| 1 | /* |
| 2 | * Copyright (C) 2008, 2012 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #ifndef X86Assembler_h |
| 27 | #define X86Assembler_h |
| 28 | |
| 29 | #include <Platform.h> |
| 30 | |
| 31 | #if ENABLE(ASSEMBLER) && (CPU(X86) || CPU(X86_64)) |
| 32 | |
| 33 | #include "AssemblerBuffer.h" |
| 34 | #include "AbstractMacroAssembler.h" |
| 35 | #include "JITCompilationEffort.h" |
| 36 | #include <stdint.h> |
| 37 | #include <wtf/Assertions.h> |
| 38 | #include <wtf/Vector.h> |
| 39 | |
| 40 | namespace JSC { |
| 41 | |
| 42 | inline bool CAN_SIGN_EXTEND_8_32(int32_t value) { return value == (int32_t)(signed char)value; } |
| 43 | |
| 44 | namespace X86Registers { |
| 45 | typedef enum { |
| 46 | eax, |
| 47 | ecx, |
| 48 | edx, |
| 49 | ebx, |
| 50 | esp, |
| 51 | ebp, |
| 52 | esi, |
| 53 | edi, |
| 54 | |
| 55 | #if CPU(X86_64) |
| 56 | r8, |
| 57 | r9, |
| 58 | r10, |
| 59 | r11, |
| 60 | r12, |
| 61 | r13, |
| 62 | r14, |
| 63 | r15, |
| 64 | #endif |
| 65 | none = 0xff, |
| 66 | } RegisterID; |
| 67 | |
| 68 | typedef enum { |
| 69 | xmm0, |
| 70 | xmm1, |
| 71 | xmm2, |
| 72 | xmm3, |
| 73 | xmm4, |
| 74 | xmm5, |
| 75 | xmm6, |
| 76 | xmm7, |
| 77 | } XMMRegisterID; |
| 78 | } |
| 79 | |
| 80 | class X86Assembler { |
| 81 | public: |
| 82 | typedef X86Registers::RegisterID RegisterID; |
| 83 | typedef X86Registers::XMMRegisterID XMMRegisterID; |
| 84 | typedef XMMRegisterID FPRegisterID; |
| 85 | |
| 86 | typedef enum { |
| 87 | ConditionO, |
| 88 | ConditionNO, |
| 89 | ConditionB, |
| 90 | ConditionAE, |
| 91 | ConditionE, |
| 92 | ConditionNE, |
| 93 | ConditionBE, |
| 94 | ConditionA, |
| 95 | ConditionS, |
| 96 | ConditionNS, |
| 97 | ConditionP, |
| 98 | ConditionNP, |
| 99 | ConditionL, |
| 100 | ConditionGE, |
| 101 | ConditionLE, |
| 102 | ConditionG, |
| 103 | |
| 104 | ConditionC = ConditionB, |
| 105 | ConditionNC = ConditionAE, |
| 106 | } Condition; |
| 107 | |
| 108 | private: |
| 109 | typedef enum { |
| 110 | OP_ADD_EvGv = 0x01, |
| 111 | OP_ADD_GvEv = 0x03, |
| 112 | OP_OR_EvGv = 0x09, |
| 113 | OP_OR_GvEv = 0x0B, |
| 114 | OP_2BYTE_ESCAPE = 0x0F, |
| 115 | OP_AND_EvGv = 0x21, |
| 116 | OP_AND_GvEv = 0x23, |
| 117 | OP_SUB_EvGv = 0x29, |
| 118 | OP_SUB_GvEv = 0x2B, |
| 119 | PRE_PREDICT_BRANCH_NOT_TAKEN = 0x2E, |
| 120 | OP_XOR_EvGv = 0x31, |
| 121 | OP_XOR_GvEv = 0x33, |
| 122 | OP_CMP_EvGv = 0x39, |
| 123 | OP_CMP_GvEv = 0x3B, |
| 124 | #if CPU(X86_64) |
| 125 | PRE_REX = 0x40, |
| 126 | #endif |
| 127 | OP_PUSH_EAX = 0x50, |
| 128 | OP_POP_EAX = 0x58, |
| 129 | #if CPU(X86_64) |
| 130 | OP_MOVSXD_GvEv = 0x63, |
| 131 | #endif |
| 132 | PRE_OPERAND_SIZE = 0x66, |
| 133 | PRE_SSE_66 = 0x66, |
| 134 | OP_PUSH_Iz = 0x68, |
| 135 | OP_IMUL_GvEvIz = 0x69, |
| 136 | OP_GROUP1_EbIb = 0x80, |
| 137 | OP_GROUP1_EvIz = 0x81, |
| 138 | OP_GROUP1_EvIb = 0x83, |
| 139 | OP_TEST_EbGb = 0x84, |
| 140 | OP_TEST_EvGv = 0x85, |
| 141 | OP_XCHG_EvGv = 0x87, |
| 142 | OP_MOV_EbGb = 0x88, |
| 143 | OP_MOV_EvGv = 0x89, |
| 144 | OP_MOV_GvEv = 0x8B, |
| 145 | OP_LEA = 0x8D, |
| 146 | OP_GROUP1A_Ev = 0x8F, |
| 147 | OP_NOP = 0x90, |
| 148 | OP_CDQ = 0x99, |
| 149 | OP_MOV_EAXOv = 0xA1, |
| 150 | OP_MOV_OvEAX = 0xA3, |
| 151 | OP_MOV_EAXIv = 0xB8, |
| 152 | OP_GROUP2_EvIb = 0xC1, |
| 153 | OP_RET = 0xC3, |
| 154 | OP_GROUP11_EvIb = 0xC6, |
| 155 | OP_GROUP11_EvIz = 0xC7, |
| 156 | OP_INT3 = 0xCC, |
| 157 | OP_GROUP2_Ev1 = 0xD1, |
| 158 | OP_GROUP2_EvCL = 0xD3, |
| 159 | OP_ESCAPE_DD = 0xDD, |
| 160 | OP_CALL_rel32 = 0xE8, |
| 161 | OP_JMP_rel32 = 0xE9, |
| 162 | PRE_SSE_F2 = 0xF2, |
| 163 | PRE_SSE_F3 = 0xF3, |
| 164 | OP_HLT = 0xF4, |
| 165 | OP_GROUP3_EbIb = 0xF6, |
| 166 | OP_GROUP3_Ev = 0xF7, |
| 167 | OP_GROUP3_EvIz = 0xF7, // OP_GROUP3_Ev has an immediate, when instruction is a test. |
| 168 | OP_GROUP5_Ev = 0xFF, |
| 169 | } OneByteOpcodeID; |
| 170 | |
| 171 | typedef enum { |
| 172 | OP2_MOVSD_VsdWsd = 0x10, |
| 173 | OP2_MOVSD_WsdVsd = 0x11, |
| 174 | OP2_MOVSS_VsdWsd = 0x10, |
| 175 | OP2_MOVSS_WsdVsd = 0x11, |
| 176 | OP2_CVTSI2SD_VsdEd = 0x2A, |
| 177 | OP2_CVTTSD2SI_GdWsd = 0x2C, |
| 178 | OP2_UCOMISD_VsdWsd = 0x2E, |
| 179 | OP2_ADDSD_VsdWsd = 0x58, |
| 180 | OP2_MULSD_VsdWsd = 0x59, |
| 181 | OP2_CVTSD2SS_VsdWsd = 0x5A, |
| 182 | OP2_CVTSS2SD_VsdWsd = 0x5A, |
| 183 | OP2_SUBSD_VsdWsd = 0x5C, |
| 184 | OP2_DIVSD_VsdWsd = 0x5E, |
| 185 | OP2_SQRTSD_VsdWsd = 0x51, |
| 186 | OP2_ANDNPD_VpdWpd = 0x55, |
| 187 | OP2_XORPD_VpdWpd = 0x57, |
| 188 | OP2_MOVD_VdEd = 0x6E, |
| 189 | OP2_MOVD_EdVd = 0x7E, |
| 190 | OP2_JCC_rel32 = 0x80, |
| 191 | OP_SETCC = 0x90, |
| 192 | OP2_IMUL_GvEv = 0xAF, |
| 193 | OP2_MOVZX_GvEb = 0xB6, |
| 194 | OP2_MOVSX_GvEb = 0xBE, |
| 195 | OP2_MOVZX_GvEw = 0xB7, |
| 196 | OP2_MOVSX_GvEw = 0xBF, |
| 197 | OP2_PEXTRW_GdUdIb = 0xC5, |
| 198 | OP2_PSLLQ_UdqIb = 0x73, |
| 199 | OP2_PSRLQ_UdqIb = 0x73, |
| 200 | OP2_POR_VdqWdq = 0XEB, |
| 201 | } TwoByteOpcodeID; |
| 202 | |
| 203 | TwoByteOpcodeID jccRel32(Condition cond) |
| 204 | { |
| 205 | return (TwoByteOpcodeID)(int(OP2_JCC_rel32) + cond); |
| 206 | } |
| 207 | |
| 208 | TwoByteOpcodeID setccOpcode(Condition cond) |
| 209 | { |
| 210 | return (TwoByteOpcodeID)(int(OP_SETCC) + cond); |
| 211 | } |
| 212 | |
| 213 | typedef enum { |
| 214 | GROUP1_OP_ADD = 0, |
| 215 | GROUP1_OP_OR = 1, |
| 216 | GROUP1_OP_ADC = 2, |
| 217 | GROUP1_OP_AND = 4, |
| 218 | GROUP1_OP_SUB = 5, |
| 219 | GROUP1_OP_XOR = 6, |
| 220 | GROUP1_OP_CMP = 7, |
| 221 | |
| 222 | GROUP1A_OP_POP = 0, |
| 223 | |
| 224 | GROUP2_OP_ROL = 0, |
| 225 | GROUP2_OP_ROR = 1, |
| 226 | GROUP2_OP_RCL = 2, |
| 227 | GROUP2_OP_RCR = 3, |
| 228 | |
| 229 | GROUP2_OP_SHL = 4, |
| 230 | GROUP2_OP_SHR = 5, |
| 231 | GROUP2_OP_SAR = 7, |
| 232 | |
| 233 | GROUP3_OP_TEST = 0, |
| 234 | GROUP3_OP_NOT = 2, |
| 235 | GROUP3_OP_NEG = 3, |
| 236 | GROUP3_OP_IDIV = 7, |
| 237 | |
| 238 | GROUP5_OP_CALLN = 2, |
| 239 | GROUP5_OP_JMPN = 4, |
| 240 | GROUP5_OP_PUSH = 6, |
| 241 | |
| 242 | GROUP11_MOV = 0, |
| 243 | |
| 244 | GROUP14_OP_PSLLQ = 6, |
| 245 | GROUP14_OP_PSRLQ = 2, |
| 246 | |
| 247 | ESCAPE_DD_FSTP_doubleReal = 3, |
| 248 | } GroupOpcodeID; |
| 249 | |
| 250 | class X86InstructionFormatter; |
| 251 | public: |
| 252 | |
| 253 | X86Assembler() |
| 254 | : m_indexOfLastWatchpoint(INT_MIN) |
| 255 | , m_indexOfTailOfLastWatchpoint(INT_MIN) |
| 256 | { |
| 257 | } |
| 258 | |
| 259 | // Stack operations: |
| 260 | |
| 261 | void push_r(RegisterID reg) |
| 262 | { |
| 263 | m_formatter.oneByteOp(opcode: OP_PUSH_EAX, reg); |
| 264 | } |
| 265 | |
| 266 | void pop_r(RegisterID reg) |
| 267 | { |
| 268 | m_formatter.oneByteOp(opcode: OP_POP_EAX, reg); |
| 269 | } |
| 270 | |
| 271 | void push_i32(int imm) |
| 272 | { |
| 273 | m_formatter.oneByteOp(opcode: OP_PUSH_Iz); |
| 274 | m_formatter.immediate32(imm); |
| 275 | } |
| 276 | |
| 277 | void push_m(int offset, RegisterID base) |
| 278 | { |
| 279 | m_formatter.oneByteOp(opcode: OP_GROUP5_Ev, reg: GROUP5_OP_PUSH, base, offset); |
| 280 | } |
| 281 | |
| 282 | void pop_m(int offset, RegisterID base) |
| 283 | { |
| 284 | m_formatter.oneByteOp(opcode: OP_GROUP1A_Ev, reg: GROUP1A_OP_POP, base, offset); |
| 285 | } |
| 286 | |
| 287 | // Arithmetic operations: |
| 288 | |
| 289 | #if !CPU(X86_64) |
| 290 | void adcl_im(int imm, const void* addr) |
| 291 | { |
| 292 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 293 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADC, addr); |
| 294 | m_formatter.immediate8(imm); |
| 295 | } else { |
| 296 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADC, addr); |
| 297 | m_formatter.immediate32(imm); |
| 298 | } |
| 299 | } |
| 300 | #endif |
| 301 | |
| 302 | void addl_rr(RegisterID src, RegisterID dst) |
| 303 | { |
| 304 | m_formatter.oneByteOp(opcode: OP_ADD_EvGv, reg: src, rm: dst); |
| 305 | } |
| 306 | |
| 307 | void addl_mr(int offset, RegisterID base, RegisterID dst) |
| 308 | { |
| 309 | m_formatter.oneByteOp(opcode: OP_ADD_GvEv, reg: dst, base, offset); |
| 310 | } |
| 311 | |
| 312 | #if !CPU(X86_64) |
| 313 | void addl_mr(const void* addr, RegisterID dst) |
| 314 | { |
| 315 | m_formatter.oneByteOp(OP_ADD_GvEv, dst, addr); |
| 316 | } |
| 317 | #endif |
| 318 | |
| 319 | void addl_rm(RegisterID src, int offset, RegisterID base) |
| 320 | { |
| 321 | m_formatter.oneByteOp(opcode: OP_ADD_EvGv, reg: src, base, offset); |
| 322 | } |
| 323 | |
| 324 | void addl_ir(int imm, RegisterID dst) |
| 325 | { |
| 326 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 327 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_ADD, rm: dst); |
| 328 | m_formatter.immediate8(imm); |
| 329 | } else { |
| 330 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_ADD, rm: dst); |
| 331 | m_formatter.immediate32(imm); |
| 332 | } |
| 333 | } |
| 334 | |
| 335 | void addl_im(int imm, int offset, RegisterID base) |
| 336 | { |
| 337 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 338 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_ADD, base, offset); |
| 339 | m_formatter.immediate8(imm); |
| 340 | } else { |
| 341 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_ADD, base, offset); |
| 342 | m_formatter.immediate32(imm); |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | #if CPU(X86_64) |
| 347 | void addq_rr(RegisterID src, RegisterID dst) |
| 348 | { |
| 349 | m_formatter.oneByteOp64(opcode: OP_ADD_EvGv, reg: src, rm: dst); |
| 350 | } |
| 351 | |
| 352 | void addq_mr(int offset, RegisterID base, RegisterID dst) |
| 353 | { |
| 354 | m_formatter.oneByteOp64(opcode: OP_ADD_GvEv, reg: dst, base, offset); |
| 355 | } |
| 356 | |
| 357 | void addq_ir(int imm, RegisterID dst) |
| 358 | { |
| 359 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 360 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_ADD, rm: dst); |
| 361 | m_formatter.immediate8(imm); |
| 362 | } else { |
| 363 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_ADD, rm: dst); |
| 364 | m_formatter.immediate32(imm); |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | void addq_im(int imm, int offset, RegisterID base) |
| 369 | { |
| 370 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 371 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_ADD, base, offset); |
| 372 | m_formatter.immediate8(imm); |
| 373 | } else { |
| 374 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_ADD, base, offset); |
| 375 | m_formatter.immediate32(imm); |
| 376 | } |
| 377 | } |
| 378 | #else |
| 379 | void addl_im(int imm, const void* addr) |
| 380 | { |
| 381 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 382 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, addr); |
| 383 | m_formatter.immediate8(imm); |
| 384 | } else { |
| 385 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, addr); |
| 386 | m_formatter.immediate32(imm); |
| 387 | } |
| 388 | } |
| 389 | #endif |
| 390 | |
| 391 | void andl_rr(RegisterID src, RegisterID dst) |
| 392 | { |
| 393 | m_formatter.oneByteOp(opcode: OP_AND_EvGv, reg: src, rm: dst); |
| 394 | } |
| 395 | |
| 396 | void andl_mr(int offset, RegisterID base, RegisterID dst) |
| 397 | { |
| 398 | m_formatter.oneByteOp(opcode: OP_AND_GvEv, reg: dst, base, offset); |
| 399 | } |
| 400 | |
| 401 | void andl_rm(RegisterID src, int offset, RegisterID base) |
| 402 | { |
| 403 | m_formatter.oneByteOp(opcode: OP_AND_EvGv, reg: src, base, offset); |
| 404 | } |
| 405 | |
| 406 | void andl_ir(int imm, RegisterID dst) |
| 407 | { |
| 408 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 409 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_AND, rm: dst); |
| 410 | m_formatter.immediate8(imm); |
| 411 | } else { |
| 412 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_AND, rm: dst); |
| 413 | m_formatter.immediate32(imm); |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | void andl_im(int imm, int offset, RegisterID base) |
| 418 | { |
| 419 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 420 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_AND, base, offset); |
| 421 | m_formatter.immediate8(imm); |
| 422 | } else { |
| 423 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_AND, base, offset); |
| 424 | m_formatter.immediate32(imm); |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | #if CPU(X86_64) |
| 429 | void andq_rr(RegisterID src, RegisterID dst) |
| 430 | { |
| 431 | m_formatter.oneByteOp64(opcode: OP_AND_EvGv, reg: src, rm: dst); |
| 432 | } |
| 433 | |
| 434 | void andq_ir(int imm, RegisterID dst) |
| 435 | { |
| 436 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 437 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_AND, rm: dst); |
| 438 | m_formatter.immediate8(imm); |
| 439 | } else { |
| 440 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_AND, rm: dst); |
| 441 | m_formatter.immediate32(imm); |
| 442 | } |
| 443 | } |
| 444 | #else |
| 445 | void andl_im(int imm, const void* addr) |
| 446 | { |
| 447 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 448 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, addr); |
| 449 | m_formatter.immediate8(imm); |
| 450 | } else { |
| 451 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, addr); |
| 452 | m_formatter.immediate32(imm); |
| 453 | } |
| 454 | } |
| 455 | #endif |
| 456 | |
| 457 | void negl_r(RegisterID dst) |
| 458 | { |
| 459 | m_formatter.oneByteOp(opcode: OP_GROUP3_Ev, reg: GROUP3_OP_NEG, rm: dst); |
| 460 | } |
| 461 | |
| 462 | #if CPU(X86_64) |
| 463 | void negq_r(RegisterID dst) |
| 464 | { |
| 465 | m_formatter.oneByteOp64(opcode: OP_GROUP3_Ev, reg: GROUP3_OP_NEG, rm: dst); |
| 466 | } |
| 467 | #endif |
| 468 | |
| 469 | void negl_m(int offset, RegisterID base) |
| 470 | { |
| 471 | m_formatter.oneByteOp(opcode: OP_GROUP3_Ev, reg: GROUP3_OP_NEG, base, offset); |
| 472 | } |
| 473 | |
| 474 | void notl_r(RegisterID dst) |
| 475 | { |
| 476 | m_formatter.oneByteOp(opcode: OP_GROUP3_Ev, reg: GROUP3_OP_NOT, rm: dst); |
| 477 | } |
| 478 | |
| 479 | void notl_m(int offset, RegisterID base) |
| 480 | { |
| 481 | m_formatter.oneByteOp(opcode: OP_GROUP3_Ev, reg: GROUP3_OP_NOT, base, offset); |
| 482 | } |
| 483 | |
| 484 | void orl_rr(RegisterID src, RegisterID dst) |
| 485 | { |
| 486 | m_formatter.oneByteOp(opcode: OP_OR_EvGv, reg: src, rm: dst); |
| 487 | } |
| 488 | |
| 489 | void orl_mr(int offset, RegisterID base, RegisterID dst) |
| 490 | { |
| 491 | m_formatter.oneByteOp(opcode: OP_OR_GvEv, reg: dst, base, offset); |
| 492 | } |
| 493 | |
| 494 | void orl_rm(RegisterID src, int offset, RegisterID base) |
| 495 | { |
| 496 | m_formatter.oneByteOp(opcode: OP_OR_EvGv, reg: src, base, offset); |
| 497 | } |
| 498 | |
| 499 | void orl_ir(int imm, RegisterID dst) |
| 500 | { |
| 501 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 502 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_OR, rm: dst); |
| 503 | m_formatter.immediate8(imm); |
| 504 | } else { |
| 505 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_OR, rm: dst); |
| 506 | m_formatter.immediate32(imm); |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | void orl_im(int imm, int offset, RegisterID base) |
| 511 | { |
| 512 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 513 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_OR, base, offset); |
| 514 | m_formatter.immediate8(imm); |
| 515 | } else { |
| 516 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_OR, base, offset); |
| 517 | m_formatter.immediate32(imm); |
| 518 | } |
| 519 | } |
| 520 | |
| 521 | #if CPU(X86_64) |
| 522 | void orq_rr(RegisterID src, RegisterID dst) |
| 523 | { |
| 524 | m_formatter.oneByteOp64(opcode: OP_OR_EvGv, reg: src, rm: dst); |
| 525 | } |
| 526 | |
| 527 | void orq_ir(int imm, RegisterID dst) |
| 528 | { |
| 529 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 530 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_OR, rm: dst); |
| 531 | m_formatter.immediate8(imm); |
| 532 | } else { |
| 533 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_OR, rm: dst); |
| 534 | m_formatter.immediate32(imm); |
| 535 | } |
| 536 | } |
| 537 | #else |
| 538 | void orl_im(int imm, const void* addr) |
| 539 | { |
| 540 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 541 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, addr); |
| 542 | m_formatter.immediate8(imm); |
| 543 | } else { |
| 544 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, addr); |
| 545 | m_formatter.immediate32(imm); |
| 546 | } |
| 547 | } |
| 548 | |
| 549 | void orl_rm(RegisterID src, const void* addr) |
| 550 | { |
| 551 | m_formatter.oneByteOp(OP_OR_EvGv, src, addr); |
| 552 | } |
| 553 | #endif |
| 554 | |
| 555 | void subl_rr(RegisterID src, RegisterID dst) |
| 556 | { |
| 557 | m_formatter.oneByteOp(opcode: OP_SUB_EvGv, reg: src, rm: dst); |
| 558 | } |
| 559 | |
| 560 | void subl_mr(int offset, RegisterID base, RegisterID dst) |
| 561 | { |
| 562 | m_formatter.oneByteOp(opcode: OP_SUB_GvEv, reg: dst, base, offset); |
| 563 | } |
| 564 | |
| 565 | void subl_rm(RegisterID src, int offset, RegisterID base) |
| 566 | { |
| 567 | m_formatter.oneByteOp(opcode: OP_SUB_EvGv, reg: src, base, offset); |
| 568 | } |
| 569 | |
| 570 | void subl_ir(int imm, RegisterID dst) |
| 571 | { |
| 572 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 573 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_SUB, rm: dst); |
| 574 | m_formatter.immediate8(imm); |
| 575 | } else { |
| 576 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_SUB, rm: dst); |
| 577 | m_formatter.immediate32(imm); |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | void subl_im(int imm, int offset, RegisterID base) |
| 582 | { |
| 583 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 584 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_SUB, base, offset); |
| 585 | m_formatter.immediate8(imm); |
| 586 | } else { |
| 587 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_SUB, base, offset); |
| 588 | m_formatter.immediate32(imm); |
| 589 | } |
| 590 | } |
| 591 | |
| 592 | #if CPU(X86_64) |
| 593 | void subq_rr(RegisterID src, RegisterID dst) |
| 594 | { |
| 595 | m_formatter.oneByteOp64(opcode: OP_SUB_EvGv, reg: src, rm: dst); |
| 596 | } |
| 597 | |
| 598 | void subq_ir(int imm, RegisterID dst) |
| 599 | { |
| 600 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 601 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_SUB, rm: dst); |
| 602 | m_formatter.immediate8(imm); |
| 603 | } else { |
| 604 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_SUB, rm: dst); |
| 605 | m_formatter.immediate32(imm); |
| 606 | } |
| 607 | } |
| 608 | #else |
| 609 | void subl_im(int imm, const void* addr) |
| 610 | { |
| 611 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 612 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, addr); |
| 613 | m_formatter.immediate8(imm); |
| 614 | } else { |
| 615 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, addr); |
| 616 | m_formatter.immediate32(imm); |
| 617 | } |
| 618 | } |
| 619 | #endif |
| 620 | |
| 621 | void xorl_rr(RegisterID src, RegisterID dst) |
| 622 | { |
| 623 | m_formatter.oneByteOp(opcode: OP_XOR_EvGv, reg: src, rm: dst); |
| 624 | } |
| 625 | |
| 626 | void xorl_mr(int offset, RegisterID base, RegisterID dst) |
| 627 | { |
| 628 | m_formatter.oneByteOp(opcode: OP_XOR_GvEv, reg: dst, base, offset); |
| 629 | } |
| 630 | |
| 631 | void xorl_rm(RegisterID src, int offset, RegisterID base) |
| 632 | { |
| 633 | m_formatter.oneByteOp(opcode: OP_XOR_EvGv, reg: src, base, offset); |
| 634 | } |
| 635 | |
| 636 | void xorl_im(int imm, int offset, RegisterID base) |
| 637 | { |
| 638 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 639 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_XOR, base, offset); |
| 640 | m_formatter.immediate8(imm); |
| 641 | } else { |
| 642 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_XOR, base, offset); |
| 643 | m_formatter.immediate32(imm); |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | void xorl_ir(int imm, RegisterID dst) |
| 648 | { |
| 649 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 650 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_XOR, rm: dst); |
| 651 | m_formatter.immediate8(imm); |
| 652 | } else { |
| 653 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_XOR, rm: dst); |
| 654 | m_formatter.immediate32(imm); |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | #if CPU(X86_64) |
| 659 | void xorq_rr(RegisterID src, RegisterID dst) |
| 660 | { |
| 661 | m_formatter.oneByteOp64(opcode: OP_XOR_EvGv, reg: src, rm: dst); |
| 662 | } |
| 663 | |
| 664 | void xorq_ir(int imm, RegisterID dst) |
| 665 | { |
| 666 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 667 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_XOR, rm: dst); |
| 668 | m_formatter.immediate8(imm); |
| 669 | } else { |
| 670 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_XOR, rm: dst); |
| 671 | m_formatter.immediate32(imm); |
| 672 | } |
| 673 | } |
| 674 | |
| 675 | void xorq_rm(RegisterID src, int offset, RegisterID base) |
| 676 | { |
| 677 | m_formatter.oneByteOp64(opcode: OP_XOR_EvGv, reg: src, base, offset); |
| 678 | } |
| 679 | |
| 680 | void rorq_i8r(int imm, RegisterID dst) |
| 681 | { |
| 682 | if (imm == 1) |
| 683 | m_formatter.oneByteOp64(opcode: OP_GROUP2_Ev1, reg: GROUP2_OP_ROR, rm: dst); |
| 684 | else { |
| 685 | m_formatter.oneByteOp64(opcode: OP_GROUP2_EvIb, reg: GROUP2_OP_ROR, rm: dst); |
| 686 | m_formatter.immediate8(imm); |
| 687 | } |
| 688 | } |
| 689 | |
| 690 | void sarq_CLr(RegisterID dst) |
| 691 | { |
| 692 | m_formatter.oneByteOp64(opcode: OP_GROUP2_EvCL, reg: GROUP2_OP_SAR, rm: dst); |
| 693 | } |
| 694 | |
| 695 | void sarq_i8r(int imm, RegisterID dst) |
| 696 | { |
| 697 | if (imm == 1) |
| 698 | m_formatter.oneByteOp64(opcode: OP_GROUP2_Ev1, reg: GROUP2_OP_SAR, rm: dst); |
| 699 | else { |
| 700 | m_formatter.oneByteOp64(opcode: OP_GROUP2_EvIb, reg: GROUP2_OP_SAR, rm: dst); |
| 701 | m_formatter.immediate8(imm); |
| 702 | } |
| 703 | } |
| 704 | |
| 705 | void shrq_i8r(int imm, RegisterID dst) |
| 706 | { |
| 707 | // ### doesn't work when removing the "0 &&" |
| 708 | if (0 && imm == 1) |
| 709 | m_formatter.oneByteOp64(opcode: OP_GROUP2_Ev1, reg: GROUP2_OP_SHR, rm: dst); |
| 710 | else { |
| 711 | m_formatter.oneByteOp64(opcode: OP_GROUP2_EvIb, reg: GROUP2_OP_SHR, rm: dst); |
| 712 | m_formatter.immediate8(imm); |
| 713 | } |
| 714 | } |
| 715 | |
| 716 | void shrq_CLr(RegisterID dst) |
| 717 | { |
| 718 | m_formatter.oneByteOp64(opcode: OP_GROUP2_EvCL, reg: GROUP2_OP_SHR, rm: dst); |
| 719 | } |
| 720 | |
| 721 | void shlq_i8r(int imm, RegisterID dst) |
| 722 | { |
| 723 | // ### doesn't work when removing the "0 &&" |
| 724 | if (0 && imm == 1) |
| 725 | m_formatter.oneByteOp64(opcode: OP_GROUP2_Ev1, reg: GROUP2_OP_SHL, rm: dst); |
| 726 | else { |
| 727 | m_formatter.oneByteOp64(opcode: OP_GROUP2_EvIb, reg: GROUP2_OP_SHL, rm: dst); |
| 728 | m_formatter.immediate8(imm); |
| 729 | } |
| 730 | } |
| 731 | |
| 732 | void shlq_CLr(RegisterID dst) |
| 733 | { |
| 734 | m_formatter.oneByteOp64(opcode: OP_GROUP2_EvCL, reg: GROUP2_OP_SHL, rm: dst); |
| 735 | } |
| 736 | #endif |
| 737 | |
| 738 | void sarl_i8r(int imm, RegisterID dst) |
| 739 | { |
| 740 | if (imm == 1) |
| 741 | m_formatter.oneByteOp(opcode: OP_GROUP2_Ev1, reg: GROUP2_OP_SAR, rm: dst); |
| 742 | else { |
| 743 | m_formatter.oneByteOp(opcode: OP_GROUP2_EvIb, reg: GROUP2_OP_SAR, rm: dst); |
| 744 | m_formatter.immediate8(imm); |
| 745 | } |
| 746 | } |
| 747 | |
| 748 | void sarl_CLr(RegisterID dst) |
| 749 | { |
| 750 | m_formatter.oneByteOp(opcode: OP_GROUP2_EvCL, reg: GROUP2_OP_SAR, rm: dst); |
| 751 | } |
| 752 | |
| 753 | void shrl_i8r(int imm, RegisterID dst) |
| 754 | { |
| 755 | if (imm == 1) |
| 756 | m_formatter.oneByteOp(opcode: OP_GROUP2_Ev1, reg: GROUP2_OP_SHR, rm: dst); |
| 757 | else { |
| 758 | m_formatter.oneByteOp(opcode: OP_GROUP2_EvIb, reg: GROUP2_OP_SHR, rm: dst); |
| 759 | m_formatter.immediate8(imm); |
| 760 | } |
| 761 | } |
| 762 | |
| 763 | void shrl_CLr(RegisterID dst) |
| 764 | { |
| 765 | m_formatter.oneByteOp(opcode: OP_GROUP2_EvCL, reg: GROUP2_OP_SHR, rm: dst); |
| 766 | } |
| 767 | |
| 768 | void shll_i8r(int imm, RegisterID dst) |
| 769 | { |
| 770 | if (imm == 1) |
| 771 | m_formatter.oneByteOp(opcode: OP_GROUP2_Ev1, reg: GROUP2_OP_SHL, rm: dst); |
| 772 | else { |
| 773 | m_formatter.oneByteOp(opcode: OP_GROUP2_EvIb, reg: GROUP2_OP_SHL, rm: dst); |
| 774 | m_formatter.immediate8(imm); |
| 775 | } |
| 776 | } |
| 777 | |
| 778 | void shll_CLr(RegisterID dst) |
| 779 | { |
| 780 | m_formatter.oneByteOp(opcode: OP_GROUP2_EvCL, reg: GROUP2_OP_SHL, rm: dst); |
| 781 | } |
| 782 | |
| 783 | void imull_rr(RegisterID src, RegisterID dst) |
| 784 | { |
| 785 | m_formatter.twoByteOp(opcode: OP2_IMUL_GvEv, reg: dst, rm: src); |
| 786 | } |
| 787 | |
| 788 | void imull_mr(int offset, RegisterID base, RegisterID dst) |
| 789 | { |
| 790 | m_formatter.twoByteOp(opcode: OP2_IMUL_GvEv, reg: dst, base, offset); |
| 791 | } |
| 792 | |
| 793 | void imull_i32r(RegisterID src, int32_t value, RegisterID dst) |
| 794 | { |
| 795 | m_formatter.oneByteOp(opcode: OP_IMUL_GvEvIz, reg: dst, rm: src); |
| 796 | m_formatter.immediate32(imm: value); |
| 797 | } |
| 798 | |
| 799 | void idivl_r(RegisterID dst) |
| 800 | { |
| 801 | m_formatter.oneByteOp(opcode: OP_GROUP3_Ev, reg: GROUP3_OP_IDIV, rm: dst); |
| 802 | } |
| 803 | |
| 804 | // Comparisons: |
| 805 | |
| 806 | void cmpl_rr(RegisterID src, RegisterID dst) |
| 807 | { |
| 808 | m_formatter.oneByteOp(opcode: OP_CMP_EvGv, reg: src, rm: dst); |
| 809 | } |
| 810 | |
| 811 | void cmpl_rm(RegisterID src, int offset, RegisterID base) |
| 812 | { |
| 813 | m_formatter.oneByteOp(opcode: OP_CMP_EvGv, reg: src, base, offset); |
| 814 | } |
| 815 | |
| 816 | void cmpl_mr(int offset, RegisterID base, RegisterID src) |
| 817 | { |
| 818 | m_formatter.oneByteOp(opcode: OP_CMP_GvEv, reg: src, base, offset); |
| 819 | } |
| 820 | |
| 821 | void cmpl_ir(int imm, RegisterID dst) |
| 822 | { |
| 823 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 824 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_CMP, rm: dst); |
| 825 | m_formatter.immediate8(imm); |
| 826 | } else { |
| 827 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_CMP, rm: dst); |
| 828 | m_formatter.immediate32(imm); |
| 829 | } |
| 830 | } |
| 831 | |
| 832 | void cmpl_ir_force32(int imm, RegisterID dst) |
| 833 | { |
| 834 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_CMP, rm: dst); |
| 835 | m_formatter.immediate32(imm); |
| 836 | } |
| 837 | |
| 838 | void cmpl_im(int imm, int offset, RegisterID base) |
| 839 | { |
| 840 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 841 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_CMP, base, offset); |
| 842 | m_formatter.immediate8(imm); |
| 843 | } else { |
| 844 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_CMP, base, offset); |
| 845 | m_formatter.immediate32(imm); |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | void cmpb_im(int imm, int offset, RegisterID base) |
| 850 | { |
| 851 | m_formatter.oneByteOp(opcode: OP_GROUP1_EbIb, reg: GROUP1_OP_CMP, base, offset); |
| 852 | m_formatter.immediate8(imm); |
| 853 | } |
| 854 | |
| 855 | void cmpb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 856 | { |
| 857 | m_formatter.oneByteOp(opcode: OP_GROUP1_EbIb, reg: GROUP1_OP_CMP, base, index, scale, offset); |
| 858 | m_formatter.immediate8(imm); |
| 859 | } |
| 860 | |
| 861 | #if CPU(X86) |
| 862 | void cmpb_im(int imm, const void* addr) |
| 863 | { |
| 864 | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_CMP, addr); |
| 865 | m_formatter.immediate8(imm); |
| 866 | } |
| 867 | #endif |
| 868 | |
| 869 | void cmpl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 870 | { |
| 871 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 872 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_CMP, base, index, scale, offset); |
| 873 | m_formatter.immediate8(imm); |
| 874 | } else { |
| 875 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_CMP, base, index, scale, offset); |
| 876 | m_formatter.immediate32(imm); |
| 877 | } |
| 878 | } |
| 879 | |
| 880 | void cmpl_im_force32(int imm, int offset, RegisterID base) |
| 881 | { |
| 882 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_CMP, base, offset); |
| 883 | m_formatter.immediate32(imm); |
| 884 | } |
| 885 | |
| 886 | #if CPU(X86_64) |
| 887 | void cmpq_rr(RegisterID src, RegisterID dst) |
| 888 | { |
| 889 | m_formatter.oneByteOp64(opcode: OP_CMP_EvGv, reg: src, rm: dst); |
| 890 | } |
| 891 | |
| 892 | void cmpq_rm(RegisterID src, int offset, RegisterID base) |
| 893 | { |
| 894 | m_formatter.oneByteOp64(opcode: OP_CMP_EvGv, reg: src, base, offset); |
| 895 | } |
| 896 | |
| 897 | void cmpq_mr(int offset, RegisterID base, RegisterID src) |
| 898 | { |
| 899 | m_formatter.oneByteOp64(opcode: OP_CMP_GvEv, reg: src, base, offset); |
| 900 | } |
| 901 | |
| 902 | void cmpq_ir(int imm, RegisterID dst) |
| 903 | { |
| 904 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 905 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_CMP, rm: dst); |
| 906 | m_formatter.immediate8(imm); |
| 907 | } else { |
| 908 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_CMP, rm: dst); |
| 909 | m_formatter.immediate32(imm); |
| 910 | } |
| 911 | } |
| 912 | |
| 913 | void cmpq_im(int imm, int offset, RegisterID base) |
| 914 | { |
| 915 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 916 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_CMP, base, offset); |
| 917 | m_formatter.immediate8(imm); |
| 918 | } else { |
| 919 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_CMP, base, offset); |
| 920 | m_formatter.immediate32(imm); |
| 921 | } |
| 922 | } |
| 923 | |
| 924 | void cmpq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 925 | { |
| 926 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 927 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_CMP, base, index, scale, offset); |
| 928 | m_formatter.immediate8(imm); |
| 929 | } else { |
| 930 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_CMP, base, index, scale, offset); |
| 931 | m_formatter.immediate32(imm); |
| 932 | } |
| 933 | } |
| 934 | #else |
| 935 | void cmpl_rm(RegisterID reg, const void* addr) |
| 936 | { |
| 937 | m_formatter.oneByteOp(OP_CMP_EvGv, reg, addr); |
| 938 | } |
| 939 | |
| 940 | void cmpl_im(int imm, const void* addr) |
| 941 | { |
| 942 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 943 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, addr); |
| 944 | m_formatter.immediate8(imm); |
| 945 | } else { |
| 946 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, addr); |
| 947 | m_formatter.immediate32(imm); |
| 948 | } |
| 949 | } |
| 950 | #endif |
| 951 | |
| 952 | void cmpw_ir(int imm, RegisterID dst) |
| 953 | { |
| 954 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 955 | m_formatter.prefix(pre: PRE_OPERAND_SIZE); |
| 956 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_CMP, rm: dst); |
| 957 | m_formatter.immediate8(imm); |
| 958 | } else { |
| 959 | m_formatter.prefix(pre: PRE_OPERAND_SIZE); |
| 960 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_CMP, rm: dst); |
| 961 | m_formatter.immediate16(imm); |
| 962 | } |
| 963 | } |
| 964 | |
| 965 | void cmpw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 966 | { |
| 967 | m_formatter.prefix(pre: PRE_OPERAND_SIZE); |
| 968 | m_formatter.oneByteOp(opcode: OP_CMP_EvGv, reg: src, base, index, scale, offset); |
| 969 | } |
| 970 | |
| 971 | void cmpw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 972 | { |
| 973 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 974 | m_formatter.prefix(pre: PRE_OPERAND_SIZE); |
| 975 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_CMP, base, index, scale, offset); |
| 976 | m_formatter.immediate8(imm); |
| 977 | } else { |
| 978 | m_formatter.prefix(pre: PRE_OPERAND_SIZE); |
| 979 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_CMP, base, index, scale, offset); |
| 980 | m_formatter.immediate16(imm); |
| 981 | } |
| 982 | } |
| 983 | |
| 984 | void testl_rr(RegisterID src, RegisterID dst) |
| 985 | { |
| 986 | m_formatter.oneByteOp(opcode: OP_TEST_EvGv, reg: src, rm: dst); |
| 987 | } |
| 988 | |
| 989 | void testl_i32r(int imm, RegisterID dst) |
| 990 | { |
| 991 | m_formatter.oneByteOp(opcode: OP_GROUP3_EvIz, reg: GROUP3_OP_TEST, rm: dst); |
| 992 | m_formatter.immediate32(imm); |
| 993 | } |
| 994 | |
| 995 | void testl_i32m(int imm, int offset, RegisterID base) |
| 996 | { |
| 997 | m_formatter.oneByteOp(opcode: OP_GROUP3_EvIz, reg: GROUP3_OP_TEST, base, offset); |
| 998 | m_formatter.immediate32(imm); |
| 999 | } |
| 1000 | |
| 1001 | void testb_rr(RegisterID src, RegisterID dst) |
| 1002 | { |
| 1003 | m_formatter.oneByteOp8(opcode: OP_TEST_EbGb, reg: src, rm: dst); |
| 1004 | } |
| 1005 | |
| 1006 | void testb_im(int imm, int offset, RegisterID base) |
| 1007 | { |
| 1008 | m_formatter.oneByteOp(opcode: OP_GROUP3_EbIb, reg: GROUP3_OP_TEST, base, offset); |
| 1009 | m_formatter.immediate8(imm); |
| 1010 | } |
| 1011 | |
| 1012 | void testb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 1013 | { |
| 1014 | m_formatter.oneByteOp(opcode: OP_GROUP3_EbIb, reg: GROUP3_OP_TEST, base, index, scale, offset); |
| 1015 | m_formatter.immediate8(imm); |
| 1016 | } |
| 1017 | |
| 1018 | #if CPU(X86) |
| 1019 | void testb_im(int imm, const void* addr) |
| 1020 | { |
| 1021 | m_formatter.oneByteOp(OP_GROUP3_EbIb, GROUP3_OP_TEST, addr); |
| 1022 | m_formatter.immediate8(imm); |
| 1023 | } |
| 1024 | #endif |
| 1025 | |
| 1026 | void testl_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 1027 | { |
| 1028 | m_formatter.oneByteOp(opcode: OP_GROUP3_EvIz, reg: GROUP3_OP_TEST, base, index, scale, offset); |
| 1029 | m_formatter.immediate32(imm); |
| 1030 | } |
| 1031 | |
| 1032 | #if CPU(X86_64) |
| 1033 | void testq_rr(RegisterID src, RegisterID dst) |
| 1034 | { |
| 1035 | m_formatter.oneByteOp64(opcode: OP_TEST_EvGv, reg: src, rm: dst); |
| 1036 | } |
| 1037 | |
| 1038 | void testq_rm(RegisterID src, int offset, RegisterID base) |
| 1039 | { |
| 1040 | m_formatter.oneByteOp64(opcode: OP_TEST_EvGv, reg: src, base, offset); |
| 1041 | } |
| 1042 | |
| 1043 | void testq_i32r(int imm, RegisterID dst) |
| 1044 | { |
| 1045 | m_formatter.oneByteOp64(opcode: OP_GROUP3_EvIz, reg: GROUP3_OP_TEST, rm: dst); |
| 1046 | m_formatter.immediate32(imm); |
| 1047 | } |
| 1048 | |
| 1049 | void testq_i32m(int imm, int offset, RegisterID base) |
| 1050 | { |
| 1051 | m_formatter.oneByteOp64(opcode: OP_GROUP3_EvIz, reg: GROUP3_OP_TEST, base, offset); |
| 1052 | m_formatter.immediate32(imm); |
| 1053 | } |
| 1054 | |
| 1055 | void testq_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 1056 | { |
| 1057 | m_formatter.oneByteOp64(opcode: OP_GROUP3_EvIz, reg: GROUP3_OP_TEST, base, index, scale, offset); |
| 1058 | m_formatter.immediate32(imm); |
| 1059 | } |
| 1060 | #endif |
| 1061 | |
| 1062 | void testw_rr(RegisterID src, RegisterID dst) |
| 1063 | { |
| 1064 | m_formatter.prefix(pre: PRE_OPERAND_SIZE); |
| 1065 | m_formatter.oneByteOp(opcode: OP_TEST_EvGv, reg: src, rm: dst); |
| 1066 | } |
| 1067 | |
| 1068 | void testb_i8r(int imm, RegisterID dst) |
| 1069 | { |
| 1070 | m_formatter.oneByteOp8(opcode: OP_GROUP3_EbIb, groupOp: GROUP3_OP_TEST, rm: dst); |
| 1071 | m_formatter.immediate8(imm); |
| 1072 | } |
| 1073 | |
| 1074 | void setCC_r(Condition cond, RegisterID dst) |
| 1075 | { |
| 1076 | m_formatter.twoByteOp8(opcode: setccOpcode(cond), groupOp: (GroupOpcodeID)0, rm: dst); |
| 1077 | } |
| 1078 | |
| 1079 | void sete_r(RegisterID dst) |
| 1080 | { |
| 1081 | m_formatter.twoByteOp8(opcode: setccOpcode(ConditionE), groupOp: (GroupOpcodeID)0, rm: dst); |
| 1082 | } |
| 1083 | |
| 1084 | void setz_r(RegisterID dst) |
| 1085 | { |
| 1086 | sete_r(dst); |
| 1087 | } |
| 1088 | |
| 1089 | void setne_r(RegisterID dst) |
| 1090 | { |
| 1091 | m_formatter.twoByteOp8(opcode: setccOpcode(ConditionNE), groupOp: (GroupOpcodeID)0, rm: dst); |
| 1092 | } |
| 1093 | |
| 1094 | void setnz_r(RegisterID dst) |
| 1095 | { |
| 1096 | setne_r(dst); |
| 1097 | } |
| 1098 | |
| 1099 | // Various move ops: |
| 1100 | |
| 1101 | void cdq() |
| 1102 | { |
| 1103 | m_formatter.oneByteOp(opcode: OP_CDQ); |
| 1104 | } |
| 1105 | |
| 1106 | void fstpl(int offset, RegisterID base) |
| 1107 | { |
| 1108 | m_formatter.oneByteOp(opcode: OP_ESCAPE_DD, reg: ESCAPE_DD_FSTP_doubleReal, base, offset); |
| 1109 | } |
| 1110 | |
| 1111 | void xchgl_rr(RegisterID src, RegisterID dst) |
| 1112 | { |
| 1113 | m_formatter.oneByteOp(opcode: OP_XCHG_EvGv, reg: src, rm: dst); |
| 1114 | } |
| 1115 | |
| 1116 | #if CPU(X86_64) |
| 1117 | void xchgq_rr(RegisterID src, RegisterID dst) |
| 1118 | { |
| 1119 | m_formatter.oneByteOp64(opcode: OP_XCHG_EvGv, reg: src, rm: dst); |
| 1120 | } |
| 1121 | #endif |
| 1122 | |
| 1123 | void movl_rr(RegisterID src, RegisterID dst) |
| 1124 | { |
| 1125 | m_formatter.oneByteOp(opcode: OP_MOV_EvGv, reg: src, rm: dst); |
| 1126 | } |
| 1127 | |
| 1128 | void movl_rm(RegisterID src, int offset, RegisterID base) |
| 1129 | { |
| 1130 | m_formatter.oneByteOp(opcode: OP_MOV_EvGv, reg: src, base, offset); |
| 1131 | } |
| 1132 | |
| 1133 | void movl_rm_disp32(RegisterID src, int offset, RegisterID base) |
| 1134 | { |
| 1135 | m_formatter.oneByteOp_disp32(opcode: OP_MOV_EvGv, reg: src, base, offset); |
| 1136 | } |
| 1137 | |
| 1138 | void movl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 1139 | { |
| 1140 | m_formatter.oneByteOp(opcode: OP_MOV_EvGv, reg: src, base, index, scale, offset); |
| 1141 | } |
| 1142 | |
| 1143 | void movl_mEAX(const void* addr) |
| 1144 | { |
| 1145 | m_formatter.oneByteOp(opcode: OP_MOV_EAXOv); |
| 1146 | #if CPU(X86_64) |
| 1147 | m_formatter.immediate64(imm: reinterpret_cast<int64_t>(addr)); |
| 1148 | #else |
| 1149 | m_formatter.immediate32(reinterpret_cast<int>(addr)); |
| 1150 | #endif |
| 1151 | } |
| 1152 | |
| 1153 | void movl_mr(int offset, RegisterID base, RegisterID dst) |
| 1154 | { |
| 1155 | m_formatter.oneByteOp(opcode: OP_MOV_GvEv, reg: dst, base, offset); |
| 1156 | } |
| 1157 | |
| 1158 | void movl_mr_disp32(int offset, RegisterID base, RegisterID dst) |
| 1159 | { |
| 1160 | m_formatter.oneByteOp_disp32(opcode: OP_MOV_GvEv, reg: dst, base, offset); |
| 1161 | } |
| 1162 | |
| 1163 | void movl_mr_disp8(int offset, RegisterID base, RegisterID dst) |
| 1164 | { |
| 1165 | m_formatter.oneByteOp_disp8(opcode: OP_MOV_GvEv, reg: dst, base, offset); |
| 1166 | } |
| 1167 | |
| 1168 | void movl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 1169 | { |
| 1170 | m_formatter.oneByteOp(opcode: OP_MOV_GvEv, reg: dst, base, index, scale, offset); |
| 1171 | } |
| 1172 | |
| 1173 | void movl_i32r(int imm, RegisterID dst) |
| 1174 | { |
| 1175 | m_formatter.oneByteOp(opcode: OP_MOV_EAXIv, reg: dst); |
| 1176 | m_formatter.immediate32(imm); |
| 1177 | } |
| 1178 | |
| 1179 | void movl_i32m(int imm, int offset, RegisterID base) |
| 1180 | { |
| 1181 | m_formatter.oneByteOp(opcode: OP_GROUP11_EvIz, reg: GROUP11_MOV, base, offset); |
| 1182 | m_formatter.immediate32(imm); |
| 1183 | } |
| 1184 | |
| 1185 | void movl_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 1186 | { |
| 1187 | m_formatter.oneByteOp(opcode: OP_GROUP11_EvIz, reg: GROUP11_MOV, base, index, scale, offset); |
| 1188 | m_formatter.immediate32(imm); |
| 1189 | } |
| 1190 | |
| 1191 | #if !CPU(X86_64) |
| 1192 | void movb_i8m(int imm, const void* addr) |
| 1193 | { |
| 1194 | ASSERT(-128 <= imm && imm < 128); |
| 1195 | m_formatter.oneByteOp(OP_GROUP11_EvIb, GROUP11_MOV, addr); |
| 1196 | m_formatter.immediate8(imm); |
| 1197 | } |
| 1198 | #endif |
| 1199 | |
| 1200 | void movb_i8m(int imm, int offset, RegisterID base) |
| 1201 | { |
| 1202 | ASSERT(-128 <= imm && imm < 128); |
| 1203 | m_formatter.oneByteOp(opcode: OP_GROUP11_EvIb, reg: GROUP11_MOV, base, offset); |
| 1204 | m_formatter.immediate8(imm); |
| 1205 | } |
| 1206 | |
| 1207 | void movb_i8m(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 1208 | { |
| 1209 | ASSERT(-128 <= imm && imm < 128); |
| 1210 | m_formatter.oneByteOp(opcode: OP_GROUP11_EvIb, reg: GROUP11_MOV, base, index, scale, offset); |
| 1211 | m_formatter.immediate8(imm); |
| 1212 | } |
| 1213 | |
| 1214 | void movb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 1215 | { |
| 1216 | m_formatter.oneByteOp8(opcode: OP_MOV_EbGb, reg: src, base, index, scale, offset); |
| 1217 | } |
| 1218 | |
| 1219 | void movw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 1220 | { |
| 1221 | m_formatter.prefix(pre: PRE_OPERAND_SIZE); |
| 1222 | m_formatter.oneByteOp8(opcode: OP_MOV_EvGv, reg: src, base, index, scale, offset); |
| 1223 | } |
| 1224 | |
| 1225 | void movl_EAXm(const void* addr) |
| 1226 | { |
| 1227 | m_formatter.oneByteOp(opcode: OP_MOV_OvEAX); |
| 1228 | #if CPU(X86_64) |
| 1229 | m_formatter.immediate64(imm: reinterpret_cast<int64_t>(addr)); |
| 1230 | #else |
| 1231 | m_formatter.immediate32(reinterpret_cast<int>(addr)); |
| 1232 | #endif |
| 1233 | } |
| 1234 | |
| 1235 | #if CPU(X86_64) |
| 1236 | void movq_rr(RegisterID src, RegisterID dst) |
| 1237 | { |
| 1238 | m_formatter.oneByteOp64(opcode: OP_MOV_EvGv, reg: src, rm: dst); |
| 1239 | } |
| 1240 | |
| 1241 | void movq_rm(RegisterID src, int offset, RegisterID base) |
| 1242 | { |
| 1243 | m_formatter.oneByteOp64(opcode: OP_MOV_EvGv, reg: src, base, offset); |
| 1244 | } |
| 1245 | |
| 1246 | void movq_rm_disp32(RegisterID src, int offset, RegisterID base) |
| 1247 | { |
| 1248 | m_formatter.oneByteOp64_disp32(opcode: OP_MOV_EvGv, reg: src, base, offset); |
| 1249 | } |
| 1250 | |
| 1251 | void movq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 1252 | { |
| 1253 | m_formatter.oneByteOp64(opcode: OP_MOV_EvGv, reg: src, base, index, scale, offset); |
| 1254 | } |
| 1255 | |
| 1256 | void movq_mEAX(const void* addr) |
| 1257 | { |
| 1258 | m_formatter.oneByteOp64(opcode: OP_MOV_EAXOv); |
| 1259 | m_formatter.immediate64(imm: reinterpret_cast<int64_t>(addr)); |
| 1260 | } |
| 1261 | |
| 1262 | void movq_EAXm(const void* addr) |
| 1263 | { |
| 1264 | m_formatter.oneByteOp64(opcode: OP_MOV_OvEAX); |
| 1265 | m_formatter.immediate64(imm: reinterpret_cast<int64_t>(addr)); |
| 1266 | } |
| 1267 | |
| 1268 | void movq_mr(int offset, RegisterID base, RegisterID dst) |
| 1269 | { |
| 1270 | m_formatter.oneByteOp64(opcode: OP_MOV_GvEv, reg: dst, base, offset); |
| 1271 | } |
| 1272 | |
| 1273 | void movq_mr_disp32(int offset, RegisterID base, RegisterID dst) |
| 1274 | { |
| 1275 | m_formatter.oneByteOp64_disp32(opcode: OP_MOV_GvEv, reg: dst, base, offset); |
| 1276 | } |
| 1277 | |
| 1278 | void movq_mr_disp8(int offset, RegisterID base, RegisterID dst) |
| 1279 | { |
| 1280 | m_formatter.oneByteOp64_disp8(opcode: OP_MOV_GvEv, reg: dst, base, offset); |
| 1281 | } |
| 1282 | |
| 1283 | void movq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 1284 | { |
| 1285 | m_formatter.oneByteOp64(opcode: OP_MOV_GvEv, reg: dst, base, index, scale, offset); |
| 1286 | } |
| 1287 | |
| 1288 | void movq_i32m(int imm, int offset, RegisterID base) |
| 1289 | { |
| 1290 | m_formatter.oneByteOp64(opcode: OP_GROUP11_EvIz, reg: GROUP11_MOV, base, offset); |
| 1291 | m_formatter.immediate32(imm); |
| 1292 | } |
| 1293 | |
| 1294 | void movq_i64r(int64_t imm, RegisterID dst) |
| 1295 | { |
| 1296 | m_formatter.oneByteOp64(opcode: OP_MOV_EAXIv, reg: dst); |
| 1297 | m_formatter.immediate64(imm); |
| 1298 | } |
| 1299 | |
| 1300 | void movsxd_rr(RegisterID src, RegisterID dst) |
| 1301 | { |
| 1302 | m_formatter.oneByteOp64(opcode: OP_MOVSXD_GvEv, reg: dst, rm: src); |
| 1303 | } |
| 1304 | |
| 1305 | |
| 1306 | #else |
| 1307 | void movl_rm(RegisterID src, const void* addr) |
| 1308 | { |
| 1309 | if (src == X86Registers::eax) |
| 1310 | movl_EAXm(addr); |
| 1311 | else |
| 1312 | m_formatter.oneByteOp(OP_MOV_EvGv, src, addr); |
| 1313 | } |
| 1314 | |
| 1315 | void movl_mr(const void* addr, RegisterID dst) |
| 1316 | { |
| 1317 | if (dst == X86Registers::eax) |
| 1318 | movl_mEAX(addr); |
| 1319 | else |
| 1320 | m_formatter.oneByteOp(OP_MOV_GvEv, dst, addr); |
| 1321 | } |
| 1322 | |
| 1323 | void movl_i32m(int imm, const void* addr) |
| 1324 | { |
| 1325 | m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, addr); |
| 1326 | m_formatter.immediate32(imm); |
| 1327 | } |
| 1328 | #endif |
| 1329 | |
| 1330 | void movzwl_mr(int offset, RegisterID base, RegisterID dst) |
| 1331 | { |
| 1332 | m_formatter.twoByteOp(opcode: OP2_MOVZX_GvEw, reg: dst, base, offset); |
| 1333 | } |
| 1334 | |
| 1335 | void movzwl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 1336 | { |
| 1337 | m_formatter.twoByteOp(opcode: OP2_MOVZX_GvEw, reg: dst, base, index, scale, offset); |
| 1338 | } |
| 1339 | |
| 1340 | void movswl_mr(int offset, RegisterID base, RegisterID dst) |
| 1341 | { |
| 1342 | m_formatter.twoByteOp(opcode: OP2_MOVSX_GvEw, reg: dst, base, offset); |
| 1343 | } |
| 1344 | |
| 1345 | void movswl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 1346 | { |
| 1347 | m_formatter.twoByteOp(opcode: OP2_MOVSX_GvEw, reg: dst, base, index, scale, offset); |
| 1348 | } |
| 1349 | |
| 1350 | void movzbl_mr(int offset, RegisterID base, RegisterID dst) |
| 1351 | { |
| 1352 | m_formatter.twoByteOp(opcode: OP2_MOVZX_GvEb, reg: dst, base, offset); |
| 1353 | } |
| 1354 | |
| 1355 | void movzbl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 1356 | { |
| 1357 | m_formatter.twoByteOp(opcode: OP2_MOVZX_GvEb, reg: dst, base, index, scale, offset); |
| 1358 | } |
| 1359 | |
| 1360 | void movsbl_mr(int offset, RegisterID base, RegisterID dst) |
| 1361 | { |
| 1362 | m_formatter.twoByteOp(opcode: OP2_MOVSX_GvEb, reg: dst, base, offset); |
| 1363 | } |
| 1364 | |
| 1365 | void movsbl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 1366 | { |
| 1367 | m_formatter.twoByteOp(opcode: OP2_MOVSX_GvEb, reg: dst, base, index, scale, offset); |
| 1368 | } |
| 1369 | |
| 1370 | void movzbl_rr(RegisterID src, RegisterID dst) |
| 1371 | { |
| 1372 | // In 64-bit, this may cause an unnecessary REX to be planted (if the dst register |
| 1373 | // is in the range ESP-EDI, and the src would not have required a REX). Unneeded |
| 1374 | // REX prefixes are defined to be silently ignored by the processor. |
| 1375 | m_formatter.twoByteOp8(opcode: OP2_MOVZX_GvEb, reg: dst, rm: src); |
| 1376 | } |
| 1377 | |
| 1378 | void leal_mr(int offset, RegisterID base, RegisterID dst) |
| 1379 | { |
| 1380 | m_formatter.oneByteOp(opcode: OP_LEA, reg: dst, base, offset); |
| 1381 | } |
| 1382 | |
| 1383 | void leal_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 1384 | { |
| 1385 | m_formatter.oneByteOp(opcode: OP_LEA, reg: dst, base, index, scale, offset); |
| 1386 | } |
| 1387 | |
| 1388 | #if CPU(X86_64) |
| 1389 | void leaq_mr(int offset, RegisterID base, RegisterID dst) |
| 1390 | { |
| 1391 | m_formatter.oneByteOp64(opcode: OP_LEA, reg: dst, base, offset); |
| 1392 | } |
| 1393 | |
| 1394 | void leaq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 1395 | { |
| 1396 | m_formatter.oneByteOp64(opcode: OP_LEA, reg: dst, base, index, scale, offset); |
| 1397 | } |
| 1398 | #endif |
| 1399 | |
| 1400 | // Flow control: |
| 1401 | |
| 1402 | AssemblerLabel call() |
| 1403 | { |
| 1404 | m_formatter.oneByteOp(opcode: OP_CALL_rel32); |
| 1405 | return m_formatter.immediateRel32(); |
| 1406 | } |
| 1407 | |
| 1408 | AssemblerLabel call(RegisterID dst) |
| 1409 | { |
| 1410 | m_formatter.oneByteOp(opcode: OP_GROUP5_Ev, reg: GROUP5_OP_CALLN, rm: dst); |
| 1411 | return m_formatter.label(); |
| 1412 | } |
| 1413 | |
| 1414 | void call_m(int offset, RegisterID base) |
| 1415 | { |
| 1416 | m_formatter.oneByteOp(opcode: OP_GROUP5_Ev, reg: GROUP5_OP_CALLN, base, offset); |
| 1417 | } |
| 1418 | |
| 1419 | AssemblerLabel jmp() |
| 1420 | { |
| 1421 | m_formatter.oneByteOp(opcode: OP_JMP_rel32); |
| 1422 | return m_formatter.immediateRel32(); |
| 1423 | } |
| 1424 | |
| 1425 | // Return a AssemblerLabel so we have a label to the jump, so we can use this |
| 1426 | // To make a tail recursive call on x86-64. The MacroAssembler |
| 1427 | // really shouldn't wrap this as a Jump, since it can't be linked. :-/ |
| 1428 | AssemblerLabel jmp_r(RegisterID dst) |
| 1429 | { |
| 1430 | m_formatter.oneByteOp(opcode: OP_GROUP5_Ev, reg: GROUP5_OP_JMPN, rm: dst); |
| 1431 | return m_formatter.label(); |
| 1432 | } |
| 1433 | |
| 1434 | void jmp_m(int offset, RegisterID base) |
| 1435 | { |
| 1436 | m_formatter.oneByteOp(opcode: OP_GROUP5_Ev, reg: GROUP5_OP_JMPN, base, offset); |
| 1437 | } |
| 1438 | |
| 1439 | #if !CPU(X86_64) |
| 1440 | void jmp_m(const void* address) |
| 1441 | { |
| 1442 | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, address); |
| 1443 | } |
| 1444 | #endif |
| 1445 | |
| 1446 | AssemblerLabel jne() |
| 1447 | { |
| 1448 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionNE)); |
| 1449 | return m_formatter.immediateRel32(); |
| 1450 | } |
| 1451 | |
| 1452 | AssemblerLabel jnz() |
| 1453 | { |
| 1454 | return jne(); |
| 1455 | } |
| 1456 | |
| 1457 | AssemblerLabel je() |
| 1458 | { |
| 1459 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionE)); |
| 1460 | return m_formatter.immediateRel32(); |
| 1461 | } |
| 1462 | |
| 1463 | AssemblerLabel jz() |
| 1464 | { |
| 1465 | return je(); |
| 1466 | } |
| 1467 | |
| 1468 | AssemblerLabel jl() |
| 1469 | { |
| 1470 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionL)); |
| 1471 | return m_formatter.immediateRel32(); |
| 1472 | } |
| 1473 | |
| 1474 | AssemblerLabel jb() |
| 1475 | { |
| 1476 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionB)); |
| 1477 | return m_formatter.immediateRel32(); |
| 1478 | } |
| 1479 | |
| 1480 | AssemblerLabel jle() |
| 1481 | { |
| 1482 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionLE)); |
| 1483 | return m_formatter.immediateRel32(); |
| 1484 | } |
| 1485 | |
| 1486 | AssemblerLabel jbe() |
| 1487 | { |
| 1488 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionBE)); |
| 1489 | return m_formatter.immediateRel32(); |
| 1490 | } |
| 1491 | |
| 1492 | AssemblerLabel jge() |
| 1493 | { |
| 1494 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionGE)); |
| 1495 | return m_formatter.immediateRel32(); |
| 1496 | } |
| 1497 | |
| 1498 | AssemblerLabel jg() |
| 1499 | { |
| 1500 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionG)); |
| 1501 | return m_formatter.immediateRel32(); |
| 1502 | } |
| 1503 | |
| 1504 | AssemblerLabel ja() |
| 1505 | { |
| 1506 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionA)); |
| 1507 | return m_formatter.immediateRel32(); |
| 1508 | } |
| 1509 | |
| 1510 | AssemblerLabel jae() |
| 1511 | { |
| 1512 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionAE)); |
| 1513 | return m_formatter.immediateRel32(); |
| 1514 | } |
| 1515 | |
| 1516 | AssemblerLabel jo() |
| 1517 | { |
| 1518 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionO)); |
| 1519 | return m_formatter.immediateRel32(); |
| 1520 | } |
| 1521 | |
| 1522 | AssemblerLabel jnp() |
| 1523 | { |
| 1524 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionNP)); |
| 1525 | return m_formatter.immediateRel32(); |
| 1526 | } |
| 1527 | |
| 1528 | AssemblerLabel jp() |
| 1529 | { |
| 1530 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionP)); |
| 1531 | return m_formatter.immediateRel32(); |
| 1532 | } |
| 1533 | |
| 1534 | AssemblerLabel js() |
| 1535 | { |
| 1536 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionS)); |
| 1537 | return m_formatter.immediateRel32(); |
| 1538 | } |
| 1539 | |
| 1540 | AssemblerLabel jCC(Condition cond) |
| 1541 | { |
| 1542 | m_formatter.twoByteOp(opcode: jccRel32(cond)); |
| 1543 | return m_formatter.immediateRel32(); |
| 1544 | } |
| 1545 | |
| 1546 | // SSE operations: |
| 1547 | |
| 1548 | void addsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 1549 | { |
| 1550 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1551 | m_formatter.twoByteOp(opcode: OP2_ADDSD_VsdWsd, reg: (RegisterID)dst, rm: (RegisterID)src); |
| 1552 | } |
| 1553 | |
| 1554 | void addsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 1555 | { |
| 1556 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1557 | m_formatter.twoByteOp(opcode: OP2_ADDSD_VsdWsd, reg: (RegisterID)dst, base, offset); |
| 1558 | } |
| 1559 | |
| 1560 | #if !CPU(X86_64) |
| 1561 | void addsd_mr(const void* address, XMMRegisterID dst) |
| 1562 | { |
| 1563 | m_formatter.prefix(PRE_SSE_F2); |
| 1564 | m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, address); |
| 1565 | } |
| 1566 | #endif |
| 1567 | |
| 1568 | void cvtsi2sd_rr(RegisterID src, XMMRegisterID dst) |
| 1569 | { |
| 1570 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1571 | m_formatter.twoByteOp(opcode: OP2_CVTSI2SD_VsdEd, reg: (RegisterID)dst, rm: src); |
| 1572 | } |
| 1573 | |
| 1574 | void cvtsi2sd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 1575 | { |
| 1576 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1577 | m_formatter.twoByteOp(opcode: OP2_CVTSI2SD_VsdEd, reg: (RegisterID)dst, base, offset); |
| 1578 | } |
| 1579 | |
| 1580 | #if !CPU(X86_64) |
| 1581 | void cvtsi2sd_mr(const void* address, XMMRegisterID dst) |
| 1582 | { |
| 1583 | m_formatter.prefix(PRE_SSE_F2); |
| 1584 | m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, address); |
| 1585 | } |
| 1586 | #endif |
| 1587 | |
| 1588 | #if CPU(X86_64) |
| 1589 | void cvtsiq2sd_rr(RegisterID src, FPRegisterID dst) |
| 1590 | { |
| 1591 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1592 | m_formatter.twoByteOp64(opcode: OP2_CVTSI2SD_VsdEd, reg: (RegisterID)dst, rm: src); |
| 1593 | } |
| 1594 | |
| 1595 | #endif |
| 1596 | |
| 1597 | void cvttsd2si_rr(XMMRegisterID src, RegisterID dst) |
| 1598 | { |
| 1599 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1600 | m_formatter.twoByteOp(opcode: OP2_CVTTSD2SI_GdWsd, reg: dst, rm: (RegisterID)src); |
| 1601 | } |
| 1602 | |
| 1603 | void cvtsd2ss_rr(XMMRegisterID src, XMMRegisterID dst) |
| 1604 | { |
| 1605 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1606 | m_formatter.twoByteOp(opcode: OP2_CVTSD2SS_VsdWsd, reg: dst, rm: (RegisterID)src); |
| 1607 | } |
| 1608 | |
| 1609 | void cvtss2sd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 1610 | { |
| 1611 | m_formatter.prefix(pre: PRE_SSE_F3); |
| 1612 | m_formatter.twoByteOp(opcode: OP2_CVTSS2SD_VsdWsd, reg: dst, rm: (RegisterID)src); |
| 1613 | } |
| 1614 | |
| 1615 | #if CPU(X86_64) |
| 1616 | void cvttsd2siq_rr(XMMRegisterID src, RegisterID dst) |
| 1617 | { |
| 1618 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1619 | m_formatter.twoByteOp64(opcode: OP2_CVTTSD2SI_GdWsd, reg: dst, rm: (RegisterID)src); |
| 1620 | } |
| 1621 | #endif |
| 1622 | |
| 1623 | void movd_rr(XMMRegisterID src, RegisterID dst) |
| 1624 | { |
| 1625 | m_formatter.prefix(pre: PRE_SSE_66); |
| 1626 | m_formatter.twoByteOp(opcode: OP2_MOVD_EdVd, reg: (RegisterID)src, rm: dst); |
| 1627 | } |
| 1628 | |
| 1629 | void movd_rr(RegisterID src, XMMRegisterID dst) |
| 1630 | { |
| 1631 | m_formatter.prefix(pre: PRE_SSE_66); |
| 1632 | m_formatter.twoByteOp(opcode: OP2_MOVD_VdEd, reg: (RegisterID)dst, rm: src); |
| 1633 | } |
| 1634 | |
| 1635 | #if CPU(X86_64) |
| 1636 | void movq_rr(XMMRegisterID src, RegisterID dst) |
| 1637 | { |
| 1638 | m_formatter.prefix(pre: PRE_SSE_66); |
| 1639 | m_formatter.twoByteOp64(opcode: OP2_MOVD_EdVd, reg: (RegisterID)src, rm: dst); |
| 1640 | } |
| 1641 | |
| 1642 | void movq_rr(RegisterID src, XMMRegisterID dst) |
| 1643 | { |
| 1644 | m_formatter.prefix(pre: PRE_SSE_66); |
| 1645 | m_formatter.twoByteOp64(opcode: OP2_MOVD_VdEd, reg: (RegisterID)dst, rm: src); |
| 1646 | } |
| 1647 | #endif |
| 1648 | |
| 1649 | void movsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 1650 | { |
| 1651 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1652 | m_formatter.twoByteOp(opcode: OP2_MOVSD_VsdWsd, reg: (RegisterID)dst, rm: (RegisterID)src); |
| 1653 | } |
| 1654 | |
| 1655 | void movsd_rm(XMMRegisterID src, int offset, RegisterID base) |
| 1656 | { |
| 1657 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1658 | m_formatter.twoByteOp(opcode: OP2_MOVSD_WsdVsd, reg: (RegisterID)src, base, offset); |
| 1659 | } |
| 1660 | |
| 1661 | void movsd_rm(XMMRegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 1662 | { |
| 1663 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1664 | m_formatter.twoByteOp(opcode: OP2_MOVSD_WsdVsd, reg: (RegisterID)src, base, index, scale, offset); |
| 1665 | } |
| 1666 | |
| 1667 | void movss_rm(XMMRegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 1668 | { |
| 1669 | m_formatter.prefix(pre: PRE_SSE_F3); |
| 1670 | m_formatter.twoByteOp(opcode: OP2_MOVSD_WsdVsd, reg: (RegisterID)src, base, index, scale, offset); |
| 1671 | } |
| 1672 | |
| 1673 | void movsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 1674 | { |
| 1675 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1676 | m_formatter.twoByteOp(opcode: OP2_MOVSD_VsdWsd, reg: (RegisterID)dst, base, offset); |
| 1677 | } |
| 1678 | |
| 1679 | void movsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| 1680 | { |
| 1681 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1682 | m_formatter.twoByteOp(opcode: OP2_MOVSD_VsdWsd, reg: dst, base, index, scale, offset); |
| 1683 | } |
| 1684 | |
| 1685 | void movss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| 1686 | { |
| 1687 | m_formatter.prefix(pre: PRE_SSE_F3); |
| 1688 | m_formatter.twoByteOp(opcode: OP2_MOVSD_VsdWsd, reg: dst, base, index, scale, offset); |
| 1689 | } |
| 1690 | |
| 1691 | #if !CPU(X86_64) |
| 1692 | void movsd_mr(const void* address, XMMRegisterID dst) |
| 1693 | { |
| 1694 | m_formatter.prefix(PRE_SSE_F2); |
| 1695 | m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, address); |
| 1696 | } |
| 1697 | void movsd_rm(XMMRegisterID src, const void* address) |
| 1698 | { |
| 1699 | m_formatter.prefix(PRE_SSE_F2); |
| 1700 | m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, address); |
| 1701 | } |
| 1702 | #endif |
| 1703 | |
| 1704 | void mulsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 1705 | { |
| 1706 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1707 | m_formatter.twoByteOp(opcode: OP2_MULSD_VsdWsd, reg: (RegisterID)dst, rm: (RegisterID)src); |
| 1708 | } |
| 1709 | |
| 1710 | void mulsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 1711 | { |
| 1712 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1713 | m_formatter.twoByteOp(opcode: OP2_MULSD_VsdWsd, reg: (RegisterID)dst, base, offset); |
| 1714 | } |
| 1715 | |
| 1716 | void pextrw_irr(int whichWord, XMMRegisterID src, RegisterID dst) |
| 1717 | { |
| 1718 | m_formatter.prefix(pre: PRE_SSE_66); |
| 1719 | m_formatter.twoByteOp(opcode: OP2_PEXTRW_GdUdIb, reg: (RegisterID)dst, rm: (RegisterID)src); |
| 1720 | m_formatter.immediate8(imm: whichWord); |
| 1721 | } |
| 1722 | |
| 1723 | void psllq_i8r(int imm, XMMRegisterID dst) |
| 1724 | { |
| 1725 | m_formatter.prefix(pre: PRE_SSE_66); |
| 1726 | m_formatter.twoByteOp8(opcode: OP2_PSLLQ_UdqIb, groupOp: GROUP14_OP_PSLLQ, rm: (RegisterID)dst); |
| 1727 | m_formatter.immediate8(imm); |
| 1728 | } |
| 1729 | |
| 1730 | void psrlq_i8r(int imm, XMMRegisterID dst) |
| 1731 | { |
| 1732 | m_formatter.prefix(pre: PRE_SSE_66); |
| 1733 | m_formatter.twoByteOp8(opcode: OP2_PSRLQ_UdqIb, groupOp: GROUP14_OP_PSRLQ, rm: (RegisterID)dst); |
| 1734 | m_formatter.immediate8(imm); |
| 1735 | } |
| 1736 | |
| 1737 | void por_rr(XMMRegisterID src, XMMRegisterID dst) |
| 1738 | { |
| 1739 | m_formatter.prefix(pre: PRE_SSE_66); |
| 1740 | m_formatter.twoByteOp(opcode: OP2_POR_VdqWdq, reg: (RegisterID)dst, rm: (RegisterID)src); |
| 1741 | } |
| 1742 | |
| 1743 | void subsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 1744 | { |
| 1745 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1746 | m_formatter.twoByteOp(opcode: OP2_SUBSD_VsdWsd, reg: (RegisterID)dst, rm: (RegisterID)src); |
| 1747 | } |
| 1748 | |
| 1749 | void subsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 1750 | { |
| 1751 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1752 | m_formatter.twoByteOp(opcode: OP2_SUBSD_VsdWsd, reg: (RegisterID)dst, base, offset); |
| 1753 | } |
| 1754 | |
| 1755 | void ucomisd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 1756 | { |
| 1757 | m_formatter.prefix(pre: PRE_SSE_66); |
| 1758 | m_formatter.twoByteOp(opcode: OP2_UCOMISD_VsdWsd, reg: (RegisterID)dst, rm: (RegisterID)src); |
| 1759 | } |
| 1760 | |
| 1761 | void ucomisd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 1762 | { |
| 1763 | m_formatter.prefix(pre: PRE_SSE_66); |
| 1764 | m_formatter.twoByteOp(opcode: OP2_UCOMISD_VsdWsd, reg: (RegisterID)dst, base, offset); |
| 1765 | } |
| 1766 | |
| 1767 | void divsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 1768 | { |
| 1769 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1770 | m_formatter.twoByteOp(opcode: OP2_DIVSD_VsdWsd, reg: (RegisterID)dst, rm: (RegisterID)src); |
| 1771 | } |
| 1772 | |
| 1773 | void divsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 1774 | { |
| 1775 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1776 | m_formatter.twoByteOp(opcode: OP2_DIVSD_VsdWsd, reg: (RegisterID)dst, base, offset); |
| 1777 | } |
| 1778 | |
| 1779 | void xorpd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 1780 | { |
| 1781 | m_formatter.prefix(pre: PRE_SSE_66); |
| 1782 | m_formatter.twoByteOp(opcode: OP2_XORPD_VpdWpd, reg: (RegisterID)dst, rm: (RegisterID)src); |
| 1783 | } |
| 1784 | |
| 1785 | void andnpd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 1786 | { |
| 1787 | m_formatter.prefix(pre: PRE_SSE_66); |
| 1788 | m_formatter.twoByteOp(opcode: OP2_ANDNPD_VpdWpd, reg: (RegisterID)dst, rm: (RegisterID)src); |
| 1789 | } |
| 1790 | |
| 1791 | void sqrtsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 1792 | { |
| 1793 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1794 | m_formatter.twoByteOp(opcode: OP2_SQRTSD_VsdWsd, reg: (RegisterID)dst, rm: (RegisterID)src); |
| 1795 | } |
| 1796 | |
| 1797 | // Misc instructions: |
| 1798 | |
| 1799 | void int3() |
| 1800 | { |
| 1801 | m_formatter.oneByteOp(opcode: OP_INT3); |
| 1802 | } |
| 1803 | |
| 1804 | void ret() |
| 1805 | { |
| 1806 | m_formatter.oneByteOp(opcode: OP_RET); |
| 1807 | } |
| 1808 | |
| 1809 | void predictNotTaken() |
| 1810 | { |
| 1811 | m_formatter.prefix(pre: PRE_PREDICT_BRANCH_NOT_TAKEN); |
| 1812 | } |
| 1813 | |
| 1814 | // Assembler admin methods: |
| 1815 | |
| 1816 | size_t codeSize() const |
| 1817 | { |
| 1818 | return m_formatter.codeSize(); |
| 1819 | } |
| 1820 | |
| 1821 | AssemblerLabel labelForWatchpoint() |
| 1822 | { |
| 1823 | AssemblerLabel result = m_formatter.label(); |
| 1824 | if (static_cast<int>(result.m_offset) != m_indexOfLastWatchpoint) |
| 1825 | result = label(); |
| 1826 | m_indexOfLastWatchpoint = result.m_offset; |
| 1827 | m_indexOfTailOfLastWatchpoint = result.m_offset + maxJumpReplacementSize(); |
| 1828 | return result; |
| 1829 | } |
| 1830 | |
| 1831 | AssemblerLabel labelIgnoringWatchpoints() |
| 1832 | { |
| 1833 | return m_formatter.label(); |
| 1834 | } |
| 1835 | |
| 1836 | AssemblerLabel label() |
| 1837 | { |
| 1838 | AssemblerLabel result = m_formatter.label(); |
| 1839 | while (UNLIKELY(static_cast<int>(result.m_offset) < m_indexOfTailOfLastWatchpoint)) { |
| 1840 | nop(); |
| 1841 | result = m_formatter.label(); |
| 1842 | } |
| 1843 | return result; |
| 1844 | } |
| 1845 | |
| 1846 | AssemblerLabel align(int alignment) |
| 1847 | { |
| 1848 | while (!m_formatter.isAligned(alignment)) |
| 1849 | m_formatter.oneByteOp(opcode: OP_HLT); |
| 1850 | |
| 1851 | return label(); |
| 1852 | } |
| 1853 | |
| 1854 | // Linking & patching: |
| 1855 | // |
| 1856 | // 'link' and 'patch' methods are for use on unprotected code - such as the code |
| 1857 | // within the AssemblerBuffer, and code being patched by the patch buffer. Once |
| 1858 | // code has been finalized it is (platform support permitting) within a non- |
| 1859 | // writable region of memory; to modify the code in an execute-only execuable |
| 1860 | // pool the 'repatch' and 'relink' methods should be used. |
| 1861 | |
| 1862 | void linkJump(AssemblerLabel from, AssemblerLabel to) |
| 1863 | { |
| 1864 | ASSERT(from.isSet()); |
| 1865 | ASSERT(to.isSet()); |
| 1866 | |
| 1867 | char* code = reinterpret_cast<char*>(m_formatter.data()); |
| 1868 | ASSERT(!loadPossiblyUnaligned<int32_t>(code, from.m_offset, -1)); |
| 1869 | setRel32(from: code + from.m_offset, to: code + to.m_offset); |
| 1870 | } |
| 1871 | |
| 1872 | template<typename T> |
| 1873 | T loadPossiblyUnaligned(char *ptr, size_t offset, int idx) |
| 1874 | { |
| 1875 | T *t_ptr = &reinterpret_cast<T*>(ptr + offset)[idx]; |
| 1876 | T val; |
| 1877 | memcpy(&val, t_ptr, sizeof(T)); |
| 1878 | return val; |
| 1879 | } |
| 1880 | |
| 1881 | static void linkJump(void* code, AssemblerLabel from, void* to) |
| 1882 | { |
| 1883 | ASSERT(from.isSet()); |
| 1884 | |
| 1885 | setRel32(from: reinterpret_cast<char*>(code) + from.m_offset, to); |
| 1886 | } |
| 1887 | |
| 1888 | static void linkCall(void* code, AssemblerLabel from, void* to) |
| 1889 | { |
| 1890 | ASSERT(from.isSet()); |
| 1891 | |
| 1892 | setRel32(from: reinterpret_cast<char*>(code) + from.m_offset, to); |
| 1893 | } |
| 1894 | |
| 1895 | static void linkPointer(void* code, AssemblerLabel where, void* value) |
| 1896 | { |
| 1897 | ASSERT(where.isSet()); |
| 1898 | |
| 1899 | setPointer(where: reinterpret_cast<char*>(code) + where.m_offset, value); |
| 1900 | } |
| 1901 | |
| 1902 | static void relinkJump(void* from, void* to) |
| 1903 | { |
| 1904 | setRel32(from, to); |
| 1905 | } |
| 1906 | |
| 1907 | static void relinkCall(void* from, void* to) |
| 1908 | { |
| 1909 | setRel32(from, to); |
| 1910 | } |
| 1911 | |
| 1912 | static void repatchCompact(void* where, int32_t value) |
| 1913 | { |
| 1914 | ASSERT(value >= std::numeric_limits<int8_t>::min()); |
| 1915 | ASSERT(value <= std::numeric_limits<int8_t>::max()); |
| 1916 | setInt8(where, value); |
| 1917 | } |
| 1918 | |
| 1919 | static void repatchInt32(void* where, int32_t value) |
| 1920 | { |
| 1921 | setInt32(where, value); |
| 1922 | } |
| 1923 | |
| 1924 | static void repatchPointer(void* where, void* value) |
| 1925 | { |
| 1926 | setPointer(where, value); |
| 1927 | } |
| 1928 | |
| 1929 | static void* readPointer(void* where) |
| 1930 | { |
| 1931 | return reinterpret_cast<void**>(where)[-1]; |
| 1932 | } |
| 1933 | |
| 1934 | static void replaceWithJump(void* instructionStart, void* to) |
| 1935 | { |
| 1936 | uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); |
| 1937 | uint8_t* dstPtr = reinterpret_cast<uint8_t*>(to); |
| 1938 | intptr_t distance = (intptr_t)(dstPtr - (ptr + 5)); |
| 1939 | ptr[0] = static_cast<uint8_t>(OP_JMP_rel32); |
| 1940 | *reinterpret_cast<int32_t*>(ptr + 1) = static_cast<int32_t>(distance); |
| 1941 | } |
| 1942 | |
| 1943 | static ptrdiff_t maxJumpReplacementSize() |
| 1944 | { |
| 1945 | return 5; |
| 1946 | } |
| 1947 | |
| 1948 | #if CPU(X86_64) |
| 1949 | static void revertJumpTo_movq_i64r(void* instructionStart, int64_t imm, RegisterID dst) |
| 1950 | { |
| 1951 | const int rexBytes = 1; |
| 1952 | const int opcodeBytes = 1; |
| 1953 | ASSERT(rexBytes + opcodeBytes <= maxJumpReplacementSize()); |
| 1954 | uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); |
| 1955 | ptr[0] = PRE_REX | (1 << 3) | (dst >> 3); |
| 1956 | ptr[1] = OP_MOV_EAXIv | (dst & 7); |
| 1957 | |
| 1958 | union { |
| 1959 | uint64_t asWord; |
| 1960 | uint8_t asBytes[8]; |
| 1961 | } u; |
| 1962 | u.asWord = imm; |
| 1963 | for (unsigned i = rexBytes + opcodeBytes; i < static_cast<unsigned>(maxJumpReplacementSize()); ++i) |
| 1964 | ptr[i] = u.asBytes[i - rexBytes - opcodeBytes]; |
| 1965 | } |
| 1966 | #endif |
| 1967 | |
| 1968 | static void revertJumpTo_cmpl_ir_force32(void* instructionStart, int32_t imm, RegisterID dst) |
| 1969 | { |
| 1970 | const int opcodeBytes = 1; |
| 1971 | const int modRMBytes = 1; |
| 1972 | ASSERT(opcodeBytes + modRMBytes <= maxJumpReplacementSize()); |
| 1973 | uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); |
| 1974 | ptr[0] = OP_GROUP1_EvIz; |
| 1975 | ptr[1] = (X86InstructionFormatter::ModRmRegister << 6) | (GROUP1_OP_CMP << 3) | dst; |
| 1976 | union { |
| 1977 | uint32_t asWord; |
| 1978 | uint8_t asBytes[4]; |
| 1979 | } u; |
| 1980 | u.asWord = imm; |
| 1981 | for (unsigned i = opcodeBytes + modRMBytes; i < static_cast<unsigned>(maxJumpReplacementSize()); ++i) |
| 1982 | ptr[i] = u.asBytes[i - opcodeBytes - modRMBytes]; |
| 1983 | } |
| 1984 | |
| 1985 | static void revertJumpTo_cmpl_im_force32(void* instructionStart, int32_t imm, int offset, RegisterID dst) |
| 1986 | { |
| 1987 | ASSERT_UNUSED(offset, !offset); |
| 1988 | const int opcodeBytes = 1; |
| 1989 | const int modRMBytes = 1; |
| 1990 | ASSERT(opcodeBytes + modRMBytes <= maxJumpReplacementSize()); |
| 1991 | uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); |
| 1992 | ptr[0] = OP_GROUP1_EvIz; |
| 1993 | ptr[1] = (X86InstructionFormatter::ModRmMemoryNoDisp << 6) | (GROUP1_OP_CMP << 3) | dst; |
| 1994 | union { |
| 1995 | uint32_t asWord; |
| 1996 | uint8_t asBytes[4]; |
| 1997 | } u; |
| 1998 | u.asWord = imm; |
| 1999 | for (unsigned i = opcodeBytes + modRMBytes; i < static_cast<unsigned>(maxJumpReplacementSize()); ++i) |
| 2000 | ptr[i] = u.asBytes[i - opcodeBytes - modRMBytes]; |
| 2001 | } |
| 2002 | |
| 2003 | static void replaceWithLoad(void* instructionStart) |
| 2004 | { |
| 2005 | uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); |
| 2006 | #if CPU(X86_64) |
| 2007 | if ((*ptr & ~15) == PRE_REX) |
| 2008 | ptr++; |
| 2009 | #endif |
| 2010 | switch (*ptr) { |
| 2011 | case OP_MOV_GvEv: |
| 2012 | break; |
| 2013 | case OP_LEA: |
| 2014 | *ptr = OP_MOV_GvEv; |
| 2015 | break; |
| 2016 | default: |
| 2017 | RELEASE_ASSERT_NOT_REACHED(); |
| 2018 | } |
| 2019 | } |
| 2020 | |
| 2021 | static void replaceWithAddressComputation(void* instructionStart) |
| 2022 | { |
| 2023 | uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); |
| 2024 | #if CPU(X86_64) |
| 2025 | if ((*ptr & ~15) == PRE_REX) |
| 2026 | ptr++; |
| 2027 | #endif |
| 2028 | switch (*ptr) { |
| 2029 | case OP_MOV_GvEv: |
| 2030 | *ptr = OP_LEA; |
| 2031 | break; |
| 2032 | case OP_LEA: |
| 2033 | break; |
| 2034 | default: |
| 2035 | RELEASE_ASSERT_NOT_REACHED(); |
| 2036 | } |
| 2037 | } |
| 2038 | |
| 2039 | static unsigned getCallReturnOffset(AssemblerLabel call) |
| 2040 | { |
| 2041 | ASSERT(call.isSet()); |
| 2042 | return call.m_offset; |
| 2043 | } |
| 2044 | |
| 2045 | static void* getRelocatedAddress(void* code, AssemblerLabel label) |
| 2046 | { |
| 2047 | ASSERT(label.isSet()); |
| 2048 | return reinterpret_cast<void*>(reinterpret_cast<ptrdiff_t>(code) + label.m_offset); |
| 2049 | } |
| 2050 | |
| 2051 | static int getDifferenceBetweenLabels(AssemblerLabel a, AssemblerLabel b) |
| 2052 | { |
| 2053 | return b.m_offset - a.m_offset; |
| 2054 | } |
| 2055 | |
| 2056 | PassRefPtr<ExecutableMemoryHandle> executableCopy(JSGlobalData& globalData, void* ownerUID, JITCompilationEffort effort) |
| 2057 | { |
| 2058 | return m_formatter.executableCopy(globalData, ownerUID, effort); |
| 2059 | } |
| 2060 | |
| 2061 | unsigned debugOffset() { return m_formatter.debugOffset(); } |
| 2062 | |
| 2063 | void nop() |
| 2064 | { |
| 2065 | m_formatter.oneByteOp(opcode: OP_NOP); |
| 2066 | } |
| 2067 | |
| 2068 | // This is a no-op on x86 |
| 2069 | ALWAYS_INLINE static void cacheFlush(void*, size_t) { } |
| 2070 | |
| 2071 | private: |
| 2072 | |
| 2073 | static void setPointer(void* where, void* value) |
| 2074 | { |
| 2075 | reinterpret_cast<void**>(where)[-1] = value; |
| 2076 | } |
| 2077 | |
| 2078 | static void setInt32(void* where, int32_t value) |
| 2079 | { |
| 2080 | storePossiblyUnaligned<int32_t>(where, idx: -1, value); |
| 2081 | } |
| 2082 | |
| 2083 | template <typename T> |
| 2084 | static void storePossiblyUnaligned(void *where, int idx, T value) |
| 2085 | { |
| 2086 | T *ptr = &reinterpret_cast<T*>(where)[idx]; |
| 2087 | memcpy(ptr, &value, sizeof(T)); |
| 2088 | } |
| 2089 | |
| 2090 | static void setInt8(void* where, int8_t value) |
| 2091 | { |
| 2092 | reinterpret_cast<int8_t*>(where)[-1] = value; |
| 2093 | } |
| 2094 | |
| 2095 | static void setRel32(void* from, void* to) |
| 2096 | { |
| 2097 | intptr_t offset = reinterpret_cast<intptr_t>(to) - reinterpret_cast<intptr_t>(from); |
| 2098 | ASSERT(offset == static_cast<int32_t>(offset)); |
| 2099 | |
| 2100 | setInt32(where: from, value: offset); |
| 2101 | } |
| 2102 | |
| 2103 | class X86InstructionFormatter { |
| 2104 | |
| 2105 | static const int maxInstructionSize = 16; |
| 2106 | |
| 2107 | public: |
| 2108 | |
| 2109 | enum ModRmMode { |
| 2110 | ModRmMemoryNoDisp, |
| 2111 | ModRmMemoryDisp8, |
| 2112 | ModRmMemoryDisp32, |
| 2113 | ModRmRegister, |
| 2114 | }; |
| 2115 | |
| 2116 | // Legacy prefix bytes: |
| 2117 | // |
| 2118 | // These are emmitted prior to the instruction. |
| 2119 | |
| 2120 | void prefix(OneByteOpcodeID pre) |
| 2121 | { |
| 2122 | m_buffer.putByte(value: pre); |
| 2123 | } |
| 2124 | |
| 2125 | // Word-sized operands / no operand instruction formatters. |
| 2126 | // |
| 2127 | // In addition to the opcode, the following operand permutations are supported: |
| 2128 | // * None - instruction takes no operands. |
| 2129 | // * One register - the low three bits of the RegisterID are added into the opcode. |
| 2130 | // * Two registers - encode a register form ModRm (for all ModRm formats, the reg field is passed first, and a GroupOpcodeID may be passed in its place). |
| 2131 | // * Three argument ModRM - a register, and a register and an offset describing a memory operand. |
| 2132 | // * Five argument ModRM - a register, and a base register, an index, scale, and offset describing a memory operand. |
| 2133 | // |
| 2134 | // For 32-bit x86 targets, the address operand may also be provided as a void*. |
| 2135 | // On 64-bit targets REX prefixes will be planted as necessary, where high numbered registers are used. |
| 2136 | // |
| 2137 | // The twoByteOp methods plant two-byte Intel instructions sequences (first opcode byte 0x0F). |
| 2138 | |
| 2139 | void oneByteOp(OneByteOpcodeID opcode) |
| 2140 | { |
| 2141 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2142 | m_buffer.putByteUnchecked(value: opcode); |
| 2143 | } |
| 2144 | |
| 2145 | void oneByteOp(OneByteOpcodeID opcode, RegisterID reg) |
| 2146 | { |
| 2147 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2148 | emitRexIfNeeded(r: 0, x: 0, b: reg); |
| 2149 | m_buffer.putByteUnchecked(value: opcode + (reg & 7)); |
| 2150 | } |
| 2151 | |
| 2152 | void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID rm) |
| 2153 | { |
| 2154 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2155 | emitRexIfNeeded(r: reg, x: 0, b: rm); |
| 2156 | m_buffer.putByteUnchecked(value: opcode); |
| 2157 | registerModRM(reg, rm); |
| 2158 | } |
| 2159 | |
| 2160 | void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 2161 | { |
| 2162 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2163 | emitRexIfNeeded(r: reg, x: 0, b: base); |
| 2164 | m_buffer.putByteUnchecked(value: opcode); |
| 2165 | memoryModRM(reg, base, offset); |
| 2166 | } |
| 2167 | |
| 2168 | void oneByteOp_disp32(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 2169 | { |
| 2170 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2171 | emitRexIfNeeded(r: reg, x: 0, b: base); |
| 2172 | m_buffer.putByteUnchecked(value: opcode); |
| 2173 | memoryModRM_disp32(reg, base, offset); |
| 2174 | } |
| 2175 | |
| 2176 | void oneByteOp_disp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 2177 | { |
| 2178 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2179 | emitRexIfNeeded(r: reg, x: 0, b: base); |
| 2180 | m_buffer.putByteUnchecked(value: opcode); |
| 2181 | memoryModRM_disp8(reg, base, offset); |
| 2182 | } |
| 2183 | |
| 2184 | void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) |
| 2185 | { |
| 2186 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2187 | emitRexIfNeeded(r: reg, x: index, b: base); |
| 2188 | m_buffer.putByteUnchecked(value: opcode); |
| 2189 | memoryModRM(reg, base, index, scale, offset); |
| 2190 | } |
| 2191 | |
| 2192 | #if !CPU(X86_64) |
| 2193 | void oneByteOp(OneByteOpcodeID opcode, int reg, const void* address) |
| 2194 | { |
| 2195 | m_buffer.ensureSpace(maxInstructionSize); |
| 2196 | m_buffer.putByteUnchecked(opcode); |
| 2197 | memoryModRM(reg, address); |
| 2198 | } |
| 2199 | #endif |
| 2200 | |
| 2201 | void twoByteOp(TwoByteOpcodeID opcode) |
| 2202 | { |
| 2203 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2204 | m_buffer.putByteUnchecked(value: OP_2BYTE_ESCAPE); |
| 2205 | m_buffer.putByteUnchecked(value: opcode); |
| 2206 | } |
| 2207 | |
| 2208 | void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID rm) |
| 2209 | { |
| 2210 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2211 | emitRexIfNeeded(r: reg, x: 0, b: rm); |
| 2212 | m_buffer.putByteUnchecked(value: OP_2BYTE_ESCAPE); |
| 2213 | m_buffer.putByteUnchecked(value: opcode); |
| 2214 | registerModRM(reg, rm); |
| 2215 | } |
| 2216 | |
| 2217 | void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 2218 | { |
| 2219 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2220 | emitRexIfNeeded(r: reg, x: 0, b: base); |
| 2221 | m_buffer.putByteUnchecked(value: OP_2BYTE_ESCAPE); |
| 2222 | m_buffer.putByteUnchecked(value: opcode); |
| 2223 | memoryModRM(reg, base, offset); |
| 2224 | } |
| 2225 | |
| 2226 | void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) |
| 2227 | { |
| 2228 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2229 | emitRexIfNeeded(r: reg, x: index, b: base); |
| 2230 | m_buffer.putByteUnchecked(value: OP_2BYTE_ESCAPE); |
| 2231 | m_buffer.putByteUnchecked(value: opcode); |
| 2232 | memoryModRM(reg, base, index, scale, offset); |
| 2233 | } |
| 2234 | |
| 2235 | #if !CPU(X86_64) |
| 2236 | void twoByteOp(TwoByteOpcodeID opcode, int reg, const void* address) |
| 2237 | { |
| 2238 | m_buffer.ensureSpace(maxInstructionSize); |
| 2239 | m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| 2240 | m_buffer.putByteUnchecked(opcode); |
| 2241 | memoryModRM(reg, address); |
| 2242 | } |
| 2243 | #endif |
| 2244 | |
| 2245 | #if CPU(X86_64) |
| 2246 | // Quad-word-sized operands: |
| 2247 | // |
| 2248 | // Used to format 64-bit operantions, planting a REX.w prefix. |
| 2249 | // When planting d64 or f64 instructions, not requiring a REX.w prefix, |
| 2250 | // the normal (non-'64'-postfixed) formatters should be used. |
| 2251 | |
| 2252 | void oneByteOp64(OneByteOpcodeID opcode) |
| 2253 | { |
| 2254 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2255 | emitRexW(r: 0, x: 0, b: 0); |
| 2256 | m_buffer.putByteUnchecked(value: opcode); |
| 2257 | } |
| 2258 | |
| 2259 | void oneByteOp64(OneByteOpcodeID opcode, RegisterID reg) |
| 2260 | { |
| 2261 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2262 | emitRexW(r: 0, x: 0, b: reg); |
| 2263 | m_buffer.putByteUnchecked(value: opcode + (reg & 7)); |
| 2264 | } |
| 2265 | |
| 2266 | void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID rm) |
| 2267 | { |
| 2268 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2269 | emitRexW(r: reg, x: 0, b: rm); |
| 2270 | m_buffer.putByteUnchecked(value: opcode); |
| 2271 | registerModRM(reg, rm); |
| 2272 | } |
| 2273 | |
| 2274 | void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 2275 | { |
| 2276 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2277 | emitRexW(r: reg, x: 0, b: base); |
| 2278 | m_buffer.putByteUnchecked(value: opcode); |
| 2279 | memoryModRM(reg, base, offset); |
| 2280 | } |
| 2281 | |
| 2282 | void oneByteOp64_disp32(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 2283 | { |
| 2284 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2285 | emitRexW(r: reg, x: 0, b: base); |
| 2286 | m_buffer.putByteUnchecked(value: opcode); |
| 2287 | memoryModRM_disp32(reg, base, offset); |
| 2288 | } |
| 2289 | |
| 2290 | void oneByteOp64_disp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 2291 | { |
| 2292 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2293 | emitRexW(r: reg, x: 0, b: base); |
| 2294 | m_buffer.putByteUnchecked(value: opcode); |
| 2295 | memoryModRM_disp8(reg, base, offset); |
| 2296 | } |
| 2297 | |
| 2298 | void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) |
| 2299 | { |
| 2300 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2301 | emitRexW(r: reg, x: index, b: base); |
| 2302 | m_buffer.putByteUnchecked(value: opcode); |
| 2303 | memoryModRM(reg, base, index, scale, offset); |
| 2304 | } |
| 2305 | |
| 2306 | void twoByteOp64(TwoByteOpcodeID opcode, int reg, RegisterID rm) |
| 2307 | { |
| 2308 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2309 | emitRexW(r: reg, x: 0, b: rm); |
| 2310 | m_buffer.putByteUnchecked(value: OP_2BYTE_ESCAPE); |
| 2311 | m_buffer.putByteUnchecked(value: opcode); |
| 2312 | registerModRM(reg, rm); |
| 2313 | } |
| 2314 | #endif |
| 2315 | |
| 2316 | // Byte-operands: |
| 2317 | // |
| 2318 | // These methods format byte operations. Byte operations differ from the normal |
| 2319 | // formatters in the circumstances under which they will decide to emit REX prefixes. |
| 2320 | // These should be used where any register operand signifies a byte register. |
| 2321 | // |
| 2322 | // The disctinction is due to the handling of register numbers in the range 4..7 on |
| 2323 | // x86-64. These register numbers may either represent the second byte of the first |
| 2324 | // four registers (ah..bh) or the first byte of the second four registers (spl..dil). |
| 2325 | // |
| 2326 | // Since ah..bh cannot be used in all permutations of operands (specifically cannot |
| 2327 | // be accessed where a REX prefix is present), these are likely best treated as |
| 2328 | // deprecated. In order to ensure the correct registers spl..dil are selected a |
| 2329 | // REX prefix will be emitted for any byte register operand in the range 4..15. |
| 2330 | // |
| 2331 | // These formatters may be used in instructions where a mix of operand sizes, in which |
| 2332 | // case an unnecessary REX will be emitted, for example: |
| 2333 | // movzbl %al, %edi |
| 2334 | // In this case a REX will be planted since edi is 7 (and were this a byte operand |
| 2335 | // a REX would be required to specify dil instead of bh). Unneeded REX prefixes will |
| 2336 | // be silently ignored by the processor. |
| 2337 | // |
| 2338 | // Address operands should still be checked using regRequiresRex(), while byteRegRequiresRex() |
| 2339 | // is provided to check byte register operands. |
| 2340 | |
| 2341 | void oneByteOp8(OneByteOpcodeID opcode, GroupOpcodeID groupOp, RegisterID rm) |
| 2342 | { |
| 2343 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2344 | emitRexIf(condition: byteRegRequiresRex(reg: rm), r: 0, x: 0, b: rm); |
| 2345 | m_buffer.putByteUnchecked(value: opcode); |
| 2346 | registerModRM(reg: groupOp, rm); |
| 2347 | } |
| 2348 | |
| 2349 | void oneByteOp8(OneByteOpcodeID opcode, int reg, RegisterID rm) |
| 2350 | { |
| 2351 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2352 | emitRexIf(condition: byteRegRequiresRex(reg) || byteRegRequiresRex(reg: rm), r: reg, x: 0, b: rm); |
| 2353 | m_buffer.putByteUnchecked(value: opcode); |
| 2354 | registerModRM(reg, rm); |
| 2355 | } |
| 2356 | |
| 2357 | void oneByteOp8(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) |
| 2358 | { |
| 2359 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2360 | emitRexIf(condition: byteRegRequiresRex(reg) || regRequiresRex(reg: index) || regRequiresRex(reg: base), r: reg, x: index, b: base); |
| 2361 | m_buffer.putByteUnchecked(value: opcode); |
| 2362 | memoryModRM(reg, base, index, scale, offset); |
| 2363 | } |
| 2364 | |
| 2365 | void twoByteOp8(TwoByteOpcodeID opcode, RegisterID reg, RegisterID rm) |
| 2366 | { |
| 2367 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2368 | emitRexIf(condition: byteRegRequiresRex(reg) || byteRegRequiresRex(reg: rm), r: reg, x: 0, b: rm); |
| 2369 | m_buffer.putByteUnchecked(value: OP_2BYTE_ESCAPE); |
| 2370 | m_buffer.putByteUnchecked(value: opcode); |
| 2371 | registerModRM(reg, rm); |
| 2372 | } |
| 2373 | |
| 2374 | void twoByteOp8(TwoByteOpcodeID opcode, GroupOpcodeID groupOp, RegisterID rm) |
| 2375 | { |
| 2376 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 2377 | emitRexIf(condition: byteRegRequiresRex(reg: rm), r: 0, x: 0, b: rm); |
| 2378 | m_buffer.putByteUnchecked(value: OP_2BYTE_ESCAPE); |
| 2379 | m_buffer.putByteUnchecked(value: opcode); |
| 2380 | registerModRM(reg: groupOp, rm); |
| 2381 | } |
| 2382 | |
| 2383 | // Immediates: |
| 2384 | // |
| 2385 | // An immedaite should be appended where appropriate after an op has been emitted. |
| 2386 | // The writes are unchecked since the opcode formatters above will have ensured space. |
| 2387 | |
| 2388 | void immediate8(int imm) |
| 2389 | { |
| 2390 | m_buffer.putByteUnchecked(value: imm); |
| 2391 | } |
| 2392 | |
| 2393 | void immediate16(int imm) |
| 2394 | { |
| 2395 | m_buffer.putShortUnchecked(value: imm); |
| 2396 | } |
| 2397 | |
| 2398 | void immediate32(int imm) |
| 2399 | { |
| 2400 | m_buffer.putIntUnchecked(value: imm); |
| 2401 | } |
| 2402 | |
| 2403 | void immediate64(int64_t imm) |
| 2404 | { |
| 2405 | m_buffer.putInt64Unchecked(value: imm); |
| 2406 | } |
| 2407 | |
| 2408 | AssemblerLabel immediateRel32() |
| 2409 | { |
| 2410 | m_buffer.putIntUnchecked(value: 0); |
| 2411 | return label(); |
| 2412 | } |
| 2413 | |
| 2414 | // Administrative methods: |
| 2415 | |
| 2416 | size_t codeSize() const { return m_buffer.codeSize(); } |
| 2417 | AssemblerLabel label() const { return m_buffer.label(); } |
| 2418 | bool isAligned(int alignment) const { return m_buffer.isAligned(alignment); } |
| 2419 | void* data() const { return m_buffer.data(); } |
| 2420 | |
| 2421 | PassRefPtr<ExecutableMemoryHandle> executableCopy(JSGlobalData& globalData, void* ownerUID, JITCompilationEffort effort) |
| 2422 | { |
| 2423 | return m_buffer.executableCopy(globalData, ownerUID, effort); |
| 2424 | } |
| 2425 | |
| 2426 | unsigned debugOffset() { return m_buffer.debugOffset(); } |
| 2427 | |
| 2428 | private: |
| 2429 | |
| 2430 | // Internals; ModRm and REX formatters. |
| 2431 | |
| 2432 | static const RegisterID noBase = X86Registers::ebp; |
| 2433 | static const RegisterID hasSib = X86Registers::esp; |
| 2434 | static const RegisterID noIndex = X86Registers::esp; |
| 2435 | #if CPU(X86_64) |
| 2436 | static const RegisterID noBase2 = X86Registers::r13; |
| 2437 | static const RegisterID hasSib2 = X86Registers::r12; |
| 2438 | |
| 2439 | // Registers r8 & above require a REX prefixe. |
| 2440 | inline bool regRequiresRex(int reg) |
| 2441 | { |
| 2442 | return (reg >= X86Registers::r8); |
| 2443 | } |
| 2444 | |
| 2445 | // Byte operand register spl & above require a REX prefix (to prevent the 'H' registers be accessed). |
| 2446 | inline bool byteRegRequiresRex(int reg) |
| 2447 | { |
| 2448 | return (reg >= X86Registers::esp); |
| 2449 | } |
| 2450 | |
| 2451 | // Format a REX prefix byte. |
| 2452 | inline void emitRex(bool w, int r, int x, int b) |
| 2453 | { |
| 2454 | ASSERT(r >= 0); |
| 2455 | ASSERT(x >= 0); |
| 2456 | ASSERT(b >= 0); |
| 2457 | m_buffer.putByteUnchecked(value: PRE_REX | ((int)w << 3) | ((r>>3)<<2) | ((x>>3)<<1) | (b>>3)); |
| 2458 | } |
| 2459 | |
| 2460 | // Used to plant a REX byte with REX.w set (for 64-bit operations). |
| 2461 | inline void emitRexW(int r, int x, int b) |
| 2462 | { |
| 2463 | emitRex(w: true, r, x, b); |
| 2464 | } |
| 2465 | |
| 2466 | // Used for operations with byte operands - use byteRegRequiresRex() to check register operands, |
| 2467 | // regRequiresRex() to check other registers (i.e. address base & index). |
| 2468 | inline void emitRexIf(bool condition, int r, int x, int b) |
| 2469 | { |
| 2470 | if (condition) emitRex(w: false, r, x, b); |
| 2471 | } |
| 2472 | |
| 2473 | // Used for word sized operations, will plant a REX prefix if necessary (if any register is r8 or above). |
| 2474 | inline void emitRexIfNeeded(int r, int x, int b) |
| 2475 | { |
| 2476 | emitRexIf(condition: regRequiresRex(reg: r) || regRequiresRex(reg: x) || regRequiresRex(reg: b), r, x, b); |
| 2477 | } |
| 2478 | #else |
| 2479 | // No REX prefix bytes on 32-bit x86. |
| 2480 | inline bool regRequiresRex(int) { return false; } |
| 2481 | inline bool byteRegRequiresRex(int) { return false; } |
| 2482 | inline void emitRexIf(bool, int, int, int) {} |
| 2483 | inline void emitRexIfNeeded(int, int, int) {} |
| 2484 | #endif |
| 2485 | |
| 2486 | void putModRm(ModRmMode mode, int reg, RegisterID rm) |
| 2487 | { |
| 2488 | m_buffer.putByteUnchecked(value: (mode << 6) | ((reg & 7) << 3) | (rm & 7)); |
| 2489 | } |
| 2490 | |
| 2491 | void putModRmSib(ModRmMode mode, int reg, RegisterID base, RegisterID index, int scale) |
| 2492 | { |
| 2493 | ASSERT(mode != ModRmRegister); |
| 2494 | |
| 2495 | putModRm(mode, reg, rm: hasSib); |
| 2496 | m_buffer.putByteUnchecked(value: (scale << 6) | ((index & 7) << 3) | (base & 7)); |
| 2497 | } |
| 2498 | |
| 2499 | void registerModRM(int reg, RegisterID rm) |
| 2500 | { |
| 2501 | putModRm(mode: ModRmRegister, reg, rm); |
| 2502 | } |
| 2503 | |
| 2504 | void memoryModRM(int reg, RegisterID base, int offset) |
| 2505 | { |
| 2506 | // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there. |
| 2507 | #if CPU(X86_64) |
| 2508 | if ((base == hasSib) || (base == hasSib2)) { |
| 2509 | #else |
| 2510 | if (base == hasSib) { |
| 2511 | #endif |
| 2512 | if (!offset) // No need to check if the base is noBase, since we know it is hasSib! |
| 2513 | putModRmSib(mode: ModRmMemoryNoDisp, reg, base, index: noIndex, scale: 0); |
| 2514 | else if (CAN_SIGN_EXTEND_8_32(value: offset)) { |
| 2515 | putModRmSib(mode: ModRmMemoryDisp8, reg, base, index: noIndex, scale: 0); |
| 2516 | m_buffer.putByteUnchecked(value: offset); |
| 2517 | } else { |
| 2518 | putModRmSib(mode: ModRmMemoryDisp32, reg, base, index: noIndex, scale: 0); |
| 2519 | m_buffer.putIntUnchecked(value: offset); |
| 2520 | } |
| 2521 | } else { |
| 2522 | #if CPU(X86_64) |
| 2523 | if (!offset && (base != noBase) && (base != noBase2)) |
| 2524 | #else |
| 2525 | if (!offset && (base != noBase)) |
| 2526 | #endif |
| 2527 | putModRm(mode: ModRmMemoryNoDisp, reg, rm: base); |
| 2528 | else if (CAN_SIGN_EXTEND_8_32(value: offset)) { |
| 2529 | putModRm(mode: ModRmMemoryDisp8, reg, rm: base); |
| 2530 | m_buffer.putByteUnchecked(value: offset); |
| 2531 | } else { |
| 2532 | putModRm(mode: ModRmMemoryDisp32, reg, rm: base); |
| 2533 | m_buffer.putIntUnchecked(value: offset); |
| 2534 | } |
| 2535 | } |
| 2536 | } |
| 2537 | |
| 2538 | void memoryModRM_disp8(int reg, RegisterID base, int offset) |
| 2539 | { |
| 2540 | // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there. |
| 2541 | ASSERT(CAN_SIGN_EXTEND_8_32(offset)); |
| 2542 | #if CPU(X86_64) |
| 2543 | if ((base == hasSib) || (base == hasSib2)) { |
| 2544 | #else |
| 2545 | if (base == hasSib) { |
| 2546 | #endif |
| 2547 | putModRmSib(mode: ModRmMemoryDisp8, reg, base, index: noIndex, scale: 0); |
| 2548 | m_buffer.putByteUnchecked(value: offset); |
| 2549 | } else { |
| 2550 | putModRm(mode: ModRmMemoryDisp8, reg, rm: base); |
| 2551 | m_buffer.putByteUnchecked(value: offset); |
| 2552 | } |
| 2553 | } |
| 2554 | |
| 2555 | void memoryModRM_disp32(int reg, RegisterID base, int offset) |
| 2556 | { |
| 2557 | // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there. |
| 2558 | #if CPU(X86_64) |
| 2559 | if ((base == hasSib) || (base == hasSib2)) { |
| 2560 | #else |
| 2561 | if (base == hasSib) { |
| 2562 | #endif |
| 2563 | putModRmSib(mode: ModRmMemoryDisp32, reg, base, index: noIndex, scale: 0); |
| 2564 | m_buffer.putIntUnchecked(value: offset); |
| 2565 | } else { |
| 2566 | putModRm(mode: ModRmMemoryDisp32, reg, rm: base); |
| 2567 | m_buffer.putIntUnchecked(value: offset); |
| 2568 | } |
| 2569 | } |
| 2570 | |
| 2571 | void memoryModRM(int reg, RegisterID base, RegisterID index, int scale, int offset) |
| 2572 | { |
| 2573 | ASSERT(index != noIndex); |
| 2574 | |
| 2575 | #if CPU(X86_64) |
| 2576 | if (!offset && (base != noBase) && (base != noBase2)) |
| 2577 | #else |
| 2578 | if (!offset && (base != noBase)) |
| 2579 | #endif |
| 2580 | putModRmSib(mode: ModRmMemoryNoDisp, reg, base, index, scale); |
| 2581 | else if (CAN_SIGN_EXTEND_8_32(value: offset)) { |
| 2582 | putModRmSib(mode: ModRmMemoryDisp8, reg, base, index, scale); |
| 2583 | m_buffer.putByteUnchecked(value: offset); |
| 2584 | } else { |
| 2585 | putModRmSib(mode: ModRmMemoryDisp32, reg, base, index, scale); |
| 2586 | m_buffer.putIntUnchecked(value: offset); |
| 2587 | } |
| 2588 | } |
| 2589 | |
| 2590 | #if !CPU(X86_64) |
| 2591 | void memoryModRM(int reg, const void* address) |
| 2592 | { |
| 2593 | // noBase + ModRmMemoryNoDisp means noBase + ModRmMemoryDisp32! |
| 2594 | putModRm(ModRmMemoryNoDisp, reg, noBase); |
| 2595 | m_buffer.putIntUnchecked(reinterpret_cast<int32_t>(address)); |
| 2596 | } |
| 2597 | #endif |
| 2598 | |
| 2599 | AssemblerBuffer m_buffer; |
| 2600 | } m_formatter; |
| 2601 | int m_indexOfLastWatchpoint; |
| 2602 | int m_indexOfTailOfLastWatchpoint; |
| 2603 | }; |
| 2604 | |
| 2605 | } // namespace JSC |
| 2606 | |
| 2607 | #endif // ENABLE(ASSEMBLER) && CPU(X86) |
| 2608 | |
| 2609 | #endif // X86Assembler_h |
| 2610 | |