1 | // Copyright (C) 2016 The Qt Company Ltd. |
2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
3 | |
4 | #include "private/qstroker_p.h" |
5 | #include "private/qbezier_p.h" |
6 | #include "qline.h" |
7 | #include "qtransform.h" |
8 | #include <qmath.h> |
9 | |
10 | QT_BEGIN_NAMESPACE |
11 | |
12 | // #define QPP_STROKE_DEBUG |
13 | |
14 | class QSubpathForwardIterator |
15 | { |
16 | public: |
17 | QSubpathForwardIterator(const QDataBuffer<QStrokerOps::Element> *path) |
18 | : m_path(path), m_pos(0) { } |
19 | inline int position() const { return m_pos; } |
20 | inline bool hasNext() const { return m_pos < m_path->size(); } |
21 | inline QStrokerOps::Element next() { Q_ASSERT(hasNext()); return m_path->at(i: m_pos++); } |
22 | |
23 | private: |
24 | const QDataBuffer<QStrokerOps::Element> *m_path; |
25 | int m_pos; |
26 | }; |
27 | |
28 | class QSubpathBackwardIterator |
29 | { |
30 | public: |
31 | QSubpathBackwardIterator(const QDataBuffer<QStrokerOps::Element> *path) |
32 | : m_path(path), m_pos(path->size() - 1) { } |
33 | |
34 | inline int position() const { return m_pos; } |
35 | |
36 | inline bool hasNext() const { return m_pos >= 0; } |
37 | |
38 | inline QStrokerOps::Element next() |
39 | { |
40 | Q_ASSERT(hasNext()); |
41 | |
42 | QStrokerOps::Element ce = m_path->at(i: m_pos); // current element |
43 | |
44 | if (m_pos == m_path->size() - 1) { |
45 | --m_pos; |
46 | ce.type = QPainterPath::MoveToElement; |
47 | return ce; |
48 | } |
49 | |
50 | const QStrokerOps::Element &pe = m_path->at(i: m_pos + 1); // previous element |
51 | |
52 | switch (pe.type) { |
53 | case QPainterPath::LineToElement: |
54 | ce.type = QPainterPath::LineToElement; |
55 | break; |
56 | case QPainterPath::CurveToDataElement: |
57 | // First control point? |
58 | if (ce.type == QPainterPath::CurveToElement) { |
59 | ce.type = QPainterPath::CurveToDataElement; |
60 | } else { // Second control point then |
61 | ce.type = QPainterPath::CurveToElement; |
62 | } |
63 | break; |
64 | case QPainterPath::CurveToElement: |
65 | ce.type = QPainterPath::CurveToDataElement; |
66 | break; |
67 | default: |
68 | qWarning(msg: "QSubpathReverseIterator::next: Case %d unhandled" , ce.type); |
69 | break; |
70 | } |
71 | --m_pos; |
72 | |
73 | return ce; |
74 | } |
75 | |
76 | private: |
77 | const QDataBuffer<QStrokerOps::Element> *m_path; |
78 | int m_pos; |
79 | }; |
80 | |
81 | class QSubpathFlatIterator |
82 | { |
83 | public: |
84 | QSubpathFlatIterator(const QDataBuffer<QStrokerOps::Element> *path, qreal threshold) |
85 | : m_path(path), m_pos(0), m_curve_index(-1), m_curve_threshold(threshold) { } |
86 | |
87 | inline bool hasNext() const { return m_curve_index >= 0 || m_pos < m_path->size(); } |
88 | |
89 | QStrokerOps::Element next() |
90 | { |
91 | Q_ASSERT(hasNext()); |
92 | |
93 | if (m_curve_index >= 0) { |
94 | QStrokerOps::Element e = { .type: QPainterPath::LineToElement, |
95 | qt_real_to_fixed(m_curve.at(m_curve_index).x()), |
96 | qt_real_to_fixed(m_curve.at(m_curve_index).y()) |
97 | }; |
98 | ++m_curve_index; |
99 | if (m_curve_index >= m_curve.size()) |
100 | m_curve_index = -1; |
101 | return e; |
102 | } |
103 | |
104 | QStrokerOps::Element e = m_path->at(i: m_pos); |
105 | if (e.isCurveTo()) { |
106 | Q_ASSERT(m_pos > 0); |
107 | Q_ASSERT(m_pos < m_path->size()); |
108 | |
109 | m_curve = QBezier::fromPoints(p1: QPointF(qt_fixed_to_real(m_path->at(m_pos-1).x), |
110 | qt_fixed_to_real(m_path->at(m_pos-1).y)), |
111 | p2: QPointF(qt_fixed_to_real(e.x), |
112 | qt_fixed_to_real(e.y)), |
113 | p3: QPointF(qt_fixed_to_real(m_path->at(m_pos+1).x), |
114 | qt_fixed_to_real(m_path->at(m_pos+1).y)), |
115 | p4: QPointF(qt_fixed_to_real(m_path->at(m_pos+2).x), |
116 | qt_fixed_to_real(m_path->at(m_pos+2).y))).toPolygon(bezier_flattening_threshold: m_curve_threshold); |
117 | m_curve_index = 1; |
118 | e.type = QPainterPath::LineToElement; |
119 | e.x = m_curve.at(i: 0).x(); |
120 | e.y = m_curve.at(i: 0).y(); |
121 | m_pos += 2; |
122 | } |
123 | Q_ASSERT(e.isLineTo() || e.isMoveTo()); |
124 | ++m_pos; |
125 | return e; |
126 | } |
127 | |
128 | private: |
129 | const QDataBuffer<QStrokerOps::Element> *m_path; |
130 | int m_pos; |
131 | QPolygonF m_curve; |
132 | int m_curve_index; |
133 | qreal m_curve_threshold; |
134 | }; |
135 | |
136 | template <class Iterator> bool qt_stroke_side(Iterator *it, QStroker *stroker, |
137 | bool capFirst, QLineF *startTangent); |
138 | |
139 | /******************************************************************************* |
140 | * QLineF::angleTo gives us the angle between two lines with respecting the direction. |
141 | * Here we want to identify the line's angle direction on the unit circle. |
142 | */ |
143 | static inline qreal adapted_angle_on_x(const QLineF &line) |
144 | { |
145 | return QLineF(0, 0, 1, 0).angleTo(l: line); |
146 | } |
147 | |
148 | QStrokerOps::QStrokerOps() |
149 | : m_elements(0) |
150 | , m_curveThreshold(qt_real_to_fixed(0.25)) |
151 | , m_dashThreshold(qt_real_to_fixed(0.25)) |
152 | , m_customData(nullptr) |
153 | , m_moveTo(nullptr) |
154 | , m_lineTo(nullptr) |
155 | , m_cubicTo(nullptr) |
156 | { |
157 | } |
158 | |
159 | QStrokerOps::~QStrokerOps() |
160 | { |
161 | } |
162 | |
163 | /*! |
164 | Prepares the stroker. Call this function once before starting a |
165 | stroke by calling moveTo, lineTo or cubicTo. |
166 | |
167 | The \a customData is passed back through that callback functions |
168 | and can be used by the user to for instance maintain state |
169 | information. |
170 | */ |
171 | void QStrokerOps::begin(void *customData) |
172 | { |
173 | m_customData = customData; |
174 | m_elements.reset(); |
175 | } |
176 | |
177 | |
178 | /*! |
179 | Finishes the stroke. Call this function once when an entire |
180 | primitive has been stroked. |
181 | */ |
182 | void QStrokerOps::end() |
183 | { |
184 | if (m_elements.size() > 1) |
185 | processCurrentSubpath(); |
186 | m_customData = nullptr; |
187 | } |
188 | |
189 | /*! |
190 | Convenience function that decomposes \a path into begin(), |
191 | moveTo(), lineTo(), curevTo() and end() calls. |
192 | |
193 | The \a customData parameter is used in the callback functions |
194 | |
195 | The \a matrix is used to transform the points before input to the |
196 | stroker. |
197 | |
198 | \sa begin() |
199 | */ |
200 | void QStrokerOps::strokePath(const QPainterPath &path, void *customData, const QTransform &matrix) |
201 | { |
202 | if (path.isEmpty()) |
203 | return; |
204 | |
205 | setCurveThresholdFromTransform(QTransform()); |
206 | begin(customData); |
207 | int count = path.elementCount(); |
208 | if (matrix.isIdentity()) { |
209 | for (int i=0; i<count; ++i) { |
210 | const QPainterPath::Element &e = path.elementAt(i); |
211 | switch (e.type) { |
212 | case QPainterPath::MoveToElement: |
213 | moveTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y)); |
214 | break; |
215 | case QPainterPath::LineToElement: |
216 | lineTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y)); |
217 | break; |
218 | case QPainterPath::CurveToElement: |
219 | { |
220 | const QPainterPath::Element &cp2 = path.elementAt(i: ++i); |
221 | const QPainterPath::Element &ep = path.elementAt(i: ++i); |
222 | cubicTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y), |
223 | qt_real_to_fixed(cp2.x), qt_real_to_fixed(cp2.y), |
224 | qt_real_to_fixed(ep.x), qt_real_to_fixed(ep.y)); |
225 | } |
226 | break; |
227 | default: |
228 | break; |
229 | } |
230 | } |
231 | } else { |
232 | for (int i=0; i<count; ++i) { |
233 | const QPainterPath::Element &e = path.elementAt(i); |
234 | QPointF pt = QPointF(e.x, e.y) * matrix; |
235 | switch (e.type) { |
236 | case QPainterPath::MoveToElement: |
237 | moveTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y())); |
238 | break; |
239 | case QPainterPath::LineToElement: |
240 | lineTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y())); |
241 | break; |
242 | case QPainterPath::CurveToElement: |
243 | { |
244 | QPointF cp2 = ((QPointF) path.elementAt(i: ++i)) * matrix; |
245 | QPointF ep = ((QPointF) path.elementAt(i: ++i)) * matrix; |
246 | cubicTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y()), |
247 | qt_real_to_fixed(cp2.x()), qt_real_to_fixed(cp2.y()), |
248 | qt_real_to_fixed(ep.x()), qt_real_to_fixed(ep.y())); |
249 | } |
250 | break; |
251 | default: |
252 | break; |
253 | } |
254 | } |
255 | } |
256 | end(); |
257 | } |
258 | |
259 | /*! |
260 | Convenience function for stroking a polygon of the \a pointCount |
261 | first points in \a points. If \a implicit_close is set to true a |
262 | line is implicitly drawn between the first and last point in the |
263 | polygon. Typically true for polygons and false for polylines. |
264 | |
265 | The \a matrix is used to transform the points before they enter the |
266 | stroker. |
267 | |
268 | \sa begin() |
269 | */ |
270 | |
271 | void QStrokerOps::strokePolygon(const QPointF *points, int pointCount, bool implicit_close, |
272 | void *data, const QTransform &matrix) |
273 | { |
274 | if (!pointCount) |
275 | return; |
276 | |
277 | setCurveThresholdFromTransform(QTransform()); |
278 | begin(customData: data); |
279 | if (matrix.isIdentity()) { |
280 | moveTo(qt_real_to_fixed(points[0].x()), qt_real_to_fixed(points[0].y())); |
281 | for (int i=1; i<pointCount; ++i) |
282 | lineTo(qt_real_to_fixed(points[i].x()), |
283 | qt_real_to_fixed(points[i].y())); |
284 | if (implicit_close) |
285 | lineTo(qt_real_to_fixed(points[0].x()), qt_real_to_fixed(points[0].y())); |
286 | } else { |
287 | QPointF start = points[0] * matrix; |
288 | moveTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y())); |
289 | for (int i=1; i<pointCount; ++i) { |
290 | QPointF pt = points[i] * matrix; |
291 | lineTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y())); |
292 | } |
293 | if (implicit_close) |
294 | lineTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y())); |
295 | } |
296 | end(); |
297 | } |
298 | |
299 | /*! |
300 | Convenience function for stroking an ellipse with bounding rect \a |
301 | rect. The \a matrix is used to transform the coordinates before |
302 | they enter the stroker. |
303 | */ |
304 | void QStrokerOps::strokeEllipse(const QRectF &rect, void *data, const QTransform &matrix) |
305 | { |
306 | int count = 0; |
307 | QPointF pts[12]; |
308 | QPointF start = qt_curves_for_arc(rect, startAngle: 0, sweepLength: -360, controlPoints: pts, point_count: &count); |
309 | Q_ASSERT(count == 12); // a perfect circle.. |
310 | |
311 | if (!matrix.isIdentity()) { |
312 | start = start * matrix; |
313 | for (int i=0; i<12; ++i) { |
314 | pts[i] = pts[i] * matrix; |
315 | } |
316 | } |
317 | |
318 | setCurveThresholdFromTransform(QTransform()); |
319 | begin(customData: data); |
320 | moveTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y())); |
321 | for (int i=0; i<12; i+=3) { |
322 | cubicTo(qt_real_to_fixed(pts[i].x()), qt_real_to_fixed(pts[i].y()), |
323 | qt_real_to_fixed(pts[i+1].x()), qt_real_to_fixed(pts[i+1].y()), |
324 | qt_real_to_fixed(pts[i+2].x()), qt_real_to_fixed(pts[i+2].y())); |
325 | } |
326 | end(); |
327 | } |
328 | |
329 | |
330 | QStroker::QStroker() |
331 | : m_capStyle(SquareJoin), m_joinStyle(FlatJoin), |
332 | m_back1X(0), m_back1Y(0), |
333 | m_back2X(0), m_back2Y(0), |
334 | m_forceOpen(false) |
335 | { |
336 | m_strokeWidth = qt_real_to_fixed(1); |
337 | m_miterLimit = qt_real_to_fixed(2); |
338 | } |
339 | |
340 | QStroker::~QStroker() |
341 | { |
342 | } |
343 | |
344 | Qt::PenCapStyle QStroker::capForJoinMode(LineJoinMode mode) |
345 | { |
346 | if (mode == FlatJoin) return Qt::FlatCap; |
347 | else if (mode == SquareJoin) return Qt::SquareCap; |
348 | else return Qt::RoundCap; |
349 | } |
350 | |
351 | QStroker::LineJoinMode QStroker::joinModeForCap(Qt::PenCapStyle style) |
352 | { |
353 | if (style == Qt::FlatCap) return FlatJoin; |
354 | else if (style == Qt::SquareCap) return SquareJoin; |
355 | else return RoundCap; |
356 | } |
357 | |
358 | Qt::PenJoinStyle QStroker::joinForJoinMode(LineJoinMode mode) |
359 | { |
360 | if (mode == FlatJoin) return Qt::BevelJoin; |
361 | else if (mode == MiterJoin) return Qt::MiterJoin; |
362 | else if (mode == SvgMiterJoin) return Qt::SvgMiterJoin; |
363 | else return Qt::RoundJoin; |
364 | } |
365 | |
366 | QStroker::LineJoinMode QStroker::joinModeForJoin(Qt::PenJoinStyle joinStyle) |
367 | { |
368 | if (joinStyle == Qt::BevelJoin) return FlatJoin; |
369 | else if (joinStyle == Qt::MiterJoin) return MiterJoin; |
370 | else if (joinStyle == Qt::SvgMiterJoin) return SvgMiterJoin; |
371 | else return RoundJoin; |
372 | } |
373 | |
374 | |
375 | /*! |
376 | This function is called to stroke the currently built up |
377 | subpath. The subpath is cleared when the function completes. |
378 | */ |
379 | void QStroker::processCurrentSubpath() |
380 | { |
381 | Q_ASSERT(!m_elements.isEmpty()); |
382 | Q_ASSERT(m_elements.first().type == QPainterPath::MoveToElement); |
383 | Q_ASSERT(m_elements.size() > 1); |
384 | |
385 | QSubpathForwardIterator fwit(&m_elements); |
386 | QSubpathBackwardIterator bwit(&m_elements); |
387 | |
388 | QLineF fwStartTangent, bwStartTangent; |
389 | |
390 | bool fwclosed = qt_stroke_side(it: &fwit, stroker: this, capFirst: false, startTangent: &fwStartTangent); |
391 | bool bwclosed = qt_stroke_side(it: &bwit, stroker: this, capFirst: !fwclosed, startTangent: &bwStartTangent); |
392 | |
393 | if (!bwclosed && !fwStartTangent.isNull()) |
394 | joinPoints(x: m_elements.at(i: 0).x, y: m_elements.at(i: 0).y, nextLine: fwStartTangent, join: m_capStyle); |
395 | } |
396 | |
397 | |
398 | /*! |
399 | \internal |
400 | */ |
401 | void QStroker::joinPoints(qfixed focal_x, qfixed focal_y, const QLineF &nextLine, LineJoinMode join) |
402 | { |
403 | #ifdef QPP_STROKE_DEBUG |
404 | printf(" -----> joinPoints: around=(%.0f, %.0f), next_p1=(%.0f, %.f) next_p2=(%.0f, %.f)\n" , |
405 | qt_fixed_to_real(focal_x), |
406 | qt_fixed_to_real(focal_y), |
407 | nextLine.x1(), nextLine.y1(), nextLine.x2(), nextLine.y2()); |
408 | #endif |
409 | // points connected already, don't join |
410 | |
411 | #if !defined (QFIXED_26_6) && !defined (Q_FIXED_32_32) |
412 | if (qFuzzyCompare(p1: m_back1X, p2: nextLine.x1()) && qFuzzyCompare(p1: m_back1Y, p2: nextLine.y1())) |
413 | return; |
414 | #else |
415 | if (m_back1X == qt_real_to_fixed(nextLine.x1()) |
416 | && m_back1Y == qt_real_to_fixed(nextLine.y1())) { |
417 | return; |
418 | } |
419 | #endif |
420 | QLineF prevLine(qt_fixed_to_real(m_back2X), qt_fixed_to_real(m_back2Y), |
421 | qt_fixed_to_real(m_back1X), qt_fixed_to_real(m_back1Y)); |
422 | QPointF isect; |
423 | QLineF::IntersectionType type = prevLine.intersects(l: nextLine, intersectionPoint: &isect); |
424 | |
425 | if (join == FlatJoin) { |
426 | QLineF shortCut(prevLine.p2(), nextLine.p1()); |
427 | qreal angle = shortCut.angleTo(l: prevLine); |
428 | if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(p1: angle, p2: (qreal)90))) { |
429 | emitLineTo(x: focal_x, y: focal_y); |
430 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
431 | return; |
432 | } |
433 | emitLineTo(qt_real_to_fixed(nextLine.x1()), |
434 | qt_real_to_fixed(nextLine.y1())); |
435 | |
436 | } else { |
437 | if (join == MiterJoin) { |
438 | qreal appliedMiterLimit = qt_fixed_to_real(m_strokeWidth * m_miterLimit); |
439 | |
440 | // If we are on the inside, do the short cut... |
441 | QLineF shortCut(prevLine.p2(), nextLine.p1()); |
442 | qreal angle = shortCut.angleTo(l: prevLine); |
443 | if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(p1: angle, p2: (qreal)90))) { |
444 | emitLineTo(x: focal_x, y: focal_y); |
445 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
446 | return; |
447 | } |
448 | QLineF miterLine(QPointF(qt_fixed_to_real(m_back1X), |
449 | qt_fixed_to_real(m_back1Y)), isect); |
450 | if (type == QLineF::NoIntersection || miterLine.length() > appliedMiterLimit) { |
451 | QLineF l1(prevLine); |
452 | l1.setLength(appliedMiterLimit); |
453 | l1.translate(adx: prevLine.dx(), ady: prevLine.dy()); |
454 | |
455 | QLineF l2(nextLine); |
456 | l2.setLength(appliedMiterLimit); |
457 | l2.translate(adx: -l2.dx(), ady: -l2.dy()); |
458 | |
459 | emitLineTo(qt_real_to_fixed(l1.x2()), qt_real_to_fixed(l1.y2())); |
460 | emitLineTo(qt_real_to_fixed(l2.x1()), qt_real_to_fixed(l2.y1())); |
461 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
462 | } else { |
463 | emitLineTo(qt_real_to_fixed(isect.x()), qt_real_to_fixed(isect.y())); |
464 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
465 | } |
466 | |
467 | } else if (join == SquareJoin) { |
468 | qfixed offset = m_strokeWidth / 2; |
469 | |
470 | QLineF l1(prevLine); |
471 | qreal dp = QPointF::dotProduct(p1: QPointF(prevLine.dx(), prevLine.dy()), p2: QPointF(nextLine.dx(), nextLine.dy())); |
472 | if (dp > 0) // same direction, means that prevLine is from a bezier that has been "reversed" by shifting |
473 | l1 = QLineF(prevLine.p2(), prevLine.p1()); |
474 | else |
475 | l1.translate(adx: l1.dx(), ady: l1.dy()); |
476 | l1.setLength(qt_fixed_to_real(offset)); |
477 | QLineF l2(nextLine.p2(), nextLine.p1()); |
478 | l2.translate(adx: l2.dx(), ady: l2.dy()); |
479 | l2.setLength(qt_fixed_to_real(offset)); |
480 | emitLineTo(qt_real_to_fixed(l1.x2()), qt_real_to_fixed(l1.y2())); |
481 | emitLineTo(qt_real_to_fixed(l2.x2()), qt_real_to_fixed(l2.y2())); |
482 | emitLineTo(qt_real_to_fixed(l2.x1()), qt_real_to_fixed(l2.y1())); |
483 | |
484 | } else if (join == RoundJoin) { |
485 | qfixed offset = m_strokeWidth / 2; |
486 | |
487 | QLineF shortCut(prevLine.p2(), nextLine.p1()); |
488 | qreal angle = shortCut.angleTo(l: prevLine); |
489 | if ((type == QLineF::BoundedIntersection || (angle > qreal(90.01))) && nextLine.length() > offset) { |
490 | emitLineTo(x: focal_x, y: focal_y); |
491 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
492 | return; |
493 | } |
494 | qreal l1_on_x = adapted_angle_on_x(line: prevLine); |
495 | qreal l2_on_x = adapted_angle_on_x(line: nextLine); |
496 | |
497 | qreal sweepLength = qAbs(t: l2_on_x - l1_on_x); |
498 | |
499 | int point_count; |
500 | QPointF curves[15]; |
501 | |
502 | QPointF curve_start = |
503 | qt_curves_for_arc(rect: QRectF(qt_fixed_to_real(focal_x - offset), |
504 | qt_fixed_to_real(focal_y - offset), |
505 | qt_fixed_to_real(offset * 2), |
506 | qt_fixed_to_real(offset * 2)), |
507 | startAngle: l1_on_x + 90, sweepLength: -sweepLength, |
508 | controlPoints: curves, point_count: &point_count); |
509 | |
510 | // // line to the beginning of the arc segment, (should not be needed). |
511 | // emitLineTo(qt_real_to_fixed(curve_start.x()), qt_real_to_fixed(curve_start.y())); |
512 | Q_UNUSED(curve_start); |
513 | |
514 | for (int i=0; i<point_count; i+=3) { |
515 | emitCubicTo(qt_real_to_fixed(curves[i].x()), |
516 | qt_real_to_fixed(curves[i].y()), |
517 | qt_real_to_fixed(curves[i+1].x()), |
518 | qt_real_to_fixed(curves[i+1].y()), |
519 | qt_real_to_fixed(curves[i+2].x()), |
520 | qt_real_to_fixed(curves[i+2].y())); |
521 | } |
522 | |
523 | // line to the end of the arc segment, (should also not be needed). |
524 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
525 | |
526 | // Same as round join except we know its 180 degrees. Can also optimize this |
527 | // later based on the addEllipse logic |
528 | } else if (join == RoundCap) { |
529 | qfixed offset = m_strokeWidth / 2; |
530 | |
531 | // first control line |
532 | QLineF l1 = prevLine; |
533 | qreal dp = QPointF::dotProduct(p1: QPointF(prevLine.dx(), prevLine.dy()), p2: QPointF(nextLine.dx(), nextLine.dy())); |
534 | if (dp > 0) // same direction, means that prevLine is from a bezier that has been "reversed" by shifting |
535 | l1 = QLineF(prevLine.p2(), prevLine.p1()); |
536 | else |
537 | l1.translate(adx: l1.dx(), ady: l1.dy()); |
538 | l1.setLength(QT_PATH_KAPPA * offset); |
539 | |
540 | // second control line, find through normal between prevLine and focal. |
541 | QLineF l2(qt_fixed_to_real(focal_x), qt_fixed_to_real(focal_y), |
542 | prevLine.x2(), prevLine.y2()); |
543 | l2.translate(adx: -l2.dy(), ady: l2.dx()); |
544 | l2.setLength(QT_PATH_KAPPA * offset); |
545 | |
546 | emitCubicTo(qt_real_to_fixed(l1.x2()), |
547 | qt_real_to_fixed(l1.y2()), |
548 | qt_real_to_fixed(l2.x2()), |
549 | qt_real_to_fixed(l2.y2()), |
550 | qt_real_to_fixed(l2.x1()), |
551 | qt_real_to_fixed(l2.y1())); |
552 | |
553 | // move so that it matches |
554 | l2 = QLineF(l2.x1(), l2.y1(), l2.x1()-l2.dx(), l2.y1()-l2.dy()); |
555 | |
556 | // last line is parallel to l1 so just shift it down. |
557 | l1.translate(adx: nextLine.x1() - l1.x1(), ady: nextLine.y1() - l1.y1()); |
558 | |
559 | emitCubicTo(qt_real_to_fixed(l2.x2()), |
560 | qt_real_to_fixed(l2.y2()), |
561 | qt_real_to_fixed(l1.x2()), |
562 | qt_real_to_fixed(l1.y2()), |
563 | qt_real_to_fixed(l1.x1()), |
564 | qt_real_to_fixed(l1.y1())); |
565 | } else if (join == SvgMiterJoin) { |
566 | QLineF shortCut(prevLine.p2(), nextLine.p1()); |
567 | qreal angle = shortCut.angleTo(l: prevLine); |
568 | if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(p1: angle, p2: (qreal)90))) { |
569 | emitLineTo(x: focal_x, y: focal_y); |
570 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
571 | return; |
572 | } |
573 | QLineF miterLine(QPointF(qt_fixed_to_real(focal_x), |
574 | qt_fixed_to_real(focal_y)), isect); |
575 | if (type == QLineF::NoIntersection || miterLine.length() > qt_fixed_to_real(m_strokeWidth * m_miterLimit) / 2) { |
576 | emitLineTo(qt_real_to_fixed(nextLine.x1()), |
577 | qt_real_to_fixed(nextLine.y1())); |
578 | } else { |
579 | emitLineTo(qt_real_to_fixed(isect.x()), qt_real_to_fixed(isect.y())); |
580 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
581 | } |
582 | } else { |
583 | Q_ASSERT(!"QStroker::joinPoints(), bad join style..." ); |
584 | } |
585 | } |
586 | } |
587 | |
588 | |
589 | /* |
590 | Strokes a subpath side using the \a it as source. Results are put into |
591 | \a stroke. The function returns \c true if the subpath side was closed. |
592 | If \a capFirst is true, we will use capPoints instead of joinPoints to |
593 | connect the first segment, other segments will be joined using joinPoints. |
594 | This is to put capping in order... |
595 | */ |
596 | template <class Iterator> bool qt_stroke_side(Iterator *it, |
597 | QStroker *stroker, |
598 | bool capFirst, |
599 | QLineF *startTangent) |
600 | { |
601 | // Used in CurveToElement section below. |
602 | const int MAX_OFFSET = 16; |
603 | QBezier offsetCurves[MAX_OFFSET]; |
604 | |
605 | Q_ASSERT(it->hasNext()); // The initaial move to |
606 | QStrokerOps::Element first_element = it->next(); |
607 | Q_ASSERT(first_element.isMoveTo()); |
608 | |
609 | qfixed2d start = first_element; |
610 | |
611 | #ifdef QPP_STROKE_DEBUG |
612 | qDebug(" -> (side) [%.2f, %.2f], startPos=%d" , |
613 | qt_fixed_to_real(start.x), |
614 | qt_fixed_to_real(start.y)); |
615 | #endif |
616 | |
617 | qfixed2d prev = start; |
618 | |
619 | bool first = true; |
620 | |
621 | qfixed offset = stroker->strokeWidth() / 2; |
622 | |
623 | while (it->hasNext()) { |
624 | QStrokerOps::Element e = it->next(); |
625 | |
626 | // LineToElement |
627 | if (e.isLineTo()) { |
628 | #ifdef QPP_STROKE_DEBUG |
629 | qDebug("\n ---> (side) lineto [%.2f, %.2f]" , e.x, e.y); |
630 | #endif |
631 | QLineF line(qt_fixed_to_real(prev.x), qt_fixed_to_real(prev.y), |
632 | qt_fixed_to_real(e.x), qt_fixed_to_real(e.y)); |
633 | if (line.p1() != line.p2()) { |
634 | QLineF normal = line.normalVector(); |
635 | normal.setLength(offset); |
636 | line.translate(adx: normal.dx(), ady: normal.dy()); |
637 | |
638 | // If we are starting a new subpath, move to correct starting point. |
639 | if (first) { |
640 | if (capFirst) |
641 | stroker->joinPoints(focal_x: prev.x, focal_y: prev.y, nextLine: line, join: stroker->capStyleMode()); |
642 | else |
643 | stroker->emitMoveTo(qt_real_to_fixed(line.x1()), qt_real_to_fixed(line.y1())); |
644 | *startTangent = line; |
645 | first = false; |
646 | } else { |
647 | stroker->joinPoints(focal_x: prev.x, focal_y: prev.y, nextLine: line, join: stroker->joinStyleMode()); |
648 | } |
649 | |
650 | // Add the stroke for this line. |
651 | stroker->emitLineTo(qt_real_to_fixed(line.x2()), |
652 | qt_real_to_fixed(line.y2())); |
653 | prev = e; |
654 | } |
655 | |
656 | // CurveToElement |
657 | } else if (e.isCurveTo()) { |
658 | QStrokerOps::Element cp2 = it->next(); // control point 2 |
659 | QStrokerOps::Element ep = it->next(); // end point |
660 | |
661 | #ifdef QPP_STROKE_DEBUG |
662 | qDebug("\n ---> (side) cubicTo [%.2f, %.2f]" , |
663 | qt_fixed_to_real(ep.x), |
664 | qt_fixed_to_real(ep.y)); |
665 | #endif |
666 | |
667 | QBezier bezier = |
668 | QBezier::fromPoints(p1: QPointF(qt_fixed_to_real(prev.x), qt_fixed_to_real(prev.y)), |
669 | p2: QPointF(qt_fixed_to_real(e.x), qt_fixed_to_real(e.y)), |
670 | p3: QPointF(qt_fixed_to_real(cp2.x), qt_fixed_to_real(cp2.y)), |
671 | p4: QPointF(qt_fixed_to_real(ep.x), qt_fixed_to_real(ep.y))); |
672 | int count = bezier.shifted(curveSegments: offsetCurves, |
673 | maxSegmets: MAX_OFFSET, |
674 | offset, |
675 | threshold: stroker->curveThreshold()); |
676 | |
677 | if (count) { |
678 | // If we are starting a new subpath, move to correct starting point |
679 | QLineF tangent = bezier.startTangent(); |
680 | tangent.translate(point: offsetCurves[0].pt1() - bezier.pt1()); |
681 | if (first) { |
682 | QPointF pt = offsetCurves[0].pt1(); |
683 | if (capFirst) { |
684 | stroker->joinPoints(focal_x: prev.x, focal_y: prev.y, |
685 | nextLine: tangent, |
686 | join: stroker->capStyleMode()); |
687 | } else { |
688 | stroker->emitMoveTo(qt_real_to_fixed(pt.x()), |
689 | qt_real_to_fixed(pt.y())); |
690 | } |
691 | *startTangent = tangent; |
692 | first = false; |
693 | } else { |
694 | stroker->joinPoints(focal_x: prev.x, focal_y: prev.y, |
695 | nextLine: tangent, |
696 | join: stroker->joinStyleMode()); |
697 | } |
698 | |
699 | // Add these beziers |
700 | for (int i=0; i<count; ++i) { |
701 | QPointF cp1 = offsetCurves[i].pt2(); |
702 | QPointF cp2 = offsetCurves[i].pt3(); |
703 | QPointF ep = offsetCurves[i].pt4(); |
704 | stroker->emitCubicTo(qt_real_to_fixed(cp1.x()), qt_real_to_fixed(cp1.y()), |
705 | qt_real_to_fixed(cp2.x()), qt_real_to_fixed(cp2.y()), |
706 | qt_real_to_fixed(ep.x()), qt_real_to_fixed(ep.y())); |
707 | } |
708 | } |
709 | |
710 | prev = ep; |
711 | } |
712 | } |
713 | |
714 | if (start == prev && !stroker->forceOpen()) { |
715 | // closed subpath, join first and last point |
716 | #ifdef QPP_STROKE_DEBUG |
717 | qDebug("\n ---> (side) closed subpath" ); |
718 | #endif |
719 | // don't join empty subpaths |
720 | if (!first) |
721 | stroker->joinPoints(focal_x: prev.x, focal_y: prev.y, nextLine: *startTangent, join: stroker->joinStyleMode()); |
722 | return true; |
723 | } else { |
724 | #ifdef QPP_STROKE_DEBUG |
725 | qDebug("\n ---> (side) open subpath" ); |
726 | #endif |
727 | return false; |
728 | } |
729 | } |
730 | |
731 | /*! |
732 | \internal |
733 | |
734 | For a given angle in the range [0 .. 90], finds the corresponding parameter t |
735 | of the prototype cubic bezier arc segment |
736 | b = fromPoints(QPointF(1, 0), QPointF(1, KAPPA), QPointF(KAPPA, 1), QPointF(0, 1)); |
737 | |
738 | From the bezier equation: |
739 | b.pointAt(t).x() = (1-t)^3 + t*(1-t)^2 + t^2*(1-t)*KAPPA |
740 | b.pointAt(t).y() = t*(1-t)^2 * KAPPA + t^2*(1-t) + t^3 |
741 | |
742 | Third degree coefficients: |
743 | b.pointAt(t).x() = at^3 + bt^2 + ct + d |
744 | where a = 2-3*KAPPA, b = 3*(KAPPA-1), c = 0, d = 1 |
745 | |
746 | b.pointAt(t).y() = at^3 + bt^2 + ct + d |
747 | where a = 3*KAPPA-2, b = 6*KAPPA+3, c = 3*KAPPA, d = 0 |
748 | |
749 | Newton's method to find the zero of a function: |
750 | given a function f(x) and initial guess x_0 |
751 | x_1 = f(x_0) / f'(x_0) |
752 | x_2 = f(x_1) / f'(x_1) |
753 | etc... |
754 | */ |
755 | |
756 | qreal qt_t_for_arc_angle(qreal angle) |
757 | { |
758 | if (qFuzzyIsNull(d: angle)) |
759 | return 0; |
760 | |
761 | if (qFuzzyCompare(p1: angle, p2: qreal(90))) |
762 | return 1; |
763 | |
764 | qreal radians = qDegreesToRadians(degrees: angle); |
765 | qreal cosAngle = qCos(v: radians); |
766 | qreal sinAngle = qSin(v: radians); |
767 | |
768 | // initial guess |
769 | qreal tc = angle / 90; |
770 | // do some iterations of newton's method to approximate cosAngle |
771 | // finds the zero of the function b.pointAt(tc).x() - cosAngle |
772 | tc -= ((((2-3*QT_PATH_KAPPA) * tc + 3*(QT_PATH_KAPPA-1)) * tc) * tc + 1 - cosAngle) // value |
773 | / (((6-9*QT_PATH_KAPPA) * tc + 6*(QT_PATH_KAPPA-1)) * tc); // derivative |
774 | tc -= ((((2-3*QT_PATH_KAPPA) * tc + 3*(QT_PATH_KAPPA-1)) * tc) * tc + 1 - cosAngle) // value |
775 | / (((6-9*QT_PATH_KAPPA) * tc + 6*(QT_PATH_KAPPA-1)) * tc); // derivative |
776 | |
777 | // initial guess |
778 | qreal ts = tc; |
779 | // do some iterations of newton's method to approximate sinAngle |
780 | // finds the zero of the function b.pointAt(tc).y() - sinAngle |
781 | ts -= ((((3*QT_PATH_KAPPA-2) * ts - 6*QT_PATH_KAPPA + 3) * ts + 3*QT_PATH_KAPPA) * ts - sinAngle) |
782 | / (((9*QT_PATH_KAPPA-6) * ts + 12*QT_PATH_KAPPA - 6) * ts + 3*QT_PATH_KAPPA); |
783 | ts -= ((((3*QT_PATH_KAPPA-2) * ts - 6*QT_PATH_KAPPA + 3) * ts + 3*QT_PATH_KAPPA) * ts - sinAngle) |
784 | / (((9*QT_PATH_KAPPA-6) * ts + 12*QT_PATH_KAPPA - 6) * ts + 3*QT_PATH_KAPPA); |
785 | |
786 | // use the average of the t that best approximates cosAngle |
787 | // and the t that best approximates sinAngle |
788 | qreal t = 0.5 * (tc + ts); |
789 | |
790 | #if 0 |
791 | printf("angle: %f, t: %f\n" , angle, t); |
792 | qreal a, b, c, d; |
793 | bezierCoefficients(t, a, b, c, d); |
794 | printf("cosAngle: %.10f, value: %.10f\n" , cosAngle, a + b + c * QT_PATH_KAPPA); |
795 | printf("sinAngle: %.10f, value: %.10f\n" , sinAngle, b * QT_PATH_KAPPA + c + d); |
796 | #endif |
797 | |
798 | return t; |
799 | } |
800 | |
801 | Q_GUI_EXPORT void qt_find_ellipse_coords(const QRectF &r, qreal angle, qreal length, |
802 | QPointF* startPoint, QPointF *endPoint); |
803 | |
804 | /*! |
805 | \internal |
806 | |
807 | Creates a number of curves for a given arc definition. The arc is |
808 | defined an arc along the ellipses that fits into \a rect starting |
809 | at \a startAngle and an arc length of \a sweepLength. |
810 | |
811 | The function has three out parameters. The return value is the |
812 | starting point of the arc. The \a curves array represents the list |
813 | of cubicTo elements up to a maximum of \a point_count. There are of course |
814 | 3 points pr curve. |
815 | */ |
816 | QPointF qt_curves_for_arc(const QRectF &rect, qreal startAngle, qreal sweepLength, |
817 | QPointF *curves, int *point_count) |
818 | { |
819 | Q_ASSERT(point_count); |
820 | Q_ASSERT(curves); |
821 | |
822 | *point_count = 0; |
823 | if (qt_is_nan(d: rect.x()) || qt_is_nan(d: rect.y()) || qt_is_nan(d: rect.width()) || qt_is_nan(d: rect.height()) |
824 | || qt_is_nan(d: startAngle) || qt_is_nan(d: sweepLength)) { |
825 | qWarning(msg: "QPainterPath::arcTo: Adding arc where a parameter is NaN, results are undefined" ); |
826 | return QPointF(); |
827 | } |
828 | |
829 | if (rect.isNull()) { |
830 | return QPointF(); |
831 | } |
832 | |
833 | qreal x = rect.x(); |
834 | qreal y = rect.y(); |
835 | |
836 | qreal w = rect.width(); |
837 | qreal w2 = rect.width() / 2; |
838 | qreal w2k = w2 * QT_PATH_KAPPA; |
839 | |
840 | qreal h = rect.height(); |
841 | qreal h2 = rect.height() / 2; |
842 | qreal h2k = h2 * QT_PATH_KAPPA; |
843 | |
844 | QPointF points[16] = |
845 | { |
846 | // start point |
847 | QPointF(x + w, y + h2), |
848 | |
849 | // 0 -> 270 degrees |
850 | QPointF(x + w, y + h2 + h2k), |
851 | QPointF(x + w2 + w2k, y + h), |
852 | QPointF(x + w2, y + h), |
853 | |
854 | // 270 -> 180 degrees |
855 | QPointF(x + w2 - w2k, y + h), |
856 | QPointF(x, y + h2 + h2k), |
857 | QPointF(x, y + h2), |
858 | |
859 | // 180 -> 90 degrees |
860 | QPointF(x, y + h2 - h2k), |
861 | QPointF(x + w2 - w2k, y), |
862 | QPointF(x + w2, y), |
863 | |
864 | // 90 -> 0 degrees |
865 | QPointF(x + w2 + w2k, y), |
866 | QPointF(x + w, y + h2 - h2k), |
867 | QPointF(x + w, y + h2) |
868 | }; |
869 | |
870 | if (sweepLength > 360) sweepLength = 360; |
871 | else if (sweepLength < -360) sweepLength = -360; |
872 | |
873 | // Special case fast paths |
874 | if (startAngle == 0.0) { |
875 | if (sweepLength == 360.0) { |
876 | for (int i = 11; i >= 0; --i) |
877 | curves[(*point_count)++] = points[i]; |
878 | return points[12]; |
879 | } else if (sweepLength == -360.0) { |
880 | for (int i = 1; i <= 12; ++i) |
881 | curves[(*point_count)++] = points[i]; |
882 | return points[0]; |
883 | } |
884 | } |
885 | |
886 | int startSegment = int(qFloor(v: startAngle / 90)); |
887 | int endSegment = int(qFloor(v: (startAngle + sweepLength) / 90)); |
888 | |
889 | qreal startT = (startAngle - startSegment * 90) / 90; |
890 | qreal endT = (startAngle + sweepLength - endSegment * 90) / 90; |
891 | |
892 | int delta = sweepLength > 0 ? 1 : -1; |
893 | if (delta < 0) { |
894 | startT = 1 - startT; |
895 | endT = 1 - endT; |
896 | } |
897 | |
898 | // avoid empty start segment |
899 | if (qFuzzyIsNull(d: startT - qreal(1))) { |
900 | startT = 0; |
901 | startSegment += delta; |
902 | } |
903 | |
904 | // avoid empty end segment |
905 | if (qFuzzyIsNull(d: endT)) { |
906 | endT = 1; |
907 | endSegment -= delta; |
908 | } |
909 | |
910 | startT = qt_t_for_arc_angle(angle: startT * 90); |
911 | endT = qt_t_for_arc_angle(angle: endT * 90); |
912 | |
913 | const bool splitAtStart = !qFuzzyIsNull(d: startT); |
914 | const bool splitAtEnd = !qFuzzyIsNull(d: endT - qreal(1)); |
915 | |
916 | const int end = endSegment + delta; |
917 | |
918 | // empty arc? |
919 | if (startSegment == end) { |
920 | const int quadrant = 3 - ((startSegment % 4) + 4) % 4; |
921 | const int j = 3 * quadrant; |
922 | return delta > 0 ? points[j + 3] : points[j]; |
923 | } |
924 | |
925 | QPointF startPoint, endPoint; |
926 | qt_find_ellipse_coords(r: rect, angle: startAngle, length: sweepLength, startPoint: &startPoint, endPoint: &endPoint); |
927 | |
928 | for (int i = startSegment; i != end; i += delta) { |
929 | const int quadrant = 3 - ((i % 4) + 4) % 4; |
930 | const int j = 3 * quadrant; |
931 | |
932 | QBezier b; |
933 | if (delta > 0) |
934 | b = QBezier::fromPoints(p1: points[j + 3], p2: points[j + 2], p3: points[j + 1], p4: points[j]); |
935 | else |
936 | b = QBezier::fromPoints(p1: points[j], p2: points[j + 1], p3: points[j + 2], p4: points[j + 3]); |
937 | |
938 | // empty arc? |
939 | if (startSegment == endSegment && qFuzzyCompare(p1: startT, p2: endT)) |
940 | return startPoint; |
941 | |
942 | if (i == startSegment) { |
943 | if (i == endSegment && splitAtEnd) |
944 | b = b.bezierOnInterval(t0: startT, t1: endT); |
945 | else if (splitAtStart) |
946 | b = b.bezierOnInterval(t0: startT, t1: 1); |
947 | } else if (i == endSegment && splitAtEnd) { |
948 | b = b.bezierOnInterval(t0: 0, t1: endT); |
949 | } |
950 | |
951 | // push control points |
952 | curves[(*point_count)++] = b.pt2(); |
953 | curves[(*point_count)++] = b.pt3(); |
954 | curves[(*point_count)++] = b.pt4(); |
955 | } |
956 | |
957 | Q_ASSERT(*point_count > 0); |
958 | curves[*(point_count)-1] = endPoint; |
959 | |
960 | return startPoint; |
961 | } |
962 | |
963 | |
964 | static inline void qdashstroker_moveTo(qfixed x, qfixed y, void *data) { |
965 | ((QStroker *) data)->moveTo(x, y); |
966 | } |
967 | |
968 | static inline void qdashstroker_lineTo(qfixed x, qfixed y, void *data) { |
969 | ((QStroker *) data)->lineTo(x, y); |
970 | } |
971 | |
972 | static inline void qdashstroker_cubicTo(qfixed, qfixed, qfixed, qfixed, qfixed, qfixed, void *) { |
973 | Q_ASSERT(0); |
974 | // ((QStroker *) data)->cubicTo(c1x, c1y, c2x, c2y, ex, ey); |
975 | } |
976 | |
977 | |
978 | /******************************************************************************* |
979 | * QDashStroker members |
980 | */ |
981 | QDashStroker::QDashStroker(QStroker *stroker) |
982 | : m_stroker(stroker), m_dashOffset(0), m_stroke_width(1), m_miter_limit(1) |
983 | { |
984 | if (m_stroker) { |
985 | setMoveToHook(qdashstroker_moveTo); |
986 | setLineToHook(qdashstroker_lineTo); |
987 | setCubicToHook(qdashstroker_cubicTo); |
988 | } |
989 | } |
990 | |
991 | QDashStroker::~QDashStroker() |
992 | { |
993 | } |
994 | |
995 | QList<qfixed> QDashStroker::patternForStyle(Qt::PenStyle style) |
996 | { |
997 | const qfixed space = 2; |
998 | const qfixed dot = 1; |
999 | const qfixed dash = 4; |
1000 | |
1001 | QList<qfixed> pattern; |
1002 | |
1003 | switch (style) { |
1004 | case Qt::DashLine: |
1005 | pattern << dash << space; |
1006 | break; |
1007 | case Qt::DotLine: |
1008 | pattern << dot << space; |
1009 | break; |
1010 | case Qt::DashDotLine: |
1011 | pattern << dash << space << dot << space; |
1012 | break; |
1013 | case Qt::DashDotDotLine: |
1014 | pattern << dash << space << dot << space << dot << space; |
1015 | break; |
1016 | default: |
1017 | break; |
1018 | } |
1019 | |
1020 | return pattern; |
1021 | } |
1022 | |
1023 | static inline bool lineRectIntersectsRect(qfixed2d p1, qfixed2d p2, const qfixed2d &tl, const qfixed2d &br) |
1024 | { |
1025 | return ((p1.x > tl.x || p2.x > tl.x) && (p1.x < br.x || p2.x < br.x) |
1026 | && (p1.y > tl.y || p2.y > tl.y) && (p1.y < br.y || p2.y < br.y)); |
1027 | } |
1028 | |
1029 | // If the line intersects the rectangle, this function will return true. |
1030 | static bool lineIntersectsRect(qfixed2d p1, qfixed2d p2, const qfixed2d &tl, const qfixed2d &br) |
1031 | { |
1032 | if (!lineRectIntersectsRect(p1, p2, tl, br)) |
1033 | return false; |
1034 | if (p1.x == p2.x || p1.y == p2.y) |
1035 | return true; |
1036 | |
1037 | if (p1.y > p2.y) |
1038 | qSwap(value1&: p1, value2&: p2); // make p1 above p2 |
1039 | qfixed2d u; |
1040 | qfixed2d v; |
1041 | qfixed2d w = {.x: p2.x - p1.x, .y: p2.y - p1.y}; |
1042 | if (p1.x < p2.x) { |
1043 | // backslash |
1044 | u.x = tl.x - p1.x; u.y = br.y - p1.y; |
1045 | v.x = br.x - p1.x; v.y = tl.y - p1.y; |
1046 | } else { |
1047 | // slash |
1048 | u.x = tl.x - p1.x; u.y = tl.y - p1.y; |
1049 | v.x = br.x - p1.x; v.y = br.y - p1.y; |
1050 | } |
1051 | #if defined(QFIXED_IS_26_6) || defined(QFIXED_IS_16_16) |
1052 | qint64 val1 = qint64(u.x) * qint64(w.y) - qint64(u.y) * qint64(w.x); |
1053 | qint64 val2 = qint64(v.x) * qint64(w.y) - qint64(v.y) * qint64(w.x); |
1054 | return (val1 < 0 && val2 > 0) || (val1 > 0 && val2 < 0); |
1055 | #elif defined(QFIXED_IS_32_32) |
1056 | // Cannot do proper test because it may overflow. |
1057 | return true; |
1058 | #else |
1059 | qreal val1 = u.x * w.y - u.y * w.x; |
1060 | qreal val2 = v.x * w.y - v.y * w.x; |
1061 | return (val1 < 0 && val2 > 0) || (val1 > 0 && val2 < 0); |
1062 | #endif |
1063 | } |
1064 | |
1065 | void QDashStroker::processCurrentSubpath() |
1066 | { |
1067 | int dashCount = qMin(a: m_dashPattern.size(), b: 32); |
1068 | qfixed dashes[32]; |
1069 | |
1070 | if (m_stroker) { |
1071 | m_customData = m_stroker; |
1072 | m_stroke_width = m_stroker->strokeWidth(); |
1073 | m_miter_limit = m_stroker->miterLimit(); |
1074 | } |
1075 | |
1076 | qreal longestLength = 0; |
1077 | qreal sumLength = 0; |
1078 | for (int i=0; i<dashCount; ++i) { |
1079 | dashes[i] = qMax(a: m_dashPattern.at(i), b: qreal(0)) * m_stroke_width; |
1080 | sumLength += dashes[i]; |
1081 | if (dashes[i] > longestLength) |
1082 | longestLength = dashes[i]; |
1083 | } |
1084 | |
1085 | if (qFuzzyIsNull(d: sumLength)) |
1086 | return; |
1087 | |
1088 | qreal invSumLength = qreal(1) / sumLength; |
1089 | |
1090 | Q_ASSERT(dashCount > 0); |
1091 | |
1092 | dashCount = dashCount & -2; // Round down to even number |
1093 | |
1094 | int idash = 0; // Index to current dash |
1095 | qreal pos = 0; // The position on the curve, 0 <= pos <= path.length |
1096 | qreal elen = 0; // element length |
1097 | qreal doffset = m_dashOffset * m_stroke_width; |
1098 | |
1099 | // make sure doffset is in range [0..sumLength) |
1100 | doffset = std::fmod(x: doffset, y: sumLength); |
1101 | if (doffset < 0) |
1102 | doffset += sumLength; |
1103 | |
1104 | while (doffset >= dashes[idash]) { |
1105 | doffset -= dashes[idash]; |
1106 | if (++idash >= dashCount) |
1107 | idash = 0; |
1108 | } |
1109 | |
1110 | qreal estart = 0; // The elements starting position |
1111 | qreal estop = 0; // The element stop position |
1112 | |
1113 | QLineF cline; |
1114 | |
1115 | QSubpathFlatIterator it(&m_elements, m_dashThreshold); |
1116 | qfixed2d prev = it.next(); |
1117 | if (!prev.isFinite()) |
1118 | return; |
1119 | |
1120 | bool clipping = !m_clip_rect.isEmpty(); |
1121 | qfixed2d move_to_pos = prev; |
1122 | qfixed2d line_to_pos; |
1123 | |
1124 | // Pad to avoid clipping the borders of thick pens. |
1125 | qfixed padding = qt_real_to_fixed(qMax(m_stroke_width, m_miter_limit) * longestLength); |
1126 | qfixed2d clip_tl = { qt_real_to_fixed(m_clip_rect.left()) - padding, |
1127 | qt_real_to_fixed(m_clip_rect.top()) - padding }; |
1128 | qfixed2d clip_br = { qt_real_to_fixed(m_clip_rect.right()) + padding , |
1129 | qt_real_to_fixed(m_clip_rect.bottom()) + padding }; |
1130 | |
1131 | bool hasMoveTo = false; |
1132 | while (it.hasNext()) { |
1133 | QStrokerOps::Element e = it.next(); |
1134 | if (!qfixed2d(e).isFinite()) |
1135 | continue; |
1136 | |
1137 | Q_ASSERT(e.isLineTo()); |
1138 | cline = QLineF(qt_fixed_to_real(prev.x), |
1139 | qt_fixed_to_real(prev.y), |
1140 | qt_fixed_to_real(e.x), |
1141 | qt_fixed_to_real(e.y)); |
1142 | elen = cline.length(); |
1143 | |
1144 | estop = estart + elen; |
1145 | |
1146 | bool done = pos >= estop; |
1147 | |
1148 | // Check if the entire line should be clipped away or simplified |
1149 | bool clipIt = clipping && !lineIntersectsRect(p1: prev, p2: e, tl: clip_tl, br: clip_br); |
1150 | bool skipDashing = elen * invSumLength > repetitionLimit(); |
1151 | int maxDashes = dashCount; |
1152 | if (skipDashing || clipIt) { |
1153 | // Cut away full dash sequences. |
1154 | elen -= std::floor(x: elen * invSumLength) * sumLength; |
1155 | // Update dash offset. |
1156 | while (!done) { |
1157 | qreal dpos = pos + dashes[idash] - doffset - estart; |
1158 | |
1159 | Q_ASSERT(dpos >= 0); |
1160 | |
1161 | if (dpos > elen) { // dash extends this line |
1162 | doffset = dashes[idash] - (dpos - elen); // subtract the part already used |
1163 | pos = estop; // move pos to next path element |
1164 | done = true; |
1165 | } else { // Dash is on this line |
1166 | pos = --maxDashes > 0 ? dpos + estart : estop; |
1167 | done = pos >= estop; |
1168 | if (++idash >= dashCount) |
1169 | idash = 0; |
1170 | doffset = 0; // full segment so no offset on next. |
1171 | } |
1172 | } |
1173 | if (clipIt) { |
1174 | hasMoveTo = false; |
1175 | } else { |
1176 | // skip costly dashing, just draw solid line |
1177 | if (!hasMoveTo) { |
1178 | emitMoveTo(x: move_to_pos.x, y: move_to_pos.y); |
1179 | hasMoveTo = true; |
1180 | } |
1181 | emitLineTo(x: e.x, y: e.y); |
1182 | } |
1183 | move_to_pos = e; |
1184 | } |
1185 | |
1186 | // Dash away... |
1187 | while (!done) { |
1188 | QPointF p2; |
1189 | |
1190 | bool has_offset = doffset > 0; |
1191 | bool evenDash = (idash & 1) == 0; |
1192 | qreal dpos = pos + dashes[idash] - doffset - estart; |
1193 | |
1194 | Q_ASSERT(dpos >= 0); |
1195 | |
1196 | if (dpos > elen) { // dash extends this line |
1197 | doffset = dashes[idash] - (dpos - elen); // subtract the part already used |
1198 | pos = estop; // move pos to next path element |
1199 | done = true; |
1200 | p2 = cline.p2(); |
1201 | } else { // Dash is on this line |
1202 | p2 = cline.pointAt(t: dpos/elen); |
1203 | pos = dpos + estart; |
1204 | done = pos >= estop; |
1205 | if (++idash >= dashCount) |
1206 | idash = 0; |
1207 | doffset = 0; // full segment so no offset on next. |
1208 | } |
1209 | |
1210 | if (evenDash) { |
1211 | line_to_pos.x = qt_real_to_fixed(p2.x()); |
1212 | line_to_pos.y = qt_real_to_fixed(p2.y()); |
1213 | |
1214 | if (!clipping |
1215 | || lineRectIntersectsRect(p1: move_to_pos, p2: line_to_pos, tl: clip_tl, br: clip_br)) |
1216 | { |
1217 | // If we have an offset, we're continuing a dash |
1218 | // from a previous element and should only |
1219 | // continue the current dash, without starting a |
1220 | // new subpath. |
1221 | if (!has_offset || !hasMoveTo) { |
1222 | emitMoveTo(x: move_to_pos.x, y: move_to_pos.y); |
1223 | hasMoveTo = true; |
1224 | } |
1225 | |
1226 | emitLineTo(x: line_to_pos.x, y: line_to_pos.y); |
1227 | } else { |
1228 | hasMoveTo = false; |
1229 | } |
1230 | move_to_pos = line_to_pos; |
1231 | } else { |
1232 | move_to_pos.x = qt_real_to_fixed(p2.x()); |
1233 | move_to_pos.y = qt_real_to_fixed(p2.y()); |
1234 | } |
1235 | } |
1236 | |
1237 | // Shuffle to the next cycle... |
1238 | estart = estop; |
1239 | prev = e; |
1240 | } |
1241 | |
1242 | } |
1243 | |
1244 | QT_END_NAMESPACE |
1245 | |