| 1 | // Copyright (C) 2016 The Qt Company Ltd. |
| 2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 3 | |
| 4 | #include "qtriangulator_p.h" |
| 5 | |
| 6 | #include <QtGui/qevent.h> |
| 7 | #include <QtGui/qpainter.h> |
| 8 | #include <QtGui/qpainterpath.h> |
| 9 | #include <QtGui/private/qbezier_p.h> |
| 10 | #include <QtGui/private/qdatabuffer_p.h> |
| 11 | #include <QtCore/qbitarray.h> |
| 12 | #include <QtCore/qvarlengtharray.h> |
| 13 | #include <QtCore/qqueue.h> |
| 14 | #include <QtCore/qglobal.h> |
| 15 | #include <QtCore/qpoint.h> |
| 16 | #include <QtCore/qalgorithms.h> |
| 17 | #include <private/qrbtree_p.h> |
| 18 | |
| 19 | QT_BEGIN_NAMESPACE |
| 20 | |
| 21 | //#define Q_TRIANGULATOR_DEBUG |
| 22 | |
| 23 | #define Q_FIXED_POINT_SCALE 32 |
| 24 | |
| 25 | template<typename T> |
| 26 | struct QVertexSet |
| 27 | { |
| 28 | inline QVertexSet() { } |
| 29 | inline QVertexSet(const QVertexSet<T> &other) : vertices(other.vertices), indices(other.indices) { } |
| 30 | QVertexSet<T> &operator = (const QVertexSet<T> &other) {vertices = other.vertices; indices = other.indices; return *this;} |
| 31 | |
| 32 | // The vertices of a triangle are given by: (x[i[n]], y[i[n]]), (x[j[n]], y[j[n]]), (x[k[n]], y[k[n]]), n = 0, 1, ... |
| 33 | QList<qreal> vertices; // [x[0], y[0], x[1], y[1], x[2], ...] |
| 34 | QList<T> indices; // [i[0], j[0], k[0], i[1], j[1], k[1], i[2], ...] |
| 35 | }; |
| 36 | |
| 37 | //============================================================================// |
| 38 | // QFraction // |
| 39 | //============================================================================// |
| 40 | |
| 41 | // Fraction must be in the range [0, 1) |
| 42 | struct QFraction |
| 43 | { |
| 44 | // Comparison operators must not be called on invalid fractions. |
| 45 | inline bool operator < (const QFraction &other) const; |
| 46 | inline bool operator == (const QFraction &other) const; |
| 47 | inline bool operator != (const QFraction &other) const {return !(*this == other);} |
| 48 | inline bool operator > (const QFraction &other) const {return other < *this;} |
| 49 | inline bool operator >= (const QFraction &other) const {return !(*this < other);} |
| 50 | inline bool operator <= (const QFraction &other) const {return !(*this > other);} |
| 51 | |
| 52 | inline bool isValid() const {return denominator != 0;} |
| 53 | |
| 54 | // numerator and denominator must not have common denominators. |
| 55 | quint64 numerator, denominator; |
| 56 | }; |
| 57 | |
| 58 | static inline quint64 gcd(quint64 x, quint64 y) |
| 59 | { |
| 60 | while (y != 0) { |
| 61 | quint64 z = y; |
| 62 | y = x % y; |
| 63 | x = z; |
| 64 | } |
| 65 | return x; |
| 66 | } |
| 67 | |
| 68 | static inline int compare(quint64 a, quint64 b) |
| 69 | { |
| 70 | return (a > b) - (a < b); |
| 71 | } |
| 72 | |
| 73 | // Compare a/b with c/d. |
| 74 | // Return negative if less, 0 if equal, positive if greater. |
| 75 | // a < b, c < d |
| 76 | static int qCompareFractions(quint64 a, quint64 b, quint64 c, quint64 d) |
| 77 | { |
| 78 | const quint64 LIMIT = Q_UINT64_C(0x100000000); |
| 79 | for (;;) { |
| 80 | // If the products 'ad' and 'bc' fit into 64 bits, they can be directly compared. |
| 81 | if (b < LIMIT && d < LIMIT) |
| 82 | return compare(a: a * d, b: b * c); |
| 83 | |
| 84 | if (a == 0 || c == 0) |
| 85 | return compare(a, b: c); |
| 86 | |
| 87 | // a/b < c/d <=> d/c < b/a |
| 88 | quint64 b_div_a = b / a; |
| 89 | quint64 d_div_c = d / c; |
| 90 | if (b_div_a != d_div_c) |
| 91 | return compare(a: d_div_c, b: b_div_a); |
| 92 | |
| 93 | // floor(d/c) == floor(b/a) |
| 94 | // frac(d/c) < frac(b/a) ? |
| 95 | // frac(x/y) = (x%y)/y |
| 96 | d -= d_div_c * c; //d %= c; |
| 97 | b -= b_div_a * a; //b %= a; |
| 98 | qSwap(value1&: a, value2&: d); |
| 99 | qSwap(value1&: b, value2&: c); |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | // Fraction must be in the range [0, 1) |
| 104 | // Assume input is valid. |
| 105 | static QFraction qFraction(quint64 n, quint64 d) { |
| 106 | QFraction result; |
| 107 | if (n == 0) { |
| 108 | result.numerator = 0; |
| 109 | result.denominator = 1; |
| 110 | } else { |
| 111 | quint64 g = gcd(x: n, y: d); |
| 112 | result.numerator = n / g; |
| 113 | result.denominator = d / g; |
| 114 | } |
| 115 | return result; |
| 116 | } |
| 117 | |
| 118 | inline bool QFraction::operator < (const QFraction &other) const |
| 119 | { |
| 120 | return qCompareFractions(a: numerator, b: denominator, c: other.numerator, d: other.denominator) < 0; |
| 121 | } |
| 122 | |
| 123 | inline bool QFraction::operator == (const QFraction &other) const |
| 124 | { |
| 125 | return numerator == other.numerator && denominator == other.denominator; |
| 126 | } |
| 127 | |
| 128 | //============================================================================// |
| 129 | // QPodPoint // |
| 130 | //============================================================================// |
| 131 | |
| 132 | struct QPodPoint |
| 133 | { |
| 134 | inline bool operator < (const QPodPoint &other) const |
| 135 | { |
| 136 | if (y != other.y) |
| 137 | return y < other.y; |
| 138 | return x < other.x; |
| 139 | } |
| 140 | |
| 141 | inline bool operator > (const QPodPoint &other) const {return other < *this;} |
| 142 | inline bool operator <= (const QPodPoint &other) const {return !(*this > other);} |
| 143 | inline bool operator >= (const QPodPoint &other) const {return !(*this < other);} |
| 144 | inline bool operator == (const QPodPoint &other) const {return x == other.x && y == other.y;} |
| 145 | inline bool operator != (const QPodPoint &other) const {return x != other.x || y != other.y;} |
| 146 | |
| 147 | inline QPodPoint &operator += (const QPodPoint &other) {x += other.x; y += other.y; return *this;} |
| 148 | inline QPodPoint &operator -= (const QPodPoint &other) {x -= other.x; y -= other.y; return *this;} |
| 149 | inline QPodPoint operator + (const QPodPoint &other) const {QPodPoint result = {.x: x + other.x, .y: y + other.y}; return result;} |
| 150 | inline QPodPoint operator - (const QPodPoint &other) const {QPodPoint result = {.x: x - other.x, .y: y - other.y}; return result;} |
| 151 | |
| 152 | int x; |
| 153 | int y; |
| 154 | }; |
| 155 | |
| 156 | static inline qint64 qCross(const QPodPoint &u, const QPodPoint &v) |
| 157 | { |
| 158 | return qint64(u.x) * qint64(v.y) - qint64(u.y) * qint64(v.x); |
| 159 | } |
| 160 | |
| 161 | #ifdef Q_TRIANGULATOR_DEBUG |
| 162 | static inline qint64 qDot(const QPodPoint &u, const QPodPoint &v) |
| 163 | { |
| 164 | return qint64(u.x) * qint64(v.x) + qint64(u.y) * qint64(v.y); |
| 165 | } |
| 166 | #endif |
| 167 | |
| 168 | // Return positive value if 'p' is to the right of the line 'v1'->'v2', negative if left of the |
| 169 | // line and zero if exactly on the line. |
| 170 | // The returned value is the z-component of the qCross product between 'v2-v1' and 'p-v1', |
| 171 | // which is twice the signed area of the triangle 'p'->'v1'->'v2' (positive for CW order). |
| 172 | static inline qint64 qPointDistanceFromLine(const QPodPoint &p, const QPodPoint &v1, const QPodPoint &v2) |
| 173 | { |
| 174 | return qCross(u: v2 - v1, v: p - v1); |
| 175 | } |
| 176 | |
| 177 | static inline bool qPointIsLeftOfLine(const QPodPoint &p, const QPodPoint &v1, const QPodPoint &v2) |
| 178 | { |
| 179 | return QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(p, v1, v2) < 0; |
| 180 | } |
| 181 | |
| 182 | //============================================================================// |
| 183 | // QIntersectionPoint // |
| 184 | //============================================================================// |
| 185 | |
| 186 | struct QIntersectionPoint |
| 187 | { |
| 188 | inline bool isValid() const {return xOffset.isValid() && yOffset.isValid();} |
| 189 | QPodPoint round() const; |
| 190 | inline bool isAccurate() const {return xOffset.numerator == 0 && yOffset.numerator == 0;} |
| 191 | bool operator < (const QIntersectionPoint &other) const; |
| 192 | bool operator == (const QIntersectionPoint &other) const; |
| 193 | inline bool operator != (const QIntersectionPoint &other) const {return !(*this == other);} |
| 194 | inline bool operator > (const QIntersectionPoint &other) const {return other < *this;} |
| 195 | inline bool operator >= (const QIntersectionPoint &other) const {return !(*this < other);} |
| 196 | inline bool operator <= (const QIntersectionPoint &other) const {return !(*this > other);} |
| 197 | bool isOnLine(const QPodPoint &u, const QPodPoint &v) const; |
| 198 | |
| 199 | QPodPoint upperLeft; |
| 200 | QFraction xOffset; |
| 201 | QFraction yOffset; |
| 202 | }; |
| 203 | |
| 204 | static inline QIntersectionPoint qIntersectionPoint(const QPodPoint &point) |
| 205 | { |
| 206 | // upperLeft = point, xOffset = 0/1, yOffset = 0/1. |
| 207 | QIntersectionPoint p = {.upperLeft: {.x: point.x, .y: point.y}, .xOffset: {.numerator: 0, .denominator: 1}, .yOffset: {.numerator: 0, .denominator: 1}}; |
| 208 | return p; |
| 209 | } |
| 210 | |
| 211 | static QIntersectionPoint qIntersectionPoint(const QPodPoint &u1, const QPodPoint &u2, const QPodPoint &v1, const QPodPoint &v2) |
| 212 | { |
| 213 | QIntersectionPoint result = {.upperLeft: {.x: 0, .y: 0}, .xOffset: {.numerator: 0, .denominator: 0}, .yOffset: {.numerator: 0, .denominator: 0}}; |
| 214 | |
| 215 | QPodPoint u = u2 - u1; |
| 216 | QPodPoint v = v2 - v1; |
| 217 | qint64 d1 = qCross(u, v: v1 - u1); |
| 218 | qint64 d2 = qCross(u, v: v2 - u1); |
| 219 | qint64 det = d2 - d1; |
| 220 | qint64 d3 = qCross(u: v, v: u1 - v1); |
| 221 | qint64 d4 = d3 - det; //qCross(v, u2 - v1); |
| 222 | |
| 223 | // Check that the math is correct. |
| 224 | Q_ASSERT(d4 == qCross(v, u2 - v1)); |
| 225 | |
| 226 | // The intersection point can be expressed as: |
| 227 | // v1 - v * d1/det |
| 228 | // v2 - v * d2/det |
| 229 | // u1 + u * d3/det |
| 230 | // u2 + u * d4/det |
| 231 | |
| 232 | // I'm only interested in lines that are crossing, so ignore parallel lines even if they overlap. |
| 233 | if (det == 0) |
| 234 | return result; |
| 235 | |
| 236 | if (det < 0) { |
| 237 | det = -det; |
| 238 | d1 = -d1; |
| 239 | d2 = -d2; |
| 240 | d3 = -d3; |
| 241 | d4 = -d4; |
| 242 | } |
| 243 | |
| 244 | // I'm only interested in lines intersecting at their interior, not at their end points. |
| 245 | // The lines intersect at their interior if and only if 'd1 < 0', 'd2 > 0', 'd3 < 0' and 'd4 > 0'. |
| 246 | if (d1 >= 0 || d2 <= 0 || d3 <= 0 || d4 >= 0) |
| 247 | return result; |
| 248 | |
| 249 | // Calculate the intersection point as follows: |
| 250 | // v1 - v * d1/det | v1 <= v2 (component-wise) |
| 251 | // v2 - v * d2/det | v2 < v1 (component-wise) |
| 252 | |
| 253 | // Assuming 21 bits per vector component. |
| 254 | // TODO: Make code path for 31 bits per vector component. |
| 255 | if (v.x >= 0) { |
| 256 | result.upperLeft.x = v1.x + (-v.x * d1) / det; |
| 257 | result.xOffset = qFraction(n: quint64(-v.x * d1) % quint64(det), d: quint64(det)); |
| 258 | } else { |
| 259 | result.upperLeft.x = v2.x + (-v.x * d2) / det; |
| 260 | result.xOffset = qFraction(n: quint64(-v.x * d2) % quint64(det), d: quint64(det)); |
| 261 | } |
| 262 | |
| 263 | if (v.y >= 0) { |
| 264 | result.upperLeft.y = v1.y + (-v.y * d1) / det; |
| 265 | result.yOffset = qFraction(n: quint64(-v.y * d1) % quint64(det), d: quint64(det)); |
| 266 | } else { |
| 267 | result.upperLeft.y = v2.y + (-v.y * d2) / det; |
| 268 | result.yOffset = qFraction(n: quint64(-v.y * d2) % quint64(det), d: quint64(det)); |
| 269 | } |
| 270 | |
| 271 | Q_ASSERT(result.xOffset.isValid()); |
| 272 | Q_ASSERT(result.yOffset.isValid()); |
| 273 | return result; |
| 274 | } |
| 275 | |
| 276 | QPodPoint QIntersectionPoint::round() const |
| 277 | { |
| 278 | QPodPoint result = upperLeft; |
| 279 | if (2 * xOffset.numerator >= xOffset.denominator) |
| 280 | ++result.x; |
| 281 | if (2 * yOffset.numerator >= yOffset.denominator) |
| 282 | ++result.y; |
| 283 | return result; |
| 284 | } |
| 285 | |
| 286 | bool QIntersectionPoint::operator < (const QIntersectionPoint &other) const |
| 287 | { |
| 288 | if (upperLeft.y != other.upperLeft.y) |
| 289 | return upperLeft.y < other.upperLeft.y; |
| 290 | if (yOffset != other.yOffset) |
| 291 | return yOffset < other.yOffset; |
| 292 | if (upperLeft.x != other.upperLeft.x) |
| 293 | return upperLeft.x < other.upperLeft.x; |
| 294 | return xOffset < other.xOffset; |
| 295 | } |
| 296 | |
| 297 | bool QIntersectionPoint::operator == (const QIntersectionPoint &other) const |
| 298 | { |
| 299 | return upperLeft == other.upperLeft && xOffset == other.xOffset && yOffset == other.yOffset; |
| 300 | } |
| 301 | |
| 302 | // Returns \c true if this point is on the infinite line passing through 'u' and 'v'. |
| 303 | bool QIntersectionPoint::isOnLine(const QPodPoint &u, const QPodPoint &v) const |
| 304 | { |
| 305 | // TODO: Make code path for coordinates with more than 21 bits. |
| 306 | const QPodPoint p = upperLeft - u; |
| 307 | const QPodPoint q = v - u; |
| 308 | bool isHorizontal = p.y == 0 && yOffset.numerator == 0; |
| 309 | bool isVertical = p.x == 0 && xOffset.numerator == 0; |
| 310 | if (isHorizontal && isVertical) |
| 311 | return true; |
| 312 | if (isHorizontal) |
| 313 | return q.y == 0; |
| 314 | if (q.y == 0) |
| 315 | return false; |
| 316 | if (isVertical) |
| 317 | return q.x == 0; |
| 318 | if (q.x == 0) |
| 319 | return false; |
| 320 | |
| 321 | // At this point, 'p+offset' and 'q' cannot lie on the x or y axis. |
| 322 | |
| 323 | if (((q.x < 0) == (q.y < 0)) != ((p.x < 0) == (p.y < 0))) |
| 324 | return false; // 'p + offset' and 'q' pass through different quadrants. |
| 325 | |
| 326 | // Move all coordinates into the first quadrant. |
| 327 | quint64 nx, ny; |
| 328 | if (p.x < 0) |
| 329 | nx = quint64(-p.x) * xOffset.denominator - xOffset.numerator; |
| 330 | else |
| 331 | nx = quint64(p.x) * xOffset.denominator + xOffset.numerator; |
| 332 | if (p.y < 0) |
| 333 | ny = quint64(-p.y) * yOffset.denominator - yOffset.numerator; |
| 334 | else |
| 335 | ny = quint64(p.y) * yOffset.denominator + yOffset.numerator; |
| 336 | |
| 337 | return qFraction(n: quint64(qAbs(t: q.x)) * xOffset.denominator, d: quint64(qAbs(t: q.y)) * yOffset.denominator) == qFraction(n: nx, d: ny); |
| 338 | } |
| 339 | |
| 340 | //============================================================================// |
| 341 | // QMaxHeap // |
| 342 | //============================================================================// |
| 343 | |
| 344 | template <class T> |
| 345 | class QMaxHeap |
| 346 | { |
| 347 | public: |
| 348 | QMaxHeap() : m_data(0) {} |
| 349 | inline int size() const {return m_data.size();} |
| 350 | inline bool empty() const {return m_data.isEmpty();} |
| 351 | inline bool isEmpty() const {return m_data.isEmpty();} |
| 352 | void push(const T &x); |
| 353 | T pop(); |
| 354 | inline const T &top() const {return m_data.first();} |
| 355 | private: |
| 356 | static inline int parent(int i) {return (i - 1) / 2;} |
| 357 | static inline int left(int i) {return 2 * i + 1;} |
| 358 | static inline int right(int i) {return 2 * i + 2;} |
| 359 | |
| 360 | QDataBuffer<T> m_data; |
| 361 | }; |
| 362 | |
| 363 | template <class T> |
| 364 | void QMaxHeap<T>::push(const T &x) |
| 365 | { |
| 366 | int current = m_data.size(); |
| 367 | int parent = QMaxHeap::parent(i: current); |
| 368 | m_data.add(x); |
| 369 | while (current != 0 && m_data.at(parent) < x) { |
| 370 | m_data.at(current) = m_data.at(parent); |
| 371 | current = parent; |
| 372 | parent = QMaxHeap::parent(i: current); |
| 373 | } |
| 374 | m_data.at(current) = x; |
| 375 | } |
| 376 | |
| 377 | template <class T> |
| 378 | T QMaxHeap<T>::pop() |
| 379 | { |
| 380 | T result = m_data.first(); |
| 381 | T back = m_data.last(); |
| 382 | m_data.pop_back(); |
| 383 | if (!m_data.isEmpty()) { |
| 384 | int current = 0; |
| 385 | for (;;) { |
| 386 | int left = QMaxHeap::left(i: current); |
| 387 | int right = QMaxHeap::right(i: current); |
| 388 | if (left >= m_data.size()) |
| 389 | break; |
| 390 | int greater = left; |
| 391 | if (right < m_data.size() && m_data.at(left) < m_data.at(right)) |
| 392 | greater = right; |
| 393 | if (m_data.at(greater) < back) |
| 394 | break; |
| 395 | m_data.at(current) = m_data.at(greater); |
| 396 | current = greater; |
| 397 | } |
| 398 | m_data.at(current) = back; |
| 399 | } |
| 400 | return result; |
| 401 | } |
| 402 | |
| 403 | //============================================================================// |
| 404 | // QInt64Hash // |
| 405 | //============================================================================// |
| 406 | |
| 407 | // Copied from qhash.cpp |
| 408 | static const uchar prime_deltas[] = { |
| 409 | 0, 0, 1, 3, 1, 5, 3, 3, 1, 9, 7, 5, 3, 17, 27, 3, |
| 410 | 1, 29, 3, 21, 7, 17, 15, 9, 43, 35, 15, 0, 0, 0, 0, 0 |
| 411 | }; |
| 412 | |
| 413 | // Copied from qhash.cpp |
| 414 | static inline int primeForNumBits(int numBits) |
| 415 | { |
| 416 | return (1 << numBits) + prime_deltas[numBits]; |
| 417 | } |
| 418 | |
| 419 | static inline int primeForCount(int count) |
| 420 | { |
| 421 | int low = 0; |
| 422 | int high = 32; |
| 423 | for (int i = 0; i < 5; ++i) { |
| 424 | int mid = (high + low) / 2; |
| 425 | if (uint(count) >= (1u << mid)) |
| 426 | low = mid; |
| 427 | else |
| 428 | high = mid; |
| 429 | } |
| 430 | return primeForNumBits(numBits: high); |
| 431 | } |
| 432 | |
| 433 | // Hash set of quint64s. Elements cannot be removed without clearing the |
| 434 | // entire set. A value of -1 is used to mark unused entries. |
| 435 | class QInt64Set |
| 436 | { |
| 437 | public: |
| 438 | inline QInt64Set(int capacity = 64); |
| 439 | inline ~QInt64Set() {delete[] m_array;} |
| 440 | inline bool isValid() const {return m_array;} |
| 441 | void insert(quint64 key); |
| 442 | bool contains(quint64 key) const; |
| 443 | inline void clear(); |
| 444 | private: |
| 445 | bool rehash(int capacity); |
| 446 | |
| 447 | static const quint64 UNUSED; |
| 448 | |
| 449 | quint64 *m_array; |
| 450 | int m_capacity; |
| 451 | int m_count; |
| 452 | }; |
| 453 | |
| 454 | const quint64 QInt64Set::UNUSED = quint64(-1); |
| 455 | |
| 456 | inline QInt64Set::QInt64Set(int capacity) |
| 457 | { |
| 458 | m_capacity = primeForCount(count: capacity); |
| 459 | m_array = new quint64[m_capacity]; |
| 460 | clear(); |
| 461 | } |
| 462 | |
| 463 | bool QInt64Set::rehash(int capacity) |
| 464 | { |
| 465 | quint64 *oldArray = m_array; |
| 466 | int oldCapacity = m_capacity; |
| 467 | |
| 468 | m_capacity = capacity; |
| 469 | m_array = new quint64[m_capacity]; |
| 470 | clear(); |
| 471 | for (int i = 0; i < oldCapacity; ++i) { |
| 472 | if (oldArray[i] != UNUSED) |
| 473 | insert(key: oldArray[i]); |
| 474 | } |
| 475 | delete[] oldArray; |
| 476 | return true; |
| 477 | } |
| 478 | |
| 479 | void QInt64Set::insert(quint64 key) |
| 480 | { |
| 481 | if (m_count > 3 * m_capacity / 4) |
| 482 | rehash(capacity: primeForCount(count: 2 * m_capacity)); |
| 483 | int index = int(key % m_capacity); |
| 484 | for (int i = 0; i < m_capacity; ++i) { |
| 485 | index += i; |
| 486 | if (index >= m_capacity) |
| 487 | index -= m_capacity; |
| 488 | if (m_array[index] == key) |
| 489 | return; |
| 490 | if (m_array[index] == UNUSED) { |
| 491 | ++m_count; |
| 492 | m_array[index] = key; |
| 493 | return; |
| 494 | } |
| 495 | } |
| 496 | Q_ASSERT_X(0, "QInt64Hash<T>::insert" , "Hash set full." ); |
| 497 | } |
| 498 | |
| 499 | bool QInt64Set::contains(quint64 key) const |
| 500 | { |
| 501 | int index = int(key % m_capacity); |
| 502 | for (int i = 0; i < m_capacity; ++i) { |
| 503 | index += i; |
| 504 | if (index >= m_capacity) |
| 505 | index -= m_capacity; |
| 506 | if (m_array[index] == key) |
| 507 | return true; |
| 508 | if (m_array[index] == UNUSED) |
| 509 | return false; |
| 510 | } |
| 511 | return false; |
| 512 | } |
| 513 | |
| 514 | inline void QInt64Set::clear() |
| 515 | { |
| 516 | for (int i = 0; i < m_capacity; ++i) |
| 517 | m_array[i] = UNUSED; |
| 518 | m_count = 0; |
| 519 | } |
| 520 | |
| 521 | //============================================================================// |
| 522 | // QTriangulator // |
| 523 | //============================================================================// |
| 524 | template<typename T> |
| 525 | class QTriangulator |
| 526 | { |
| 527 | public: |
| 528 | typedef QVarLengthArray<int, 6> ShortArray; |
| 529 | |
| 530 | //================================// |
| 531 | // QTriangulator::ComplexToSimple // |
| 532 | //================================// |
| 533 | friend class ComplexToSimple; |
| 534 | class ComplexToSimple |
| 535 | { |
| 536 | public: |
| 537 | inline ComplexToSimple(QTriangulator<T> *parent) |
| 538 | : m_parent(parent), m_edges(0), m_events(0), m_splits(0), m_initialPointCount(0) { } |
| 539 | void decompose(); |
| 540 | private: |
| 541 | struct Edge |
| 542 | { |
| 543 | inline int &upper() {return pointingUp ? to : from;} |
| 544 | inline int &lower() {return pointingUp ? from : to;} |
| 545 | inline int upper() const {return pointingUp ? to : from;} |
| 546 | inline int lower() const {return pointingUp ? from : to;} |
| 547 | |
| 548 | QRBTree<int>::Node *node; |
| 549 | int from, to; // vertex |
| 550 | int next, previous; // edge |
| 551 | int winding; |
| 552 | bool mayIntersect; |
| 553 | bool pointingUp, originallyPointingUp; |
| 554 | }; |
| 555 | |
| 556 | struct Intersection |
| 557 | { |
| 558 | bool operator < (const Intersection &other) const {return other.intersectionPoint < intersectionPoint;} |
| 559 | |
| 560 | QIntersectionPoint intersectionPoint; |
| 561 | int vertex; |
| 562 | int leftEdge; |
| 563 | int rightEdge; |
| 564 | }; |
| 565 | |
| 566 | struct Split |
| 567 | { |
| 568 | int vertex; |
| 569 | int edge; |
| 570 | bool accurate; |
| 571 | }; |
| 572 | |
| 573 | struct Event |
| 574 | { |
| 575 | enum Type {Upper, Lower}; |
| 576 | inline bool operator < (const Event &other) const; |
| 577 | |
| 578 | QPodPoint point; |
| 579 | Type type; |
| 580 | int edge; |
| 581 | }; |
| 582 | |
| 583 | #ifdef Q_TRIANGULATOR_DEBUG |
| 584 | friend class DebugDialog; |
| 585 | friend class QTriangulator; |
| 586 | class DebugDialog : public QDialog |
| 587 | { |
| 588 | public: |
| 589 | DebugDialog(ComplexToSimple *parent, int currentVertex); |
| 590 | protected: |
| 591 | void paintEvent(QPaintEvent *); |
| 592 | void wheelEvent(QWheelEvent *); |
| 593 | void mouseMoveEvent(QMouseEvent *); |
| 594 | void mousePressEvent(QMouseEvent *); |
| 595 | private: |
| 596 | ComplexToSimple *m_parent; |
| 597 | QRectF m_window; |
| 598 | QPoint m_lastMousePos; |
| 599 | int m_vertex; |
| 600 | }; |
| 601 | #endif |
| 602 | |
| 603 | void initEdges(); |
| 604 | bool calculateIntersection(int left, int right); |
| 605 | bool edgeIsLeftOfEdge(int leftEdgeIndex, int rightEdgeIndex) const; |
| 606 | QRBTree<int>::Node *searchEdgeLeftOf(int edgeIndex) const; |
| 607 | QRBTree<int>::Node *searchEdgeLeftOf(int edgeIndex, QRBTree<int>::Node *after) const; |
| 608 | QPair<QRBTree<int>::Node *, QRBTree<int>::Node *> bounds(const QPodPoint &point) const; |
| 609 | QPair<QRBTree<int>::Node *, QRBTree<int>::Node *> outerBounds(const QPodPoint &point) const; |
| 610 | void splitEdgeListRange(QRBTree<int>::Node *leftmost, QRBTree<int>::Node *rightmost, int vertex, const QIntersectionPoint &intersectionPoint); |
| 611 | void reorderEdgeListRange(QRBTree<int>::Node *leftmost, QRBTree<int>::Node *rightmost); |
| 612 | void sortEdgeList(const QPodPoint eventPoint); |
| 613 | void fillPriorityQueue(); |
| 614 | void calculateIntersections(); |
| 615 | int splitEdge(int splitIndex); |
| 616 | bool splitEdgesAtIntersections(); |
| 617 | void insertEdgeIntoVectorIfWanted(ShortArray &orderedEdges, int i); |
| 618 | void removeUnwantedEdgesAndConnect(); |
| 619 | void removeUnusedPoints(); |
| 620 | |
| 621 | QTriangulator *m_parent; |
| 622 | QDataBuffer<Edge> m_edges; |
| 623 | QRBTree<int> m_edgeList; |
| 624 | QDataBuffer<Event> m_events; |
| 625 | QDataBuffer<Split> m_splits; |
| 626 | QMaxHeap<Intersection> m_topIntersection; |
| 627 | QInt64Set m_processedEdgePairs; |
| 628 | int m_initialPointCount; |
| 629 | }; |
| 630 | #ifdef Q_TRIANGULATOR_DEBUG |
| 631 | friend class ComplexToSimple::DebugDialog; |
| 632 | #endif |
| 633 | |
| 634 | //=================================// |
| 635 | // QTriangulator::SimpleToMonotone // |
| 636 | //=================================// |
| 637 | friend class SimpleToMonotone; |
| 638 | class SimpleToMonotone |
| 639 | { |
| 640 | public: |
| 641 | inline SimpleToMonotone(QTriangulator<T> *parent) |
| 642 | : m_parent(parent), m_edges(0), m_upperVertex(0), m_clockwiseOrder(false) { } |
| 643 | void decompose(); |
| 644 | private: |
| 645 | enum VertexType {MergeVertex, EndVertex, RegularVertex, StartVertex, SplitVertex}; |
| 646 | |
| 647 | struct Edge |
| 648 | { |
| 649 | QRBTree<int>::Node *node; |
| 650 | int helper, twin, next, previous; |
| 651 | T from, to; |
| 652 | VertexType type; |
| 653 | bool pointingUp; |
| 654 | int upper() const {return (pointingUp ? to : from);} |
| 655 | int lower() const {return (pointingUp ? from : to);} |
| 656 | }; |
| 657 | |
| 658 | friend class CompareVertices; |
| 659 | class CompareVertices |
| 660 | { |
| 661 | public: |
| 662 | CompareVertices(SimpleToMonotone *parent) : m_parent(parent) { } |
| 663 | bool operator () (int i, int j) const; |
| 664 | private: |
| 665 | SimpleToMonotone *m_parent; |
| 666 | }; |
| 667 | |
| 668 | void setupDataStructures(); |
| 669 | void removeZeroLengthEdges(); |
| 670 | void fillPriorityQueue(); |
| 671 | bool edgeIsLeftOfEdge(int leftEdgeIndex, int rightEdgeIndex) const; |
| 672 | // Returns the rightmost edge not to the right of the given edge. |
| 673 | QRBTree<int>::Node *searchEdgeLeftOfEdge(int edgeIndex) const; |
| 674 | // Returns the rightmost edge left of the given point. |
| 675 | QRBTree<int>::Node *searchEdgeLeftOfPoint(int pointIndex) const; |
| 676 | void classifyVertex(int i); |
| 677 | void classifyVertices(); |
| 678 | bool pointIsInSector(const QPodPoint &p, const QPodPoint &v1, const QPodPoint &v2, const QPodPoint &v3); |
| 679 | bool pointIsInSector(int vertex, int sector); |
| 680 | int findSector(int edge, int vertex); |
| 681 | void createDiagonal(int lower, int upper); |
| 682 | void monotoneDecomposition(); |
| 683 | |
| 684 | QTriangulator *m_parent; |
| 685 | QRBTree<int> m_edgeList; |
| 686 | QDataBuffer<Edge> m_edges; |
| 687 | QDataBuffer<int> m_upperVertex; |
| 688 | bool m_clockwiseOrder; |
| 689 | }; |
| 690 | |
| 691 | //====================================// |
| 692 | // QTriangulator::MonotoneToTriangles // |
| 693 | //====================================// |
| 694 | friend class MonotoneToTriangles; |
| 695 | class MonotoneToTriangles |
| 696 | { |
| 697 | public: |
| 698 | inline MonotoneToTriangles(QTriangulator<T> *parent) |
| 699 | : m_parent(parent), m_first(0), m_length(0) { } |
| 700 | void decompose(); |
| 701 | private: |
| 702 | inline T indices(int index) const {return m_parent->m_indices.at(index + m_first);} |
| 703 | inline int next(int index) const {return (index + 1) % m_length;} |
| 704 | inline int previous(int index) const {return (index + m_length - 1) % m_length;} |
| 705 | inline bool less(int i, int j) const {return m_parent->m_vertices.at((qint32)indices(index: i)) < m_parent->m_vertices.at(indices(index: j));} |
| 706 | inline bool leftOfEdge(int i, int j, int k) const |
| 707 | { |
| 708 | return qPointIsLeftOfLine(m_parent->m_vertices.at((qint32)indices(index: i)), |
| 709 | m_parent->m_vertices.at((qint32)indices(index: j)), m_parent->m_vertices.at((qint32)indices(index: k))); |
| 710 | } |
| 711 | |
| 712 | QTriangulator<T> *m_parent; |
| 713 | int m_first; |
| 714 | int m_length; |
| 715 | }; |
| 716 | |
| 717 | inline QTriangulator() |
| 718 | : m_vertices(0), m_hint(0) { } |
| 719 | |
| 720 | // Call this only once. |
| 721 | void initialize(const qreal *polygon, int count, uint hint, const QTransform &matrix); |
| 722 | // Call this only once. |
| 723 | void initialize(const QVectorPath &path, const QTransform &matrix, qreal lod); |
| 724 | // Call this only once. |
| 725 | void initialize(const QPainterPath &path, const QTransform &matrix, qreal lod); |
| 726 | // Call either triangulate() or polyline() only once. |
| 727 | QVertexSet<T> triangulate(); |
| 728 | QVertexSet<T> polyline(); |
| 729 | private: |
| 730 | QDataBuffer<QPodPoint> m_vertices; |
| 731 | QList<T> m_indices; |
| 732 | uint m_hint; |
| 733 | }; |
| 734 | |
| 735 | //============================================================================// |
| 736 | // QTriangulator // |
| 737 | //============================================================================// |
| 738 | |
| 739 | template <typename T> |
| 740 | QVertexSet<T> QTriangulator<T>::triangulate() |
| 741 | { |
| 742 | for (int i = 0; i < m_vertices.size(); ++i) { |
| 743 | Q_ASSERT(qAbs(m_vertices.at(i).x) < (1 << 21)); |
| 744 | Q_ASSERT(qAbs(m_vertices.at(i).y) < (1 << 21)); |
| 745 | } |
| 746 | |
| 747 | if (!(m_hint & (QVectorPath::OddEvenFill | QVectorPath::WindingFill))) |
| 748 | m_hint |= QVectorPath::OddEvenFill; |
| 749 | |
| 750 | if (m_hint & QVectorPath::NonConvexShapeMask) { |
| 751 | ComplexToSimple c2s(this); |
| 752 | c2s.decompose(); |
| 753 | SimpleToMonotone s2m(this); |
| 754 | s2m.decompose(); |
| 755 | } |
| 756 | MonotoneToTriangles m2t(this); |
| 757 | m2t.decompose(); |
| 758 | |
| 759 | QVertexSet<T> result; |
| 760 | result.indices = m_indices; |
| 761 | result.vertices.resize(2 * m_vertices.size()); |
| 762 | for (int i = 0; i < m_vertices.size(); ++i) { |
| 763 | result.vertices[2 * i + 0] = qreal(m_vertices.at(i).x) / Q_FIXED_POINT_SCALE; |
| 764 | result.vertices[2 * i + 1] = qreal(m_vertices.at(i).y) / Q_FIXED_POINT_SCALE; |
| 765 | } |
| 766 | return result; |
| 767 | } |
| 768 | |
| 769 | template <typename T> |
| 770 | QVertexSet<T> QTriangulator<T>::polyline() |
| 771 | { |
| 772 | for (int i = 0; i < m_vertices.size(); ++i) { |
| 773 | Q_ASSERT(qAbs(m_vertices.at(i).x) < (1 << 21)); |
| 774 | Q_ASSERT(qAbs(m_vertices.at(i).y) < (1 << 21)); |
| 775 | } |
| 776 | |
| 777 | if (!(m_hint & (QVectorPath::OddEvenFill | QVectorPath::WindingFill))) |
| 778 | m_hint |= QVectorPath::OddEvenFill; |
| 779 | |
| 780 | if (m_hint & QVectorPath::NonConvexShapeMask) { |
| 781 | ComplexToSimple c2s(this); |
| 782 | c2s.decompose(); |
| 783 | } |
| 784 | |
| 785 | QVertexSet<T> result; |
| 786 | result.indices = m_indices; |
| 787 | result.vertices.resize(2 * m_vertices.size()); |
| 788 | for (int i = 0; i < m_vertices.size(); ++i) { |
| 789 | result.vertices[2 * i + 0] = qreal(m_vertices.at(i).x) / Q_FIXED_POINT_SCALE; |
| 790 | result.vertices[2 * i + 1] = qreal(m_vertices.at(i).y) / Q_FIXED_POINT_SCALE; |
| 791 | } |
| 792 | return result; |
| 793 | } |
| 794 | |
| 795 | template <typename T> |
| 796 | void QTriangulator<T>::initialize(const qreal *polygon, int count, uint hint, const QTransform &matrix) |
| 797 | { |
| 798 | m_hint = hint; |
| 799 | m_vertices.resize(size: count); |
| 800 | m_indices.resize(count + 1); |
| 801 | for (int i = 0; i < count; ++i) { |
| 802 | qreal x, y; |
| 803 | matrix.map(x: polygon[2 * i + 0], y: polygon[2 * i + 1], tx: &x, ty: &y); |
| 804 | m_vertices.at(i).x = qRound(d: x * Q_FIXED_POINT_SCALE); |
| 805 | m_vertices.at(i).y = qRound(d: y * Q_FIXED_POINT_SCALE); |
| 806 | m_indices[i] = i; |
| 807 | } |
| 808 | m_indices[count] = T(-1); //Q_TRIANGULATE_END_OF_POLYGON |
| 809 | } |
| 810 | |
| 811 | template <typename T> |
| 812 | void QTriangulator<T>::initialize(const QVectorPath &path, const QTransform &matrix, qreal lod) |
| 813 | { |
| 814 | m_hint = path.hints(); |
| 815 | // Curved paths will be converted to complex polygons. |
| 816 | m_hint &= ~QVectorPath::CurvedShapeMask; |
| 817 | |
| 818 | const qreal *p = path.points(); |
| 819 | const QPainterPath::ElementType *e = path.elements(); |
| 820 | if (e) { |
| 821 | for (int i = 0; i < path.elementCount(); ++i, ++e, p += 2) { |
| 822 | switch (*e) { |
| 823 | case QPainterPath::MoveToElement: |
| 824 | if (!m_indices.isEmpty()) |
| 825 | m_indices.push_back(T(-1)); // Q_TRIANGULATE_END_OF_POLYGON |
| 826 | Q_FALLTHROUGH(); |
| 827 | case QPainterPath::LineToElement: |
| 828 | m_indices.push_back(T(m_vertices.size())); |
| 829 | m_vertices.resize(size: m_vertices.size() + 1); |
| 830 | qreal x, y; |
| 831 | matrix.map(x: p[0], y: p[1], tx: &x, ty: &y); |
| 832 | m_vertices.last().x = qRound(d: x * Q_FIXED_POINT_SCALE); |
| 833 | m_vertices.last().y = qRound(d: y * Q_FIXED_POINT_SCALE); |
| 834 | break; |
| 835 | case QPainterPath::CurveToElement: |
| 836 | { |
| 837 | qreal pts[8]; |
| 838 | for (int i = 0; i < 4; ++i) |
| 839 | matrix.map(x: p[2 * i - 2], y: p[2 * i - 1], tx: &pts[2 * i + 0], ty: &pts[2 * i + 1]); |
| 840 | for (int i = 0; i < 8; ++i) |
| 841 | pts[i] *= lod; |
| 842 | QBezier bezier = QBezier::fromPoints(p1: QPointF(pts[0], pts[1]), p2: QPointF(pts[2], pts[3]), p3: QPointF(pts[4], pts[5]), p4: QPointF(pts[6], pts[7])); |
| 843 | QPolygonF poly = bezier.toPolygon(); |
| 844 | // Skip first point, it already exists in 'm_vertices'. |
| 845 | for (int j = 1; j < poly.size(); ++j) { |
| 846 | m_indices.push_back(T(m_vertices.size())); |
| 847 | m_vertices.resize(size: m_vertices.size() + 1); |
| 848 | m_vertices.last().x = qRound(d: poly.at(i: j).x() * Q_FIXED_POINT_SCALE / lod); |
| 849 | m_vertices.last().y = qRound(d: poly.at(i: j).y() * Q_FIXED_POINT_SCALE / lod); |
| 850 | } |
| 851 | } |
| 852 | i += 2; |
| 853 | e += 2; |
| 854 | p += 4; |
| 855 | break; |
| 856 | default: |
| 857 | Q_ASSERT_X(0, "QTriangulator::triangulate" , "Unexpected element type." ); |
| 858 | break; |
| 859 | } |
| 860 | } |
| 861 | } else { |
| 862 | for (int i = 0; i < path.elementCount(); ++i, p += 2) { |
| 863 | m_indices.push_back(T(m_vertices.size())); |
| 864 | m_vertices.resize(size: m_vertices.size() + 1); |
| 865 | qreal x, y; |
| 866 | matrix.map(x: p[0], y: p[1], tx: &x, ty: &y); |
| 867 | m_vertices.last().x = qRound(d: x * Q_FIXED_POINT_SCALE); |
| 868 | m_vertices.last().y = qRound(d: y * Q_FIXED_POINT_SCALE); |
| 869 | } |
| 870 | } |
| 871 | m_indices.push_back(T(-1)); // Q_TRIANGULATE_END_OF_POLYGON |
| 872 | } |
| 873 | |
| 874 | template <typename T> |
| 875 | void QTriangulator<T>::initialize(const QPainterPath &path, const QTransform &matrix, qreal lod) |
| 876 | { |
| 877 | initialize(qtVectorPathForPath(path), matrix, lod); |
| 878 | } |
| 879 | |
| 880 | //============================================================================// |
| 881 | // QTriangulator::ComplexToSimple // |
| 882 | //============================================================================// |
| 883 | template <typename T> |
| 884 | void QTriangulator<T>::ComplexToSimple::decompose() |
| 885 | { |
| 886 | m_initialPointCount = m_parent->m_vertices.size(); |
| 887 | initEdges(); |
| 888 | do { |
| 889 | calculateIntersections(); |
| 890 | } while (splitEdgesAtIntersections()); |
| 891 | |
| 892 | removeUnwantedEdgesAndConnect(); |
| 893 | removeUnusedPoints(); |
| 894 | |
| 895 | m_parent->m_indices.clear(); |
| 896 | QBitArray processed(m_edges.size(), false); |
| 897 | for (int first = 0; first < m_edges.size(); ++first) { |
| 898 | // If already processed, or if unused path, skip. |
| 899 | if (processed.at(i: first) || m_edges.at(first).next == -1) |
| 900 | continue; |
| 901 | |
| 902 | int i = first; |
| 903 | do { |
| 904 | Q_ASSERT(!processed.at(i)); |
| 905 | Q_ASSERT(m_edges.at(m_edges.at(i).next).previous == i); |
| 906 | m_parent->m_indices.push_back(m_edges.at(i).from); |
| 907 | processed.setBit(i); |
| 908 | i = m_edges.at(i).next; // CCW order |
| 909 | } while (i != first); |
| 910 | m_parent->m_indices.push_back(T(-1)); // Q_TRIANGULATE_END_OF_POLYGON |
| 911 | } |
| 912 | } |
| 913 | |
| 914 | template <typename T> |
| 915 | void QTriangulator<T>::ComplexToSimple::initEdges() |
| 916 | { |
| 917 | // Initialize edge structure. |
| 918 | // 'next' and 'previous' are not being initialized at this point. |
| 919 | int first = 0; |
| 920 | for (int i = 0; i < m_parent->m_indices.size(); ++i) { |
| 921 | if (m_parent->m_indices.at(i) == T(-1)) { // Q_TRIANGULATE_END_OF_POLYGON |
| 922 | if (m_edges.size() != first) |
| 923 | m_edges.last().to = m_edges.at(first).from; |
| 924 | first = m_edges.size(); |
| 925 | } else { |
| 926 | Q_ASSERT(i + 1 < m_parent->m_indices.size()); |
| 927 | // {node, from, to, next, previous, winding, mayIntersect, pointingUp, originallyPointingUp} |
| 928 | Edge edge = {nullptr, int(m_parent->m_indices.at(i)), int(m_parent->m_indices.at(i + 1)), -1, -1, 0, true, false, false}; |
| 929 | m_edges.add(edge); |
| 930 | } |
| 931 | } |
| 932 | if (first != m_edges.size()) |
| 933 | m_edges.last().to = m_edges.at(first).from; |
| 934 | for (int i = 0; i < m_edges.size(); ++i) { |
| 935 | m_edges.at(i).originallyPointingUp = m_edges.at(i).pointingUp = |
| 936 | m_parent->m_vertices.at(m_edges.at(i).to) < m_parent->m_vertices.at(m_edges.at(i).from); |
| 937 | } |
| 938 | } |
| 939 | |
| 940 | // Return true if new intersection was found |
| 941 | template <typename T> |
| 942 | bool QTriangulator<T>::ComplexToSimple::calculateIntersection(int left, int right) |
| 943 | { |
| 944 | const Edge &e1 = m_edges.at(left); |
| 945 | const Edge &e2 = m_edges.at(right); |
| 946 | |
| 947 | const QPodPoint &u1 = m_parent->m_vertices.at((qint32)e1.from); |
| 948 | const QPodPoint &u2 = m_parent->m_vertices.at((qint32)e1.to); |
| 949 | const QPodPoint &v1 = m_parent->m_vertices.at((qint32)e2.from); |
| 950 | const QPodPoint &v2 = m_parent->m_vertices.at((qint32)e2.to); |
| 951 | if (qMax(a: u1.x, b: u2.x) <= qMin(a: v1.x, b: v2.x)) |
| 952 | return false; |
| 953 | |
| 954 | quint64 key = (left > right ? (quint64(right) << 32) | quint64(left) : (quint64(left) << 32) | quint64(right)); |
| 955 | if (m_processedEdgePairs.contains(key)) |
| 956 | return false; |
| 957 | m_processedEdgePairs.insert(key); |
| 958 | |
| 959 | Intersection intersection; |
| 960 | intersection.leftEdge = left; |
| 961 | intersection.rightEdge = right; |
| 962 | intersection.intersectionPoint = QT_PREPEND_NAMESPACE(qIntersectionPoint)(u1, u2, v1, v2); |
| 963 | |
| 964 | if (!intersection.intersectionPoint.isValid()) |
| 965 | return false; |
| 966 | |
| 967 | Q_ASSERT(intersection.intersectionPoint.isOnLine(u1, u2)); |
| 968 | Q_ASSERT(intersection.intersectionPoint.isOnLine(v1, v2)); |
| 969 | |
| 970 | intersection.vertex = m_parent->m_vertices.size(); |
| 971 | m_topIntersection.push(intersection); |
| 972 | m_parent->m_vertices.add(intersection.intersectionPoint.round()); |
| 973 | return true; |
| 974 | } |
| 975 | |
| 976 | template <typename T> |
| 977 | bool QTriangulator<T>::ComplexToSimple::edgeIsLeftOfEdge(int leftEdgeIndex, int rightEdgeIndex) const |
| 978 | { |
| 979 | const Edge &leftEdge = m_edges.at(leftEdgeIndex); |
| 980 | const Edge &rightEdge = m_edges.at(rightEdgeIndex); |
| 981 | const QPodPoint &u = m_parent->m_vertices.at(rightEdge.upper()); |
| 982 | const QPodPoint &l = m_parent->m_vertices.at(rightEdge.lower()); |
| 983 | const QPodPoint &upper = m_parent->m_vertices.at(leftEdge.upper()); |
| 984 | if (upper.x < qMin(a: l.x, b: u.x)) |
| 985 | return true; |
| 986 | if (upper.x > qMax(a: l.x, b: u.x)) |
| 987 | return false; |
| 988 | qint64 d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(p: upper, v1: l, v2: u); |
| 989 | // d < 0: left, d > 0: right, d == 0: on top |
| 990 | if (d == 0) |
| 991 | d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(p: m_parent->m_vertices.at(leftEdge.lower()), v1: l, v2: u); |
| 992 | return d < 0; |
| 993 | } |
| 994 | |
| 995 | template <typename T> |
| 996 | QRBTree<int>::Node *QTriangulator<T>::ComplexToSimple::searchEdgeLeftOf(int edgeIndex) const |
| 997 | { |
| 998 | QRBTree<int>::Node *current = m_edgeList.root; |
| 999 | QRBTree<int>::Node *result = nullptr; |
| 1000 | while (current) { |
| 1001 | if (edgeIsLeftOfEdge(leftEdgeIndex: edgeIndex, rightEdgeIndex: current->data)) { |
| 1002 | current = current->left; |
| 1003 | } else { |
| 1004 | result = current; |
| 1005 | current = current->right; |
| 1006 | } |
| 1007 | } |
| 1008 | return result; |
| 1009 | } |
| 1010 | |
| 1011 | template <typename T> |
| 1012 | QRBTree<int>::Node *QTriangulator<T>::ComplexToSimple::searchEdgeLeftOf(int edgeIndex, QRBTree<int>::Node *after) const |
| 1013 | { |
| 1014 | if (!m_edgeList.root) |
| 1015 | return after; |
| 1016 | QRBTree<int>::Node *result = after; |
| 1017 | QRBTree<int>::Node *current = (after ? m_edgeList.next(node: after) : m_edgeList.front(node: m_edgeList.root)); |
| 1018 | while (current) { |
| 1019 | if (edgeIsLeftOfEdge(leftEdgeIndex: edgeIndex, rightEdgeIndex: current->data)) |
| 1020 | return result; |
| 1021 | result = current; |
| 1022 | current = m_edgeList.next(node: current); |
| 1023 | } |
| 1024 | return result; |
| 1025 | } |
| 1026 | |
| 1027 | template <typename T> |
| 1028 | QPair<QRBTree<int>::Node *, QRBTree<int>::Node *> QTriangulator<T>::ComplexToSimple::bounds(const QPodPoint &point) const |
| 1029 | { |
| 1030 | QRBTree<int>::Node *current = m_edgeList.root; |
| 1031 | QPair<QRBTree<int>::Node *, QRBTree<int>::Node *> result(nullptr, nullptr); |
| 1032 | while (current) { |
| 1033 | const QPodPoint &v1 = m_parent->m_vertices.at(m_edges.at(current->data).lower()); |
| 1034 | const QPodPoint &v2 = m_parent->m_vertices.at(m_edges.at(current->data).upper()); |
| 1035 | qint64 d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(p: point, v1, v2); |
| 1036 | if (d == 0) { |
| 1037 | result.first = result.second = current; |
| 1038 | break; |
| 1039 | } |
| 1040 | current = (d < 0 ? current->left : current->right); |
| 1041 | } |
| 1042 | if (current == nullptr) |
| 1043 | return result; |
| 1044 | |
| 1045 | current = result.first->left; |
| 1046 | while (current) { |
| 1047 | const QPodPoint &v1 = m_parent->m_vertices.at(m_edges.at(current->data).lower()); |
| 1048 | const QPodPoint &v2 = m_parent->m_vertices.at(m_edges.at(current->data).upper()); |
| 1049 | qint64 d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(p: point, v1, v2); |
| 1050 | Q_ASSERT(d >= 0); |
| 1051 | if (d == 0) { |
| 1052 | result.first = current; |
| 1053 | current = current->left; |
| 1054 | } else { |
| 1055 | current = current->right; |
| 1056 | } |
| 1057 | } |
| 1058 | |
| 1059 | current = result.second->right; |
| 1060 | while (current) { |
| 1061 | const QPodPoint &v1 = m_parent->m_vertices.at(m_edges.at(current->data).lower()); |
| 1062 | const QPodPoint &v2 = m_parent->m_vertices.at(m_edges.at(current->data).upper()); |
| 1063 | qint64 d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(p: point, v1, v2); |
| 1064 | Q_ASSERT(d <= 0); |
| 1065 | if (d == 0) { |
| 1066 | result.second = current; |
| 1067 | current = current->right; |
| 1068 | } else { |
| 1069 | current = current->left; |
| 1070 | } |
| 1071 | } |
| 1072 | |
| 1073 | return result; |
| 1074 | } |
| 1075 | |
| 1076 | template <typename T> |
| 1077 | QPair<QRBTree<int>::Node *, QRBTree<int>::Node *> QTriangulator<T>::ComplexToSimple::outerBounds(const QPodPoint &point) const |
| 1078 | { |
| 1079 | QRBTree<int>::Node *current = m_edgeList.root; |
| 1080 | QPair<QRBTree<int>::Node *, QRBTree<int>::Node *> result(nullptr, nullptr); |
| 1081 | |
| 1082 | while (current) { |
| 1083 | const QPodPoint &v1 = m_parent->m_vertices.at(m_edges.at(current->data).lower()); |
| 1084 | const QPodPoint &v2 = m_parent->m_vertices.at(m_edges.at(current->data).upper()); |
| 1085 | qint64 d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(p: point, v1, v2); |
| 1086 | if (d == 0) |
| 1087 | break; |
| 1088 | if (d < 0) { |
| 1089 | result.second = current; |
| 1090 | current = current->left; |
| 1091 | } else { |
| 1092 | result.first = current; |
| 1093 | current = current->right; |
| 1094 | } |
| 1095 | } |
| 1096 | |
| 1097 | if (!current) |
| 1098 | return result; |
| 1099 | |
| 1100 | QRBTree<int>::Node *mid = current; |
| 1101 | |
| 1102 | current = mid->left; |
| 1103 | while (current) { |
| 1104 | const QPodPoint &v1 = m_parent->m_vertices.at(m_edges.at(current->data).lower()); |
| 1105 | const QPodPoint &v2 = m_parent->m_vertices.at(m_edges.at(current->data).upper()); |
| 1106 | qint64 d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(p: point, v1, v2); |
| 1107 | Q_ASSERT(d >= 0); |
| 1108 | if (d == 0) { |
| 1109 | current = current->left; |
| 1110 | } else { |
| 1111 | result.first = current; |
| 1112 | current = current->right; |
| 1113 | } |
| 1114 | } |
| 1115 | |
| 1116 | current = mid->right; |
| 1117 | while (current) { |
| 1118 | const QPodPoint &v1 = m_parent->m_vertices.at(m_edges.at(current->data).lower()); |
| 1119 | const QPodPoint &v2 = m_parent->m_vertices.at(m_edges.at(current->data).upper()); |
| 1120 | qint64 d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(p: point, v1, v2); |
| 1121 | Q_ASSERT(d <= 0); |
| 1122 | if (d == 0) { |
| 1123 | current = current->right; |
| 1124 | } else { |
| 1125 | result.second = current; |
| 1126 | current = current->left; |
| 1127 | } |
| 1128 | } |
| 1129 | |
| 1130 | return result; |
| 1131 | } |
| 1132 | |
| 1133 | template <typename T> |
| 1134 | void QTriangulator<T>::ComplexToSimple::splitEdgeListRange(QRBTree<int>::Node *leftmost, QRBTree<int>::Node *rightmost, int vertex, const QIntersectionPoint &intersectionPoint) |
| 1135 | { |
| 1136 | Q_ASSERT(leftmost && rightmost); |
| 1137 | |
| 1138 | // Split. |
| 1139 | for (;;) { |
| 1140 | const QPodPoint &u = m_parent->m_vertices.at(m_edges.at(leftmost->data).from); |
| 1141 | const QPodPoint &v = m_parent->m_vertices.at(m_edges.at(leftmost->data).to); |
| 1142 | Q_ASSERT(intersectionPoint.isOnLine(u, v)); |
| 1143 | const Split split = {vertex, leftmost->data, intersectionPoint.isAccurate()}; |
| 1144 | if (intersectionPoint.xOffset.numerator != 0 || intersectionPoint.yOffset.numerator != 0 || (intersectionPoint.upperLeft != u && intersectionPoint.upperLeft != v)) |
| 1145 | m_splits.add(split); |
| 1146 | if (leftmost == rightmost) |
| 1147 | break; |
| 1148 | leftmost = m_edgeList.next(node: leftmost); |
| 1149 | } |
| 1150 | } |
| 1151 | |
| 1152 | template <typename T> |
| 1153 | void QTriangulator<T>::ComplexToSimple::reorderEdgeListRange(QRBTree<int>::Node *leftmost, QRBTree<int>::Node *rightmost) |
| 1154 | { |
| 1155 | Q_ASSERT(leftmost && rightmost); |
| 1156 | |
| 1157 | QRBTree<int>::Node *storeLeftmost = leftmost; |
| 1158 | QRBTree<int>::Node *storeRightmost = rightmost; |
| 1159 | |
| 1160 | // Reorder. |
| 1161 | while (leftmost != rightmost) { |
| 1162 | Edge &left = m_edges.at(leftmost->data); |
| 1163 | Edge &right = m_edges.at(rightmost->data); |
| 1164 | qSwap(left.node, right.node); |
| 1165 | qSwap(value1&: leftmost->data, value2&: rightmost->data); |
| 1166 | leftmost = m_edgeList.next(node: leftmost); |
| 1167 | if (leftmost == rightmost) |
| 1168 | break; |
| 1169 | rightmost = m_edgeList.previous(node: rightmost); |
| 1170 | } |
| 1171 | |
| 1172 | rightmost = m_edgeList.next(node: storeRightmost); |
| 1173 | leftmost = m_edgeList.previous(node: storeLeftmost); |
| 1174 | if (leftmost) |
| 1175 | calculateIntersection(left: leftmost->data, right: storeLeftmost->data); |
| 1176 | if (rightmost) |
| 1177 | calculateIntersection(left: storeRightmost->data, right: rightmost->data); |
| 1178 | } |
| 1179 | |
| 1180 | template <typename T> |
| 1181 | void QTriangulator<T>::ComplexToSimple::sortEdgeList(const QPodPoint eventPoint) |
| 1182 | { |
| 1183 | QIntersectionPoint eventPoint2 = QT_PREPEND_NAMESPACE(qIntersectionPoint)(point: eventPoint); |
| 1184 | while (!m_topIntersection.isEmpty() && m_topIntersection.top().intersectionPoint < eventPoint2) { |
| 1185 | Intersection intersection = m_topIntersection.pop(); |
| 1186 | |
| 1187 | QIntersectionPoint currentIntersectionPoint = intersection.intersectionPoint; |
| 1188 | int currentVertex = intersection.vertex; |
| 1189 | |
| 1190 | QRBTree<int>::Node *leftmost = m_edges.at(intersection.leftEdge).node; |
| 1191 | QRBTree<int>::Node *rightmost = m_edges.at(intersection.rightEdge).node; |
| 1192 | |
| 1193 | for (;;) { |
| 1194 | QRBTree<int>::Node *previous = m_edgeList.previous(node: leftmost); |
| 1195 | if (!previous) |
| 1196 | break; |
| 1197 | const Edge &edge = m_edges.at(previous->data); |
| 1198 | const QPodPoint &u = m_parent->m_vertices.at((qint32)edge.from); |
| 1199 | const QPodPoint &v = m_parent->m_vertices.at((qint32)edge.to); |
| 1200 | if (!currentIntersectionPoint.isOnLine(u, v)) { |
| 1201 | Q_ASSERT(!currentIntersectionPoint.isAccurate() || qCross(currentIntersectionPoint.upperLeft - u, v - u) != 0); |
| 1202 | break; |
| 1203 | } |
| 1204 | leftmost = previous; |
| 1205 | } |
| 1206 | |
| 1207 | for (;;) { |
| 1208 | QRBTree<int>::Node *next = m_edgeList.next(node: rightmost); |
| 1209 | if (!next) |
| 1210 | break; |
| 1211 | const Edge &edge = m_edges.at(next->data); |
| 1212 | const QPodPoint &u = m_parent->m_vertices.at((qint32)edge.from); |
| 1213 | const QPodPoint &v = m_parent->m_vertices.at((qint32)edge.to); |
| 1214 | if (!currentIntersectionPoint.isOnLine(u, v)) { |
| 1215 | Q_ASSERT(!currentIntersectionPoint.isAccurate() || qCross(currentIntersectionPoint.upperLeft - u, v - u) != 0); |
| 1216 | break; |
| 1217 | } |
| 1218 | rightmost = next; |
| 1219 | } |
| 1220 | |
| 1221 | Q_ASSERT(leftmost && rightmost); |
| 1222 | splitEdgeListRange(leftmost, rightmost, vertex: currentVertex, intersectionPoint: currentIntersectionPoint); |
| 1223 | reorderEdgeListRange(leftmost, rightmost); |
| 1224 | |
| 1225 | while (!m_topIntersection.isEmpty() && m_topIntersection.top().intersectionPoint <= currentIntersectionPoint) |
| 1226 | m_topIntersection.pop(); |
| 1227 | |
| 1228 | #ifdef Q_TRIANGULATOR_DEBUG |
| 1229 | DebugDialog dialog(this, intersection.vertex); |
| 1230 | dialog.exec(); |
| 1231 | #endif |
| 1232 | |
| 1233 | } |
| 1234 | } |
| 1235 | |
| 1236 | template <typename T> |
| 1237 | void QTriangulator<T>::ComplexToSimple::fillPriorityQueue() |
| 1238 | { |
| 1239 | m_events.reset(); |
| 1240 | m_events.reserve(m_edges.size() * 2); |
| 1241 | for (int i = 0; i < m_edges.size(); ++i) { |
| 1242 | Q_ASSERT(m_edges.at(i).previous == -1 && m_edges.at(i).next == -1); |
| 1243 | Q_ASSERT(m_edges.at(i).node == nullptr); |
| 1244 | Q_ASSERT(m_edges.at(i).pointingUp == m_edges.at(i).originallyPointingUp); |
| 1245 | Q_ASSERT(m_edges.at(i).pointingUp == (m_parent->m_vertices.at(m_edges.at(i).to) < m_parent->m_vertices.at(m_edges.at(i).from))); |
| 1246 | // Ignore zero-length edges. |
| 1247 | if (m_parent->m_vertices.at(m_edges.at(i).to) != m_parent->m_vertices.at(m_edges.at(i).from)) { |
| 1248 | QPodPoint upper = m_parent->m_vertices.at(m_edges.at(i).upper()); |
| 1249 | QPodPoint lower = m_parent->m_vertices.at(m_edges.at(i).lower()); |
| 1250 | Event upperEvent = {{upper.x, upper.y}, Event::Upper, i}; |
| 1251 | Event lowerEvent = {{lower.x, lower.y}, Event::Lower, i}; |
| 1252 | m_events.add(upperEvent); |
| 1253 | m_events.add(lowerEvent); |
| 1254 | } |
| 1255 | } |
| 1256 | |
| 1257 | std::sort(m_events.data(), m_events.data() + m_events.size()); |
| 1258 | } |
| 1259 | |
| 1260 | template <typename T> |
| 1261 | void QTriangulator<T>::ComplexToSimple::calculateIntersections() |
| 1262 | { |
| 1263 | fillPriorityQueue(); |
| 1264 | |
| 1265 | Q_ASSERT(m_topIntersection.empty()); |
| 1266 | Q_ASSERT(m_edgeList.root == nullptr); |
| 1267 | |
| 1268 | // Find all intersection points. |
| 1269 | while (!m_events.isEmpty()) { |
| 1270 | Event event = m_events.last(); |
| 1271 | sortEdgeList(eventPoint: event.point); |
| 1272 | |
| 1273 | // Find all edges in the edge list that contain the current vertex and mark them to be split later. |
| 1274 | QPair<QRBTree<int>::Node *, QRBTree<int>::Node *> range = bounds(point: event.point); |
| 1275 | QRBTree<int>::Node *leftNode = range.first ? m_edgeList.previous(node: range.first) : nullptr; |
| 1276 | int vertex = (event.type == Event::Upper ? m_edges.at(event.edge).upper() : m_edges.at(event.edge).lower()); |
| 1277 | QIntersectionPoint eventPoint = QT_PREPEND_NAMESPACE(qIntersectionPoint)(event.point); |
| 1278 | |
| 1279 | if (range.first != nullptr) { |
| 1280 | splitEdgeListRange(leftmost: range.first, rightmost: range.second, vertex, intersectionPoint: eventPoint); |
| 1281 | reorderEdgeListRange(leftmost: range.first, rightmost: range.second); |
| 1282 | } |
| 1283 | |
| 1284 | // Handle the edges with start or end point in the current vertex. |
| 1285 | while (!m_events.isEmpty() && m_events.last().point == event.point) { |
| 1286 | event = m_events.last(); |
| 1287 | m_events.pop_back(); |
| 1288 | int i = event.edge; |
| 1289 | |
| 1290 | if (m_edges.at(i).node) { |
| 1291 | // Remove edge from edge list. |
| 1292 | Q_ASSERT(event.type == Event::Lower); |
| 1293 | QRBTree<int>::Node *left = m_edgeList.previous(node: m_edges.at(i).node); |
| 1294 | QRBTree<int>::Node *right = m_edgeList.next(node: m_edges.at(i).node); |
| 1295 | m_edgeList.deleteNode(node&: m_edges.at(i).node); |
| 1296 | if (!left || !right) |
| 1297 | continue; |
| 1298 | calculateIntersection(left: left->data, right: right->data); |
| 1299 | } else { |
| 1300 | // Insert edge into edge list. |
| 1301 | Q_ASSERT(event.type == Event::Upper); |
| 1302 | QRBTree<int>::Node *left = searchEdgeLeftOf(i, leftNode); |
| 1303 | m_edgeList.attachAfter(parent: left, child: m_edges.at(i).node = m_edgeList.newNode()); |
| 1304 | m_edges.at(i).node->data = i; |
| 1305 | QRBTree<int>::Node *right = m_edgeList.next(node: m_edges.at(i).node); |
| 1306 | if (left) |
| 1307 | calculateIntersection(left: left->data, right: i); |
| 1308 | if (right) |
| 1309 | calculateIntersection(left: i, right: right->data); |
| 1310 | } |
| 1311 | } |
| 1312 | while (!m_topIntersection.isEmpty() && m_topIntersection.top().intersectionPoint <= eventPoint) |
| 1313 | m_topIntersection.pop(); |
| 1314 | #ifdef Q_TRIANGULATOR_DEBUG |
| 1315 | DebugDialog dialog(this, vertex); |
| 1316 | dialog.exec(); |
| 1317 | #endif |
| 1318 | } |
| 1319 | m_processedEdgePairs.clear(); |
| 1320 | } |
| 1321 | |
| 1322 | // Split an edge into two pieces at the given point. |
| 1323 | // The upper piece is pushed to the end of the 'm_edges' vector. |
| 1324 | // The lower piece replaces the old edge. |
| 1325 | // Return the edge whose 'from' is 'pointIndex'. |
| 1326 | template <typename T> |
| 1327 | int QTriangulator<T>::ComplexToSimple::splitEdge(int splitIndex) |
| 1328 | { |
| 1329 | const Split &split = m_splits.at(splitIndex); |
| 1330 | Edge &lowerEdge = m_edges.at(split.edge); |
| 1331 | Q_ASSERT(lowerEdge.node == nullptr); |
| 1332 | Q_ASSERT(lowerEdge.previous == -1 && lowerEdge.next == -1); |
| 1333 | |
| 1334 | if (lowerEdge.from == split.vertex) |
| 1335 | return split.edge; |
| 1336 | if (lowerEdge.to == split.vertex) |
| 1337 | return lowerEdge.next; |
| 1338 | |
| 1339 | // Check that angle >= 90 degrees. |
| 1340 | //Q_ASSERT(qDot(m_points.at(m_edges.at(edgeIndex).from) - m_points.at(pointIndex), |
| 1341 | // m_points.at(m_edges.at(edgeIndex).to) - m_points.at(pointIndex)) <= 0); |
| 1342 | |
| 1343 | Edge upperEdge = lowerEdge; |
| 1344 | upperEdge.mayIntersect |= !split.accurate; // The edge may have been split before at an inaccurate split point. |
| 1345 | lowerEdge.mayIntersect = !split.accurate; |
| 1346 | if (lowerEdge.pointingUp) { |
| 1347 | lowerEdge.to = upperEdge.from = split.vertex; |
| 1348 | m_edges.add(upperEdge); |
| 1349 | return m_edges.size() - 1; |
| 1350 | } else { |
| 1351 | lowerEdge.from = upperEdge.to = split.vertex; |
| 1352 | m_edges.add(upperEdge); |
| 1353 | return split.edge; |
| 1354 | } |
| 1355 | } |
| 1356 | |
| 1357 | template <typename T> |
| 1358 | bool QTriangulator<T>::ComplexToSimple::splitEdgesAtIntersections() |
| 1359 | { |
| 1360 | for (int i = 0; i < m_edges.size(); ++i) |
| 1361 | m_edges.at(i).mayIntersect = false; |
| 1362 | bool checkForNewIntersections = false; |
| 1363 | for (int i = 0; i < m_splits.size(); ++i) { |
| 1364 | splitEdge(splitIndex: i); |
| 1365 | checkForNewIntersections |= !m_splits.at(i).accurate; |
| 1366 | } |
| 1367 | for (int i = 0; i < m_edges.size(); ++i) { |
| 1368 | m_edges.at(i).originallyPointingUp = m_edges.at(i).pointingUp = |
| 1369 | m_parent->m_vertices.at(m_edges.at(i).to) < m_parent->m_vertices.at(m_edges.at(i).from); |
| 1370 | } |
| 1371 | m_splits.reset(); |
| 1372 | return checkForNewIntersections; |
| 1373 | } |
| 1374 | |
| 1375 | template <typename T> |
| 1376 | void QTriangulator<T>::ComplexToSimple::insertEdgeIntoVectorIfWanted(ShortArray &orderedEdges, int i) |
| 1377 | { |
| 1378 | // Edges with zero length should not reach this part. |
| 1379 | Q_ASSERT(m_parent->m_vertices.at(m_edges.at(i).from) != m_parent->m_vertices.at(m_edges.at(i).to)); |
| 1380 | |
| 1381 | // Skip edges with unwanted winding number. |
| 1382 | int windingNumber = m_edges.at(i).winding; |
| 1383 | if (m_edges.at(i).originallyPointingUp) |
| 1384 | ++windingNumber; |
| 1385 | |
| 1386 | // Make sure exactly one fill rule is specified. |
| 1387 | Q_ASSERT(((m_parent->m_hint & QVectorPath::WindingFill) != 0) != ((m_parent->m_hint & QVectorPath::OddEvenFill) != 0)); |
| 1388 | |
| 1389 | if ((m_parent->m_hint & QVectorPath::WindingFill) && windingNumber != 0 && windingNumber != 1) |
| 1390 | return; |
| 1391 | |
| 1392 | // Skip cancelling edges. |
| 1393 | if (!orderedEdges.isEmpty()) { |
| 1394 | int j = orderedEdges[orderedEdges.size() - 1]; |
| 1395 | // If the last edge is already connected in one end, it should not be cancelled. |
| 1396 | if (m_edges.at(j).next == -1 && m_edges.at(j).previous == -1 |
| 1397 | && (m_parent->m_vertices.at(m_edges.at(i).from) == m_parent->m_vertices.at(m_edges.at(j).to)) |
| 1398 | && (m_parent->m_vertices.at(m_edges.at(i).to) == m_parent->m_vertices.at(m_edges.at(j).from))) { |
| 1399 | orderedEdges.removeLast(); |
| 1400 | return; |
| 1401 | } |
| 1402 | } |
| 1403 | orderedEdges.append(t: i); |
| 1404 | } |
| 1405 | |
| 1406 | template <typename T> |
| 1407 | void QTriangulator<T>::ComplexToSimple::removeUnwantedEdgesAndConnect() |
| 1408 | { |
| 1409 | Q_ASSERT(m_edgeList.root == nullptr); |
| 1410 | // Initialize priority queue. |
| 1411 | fillPriorityQueue(); |
| 1412 | |
| 1413 | ShortArray orderedEdges; |
| 1414 | |
| 1415 | while (!m_events.isEmpty()) { |
| 1416 | Event event = m_events.last(); |
| 1417 | int edgeIndex = event.edge; |
| 1418 | |
| 1419 | // Check that all the edges in the list crosses the current scanline |
| 1420 | //if (m_edgeList.root) { |
| 1421 | // for (QRBTree<int>::Node *node = m_edgeList.front(m_edgeList.root); node; node = m_edgeList.next(node)) { |
| 1422 | // Q_ASSERT(event.point <= m_points.at(m_edges.at(node->data).lower())); |
| 1423 | // } |
| 1424 | //} |
| 1425 | |
| 1426 | orderedEdges.clear(); |
| 1427 | QPair<QRBTree<int>::Node *, QRBTree<int>::Node *> b = outerBounds(point: event.point); |
| 1428 | if (m_edgeList.root) { |
| 1429 | QRBTree<int>::Node *current = (b.first ? m_edgeList.next(node: b.first) : m_edgeList.front(node: m_edgeList.root)); |
| 1430 | // Process edges that are going to be removed from the edge list at the current event point. |
| 1431 | while (current != b.second) { |
| 1432 | Q_ASSERT(current); |
| 1433 | Q_ASSERT(m_edges.at(current->data).node == current); |
| 1434 | Q_ASSERT(QT_PREPEND_NAMESPACE(qIntersectionPoint)(event.point).isOnLine(m_parent->m_vertices.at(m_edges.at(current->data).from), m_parent->m_vertices.at(m_edges.at(current->data).to))); |
| 1435 | Q_ASSERT(m_parent->m_vertices.at(m_edges.at(current->data).from) == event.point || m_parent->m_vertices.at(m_edges.at(current->data).to) == event.point); |
| 1436 | insertEdgeIntoVectorIfWanted(orderedEdges, i: current->data); |
| 1437 | current = m_edgeList.next(node: current); |
| 1438 | } |
| 1439 | } |
| 1440 | |
| 1441 | // Remove edges above the event point, insert edges below the event point. |
| 1442 | do { |
| 1443 | event = m_events.last(); |
| 1444 | m_events.pop_back(); |
| 1445 | edgeIndex = event.edge; |
| 1446 | |
| 1447 | // Edges with zero length should not reach this part. |
| 1448 | Q_ASSERT(m_parent->m_vertices.at(m_edges.at(edgeIndex).from) != m_parent->m_vertices.at(m_edges.at(edgeIndex).to)); |
| 1449 | |
| 1450 | if (m_edges.at(edgeIndex).node) { |
| 1451 | Q_ASSERT(event.type == Event::Lower); |
| 1452 | Q_ASSERT(event.point == m_parent->m_vertices.at(m_edges.at(event.edge).lower())); |
| 1453 | m_edgeList.deleteNode(node&: m_edges.at(edgeIndex).node); |
| 1454 | } else { |
| 1455 | Q_ASSERT(event.type == Event::Upper); |
| 1456 | Q_ASSERT(event.point == m_parent->m_vertices.at(m_edges.at(event.edge).upper())); |
| 1457 | QRBTree<int>::Node *left = searchEdgeLeftOf(edgeIndex, b.first); |
| 1458 | m_edgeList.attachAfter(parent: left, child: m_edges.at(edgeIndex).node = m_edgeList.newNode()); |
| 1459 | m_edges.at(edgeIndex).node->data = edgeIndex; |
| 1460 | } |
| 1461 | } while (!m_events.isEmpty() && m_events.last().point == event.point); |
| 1462 | |
| 1463 | if (m_edgeList.root) { |
| 1464 | QRBTree<int>::Node *current = (b.first ? m_edgeList.next(node: b.first) : m_edgeList.front(node: m_edgeList.root)); |
| 1465 | |
| 1466 | // Calculate winding number and turn counter-clockwise. |
| 1467 | int currentWindingNumber = (b.first ? m_edges.at(b.first->data).winding : 0); |
| 1468 | while (current != b.second) { |
| 1469 | Q_ASSERT(current); |
| 1470 | //Q_ASSERT(b.second == 0 || m_edgeList.order(current, b.second) < 0); |
| 1471 | int i = current->data; |
| 1472 | Q_ASSERT(m_edges.at(i).node == current); |
| 1473 | |
| 1474 | // Winding number. |
| 1475 | int ccwWindingNumber = m_edges.at(i).winding = currentWindingNumber; |
| 1476 | if (m_edges.at(i).originallyPointingUp) { |
| 1477 | --m_edges.at(i).winding; |
| 1478 | } else { |
| 1479 | ++m_edges.at(i).winding; |
| 1480 | ++ccwWindingNumber; |
| 1481 | } |
| 1482 | currentWindingNumber = m_edges.at(i).winding; |
| 1483 | |
| 1484 | // Turn counter-clockwise. |
| 1485 | if ((ccwWindingNumber & 1) == 0) { |
| 1486 | Q_ASSERT(m_edges.at(i).previous == -1 && m_edges.at(i).next == -1); |
| 1487 | qSwap(m_edges.at(i).from, m_edges.at(i).to); |
| 1488 | m_edges.at(i).pointingUp = !m_edges.at(i).pointingUp; |
| 1489 | } |
| 1490 | |
| 1491 | current = m_edgeList.next(node: current); |
| 1492 | } |
| 1493 | |
| 1494 | // Process edges that were inserted into the edge list at the current event point. |
| 1495 | current = (b.second ? m_edgeList.previous(node: b.second) : m_edgeList.back(node: m_edgeList.root)); |
| 1496 | while (current != b.first) { |
| 1497 | Q_ASSERT(current); |
| 1498 | Q_ASSERT(m_edges.at(current->data).node == current); |
| 1499 | insertEdgeIntoVectorIfWanted(orderedEdges, i: current->data); |
| 1500 | current = m_edgeList.previous(node: current); |
| 1501 | } |
| 1502 | } |
| 1503 | if (orderedEdges.isEmpty()) |
| 1504 | continue; |
| 1505 | |
| 1506 | Q_ASSERT((orderedEdges.size() & 1) == 0); |
| 1507 | |
| 1508 | // Connect edges. |
| 1509 | // First make sure the first edge point towards the current point. |
| 1510 | int i; |
| 1511 | if (m_parent->m_vertices.at(m_edges.at(orderedEdges[0]).from) == event.point) { |
| 1512 | i = 1; |
| 1513 | int copy = orderedEdges[0]; // Make copy in case the append() will cause a reallocation. |
| 1514 | orderedEdges.append(t: copy); |
| 1515 | } else { |
| 1516 | Q_ASSERT(m_parent->m_vertices.at(m_edges.at(orderedEdges[0]).to) == event.point); |
| 1517 | i = 0; |
| 1518 | } |
| 1519 | |
| 1520 | // Remove references to duplicate points. First find the point with lowest index. |
| 1521 | int pointIndex = INT_MAX; |
| 1522 | for (int j = i; j < orderedEdges.size(); j += 2) { |
| 1523 | Q_ASSERT(j + 1 < orderedEdges.size()); |
| 1524 | Q_ASSERT(m_parent->m_vertices.at(m_edges.at(orderedEdges[j]).to) == event.point); |
| 1525 | Q_ASSERT(m_parent->m_vertices.at(m_edges.at(orderedEdges[j + 1]).from) == event.point); |
| 1526 | if (m_edges.at(orderedEdges[j]).to < pointIndex) |
| 1527 | pointIndex = m_edges.at(orderedEdges[j]).to; |
| 1528 | if (m_edges.at(orderedEdges[j + 1]).from < pointIndex) |
| 1529 | pointIndex = m_edges.at(orderedEdges[j + 1]).from; |
| 1530 | } |
| 1531 | |
| 1532 | for (; i < orderedEdges.size(); i += 2) { |
| 1533 | // Remove references to duplicate points by making all edges reference one common point. |
| 1534 | m_edges.at(orderedEdges[i]).to = m_edges.at(orderedEdges[i + 1]).from = pointIndex; |
| 1535 | |
| 1536 | Q_ASSERT(m_edges.at(orderedEdges[i]).pointingUp || m_edges.at(orderedEdges[i]).previous != -1); |
| 1537 | Q_ASSERT(!m_edges.at(orderedEdges[i + 1]).pointingUp || m_edges.at(orderedEdges[i + 1]).next != -1); |
| 1538 | |
| 1539 | m_edges.at(orderedEdges[i]).next = orderedEdges[i + 1]; |
| 1540 | m_edges.at(orderedEdges[i + 1]).previous = orderedEdges[i]; |
| 1541 | } |
| 1542 | } // end while |
| 1543 | } |
| 1544 | |
| 1545 | template <typename T> |
| 1546 | void QTriangulator<T>::ComplexToSimple::removeUnusedPoints() { |
| 1547 | QBitArray used(m_parent->m_vertices.size(), false); |
| 1548 | for (int i = 0; i < m_edges.size(); ++i) { |
| 1549 | Q_ASSERT((m_edges.at(i).previous == -1) == (m_edges.at(i).next == -1)); |
| 1550 | if (m_edges.at(i).next != -1) |
| 1551 | used.setBit(m_edges.at(i).from); |
| 1552 | } |
| 1553 | QDataBuffer<quint32> newMapping(m_parent->m_vertices.size()); |
| 1554 | newMapping.resize(size: m_parent->m_vertices.size()); |
| 1555 | int count = 0; |
| 1556 | for (int i = 0; i < m_parent->m_vertices.size(); ++i) { |
| 1557 | if (used.at(i)) { |
| 1558 | m_parent->m_vertices.at(count) = m_parent->m_vertices.at(i); |
| 1559 | newMapping.at(i) = count; |
| 1560 | ++count; |
| 1561 | } |
| 1562 | } |
| 1563 | m_parent->m_vertices.resize(count); |
| 1564 | for (int i = 0; i < m_edges.size(); ++i) { |
| 1565 | m_edges.at(i).from = newMapping.at(m_edges.at(i).from); |
| 1566 | m_edges.at(i).to = newMapping.at(m_edges.at(i).to); |
| 1567 | } |
| 1568 | } |
| 1569 | |
| 1570 | template <typename T> |
| 1571 | inline bool QTriangulator<T>::ComplexToSimple::Event::operator < (const Event &other) const |
| 1572 | { |
| 1573 | if (point == other.point) |
| 1574 | return type < other.type; // 'Lower' has higher priority than 'Upper'. |
| 1575 | return other.point < point; |
| 1576 | } |
| 1577 | |
| 1578 | //============================================================================// |
| 1579 | // QTriangulator::ComplexToSimple::DebugDialog // |
| 1580 | //============================================================================// |
| 1581 | |
| 1582 | #ifdef Q_TRIANGULATOR_DEBUG |
| 1583 | template <typename T> |
| 1584 | QTriangulator<T>::ComplexToSimple::DebugDialog::DebugDialog(ComplexToSimple *parent, int currentVertex) |
| 1585 | : m_parent(parent), m_vertex(currentVertex) |
| 1586 | { |
| 1587 | QDataBuffer<QPodPoint> &vertices = m_parent->m_parent->m_vertices; |
| 1588 | if (vertices.isEmpty()) |
| 1589 | return; |
| 1590 | |
| 1591 | int minX, maxX, minY, maxY; |
| 1592 | minX = maxX = vertices.at(0).x; |
| 1593 | minY = maxY = vertices.at(0).y; |
| 1594 | for (int i = 1; i < vertices.size(); ++i) { |
| 1595 | minX = qMin(minX, vertices.at(i).x); |
| 1596 | maxX = qMax(maxX, vertices.at(i).x); |
| 1597 | minY = qMin(minY, vertices.at(i).y); |
| 1598 | maxY = qMax(maxY, vertices.at(i).y); |
| 1599 | } |
| 1600 | int w = maxX - minX; |
| 1601 | int h = maxY - minY; |
| 1602 | qreal border = qMin(w, h) / 10.0; |
| 1603 | m_window = QRectF(minX - border, minY - border, (maxX - minX + 2 * border), (maxY - minY + 2 * border)); |
| 1604 | } |
| 1605 | |
| 1606 | template <typename T> |
| 1607 | void QTriangulator<T>::ComplexToSimple::DebugDialog::paintEvent(QPaintEvent *) |
| 1608 | { |
| 1609 | QPainter p(this); |
| 1610 | p.setRenderHint(QPainter::Antialiasing, true); |
| 1611 | p.fillRect(rect(), Qt::black); |
| 1612 | QDataBuffer<QPodPoint> &vertices = m_parent->m_parent->m_vertices; |
| 1613 | if (vertices.isEmpty()) |
| 1614 | return; |
| 1615 | |
| 1616 | qreal halfPointSize = qMin(m_window.width(), m_window.height()) / 300.0; |
| 1617 | p.setWindow(m_window.toRect()); |
| 1618 | |
| 1619 | p.setPen(Qt::white); |
| 1620 | |
| 1621 | QDataBuffer<Edge> &edges = m_parent->m_edges; |
| 1622 | for (int i = 0; i < edges.size(); ++i) { |
| 1623 | QPodPoint u = vertices.at(edges.at(i).from); |
| 1624 | QPodPoint v = vertices.at(edges.at(i).to); |
| 1625 | p.drawLine(u.x, u.y, v.x, v.y); |
| 1626 | } |
| 1627 | |
| 1628 | for (int i = 0; i < vertices.size(); ++i) { |
| 1629 | QPodPoint q = vertices.at(i); |
| 1630 | p.fillRect(QRectF(q.x - halfPointSize, q.y - halfPointSize, 2 * halfPointSize, 2 * halfPointSize), Qt::red); |
| 1631 | } |
| 1632 | |
| 1633 | Qt::GlobalColor colors[6] = {Qt::red, Qt::green, Qt::blue, Qt::cyan, Qt::magenta, Qt::yellow}; |
| 1634 | p.setOpacity(0.5); |
| 1635 | int count = 0; |
| 1636 | if (m_parent->m_edgeList.root) { |
| 1637 | QRBTree<int>::Node *current = m_parent->m_edgeList.front(m_parent->m_edgeList.root); |
| 1638 | while (current) { |
| 1639 | p.setPen(colors[count++ % 6]); |
| 1640 | QPodPoint u = vertices.at(edges.at(current->data).from); |
| 1641 | QPodPoint v = vertices.at(edges.at(current->data).to); |
| 1642 | p.drawLine(u.x, u.y, v.x, v.y); |
| 1643 | current = m_parent->m_edgeList.next(current); |
| 1644 | } |
| 1645 | } |
| 1646 | |
| 1647 | p.setOpacity(1.0); |
| 1648 | QPodPoint q = vertices.at(m_vertex); |
| 1649 | p.fillRect(QRectF(q.x - halfPointSize, q.y - halfPointSize, 2 * halfPointSize, 2 * halfPointSize), Qt::green); |
| 1650 | |
| 1651 | p.setPen(Qt::gray); |
| 1652 | QDataBuffer<Split> &splits = m_parent->m_splits; |
| 1653 | for (int i = 0; i < splits.size(); ++i) { |
| 1654 | QPodPoint q = vertices.at(splits.at(i).vertex); |
| 1655 | QPodPoint u = vertices.at(edges.at(splits.at(i).edge).from) - q; |
| 1656 | QPodPoint v = vertices.at(edges.at(splits.at(i).edge).to) - q; |
| 1657 | qreal uLen = qSqrt(qDot(u, u)); |
| 1658 | qreal vLen = qSqrt(qDot(v, v)); |
| 1659 | if (uLen) { |
| 1660 | u.x *= 2 * halfPointSize / uLen; |
| 1661 | u.y *= 2 * halfPointSize / uLen; |
| 1662 | } |
| 1663 | if (vLen) { |
| 1664 | v.x *= 2 * halfPointSize / vLen; |
| 1665 | v.y *= 2 * halfPointSize / vLen; |
| 1666 | } |
| 1667 | u += q; |
| 1668 | v += q; |
| 1669 | p.drawLine(u.x, u.y, v.x, v.y); |
| 1670 | } |
| 1671 | } |
| 1672 | |
| 1673 | template <typename T> |
| 1674 | void QTriangulator<T>::ComplexToSimple::DebugDialog::wheelEvent(QWheelEvent *event) |
| 1675 | { |
| 1676 | qreal scale = qExp(-0.001 * event->delta()); |
| 1677 | QPointF center = m_window.center(); |
| 1678 | QPointF delta = scale * (m_window.bottomRight() - center); |
| 1679 | m_window = QRectF(center - delta, center + delta); |
| 1680 | event->accept(); |
| 1681 | update(); |
| 1682 | } |
| 1683 | |
| 1684 | template <typename T> |
| 1685 | void QTriangulator<T>::ComplexToSimple::DebugDialog::mouseMoveEvent(QMouseEvent *event) |
| 1686 | { |
| 1687 | if (event->buttons() & Qt::LeftButton) { |
| 1688 | QPointF delta = event->pos() - m_lastMousePos; |
| 1689 | delta.setX(delta.x() * m_window.width() / width()); |
| 1690 | delta.setY(delta.y() * m_window.height() / height()); |
| 1691 | m_window.translate(-delta.x(), -delta.y()); |
| 1692 | m_lastMousePos = event->pos(); |
| 1693 | event->accept(); |
| 1694 | update(); |
| 1695 | } |
| 1696 | } |
| 1697 | |
| 1698 | template <typename T> |
| 1699 | void QTriangulator<T>::ComplexToSimple::DebugDialog::mousePressEvent(QMouseEvent *event) |
| 1700 | { |
| 1701 | if (event->button() == Qt::LeftButton) |
| 1702 | m_lastMousePos = event->pos(); |
| 1703 | event->accept(); |
| 1704 | } |
| 1705 | |
| 1706 | |
| 1707 | #endif |
| 1708 | |
| 1709 | //============================================================================// |
| 1710 | // QTriangulator::SimpleToMonotone // |
| 1711 | //============================================================================// |
| 1712 | template <typename T> |
| 1713 | void QTriangulator<T>::SimpleToMonotone::decompose() |
| 1714 | { |
| 1715 | setupDataStructures(); |
| 1716 | removeZeroLengthEdges(); |
| 1717 | monotoneDecomposition(); |
| 1718 | |
| 1719 | m_parent->m_indices.clear(); |
| 1720 | QBitArray processed(m_edges.size(), false); |
| 1721 | for (int first = 0; first < m_edges.size(); ++first) { |
| 1722 | if (processed.at(i: first)) |
| 1723 | continue; |
| 1724 | int i = first; |
| 1725 | do { |
| 1726 | Q_ASSERT(!processed.at(i)); |
| 1727 | Q_ASSERT(m_edges.at(m_edges.at(i).next).previous == i); |
| 1728 | m_parent->m_indices.push_back(m_edges.at(i).from); |
| 1729 | processed.setBit(i); |
| 1730 | i = m_edges.at(i).next; |
| 1731 | } while (i != first); |
| 1732 | if (m_parent->m_indices.size() > 0 && m_parent->m_indices.back() != T(-1)) // Q_TRIANGULATE_END_OF_POLYGON |
| 1733 | m_parent->m_indices.push_back(T(-1)); // Q_TRIANGULATE_END_OF_POLYGON |
| 1734 | } |
| 1735 | } |
| 1736 | |
| 1737 | template <typename T> |
| 1738 | void QTriangulator<T>::SimpleToMonotone::setupDataStructures() |
| 1739 | { |
| 1740 | int i = 0; |
| 1741 | Edge e; |
| 1742 | e.node = nullptr; |
| 1743 | e.twin = -1; |
| 1744 | |
| 1745 | while (i + 3 <= m_parent->m_indices.size()) { |
| 1746 | int start = m_edges.size(); |
| 1747 | |
| 1748 | do { |
| 1749 | e.from = m_parent->m_indices.at(i); |
| 1750 | e.type = RegularVertex; |
| 1751 | e.next = m_edges.size() + 1; |
| 1752 | e.previous = m_edges.size() - 1; |
| 1753 | m_edges.add(e); |
| 1754 | ++i; |
| 1755 | Q_ASSERT(i < m_parent->m_indices.size()); |
| 1756 | } while (m_parent->m_indices.at(i) != T(-1)); // Q_TRIANGULATE_END_OF_POLYGON |
| 1757 | |
| 1758 | m_edges.last().next = start; |
| 1759 | m_edges.at(start).previous = m_edges.size() - 1; |
| 1760 | ++i; // Skip Q_TRIANGULATE_END_OF_POLYGON. |
| 1761 | } |
| 1762 | |
| 1763 | for (i = 0; i < m_edges.size(); ++i) { |
| 1764 | m_edges.at(i).to = m_edges.at(m_edges.at(i).next).from; |
| 1765 | m_edges.at(i).pointingUp = m_parent->m_vertices.at(m_edges.at(i).to) < m_parent->m_vertices.at(m_edges.at(i).from); |
| 1766 | m_edges.at(i).helper = -1; // Not initialized here. |
| 1767 | } |
| 1768 | } |
| 1769 | |
| 1770 | template <typename T> |
| 1771 | void QTriangulator<T>::SimpleToMonotone::removeZeroLengthEdges() |
| 1772 | { |
| 1773 | for (int i = 0; i < m_edges.size(); ++i) { |
| 1774 | if (m_parent->m_vertices.at(m_edges.at(i).from) == m_parent->m_vertices.at(m_edges.at(i).to)) { |
| 1775 | m_edges.at(m_edges.at(i).previous).next = m_edges.at(i).next; |
| 1776 | m_edges.at(m_edges.at(i).next).previous = m_edges.at(i).previous; |
| 1777 | m_edges.at(m_edges.at(i).next).from = m_edges.at(i).from; |
| 1778 | m_edges.at(i).next = -1; // Mark as removed. |
| 1779 | } |
| 1780 | } |
| 1781 | |
| 1782 | QDataBuffer<int> newMapping(m_edges.size()); |
| 1783 | newMapping.resize(size: m_edges.size()); |
| 1784 | int count = 0; |
| 1785 | for (int i = 0; i < m_edges.size(); ++i) { |
| 1786 | if (m_edges.at(i).next != -1) { |
| 1787 | m_edges.at(count) = m_edges.at(i); |
| 1788 | newMapping.at(i) = count; |
| 1789 | ++count; |
| 1790 | } |
| 1791 | } |
| 1792 | m_edges.resize(count); |
| 1793 | for (int i = 0; i < m_edges.size(); ++i) { |
| 1794 | m_edges.at(i).next = newMapping.at(m_edges.at(i).next); |
| 1795 | m_edges.at(i).previous = newMapping.at(m_edges.at(i).previous); |
| 1796 | } |
| 1797 | } |
| 1798 | |
| 1799 | template <typename T> |
| 1800 | void QTriangulator<T>::SimpleToMonotone::fillPriorityQueue() |
| 1801 | { |
| 1802 | m_upperVertex.reset(); |
| 1803 | m_upperVertex.reserve(size: m_edges.size()); |
| 1804 | for (int i = 0; i < m_edges.size(); ++i) |
| 1805 | m_upperVertex.add(t: i); |
| 1806 | CompareVertices cmp(this); |
| 1807 | std::sort(m_upperVertex.data(), m_upperVertex.data() + m_upperVertex.size(), cmp); |
| 1808 | //for (int i = 1; i < m_upperVertex.size(); ++i) { |
| 1809 | // Q_ASSERT(!cmp(m_upperVertex.at(i), m_upperVertex.at(i - 1))); |
| 1810 | //} |
| 1811 | } |
| 1812 | |
| 1813 | template <typename T> |
| 1814 | bool QTriangulator<T>::SimpleToMonotone::edgeIsLeftOfEdge(int leftEdgeIndex, int rightEdgeIndex) const |
| 1815 | { |
| 1816 | const Edge &leftEdge = m_edges.at(leftEdgeIndex); |
| 1817 | const Edge &rightEdge = m_edges.at(rightEdgeIndex); |
| 1818 | const QPodPoint &u = m_parent->m_vertices.at(rightEdge.upper()); |
| 1819 | const QPodPoint &l = m_parent->m_vertices.at(rightEdge.lower()); |
| 1820 | qint64 d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(p: m_parent->m_vertices.at(leftEdge.upper()), v1: l, v2: u); |
| 1821 | // d < 0: left, d > 0: right, d == 0: on top |
| 1822 | if (d == 0) |
| 1823 | d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(p: m_parent->m_vertices.at(leftEdge.lower()), v1: l, v2: u); |
| 1824 | return d < 0; |
| 1825 | } |
| 1826 | |
| 1827 | // Returns the rightmost edge not to the right of the given edge. |
| 1828 | template <typename T> |
| 1829 | QRBTree<int>::Node *QTriangulator<T>::SimpleToMonotone::searchEdgeLeftOfEdge(int edgeIndex) const |
| 1830 | { |
| 1831 | QRBTree<int>::Node *current = m_edgeList.root; |
| 1832 | QRBTree<int>::Node *result = nullptr; |
| 1833 | while (current) { |
| 1834 | if (edgeIsLeftOfEdge(leftEdgeIndex: edgeIndex, rightEdgeIndex: current->data)) { |
| 1835 | current = current->left; |
| 1836 | } else { |
| 1837 | result = current; |
| 1838 | current = current->right; |
| 1839 | } |
| 1840 | } |
| 1841 | return result; |
| 1842 | } |
| 1843 | |
| 1844 | // Returns the rightmost edge left of the given point. |
| 1845 | template <typename T> |
| 1846 | QRBTree<int>::Node *QTriangulator<T>::SimpleToMonotone::searchEdgeLeftOfPoint(int pointIndex) const |
| 1847 | { |
| 1848 | QRBTree<int>::Node *current = m_edgeList.root; |
| 1849 | QRBTree<int>::Node *result = nullptr; |
| 1850 | while (current) { |
| 1851 | const QPodPoint &p1 = m_parent->m_vertices.at(m_edges.at(current->data).lower()); |
| 1852 | const QPodPoint &p2 = m_parent->m_vertices.at(m_edges.at(current->data).upper()); |
| 1853 | qint64 d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(p: m_parent->m_vertices.at(pointIndex), v1: p1, v2: p2); |
| 1854 | if (d <= 0) { |
| 1855 | current = current->left; |
| 1856 | } else { |
| 1857 | result = current; |
| 1858 | current = current->right; |
| 1859 | } |
| 1860 | } |
| 1861 | return result; |
| 1862 | } |
| 1863 | |
| 1864 | template <typename T> |
| 1865 | void QTriangulator<T>::SimpleToMonotone::classifyVertex(int i) |
| 1866 | { |
| 1867 | Edge &e2 = m_edges.at(i); |
| 1868 | const Edge &e1 = m_edges.at(e2.previous); |
| 1869 | |
| 1870 | bool startOrSplit = (e1.pointingUp && !e2.pointingUp); |
| 1871 | bool endOrMerge = (!e1.pointingUp && e2.pointingUp); |
| 1872 | |
| 1873 | const QPodPoint &p1 = m_parent->m_vertices.at(e1.from); |
| 1874 | const QPodPoint &p2 = m_parent->m_vertices.at(e2.from); |
| 1875 | const QPodPoint &p3 = m_parent->m_vertices.at(e2.to); |
| 1876 | qint64 d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(p: p1, v1: p2, v2: p3); |
| 1877 | Q_ASSERT(d != 0 || (!startOrSplit && !endOrMerge)); |
| 1878 | |
| 1879 | e2.type = RegularVertex; |
| 1880 | |
| 1881 | if (m_clockwiseOrder) { |
| 1882 | if (startOrSplit) |
| 1883 | e2.type = (d < 0 ? SplitVertex : StartVertex); |
| 1884 | else if (endOrMerge) |
| 1885 | e2.type = (d < 0 ? MergeVertex : EndVertex); |
| 1886 | } else { |
| 1887 | if (startOrSplit) |
| 1888 | e2.type = (d > 0 ? SplitVertex : StartVertex); |
| 1889 | else if (endOrMerge) |
| 1890 | e2.type = (d > 0 ? MergeVertex : EndVertex); |
| 1891 | } |
| 1892 | } |
| 1893 | |
| 1894 | template <typename T> |
| 1895 | void QTriangulator<T>::SimpleToMonotone::classifyVertices() |
| 1896 | { |
| 1897 | for (int i = 0; i < m_edges.size(); ++i) |
| 1898 | classifyVertex(i); |
| 1899 | } |
| 1900 | |
| 1901 | template <typename T> |
| 1902 | bool QTriangulator<T>::SimpleToMonotone::pointIsInSector(const QPodPoint &p, const QPodPoint &v1, const QPodPoint &v2, const QPodPoint &v3) |
| 1903 | { |
| 1904 | bool leftOfPreviousEdge = !qPointIsLeftOfLine(p, v1: v2, v2: v1); |
| 1905 | bool leftOfNextEdge = !qPointIsLeftOfLine(p, v1: v3, v2); |
| 1906 | |
| 1907 | if (qPointIsLeftOfLine(p: v1, v1: v2, v2: v3)) |
| 1908 | return leftOfPreviousEdge && leftOfNextEdge; |
| 1909 | else |
| 1910 | return leftOfPreviousEdge || leftOfNextEdge; |
| 1911 | } |
| 1912 | |
| 1913 | template <typename T> |
| 1914 | bool QTriangulator<T>::SimpleToMonotone::pointIsInSector(int vertex, int sector) |
| 1915 | { |
| 1916 | const QPodPoint ¢er = m_parent->m_vertices.at(m_edges.at(sector).from); |
| 1917 | // Handle degenerate edges. |
| 1918 | while (m_parent->m_vertices.at(m_edges.at(vertex).from) == center) |
| 1919 | vertex = m_edges.at(vertex).next; |
| 1920 | int next = m_edges.at(sector).next; |
| 1921 | while (m_parent->m_vertices.at(m_edges.at(next).from) == center) |
| 1922 | next = m_edges.at(next).next; |
| 1923 | int previous = m_edges.at(sector).previous; |
| 1924 | while (m_parent->m_vertices.at(m_edges.at(previous).from) == center) |
| 1925 | previous = m_edges.at(previous).previous; |
| 1926 | |
| 1927 | const QPodPoint &p = m_parent->m_vertices.at(m_edges.at(vertex).from); |
| 1928 | const QPodPoint &v1 = m_parent->m_vertices.at(m_edges.at(previous).from); |
| 1929 | const QPodPoint &v3 = m_parent->m_vertices.at(m_edges.at(next).from); |
| 1930 | if (m_clockwiseOrder) |
| 1931 | return pointIsInSector(p, v3, center, v1); |
| 1932 | else |
| 1933 | return pointIsInSector(p, v1, center, v3); |
| 1934 | } |
| 1935 | |
| 1936 | template <typename T> |
| 1937 | int QTriangulator<T>::SimpleToMonotone::findSector(int edge, int vertex) |
| 1938 | { |
| 1939 | while (!pointIsInSector(vertex, edge)) { |
| 1940 | edge = m_edges.at(m_edges.at(edge).previous).twin; |
| 1941 | Q_ASSERT(edge != -1); |
| 1942 | } |
| 1943 | return edge; |
| 1944 | } |
| 1945 | |
| 1946 | template <typename T> |
| 1947 | void QTriangulator<T>::SimpleToMonotone::createDiagonal(int lower, int upper) |
| 1948 | { |
| 1949 | lower = findSector(edge: lower, vertex: upper); |
| 1950 | upper = findSector(edge: upper, vertex: lower); |
| 1951 | |
| 1952 | int prevLower = m_edges.at(lower).previous; |
| 1953 | int prevUpper = m_edges.at(upper).previous; |
| 1954 | |
| 1955 | Edge e = {}; |
| 1956 | |
| 1957 | e.twin = m_edges.size() + 1; |
| 1958 | e.next = upper; |
| 1959 | e.previous = prevLower; |
| 1960 | e.from = m_edges.at(lower).from; |
| 1961 | e.to = m_edges.at(upper).from; |
| 1962 | m_edges.at(upper).previous = m_edges.at(prevLower).next = int(m_edges.size()); |
| 1963 | m_edges.add(e); |
| 1964 | |
| 1965 | e.twin = m_edges.size() - 1; |
| 1966 | e.next = lower; |
| 1967 | e.previous = prevUpper; |
| 1968 | e.from = m_edges.at(upper).from; |
| 1969 | e.to = m_edges.at(lower).from; |
| 1970 | m_edges.at(lower).previous = m_edges.at(prevUpper).next = int(m_edges.size()); |
| 1971 | m_edges.add(e); |
| 1972 | } |
| 1973 | |
| 1974 | template <typename T> |
| 1975 | void QTriangulator<T>::SimpleToMonotone::monotoneDecomposition() |
| 1976 | { |
| 1977 | if (m_edges.isEmpty()) |
| 1978 | return; |
| 1979 | |
| 1980 | Q_ASSERT(!m_edgeList.root); |
| 1981 | QDataBuffer<QPair<int, int> > diagonals(m_upperVertex.size()); |
| 1982 | |
| 1983 | int i = 0; |
| 1984 | for (int index = 1; index < m_edges.size(); ++index) { |
| 1985 | if (m_parent->m_vertices.at(m_edges.at(index).from) < m_parent->m_vertices.at(m_edges.at(i).from)) |
| 1986 | i = index; |
| 1987 | } |
| 1988 | Q_ASSERT(i < m_edges.size()); |
| 1989 | int j = m_edges.at(i).previous; |
| 1990 | Q_ASSERT(j < m_edges.size()); |
| 1991 | m_clockwiseOrder = qPointIsLeftOfLine(m_parent->m_vertices.at((quint32)m_edges.at(i).from), |
| 1992 | m_parent->m_vertices.at((quint32)m_edges.at(j).from), m_parent->m_vertices.at((quint32)m_edges.at(i).to)); |
| 1993 | |
| 1994 | classifyVertices(); |
| 1995 | fillPriorityQueue(); |
| 1996 | |
| 1997 | // debug: set helpers explicitly (shouldn't be necessary) |
| 1998 | //for (int i = 0; i < m_edges.size(); ++i) |
| 1999 | // m_edges.at(i).helper = m_edges.at(i).upper(); |
| 2000 | |
| 2001 | while (!m_upperVertex.isEmpty()) { |
| 2002 | i = m_upperVertex.last(); |
| 2003 | Q_ASSERT(i < m_edges.size()); |
| 2004 | m_upperVertex.pop_back(); |
| 2005 | j = m_edges.at(i).previous; |
| 2006 | Q_ASSERT(j < m_edges.size()); |
| 2007 | |
| 2008 | QRBTree<int>::Node *leftEdgeNode = nullptr; |
| 2009 | |
| 2010 | switch (m_edges.at(i).type) { |
| 2011 | case RegularVertex: |
| 2012 | // If polygon interior is to the right of the vertex... |
| 2013 | if (m_edges.at(i).pointingUp == m_clockwiseOrder) { |
| 2014 | if (m_edges.at(i).node) { |
| 2015 | Q_ASSERT(!m_edges.at(j).node); |
| 2016 | if (m_edges.at(m_edges.at(i).helper).type == MergeVertex) |
| 2017 | diagonals.add(t: QPair<int, int>(i, m_edges.at(i).helper)); |
| 2018 | m_edges.at(j).node = m_edges.at(i).node; |
| 2019 | m_edges.at(i).node = nullptr; |
| 2020 | m_edges.at(j).node->data = j; |
| 2021 | m_edges.at(j).helper = i; |
| 2022 | } else if (m_edges.at(j).node) { |
| 2023 | Q_ASSERT(!m_edges.at(i).node); |
| 2024 | if (m_edges.at(m_edges.at(j).helper).type == MergeVertex) |
| 2025 | diagonals.add(t: QPair<int, int>(i, m_edges.at(j).helper)); |
| 2026 | m_edges.at(i).node = m_edges.at(j).node; |
| 2027 | m_edges.at(j).node = nullptr; |
| 2028 | m_edges.at(i).node->data = i; |
| 2029 | m_edges.at(i).helper = i; |
| 2030 | } else { |
| 2031 | qWarning(msg: "Inconsistent polygon. (#1)" ); |
| 2032 | } |
| 2033 | } else { |
| 2034 | leftEdgeNode = searchEdgeLeftOfPoint(pointIndex: m_edges.at(i).from); |
| 2035 | if (leftEdgeNode) { |
| 2036 | if (m_edges.at(m_edges.at(leftEdgeNode->data).helper).type == MergeVertex) |
| 2037 | diagonals.add(t: QPair<int, int>(i, m_edges.at(leftEdgeNode->data).helper)); |
| 2038 | m_edges.at(leftEdgeNode->data).helper = i; |
| 2039 | } else { |
| 2040 | qWarning(msg: "Inconsistent polygon. (#2)" ); |
| 2041 | } |
| 2042 | } |
| 2043 | break; |
| 2044 | case SplitVertex: |
| 2045 | leftEdgeNode = searchEdgeLeftOfPoint(pointIndex: m_edges.at(i).from); |
| 2046 | if (leftEdgeNode) { |
| 2047 | diagonals.add(t: QPair<int, int>(i, m_edges.at(leftEdgeNode->data).helper)); |
| 2048 | m_edges.at(leftEdgeNode->data).helper = i; |
| 2049 | } else { |
| 2050 | qWarning(msg: "Inconsistent polygon. (#3)" ); |
| 2051 | } |
| 2052 | Q_FALLTHROUGH(); |
| 2053 | case StartVertex: |
| 2054 | if (m_clockwiseOrder) { |
| 2055 | leftEdgeNode = searchEdgeLeftOfEdge(edgeIndex: j); |
| 2056 | QRBTree<int>::Node *node = m_edgeList.newNode(); |
| 2057 | node->data = j; |
| 2058 | m_edges.at(j).node = node; |
| 2059 | m_edges.at(j).helper = i; |
| 2060 | m_edgeList.attachAfter(parent: leftEdgeNode, child: node); |
| 2061 | Q_ASSERT(m_edgeList.validate()); |
| 2062 | } else { |
| 2063 | leftEdgeNode = searchEdgeLeftOfEdge(edgeIndex: i); |
| 2064 | QRBTree<int>::Node *node = m_edgeList.newNode(); |
| 2065 | node->data = i; |
| 2066 | m_edges.at(i).node = node; |
| 2067 | m_edges.at(i).helper = i; |
| 2068 | m_edgeList.attachAfter(parent: leftEdgeNode, child: node); |
| 2069 | Q_ASSERT(m_edgeList.validate()); |
| 2070 | } |
| 2071 | break; |
| 2072 | case MergeVertex: |
| 2073 | leftEdgeNode = searchEdgeLeftOfPoint(pointIndex: m_edges.at(i).from); |
| 2074 | if (leftEdgeNode) { |
| 2075 | if (m_edges.at(m_edges.at(leftEdgeNode->data).helper).type == MergeVertex) |
| 2076 | diagonals.add(t: QPair<int, int>(i, m_edges.at(leftEdgeNode->data).helper)); |
| 2077 | m_edges.at(leftEdgeNode->data).helper = i; |
| 2078 | } else { |
| 2079 | qWarning(msg: "Inconsistent polygon. (#4)" ); |
| 2080 | } |
| 2081 | Q_FALLTHROUGH(); |
| 2082 | case EndVertex: |
| 2083 | if (m_clockwiseOrder) { |
| 2084 | if (m_edges.at(m_edges.at(i).helper).type == MergeVertex) |
| 2085 | diagonals.add(t: QPair<int, int>(i, m_edges.at(i).helper)); |
| 2086 | if (m_edges.at(i).node) { |
| 2087 | m_edgeList.deleteNode(node&: m_edges.at(i).node); |
| 2088 | Q_ASSERT(m_edgeList.validate()); |
| 2089 | } else { |
| 2090 | qWarning(msg: "Inconsistent polygon. (#5)" ); |
| 2091 | } |
| 2092 | } else { |
| 2093 | if (m_edges.at(m_edges.at(j).helper).type == MergeVertex) |
| 2094 | diagonals.add(t: QPair<int, int>(i, m_edges.at(j).helper)); |
| 2095 | if (m_edges.at(j).node) { |
| 2096 | m_edgeList.deleteNode(node&: m_edges.at(j).node); |
| 2097 | Q_ASSERT(m_edgeList.validate()); |
| 2098 | } else { |
| 2099 | qWarning(msg: "Inconsistent polygon. (#6)" ); |
| 2100 | } |
| 2101 | } |
| 2102 | break; |
| 2103 | } |
| 2104 | } |
| 2105 | |
| 2106 | for (int i = 0; i < diagonals.size(); ++i) |
| 2107 | createDiagonal(lower: diagonals.at(i).first, upper: diagonals.at(i).second); |
| 2108 | } |
| 2109 | |
| 2110 | template <typename T> |
| 2111 | bool QTriangulator<T>::SimpleToMonotone::CompareVertices::operator () (int i, int j) const |
| 2112 | { |
| 2113 | if (m_parent->m_edges.at(i).from == m_parent->m_edges.at(j).from) |
| 2114 | return m_parent->m_edges.at(i).type > m_parent->m_edges.at(j).type; |
| 2115 | return m_parent->m_parent->m_vertices.at(m_parent->m_edges.at(i).from) > |
| 2116 | m_parent->m_parent->m_vertices.at(m_parent->m_edges.at(j).from); |
| 2117 | } |
| 2118 | |
| 2119 | //============================================================================// |
| 2120 | // QTriangulator::MonotoneToTriangles // |
| 2121 | //============================================================================// |
| 2122 | template <typename T> |
| 2123 | void QTriangulator<T>::MonotoneToTriangles::decompose() |
| 2124 | { |
| 2125 | QList<T> result; |
| 2126 | QDataBuffer<int> stack(m_parent->m_indices.size()); |
| 2127 | m_first = 0; |
| 2128 | // Require at least three more indices. |
| 2129 | while (m_first + 3 <= m_parent->m_indices.size()) { |
| 2130 | m_length = 0; |
| 2131 | while (m_parent->m_indices.at(m_first + m_length) != T(-1)) { // Q_TRIANGULATE_END_OF_POLYGON |
| 2132 | ++m_length; |
| 2133 | Q_ASSERT(m_first + m_length < m_parent->m_indices.size()); |
| 2134 | } |
| 2135 | if (m_length < 3) { |
| 2136 | m_first += m_length + 1; |
| 2137 | continue; |
| 2138 | } |
| 2139 | |
| 2140 | int minimum = 0; |
| 2141 | while (less(i: next(index: minimum), j: minimum)) |
| 2142 | minimum = next(index: minimum); |
| 2143 | while (less(i: previous(index: minimum), j: minimum)) |
| 2144 | minimum = previous(index: minimum); |
| 2145 | |
| 2146 | stack.reset(); |
| 2147 | stack.add(t: minimum); |
| 2148 | int left = previous(index: minimum); |
| 2149 | int right = next(index: minimum); |
| 2150 | bool stackIsOnLeftSide; |
| 2151 | bool clockwiseOrder = leftOfEdge(i: minimum, j: left, k: right); |
| 2152 | |
| 2153 | if (less(i: left, j: right)) { |
| 2154 | stack.add(t: left); |
| 2155 | left = previous(index: left); |
| 2156 | stackIsOnLeftSide = true; |
| 2157 | } else { |
| 2158 | stack.add(t: right); |
| 2159 | right = next(index: right); |
| 2160 | stackIsOnLeftSide = false; |
| 2161 | } |
| 2162 | |
| 2163 | for (int count = 0; count + 2 < m_length; ++count) |
| 2164 | { |
| 2165 | Q_ASSERT(stack.size() >= 2); |
| 2166 | if (less(i: left, j: right)) { |
| 2167 | if (stackIsOnLeftSide == false) { |
| 2168 | for (int i = 0; i + 1 < stack.size(); ++i) { |
| 2169 | result.push_back(indices(index: stack.at(i: i + 1))); |
| 2170 | result.push_back(indices(index: left)); |
| 2171 | result.push_back(indices(index: stack.at(i))); |
| 2172 | } |
| 2173 | stack.first() = stack.last(); |
| 2174 | stack.resize(size: 1); |
| 2175 | } else { |
| 2176 | while (stack.size() >= 2 && (clockwiseOrder ^ !leftOfEdge(i: left, j: stack.at(i: stack.size() - 2), k: stack.last()))) { |
| 2177 | result.push_back(indices(index: stack.at(i: stack.size() - 2))); |
| 2178 | result.push_back(indices(index: left)); |
| 2179 | result.push_back(indices(index: stack.last())); |
| 2180 | stack.pop_back(); |
| 2181 | } |
| 2182 | } |
| 2183 | stack.add(t: left); |
| 2184 | left = previous(index: left); |
| 2185 | stackIsOnLeftSide = true; |
| 2186 | } else { |
| 2187 | if (stackIsOnLeftSide == true) { |
| 2188 | for (int i = 0; i + 1 < stack.size(); ++i) { |
| 2189 | result.push_back(indices(index: stack.at(i))); |
| 2190 | result.push_back(indices(index: right)); |
| 2191 | result.push_back(indices(index: stack.at(i: i + 1))); |
| 2192 | } |
| 2193 | stack.first() = stack.last(); |
| 2194 | stack.resize(size: 1); |
| 2195 | } else { |
| 2196 | while (stack.size() >= 2 && (clockwiseOrder ^ !leftOfEdge(i: right, j: stack.last(), k: stack.at(i: stack.size() - 2)))) { |
| 2197 | result.push_back(indices(index: stack.last())); |
| 2198 | result.push_back(indices(index: right)); |
| 2199 | result.push_back(indices(index: stack.at(i: stack.size() - 2))); |
| 2200 | stack.pop_back(); |
| 2201 | } |
| 2202 | } |
| 2203 | stack.add(t: right); |
| 2204 | right = next(index: right); |
| 2205 | stackIsOnLeftSide = false; |
| 2206 | } |
| 2207 | } |
| 2208 | |
| 2209 | m_first += m_length + 1; |
| 2210 | } |
| 2211 | m_parent->m_indices = result; |
| 2212 | } |
| 2213 | |
| 2214 | //============================================================================// |
| 2215 | // qTriangulate // |
| 2216 | //============================================================================// |
| 2217 | |
| 2218 | Q_GUI_EXPORT QTriangleSet qTriangulate(const qreal *polygon, |
| 2219 | int count, uint hint, const QTransform &matrix, |
| 2220 | bool allowUintIndices) |
| 2221 | { |
| 2222 | QTriangleSet triangleSet; |
| 2223 | if (allowUintIndices) { |
| 2224 | QTriangulator<quint32> triangulator; |
| 2225 | triangulator.initialize(polygon, count, hint, matrix); |
| 2226 | QVertexSet<quint32> vertexSet = triangulator.triangulate(); |
| 2227 | triangleSet.vertices = vertexSet.vertices; |
| 2228 | triangleSet.indices.setDataUint(vertexSet.indices); |
| 2229 | |
| 2230 | } else { |
| 2231 | QTriangulator<quint16> triangulator; |
| 2232 | triangulator.initialize(polygon, count, hint, matrix); |
| 2233 | QVertexSet<quint16> vertexSet = triangulator.triangulate(); |
| 2234 | triangleSet.vertices = vertexSet.vertices; |
| 2235 | triangleSet.indices.setDataUshort(vertexSet.indices); |
| 2236 | } |
| 2237 | return triangleSet; |
| 2238 | } |
| 2239 | |
| 2240 | Q_GUI_EXPORT QTriangleSet qTriangulate(const QVectorPath &path, |
| 2241 | const QTransform &matrix, qreal lod, bool allowUintIndices) |
| 2242 | { |
| 2243 | QTriangleSet triangleSet; |
| 2244 | // For now systems that support 32-bit index values will always get 32-bit |
| 2245 | // index values. This is not necessary ideal since 16-bit would be enough in |
| 2246 | // many cases. TODO revisit this at a later point. |
| 2247 | if (allowUintIndices) { |
| 2248 | QTriangulator<quint32> triangulator; |
| 2249 | triangulator.initialize(path, matrix, lod); |
| 2250 | QVertexSet<quint32> vertexSet = triangulator.triangulate(); |
| 2251 | triangleSet.vertices = vertexSet.vertices; |
| 2252 | triangleSet.indices.setDataUint(vertexSet.indices); |
| 2253 | } else { |
| 2254 | QTriangulator<quint16> triangulator; |
| 2255 | triangulator.initialize(path, matrix, lod); |
| 2256 | QVertexSet<quint16> vertexSet = triangulator.triangulate(); |
| 2257 | triangleSet.vertices = vertexSet.vertices; |
| 2258 | triangleSet.indices.setDataUshort(vertexSet.indices); |
| 2259 | } |
| 2260 | return triangleSet; |
| 2261 | } |
| 2262 | |
| 2263 | QTriangleSet qTriangulate(const QPainterPath &path, |
| 2264 | const QTransform &matrix, qreal lod, bool allowUintIndices) |
| 2265 | { |
| 2266 | QTriangleSet triangleSet; |
| 2267 | if (allowUintIndices) { |
| 2268 | QTriangulator<quint32> triangulator; |
| 2269 | triangulator.initialize(path, matrix, lod); |
| 2270 | QVertexSet<quint32> vertexSet = triangulator.triangulate(); |
| 2271 | triangleSet.vertices = vertexSet.vertices; |
| 2272 | triangleSet.indices.setDataUint(vertexSet.indices); |
| 2273 | } else { |
| 2274 | QTriangulator<quint16> triangulator; |
| 2275 | triangulator.initialize(path, matrix, lod); |
| 2276 | QVertexSet<quint16> vertexSet = triangulator.triangulate(); |
| 2277 | triangleSet.vertices = vertexSet.vertices; |
| 2278 | triangleSet.indices.setDataUshort(vertexSet.indices); |
| 2279 | } |
| 2280 | return triangleSet; |
| 2281 | } |
| 2282 | |
| 2283 | QPolylineSet qPolyline(const QVectorPath &path, |
| 2284 | const QTransform &matrix, qreal lod, bool allowUintIndices) |
| 2285 | { |
| 2286 | QPolylineSet polyLineSet; |
| 2287 | if (allowUintIndices) { |
| 2288 | QTriangulator<quint32> triangulator; |
| 2289 | triangulator.initialize(path, matrix, lod); |
| 2290 | QVertexSet<quint32> vertexSet = triangulator.polyline(); |
| 2291 | polyLineSet.vertices = vertexSet.vertices; |
| 2292 | polyLineSet.indices.setDataUint(vertexSet.indices); |
| 2293 | } else { |
| 2294 | QTriangulator<quint16> triangulator; |
| 2295 | triangulator.initialize(path, matrix, lod); |
| 2296 | QVertexSet<quint16> vertexSet = triangulator.polyline(); |
| 2297 | polyLineSet.vertices = vertexSet.vertices; |
| 2298 | polyLineSet.indices.setDataUshort(vertexSet.indices); |
| 2299 | } |
| 2300 | return polyLineSet; |
| 2301 | } |
| 2302 | |
| 2303 | QPolylineSet qPolyline(const QPainterPath &path, |
| 2304 | const QTransform &matrix, qreal lod, bool allowUintIndices) |
| 2305 | { |
| 2306 | QPolylineSet polyLineSet; |
| 2307 | if (allowUintIndices) { |
| 2308 | QTriangulator<quint32> triangulator; |
| 2309 | triangulator.initialize(path, matrix, lod); |
| 2310 | QVertexSet<quint32> vertexSet = triangulator.polyline(); |
| 2311 | polyLineSet.vertices = vertexSet.vertices; |
| 2312 | polyLineSet.indices.setDataUint(vertexSet.indices); |
| 2313 | } else { |
| 2314 | QTriangulator<quint16> triangulator; |
| 2315 | triangulator.initialize(path, matrix, lod); |
| 2316 | QVertexSet<quint16> vertexSet = triangulator.polyline(); |
| 2317 | polyLineSet.vertices = vertexSet.vertices; |
| 2318 | polyLineSet.indices.setDataUshort(vertexSet.indices); |
| 2319 | } |
| 2320 | return polyLineSet; |
| 2321 | } |
| 2322 | |
| 2323 | QT_END_NAMESPACE |
| 2324 | |
| 2325 | #undef Q_FIXED_POINT_SCALE |
| 2326 | |