| 1 | // Copyright (C) 2019 The Qt Company Ltd. |
| 2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 3 | // Qt-Security score:critical reason:data-parser |
| 4 | |
| 5 | #include "qnumeric.h" |
| 6 | #include "qnumeric_p.h" |
| 7 | #include <string.h> |
| 8 | |
| 9 | QT_BEGIN_NAMESPACE |
| 10 | |
| 11 | /*! |
| 12 | \headerfile <QtNumeric> |
| 13 | \inmodule QtCore |
| 14 | \title Qt Numeric Functions |
| 15 | |
| 16 | \brief The <QtNumeric> header file provides common numeric functions. |
| 17 | |
| 18 | The <QtNumeric> header file contains various numeric functions |
| 19 | for comparing and adjusting a numeric value. |
| 20 | */ |
| 21 | |
| 22 | /*! |
| 23 | Returns \c true if the double \a {d} is equivalent to infinity. |
| 24 | \relates <QtNumeric> |
| 25 | \sa qInf() |
| 26 | */ |
| 27 | Q_CORE_EXPORT bool qIsInf(double d) { return qt_is_inf(d); } |
| 28 | |
| 29 | /*! |
| 30 | Returns \c true if the double \a {d} is not a number (NaN). |
| 31 | \relates <QtNumeric> |
| 32 | */ |
| 33 | Q_CORE_EXPORT bool qIsNaN(double d) { return qt_is_nan(d); } |
| 34 | |
| 35 | /*! |
| 36 | Returns \c true if the double \a {d} is a finite number. |
| 37 | \relates <QtNumeric> |
| 38 | */ |
| 39 | Q_CORE_EXPORT bool qIsFinite(double d) { return qt_is_finite(d); } |
| 40 | |
| 41 | /*! |
| 42 | Returns \c true if the float \a {f} is equivalent to infinity. |
| 43 | \relates <QtNumeric> |
| 44 | \sa qInf() |
| 45 | */ |
| 46 | Q_CORE_EXPORT bool qIsInf(float f) { return qt_is_inf(f); } |
| 47 | |
| 48 | /*! |
| 49 | Returns \c true if the float \a {f} is not a number (NaN). |
| 50 | \relates <QtNumeric> |
| 51 | */ |
| 52 | Q_CORE_EXPORT bool qIsNaN(float f) { return qt_is_nan(f); } |
| 53 | |
| 54 | /*! |
| 55 | Returns \c true if the float \a {f} is a finite number. |
| 56 | \relates <QtNumeric> |
| 57 | */ |
| 58 | Q_CORE_EXPORT bool qIsFinite(float f) { return qt_is_finite(f); } |
| 59 | |
| 60 | #if QT_CONFIG(signaling_nan) |
| 61 | /*! |
| 62 | Returns the bit pattern of a signalling NaN as a double. |
| 63 | \relates <QtNumeric> |
| 64 | */ |
| 65 | Q_CORE_EXPORT double qSNaN() { return qt_snan(); } |
| 66 | #endif |
| 67 | |
| 68 | /*! |
| 69 | Returns the bit pattern of a quiet NaN as a double. |
| 70 | \relates <QtNumeric> |
| 71 | \sa qIsNaN() |
| 72 | */ |
| 73 | Q_CORE_EXPORT double qQNaN() { return qt_qnan(); } |
| 74 | |
| 75 | /*! |
| 76 | Returns the bit pattern for an infinite number as a double. |
| 77 | \relates <QtNumeric> |
| 78 | \sa qIsInf() |
| 79 | */ |
| 80 | Q_CORE_EXPORT double qInf() { return qt_inf(); } |
| 81 | |
| 82 | /*! |
| 83 | \fn int qFpClassify(double val) |
| 84 | \fn int qFpClassify(float val) |
| 85 | |
| 86 | \relates <QtNumeric> |
| 87 | Classifies a floating-point value. |
| 88 | |
| 89 | The return values are defined in \c{<cmath>}: returns one of the following, |
| 90 | determined by the floating-point class of \a val: |
| 91 | \list |
| 92 | \li FP_NAN not a number |
| 93 | \li FP_INFINITE infinities (positive or negative) |
| 94 | \li FP_ZERO zero (positive or negative) |
| 95 | \li FP_NORMAL finite with a full mantissa |
| 96 | \li FP_SUBNORMAL finite with a reduced mantissa |
| 97 | \endlist |
| 98 | */ |
| 99 | Q_CORE_EXPORT int qFpClassify(double val) { return qt_fpclassify(d: val); } |
| 100 | Q_CORE_EXPORT int qFpClassify(float val) { return qt_fpclassify(f: val); } |
| 101 | |
| 102 | |
| 103 | /*! |
| 104 | \internal |
| 105 | */ |
| 106 | static inline quint32 f2i(float f) |
| 107 | { |
| 108 | quint32 i; |
| 109 | memcpy(dest: &i, src: &f, n: sizeof(f)); |
| 110 | return i; |
| 111 | } |
| 112 | |
| 113 | /*! |
| 114 | Returns the number of representable floating-point numbers between \a a and \a b. |
| 115 | |
| 116 | This function provides an alternative way of doing approximated comparisons of floating-point |
| 117 | numbers similar to qFuzzyCompare(). However, it returns the distance between two numbers, which |
| 118 | gives the caller a possibility to choose the accepted error. Errors are relative, so for |
| 119 | instance the distance between 1.0E-5 and 1.00001E-5 will give 110, while the distance between |
| 120 | 1.0E36 and 1.00001E36 will give 127. |
| 121 | |
| 122 | This function is useful if a floating point comparison requires a certain precision. |
| 123 | Therefore, if \a a and \a b are equal it will return 0. The maximum value it will return for 32-bit |
| 124 | floating point numbers is 4,278,190,078. This is the distance between \c{-FLT_MAX} and |
| 125 | \c{+FLT_MAX}. |
| 126 | |
| 127 | The function does not give meaningful results if any of the arguments are \c Infinite or \c NaN. |
| 128 | You can check for this by calling qIsFinite(). |
| 129 | |
| 130 | The return value can be considered as the "error", so if you for instance want to compare |
| 131 | two 32-bit floating point numbers and all you need is an approximated 24-bit precision, you can |
| 132 | use this function like this: |
| 133 | |
| 134 | \snippet code/src_corelib_global_qnumeric.cpp 0 |
| 135 | |
| 136 | \sa qFuzzyCompare() |
| 137 | \since 5.2 |
| 138 | \relates <QtNumeric> |
| 139 | */ |
| 140 | Q_CORE_EXPORT quint32 qFloatDistance(float a, float b) |
| 141 | { |
| 142 | static const quint32 smallestPositiveFloatAsBits = 0x00000001; // denormalized, (SMALLEST), (1.4E-45) |
| 143 | /* Assumes: |
| 144 | * IEE754 format. |
| 145 | * Integers and floats have the same endian |
| 146 | */ |
| 147 | static_assert(sizeof(quint32) == sizeof(float)); |
| 148 | Q_ASSERT(qIsFinite(a) && qIsFinite(b)); |
| 149 | if (a == b) |
| 150 | return 0; |
| 151 | if ((a < 0) != (b < 0)) { |
| 152 | // if they have different signs |
| 153 | if (a < 0) |
| 154 | a = -a; |
| 155 | else /*if (b < 0)*/ |
| 156 | b = -b; |
| 157 | return qFloatDistance(a: 0.0F, b: a) + qFloatDistance(a: 0.0F, b); |
| 158 | } |
| 159 | if (a < 0) { |
| 160 | a = -a; |
| 161 | b = -b; |
| 162 | } |
| 163 | // at this point a and b should not be negative |
| 164 | |
| 165 | // 0 is special |
| 166 | if (!a) |
| 167 | return f2i(f: b) - smallestPositiveFloatAsBits + 1; |
| 168 | if (!b) |
| 169 | return f2i(f: a) - smallestPositiveFloatAsBits + 1; |
| 170 | |
| 171 | // finally do the common integer subtraction |
| 172 | return a > b ? f2i(f: a) - f2i(f: b) : f2i(f: b) - f2i(f: a); |
| 173 | } |
| 174 | |
| 175 | |
| 176 | /*! |
| 177 | \internal |
| 178 | */ |
| 179 | static inline quint64 d2i(double d) |
| 180 | { |
| 181 | quint64 i; |
| 182 | memcpy(dest: &i, src: &d, n: sizeof(d)); |
| 183 | return i; |
| 184 | } |
| 185 | |
| 186 | /*! |
| 187 | Returns the number of representable floating-point numbers between \a a and \a b. |
| 188 | |
| 189 | This function serves the same purpose as \c{qFloatDistance(float, float)}, but |
| 190 | returns the distance between two \c double numbers. Since the range is larger |
| 191 | than for two \c float numbers (\c{[-DBL_MAX,DBL_MAX]}), the return type is quint64. |
| 192 | |
| 193 | |
| 194 | \sa qFuzzyCompare() |
| 195 | \since 5.2 |
| 196 | \relates <QtNumeric> |
| 197 | */ |
| 198 | Q_CORE_EXPORT quint64 qFloatDistance(double a, double b) |
| 199 | { |
| 200 | static const quint64 smallestPositiveFloatAsBits = 0x1; // denormalized, (SMALLEST) |
| 201 | /* Assumes: |
| 202 | * IEE754 format double precision |
| 203 | * Integers and floats have the same endian |
| 204 | */ |
| 205 | static_assert(sizeof(quint64) == sizeof(double)); |
| 206 | Q_ASSERT(qIsFinite(a) && qIsFinite(b)); |
| 207 | if (a == b) |
| 208 | return 0; |
| 209 | if ((a < 0) != (b < 0)) { |
| 210 | // if they have different signs |
| 211 | if (a < 0) |
| 212 | a = -a; |
| 213 | else /*if (b < 0)*/ |
| 214 | b = -b; |
| 215 | return qFloatDistance(a: 0.0, b: a) + qFloatDistance(a: 0.0, b); |
| 216 | } |
| 217 | if (a < 0) { |
| 218 | a = -a; |
| 219 | b = -b; |
| 220 | } |
| 221 | // at this point a and b should not be negative |
| 222 | |
| 223 | // 0 is special |
| 224 | if (!a) |
| 225 | return d2i(d: b) - smallestPositiveFloatAsBits + 1; |
| 226 | if (!b) |
| 227 | return d2i(d: a) - smallestPositiveFloatAsBits + 1; |
| 228 | |
| 229 | // finally do the common integer subtraction |
| 230 | return a > b ? d2i(d: a) - d2i(d: b) : d2i(d: b) - d2i(d: a); |
| 231 | } |
| 232 | |
| 233 | /*! |
| 234 | \fn template<typename T> bool qAddOverflow(T v1, T v2, T *result) |
| 235 | \relates <QtNumeric> |
| 236 | \since 6.1 |
| 237 | |
| 238 | Adds two values \a v1 and \a v2, of a numeric type \c T and records the |
| 239 | value in \a result. If the addition overflows the valid range for type \c T, |
| 240 | returns \c true, otherwise returns \c false. |
| 241 | |
| 242 | An implementation is guaranteed to be available for 8-, 16-, and 32-bit |
| 243 | integer types, as well as integer types of the size of a pointer. Overflow |
| 244 | math for other types, if available, is considered private API. |
| 245 | */ |
| 246 | |
| 247 | /*! |
| 248 | \fn template <typename T, T V2> bool qAddOverflow(T v1, std::integral_constant<T, V2>, T *r) |
| 249 | \since 6.1 |
| 250 | \internal |
| 251 | |
| 252 | Equivalent to qAddOverflow(v1, v2, r) with \a v1 as first argument, the |
| 253 | compile time constant \c V2 as second argument, and \a r as third argument. |
| 254 | */ |
| 255 | |
| 256 | /*! |
| 257 | \fn template <auto V2, typename T> bool qAddOverflow(T v1, T *r) |
| 258 | \since 6.1 |
| 259 | \internal |
| 260 | |
| 261 | Equivalent to qAddOverflow(v1, v2, r) with \a v1 as first argument, the |
| 262 | compile time constant \c V2 as second argument, and \a r as third argument. |
| 263 | */ |
| 264 | |
| 265 | /*! |
| 266 | \fn template<typename T> bool qSubOverflow(T v1, T v2, T *result) |
| 267 | \relates <QtNumeric> |
| 268 | \since 6.1 |
| 269 | |
| 270 | Subtracts \a v2 from \a v1 and records the resulting value in \a result. If |
| 271 | the subtraction overflows the valid range for type \c T, returns \c true, |
| 272 | otherwise returns \c false. |
| 273 | |
| 274 | An implementation is guaranteed to be available for 8-, 16-, and 32-bit |
| 275 | integer types, as well as integer types of the size of a pointer. Overflow |
| 276 | math for other types, if available, is considered private API. |
| 277 | */ |
| 278 | |
| 279 | /*! |
| 280 | \fn template <typename T, T V2> bool qSubOverflow(T v1, std::integral_constant<T, V2>, T *r) |
| 281 | \since 6.1 |
| 282 | \internal |
| 283 | |
| 284 | Equivalent to qSubOverflow(v1, v2, r) with \a v1 as first argument, the |
| 285 | compile time constant \c V2 as second argument, and \a r as third argument. |
| 286 | */ |
| 287 | |
| 288 | /*! |
| 289 | \fn template <auto V2, typename T> bool qSubOverflow(T v1, T *r) |
| 290 | \since 6.1 |
| 291 | \internal |
| 292 | |
| 293 | Equivalent to qSubOverflow(v1, v2, r) with \a v1 as first argument, the |
| 294 | compile time constant \c V2 as second argument, and \a r as third argument. |
| 295 | */ |
| 296 | |
| 297 | /*! |
| 298 | \fn template<typename T> bool qMulOverflow(T v1, T v2, T *result) |
| 299 | \relates <QtNumeric> |
| 300 | \since 6.1 |
| 301 | |
| 302 | Multiplies \a v1 and \a v2, and records the resulting value in \a result. If |
| 303 | the multiplication overflows the valid range for type \c T, returns |
| 304 | \c true, otherwise returns \c false. |
| 305 | |
| 306 | An implementation is guaranteed to be available for 8-, 16-, and 32-bit |
| 307 | integer types, as well as integer types of the size of a pointer. Overflow |
| 308 | math for other types, if available, is considered private API. |
| 309 | */ |
| 310 | |
| 311 | /*! |
| 312 | \fn template <typename T, T V2> bool qMulOverflow(T v1, std::integral_constant<T, V2>, T *r) |
| 313 | \since 6.1 |
| 314 | \internal |
| 315 | |
| 316 | Equivalent to qMulOverflow(v1, v2, r) with \a v1 as first argument, the |
| 317 | compile time constant \c V2 as second argument, and \a r as third argument. |
| 318 | This can be faster than calling the version with only variable arguments. |
| 319 | */ |
| 320 | |
| 321 | /*! |
| 322 | \fn template <auto V2, typename T> bool qMulOverflow(T v1, T *r) |
| 323 | \since 6.1 |
| 324 | \internal |
| 325 | |
| 326 | Equivalent to qMulOverflow(v1, v2, r) with \a v1 as first argument, the |
| 327 | compile time constant \c V2 as second argument, and \a r as third argument. |
| 328 | This can be faster than calling the version with only variable arguments. |
| 329 | */ |
| 330 | |
| 331 | /*! \fn template <typename T> T qAbs(const T &t) |
| 332 | \relates <QtNumeric> |
| 333 | |
| 334 | Compares \a t to the 0 of type T and returns the absolute |
| 335 | value. Thus if T is \e {double}, then \a t is compared to |
| 336 | \e{(double) 0}. |
| 337 | |
| 338 | Example: |
| 339 | |
| 340 | \snippet code/src_corelib_global_qglobal.cpp 10 |
| 341 | */ |
| 342 | |
| 343 | /*! \fn int qRound(double d) |
| 344 | \relates <QtNumeric> |
| 345 | |
| 346 | Rounds \a d to the nearest integer. |
| 347 | |
| 348 | Rounds half away from zero (e.g. 0.5 -> 1, -0.5 -> -1). |
| 349 | |
| 350 | \note This function does not guarantee correctness for high precisions. |
| 351 | |
| 352 | Example: |
| 353 | |
| 354 | \snippet code/src_corelib_global_qglobal.cpp 11A |
| 355 | |
| 356 | \note If the value \a d is outside the range of \c int, |
| 357 | the behavior is undefined. |
| 358 | */ |
| 359 | |
| 360 | /*! \fn int qRound(float d) |
| 361 | \relates <QtNumeric> |
| 362 | |
| 363 | Rounds \a d to the nearest integer. |
| 364 | |
| 365 | Rounds half away from zero (e.g. 0.5f -> 1, -0.5f -> -1). |
| 366 | |
| 367 | \note This function does not guarantee correctness for high precisions. |
| 368 | |
| 369 | Example: |
| 370 | |
| 371 | \snippet code/src_corelib_global_qglobal.cpp 11B |
| 372 | |
| 373 | \note If the value \a d is outside the range of \c int, |
| 374 | the behavior is undefined. |
| 375 | */ |
| 376 | |
| 377 | /*! \fn qint64 qRound64(double d) |
| 378 | \relates <QtNumeric> |
| 379 | |
| 380 | Rounds \a d to the nearest 64-bit integer. |
| 381 | |
| 382 | Rounds half away from zero (e.g. 0.5 -> 1, -0.5 -> -1). |
| 383 | |
| 384 | \note This function does not guarantee correctness for high precisions. |
| 385 | |
| 386 | Example: |
| 387 | |
| 388 | \snippet code/src_corelib_global_qglobal.cpp 12A |
| 389 | |
| 390 | \note If the value \a d is outside the range of \c qint64, |
| 391 | the behavior is undefined. |
| 392 | */ |
| 393 | |
| 394 | /*! \fn qint64 qRound64(float d) |
| 395 | \relates <QtNumeric> |
| 396 | |
| 397 | Rounds \a d to the nearest 64-bit integer. |
| 398 | |
| 399 | Rounds half away from zero (e.g. 0.5f -> 1, -0.5f -> -1). |
| 400 | |
| 401 | \note This function does not guarantee correctness for high precisions. |
| 402 | |
| 403 | Example: |
| 404 | |
| 405 | \snippet code/src_corelib_global_qglobal.cpp 12B |
| 406 | |
| 407 | \note If the value \a d is outside the range of \c qint64, |
| 408 | the behavior is undefined. |
| 409 | */ |
| 410 | |
| 411 | /*! |
| 412 | \fn bool qFuzzyCompare(double p1, double p2) |
| 413 | \relates <QtNumeric> |
| 414 | \since 4.4 |
| 415 | \threadsafe |
| 416 | |
| 417 | Compares the floating point value \a p1 and \a p2 and |
| 418 | returns \c true if they are considered equal, otherwise \c false. |
| 419 | |
| 420 | Note that comparing values where either \a p1 or \a p2 is 0.0 will not work, |
| 421 | nor does comparing values where one of the values is NaN or infinity. |
| 422 | If one of the values is always 0.0, use qFuzzyIsNull instead. If one of the |
| 423 | values is likely to be 0.0, one solution is to add 1.0 to both values. |
| 424 | |
| 425 | \snippet code/src_corelib_global_qglobal.cpp 46 |
| 426 | |
| 427 | The two numbers are compared in a relative way, where the |
| 428 | exactness is stronger the smaller the numbers are. |
| 429 | */ |
| 430 | |
| 431 | /*! |
| 432 | \fn bool qFuzzyCompare(float p1, float p2) |
| 433 | \relates <QtNumeric> |
| 434 | \since 4.4 |
| 435 | \threadsafe |
| 436 | |
| 437 | Compares the floating point value \a p1 and \a p2 and |
| 438 | returns \c true if they are considered equal, otherwise \c false. |
| 439 | |
| 440 | The two numbers are compared in a relative way, where the |
| 441 | exactness is stronger the smaller the numbers are. |
| 442 | */ |
| 443 | |
| 444 | /*! |
| 445 | \fn bool qFuzzyIsNull(double d) |
| 446 | \relates <QtNumeric> |
| 447 | \since 4.4 |
| 448 | \threadsafe |
| 449 | |
| 450 | Returns true if the absolute value of \a d is within 0.000000000001 of 0.0. |
| 451 | */ |
| 452 | |
| 453 | /*! |
| 454 | \fn bool qFuzzyIsNull(float f) |
| 455 | \relates <QtNumeric> |
| 456 | \since 4.4 |
| 457 | \threadsafe |
| 458 | |
| 459 | Returns true if the absolute value of \a f is within 0.00001f of 0.0. |
| 460 | */ |
| 461 | |
| 462 | QT_END_NAMESPACE |
| 463 | |