| 1 | /* |
| 2 | * Copyright (C) 2008, 2012 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #ifndef AbstractMacroAssembler_h |
| 27 | #define AbstractMacroAssembler_h |
| 28 | |
| 29 | #include "AssemblerBuffer.h" |
| 30 | #include "CodeLocation.h" |
| 31 | #include "MacroAssemblerCodeRef.h" |
| 32 | #include <wtf/CryptographicallyRandomNumber.h> |
| 33 | #include <wtf/Noncopyable.h> |
| 34 | #include <wtf/UnusedParam.h> |
| 35 | |
| 36 | #if ENABLE(ASSEMBLER) |
| 37 | |
| 38 | |
| 39 | #if PLATFORM(QT) |
| 40 | #define ENABLE_JIT_CONSTANT_BLINDING 0 |
| 41 | #endif |
| 42 | |
| 43 | #ifndef ENABLE_JIT_CONSTANT_BLINDING |
| 44 | #define ENABLE_JIT_CONSTANT_BLINDING 1 |
| 45 | #endif |
| 46 | |
| 47 | namespace JSC { |
| 48 | |
| 49 | class JumpReplacementWatchpoint; |
| 50 | template <typename, template <typename> class> |
| 51 | class LinkBufferBase; |
| 52 | template <typename> |
| 53 | class BranchCompactingLinkBuffer; |
| 54 | class Watchpoint; |
| 55 | namespace DFG { |
| 56 | struct OSRExit; |
| 57 | } |
| 58 | |
| 59 | template <class AssemblerType> |
| 60 | class AbstractMacroAssembler { |
| 61 | public: |
| 62 | friend class JITWriteBarrierBase; |
| 63 | typedef AssemblerType AssemblerType_T; |
| 64 | |
| 65 | typedef MacroAssemblerCodePtr CodePtr; |
| 66 | typedef MacroAssemblerCodeRef CodeRef; |
| 67 | |
| 68 | #if !CPU(ARM_THUMB2) && !CPU(ARM64) |
| 69 | class Jump; |
| 70 | #endif |
| 71 | |
| 72 | typedef typename AssemblerType::RegisterID RegisterID; |
| 73 | typedef typename AssemblerType::FPRegisterID FPRegisterID; |
| 74 | |
| 75 | // Section 1: MacroAssembler operand types |
| 76 | // |
| 77 | // The following types are used as operands to MacroAssembler operations, |
| 78 | // describing immediate and memory operands to the instructions to be planted. |
| 79 | |
| 80 | enum Scale { |
| 81 | TimesOne, |
| 82 | TimesTwo, |
| 83 | TimesFour, |
| 84 | TimesEight, |
| 85 | }; |
| 86 | |
| 87 | // Address: |
| 88 | // |
| 89 | // Describes a simple base-offset address. |
| 90 | struct Address { |
| 91 | explicit Address(RegisterID base, int32_t offset = 0) |
| 92 | : base(base) |
| 93 | , offset(offset) |
| 94 | { |
| 95 | } |
| 96 | |
| 97 | RegisterID base; |
| 98 | int32_t offset; |
| 99 | }; |
| 100 | |
| 101 | struct ExtendedAddress { |
| 102 | explicit ExtendedAddress(RegisterID base, intptr_t offset = 0) |
| 103 | : base(base) |
| 104 | , offset(offset) |
| 105 | { |
| 106 | } |
| 107 | |
| 108 | RegisterID base; |
| 109 | intptr_t offset; |
| 110 | }; |
| 111 | |
| 112 | // ImplicitAddress: |
| 113 | // |
| 114 | // This class is used for explicit 'load' and 'store' operations |
| 115 | // (as opposed to situations in which a memory operand is provided |
| 116 | // to a generic operation, such as an integer arithmetic instruction). |
| 117 | // |
| 118 | // In the case of a load (or store) operation we want to permit |
| 119 | // addresses to be implicitly constructed, e.g. the two calls: |
| 120 | // |
| 121 | // load32(Address(addrReg), destReg); |
| 122 | // load32(addrReg, destReg); |
| 123 | // |
| 124 | // Are equivalent, and the explicit wrapping of the Address in the former |
| 125 | // is unnecessary. |
| 126 | struct ImplicitAddress { |
| 127 | ImplicitAddress(RegisterID base) |
| 128 | : base(base) |
| 129 | , offset(0) |
| 130 | { |
| 131 | } |
| 132 | |
| 133 | ImplicitAddress(Address address) |
| 134 | : base(address.base) |
| 135 | , offset(address.offset) |
| 136 | { |
| 137 | } |
| 138 | |
| 139 | RegisterID base; |
| 140 | int32_t offset; |
| 141 | }; |
| 142 | |
| 143 | // BaseIndex: |
| 144 | // |
| 145 | // Describes a complex addressing mode. |
| 146 | struct BaseIndex { |
| 147 | BaseIndex(RegisterID base, RegisterID index, Scale scale, int32_t offset = 0) |
| 148 | : base(base) |
| 149 | , index(index) |
| 150 | , scale(scale) |
| 151 | , offset(offset) |
| 152 | { |
| 153 | } |
| 154 | |
| 155 | RegisterID base; |
| 156 | RegisterID index; |
| 157 | Scale scale; |
| 158 | int32_t offset; |
| 159 | }; |
| 160 | |
| 161 | // AbsoluteAddress: |
| 162 | // |
| 163 | // Describes an memory operand given by a pointer. For regular load & store |
| 164 | // operations an unwrapped void* will be used, rather than using this. |
| 165 | struct AbsoluteAddress { |
| 166 | explicit AbsoluteAddress(const void* ptr) |
| 167 | : m_ptr(ptr) |
| 168 | { |
| 169 | } |
| 170 | |
| 171 | const void* m_ptr; |
| 172 | }; |
| 173 | |
| 174 | // TrustedImmPtr: |
| 175 | // |
| 176 | // A pointer sized immediate operand to an instruction - this is wrapped |
| 177 | // in a class requiring explicit construction in order to differentiate |
| 178 | // from pointers used as absolute addresses to memory operations |
| 179 | struct TrustedImmPtr { |
| 180 | TrustedImmPtr() { } |
| 181 | |
| 182 | explicit TrustedImmPtr(const void* value) |
| 183 | : m_value(value) |
| 184 | { |
| 185 | } |
| 186 | |
| 187 | // This is only here so that TrustedImmPtr(0) does not confuse the C++ |
| 188 | // overload handling rules. |
| 189 | explicit TrustedImmPtr(int value) |
| 190 | : m_value(0) |
| 191 | { |
| 192 | ASSERT_UNUSED(value, !value); |
| 193 | } |
| 194 | |
| 195 | explicit TrustedImmPtr(size_t value) |
| 196 | : m_value(reinterpret_cast<void*>(value)) |
| 197 | { |
| 198 | } |
| 199 | |
| 200 | intptr_t asIntptr() |
| 201 | { |
| 202 | return reinterpret_cast<intptr_t>(m_value); |
| 203 | } |
| 204 | |
| 205 | const void* m_value; |
| 206 | }; |
| 207 | |
| 208 | struct ImmPtr : |
| 209 | #if ENABLE(JIT_CONSTANT_BLINDING) |
| 210 | private TrustedImmPtr |
| 211 | #else |
| 212 | public TrustedImmPtr |
| 213 | #endif |
| 214 | { |
| 215 | explicit ImmPtr(const void* value) |
| 216 | : TrustedImmPtr(value) |
| 217 | { |
| 218 | } |
| 219 | |
| 220 | TrustedImmPtr asTrustedImmPtr() { return *this; } |
| 221 | }; |
| 222 | |
| 223 | // TrustedImm32: |
| 224 | // |
| 225 | // A 32bit immediate operand to an instruction - this is wrapped in a |
| 226 | // class requiring explicit construction in order to prevent RegisterIDs |
| 227 | // (which are implemented as an enum) from accidentally being passed as |
| 228 | // immediate values. |
| 229 | struct TrustedImm32 { |
| 230 | TrustedImm32() { } |
| 231 | |
| 232 | explicit TrustedImm32(int32_t value) |
| 233 | : m_value(value) |
| 234 | { |
| 235 | } |
| 236 | |
| 237 | #if !CPU(X86_64) |
| 238 | explicit TrustedImm32(TrustedImmPtr ptr) |
| 239 | : m_value(ptr.asIntptr()) |
| 240 | { |
| 241 | } |
| 242 | #endif |
| 243 | |
| 244 | int32_t m_value; |
| 245 | }; |
| 246 | |
| 247 | |
| 248 | struct Imm32 : |
| 249 | #if ENABLE(JIT_CONSTANT_BLINDING) |
| 250 | private TrustedImm32 |
| 251 | #else |
| 252 | public TrustedImm32 |
| 253 | #endif |
| 254 | { |
| 255 | explicit Imm32(int32_t value) |
| 256 | : TrustedImm32(value) |
| 257 | { |
| 258 | } |
| 259 | #if !CPU(X86_64) |
| 260 | explicit Imm32(TrustedImmPtr ptr) |
| 261 | : TrustedImm32(ptr) |
| 262 | { |
| 263 | } |
| 264 | #endif |
| 265 | const TrustedImm32& asTrustedImm32() const { return *this; } |
| 266 | |
| 267 | }; |
| 268 | |
| 269 | // TrustedImm64: |
| 270 | // |
| 271 | // A 64bit immediate operand to an instruction - this is wrapped in a |
| 272 | // class requiring explicit construction in order to prevent RegisterIDs |
| 273 | // (which are implemented as an enum) from accidentally being passed as |
| 274 | // immediate values. |
| 275 | struct TrustedImm64 { |
| 276 | TrustedImm64() { } |
| 277 | |
| 278 | explicit TrustedImm64(int64_t value) |
| 279 | : m_value(value) |
| 280 | { |
| 281 | } |
| 282 | |
| 283 | #if CPU(X86_64) || CPU(ARM64) |
| 284 | explicit TrustedImm64(TrustedImmPtr ptr) |
| 285 | : m_value(ptr.asIntptr()) |
| 286 | { |
| 287 | } |
| 288 | #endif |
| 289 | |
| 290 | int64_t m_value; |
| 291 | }; |
| 292 | |
| 293 | struct Imm64 : |
| 294 | #if ENABLE(JIT_CONSTANT_BLINDING) |
| 295 | private TrustedImm64 |
| 296 | #else |
| 297 | public TrustedImm64 |
| 298 | #endif |
| 299 | { |
| 300 | explicit Imm64(int64_t value) |
| 301 | : TrustedImm64(value) |
| 302 | { |
| 303 | } |
| 304 | #if CPU(X86_64) || CPU(ARM64) |
| 305 | explicit Imm64(TrustedImmPtr ptr) |
| 306 | : TrustedImm64(ptr) |
| 307 | { |
| 308 | } |
| 309 | #endif |
| 310 | const TrustedImm64& asTrustedImm64() const { return *this; } |
| 311 | }; |
| 312 | |
| 313 | // Section 2: MacroAssembler code buffer handles |
| 314 | // |
| 315 | // The following types are used to reference items in the code buffer |
| 316 | // during JIT code generation. For example, the type Jump is used to |
| 317 | // track the location of a jump instruction so that it may later be |
| 318 | // linked to a label marking its destination. |
| 319 | |
| 320 | |
| 321 | // Label: |
| 322 | // |
| 323 | // A Label records a point in the generated instruction stream, typically such that |
| 324 | // it may be used as a destination for a jump. |
| 325 | class Label { |
| 326 | template<class TemplateAssemblerType> |
| 327 | friend class AbstractMacroAssembler; |
| 328 | friend struct DFG::OSRExit; |
| 329 | |
| 330 | #if CPU(ARM_THUMB2) || CPU(ARM64) |
| 331 | using Jump = typename AssemblerType::template Jump<Label>; |
| 332 | friend Jump; |
| 333 | #else |
| 334 | friend class Jump; |
| 335 | #endif |
| 336 | friend class JumpReplacementWatchpoint; |
| 337 | friend class MacroAssemblerCodeRef; |
| 338 | template <typename, template <typename> class> friend class LinkBufferBase; |
| 339 | friend class Watchpoint; |
| 340 | |
| 341 | public: |
| 342 | Label() |
| 343 | { |
| 344 | } |
| 345 | |
| 346 | Label(AbstractMacroAssembler<AssemblerType>* masm) |
| 347 | : m_label(masm->m_assembler.label()) |
| 348 | { |
| 349 | } |
| 350 | |
| 351 | bool isSet() const { return m_label.isSet(); } |
| 352 | |
| 353 | const AssemblerLabel &label() const { return m_label; } |
| 354 | private: |
| 355 | AssemblerLabel m_label; |
| 356 | }; |
| 357 | |
| 358 | // ConvertibleLoadLabel: |
| 359 | // |
| 360 | // A ConvertibleLoadLabel records a loadPtr instruction that can be patched to an addPtr |
| 361 | // so that: |
| 362 | // |
| 363 | // loadPtr(Address(a, i), b) |
| 364 | // |
| 365 | // becomes: |
| 366 | // |
| 367 | // addPtr(TrustedImmPtr(i), a, b) |
| 368 | class ConvertibleLoadLabel { |
| 369 | template<class TemplateAssemblerType> |
| 370 | friend class AbstractMacroAssembler; |
| 371 | template <typename, template <typename> class> friend class LinkBufferBase; |
| 372 | |
| 373 | public: |
| 374 | ConvertibleLoadLabel() |
| 375 | { |
| 376 | } |
| 377 | |
| 378 | ConvertibleLoadLabel(AbstractMacroAssembler<AssemblerType>* masm) |
| 379 | : m_label(masm->m_assembler.labelIgnoringWatchpoints()) |
| 380 | { |
| 381 | } |
| 382 | |
| 383 | bool isSet() const { return m_label.isSet(); } |
| 384 | private: |
| 385 | AssemblerLabel m_label; |
| 386 | }; |
| 387 | |
| 388 | // DataLabelPtr: |
| 389 | // |
| 390 | // A DataLabelPtr is used to refer to a location in the code containing a pointer to be |
| 391 | // patched after the code has been generated. |
| 392 | class DataLabelPtr { |
| 393 | template<class TemplateAssemblerType> |
| 394 | friend class AbstractMacroAssembler; |
| 395 | template <typename, template <typename> class> friend class LinkBufferBase; |
| 396 | public: |
| 397 | DataLabelPtr() |
| 398 | { |
| 399 | } |
| 400 | |
| 401 | DataLabelPtr(AbstractMacroAssembler<AssemblerType>* masm) |
| 402 | : m_label(masm->m_assembler.label()) |
| 403 | { |
| 404 | } |
| 405 | |
| 406 | bool isSet() const { return m_label.isSet(); } |
| 407 | |
| 408 | private: |
| 409 | AssemblerLabel m_label; |
| 410 | }; |
| 411 | |
| 412 | // DataLabel32: |
| 413 | // |
| 414 | // A DataLabelPtr is used to refer to a location in the code containing a pointer to be |
| 415 | // patched after the code has been generated. |
| 416 | class DataLabel32 { |
| 417 | template<class TemplateAssemblerType> |
| 418 | friend class AbstractMacroAssembler; |
| 419 | template <typename, template <typename> class> friend class LinkBufferBase; |
| 420 | public: |
| 421 | DataLabel32() |
| 422 | { |
| 423 | } |
| 424 | |
| 425 | DataLabel32(AbstractMacroAssembler<AssemblerType>* masm) |
| 426 | : m_label(masm->m_assembler.label()) |
| 427 | { |
| 428 | } |
| 429 | |
| 430 | AssemblerLabel label() const { return m_label; } |
| 431 | |
| 432 | private: |
| 433 | AssemblerLabel m_label; |
| 434 | }; |
| 435 | |
| 436 | // DataLabelCompact: |
| 437 | // |
| 438 | // A DataLabelCompact is used to refer to a location in the code containing a |
| 439 | // compact immediate to be patched after the code has been generated. |
| 440 | class DataLabelCompact { |
| 441 | template<class TemplateAssemblerType> |
| 442 | friend class AbstractMacroAssembler; |
| 443 | template <typename, template <typename> class> friend class LinkBufferBase; |
| 444 | public: |
| 445 | DataLabelCompact() |
| 446 | { |
| 447 | } |
| 448 | |
| 449 | DataLabelCompact(AbstractMacroAssembler<AssemblerType>* masm) |
| 450 | : m_label(masm->m_assembler.label()) |
| 451 | { |
| 452 | } |
| 453 | |
| 454 | DataLabelCompact(AssemblerLabel label) |
| 455 | : m_label(label) |
| 456 | { |
| 457 | } |
| 458 | |
| 459 | private: |
| 460 | AssemblerLabel m_label; |
| 461 | }; |
| 462 | |
| 463 | #if CPU(ARM_THUMB2) || CPU(ARM64) |
| 464 | using Jump = typename AssemblerType::template Jump<Label>; |
| 465 | friend Jump; |
| 466 | #endif |
| 467 | |
| 468 | // Call: |
| 469 | // |
| 470 | // A Call object is a reference to a call instruction that has been planted |
| 471 | // into the code buffer - it is typically used to link the call, setting the |
| 472 | // relative offset such that when executed it will call to the desired |
| 473 | // destination. |
| 474 | class Call { |
| 475 | template<class TemplateAssemblerType> |
| 476 | friend class AbstractMacroAssembler; |
| 477 | |
| 478 | public: |
| 479 | enum Flags { |
| 480 | None = 0x0, |
| 481 | Linkable = 0x1, |
| 482 | Near = 0x2, |
| 483 | LinkableNear = 0x3, |
| 484 | }; |
| 485 | |
| 486 | Call() |
| 487 | : m_flags(None) |
| 488 | { |
| 489 | } |
| 490 | |
| 491 | Call(AssemblerLabel jmp, Flags flags) |
| 492 | : m_label(jmp) |
| 493 | , m_flags(flags) |
| 494 | { |
| 495 | } |
| 496 | |
| 497 | bool isFlagSet(Flags flag) |
| 498 | { |
| 499 | return m_flags & flag; |
| 500 | } |
| 501 | |
| 502 | static Call fromTailJump(Jump jump) |
| 503 | { |
| 504 | return Call(jump.m_label, Linkable); |
| 505 | } |
| 506 | |
| 507 | AssemblerLabel m_label; |
| 508 | private: |
| 509 | Flags m_flags; |
| 510 | }; |
| 511 | |
| 512 | // Jump: |
| 513 | // |
| 514 | // A jump object is a reference to a jump instruction that has been planted |
| 515 | // into the code buffer - it is typically used to link the jump, setting the |
| 516 | // relative offset such that when executed it will jump to the desired |
| 517 | // destination. |
| 518 | #if !CPU(ARM_THUMB2) && !CPU(ARM64) |
| 519 | class Jump { |
| 520 | template<class TemplateAssemblerType> |
| 521 | friend class AbstractMacroAssembler; |
| 522 | friend class Call; |
| 523 | friend struct DFG::OSRExit; |
| 524 | template <typename, template <typename> class> friend class LinkBufferBase; |
| 525 | public: |
| 526 | Jump() |
| 527 | { |
| 528 | } |
| 529 | |
| 530 | #if CPU(ARM_THUMB2) |
| 531 | // Fixme: this information should be stored in the instruction stream, not in the Jump object. |
| 532 | Jump(AssemblerLabel jmp, ARMv7Assembler::JumpType type = ARMv7Assembler::JumpNoCondition, ARMv7Assembler::Condition condition = ARMv7Assembler::ConditionInvalid) |
| 533 | : m_label(jmp) |
| 534 | , m_type(type) |
| 535 | , m_condition(condition) |
| 536 | { |
| 537 | } |
| 538 | #elif CPU(ARM64) |
| 539 | Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type = ARM64Assembler::JumpNoCondition, ARM64Assembler::Condition condition = ARM64Assembler::ConditionInvalid) |
| 540 | : m_label(jmp) |
| 541 | , m_type(type) |
| 542 | , m_condition(condition) |
| 543 | { |
| 544 | } |
| 545 | |
| 546 | Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type, ARM64Assembler::Condition condition, bool is64Bit, ARM64Assembler::RegisterID compareRegister) |
| 547 | : m_label(jmp) |
| 548 | , m_type(type) |
| 549 | , m_condition(condition) |
| 550 | , m_is64Bit(is64Bit) |
| 551 | , m_compareRegister(compareRegister) |
| 552 | { |
| 553 | ASSERT((type == ARM64Assembler::JumpCompareAndBranch) || (type == ARM64Assembler::JumpCompareAndBranchFixedSize)); |
| 554 | } |
| 555 | |
| 556 | Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type, ARM64Assembler::Condition condition, unsigned bitNumber, ARM64Assembler::RegisterID compareRegister) |
| 557 | : m_label(jmp) |
| 558 | , m_type(type) |
| 559 | , m_condition(condition) |
| 560 | , m_bitNumber(bitNumber) |
| 561 | , m_compareRegister(compareRegister) |
| 562 | { |
| 563 | ASSERT((type == ARM64Assembler::JumpTestBit) || (type == ARM64Assembler::JumpTestBitFixedSize)); |
| 564 | } |
| 565 | #else |
| 566 | Jump(AssemblerLabel jmp) |
| 567 | : m_label(jmp) |
| 568 | { |
| 569 | } |
| 570 | #endif |
| 571 | |
| 572 | Label label() const |
| 573 | { |
| 574 | Label result; |
| 575 | result.m_label = m_label; |
| 576 | return result; |
| 577 | } |
| 578 | |
| 579 | void link(AbstractMacroAssembler<AssemblerType>* masm) const |
| 580 | { |
| 581 | #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) |
| 582 | masm->checkRegisterAllocationAgainstBranchRange(m_label.m_offset, masm->debugOffset()); |
| 583 | #endif |
| 584 | |
| 585 | #if CPU(ARM_THUMB2) |
| 586 | masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition); |
| 587 | #elif CPU(ARM64) |
| 588 | if ((m_type == ARM64Assembler::JumpCompareAndBranch) || (m_type == ARM64Assembler::JumpCompareAndBranchFixedSize)) |
| 589 | masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition, m_is64Bit, m_compareRegister); |
| 590 | else if ((m_type == ARM64Assembler::JumpTestBit) || (m_type == ARM64Assembler::JumpTestBitFixedSize)) |
| 591 | masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition, m_bitNumber, m_compareRegister); |
| 592 | else |
| 593 | masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition); |
| 594 | #else |
| 595 | masm->m_assembler.linkJump(m_label, masm->m_assembler.label()); |
| 596 | #endif |
| 597 | } |
| 598 | |
| 599 | void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm) const |
| 600 | { |
| 601 | #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) |
| 602 | masm->checkRegisterAllocationAgainstBranchRange(label.m_label.m_offset, m_label.m_offset); |
| 603 | #endif |
| 604 | |
| 605 | #if CPU(ARM_THUMB2) |
| 606 | masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition); |
| 607 | #elif CPU(ARM64) |
| 608 | if ((m_type == ARM64Assembler::JumpCompareAndBranch) || (m_type == ARM64Assembler::JumpCompareAndBranchFixedSize)) |
| 609 | masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition, m_is64Bit, m_compareRegister); |
| 610 | else if ((m_type == ARM64Assembler::JumpTestBit) || (m_type == ARM64Assembler::JumpTestBitFixedSize)) |
| 611 | masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition, m_bitNumber, m_compareRegister); |
| 612 | else |
| 613 | masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition); |
| 614 | #else |
| 615 | masm->m_assembler.linkJump(m_label, label.m_label); |
| 616 | #endif |
| 617 | } |
| 618 | |
| 619 | bool isSet() const { return m_label.isSet(); } |
| 620 | |
| 621 | private: |
| 622 | AssemblerLabel m_label; |
| 623 | #if CPU(ARM_THUMB2) |
| 624 | ARMv7Assembler::JumpType m_type; |
| 625 | ARMv7Assembler::Condition m_condition; |
| 626 | #endif |
| 627 | #if CPU(ARM64) |
| 628 | ARM64Assembler::JumpType m_type; |
| 629 | ARM64Assembler::Condition m_condition; |
| 630 | bool m_is64Bit; |
| 631 | unsigned m_bitNumber; |
| 632 | ARM64Assembler::RegisterID m_compareRegister; |
| 633 | #endif |
| 634 | }; |
| 635 | #endif |
| 636 | |
| 637 | struct PatchableJump { |
| 638 | PatchableJump() |
| 639 | { |
| 640 | } |
| 641 | |
| 642 | explicit PatchableJump(Jump jump) |
| 643 | : m_jump(jump) |
| 644 | { |
| 645 | } |
| 646 | |
| 647 | operator Jump&() { return m_jump; } |
| 648 | |
| 649 | Jump m_jump; |
| 650 | }; |
| 651 | |
| 652 | // JumpList: |
| 653 | // |
| 654 | // A JumpList is a set of Jump objects. |
| 655 | // All jumps in the set will be linked to the same destination. |
| 656 | class JumpList { |
| 657 | template <typename, template <typename> class> friend class LinkBufferBase; |
| 658 | |
| 659 | public: |
| 660 | typedef Vector<Jump, 2> JumpVector; |
| 661 | |
| 662 | JumpList() { } |
| 663 | |
| 664 | JumpList(Jump jump) |
| 665 | { |
| 666 | append(jump); |
| 667 | } |
| 668 | |
| 669 | void link(AbstractMacroAssembler<AssemblerType>* masm) |
| 670 | { |
| 671 | size_t size = m_jumps.size(); |
| 672 | for (size_t i = 0; i < size; ++i) |
| 673 | m_jumps[i].link(masm); |
| 674 | m_jumps.clear(); |
| 675 | } |
| 676 | |
| 677 | void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm) |
| 678 | { |
| 679 | size_t size = m_jumps.size(); |
| 680 | for (size_t i = 0; i < size; ++i) |
| 681 | m_jumps[i].linkTo(label, masm); |
| 682 | m_jumps.clear(); |
| 683 | } |
| 684 | |
| 685 | void append(Jump jump) |
| 686 | { |
| 687 | m_jumps.append(jump); |
| 688 | } |
| 689 | |
| 690 | void append(const JumpList& other) |
| 691 | { |
| 692 | m_jumps.append(other.m_jumps.begin(), other.m_jumps.size()); |
| 693 | } |
| 694 | |
| 695 | bool empty() |
| 696 | { |
| 697 | return !m_jumps.size(); |
| 698 | } |
| 699 | |
| 700 | void clear() |
| 701 | { |
| 702 | m_jumps.clear(); |
| 703 | } |
| 704 | |
| 705 | const JumpVector& jumps() const { return m_jumps; } |
| 706 | |
| 707 | private: |
| 708 | JumpVector m_jumps; |
| 709 | }; |
| 710 | |
| 711 | |
| 712 | // Section 3: Misc admin methods |
| 713 | #if ENABLE(DFG_JIT) |
| 714 | Label labelIgnoringWatchpoints() |
| 715 | { |
| 716 | Label result; |
| 717 | result.m_label = m_assembler.labelIgnoringWatchpoints(); |
| 718 | return result; |
| 719 | } |
| 720 | #else |
| 721 | Label labelIgnoringWatchpoints() |
| 722 | { |
| 723 | return label(); |
| 724 | } |
| 725 | #endif |
| 726 | |
| 727 | Label label() |
| 728 | { |
| 729 | return Label(this); |
| 730 | } |
| 731 | |
| 732 | void padBeforePatch() |
| 733 | { |
| 734 | // Rely on the fact that asking for a label already does the padding. |
| 735 | (void)label(); |
| 736 | } |
| 737 | |
| 738 | Label watchpointLabel() |
| 739 | { |
| 740 | Label result; |
| 741 | result.m_label = m_assembler.labelForWatchpoint(); |
| 742 | return result; |
| 743 | } |
| 744 | |
| 745 | Label align() |
| 746 | { |
| 747 | m_assembler.align(16); |
| 748 | return Label(this); |
| 749 | } |
| 750 | |
| 751 | #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) |
| 752 | class RegisterAllocationOffset { |
| 753 | public: |
| 754 | RegisterAllocationOffset(unsigned offset) |
| 755 | : m_offset(offset) |
| 756 | { |
| 757 | } |
| 758 | |
| 759 | void check(unsigned low, unsigned high) |
| 760 | { |
| 761 | RELEASE_ASSERT_WITH_MESSAGE(!(low <= m_offset && m_offset <= high), "Unsafe branch over register allocation at instruction offset %u in jump offset range %u..%u" , m_offset, low, high); |
| 762 | } |
| 763 | |
| 764 | private: |
| 765 | unsigned m_offset; |
| 766 | }; |
| 767 | |
| 768 | void addRegisterAllocationAtOffset(unsigned offset) |
| 769 | { |
| 770 | m_registerAllocationForOffsets.append(RegisterAllocationOffset(offset)); |
| 771 | } |
| 772 | |
| 773 | void clearRegisterAllocationOffsets() |
| 774 | { |
| 775 | m_registerAllocationForOffsets.clear(); |
| 776 | } |
| 777 | |
| 778 | void checkRegisterAllocationAgainstBranchRange(unsigned offset1, unsigned offset2) |
| 779 | { |
| 780 | if (offset1 > offset2) |
| 781 | std::swap(offset1, offset2); |
| 782 | |
| 783 | size_t size = m_registerAllocationForOffsets.size(); |
| 784 | for (size_t i = 0; i < size; ++i) |
| 785 | m_registerAllocationForOffsets[i].check(offset1, offset2); |
| 786 | } |
| 787 | #endif |
| 788 | |
| 789 | template<typename T, typename U> |
| 790 | static ptrdiff_t differenceBetween(T from, U to) |
| 791 | { |
| 792 | return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); |
| 793 | } |
| 794 | |
| 795 | static ptrdiff_t differenceBetweenCodePtr(const MacroAssemblerCodePtr& a, const MacroAssemblerCodePtr& b) |
| 796 | { |
| 797 | return reinterpret_cast<ptrdiff_t>(b.executableAddress()) - reinterpret_cast<ptrdiff_t>(a.executableAddress()); |
| 798 | } |
| 799 | |
| 800 | unsigned debugOffset() { return m_assembler.debugOffset(); } |
| 801 | |
| 802 | ALWAYS_INLINE static void cacheFlush(void* code, size_t size) |
| 803 | { |
| 804 | AssemblerType::cacheFlush(code, size); |
| 805 | } |
| 806 | protected: |
| 807 | AbstractMacroAssembler() |
| 808 | : m_randomSource(cryptographicallyRandomNumber()) |
| 809 | { |
| 810 | } |
| 811 | |
| 812 | AssemblerType m_assembler; |
| 813 | |
| 814 | uint32_t random() |
| 815 | { |
| 816 | return m_randomSource.getUint32(); |
| 817 | } |
| 818 | |
| 819 | WeakRandom m_randomSource; |
| 820 | |
| 821 | #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) |
| 822 | Vector<RegisterAllocationOffset, 10> m_registerAllocationForOffsets; |
| 823 | #endif |
| 824 | |
| 825 | #if ENABLE(JIT_CONSTANT_BLINDING) |
| 826 | static bool scratchRegisterForBlinding() { return false; } |
| 827 | static bool shouldBlindForSpecificArch(uint32_t) { return true; } |
| 828 | static bool shouldBlindForSpecificArch(uint64_t) { return true; } |
| 829 | #endif |
| 830 | |
| 831 | template <typename, template <typename> class> friend class LinkBufferBase; |
| 832 | template <typename> friend class BranchCompactingLinkBuffer; |
| 833 | |
| 834 | static void linkJump(void* code, Jump jump, CodeLocationLabel target) |
| 835 | { |
| 836 | AssemblerType::linkJump(code, jump.m_label, target.dataLocation()); |
| 837 | } |
| 838 | |
| 839 | static void linkPointer(void* code, AssemblerLabel label, void* value) |
| 840 | { |
| 841 | AssemblerType::linkPointer(code, label, value); |
| 842 | } |
| 843 | |
| 844 | static void* getLinkerAddress(void* code, AssemblerLabel label) |
| 845 | { |
| 846 | return AssemblerType::getRelocatedAddress(code, label); |
| 847 | } |
| 848 | |
| 849 | static unsigned getLinkerCallReturnOffset(Call call) |
| 850 | { |
| 851 | return AssemblerType::getCallReturnOffset(call.m_label); |
| 852 | } |
| 853 | |
| 854 | static void repatchJump(CodeLocationJump jump, CodeLocationLabel destination) |
| 855 | { |
| 856 | AssemblerType::relinkJump(jump.dataLocation(), destination.dataLocation()); |
| 857 | } |
| 858 | |
| 859 | static void repatchNearCall(CodeLocationNearCall nearCall, CodeLocationLabel destination) |
| 860 | { |
| 861 | AssemblerType::relinkCall(nearCall.dataLocation(), destination.executableAddress()); |
| 862 | } |
| 863 | |
| 864 | static void repatchCompact(CodeLocationDataLabelCompact dataLabelCompact, int32_t value) |
| 865 | { |
| 866 | AssemblerType::repatchCompact(dataLabelCompact.dataLocation(), value); |
| 867 | } |
| 868 | |
| 869 | static void repatchInt32(CodeLocationDataLabel32 dataLabel32, int32_t value) |
| 870 | { |
| 871 | AssemblerType::repatchInt32(dataLabel32.dataLocation(), value); |
| 872 | } |
| 873 | |
| 874 | static void repatchPointer(CodeLocationDataLabelPtr dataLabelPtr, void* value) |
| 875 | { |
| 876 | AssemblerType::repatchPointer(dataLabelPtr.dataLocation(), value); |
| 877 | } |
| 878 | |
| 879 | static void* readPointer(CodeLocationDataLabelPtr dataLabelPtr) |
| 880 | { |
| 881 | return AssemblerType::readPointer(dataLabelPtr.dataLocation()); |
| 882 | } |
| 883 | |
| 884 | static void replaceWithLoad(CodeLocationConvertibleLoad label) |
| 885 | { |
| 886 | AssemblerType::replaceWithLoad(label.dataLocation()); |
| 887 | } |
| 888 | |
| 889 | static void replaceWithAddressComputation(CodeLocationConvertibleLoad label) |
| 890 | { |
| 891 | AssemblerType::replaceWithAddressComputation(label.dataLocation()); |
| 892 | } |
| 893 | }; |
| 894 | |
| 895 | } // namespace JSC |
| 896 | |
| 897 | #endif // ENABLE(ASSEMBLER) |
| 898 | |
| 899 | #endif // AbstractMacroAssembler_h |
| 900 | |