); |
| 29 | const float c = Vector3D::dotProduct(a: m, b: m) - s.radius() * s.radius(); |
| 30 | |
| 31 | // If there is definitely at least one real root, there must be an intersection |
| 32 | if (q == nullptr && c <= 0.0f) |
| 33 | return true; |
| 34 | |
| 35 | const float b = Vector3D::dotProduct(a: m, b: d); |
| 36 | // Exit if r’s origin outside s (c > 0) and r pointing away from s (b > 0) |
| 37 | if (c > 0.0f && b > 0.0f) |
| 38 | return false; |
| 39 | |
| 40 | const float discr = b*b - c; |
| 41 | // A negative discriminant corresponds to ray missing sphere |
| 42 | if (discr < 0.0f) |
| 43 | return false; |
| 44 | |
| 45 | // If we don't need the intersection point, return early |
| 46 | if (q == nullptr) |
| 47 | return true; |
| 48 | |
| 49 | // Ray now found to intersect sphere, compute smallest t value of intersection |
| 50 | float t = -b - sqrt(x: discr); |
| 51 | |
| 52 | // If t is negative, ray started inside sphere so clamp t to zero |
| 53 | if (t < 0.0f) |
| 54 | t = 0.0f; |
| 55 | |
| 56 | *q = p + t * d; |
| 57 | return true; |
| 58 | } |
| 59 | |
| 60 | inline void constructRitterSphere(Qt3DRender::Render::Sphere &s, const QList<Vector3D> &points) |
| 61 | { |
| 62 | //def bounding_sphere(points): |
| 63 | // dist = lambda a,b: ((a[0] - b[0])**2 + (a[1] - b[1])**2 + (a[2] - b[2])**2)**0.5 |
| 64 | // x = points[0] |
| 65 | // y = max(points,key= lambda p: dist(p,x) ) |
| 66 | // z = max(points,key= lambda p: dist(p,y) ) |
| 67 | // bounding_sphere = (((y[0]+z[0])/2,(y[1]+z[1])/2,(y[2]+z[2])/2), dist(y,z)/2) |
| 68 | // |
| 69 | // exterior_points = [p for p in points if dist(p,bounding_sphere[0]) > bounding_sphere[1] ] |
| 70 | // while ( len(exterior_points) > 0 ): |
| 71 | // pt = exterior_points.pop() |
| 72 | // if (dist(pt, bounding_sphere[0]) > bounding_sphere[1]): |
| 73 | // bounding_sphere = (bounding_sphere[0],dist(pt,bounding_sphere[0])) |
| 74 | // |
| 75 | // return bounding_sphere |
| 76 | |
| 77 | const Vector3D x = points[0]; |
| 78 | const Vector3D y = *std::max_element(first: points.begin(), last: points.end(), comp: [&x](const Vector3D& lhs, const Vector3D& rhs){ return (lhs - x).lengthSquared() < (rhs - x).lengthSquared(); }); |
| 79 | const Vector3D z = *std::max_element(first: points.begin(), last: points.end(), comp: [&y](const Vector3D& lhs, const Vector3D& rhs){ return (lhs - y).lengthSquared() < (rhs - y).lengthSquared(); }); |
| 80 | |
| 81 | const Vector3D center = (y + z) * 0.5f; |
| 82 | const Vector3D maxDistPt = *std::max_element(first: points.begin(), last: points.end(), comp: [¢er](const Vector3D& lhs, const Vector3D& rhs){ return (lhs - center).lengthSquared() < (rhs - center).lengthSquared(); }); |
| 83 | const float radius = (maxDistPt - center).length(); |
| 84 | |
| 85 | s.setCenter(center); |
| 86 | s.setRadius(radius); |
| 87 | } |
| 88 | |
| 89 | } // anonymous namespace |
| 90 | |
| 91 | namespace Qt3DRender { |
| 92 | |
| 93 | namespace Render { |
| 94 | |
| 95 | const float Sphere::ms_epsilon = 1.0e-7f; |
| 96 | |
| 97 | Sphere Sphere::fromPoints(const QList<Vector3D> &points) |
| 98 | { |
| 99 | Sphere s; |
| 100 | s.initializeFromPoints(points); |
| 101 | return s; |
| 102 | } |
| 103 | |
| 104 | void Sphere::initializeFromPoints(const QList<Vector3D> &points) |
| 105 | { |
| 106 | if (!points.isEmpty()) |
| 107 | constructRitterSphere(s&: *this, points); |
| 108 | } |
| 109 | |
| 110 | void Sphere::expandToContain(const Vector3D &p) |
| 111 | { |
| 112 | if (isNull()) { |
| 113 | m_center = p; |
| 114 | m_radius = 0.0f; |
| 115 | return; |
| 116 | } |
| 117 | |
| 118 | const Vector3D d = p - m_center; |
| 119 | const float dist2 = d.lengthSquared(); |
| 120 | |
| 121 | if (dist2 > m_radius * m_radius) { |
| 122 | // Expand radius so sphere also contains p |
| 123 | const float dist = sqrt(x: dist2); |
| 124 | const float newRadius = 0.5f * (m_radius + dist); |
| 125 | const float k = (newRadius - m_radius) / dist; |
| 126 | m_radius = newRadius; |
| 127 | m_center += k * d; |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | void Sphere::expandToContain(const Sphere &sphere) |
| 132 | { |
| 133 | if (isNull()) { |
| 134 | *this = sphere; |
| 135 | return; |
| 136 | } else if (sphere.isNull()) { |
| 137 | return; |
| 138 | } |
| 139 | |
| 140 | const Vector3D d(sphere.m_center - m_center); |
| 141 | const float dist2 = d.lengthSquared(); |
| 142 | |
| 143 | const float dr = sphere.m_radius - m_radius; |
| 144 | if (dr * dr >= dist2) { |
| 145 | // Larger sphere encloses the smaller. Set our size to the larger |
| 146 | if (m_radius > sphere.m_radius) |
| 147 | return; |
| 148 | else |
| 149 | *this = sphere; |
| 150 | } else { |
| 151 | // The spheres are overlapping or disjoint |
| 152 | const float dist = sqrt(x: dist2); |
| 153 | const float newRadius = 0.5f * (dist + m_radius + sphere.m_radius); |
| 154 | if (dist > ms_epsilon) |
| 155 | m_center += d * (newRadius - m_radius) / dist; |
| 156 | m_radius = newRadius; |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | Sphere Sphere::transformed(const Matrix4x4 &mat) const |
| 161 | { |
| 162 | if (isNull()) |
| 163 | return *this; |
| 164 | |
| 165 | // Transform extremities in x, y, and z directions to find extremities |
| 166 | // of the resulting ellipsoid |
| 167 | Vector3D x = mat.map(point: m_center + Vector3D(m_radius, 0.0f, 0.0f)); |
| 168 | Vector3D y = mat.map(point: m_center + Vector3D(0.0f, m_radius, 0.0f)); |
| 169 | Vector3D z = mat.map(point: m_center + Vector3D(0.0f, 0.0f, m_radius)); |
| 170 | |
| 171 | // Transform center and find maximum radius of ellipsoid |
| 172 | Vector3D c = mat.map(point: m_center); |
| 173 | float rSquared = qMax(a: qMax(a: (x - c).lengthSquared(), b: (y - c).lengthSquared()), b: (z - c).lengthSquared()); |
| 174 | return Sphere(c, sqrt(x: rSquared), id()); |
| 175 | } |
| 176 | |
| 177 | Qt3DCore::QNodeId Sphere::id() const |
| 178 | { |
| 179 | return m_id; |
| 180 | } |
| 181 | |
| 182 | bool Sphere::intersects(const RayCasting::QRay3D &ray, Vector3D *q, Vector3D *uvw) const |
| 183 | { |
| 184 | Q_UNUSED(uvw); |
| 185 | return intersectRaySphere(ray, s: *this, q); |
| 186 | } |
| 187 | |
| 188 | Sphere::Type Sphere::type() const |
| 189 | { |
| 190 | return RayCasting::QBoundingVolume::Sphere; |
| 191 | } |
| 192 | |
| 193 | #ifndef QT_NO_DEBUG_STREAM |
| 194 | |
| 195 | QDebug operator<<(QDebug dbg, const Sphere &sphere) |
| 196 | { |
| 197 | QDebugStateSaver saver(dbg); |
| 198 | dbg.nospace() << "Sphere(center(" |
| 199 | << sphere.center().x() << ", " << sphere.center().y() << ", " |
| 200 | << sphere.center().z() << ") - radius(" << sphere.radius() << "))" ; |
| 201 | return dbg; |
| 202 | } |
| 203 | |
| 204 | #endif |
| 205 | |
| 206 | } // Render |
| 207 | |
| 208 | } // Qt3DRender |
| 209 | |
| 210 | QT_END_NAMESPACE |
| 211 | |