| 1 | // Copyright (C) 2016 The Qt Company Ltd. |
| 2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 3 | |
| 4 | #include "private/qstroker_p.h" |
| 5 | #include "private/qbezier_p.h" |
| 6 | #include "qline.h" |
| 7 | #include "qtransform.h" |
| 8 | #include <qmath.h> |
| 9 | |
| 10 | QT_BEGIN_NAMESPACE |
| 11 | |
| 12 | // #define QPP_STROKE_DEBUG |
| 13 | |
| 14 | class QSubpathForwardIterator |
| 15 | { |
| 16 | public: |
| 17 | QSubpathForwardIterator(const QDataBuffer<QStrokerOps::Element> *path) |
| 18 | : m_path(path), m_pos(0) { } |
| 19 | inline int position() const { return m_pos; } |
| 20 | inline bool hasNext() const { return m_pos < m_path->size(); } |
| 21 | inline QStrokerOps::Element next() { Q_ASSERT(hasNext()); return m_path->at(i: m_pos++); } |
| 22 | |
| 23 | private: |
| 24 | const QDataBuffer<QStrokerOps::Element> *m_path; |
| 25 | int m_pos; |
| 26 | }; |
| 27 | |
| 28 | class QSubpathBackwardIterator |
| 29 | { |
| 30 | public: |
| 31 | QSubpathBackwardIterator(const QDataBuffer<QStrokerOps::Element> *path) |
| 32 | : m_path(path), m_pos(path->size() - 1) { } |
| 33 | |
| 34 | inline int position() const { return m_pos; } |
| 35 | |
| 36 | inline bool hasNext() const { return m_pos >= 0; } |
| 37 | |
| 38 | inline QStrokerOps::Element next() |
| 39 | { |
| 40 | Q_ASSERT(hasNext()); |
| 41 | |
| 42 | QStrokerOps::Element ce = m_path->at(i: m_pos); // current element |
| 43 | |
| 44 | if (m_pos == m_path->size() - 1) { |
| 45 | --m_pos; |
| 46 | ce.type = QPainterPath::MoveToElement; |
| 47 | return ce; |
| 48 | } |
| 49 | |
| 50 | const QStrokerOps::Element &pe = m_path->at(i: m_pos + 1); // previous element |
| 51 | |
| 52 | switch (pe.type) { |
| 53 | case QPainterPath::LineToElement: |
| 54 | ce.type = QPainterPath::LineToElement; |
| 55 | break; |
| 56 | case QPainterPath::CurveToDataElement: |
| 57 | // First control point? |
| 58 | if (ce.type == QPainterPath::CurveToElement) { |
| 59 | ce.type = QPainterPath::CurveToDataElement; |
| 60 | } else { // Second control point then |
| 61 | ce.type = QPainterPath::CurveToElement; |
| 62 | } |
| 63 | break; |
| 64 | case QPainterPath::CurveToElement: |
| 65 | ce.type = QPainterPath::CurveToDataElement; |
| 66 | break; |
| 67 | default: |
| 68 | qWarning(msg: "QSubpathReverseIterator::next: Case %d unhandled" , ce.type); |
| 69 | break; |
| 70 | } |
| 71 | --m_pos; |
| 72 | |
| 73 | return ce; |
| 74 | } |
| 75 | |
| 76 | private: |
| 77 | const QDataBuffer<QStrokerOps::Element> *m_path; |
| 78 | int m_pos; |
| 79 | }; |
| 80 | |
| 81 | class QSubpathFlatIterator |
| 82 | { |
| 83 | public: |
| 84 | QSubpathFlatIterator(const QDataBuffer<QStrokerOps::Element> *path, qreal threshold) |
| 85 | : m_path(path), m_pos(0), m_curve_index(-1), m_curve_threshold(threshold) { } |
| 86 | |
| 87 | inline bool hasNext() const { return m_curve_index >= 0 || m_pos < m_path->size(); } |
| 88 | |
| 89 | QStrokerOps::Element next() |
| 90 | { |
| 91 | Q_ASSERT(hasNext()); |
| 92 | |
| 93 | if (m_curve_index >= 0) { |
| 94 | QStrokerOps::Element e = { .type: QPainterPath::LineToElement, |
| 95 | qt_real_to_fixed(m_curve.at(m_curve_index).x()), |
| 96 | qt_real_to_fixed(m_curve.at(m_curve_index).y()) |
| 97 | }; |
| 98 | ++m_curve_index; |
| 99 | if (m_curve_index >= m_curve.size()) |
| 100 | m_curve_index = -1; |
| 101 | return e; |
| 102 | } |
| 103 | |
| 104 | QStrokerOps::Element e = m_path->at(i: m_pos); |
| 105 | if (e.isCurveTo()) { |
| 106 | Q_ASSERT(m_pos > 0); |
| 107 | Q_ASSERT(m_pos < m_path->size()); |
| 108 | |
| 109 | m_curve = QBezier::fromPoints(p1: QPointF(qt_fixed_to_real(m_path->at(m_pos-1).x), |
| 110 | qt_fixed_to_real(m_path->at(m_pos-1).y)), |
| 111 | p2: QPointF(qt_fixed_to_real(e.x), |
| 112 | qt_fixed_to_real(e.y)), |
| 113 | p3: QPointF(qt_fixed_to_real(m_path->at(m_pos+1).x), |
| 114 | qt_fixed_to_real(m_path->at(m_pos+1).y)), |
| 115 | p4: QPointF(qt_fixed_to_real(m_path->at(m_pos+2).x), |
| 116 | qt_fixed_to_real(m_path->at(m_pos+2).y))).toPolygon(bezier_flattening_threshold: m_curve_threshold); |
| 117 | m_curve_index = 1; |
| 118 | e.type = QPainterPath::LineToElement; |
| 119 | e.x = m_curve.at(i: 0).x(); |
| 120 | e.y = m_curve.at(i: 0).y(); |
| 121 | m_pos += 2; |
| 122 | } |
| 123 | Q_ASSERT(e.isLineTo() || e.isMoveTo()); |
| 124 | ++m_pos; |
| 125 | return e; |
| 126 | } |
| 127 | |
| 128 | private: |
| 129 | const QDataBuffer<QStrokerOps::Element> *m_path; |
| 130 | int m_pos; |
| 131 | QPolygonF m_curve; |
| 132 | int m_curve_index; |
| 133 | qreal m_curve_threshold; |
| 134 | }; |
| 135 | |
| 136 | template <class Iterator> bool qt_stroke_side(Iterator *it, QStroker *stroker, |
| 137 | bool capFirst, QLineF *startTangent); |
| 138 | |
| 139 | /******************************************************************************* |
| 140 | * QLineF::angleTo gives us the angle between two lines with respecting the direction. |
| 141 | * Here we want to identify the line's angle direction on the unit circle. |
| 142 | */ |
| 143 | static inline qreal adapted_angle_on_x(const QLineF &line) |
| 144 | { |
| 145 | return QLineF(0, 0, 1, 0).angleTo(l: line); |
| 146 | } |
| 147 | |
| 148 | QStrokerOps::QStrokerOps() |
| 149 | : m_elements(0) |
| 150 | , m_curveThreshold(qt_real_to_fixed(0.25)) |
| 151 | , m_dashThreshold(qt_real_to_fixed(0.25)) |
| 152 | , m_customData(nullptr) |
| 153 | , m_moveTo(nullptr) |
| 154 | , m_lineTo(nullptr) |
| 155 | , m_cubicTo(nullptr) |
| 156 | { |
| 157 | } |
| 158 | |
| 159 | QStrokerOps::~QStrokerOps() |
| 160 | { |
| 161 | } |
| 162 | |
| 163 | /*! |
| 164 | Prepares the stroker. Call this function once before starting a |
| 165 | stroke by calling moveTo, lineTo or cubicTo. |
| 166 | |
| 167 | The \a customData is passed back through that callback functions |
| 168 | and can be used by the user to for instance maintain state |
| 169 | information. |
| 170 | */ |
| 171 | void QStrokerOps::begin(void *customData) |
| 172 | { |
| 173 | m_customData = customData; |
| 174 | m_elements.reset(); |
| 175 | } |
| 176 | |
| 177 | |
| 178 | /*! |
| 179 | Finishes the stroke. Call this function once when an entire |
| 180 | primitive has been stroked. |
| 181 | */ |
| 182 | void QStrokerOps::end() |
| 183 | { |
| 184 | if (m_elements.size() > 1) |
| 185 | processCurrentSubpath(); |
| 186 | m_customData = nullptr; |
| 187 | } |
| 188 | |
| 189 | /*! |
| 190 | Convenience function that decomposes \a path into begin(), |
| 191 | moveTo(), lineTo(), curevTo() and end() calls. |
| 192 | |
| 193 | The \a customData parameter is used in the callback functions |
| 194 | |
| 195 | The \a matrix is used to transform the points before input to the |
| 196 | stroker. |
| 197 | |
| 198 | \sa begin() |
| 199 | */ |
| 200 | void QStrokerOps::strokePath(const QPainterPath &path, void *customData, const QTransform &matrix) |
| 201 | { |
| 202 | if (path.isEmpty()) |
| 203 | return; |
| 204 | |
| 205 | setCurveThresholdFromTransform(QTransform()); |
| 206 | begin(customData); |
| 207 | int count = path.elementCount(); |
| 208 | if (matrix.isIdentity()) { |
| 209 | for (int i=0; i<count; ++i) { |
| 210 | const QPainterPath::Element &e = path.elementAt(i); |
| 211 | switch (e.type) { |
| 212 | case QPainterPath::MoveToElement: |
| 213 | moveTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y)); |
| 214 | break; |
| 215 | case QPainterPath::LineToElement: |
| 216 | lineTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y)); |
| 217 | break; |
| 218 | case QPainterPath::CurveToElement: |
| 219 | { |
| 220 | const QPainterPath::Element &cp2 = path.elementAt(i: ++i); |
| 221 | const QPainterPath::Element &ep = path.elementAt(i: ++i); |
| 222 | cubicTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y), |
| 223 | qt_real_to_fixed(cp2.x), qt_real_to_fixed(cp2.y), |
| 224 | qt_real_to_fixed(ep.x), qt_real_to_fixed(ep.y)); |
| 225 | } |
| 226 | break; |
| 227 | default: |
| 228 | break; |
| 229 | } |
| 230 | } |
| 231 | } else { |
| 232 | for (int i=0; i<count; ++i) { |
| 233 | const QPainterPath::Element &e = path.elementAt(i); |
| 234 | QPointF pt = QPointF(e.x, e.y) * matrix; |
| 235 | switch (e.type) { |
| 236 | case QPainterPath::MoveToElement: |
| 237 | moveTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y())); |
| 238 | break; |
| 239 | case QPainterPath::LineToElement: |
| 240 | lineTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y())); |
| 241 | break; |
| 242 | case QPainterPath::CurveToElement: |
| 243 | { |
| 244 | QPointF cp2 = ((QPointF) path.elementAt(i: ++i)) * matrix; |
| 245 | QPointF ep = ((QPointF) path.elementAt(i: ++i)) * matrix; |
| 246 | cubicTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y()), |
| 247 | qt_real_to_fixed(cp2.x()), qt_real_to_fixed(cp2.y()), |
| 248 | qt_real_to_fixed(ep.x()), qt_real_to_fixed(ep.y())); |
| 249 | } |
| 250 | break; |
| 251 | default: |
| 252 | break; |
| 253 | } |
| 254 | } |
| 255 | } |
| 256 | end(); |
| 257 | } |
| 258 | |
| 259 | /*! |
| 260 | Convenience function for stroking a polygon of the \a pointCount |
| 261 | first points in \a points. If \a implicit_close is set to true a |
| 262 | line is implicitly drawn between the first and last point in the |
| 263 | polygon. Typically true for polygons and false for polylines. |
| 264 | |
| 265 | The \a matrix is used to transform the points before they enter the |
| 266 | stroker. |
| 267 | |
| 268 | \sa begin() |
| 269 | */ |
| 270 | |
| 271 | void QStrokerOps::strokePolygon(const QPointF *points, int pointCount, bool implicit_close, |
| 272 | void *data, const QTransform &matrix) |
| 273 | { |
| 274 | if (!pointCount) |
| 275 | return; |
| 276 | |
| 277 | setCurveThresholdFromTransform(QTransform()); |
| 278 | begin(customData: data); |
| 279 | if (matrix.isIdentity()) { |
| 280 | moveTo(qt_real_to_fixed(points[0].x()), qt_real_to_fixed(points[0].y())); |
| 281 | for (int i=1; i<pointCount; ++i) |
| 282 | lineTo(qt_real_to_fixed(points[i].x()), |
| 283 | qt_real_to_fixed(points[i].y())); |
| 284 | if (implicit_close) |
| 285 | lineTo(qt_real_to_fixed(points[0].x()), qt_real_to_fixed(points[0].y())); |
| 286 | } else { |
| 287 | QPointF start = points[0] * matrix; |
| 288 | moveTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y())); |
| 289 | for (int i=1; i<pointCount; ++i) { |
| 290 | QPointF pt = points[i] * matrix; |
| 291 | lineTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y())); |
| 292 | } |
| 293 | if (implicit_close) |
| 294 | lineTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y())); |
| 295 | } |
| 296 | end(); |
| 297 | } |
| 298 | |
| 299 | /*! |
| 300 | Convenience function for stroking an ellipse with bounding rect \a |
| 301 | rect. The \a matrix is used to transform the coordinates before |
| 302 | they enter the stroker. |
| 303 | */ |
| 304 | void QStrokerOps::strokeEllipse(const QRectF &rect, void *data, const QTransform &matrix) |
| 305 | { |
| 306 | int count = 0; |
| 307 | QPointF pts[12]; |
| 308 | QPointF start = qt_curves_for_arc(rect, startAngle: 0, sweepLength: -360, controlPoints: pts, point_count: &count); |
| 309 | Q_ASSERT(count == 12); // a perfect circle.. |
| 310 | |
| 311 | if (!matrix.isIdentity()) { |
| 312 | start = start * matrix; |
| 313 | for (int i=0; i<12; ++i) { |
| 314 | pts[i] = pts[i] * matrix; |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | setCurveThresholdFromTransform(QTransform()); |
| 319 | begin(customData: data); |
| 320 | moveTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y())); |
| 321 | for (int i=0; i<12; i+=3) { |
| 322 | cubicTo(qt_real_to_fixed(pts[i].x()), qt_real_to_fixed(pts[i].y()), |
| 323 | qt_real_to_fixed(pts[i+1].x()), qt_real_to_fixed(pts[i+1].y()), |
| 324 | qt_real_to_fixed(pts[i+2].x()), qt_real_to_fixed(pts[i+2].y())); |
| 325 | } |
| 326 | end(); |
| 327 | } |
| 328 | |
| 329 | |
| 330 | QStroker::QStroker() |
| 331 | : m_capStyle(SquareJoin), m_joinStyle(FlatJoin), |
| 332 | m_back1X(0), m_back1Y(0), |
| 333 | m_back2X(0), m_back2Y(0), |
| 334 | m_forceOpen(false) |
| 335 | { |
| 336 | m_strokeWidth = qt_real_to_fixed(1); |
| 337 | m_miterLimit = qt_real_to_fixed(2); |
| 338 | } |
| 339 | |
| 340 | QStroker::~QStroker() |
| 341 | { |
| 342 | } |
| 343 | |
| 344 | Qt::PenCapStyle QStroker::capForJoinMode(LineJoinMode mode) |
| 345 | { |
| 346 | if (mode == FlatJoin) return Qt::FlatCap; |
| 347 | else if (mode == SquareJoin) return Qt::SquareCap; |
| 348 | else return Qt::RoundCap; |
| 349 | } |
| 350 | |
| 351 | QStroker::LineJoinMode QStroker::joinModeForCap(Qt::PenCapStyle style) |
| 352 | { |
| 353 | if (style == Qt::FlatCap) return FlatJoin; |
| 354 | else if (style == Qt::SquareCap) return SquareJoin; |
| 355 | else return RoundCap; |
| 356 | } |
| 357 | |
| 358 | Qt::PenJoinStyle QStroker::joinForJoinMode(LineJoinMode mode) |
| 359 | { |
| 360 | if (mode == FlatJoin) return Qt::BevelJoin; |
| 361 | else if (mode == MiterJoin) return Qt::MiterJoin; |
| 362 | else if (mode == SvgMiterJoin) return Qt::SvgMiterJoin; |
| 363 | else return Qt::RoundJoin; |
| 364 | } |
| 365 | |
| 366 | QStroker::LineJoinMode QStroker::joinModeForJoin(Qt::PenJoinStyle joinStyle) |
| 367 | { |
| 368 | if (joinStyle == Qt::BevelJoin) return FlatJoin; |
| 369 | else if (joinStyle == Qt::MiterJoin) return MiterJoin; |
| 370 | else if (joinStyle == Qt::SvgMiterJoin) return SvgMiterJoin; |
| 371 | else return RoundJoin; |
| 372 | } |
| 373 | |
| 374 | |
| 375 | /*! |
| 376 | This function is called to stroke the currently built up |
| 377 | subpath. The subpath is cleared when the function completes. |
| 378 | */ |
| 379 | void QStroker::processCurrentSubpath() |
| 380 | { |
| 381 | Q_ASSERT(!m_elements.isEmpty()); |
| 382 | Q_ASSERT(m_elements.first().type == QPainterPath::MoveToElement); |
| 383 | Q_ASSERT(m_elements.size() > 1); |
| 384 | |
| 385 | QSubpathForwardIterator fwit(&m_elements); |
| 386 | QSubpathBackwardIterator bwit(&m_elements); |
| 387 | |
| 388 | QLineF fwStartTangent, bwStartTangent; |
| 389 | |
| 390 | bool fwclosed = qt_stroke_side(it: &fwit, stroker: this, capFirst: false, startTangent: &fwStartTangent); |
| 391 | bool bwclosed = qt_stroke_side(it: &bwit, stroker: this, capFirst: !fwclosed, startTangent: &bwStartTangent); |
| 392 | |
| 393 | if (!bwclosed && !fwStartTangent.isNull()) |
| 394 | joinPoints(x: m_elements.at(i: 0).x, y: m_elements.at(i: 0).y, nextLine: fwStartTangent, join: m_capStyle); |
| 395 | } |
| 396 | |
| 397 | |
| 398 | /*! |
| 399 | \internal |
| 400 | */ |
| 401 | void QStroker::joinPoints(qfixed focal_x, qfixed focal_y, const QLineF &nextLine, LineJoinMode join) |
| 402 | { |
| 403 | #ifdef QPP_STROKE_DEBUG |
| 404 | printf(" -----> joinPoints: around=(%.0f, %.0f), next_p1=(%.0f, %.f) next_p2=(%.0f, %.f)\n" , |
| 405 | qt_fixed_to_real(focal_x), |
| 406 | qt_fixed_to_real(focal_y), |
| 407 | nextLine.x1(), nextLine.y1(), nextLine.x2(), nextLine.y2()); |
| 408 | #endif |
| 409 | // points connected already, don't join |
| 410 | |
| 411 | #if !defined (QFIXED_26_6) && !defined (Q_FIXED_32_32) |
| 412 | if (qFuzzyCompare(p1: m_back1X, p2: nextLine.x1()) && qFuzzyCompare(p1: m_back1Y, p2: nextLine.y1())) |
| 413 | return; |
| 414 | #else |
| 415 | if (m_back1X == qt_real_to_fixed(nextLine.x1()) |
| 416 | && m_back1Y == qt_real_to_fixed(nextLine.y1())) { |
| 417 | return; |
| 418 | } |
| 419 | #endif |
| 420 | QLineF prevLine(qt_fixed_to_real(m_back2X), qt_fixed_to_real(m_back2Y), |
| 421 | qt_fixed_to_real(m_back1X), qt_fixed_to_real(m_back1Y)); |
| 422 | QPointF isect; |
| 423 | QLineF::IntersectionType type = prevLine.intersects(l: nextLine, intersectionPoint: &isect); |
| 424 | |
| 425 | if (join == FlatJoin) { |
| 426 | QLineF shortCut(prevLine.p2(), nextLine.p1()); |
| 427 | qreal angle = shortCut.angleTo(l: prevLine); |
| 428 | if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(p1: angle, p2: (qreal)90))) { |
| 429 | emitLineTo(x: focal_x, y: focal_y); |
| 430 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
| 431 | return; |
| 432 | } |
| 433 | emitLineTo(qt_real_to_fixed(nextLine.x1()), |
| 434 | qt_real_to_fixed(nextLine.y1())); |
| 435 | |
| 436 | } else { |
| 437 | if (join == MiterJoin) { |
| 438 | qreal appliedMiterLimit = qt_fixed_to_real(m_strokeWidth * m_miterLimit); |
| 439 | |
| 440 | // If we are on the inside, do the short cut... |
| 441 | QLineF shortCut(prevLine.p2(), nextLine.p1()); |
| 442 | qreal angle = shortCut.angleTo(l: prevLine); |
| 443 | if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(p1: angle, p2: (qreal)90))) { |
| 444 | emitLineTo(x: focal_x, y: focal_y); |
| 445 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
| 446 | return; |
| 447 | } |
| 448 | QLineF miterLine(QPointF(qt_fixed_to_real(m_back1X), |
| 449 | qt_fixed_to_real(m_back1Y)), isect); |
| 450 | if (type == QLineF::NoIntersection || miterLine.length() > appliedMiterLimit) { |
| 451 | QLineF l1(prevLine); |
| 452 | l1.setLength(appliedMiterLimit); |
| 453 | l1.translate(adx: prevLine.dx(), ady: prevLine.dy()); |
| 454 | |
| 455 | QLineF l2(nextLine); |
| 456 | l2.setLength(appliedMiterLimit); |
| 457 | l2.translate(adx: -l2.dx(), ady: -l2.dy()); |
| 458 | |
| 459 | emitLineTo(qt_real_to_fixed(l1.x2()), qt_real_to_fixed(l1.y2())); |
| 460 | emitLineTo(qt_real_to_fixed(l2.x1()), qt_real_to_fixed(l2.y1())); |
| 461 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
| 462 | } else { |
| 463 | emitLineTo(qt_real_to_fixed(isect.x()), qt_real_to_fixed(isect.y())); |
| 464 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
| 465 | } |
| 466 | |
| 467 | } else if (join == SquareJoin) { |
| 468 | qfixed offset = m_strokeWidth / 2; |
| 469 | |
| 470 | QLineF l1(prevLine); |
| 471 | qreal dp = QPointF::dotProduct(p1: QPointF(prevLine.dx(), prevLine.dy()), p2: QPointF(nextLine.dx(), nextLine.dy())); |
| 472 | if (dp > 0) // same direction, means that prevLine is from a bezier that has been "reversed" by shifting |
| 473 | l1 = QLineF(prevLine.p2(), prevLine.p1()); |
| 474 | else |
| 475 | l1.translate(adx: l1.dx(), ady: l1.dy()); |
| 476 | l1.setLength(qt_fixed_to_real(offset)); |
| 477 | QLineF l2(nextLine.p2(), nextLine.p1()); |
| 478 | l2.translate(adx: l2.dx(), ady: l2.dy()); |
| 479 | l2.setLength(qt_fixed_to_real(offset)); |
| 480 | emitLineTo(qt_real_to_fixed(l1.x2()), qt_real_to_fixed(l1.y2())); |
| 481 | emitLineTo(qt_real_to_fixed(l2.x2()), qt_real_to_fixed(l2.y2())); |
| 482 | emitLineTo(qt_real_to_fixed(l2.x1()), qt_real_to_fixed(l2.y1())); |
| 483 | |
| 484 | } else if (join == RoundJoin) { |
| 485 | qfixed offset = m_strokeWidth / 2; |
| 486 | |
| 487 | QLineF shortCut(prevLine.p2(), nextLine.p1()); |
| 488 | qreal angle = shortCut.angleTo(l: prevLine); |
| 489 | if ((type == QLineF::BoundedIntersection || (angle > qreal(90.01))) && nextLine.length() > offset) { |
| 490 | emitLineTo(x: focal_x, y: focal_y); |
| 491 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
| 492 | return; |
| 493 | } |
| 494 | qreal l1_on_x = adapted_angle_on_x(line: prevLine); |
| 495 | qreal l2_on_x = adapted_angle_on_x(line: nextLine); |
| 496 | |
| 497 | qreal sweepLength = qAbs(t: l2_on_x - l1_on_x); |
| 498 | |
| 499 | int point_count; |
| 500 | QPointF curves[15]; |
| 501 | |
| 502 | QPointF curve_start = |
| 503 | qt_curves_for_arc(rect: QRectF(qt_fixed_to_real(focal_x - offset), |
| 504 | qt_fixed_to_real(focal_y - offset), |
| 505 | qt_fixed_to_real(offset * 2), |
| 506 | qt_fixed_to_real(offset * 2)), |
| 507 | startAngle: l1_on_x + 90, sweepLength: -sweepLength, |
| 508 | controlPoints: curves, point_count: &point_count); |
| 509 | |
| 510 | // // line to the beginning of the arc segment, (should not be needed). |
| 511 | // emitLineTo(qt_real_to_fixed(curve_start.x()), qt_real_to_fixed(curve_start.y())); |
| 512 | Q_UNUSED(curve_start); |
| 513 | |
| 514 | for (int i=0; i<point_count; i+=3) { |
| 515 | emitCubicTo(qt_real_to_fixed(curves[i].x()), |
| 516 | qt_real_to_fixed(curves[i].y()), |
| 517 | qt_real_to_fixed(curves[i+1].x()), |
| 518 | qt_real_to_fixed(curves[i+1].y()), |
| 519 | qt_real_to_fixed(curves[i+2].x()), |
| 520 | qt_real_to_fixed(curves[i+2].y())); |
| 521 | } |
| 522 | |
| 523 | // line to the end of the arc segment, (should also not be needed). |
| 524 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
| 525 | |
| 526 | // Same as round join except we know its 180 degrees. Can also optimize this |
| 527 | // later based on the addEllipse logic |
| 528 | } else if (join == RoundCap) { |
| 529 | qfixed offset = m_strokeWidth / 2; |
| 530 | |
| 531 | // first control line |
| 532 | QLineF l1 = prevLine; |
| 533 | qreal dp = QPointF::dotProduct(p1: QPointF(prevLine.dx(), prevLine.dy()), p2: QPointF(nextLine.dx(), nextLine.dy())); |
| 534 | if (dp > 0) // same direction, means that prevLine is from a bezier that has been "reversed" by shifting |
| 535 | l1 = QLineF(prevLine.p2(), prevLine.p1()); |
| 536 | else |
| 537 | l1.translate(adx: l1.dx(), ady: l1.dy()); |
| 538 | l1.setLength(QT_PATH_KAPPA * offset); |
| 539 | |
| 540 | // second control line, find through normal between prevLine and focal. |
| 541 | QLineF l2(qt_fixed_to_real(focal_x), qt_fixed_to_real(focal_y), |
| 542 | prevLine.x2(), prevLine.y2()); |
| 543 | l2.translate(adx: -l2.dy(), ady: l2.dx()); |
| 544 | l2.setLength(QT_PATH_KAPPA * offset); |
| 545 | |
| 546 | emitCubicTo(qt_real_to_fixed(l1.x2()), |
| 547 | qt_real_to_fixed(l1.y2()), |
| 548 | qt_real_to_fixed(l2.x2()), |
| 549 | qt_real_to_fixed(l2.y2()), |
| 550 | qt_real_to_fixed(l2.x1()), |
| 551 | qt_real_to_fixed(l2.y1())); |
| 552 | |
| 553 | // move so that it matches |
| 554 | l2 = QLineF(l2.x1(), l2.y1(), l2.x1()-l2.dx(), l2.y1()-l2.dy()); |
| 555 | |
| 556 | // last line is parallel to l1 so just shift it down. |
| 557 | l1.translate(adx: nextLine.x1() - l1.x1(), ady: nextLine.y1() - l1.y1()); |
| 558 | |
| 559 | emitCubicTo(qt_real_to_fixed(l2.x2()), |
| 560 | qt_real_to_fixed(l2.y2()), |
| 561 | qt_real_to_fixed(l1.x2()), |
| 562 | qt_real_to_fixed(l1.y2()), |
| 563 | qt_real_to_fixed(l1.x1()), |
| 564 | qt_real_to_fixed(l1.y1())); |
| 565 | } else if (join == SvgMiterJoin) { |
| 566 | QLineF shortCut(prevLine.p2(), nextLine.p1()); |
| 567 | qreal angle = shortCut.angleTo(l: prevLine); |
| 568 | if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(p1: angle, p2: (qreal)90))) { |
| 569 | emitLineTo(x: focal_x, y: focal_y); |
| 570 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
| 571 | return; |
| 572 | } |
| 573 | QLineF miterLine(QPointF(qt_fixed_to_real(focal_x), |
| 574 | qt_fixed_to_real(focal_y)), isect); |
| 575 | if (type == QLineF::NoIntersection || miterLine.length() > qt_fixed_to_real(m_strokeWidth * m_miterLimit) / 2) { |
| 576 | emitLineTo(qt_real_to_fixed(nextLine.x1()), |
| 577 | qt_real_to_fixed(nextLine.y1())); |
| 578 | } else { |
| 579 | emitLineTo(qt_real_to_fixed(isect.x()), qt_real_to_fixed(isect.y())); |
| 580 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
| 581 | } |
| 582 | } else { |
| 583 | Q_ASSERT(!"QStroker::joinPoints(), bad join style..." ); |
| 584 | } |
| 585 | } |
| 586 | } |
| 587 | |
| 588 | |
| 589 | /* |
| 590 | Strokes a subpath side using the \a it as source. Results are put into |
| 591 | \a stroke. The function returns \c true if the subpath side was closed. |
| 592 | If \a capFirst is true, we will use capPoints instead of joinPoints to |
| 593 | connect the first segment, other segments will be joined using joinPoints. |
| 594 | This is to put capping in order... |
| 595 | */ |
| 596 | template <class Iterator> bool qt_stroke_side(Iterator *it, |
| 597 | QStroker *stroker, |
| 598 | bool capFirst, |
| 599 | QLineF *startTangent) |
| 600 | { |
| 601 | // Used in CurveToElement section below. |
| 602 | const int MAX_OFFSET = 16; |
| 603 | QBezier offsetCurves[MAX_OFFSET]; |
| 604 | |
| 605 | Q_ASSERT(it->hasNext()); // The initaial move to |
| 606 | QStrokerOps::Element first_element = it->next(); |
| 607 | Q_ASSERT(first_element.isMoveTo()); |
| 608 | |
| 609 | qfixed2d start = first_element; |
| 610 | |
| 611 | #ifdef QPP_STROKE_DEBUG |
| 612 | qDebug(" -> (side) [%.2f, %.2f], startPos=%d" , |
| 613 | qt_fixed_to_real(start.x), |
| 614 | qt_fixed_to_real(start.y)); |
| 615 | #endif |
| 616 | |
| 617 | qfixed2d prev = start; |
| 618 | |
| 619 | bool first = true; |
| 620 | |
| 621 | qfixed offset = stroker->strokeWidth() / 2; |
| 622 | |
| 623 | while (it->hasNext()) { |
| 624 | QStrokerOps::Element e = it->next(); |
| 625 | |
| 626 | // LineToElement |
| 627 | if (e.isLineTo()) { |
| 628 | #ifdef QPP_STROKE_DEBUG |
| 629 | qDebug("\n ---> (side) lineto [%.2f, %.2f]" , e.x, e.y); |
| 630 | #endif |
| 631 | QLineF line(qt_fixed_to_real(prev.x), qt_fixed_to_real(prev.y), |
| 632 | qt_fixed_to_real(e.x), qt_fixed_to_real(e.y)); |
| 633 | if (line.p1() != line.p2()) { |
| 634 | QLineF normal = line.normalVector(); |
| 635 | normal.setLength(offset); |
| 636 | line.translate(adx: normal.dx(), ady: normal.dy()); |
| 637 | |
| 638 | // If we are starting a new subpath, move to correct starting point. |
| 639 | if (first) { |
| 640 | if (capFirst) |
| 641 | stroker->joinPoints(focal_x: prev.x, focal_y: prev.y, nextLine: line, join: stroker->capStyleMode()); |
| 642 | else |
| 643 | stroker->emitMoveTo(qt_real_to_fixed(line.x1()), qt_real_to_fixed(line.y1())); |
| 644 | *startTangent = line; |
| 645 | first = false; |
| 646 | } else { |
| 647 | stroker->joinPoints(focal_x: prev.x, focal_y: prev.y, nextLine: line, join: stroker->joinStyleMode()); |
| 648 | } |
| 649 | |
| 650 | // Add the stroke for this line. |
| 651 | stroker->emitLineTo(qt_real_to_fixed(line.x2()), |
| 652 | qt_real_to_fixed(line.y2())); |
| 653 | prev = e; |
| 654 | } |
| 655 | |
| 656 | // CurveToElement |
| 657 | } else if (e.isCurveTo()) { |
| 658 | QStrokerOps::Element cp2 = it->next(); // control point 2 |
| 659 | QStrokerOps::Element ep = it->next(); // end point |
| 660 | |
| 661 | #ifdef QPP_STROKE_DEBUG |
| 662 | qDebug("\n ---> (side) cubicTo [%.2f, %.2f]" , |
| 663 | qt_fixed_to_real(ep.x), |
| 664 | qt_fixed_to_real(ep.y)); |
| 665 | #endif |
| 666 | |
| 667 | QBezier bezier = |
| 668 | QBezier::fromPoints(p1: QPointF(qt_fixed_to_real(prev.x), qt_fixed_to_real(prev.y)), |
| 669 | p2: QPointF(qt_fixed_to_real(e.x), qt_fixed_to_real(e.y)), |
| 670 | p3: QPointF(qt_fixed_to_real(cp2.x), qt_fixed_to_real(cp2.y)), |
| 671 | p4: QPointF(qt_fixed_to_real(ep.x), qt_fixed_to_real(ep.y))); |
| 672 | int count = bezier.shifted(curveSegments: offsetCurves, |
| 673 | maxSegmets: MAX_OFFSET, |
| 674 | offset, |
| 675 | threshold: stroker->curveThreshold()); |
| 676 | |
| 677 | if (count) { |
| 678 | // If we are starting a new subpath, move to correct starting point |
| 679 | QLineF tangent = bezier.startTangent(); |
| 680 | tangent.translate(point: offsetCurves[0].pt1() - bezier.pt1()); |
| 681 | if (first) { |
| 682 | QPointF pt = offsetCurves[0].pt1(); |
| 683 | if (capFirst) { |
| 684 | stroker->joinPoints(focal_x: prev.x, focal_y: prev.y, |
| 685 | nextLine: tangent, |
| 686 | join: stroker->capStyleMode()); |
| 687 | } else { |
| 688 | stroker->emitMoveTo(qt_real_to_fixed(pt.x()), |
| 689 | qt_real_to_fixed(pt.y())); |
| 690 | } |
| 691 | *startTangent = tangent; |
| 692 | first = false; |
| 693 | } else { |
| 694 | stroker->joinPoints(focal_x: prev.x, focal_y: prev.y, |
| 695 | nextLine: tangent, |
| 696 | join: stroker->joinStyleMode()); |
| 697 | } |
| 698 | |
| 699 | // Add these beziers |
| 700 | for (int i=0; i<count; ++i) { |
| 701 | QPointF cp1 = offsetCurves[i].pt2(); |
| 702 | QPointF cp2 = offsetCurves[i].pt3(); |
| 703 | QPointF ep = offsetCurves[i].pt4(); |
| 704 | stroker->emitCubicTo(qt_real_to_fixed(cp1.x()), qt_real_to_fixed(cp1.y()), |
| 705 | qt_real_to_fixed(cp2.x()), qt_real_to_fixed(cp2.y()), |
| 706 | qt_real_to_fixed(ep.x()), qt_real_to_fixed(ep.y())); |
| 707 | } |
| 708 | } |
| 709 | |
| 710 | prev = ep; |
| 711 | } |
| 712 | } |
| 713 | |
| 714 | if (start == prev && !stroker->forceOpen()) { |
| 715 | // closed subpath, join first and last point |
| 716 | #ifdef QPP_STROKE_DEBUG |
| 717 | qDebug("\n ---> (side) closed subpath" ); |
| 718 | #endif |
| 719 | // don't join empty subpaths |
| 720 | if (!first) |
| 721 | stroker->joinPoints(focal_x: prev.x, focal_y: prev.y, nextLine: *startTangent, join: stroker->joinStyleMode()); |
| 722 | return true; |
| 723 | } else { |
| 724 | #ifdef QPP_STROKE_DEBUG |
| 725 | qDebug("\n ---> (side) open subpath" ); |
| 726 | #endif |
| 727 | return false; |
| 728 | } |
| 729 | } |
| 730 | |
| 731 | /*! |
| 732 | \internal |
| 733 | |
| 734 | For a given angle in the range [0 .. 90], finds the corresponding parameter t |
| 735 | of the prototype cubic bezier arc segment |
| 736 | b = fromPoints(QPointF(1, 0), QPointF(1, KAPPA), QPointF(KAPPA, 1), QPointF(0, 1)); |
| 737 | |
| 738 | From the bezier equation: |
| 739 | b.pointAt(t).x() = (1-t)^3 + t*(1-t)^2 + t^2*(1-t)*KAPPA |
| 740 | b.pointAt(t).y() = t*(1-t)^2 * KAPPA + t^2*(1-t) + t^3 |
| 741 | |
| 742 | Third degree coefficients: |
| 743 | b.pointAt(t).x() = at^3 + bt^2 + ct + d |
| 744 | where a = 2-3*KAPPA, b = 3*(KAPPA-1), c = 0, d = 1 |
| 745 | |
| 746 | b.pointAt(t).y() = at^3 + bt^2 + ct + d |
| 747 | where a = 3*KAPPA-2, b = 6*KAPPA+3, c = 3*KAPPA, d = 0 |
| 748 | |
| 749 | Newton's method to find the zero of a function: |
| 750 | given a function f(x) and initial guess x_0 |
| 751 | x_1 = f(x_0) / f'(x_0) |
| 752 | x_2 = f(x_1) / f'(x_1) |
| 753 | etc... |
| 754 | */ |
| 755 | |
| 756 | qreal qt_t_for_arc_angle(qreal angle) |
| 757 | { |
| 758 | if (qFuzzyIsNull(d: angle)) |
| 759 | return 0; |
| 760 | |
| 761 | if (qFuzzyCompare(p1: angle, p2: qreal(90))) |
| 762 | return 1; |
| 763 | |
| 764 | qreal radians = qDegreesToRadians(degrees: angle); |
| 765 | qreal cosAngle = qCos(v: radians); |
| 766 | qreal sinAngle = qSin(v: radians); |
| 767 | |
| 768 | // initial guess |
| 769 | qreal tc = angle / 90; |
| 770 | // do some iterations of newton's method to approximate cosAngle |
| 771 | // finds the zero of the function b.pointAt(tc).x() - cosAngle |
| 772 | tc -= ((((2-3*QT_PATH_KAPPA) * tc + 3*(QT_PATH_KAPPA-1)) * tc) * tc + 1 - cosAngle) // value |
| 773 | / (((6-9*QT_PATH_KAPPA) * tc + 6*(QT_PATH_KAPPA-1)) * tc); // derivative |
| 774 | tc -= ((((2-3*QT_PATH_KAPPA) * tc + 3*(QT_PATH_KAPPA-1)) * tc) * tc + 1 - cosAngle) // value |
| 775 | / (((6-9*QT_PATH_KAPPA) * tc + 6*(QT_PATH_KAPPA-1)) * tc); // derivative |
| 776 | |
| 777 | // initial guess |
| 778 | qreal ts = tc; |
| 779 | // do some iterations of newton's method to approximate sinAngle |
| 780 | // finds the zero of the function b.pointAt(tc).y() - sinAngle |
| 781 | ts -= ((((3*QT_PATH_KAPPA-2) * ts - 6*QT_PATH_KAPPA + 3) * ts + 3*QT_PATH_KAPPA) * ts - sinAngle) |
| 782 | / (((9*QT_PATH_KAPPA-6) * ts + 12*QT_PATH_KAPPA - 6) * ts + 3*QT_PATH_KAPPA); |
| 783 | ts -= ((((3*QT_PATH_KAPPA-2) * ts - 6*QT_PATH_KAPPA + 3) * ts + 3*QT_PATH_KAPPA) * ts - sinAngle) |
| 784 | / (((9*QT_PATH_KAPPA-6) * ts + 12*QT_PATH_KAPPA - 6) * ts + 3*QT_PATH_KAPPA); |
| 785 | |
| 786 | // use the average of the t that best approximates cosAngle |
| 787 | // and the t that best approximates sinAngle |
| 788 | qreal t = 0.5 * (tc + ts); |
| 789 | |
| 790 | #if 0 |
| 791 | printf("angle: %f, t: %f\n" , angle, t); |
| 792 | qreal a, b, c, d; |
| 793 | bezierCoefficients(t, a, b, c, d); |
| 794 | printf("cosAngle: %.10f, value: %.10f\n" , cosAngle, a + b + c * QT_PATH_KAPPA); |
| 795 | printf("sinAngle: %.10f, value: %.10f\n" , sinAngle, b * QT_PATH_KAPPA + c + d); |
| 796 | #endif |
| 797 | |
| 798 | return t; |
| 799 | } |
| 800 | |
| 801 | Q_GUI_EXPORT void qt_find_ellipse_coords(const QRectF &r, qreal angle, qreal length, |
| 802 | QPointF* startPoint, QPointF *endPoint); |
| 803 | |
| 804 | /*! |
| 805 | \internal |
| 806 | |
| 807 | Creates a number of curves for a given arc definition. The arc is |
| 808 | defined an arc along the ellipses that fits into \a rect starting |
| 809 | at \a startAngle and an arc length of \a sweepLength. |
| 810 | |
| 811 | The function has three out parameters. The return value is the |
| 812 | starting point of the arc. The \a curves array represents the list |
| 813 | of cubicTo elements up to a maximum of \a point_count. There are of course |
| 814 | 3 points pr curve. |
| 815 | */ |
| 816 | QPointF qt_curves_for_arc(const QRectF &rect, qreal startAngle, qreal sweepLength, |
| 817 | QPointF *curves, int *point_count) |
| 818 | { |
| 819 | Q_ASSERT(point_count); |
| 820 | Q_ASSERT(curves); |
| 821 | |
| 822 | *point_count = 0; |
| 823 | if (qt_is_nan(d: rect.x()) || qt_is_nan(d: rect.y()) || qt_is_nan(d: rect.width()) || qt_is_nan(d: rect.height()) |
| 824 | || qt_is_nan(d: startAngle) || qt_is_nan(d: sweepLength)) { |
| 825 | qWarning(msg: "QPainterPath::arcTo: Adding arc where a parameter is NaN, results are undefined" ); |
| 826 | return QPointF(); |
| 827 | } |
| 828 | |
| 829 | if (rect.isNull()) { |
| 830 | return QPointF(); |
| 831 | } |
| 832 | |
| 833 | qreal x = rect.x(); |
| 834 | qreal y = rect.y(); |
| 835 | |
| 836 | qreal w = rect.width(); |
| 837 | qreal w2 = rect.width() / 2; |
| 838 | qreal w2k = w2 * QT_PATH_KAPPA; |
| 839 | |
| 840 | qreal h = rect.height(); |
| 841 | qreal h2 = rect.height() / 2; |
| 842 | qreal h2k = h2 * QT_PATH_KAPPA; |
| 843 | |
| 844 | QPointF points[16] = |
| 845 | { |
| 846 | // start point |
| 847 | QPointF(x + w, y + h2), |
| 848 | |
| 849 | // 0 -> 270 degrees |
| 850 | QPointF(x + w, y + h2 + h2k), |
| 851 | QPointF(x + w2 + w2k, y + h), |
| 852 | QPointF(x + w2, y + h), |
| 853 | |
| 854 | // 270 -> 180 degrees |
| 855 | QPointF(x + w2 - w2k, y + h), |
| 856 | QPointF(x, y + h2 + h2k), |
| 857 | QPointF(x, y + h2), |
| 858 | |
| 859 | // 180 -> 90 degrees |
| 860 | QPointF(x, y + h2 - h2k), |
| 861 | QPointF(x + w2 - w2k, y), |
| 862 | QPointF(x + w2, y), |
| 863 | |
| 864 | // 90 -> 0 degrees |
| 865 | QPointF(x + w2 + w2k, y), |
| 866 | QPointF(x + w, y + h2 - h2k), |
| 867 | QPointF(x + w, y + h2) |
| 868 | }; |
| 869 | |
| 870 | if (sweepLength > 360) sweepLength = 360; |
| 871 | else if (sweepLength < -360) sweepLength = -360; |
| 872 | |
| 873 | // Special case fast paths |
| 874 | if (startAngle == 0.0) { |
| 875 | if (sweepLength == 360.0) { |
| 876 | for (int i = 11; i >= 0; --i) |
| 877 | curves[(*point_count)++] = points[i]; |
| 878 | return points[12]; |
| 879 | } else if (sweepLength == -360.0) { |
| 880 | for (int i = 1; i <= 12; ++i) |
| 881 | curves[(*point_count)++] = points[i]; |
| 882 | return points[0]; |
| 883 | } |
| 884 | } |
| 885 | |
| 886 | int startSegment = int(qFloor(v: startAngle / 90)); |
| 887 | int endSegment = int(qFloor(v: (startAngle + sweepLength) / 90)); |
| 888 | |
| 889 | qreal startT = (startAngle - startSegment * 90) / 90; |
| 890 | qreal endT = (startAngle + sweepLength - endSegment * 90) / 90; |
| 891 | |
| 892 | int delta = sweepLength > 0 ? 1 : -1; |
| 893 | if (delta < 0) { |
| 894 | startT = 1 - startT; |
| 895 | endT = 1 - endT; |
| 896 | } |
| 897 | |
| 898 | // avoid empty start segment |
| 899 | if (qFuzzyIsNull(d: startT - qreal(1))) { |
| 900 | startT = 0; |
| 901 | startSegment += delta; |
| 902 | } |
| 903 | |
| 904 | // avoid empty end segment |
| 905 | if (qFuzzyIsNull(d: endT)) { |
| 906 | endT = 1; |
| 907 | endSegment -= delta; |
| 908 | } |
| 909 | |
| 910 | startT = qt_t_for_arc_angle(angle: startT * 90); |
| 911 | endT = qt_t_for_arc_angle(angle: endT * 90); |
| 912 | |
| 913 | const bool splitAtStart = !qFuzzyIsNull(d: startT); |
| 914 | const bool splitAtEnd = !qFuzzyIsNull(d: endT - qreal(1)); |
| 915 | |
| 916 | const int end = endSegment + delta; |
| 917 | |
| 918 | // empty arc? |
| 919 | if (startSegment == end) { |
| 920 | const int quadrant = 3 - ((startSegment % 4) + 4) % 4; |
| 921 | const int j = 3 * quadrant; |
| 922 | return delta > 0 ? points[j + 3] : points[j]; |
| 923 | } |
| 924 | |
| 925 | QPointF startPoint, endPoint; |
| 926 | qt_find_ellipse_coords(r: rect, angle: startAngle, length: sweepLength, startPoint: &startPoint, endPoint: &endPoint); |
| 927 | |
| 928 | for (int i = startSegment; i != end; i += delta) { |
| 929 | const int quadrant = 3 - ((i % 4) + 4) % 4; |
| 930 | const int j = 3 * quadrant; |
| 931 | |
| 932 | QBezier b; |
| 933 | if (delta > 0) |
| 934 | b = QBezier::fromPoints(p1: points[j + 3], p2: points[j + 2], p3: points[j + 1], p4: points[j]); |
| 935 | else |
| 936 | b = QBezier::fromPoints(p1: points[j], p2: points[j + 1], p3: points[j + 2], p4: points[j + 3]); |
| 937 | |
| 938 | // empty arc? |
| 939 | if (startSegment == endSegment && qFuzzyCompare(p1: startT, p2: endT)) |
| 940 | return startPoint; |
| 941 | |
| 942 | if (i == startSegment) { |
| 943 | if (i == endSegment && splitAtEnd) |
| 944 | b = b.bezierOnInterval(t0: startT, t1: endT); |
| 945 | else if (splitAtStart) |
| 946 | b = b.bezierOnInterval(t0: startT, t1: 1); |
| 947 | } else if (i == endSegment && splitAtEnd) { |
| 948 | b = b.bezierOnInterval(t0: 0, t1: endT); |
| 949 | } |
| 950 | |
| 951 | // push control points |
| 952 | curves[(*point_count)++] = b.pt2(); |
| 953 | curves[(*point_count)++] = b.pt3(); |
| 954 | curves[(*point_count)++] = b.pt4(); |
| 955 | } |
| 956 | |
| 957 | Q_ASSERT(*point_count > 0); |
| 958 | curves[*(point_count)-1] = endPoint; |
| 959 | |
| 960 | return startPoint; |
| 961 | } |
| 962 | |
| 963 | |
| 964 | static inline void qdashstroker_moveTo(qfixed x, qfixed y, void *data) { |
| 965 | ((QStroker *) data)->moveTo(x, y); |
| 966 | } |
| 967 | |
| 968 | static inline void qdashstroker_lineTo(qfixed x, qfixed y, void *data) { |
| 969 | ((QStroker *) data)->lineTo(x, y); |
| 970 | } |
| 971 | |
| 972 | static inline void qdashstroker_cubicTo(qfixed, qfixed, qfixed, qfixed, qfixed, qfixed, void *) { |
| 973 | Q_ASSERT(0); |
| 974 | // ((QStroker *) data)->cubicTo(c1x, c1y, c2x, c2y, ex, ey); |
| 975 | } |
| 976 | |
| 977 | |
| 978 | /******************************************************************************* |
| 979 | * QDashStroker members |
| 980 | */ |
| 981 | QDashStroker::QDashStroker(QStroker *stroker) |
| 982 | : m_stroker(stroker), m_dashOffset(0), m_stroke_width(1), m_miter_limit(1) |
| 983 | { |
| 984 | if (m_stroker) { |
| 985 | setMoveToHook(qdashstroker_moveTo); |
| 986 | setLineToHook(qdashstroker_lineTo); |
| 987 | setCubicToHook(qdashstroker_cubicTo); |
| 988 | } |
| 989 | } |
| 990 | |
| 991 | QDashStroker::~QDashStroker() |
| 992 | { |
| 993 | } |
| 994 | |
| 995 | QList<qfixed> QDashStroker::patternForStyle(Qt::PenStyle style) |
| 996 | { |
| 997 | const qfixed space = 2; |
| 998 | const qfixed dot = 1; |
| 999 | const qfixed dash = 4; |
| 1000 | |
| 1001 | QList<qfixed> pattern; |
| 1002 | |
| 1003 | switch (style) { |
| 1004 | case Qt::DashLine: |
| 1005 | pattern << dash << space; |
| 1006 | break; |
| 1007 | case Qt::DotLine: |
| 1008 | pattern << dot << space; |
| 1009 | break; |
| 1010 | case Qt::DashDotLine: |
| 1011 | pattern << dash << space << dot << space; |
| 1012 | break; |
| 1013 | case Qt::DashDotDotLine: |
| 1014 | pattern << dash << space << dot << space << dot << space; |
| 1015 | break; |
| 1016 | default: |
| 1017 | break; |
| 1018 | } |
| 1019 | |
| 1020 | return pattern; |
| 1021 | } |
| 1022 | |
| 1023 | static inline bool lineRectIntersectsRect(qfixed2d p1, qfixed2d p2, const qfixed2d &tl, const qfixed2d &br) |
| 1024 | { |
| 1025 | return ((p1.x > tl.x || p2.x > tl.x) && (p1.x < br.x || p2.x < br.x) |
| 1026 | && (p1.y > tl.y || p2.y > tl.y) && (p1.y < br.y || p2.y < br.y)); |
| 1027 | } |
| 1028 | |
| 1029 | // If the line intersects the rectangle, this function will return true. |
| 1030 | static bool lineIntersectsRect(qfixed2d p1, qfixed2d p2, const qfixed2d &tl, const qfixed2d &br) |
| 1031 | { |
| 1032 | if (!lineRectIntersectsRect(p1, p2, tl, br)) |
| 1033 | return false; |
| 1034 | if (p1.x == p2.x || p1.y == p2.y) |
| 1035 | return true; |
| 1036 | |
| 1037 | if (p1.y > p2.y) |
| 1038 | qSwap(value1&: p1, value2&: p2); // make p1 above p2 |
| 1039 | qfixed2d u; |
| 1040 | qfixed2d v; |
| 1041 | qfixed2d w = {.x: p2.x - p1.x, .y: p2.y - p1.y}; |
| 1042 | if (p1.x < p2.x) { |
| 1043 | // backslash |
| 1044 | u.x = tl.x - p1.x; u.y = br.y - p1.y; |
| 1045 | v.x = br.x - p1.x; v.y = tl.y - p1.y; |
| 1046 | } else { |
| 1047 | // slash |
| 1048 | u.x = tl.x - p1.x; u.y = tl.y - p1.y; |
| 1049 | v.x = br.x - p1.x; v.y = br.y - p1.y; |
| 1050 | } |
| 1051 | #if defined(QFIXED_IS_26_6) || defined(QFIXED_IS_16_16) |
| 1052 | qint64 val1 = qint64(u.x) * qint64(w.y) - qint64(u.y) * qint64(w.x); |
| 1053 | qint64 val2 = qint64(v.x) * qint64(w.y) - qint64(v.y) * qint64(w.x); |
| 1054 | return (val1 < 0 && val2 > 0) || (val1 > 0 && val2 < 0); |
| 1055 | #elif defined(QFIXED_IS_32_32) |
| 1056 | // Cannot do proper test because it may overflow. |
| 1057 | return true; |
| 1058 | #else |
| 1059 | qreal val1 = u.x * w.y - u.y * w.x; |
| 1060 | qreal val2 = v.x * w.y - v.y * w.x; |
| 1061 | return (val1 < 0 && val2 > 0) || (val1 > 0 && val2 < 0); |
| 1062 | #endif |
| 1063 | } |
| 1064 | |
| 1065 | void QDashStroker::processCurrentSubpath() |
| 1066 | { |
| 1067 | int dashCount = qMin(a: m_dashPattern.size(), b: 32); |
| 1068 | qfixed dashes[32]; |
| 1069 | |
| 1070 | if (m_stroker) { |
| 1071 | m_customData = m_stroker; |
| 1072 | m_stroke_width = m_stroker->strokeWidth(); |
| 1073 | m_miter_limit = m_stroker->miterLimit(); |
| 1074 | } |
| 1075 | |
| 1076 | qreal longestLength = 0; |
| 1077 | qreal sumLength = 0; |
| 1078 | for (int i=0; i<dashCount; ++i) { |
| 1079 | dashes[i] = qMax(a: m_dashPattern.at(i), b: qreal(0)) * m_stroke_width; |
| 1080 | sumLength += dashes[i]; |
| 1081 | if (dashes[i] > longestLength) |
| 1082 | longestLength = dashes[i]; |
| 1083 | } |
| 1084 | |
| 1085 | if (qFuzzyIsNull(d: sumLength)) |
| 1086 | return; |
| 1087 | |
| 1088 | qreal invSumLength = qreal(1) / sumLength; |
| 1089 | |
| 1090 | Q_ASSERT(dashCount > 0); |
| 1091 | |
| 1092 | dashCount = dashCount & -2; // Round down to even number |
| 1093 | |
| 1094 | int idash = 0; // Index to current dash |
| 1095 | qreal pos = 0; // The position on the curve, 0 <= pos <= path.length |
| 1096 | qreal elen = 0; // element length |
| 1097 | qreal doffset = m_dashOffset * m_stroke_width; |
| 1098 | |
| 1099 | // make sure doffset is in range [0..sumLength) |
| 1100 | doffset = std::fmod(x: doffset, y: sumLength); |
| 1101 | if (doffset < 0) |
| 1102 | doffset += sumLength; |
| 1103 | |
| 1104 | while (doffset >= dashes[idash]) { |
| 1105 | doffset -= dashes[idash]; |
| 1106 | if (++idash >= dashCount) |
| 1107 | idash = 0; |
| 1108 | } |
| 1109 | |
| 1110 | qreal estart = 0; // The elements starting position |
| 1111 | qreal estop = 0; // The element stop position |
| 1112 | |
| 1113 | QLineF cline; |
| 1114 | |
| 1115 | QSubpathFlatIterator it(&m_elements, m_dashThreshold); |
| 1116 | qfixed2d prev = it.next(); |
| 1117 | if (!prev.isFinite()) |
| 1118 | return; |
| 1119 | |
| 1120 | bool clipping = !m_clip_rect.isEmpty(); |
| 1121 | qfixed2d move_to_pos = prev; |
| 1122 | qfixed2d line_to_pos; |
| 1123 | |
| 1124 | // Pad to avoid clipping the borders of thick pens. |
| 1125 | qfixed padding = qt_real_to_fixed(qMax(m_stroke_width, m_miter_limit) * longestLength); |
| 1126 | qfixed2d clip_tl = { qt_real_to_fixed(m_clip_rect.left()) - padding, |
| 1127 | qt_real_to_fixed(m_clip_rect.top()) - padding }; |
| 1128 | qfixed2d clip_br = { qt_real_to_fixed(m_clip_rect.right()) + padding , |
| 1129 | qt_real_to_fixed(m_clip_rect.bottom()) + padding }; |
| 1130 | |
| 1131 | bool hasMoveTo = false; |
| 1132 | while (it.hasNext()) { |
| 1133 | QStrokerOps::Element e = it.next(); |
| 1134 | if (!qfixed2d(e).isFinite()) |
| 1135 | continue; |
| 1136 | |
| 1137 | Q_ASSERT(e.isLineTo()); |
| 1138 | cline = QLineF(qt_fixed_to_real(prev.x), |
| 1139 | qt_fixed_to_real(prev.y), |
| 1140 | qt_fixed_to_real(e.x), |
| 1141 | qt_fixed_to_real(e.y)); |
| 1142 | elen = cline.length(); |
| 1143 | |
| 1144 | estop = estart + elen; |
| 1145 | |
| 1146 | bool done = pos >= estop; |
| 1147 | |
| 1148 | // Check if the entire line should be clipped away or simplified |
| 1149 | bool clipIt = clipping && !lineIntersectsRect(p1: prev, p2: e, tl: clip_tl, br: clip_br); |
| 1150 | bool skipDashing = elen * invSumLength > repetitionLimit(); |
| 1151 | int maxDashes = dashCount; |
| 1152 | if (skipDashing || clipIt) { |
| 1153 | // Cut away full dash sequences. |
| 1154 | elen -= std::floor(x: elen * invSumLength) * sumLength; |
| 1155 | // Update dash offset. |
| 1156 | while (!done) { |
| 1157 | qreal dpos = pos + dashes[idash] - doffset - estart; |
| 1158 | |
| 1159 | Q_ASSERT(dpos >= 0); |
| 1160 | |
| 1161 | if (dpos > elen) { // dash extends this line |
| 1162 | doffset = dashes[idash] - (dpos - elen); // subtract the part already used |
| 1163 | pos = estop; // move pos to next path element |
| 1164 | done = true; |
| 1165 | } else { // Dash is on this line |
| 1166 | pos = --maxDashes > 0 ? dpos + estart : estop; |
| 1167 | done = pos >= estop; |
| 1168 | if (++idash >= dashCount) |
| 1169 | idash = 0; |
| 1170 | doffset = 0; // full segment so no offset on next. |
| 1171 | } |
| 1172 | } |
| 1173 | if (clipIt) { |
| 1174 | hasMoveTo = false; |
| 1175 | } else { |
| 1176 | // skip costly dashing, just draw solid line |
| 1177 | if (!hasMoveTo) { |
| 1178 | emitMoveTo(x: move_to_pos.x, y: move_to_pos.y); |
| 1179 | hasMoveTo = true; |
| 1180 | } |
| 1181 | emitLineTo(x: e.x, y: e.y); |
| 1182 | } |
| 1183 | move_to_pos = e; |
| 1184 | } |
| 1185 | |
| 1186 | // Dash away... |
| 1187 | while (!done) { |
| 1188 | QPointF p2; |
| 1189 | |
| 1190 | bool has_offset = doffset > 0; |
| 1191 | bool evenDash = (idash & 1) == 0; |
| 1192 | qreal dpos = pos + dashes[idash] - doffset - estart; |
| 1193 | |
| 1194 | Q_ASSERT(dpos >= 0); |
| 1195 | |
| 1196 | if (dpos > elen) { // dash extends this line |
| 1197 | doffset = dashes[idash] - (dpos - elen); // subtract the part already used |
| 1198 | pos = estop; // move pos to next path element |
| 1199 | done = true; |
| 1200 | p2 = cline.p2(); |
| 1201 | } else { // Dash is on this line |
| 1202 | p2 = cline.pointAt(t: dpos/elen); |
| 1203 | pos = dpos + estart; |
| 1204 | done = pos >= estop; |
| 1205 | if (++idash >= dashCount) |
| 1206 | idash = 0; |
| 1207 | doffset = 0; // full segment so no offset on next. |
| 1208 | } |
| 1209 | |
| 1210 | if (evenDash) { |
| 1211 | line_to_pos.x = qt_real_to_fixed(p2.x()); |
| 1212 | line_to_pos.y = qt_real_to_fixed(p2.y()); |
| 1213 | |
| 1214 | if (!clipping |
| 1215 | || lineRectIntersectsRect(p1: move_to_pos, p2: line_to_pos, tl: clip_tl, br: clip_br)) |
| 1216 | { |
| 1217 | // If we have an offset, we're continuing a dash |
| 1218 | // from a previous element and should only |
| 1219 | // continue the current dash, without starting a |
| 1220 | // new subpath. |
| 1221 | if (!has_offset || !hasMoveTo) { |
| 1222 | emitMoveTo(x: move_to_pos.x, y: move_to_pos.y); |
| 1223 | hasMoveTo = true; |
| 1224 | } |
| 1225 | |
| 1226 | emitLineTo(x: line_to_pos.x, y: line_to_pos.y); |
| 1227 | } else { |
| 1228 | hasMoveTo = false; |
| 1229 | } |
| 1230 | move_to_pos = line_to_pos; |
| 1231 | } else { |
| 1232 | move_to_pos.x = qt_real_to_fixed(p2.x()); |
| 1233 | move_to_pos.y = qt_real_to_fixed(p2.y()); |
| 1234 | } |
| 1235 | } |
| 1236 | |
| 1237 | // Shuffle to the next cycle... |
| 1238 | estart = estop; |
| 1239 | prev = e; |
| 1240 | } |
| 1241 | |
| 1242 | } |
| 1243 | |
| 1244 | QT_END_NAMESPACE |
| 1245 | |