| 1 | // Copyright (C) 2021 Intel Corporation. |
| 2 | // Copyright (C) 2021 The Qt Company Ltd. |
| 3 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 4 | |
| 5 | // for rand_s |
| 6 | #define _CRT_RAND_S |
| 7 | |
| 8 | #include "qrandom.h" |
| 9 | #include "qrandom_p.h" |
| 10 | #include <qendian.h> |
| 11 | #include <qmutex.h> |
| 12 | #include <qobjectdefs.h> |
| 13 | |
| 14 | #include <errno.h> |
| 15 | |
| 16 | #if QT_CONFIG(getauxval) |
| 17 | # include <sys/auxv.h> |
| 18 | #endif |
| 19 | |
| 20 | #if QT_CONFIG(getentropy) && __has_include(<sys/random.h>) |
| 21 | # include <sys/random.h> |
| 22 | #elif !QT_CONFIG(getentropy) && (!defined(Q_OS_BSD4) || defined(__GLIBC__)) && !defined(Q_OS_WIN) |
| 23 | # include "qdeadlinetimer.h" |
| 24 | # include "qhashfunctions.h" |
| 25 | #endif // !QT_CONFIG(getentropy) |
| 26 | |
| 27 | #ifdef Q_OS_UNIX |
| 28 | # include <fcntl.h> |
| 29 | # include <private/qcore_unix_p.h> |
| 30 | #else |
| 31 | # include <qt_windows.h> |
| 32 | |
| 33 | // RtlGenRandom is not exported by its name in advapi32.dll, but as SystemFunction036 |
| 34 | // See https://msdn.microsoft.com/en-us/library/windows/desktop/aa387694(v=vs.85).aspx |
| 35 | // Implementation inspired on https://hg.mozilla.org/mozilla-central/file/722fdbff1efc/security/nss/lib/freebl/win_rand.c#l146 |
| 36 | // Argument why this is safe to use: https://bugzilla.mozilla.org/show_bug.cgi?id=504270 |
| 37 | extern "C" { |
| 38 | DECLSPEC_IMPORT BOOLEAN WINAPI SystemFunction036(PVOID RandomBuffer, ULONG RandomBufferLength); |
| 39 | } |
| 40 | #endif |
| 41 | |
| 42 | // This file is too low-level for regular Q_ASSERT (the logging framework may |
| 43 | // recurse back), so use regular assert() |
| 44 | #undef NDEBUG |
| 45 | #undef Q_ASSERT_X |
| 46 | #undef Q_ASSERT |
| 47 | #define Q_ASSERT(cond) assert(cond) |
| 48 | #define Q_ASSERT_X(cond, x, msg) assert(cond && msg) |
| 49 | #if defined(QT_NO_DEBUG) && !defined(QT_FORCE_ASSERTS) |
| 50 | # define NDEBUG 1 |
| 51 | #endif |
| 52 | #include <assert.h> |
| 53 | |
| 54 | QT_BEGIN_NAMESPACE |
| 55 | |
| 56 | enum { |
| 57 | // may be "overridden" by a member enum |
| 58 | FillBufferNoexcept = true |
| 59 | }; |
| 60 | |
| 61 | #if defined(QT_BUILD_INTERNAL) |
| 62 | QBasicAtomicInteger<uint> qt_randomdevice_control = Q_BASIC_ATOMIC_INITIALIZER(0U); |
| 63 | #endif |
| 64 | |
| 65 | struct QRandomGenerator::SystemGenerator |
| 66 | { |
| 67 | #if QT_CONFIG(getentropy) |
| 68 | static qsizetype fillBuffer(void *buffer, qsizetype count) noexcept |
| 69 | { |
| 70 | // getentropy can read at most 256 bytes, so break the reading |
| 71 | qsizetype read = 0; |
| 72 | while (count - read > 256) { |
| 73 | // getentropy can't fail under normal circumstances |
| 74 | int ret = getentropy(buffer: reinterpret_cast<uchar *>(buffer) + read, length: 256); |
| 75 | Q_ASSERT(ret == 0); |
| 76 | Q_UNUSED(ret); |
| 77 | read += 256; |
| 78 | } |
| 79 | |
| 80 | int ret = getentropy(buffer: reinterpret_cast<uchar *>(buffer) + read, length: count - read); |
| 81 | Q_ASSERT(ret == 0); |
| 82 | Q_UNUSED(ret); |
| 83 | return count; |
| 84 | } |
| 85 | |
| 86 | #elif defined(Q_OS_UNIX) |
| 87 | enum { FillBufferNoexcept = false }; |
| 88 | |
| 89 | QBasicAtomicInt fdp1; // "file descriptor plus 1" |
| 90 | int openDevice() |
| 91 | { |
| 92 | int fd = fdp1.loadAcquire() - 1; |
| 93 | if (fd != -1) |
| 94 | return fd; |
| 95 | |
| 96 | fd = qt_safe_open("/dev/urandom" , O_RDONLY); |
| 97 | if (fd == -1) |
| 98 | fd = qt_safe_open("/dev/random" , O_RDONLY | O_NONBLOCK); |
| 99 | if (fd == -1) { |
| 100 | // failed on both, set to -2 so we won't try again |
| 101 | fd = -2; |
| 102 | } |
| 103 | |
| 104 | int opened_fdp1; |
| 105 | if (fdp1.testAndSetOrdered(0, fd + 1, opened_fdp1)) |
| 106 | return fd; |
| 107 | |
| 108 | // failed, another thread has opened the file descriptor |
| 109 | if (fd >= 0) |
| 110 | qt_safe_close(fd); |
| 111 | return opened_fdp1 - 1; |
| 112 | } |
| 113 | |
| 114 | #ifdef Q_CC_GNU |
| 115 | // If it's not GCC or GCC-like, then we'll leak the file descriptor |
| 116 | __attribute__((destructor)) |
| 117 | #endif |
| 118 | static void closeDevice() |
| 119 | { |
| 120 | int fd = self().fdp1.loadRelaxed() - 1; |
| 121 | if (fd >= 0) |
| 122 | qt_safe_close(fd); |
| 123 | } |
| 124 | |
| 125 | constexpr SystemGenerator() : fdp1 Q_BASIC_ATOMIC_INITIALIZER(0) {} |
| 126 | |
| 127 | qsizetype fillBuffer(void *buffer, qsizetype count) |
| 128 | { |
| 129 | int fd = openDevice(); |
| 130 | if (Q_UNLIKELY(fd < 0)) |
| 131 | return 0; |
| 132 | |
| 133 | qint64 n = qt_safe_read(fd, buffer, count); |
| 134 | return qMax<qsizetype>(n, 0); // ignore any errors |
| 135 | } |
| 136 | |
| 137 | #elif defined(Q_OS_WIN) |
| 138 | static qsizetype fillBuffer(void *buffer, qsizetype count) noexcept |
| 139 | { |
| 140 | auto RtlGenRandom = SystemFunction036; |
| 141 | return RtlGenRandom(buffer, ULONG(count)) ? count: 0; |
| 142 | } |
| 143 | #endif // Q_OS_WIN |
| 144 | |
| 145 | static SystemGenerator &self(); |
| 146 | typedef quint32 result_type; |
| 147 | void generate(quint32 *begin, quint32 *end) noexcept(FillBufferNoexcept); |
| 148 | |
| 149 | // For std::mersenne_twister_engine implementations that use something |
| 150 | // other than quint32 (unsigned int) to fill their buffers. |
| 151 | template<typename T> |
| 152 | void generate(T *begin, T *end) |
| 153 | { |
| 154 | static_assert(sizeof(T) >= sizeof(quint32)); |
| 155 | if (sizeof(T) == sizeof(quint32)) { |
| 156 | // Microsoft Visual Studio uses unsigned long, but that's still 32-bit |
| 157 | generate(begin: reinterpret_cast<quint32 *>(begin), end: reinterpret_cast<quint32 *>(end)); |
| 158 | } else { |
| 159 | // Slow path. Fix your C++ library. |
| 160 | std::generate(begin, end, [this]() { |
| 161 | quint32 datum; |
| 162 | generate(begin: &datum, end: &datum + 1); |
| 163 | return datum; |
| 164 | }); |
| 165 | } |
| 166 | } |
| 167 | }; |
| 168 | |
| 169 | #if defined(Q_OS_WIN) |
| 170 | static void fallback_update_seed(unsigned) {} |
| 171 | static void fallback_fill(quint32 *ptr, qsizetype left) noexcept |
| 172 | { |
| 173 | // on Windows, rand_s is a high-quality random number generator |
| 174 | // and it requires no seeding |
| 175 | std::generate(ptr, ptr + left, []() { |
| 176 | unsigned value; |
| 177 | rand_s(&value); |
| 178 | return value; |
| 179 | }); |
| 180 | } |
| 181 | #elif QT_CONFIG(getentropy) |
| 182 | static void fallback_update_seed(unsigned) {} |
| 183 | static void fallback_fill(quint32 *, qsizetype) noexcept |
| 184 | { |
| 185 | // no fallback necessary, getentropy cannot fail under normal circumstances |
| 186 | Q_UNREACHABLE(); |
| 187 | } |
| 188 | #elif defined(Q_OS_BSD4) && !defined(__GLIBC__) |
| 189 | static void fallback_update_seed(unsigned) {} |
| 190 | static void fallback_fill(quint32 *ptr, qsizetype left) noexcept |
| 191 | { |
| 192 | // BSDs have arc4random(4) and these work even in chroot(2) |
| 193 | arc4random_buf(ptr, left * sizeof(*ptr)); |
| 194 | } |
| 195 | #else |
| 196 | Q_CONSTINIT static QBasicAtomicInteger<unsigned> seed = Q_BASIC_ATOMIC_INITIALIZER(0U); |
| 197 | static void fallback_update_seed(unsigned value) |
| 198 | { |
| 199 | // Update the seed to be used for the fallback mechanism, if we need to. |
| 200 | // We can't use QtPrivate::QHashCombine here because that is not an atomic |
| 201 | // operation. A simple XOR will have to do then. |
| 202 | seed.fetchAndXorRelaxed(value); |
| 203 | } |
| 204 | |
| 205 | Q_NEVER_INLINE |
| 206 | #ifdef Q_CC_GNU |
| 207 | __attribute__((cold)) // this function is pretty big, so optimize for size |
| 208 | #endif |
| 209 | static void fallback_fill(quint32 *ptr, qsizetype left) noexcept |
| 210 | { |
| 211 | quint32 scratch[12]; // see element count below |
| 212 | quint32 *end = scratch; |
| 213 | |
| 214 | auto foldPointer = [](quintptr v) { |
| 215 | if (sizeof(quintptr) == sizeof(quint32)) { |
| 216 | // For 32-bit systems, we simply return the pointer. |
| 217 | return quint32(v); |
| 218 | } else { |
| 219 | // For 64-bit systems, we try to return the variable part of the |
| 220 | // pointer. On current x86-64 and AArch64, the top 17 bits are |
| 221 | // architecturally required to be the same, but in reality the top |
| 222 | // 24 bits on Linux are likely to be the same for all processes. |
| 223 | return quint32(v >> (32 - 24)); |
| 224 | } |
| 225 | }; |
| 226 | |
| 227 | Q_ASSERT(left); |
| 228 | |
| 229 | *end++ = foldPointer(quintptr(&seed)); // 1: variable in this library/executable's .data |
| 230 | *end++ = foldPointer(quintptr(&scratch)); // 2: variable in the stack |
| 231 | *end++ = foldPointer(quintptr(&errno)); // 3: veriable either in libc or thread-specific |
| 232 | *end++ = foldPointer(quintptr(reinterpret_cast<void*>(strerror))); // 4: function in libc (and unlikely to be a macro) |
| 233 | |
| 234 | #ifndef QT_BOOTSTRAPPED |
| 235 | quint64 nsecs = QDeadlineTimer::current(Qt::PreciseTimer).deadline(); |
| 236 | *end++ = quint32(nsecs); // 5 |
| 237 | #endif |
| 238 | |
| 239 | if (quint32 v = seed.loadRelaxed()) |
| 240 | *end++ = v; // 6 |
| 241 | |
| 242 | #if QT_CONFIG(getauxval) |
| 243 | // works on Linux -- all modern libc have getauxval |
| 244 | # ifdef AT_RANDOM |
| 245 | // ELF's auxv AT_RANDOM has 16 random bytes |
| 246 | // (other ELF-based systems don't seem to have AT_RANDOM) |
| 247 | ulong auxvSeed = getauxval(AT_RANDOM); |
| 248 | if (auxvSeed) { |
| 249 | memcpy(end, reinterpret_cast<void *>(auxvSeed), 16); |
| 250 | end += 4; // 7 to 10 |
| 251 | } |
| 252 | # endif |
| 253 | |
| 254 | // Both AT_BASE and AT_SYSINFO_EHDR have some randomness in them due to the |
| 255 | // system's ASLR, even if many bits are the same. They also have randomness |
| 256 | // between them. |
| 257 | # ifdef AT_BASE |
| 258 | // present at least on the BSDs too, indicates the address of the loader |
| 259 | ulong base = getauxval(AT_BASE); |
| 260 | if (base) |
| 261 | *end++ = foldPointer(base); // 11 |
| 262 | # endif |
| 263 | # ifdef AT_SYSINFO_EHDR |
| 264 | // seems to be Linux-only, indicates the global page of the sysinfo |
| 265 | ulong sysinfo_ehdr = getauxval(AT_SYSINFO_EHDR); |
| 266 | if (sysinfo_ehdr) |
| 267 | *end++ = foldPointer(sysinfo_ehdr); // 12 |
| 268 | # endif |
| 269 | #endif |
| 270 | |
| 271 | Q_ASSERT(end <= std::end(scratch)); |
| 272 | |
| 273 | // this is highly inefficient, we should save the generator across calls... |
| 274 | std::seed_seq sseq(scratch, end); |
| 275 | std::mt19937 generator(sseq); |
| 276 | std::generate(ptr, ptr + left, generator); |
| 277 | |
| 278 | fallback_update_seed(*ptr); |
| 279 | } |
| 280 | #endif |
| 281 | |
| 282 | Q_NEVER_INLINE void QRandomGenerator::SystemGenerator::generate(quint32 *begin, quint32 *end) |
| 283 | noexcept(FillBufferNoexcept) |
| 284 | { |
| 285 | quint32 *buffer = begin; |
| 286 | qsizetype count = end - begin; |
| 287 | |
| 288 | if (Q_UNLIKELY(uint(qt_randomdevice_control.loadAcquire()) & SetRandomData)) { |
| 289 | uint value = uint(qt_randomdevice_control.loadAcquire()) & RandomDataMask; |
| 290 | std::fill_n(first: buffer, n: count, value: value); |
| 291 | return; |
| 292 | } |
| 293 | |
| 294 | qsizetype filled = 0; |
| 295 | if (qHasHwrng() && (uint(qt_randomdevice_control.loadAcquire()) & SkipHWRNG) == 0) |
| 296 | filled += qRandomCpu(buffer, count); |
| 297 | |
| 298 | if (filled != count && (uint(qt_randomdevice_control.loadAcquire()) & SkipSystemRNG) == 0) { |
| 299 | qsizetype bytesFilled = |
| 300 | fillBuffer(buffer: buffer + filled, count: (count - filled) * qsizetype(sizeof(*buffer))); |
| 301 | filled += bytesFilled / qsizetype(sizeof(*buffer)); |
| 302 | } |
| 303 | if (filled) |
| 304 | fallback_update_seed(*buffer); |
| 305 | |
| 306 | if (Q_UNLIKELY(filled != count)) { |
| 307 | // failed to fill the entire buffer, try the faillback mechanism |
| 308 | fallback_fill(buffer + filled, count - filled); |
| 309 | } |
| 310 | } |
| 311 | |
| 312 | struct QRandomGenerator::SystemAndGlobalGenerators |
| 313 | { |
| 314 | // Construction notes: |
| 315 | // 1) The global PRNG state is in a different cacheline compared to the |
| 316 | // mutex that protects it. This avoids any false cacheline sharing of |
| 317 | // the state in case another thread tries to lock the mutex. It's not |
| 318 | // a common scenario, but since sizeof(QRandomGenerator) >= 2560, the |
| 319 | // overhead is actually acceptable. |
| 320 | // 2) We use both alignas(T) and alignas(64) because some implementations |
| 321 | // can't align to more than a primitive type's alignment. |
| 322 | // 3) We don't store the entire system QRandomGenerator, only the space |
| 323 | // used by the QRandomGenerator::type member. This is fine because we |
| 324 | // (ab)use the common initial sequence exclusion to aliasing rules. |
| 325 | QBasicMutex globalPRNGMutex; |
| 326 | struct ShortenedSystem { uint type; } system_; |
| 327 | SystemGenerator sys; |
| 328 | alignas(64) struct { |
| 329 | alignas(QRandomGenerator64) uchar data[sizeof(QRandomGenerator64)]; |
| 330 | } global_; |
| 331 | |
| 332 | constexpr SystemAndGlobalGenerators() |
| 333 | : globalPRNGMutex{}, system_{.type: 0}, sys{}, global_{} |
| 334 | {} |
| 335 | |
| 336 | void confirmLiteral() |
| 337 | { |
| 338 | #if !defined(Q_OS_INTEGRITY) |
| 339 | // Integrity's compiler is unable to guarantee g's alignment for some reason. |
| 340 | constexpr SystemAndGlobalGenerators g = {}; |
| 341 | Q_UNUSED(g); |
| 342 | #endif |
| 343 | } |
| 344 | |
| 345 | static SystemAndGlobalGenerators *self() |
| 346 | { |
| 347 | Q_CONSTINIT static SystemAndGlobalGenerators g; |
| 348 | static_assert(sizeof(g) > sizeof(QRandomGenerator64)); |
| 349 | return &g; |
| 350 | } |
| 351 | |
| 352 | static QRandomGenerator64 *system() |
| 353 | { |
| 354 | // Though we never call the constructor, the system QRandomGenerator is |
| 355 | // properly initialized by the zero initialization performed in self(). |
| 356 | // Though QRandomGenerator is has non-vacuous initialization, we |
| 357 | // consider it initialized because of the common initial sequence. |
| 358 | return reinterpret_cast<QRandomGenerator64 *>(&self()->system_); |
| 359 | } |
| 360 | |
| 361 | static QRandomGenerator64 *globalNoInit() |
| 362 | { |
| 363 | // This function returns the pointer to the global QRandomGenerator, |
| 364 | // but does not initialize it. Only call it directly if you meant to do |
| 365 | // a pointer comparison. |
| 366 | return reinterpret_cast<QRandomGenerator64 *>(&self()->global_); |
| 367 | } |
| 368 | |
| 369 | static void securelySeed(QRandomGenerator *rng) |
| 370 | { |
| 371 | // force reconstruction, just to be pedantic |
| 372 | new (rng) QRandomGenerator{System{}}; |
| 373 | |
| 374 | rng->type = MersenneTwister; |
| 375 | new (&rng->storage.engine()) RandomEngine(self()->sys); |
| 376 | } |
| 377 | |
| 378 | struct PRNGLocker |
| 379 | { |
| 380 | Q_DISABLE_COPY_MOVE(PRNGLocker) |
| 381 | const bool locked; |
| 382 | Q_NODISCARD_CTOR explicit PRNGLocker(const QRandomGenerator *that) |
| 383 | : locked(that == globalNoInit()) |
| 384 | { |
| 385 | if (locked) |
| 386 | self()->globalPRNGMutex.lock(); |
| 387 | } |
| 388 | ~PRNGLocker() |
| 389 | { |
| 390 | if (locked) |
| 391 | self()->globalPRNGMutex.unlock(); |
| 392 | } |
| 393 | }; |
| 394 | }; |
| 395 | |
| 396 | inline QRandomGenerator::SystemGenerator &QRandomGenerator::SystemGenerator::self() |
| 397 | { |
| 398 | return SystemAndGlobalGenerators::self()->sys; |
| 399 | } |
| 400 | |
| 401 | /*! |
| 402 | \class QRandomGenerator |
| 403 | \inmodule QtCore |
| 404 | \reentrant |
| 405 | \since 5.10 |
| 406 | |
| 407 | \brief The QRandomGenerator class allows one to obtain random values from a |
| 408 | high-quality Random Number Generator. |
| 409 | |
| 410 | QRandomGenerator may be used to generate random values from a high-quality |
| 411 | random number generator. Like the C++ random engines, QRandomGenerator can |
| 412 | be seeded with user-provided values through the constructor. |
| 413 | When seeded, the sequence of numbers generated by this |
| 414 | class is deterministic. That is to say, given the same seed data, |
| 415 | QRandomGenerator will generate the same sequence of numbers. But given |
| 416 | different seeds, the results should be considerably different. |
| 417 | |
| 418 | QRandomGenerator::securelySeeded() can be used to create a QRandomGenerator |
| 419 | that is securely seeded with QRandomGenerator::system(), meaning that the |
| 420 | sequence of numbers it generates cannot be easily predicted. Additionally, |
| 421 | QRandomGenerator::global() returns a global instance of QRandomGenerator |
| 422 | that Qt will ensure to be securely seeded. This object is thread-safe, may |
| 423 | be shared for most uses, and is always seeded from |
| 424 | QRandomGenerator::system() |
| 425 | |
| 426 | QRandomGenerator::system() may be used to access the system's |
| 427 | cryptographically-safe random generator. On Unix systems, it's equivalent |
| 428 | to reading from \c {/dev/urandom} or the \c {getrandom()} or \c |
| 429 | {getentropy()} system calls. |
| 430 | |
| 431 | The class can generate 32-bit or 64-bit quantities, or fill an array of |
| 432 | those. The most common way of generating new values is to call the generate(), |
| 433 | generate64() or fillRange() functions. One would use it as: |
| 434 | |
| 435 | \snippet code/src_corelib_global_qrandom.cpp 0 |
| 436 | |
| 437 | Additionally, it provides a floating-point function generateDouble() that |
| 438 | returns a number in the range [0, 1) (that is, inclusive of zero and |
| 439 | exclusive of 1). There's also a set of convenience functions that |
| 440 | facilitate obtaining a random number in a bounded, integral range. |
| 441 | |
| 442 | \section1 Seeding and determinism |
| 443 | |
| 444 | QRandomGenerator may be seeded with specific seed data. When that is done, |
| 445 | the numbers generated by the object will always be the same, as in the |
| 446 | following example: |
| 447 | |
| 448 | \snippet code/src_corelib_global_qrandom.cpp 1 |
| 449 | |
| 450 | The seed data takes the form of one or more 32-bit words. The ideal seed |
| 451 | size is approximately equal to the size of the QRandomGenerator class |
| 452 | itself. Due to mixing of the seed data, QRandomGenerator cannot guarantee |
| 453 | that distinct seeds will produce different sequences. |
| 454 | |
| 455 | QRandomGenerator::global(), like all generators created by |
| 456 | QRandomGenerator::securelySeeded(), is always seeded from |
| 457 | QRandomGenerator::system(), so it's not possible to make it produce |
| 458 | identical sequences. |
| 459 | |
| 460 | \section1 Bulk data |
| 461 | |
| 462 | When operating in deterministic mode, QRandomGenerator may be used for bulk |
| 463 | data generation. In fact, applications that do not need |
| 464 | cryptographically-secure or true random data are advised to use a regular |
| 465 | QRandomGenerator instead of QRandomGenerator::system() for their random |
| 466 | data needs. |
| 467 | |
| 468 | For ease of use, QRandomGenerator provides a global object that can |
| 469 | be easily used, as in the following example: |
| 470 | |
| 471 | \snippet code/src_corelib_global_qrandom.cpp 2 |
| 472 | |
| 473 | \section1 System-wide random number generator |
| 474 | |
| 475 | QRandomGenerator::system() may be used to access the system-wide random |
| 476 | number generator, which is cryptographically-safe on all systems that Qt |
| 477 | runs on. This function will use hardware facilities to generate random |
| 478 | numbers where available. On such systems, those facilities are true Random |
| 479 | Number Generators. However, if they are true RNGs, those facilities have |
| 480 | finite entropy sources and thus may fail to produce any results if their |
| 481 | entropy pool is exhausted. |
| 482 | |
| 483 | If that happens, first the operating system then QRandomGenerator will fall |
| 484 | back to Pseudo Random Number Generators of decreasing qualities (Qt's |
| 485 | fallback generator being the simplest). Whether those generators are still |
| 486 | of cryptographic quality is implementation-defined. Therefore, |
| 487 | QRandomGenerator::system() should not be used for high-frequency random |
| 488 | number generation, lest the entropy pool become empty. As a rule of thumb, |
| 489 | this class should not be called upon to generate more than a kilobyte per |
| 490 | second of random data (note: this may vary from system to system). |
| 491 | |
| 492 | If an application needs true RNG data in bulk, it should use the operating |
| 493 | system facilities (such as \c{/dev/random} on Linux) directly and wait for |
| 494 | entropy to become available. If the application requires PRNG engines of |
| 495 | cryptographic quality but not of true randomness, |
| 496 | QRandomGenerator::system() may still be used (see section below). |
| 497 | |
| 498 | If neither a true RNG nor a cryptographically secure PRNG are required, |
| 499 | applications should instead use PRNG engines like QRandomGenerator's |
| 500 | deterministic mode and those from the C++ Standard Library. |
| 501 | QRandomGenerator::system() can be used to seed those. |
| 502 | |
| 503 | \section2 Fallback quality |
| 504 | |
| 505 | QRandomGenerator::system() uses the operating system facilities to obtain |
| 506 | random numbers, which attempt to collect real entropy from the surrounding |
| 507 | environment to produce true random numbers. However, it's possible that the |
| 508 | entropy pool becomes exhausted, in which case the operating system will |
| 509 | fall back to a pseudo-random engine for a time. Under no circumstances will |
| 510 | QRandomGenerator::system() block, waiting for more entropy to be collected. |
| 511 | |
| 512 | The following operating systems guarantee that the results from their |
| 513 | random-generation API will be of at least cryptographically-safe quality, |
| 514 | even if the entropy pool is exhausted: Apple OSes (Darwin), BSDs, Linux, |
| 515 | Windows. Barring a system installation problem (such as \c{/dev/urandom} |
| 516 | not being readable by the current process), QRandomGenerator::system() will |
| 517 | therefore have the same guarantees. |
| 518 | |
| 519 | On other operating systems, QRandomGenerator will fall back to a PRNG of |
| 520 | good numeric distribution, but it cannot guarantee proper seeding in all |
| 521 | cases. Please consult the OS documentation for more information. |
| 522 | |
| 523 | Applications that require QRandomGenerator not to fall back to |
| 524 | non-cryptographic quality generators are advised to check their operating |
| 525 | system documentation or restrict their deployment to one of the above. |
| 526 | |
| 527 | \section1 Reentrancy and thread-safety |
| 528 | |
| 529 | QRandomGenerator is reentrant, meaning that multiple threads can operate on |
| 530 | this class at the same time, so long as they operate on different objects. |
| 531 | If multiple threads need to share one PRNG sequence, external locking by a |
| 532 | mutex is required. |
| 533 | |
| 534 | The exceptions are the objects returned by QRandomGenerator::global() and |
| 535 | QRandomGenerator::system(): those objects are thread-safe and may be used |
| 536 | by any thread without external locking. Note that thread-safety does not |
| 537 | extend to copying those objects: they should always be used by reference. |
| 538 | |
| 539 | \section1 Standard C++ Library compatibility |
| 540 | |
| 541 | QRandomGenerator is modeled after the requirements for random number |
| 542 | engines in the C++ Standard Library and may be used in almost all contexts |
| 543 | that the Standard Library engines can. Exceptions to the requirements are |
| 544 | the following: |
| 545 | |
| 546 | \list |
| 547 | \li QRandomGenerator does not support seeding from another seed |
| 548 | sequence-like class besides std::seed_seq itself; |
| 549 | \li QRandomGenerator is not comparable (but is copyable) or |
| 550 | streamable to \c{std::ostream} or from \c{std::istream}. |
| 551 | \endlist |
| 552 | |
| 553 | QRandomGenerator is also compatible with the uniform distribution classes |
| 554 | \c{std::uniform_int_distribution} and \c{std:uniform_real_distribution}, as |
| 555 | well as the free function \c{std::generate_canonical}. For example, the |
| 556 | following code may be used to generate a floating-point number in the range |
| 557 | [1, 2.5): |
| 558 | |
| 559 | \snippet code/src_corelib_global_qrandom.cpp 3 |
| 560 | |
| 561 | \sa QRandomGenerator64 |
| 562 | */ |
| 563 | |
| 564 | /*! |
| 565 | \enum QRandomGenerator::System |
| 566 | \internal |
| 567 | */ |
| 568 | |
| 569 | /*! |
| 570 | \fn QRandomGenerator::QRandomGenerator(quint32 seedValue) |
| 571 | |
| 572 | Initializes this QRandomGenerator object with the value \a seedValue as |
| 573 | the seed. Two objects constructed or reseeded with the same seed value will |
| 574 | produce the same number sequence. |
| 575 | |
| 576 | \sa seed(), securelySeeded() |
| 577 | */ |
| 578 | |
| 579 | /*! |
| 580 | \fn template <qsizetype N> QRandomGenerator::QRandomGenerator(const quint32 (&seedBuffer)[N]) |
| 581 | \overload |
| 582 | |
| 583 | Initializes this QRandomGenerator object with the values found in the |
| 584 | array \a seedBuffer as the seed. Two objects constructed or reseeded with |
| 585 | the same seed value will produce the same number sequence. |
| 586 | |
| 587 | \sa seed(), securelySeeded() |
| 588 | */ |
| 589 | |
| 590 | /*! |
| 591 | \fn QRandomGenerator::QRandomGenerator(const quint32 *seedBuffer, qsizetype len) |
| 592 | \overload |
| 593 | |
| 594 | Initializes this QRandomGenerator object with \a len values found in |
| 595 | the array \a seedBuffer as the seed. Two objects constructed or reseeded |
| 596 | with the same seed value will produce the same number sequence. |
| 597 | |
| 598 | This constructor is equivalent to: |
| 599 | \snippet code/src_corelib_global_qrandom.cpp 4 |
| 600 | |
| 601 | \sa seed(), securelySeeded() |
| 602 | */ |
| 603 | |
| 604 | /*! |
| 605 | \fn QRandomGenerator::QRandomGenerator(const quint32 *begin, const quint32 *end) |
| 606 | \overload |
| 607 | |
| 608 | Initializes this QRandomGenerator object with the values found in the range |
| 609 | from \a begin to \a end as the seed. Two objects constructed or reseeded |
| 610 | with the same seed value will produce the same number sequence. |
| 611 | |
| 612 | This constructor is equivalent to: |
| 613 | \snippet code/src_corelib_global_qrandom.cpp 5 |
| 614 | |
| 615 | \sa seed(), securelySeeded() |
| 616 | */ |
| 617 | |
| 618 | /*! |
| 619 | \fn QRandomGenerator::QRandomGenerator(std::seed_seq &sseq) |
| 620 | \overload |
| 621 | |
| 622 | Initializes this QRandomGenerator object with the seed sequence \a |
| 623 | sseq as the seed. Two objects constructed or reseeded with the same seed |
| 624 | value will produce the same number sequence. |
| 625 | |
| 626 | \sa seed(), securelySeeded() |
| 627 | */ |
| 628 | |
| 629 | /*! |
| 630 | \fn QRandomGenerator::QRandomGenerator(const QRandomGenerator &other) |
| 631 | |
| 632 | Creates a copy of the generator state in the \a other object. If \a other is |
| 633 | QRandomGenerator::system() or a copy of that, this object will also read |
| 634 | from the operating system random-generating facilities. In that case, the |
| 635 | sequences generated by the two objects will be different. |
| 636 | |
| 637 | In all other cases, the new QRandomGenerator object will start at the same |
| 638 | position in the deterministic sequence as the \a other object was. Both |
| 639 | objects will generate the same sequence from this point on. |
| 640 | |
| 641 | For that reason, it is not advisable to create a copy of |
| 642 | QRandomGenerator::global(). If one needs an exclusive deterministic |
| 643 | generator, consider instead using securelySeeded() to obtain a new object |
| 644 | that shares no relationship with the QRandomGenerator::global(). |
| 645 | */ |
| 646 | |
| 647 | /*! |
| 648 | \fn bool operator==(const QRandomGenerator &rng1, const QRandomGenerator &rng2) |
| 649 | \relates QRandomGenerator |
| 650 | |
| 651 | Returns true if the two engines \a rng1 and \a rng2 are at the same |
| 652 | state or if they are both reading from the operating system facilities, |
| 653 | false otherwise. |
| 654 | */ |
| 655 | |
| 656 | /*! |
| 657 | \fn bool QRandomGenerator::operator!=(const QRandomGenerator &rng1, const QRandomGenerator &rng2) |
| 658 | |
| 659 | Returns \c true if the two engines \a rng1 and \a rng2 are at |
| 660 | different states or if one of them is reading from the operating system |
| 661 | facilities and the other is not, \c false otherwise. |
| 662 | */ |
| 663 | |
| 664 | /*! |
| 665 | \typedef QRandomGenerator::result_type |
| 666 | |
| 667 | A typedef to the type that operator() returns. That is, quint32. |
| 668 | |
| 669 | \sa operator() |
| 670 | */ |
| 671 | |
| 672 | /*! |
| 673 | \fn result_type QRandomGenerator::operator()() |
| 674 | |
| 675 | Generates a 32-bit random quantity and returns it. |
| 676 | |
| 677 | \sa generate(), generate64() |
| 678 | */ |
| 679 | |
| 680 | /*! |
| 681 | \fn quint32 QRandomGenerator::generate() |
| 682 | |
| 683 | Generates a 32-bit random quantity and returns it. |
| 684 | |
| 685 | \sa {QRandomGenerator::operator()}{operator()()}, generate64() |
| 686 | */ |
| 687 | |
| 688 | /*! |
| 689 | \fn quint64 QRandomGenerator::generate64() |
| 690 | |
| 691 | Generates a 64-bit random quantity and returns it. |
| 692 | |
| 693 | \sa {QRandomGenerator::operator()}{operator()()}, generate() |
| 694 | */ |
| 695 | |
| 696 | /*! |
| 697 | \fn result_type QRandomGenerator::min() |
| 698 | |
| 699 | Returns the minimum value that QRandomGenerator may ever generate. That is, 0. |
| 700 | |
| 701 | \sa max(), QRandomGenerator64::min() |
| 702 | */ |
| 703 | |
| 704 | /*! |
| 705 | \fn result_type QRandomGenerator::max() |
| 706 | |
| 707 | Returns the maximum value that QRandomGenerator may ever generate. That is, |
| 708 | \c {std::numeric_limits<result_type>::max()}. |
| 709 | |
| 710 | \sa min(), QRandomGenerator64::max() |
| 711 | */ |
| 712 | |
| 713 | /*! |
| 714 | \fn void QRandomGenerator::seed(quint32 seed) |
| 715 | |
| 716 | Reseeds this object using the value \a seed as the seed. |
| 717 | */ |
| 718 | |
| 719 | /*! |
| 720 | \fn void QRandomGenerator::seed(std::seed_seq &seed) |
| 721 | \overload |
| 722 | |
| 723 | Reseeds this object using the seed sequence \a seed as the seed. |
| 724 | */ |
| 725 | |
| 726 | /*! |
| 727 | \fn void QRandomGenerator::discard(unsigned long long z) |
| 728 | |
| 729 | Discards the next \a z entries from the sequence. This method is equivalent |
| 730 | to calling generate() \a z times and discarding the result, as in: |
| 731 | |
| 732 | \snippet code/src_corelib_global_qrandom.cpp 6 |
| 733 | */ |
| 734 | |
| 735 | /*! |
| 736 | \fn template <typename ForwardIterator> void QRandomGenerator::generate(ForwardIterator begin, ForwardIterator end) |
| 737 | |
| 738 | Generates 32-bit quantities and stores them in the range between \a begin |
| 739 | and \a end. This function is equivalent to (and is implemented as): |
| 740 | |
| 741 | \snippet code/src_corelib_global_qrandom.cpp 7 |
| 742 | |
| 743 | This function complies with the requirements for the function |
| 744 | \l{http://en.cppreference.com/w/cpp/numeric/random/seed_seq/generate}{\c std::seed_seq::generate}, |
| 745 | which requires unsigned 32-bit integer values. |
| 746 | |
| 747 | Note that if the [begin, end) range refers to an area that can store more |
| 748 | than 32 bits per element, the elements will still be initialized with only |
| 749 | 32 bits of data. Any other bits will be zero. To fill the range with 64 bit |
| 750 | quantities, one can write: |
| 751 | |
| 752 | \snippet code/src_corelib_global_qrandom.cpp 8 |
| 753 | |
| 754 | If the range refers to contiguous memory (such as an array or the data from |
| 755 | a QList), the fillRange() function may be used too. |
| 756 | |
| 757 | \sa fillRange() |
| 758 | */ |
| 759 | |
| 760 | /*! |
| 761 | \fn void QRandomGenerator::generate(quint32 *begin, quint32 *end) |
| 762 | \overload |
| 763 | \internal |
| 764 | |
| 765 | Same as the other overload, but more efficiently fills \a begin to \a end. |
| 766 | */ |
| 767 | |
| 768 | /*! |
| 769 | \fn template <typename UInt, QRandomGenerator::IfValidUInt<UInt> = true> void QRandomGenerator::fillRange(UInt *buffer, qsizetype count) |
| 770 | |
| 771 | Generates \a count 32- or 64-bit quantities (depending on the type \c UInt) |
| 772 | and stores them in the buffer pointed by \a buffer. This is the most |
| 773 | efficient way to obtain more than one quantity at a time, as it reduces the |
| 774 | number of calls into the Random Number Generator source. |
| 775 | |
| 776 | For example, to fill a list of 16 entries with random values, one may |
| 777 | write: |
| 778 | |
| 779 | \snippet code/src_corelib_global_qrandom.cpp 9 |
| 780 | |
| 781 | \sa generate() |
| 782 | */ |
| 783 | |
| 784 | /*! |
| 785 | \fn template <typename UInt, size_t N, QRandomGenerator::IfValidUInt<UInt> = true> void QRandomGenerator::fillRange(UInt (&buffer)[N]) |
| 786 | |
| 787 | Generates \c N 32- or 64-bit quantities (depending on the type \c UInt) and |
| 788 | stores them in the \a buffer array. This is the most efficient way to |
| 789 | obtain more than one quantity at a time, as it reduces the number of calls |
| 790 | into the Random Number Generator source. |
| 791 | |
| 792 | For example, to fill generate two 32-bit quantities, one may write: |
| 793 | |
| 794 | \snippet code/src_corelib_global_qrandom.cpp 10 |
| 795 | |
| 796 | It would have also been possible to make one call to generate64() and then split |
| 797 | the two halves of the 64-bit value. |
| 798 | |
| 799 | \sa generate() |
| 800 | */ |
| 801 | |
| 802 | /*! |
| 803 | \fn qreal QRandomGenerator::generateDouble() |
| 804 | |
| 805 | Generates one random qreal in the canonical range [0, 1) (that is, |
| 806 | inclusive of zero and exclusive of 1). |
| 807 | |
| 808 | This function is equivalent to: |
| 809 | \snippet code/src_corelib_global_qrandom.cpp 11 |
| 810 | |
| 811 | The same may also be obtained by using |
| 812 | \l{http://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution}{\c std::uniform_real_distribution} |
| 813 | with parameters 0 and 1. |
| 814 | |
| 815 | \sa generate(), generate64(), bounded() |
| 816 | */ |
| 817 | |
| 818 | /*! |
| 819 | \fn double QRandomGenerator::bounded(double highest) |
| 820 | |
| 821 | Generates one random double in the range between 0 (inclusive) and \a |
| 822 | highest (exclusive). This function is equivalent to and is implemented as: |
| 823 | |
| 824 | \snippet code/src_corelib_global_qrandom.cpp 12 |
| 825 | |
| 826 | If the \a highest parameter is negative, the result will be negative too; |
| 827 | if it is infinite or NaN, the result will be infinite or NaN too (that is, |
| 828 | not random). |
| 829 | |
| 830 | \sa generateDouble(), bounded() |
| 831 | */ |
| 832 | |
| 833 | /*! |
| 834 | \fn quint32 QRandomGenerator::bounded(quint32 highest) |
| 835 | \overload |
| 836 | |
| 837 | Generates one random 32-bit quantity in the range between 0 (inclusive) and |
| 838 | \a highest (exclusive). The same result may also be obtained by using |
| 839 | \l{http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution}{\c std::uniform_int_distribution} |
| 840 | with parameters 0 and \c{highest - 1}. That class can also be used to obtain |
| 841 | quantities larger than 32 bits; for 64 bits, the 64-bit bounded() overload |
| 842 | can be used too. |
| 843 | |
| 844 | For example, to obtain a value between 0 and 255 (inclusive), one would write: |
| 845 | |
| 846 | \snippet code/src_corelib_global_qrandom.cpp 13 |
| 847 | |
| 848 | Naturally, the same could also be obtained by masking the result of generate() |
| 849 | to only the lower 8 bits. Either solution is as efficient. |
| 850 | |
| 851 | Note that this function cannot be used to obtain values in the full 32-bit |
| 852 | range of quint32. Instead, use generate(). |
| 853 | |
| 854 | \sa generate(), generate64(), generateDouble() |
| 855 | */ |
| 856 | |
| 857 | /*! |
| 858 | \fn int QRandomGenerator::bounded(int highest) |
| 859 | \overload |
| 860 | |
| 861 | Generates one random 32-bit quantity in the range between 0 (inclusive) and |
| 862 | \a highest (exclusive). \a highest must be positive. |
| 863 | |
| 864 | Note that this function cannot be used to obtain values in the full 32-bit |
| 865 | range of int. Instead, use generate() and cast to int. |
| 866 | |
| 867 | \sa generate(), generate64(), generateDouble() |
| 868 | */ |
| 869 | |
| 870 | /*! |
| 871 | \fn quint64 QRandomGenerator::bounded(quint64 highest) |
| 872 | \overload |
| 873 | |
| 874 | Generates one random 64-bit quantity in the range between 0 (inclusive) and |
| 875 | \a highest (exclusive). The same result may also be obtained by using |
| 876 | \l{http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution}{\c std::uniform_int_distribution<quint64>} |
| 877 | with parameters 0 and \c{highest - 1}. |
| 878 | |
| 879 | Note that this function cannot be used to obtain values in the full 64-bit |
| 880 | range of \c{quint64}. Instead, use generate64(). |
| 881 | |
| 882 | \note This function is implemented as a loop, which depends on the random |
| 883 | value obtained. On the long run, on average it should loop just under 2 |
| 884 | times, but if the random generator is defective, this function may take |
| 885 | considerably longer to execute. |
| 886 | |
| 887 | \sa generate(), generate64(), generateDouble() |
| 888 | */ |
| 889 | |
| 890 | /*! |
| 891 | \fn qint64 QRandomGenerator::bounded(qint64 highest) |
| 892 | \overload |
| 893 | |
| 894 | Generates one random 64-bit quantity in the range between 0 (inclusive) and |
| 895 | \a highest (exclusive). \a highest must be positive. |
| 896 | |
| 897 | Note that this function cannot be used to obtain values in the full 64-bit |
| 898 | range of \c{qint64}. Instead, use generate64() and cast to qint64 or instead |
| 899 | use the unsigned version of this function. |
| 900 | |
| 901 | \note This function is implemented as a loop, which depends on the random |
| 902 | value obtained. On the long run, on average it should loop just under 2 |
| 903 | times, but if the random generator is defective, this function may take |
| 904 | considerably longer to execute. |
| 905 | |
| 906 | \sa generate(), generate64(), generateDouble() |
| 907 | */ |
| 908 | |
| 909 | /*! |
| 910 | \fn quint32 QRandomGenerator::bounded(quint32 lowest, quint32 highest) |
| 911 | \overload |
| 912 | |
| 913 | Generates one random 32-bit quantity in the range between \a lowest |
| 914 | (inclusive) and \a highest (exclusive). The \a highest parameter must be |
| 915 | greater than \a lowest. |
| 916 | |
| 917 | The same result may also be obtained by using |
| 918 | \l{http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution}{\c std::uniform_int_distribution} |
| 919 | with parameters \a lowest and \c{\a highest - 1}. That class can also be used to |
| 920 | obtain quantities larger than 32 bits. |
| 921 | |
| 922 | For example, to obtain a value between 1000 (incl.) and 2000 (excl.), one |
| 923 | would write: |
| 924 | |
| 925 | \snippet code/src_corelib_global_qrandom.cpp 14 |
| 926 | |
| 927 | Note that this function cannot be used to obtain values in the full 32-bit |
| 928 | range of quint32. Instead, use generate(). |
| 929 | |
| 930 | \sa generate(), generate64(), generateDouble() |
| 931 | */ |
| 932 | |
| 933 | /*! |
| 934 | \fn int QRandomGenerator::bounded(int lowest, int highest) |
| 935 | \overload |
| 936 | |
| 937 | Generates one random 32-bit quantity in the range between \a lowest |
| 938 | (inclusive) and \a highest (exclusive), both of which may be negative, but |
| 939 | \a highest must be greater than \a lowest. |
| 940 | |
| 941 | Note that this function cannot be used to obtain values in the full 32-bit |
| 942 | range of int. Instead, use generate() and cast to int. |
| 943 | |
| 944 | \sa generate(), generate64(), generateDouble() |
| 945 | */ |
| 946 | |
| 947 | /*! |
| 948 | \fn quint64 QRandomGenerator::bounded(quint64 lowest, quint64 highest) |
| 949 | \overload |
| 950 | |
| 951 | Generates one random 64-bit quantity in the range between \a lowest |
| 952 | (inclusive) and \a highest (exclusive). The \a highest parameter must be |
| 953 | greater than \a lowest. |
| 954 | |
| 955 | The same result may also be obtained by using |
| 956 | \l{http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution}{\c std::uniform_int_distribution<quint64>} |
| 957 | with parameters \a lowest and \c{\a highest - 1}. |
| 958 | |
| 959 | Note that this function cannot be used to obtain values in the full 64-bit |
| 960 | range of \c{quint64}. Instead, use generate64(). |
| 961 | |
| 962 | \note This function is implemented as a loop, which depends on the random |
| 963 | value obtained. On the long run, on average it should loop just under 2 |
| 964 | times, but if the random generator is defective, this function may take |
| 965 | considerably longer to execute. |
| 966 | |
| 967 | \sa generate(), generate64(), generateDouble() |
| 968 | */ |
| 969 | |
| 970 | /*! |
| 971 | \fn qint64 QRandomGenerator::bounded(qint64 lowest, qint64 highest) |
| 972 | \overload |
| 973 | |
| 974 | Generates one random 64-bit quantity in the range between \a lowest |
| 975 | (inclusive) and \a highest (exclusive), both of which may be negative, but |
| 976 | \a highest must be greater than \a lowest. |
| 977 | |
| 978 | Note that this function cannot be used to obtain values in the full 64-bit |
| 979 | range of \c{qint64}. Instead, use generate64() and cast to qint64. |
| 980 | |
| 981 | \note This function is implemented as a loop, which depends on the random |
| 982 | value obtained. On the long run, on average it should loop just under 2 |
| 983 | times, but if the random generator is defective, this function may take |
| 984 | considerably longer to execute. |
| 985 | |
| 986 | \sa generate(), generate64(), generateDouble() |
| 987 | */ |
| 988 | |
| 989 | /*! |
| 990 | \fn qint64 QRandomGenerator::bounded(int lowest, qint64 highest) |
| 991 | \fn qint64 QRandomGenerator::bounded(qint64 lowest, int highest) |
| 992 | \fn quint64 QRandomGenerator::bounded(unsigned lowest, quint64 highest) |
| 993 | \fn quint64 QRandomGenerator::bounded(quint64 lowest, unsigned highest) |
| 994 | \overload |
| 995 | |
| 996 | This function exists to help with overload resolution when the types of the |
| 997 | parameters don't exactly match. They will promote the smaller type to the |
| 998 | type of the larger one and call the correct overload. |
| 999 | */ |
| 1000 | |
| 1001 | /*! |
| 1002 | \fn QRandomGenerator *QRandomGenerator::system() |
| 1003 | \threadsafe |
| 1004 | |
| 1005 | Returns a pointer to a shared QRandomGenerator that always uses the |
| 1006 | facilities provided by the operating system to generate random numbers. The |
| 1007 | system facilities are considered to be cryptographically safe on at least |
| 1008 | the following operating systems: Apple OSes (Darwin), BSDs, Linux, Windows. |
| 1009 | That may also be the case on other operating systems. |
| 1010 | |
| 1011 | They are also possibly backed by a true hardware random number generator. |
| 1012 | For that reason, the QRandomGenerator returned by this function should not |
| 1013 | be used for bulk data generation. Instead, use it to seed QRandomGenerator |
| 1014 | or a random engine from the <random> header. |
| 1015 | |
| 1016 | The object returned by this function is thread-safe and may be used in any |
| 1017 | thread without locks. It may also be copied and the resulting |
| 1018 | QRandomGenerator will also access the operating system facilities, but they |
| 1019 | will not generate the same sequence. |
| 1020 | |
| 1021 | \sa securelySeeded(), global() |
| 1022 | */ |
| 1023 | |
| 1024 | /*! |
| 1025 | \fn QRandomGenerator *QRandomGenerator::global() |
| 1026 | \threadsafe |
| 1027 | |
| 1028 | Returns a pointer to a shared QRandomGenerator that was seeded using |
| 1029 | securelySeeded(). This function should be used to create random data |
| 1030 | without the expensive creation of a securely-seeded QRandomGenerator |
| 1031 | for a specific use or storing the rather large QRandomGenerator object. |
| 1032 | |
| 1033 | For example, the following creates a random RGB color: |
| 1034 | |
| 1035 | \snippet code/src_corelib_global_qrandom.cpp 15 |
| 1036 | |
| 1037 | Accesses to this object are thread-safe and it may therefore be used in any |
| 1038 | thread without locks. The object may also be copied and the sequence |
| 1039 | produced by the copy will be the same as the shared object will produce. |
| 1040 | Note, however, that if there are other threads accessing the global object, |
| 1041 | those threads may obtain samples at unpredictable intervals. |
| 1042 | |
| 1043 | \sa securelySeeded(), system() |
| 1044 | */ |
| 1045 | |
| 1046 | /*! |
| 1047 | \fn QRandomGenerator QRandomGenerator::securelySeeded() |
| 1048 | |
| 1049 | Returns a new QRandomGenerator object that was securely seeded with |
| 1050 | QRandomGenerator::system(). This function will obtain the ideal seed size |
| 1051 | for the algorithm that QRandomGenerator uses and is therefore the |
| 1052 | recommended way for creating a new QRandomGenerator object that will be |
| 1053 | kept for some time. |
| 1054 | |
| 1055 | Given the amount of data required to securely seed the deterministic |
| 1056 | engine, this function is somewhat expensive and should not be used for |
| 1057 | short-term uses of QRandomGenerator (using it to generate fewer than 2600 |
| 1058 | bytes of random data is effectively a waste of resources). If the use |
| 1059 | doesn't require that much data, consider using QRandomGenerator::global() |
| 1060 | and not storing a QRandomGenerator object instead. |
| 1061 | |
| 1062 | \sa global(), system() |
| 1063 | */ |
| 1064 | |
| 1065 | /*! |
| 1066 | \class QRandomGenerator64 |
| 1067 | \inmodule QtCore |
| 1068 | \since 5.10 |
| 1069 | |
| 1070 | \brief The QRandomGenerator64 class allows one to obtain 64-bit random values |
| 1071 | from a high-quality, seed-less Random Number Generator. |
| 1072 | |
| 1073 | QRandomGenerator64 is a simple adaptor class around QRandomGenerator, making the |
| 1074 | QRandomGenerator::generate64() function the default for operator()(), instead of the |
| 1075 | function that returns 32-bit quantities. This class is intended to be used |
| 1076 | in conjunction with Standard Library algorithms that need 64-bit quantities |
| 1077 | instead of 32-bit ones. |
| 1078 | |
| 1079 | In all other aspects, the class is the same. Please refer to |
| 1080 | QRandomGenerator's documentation for more information. |
| 1081 | |
| 1082 | \sa QRandomGenerator |
| 1083 | */ |
| 1084 | |
| 1085 | /*! |
| 1086 | \typedef QRandomGenerator64::result_type |
| 1087 | |
| 1088 | A typedef to the type that operator() returns. That is, quint64. |
| 1089 | |
| 1090 | \sa operator() |
| 1091 | */ |
| 1092 | |
| 1093 | /*! |
| 1094 | \fn quint64 QRandomGenerator64::generate() |
| 1095 | |
| 1096 | Generates one 64-bit random value and returns it. |
| 1097 | |
| 1098 | Note about casting to a signed integer: all bits returned by this function |
| 1099 | are random, so there's a 50% chance that the most significant bit will be |
| 1100 | set. If you wish to cast the returned value to qint64 and keep it positive, |
| 1101 | you should mask the sign bit off: |
| 1102 | |
| 1103 | \snippet code/src_corelib_global_qrandom.cpp 16 |
| 1104 | |
| 1105 | \sa QRandomGenerator, QRandomGenerator::generate64() |
| 1106 | */ |
| 1107 | |
| 1108 | /*! |
| 1109 | \fn result_type QRandomGenerator64::operator()() |
| 1110 | |
| 1111 | Generates a 64-bit random quantity and returns it. |
| 1112 | |
| 1113 | \sa QRandomGenerator::generate(), QRandomGenerator::generate64() |
| 1114 | */ |
| 1115 | |
| 1116 | constexpr QRandomGenerator::Storage::Storage() |
| 1117 | : dummy(0) |
| 1118 | { |
| 1119 | // nothing |
| 1120 | } |
| 1121 | |
| 1122 | inline QRandomGenerator64::QRandomGenerator64(System s) |
| 1123 | : QRandomGenerator(s) |
| 1124 | { |
| 1125 | } |
| 1126 | |
| 1127 | QRandomGenerator64 *QRandomGenerator64::system() |
| 1128 | { |
| 1129 | auto self = SystemAndGlobalGenerators::system(); |
| 1130 | Q_ASSERT(self->type == SystemRNG); |
| 1131 | return self; |
| 1132 | } |
| 1133 | |
| 1134 | QRandomGenerator64 *QRandomGenerator64::global() |
| 1135 | { |
| 1136 | auto self = SystemAndGlobalGenerators::globalNoInit(); |
| 1137 | |
| 1138 | // Yes, this is a double-checked lock. |
| 1139 | // We can return even if the type is not completely initialized yet: |
| 1140 | // any thread trying to actually use the contents of the random engine |
| 1141 | // will necessarily wait on the lock. |
| 1142 | if (Q_LIKELY(self->type != SystemRNG)) |
| 1143 | return self; |
| 1144 | |
| 1145 | SystemAndGlobalGenerators::PRNGLocker locker(self); |
| 1146 | if (self->type == SystemRNG) |
| 1147 | SystemAndGlobalGenerators::securelySeed(rng: self); |
| 1148 | |
| 1149 | return self; |
| 1150 | } |
| 1151 | |
| 1152 | QRandomGenerator64 QRandomGenerator64::securelySeeded() |
| 1153 | { |
| 1154 | QRandomGenerator64 result(System{}); |
| 1155 | SystemAndGlobalGenerators::securelySeed(rng: &result); |
| 1156 | return result; |
| 1157 | } |
| 1158 | |
| 1159 | /*! |
| 1160 | \internal |
| 1161 | */ |
| 1162 | inline QRandomGenerator::QRandomGenerator(System) |
| 1163 | : type(SystemRNG) |
| 1164 | { |
| 1165 | // don't touch storage |
| 1166 | } |
| 1167 | |
| 1168 | QRandomGenerator::QRandomGenerator(const QRandomGenerator &other) |
| 1169 | : type(other.type) |
| 1170 | { |
| 1171 | Q_ASSERT(this != system()); |
| 1172 | Q_ASSERT(this != SystemAndGlobalGenerators::globalNoInit()); |
| 1173 | |
| 1174 | if (type != SystemRNG) { |
| 1175 | SystemAndGlobalGenerators::PRNGLocker lock(&other); |
| 1176 | storage.engine() = other.storage.engine(); |
| 1177 | } |
| 1178 | } |
| 1179 | |
| 1180 | QRandomGenerator &QRandomGenerator::operator=(const QRandomGenerator &other) |
| 1181 | { |
| 1182 | if (Q_UNLIKELY(this == system()) || Q_UNLIKELY(this == SystemAndGlobalGenerators::globalNoInit())) |
| 1183 | qFatal(msg: "Attempted to overwrite a QRandomGenerator to system() or global()." ); |
| 1184 | |
| 1185 | if ((type = other.type) != SystemRNG) { |
| 1186 | SystemAndGlobalGenerators::PRNGLocker lock(&other); |
| 1187 | storage.engine() = other.storage.engine(); |
| 1188 | } |
| 1189 | return *this; |
| 1190 | } |
| 1191 | |
| 1192 | QRandomGenerator::QRandomGenerator(std::seed_seq &sseq) noexcept |
| 1193 | : type(MersenneTwister) |
| 1194 | { |
| 1195 | Q_ASSERT(this != system()); |
| 1196 | Q_ASSERT(this != SystemAndGlobalGenerators::globalNoInit()); |
| 1197 | |
| 1198 | new (&storage.engine()) RandomEngine(sseq); |
| 1199 | } |
| 1200 | |
| 1201 | QRandomGenerator::QRandomGenerator(const quint32 *begin, const quint32 *end) |
| 1202 | : type(MersenneTwister) |
| 1203 | { |
| 1204 | Q_ASSERT(this != system()); |
| 1205 | Q_ASSERT(this != SystemAndGlobalGenerators::globalNoInit()); |
| 1206 | |
| 1207 | std::seed_seq s(begin, end); |
| 1208 | new (&storage.engine()) RandomEngine(s); |
| 1209 | } |
| 1210 | |
| 1211 | void QRandomGenerator::discard(unsigned long long z) |
| 1212 | { |
| 1213 | if (Q_UNLIKELY(type == SystemRNG)) |
| 1214 | return; |
| 1215 | |
| 1216 | SystemAndGlobalGenerators::PRNGLocker lock(this); |
| 1217 | storage.engine().discard(z: z); |
| 1218 | } |
| 1219 | |
| 1220 | bool operator==(const QRandomGenerator &rng1, const QRandomGenerator &rng2) |
| 1221 | { |
| 1222 | if (rng1.type != rng2.type) |
| 1223 | return false; |
| 1224 | if (rng1.type == SystemRNG) |
| 1225 | return true; |
| 1226 | |
| 1227 | // Lock global() if either is it (otherwise this locking is a no-op) |
| 1228 | using PRNGLocker = QRandomGenerator::SystemAndGlobalGenerators::PRNGLocker; |
| 1229 | PRNGLocker locker(&rng1 == QRandomGenerator::global() ? &rng1 : &rng2); |
| 1230 | return rng1.storage.engine() == rng2.storage.engine(); |
| 1231 | } |
| 1232 | |
| 1233 | /*! |
| 1234 | \internal |
| 1235 | |
| 1236 | Fills the range pointed by \a buffer with \a count 32-bit random values. |
| 1237 | The buffer must be correctly aligned. |
| 1238 | |
| 1239 | Returns the value of the first two 32-bit entries as a \c{quint64}. |
| 1240 | */ |
| 1241 | quint64 QRandomGenerator::_fillRange(void *buffer, qptrdiff count) |
| 1242 | { |
| 1243 | // Verify that the pointers are properly aligned for 32-bit |
| 1244 | Q_ASSERT(quintptr(buffer) % sizeof(quint32) == 0); |
| 1245 | Q_ASSERT(count >= 0); |
| 1246 | Q_ASSERT(buffer || count <= 2); |
| 1247 | |
| 1248 | quint64 dummy; |
| 1249 | quint32 *begin = static_cast<quint32 *>(buffer ? buffer : &dummy); |
| 1250 | quint32 *end = begin + count; |
| 1251 | |
| 1252 | if (type == SystemRNG || Q_UNLIKELY(uint(qt_randomdevice_control.loadAcquire()) & (UseSystemRNG|SetRandomData))) { |
| 1253 | SystemGenerator::self().generate(begin, end); |
| 1254 | } else { |
| 1255 | SystemAndGlobalGenerators::PRNGLocker lock(this); |
| 1256 | std::generate(first: begin, last: end, gen: [this]() { return storage.engine()(); }); |
| 1257 | } |
| 1258 | |
| 1259 | if (end - begin == 1) |
| 1260 | return *begin; |
| 1261 | return begin[0] | (quint64(begin[1]) << 32); |
| 1262 | } |
| 1263 | |
| 1264 | // helper function to call fillBuffer, since we need something to be |
| 1265 | // argument-dependent |
| 1266 | template <typename Generator, typename FillBufferType, typename T> |
| 1267 | static qsizetype callFillBuffer(FillBufferType f, T *v) |
| 1268 | { |
| 1269 | if constexpr (std::is_member_function_pointer_v<FillBufferType>) { |
| 1270 | // member function, need an object |
| 1271 | return (Generator::self().*f)(v, sizeof(*v)); |
| 1272 | } else { |
| 1273 | // static, call directly |
| 1274 | return f(v, sizeof(*v)); |
| 1275 | } |
| 1276 | } |
| 1277 | |
| 1278 | /*! |
| 1279 | \internal |
| 1280 | |
| 1281 | Returns an initial random value (useful for QHash's global seed). This |
| 1282 | function attempts to use OS-provided random values to avoid initializing |
| 1283 | QRandomGenerator::system() and qsimd.cpp. |
| 1284 | |
| 1285 | Note: on some systems, this functionn may rerturn the same value every time |
| 1286 | it is called. |
| 1287 | */ |
| 1288 | QRandomGenerator::InitialRandomData qt_initial_random_value() noexcept |
| 1289 | { |
| 1290 | #if QT_CONFIG(getauxval) && defined(AT_RANDOM) |
| 1291 | auto at_random_ptr = reinterpret_cast<size_t *>(getauxval(AT_RANDOM)); |
| 1292 | if (at_random_ptr) |
| 1293 | return qFromUnaligned<QRandomGenerator::InitialRandomData>(src: at_random_ptr); |
| 1294 | #endif |
| 1295 | |
| 1296 | // bypass the hardware RNG, which would mean initializing qsimd.cpp |
| 1297 | |
| 1298 | QRandomGenerator::InitialRandomData v; |
| 1299 | for (int attempts = 16; attempts; --attempts) { |
| 1300 | using Generator = QRandomGenerator::SystemGenerator; |
| 1301 | auto fillBuffer = &Generator::fillBuffer; |
| 1302 | if (callFillBuffer<Generator>(f: fillBuffer, v: &v) != sizeof(v)) |
| 1303 | continue; |
| 1304 | |
| 1305 | return v; |
| 1306 | } |
| 1307 | |
| 1308 | quint32 data[sizeof(v) / sizeof(quint32)]; |
| 1309 | fallback_fill(data, std::size(data)); |
| 1310 | memcpy(dest: v.data, src: data, n: sizeof(v.data)); |
| 1311 | return v; |
| 1312 | } |
| 1313 | |
| 1314 | QT_END_NAMESPACE |
| 1315 | |