| 1 | /* |
| 2 | * Copyright (C) 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #ifndef WTF_MathExtras_h |
| 27 | #define |
| 28 | |
| 29 | #include <algorithm> |
| 30 | #include <cmath> |
| 31 | #include <float.h> |
| 32 | #include <limits> |
| 33 | #include <stdint.h> |
| 34 | #include <stdlib.h> |
| 35 | #include <wtf/StdLibExtras.h> |
| 36 | |
| 37 | #if OS(SOLARIS) |
| 38 | #include <ieeefp.h> |
| 39 | #endif |
| 40 | |
| 41 | #if OS(OPENBSD) |
| 42 | #include <sys/types.h> |
| 43 | #include <machine/ieee.h> |
| 44 | #endif |
| 45 | |
| 46 | #if OS(QNX) && defined(_CPPLIB_VER) |
| 47 | // FIXME: Look into a way to have cmath import its functions into both the standard and global |
| 48 | // namespace. For now, we include math.h since the QNX cmath header only imports its functions |
| 49 | // into the standard namespace. |
| 50 | #include <math.h> |
| 51 | // These macros from math.h conflict with the real functions in the std namespace. |
| 52 | #undef signbit |
| 53 | #undef isnan |
| 54 | #undef isinf |
| 55 | #undef isfinite |
| 56 | #endif |
| 57 | |
| 58 | #ifndef M_PI |
| 59 | const double piDouble = 3.14159265358979323846; |
| 60 | const float piFloat = 3.14159265358979323846f; |
| 61 | #else |
| 62 | const double piDouble = M_PI; |
| 63 | const float piFloat = static_cast<float>(M_PI); |
| 64 | #endif |
| 65 | |
| 66 | #ifndef M_PI_2 |
| 67 | const double piOverTwoDouble = 1.57079632679489661923; |
| 68 | const float piOverTwoFloat = 1.57079632679489661923f; |
| 69 | #else |
| 70 | const double piOverTwoDouble = M_PI_2; |
| 71 | const float piOverTwoFloat = static_cast<float>(M_PI_2); |
| 72 | #endif |
| 73 | |
| 74 | #ifndef M_PI_4 |
| 75 | const double piOverFourDouble = 0.785398163397448309616; |
| 76 | const float piOverFourFloat = 0.785398163397448309616f; |
| 77 | #else |
| 78 | const double piOverFourDouble = M_PI_4; |
| 79 | const float piOverFourFloat = static_cast<float>(M_PI_4); |
| 80 | #endif |
| 81 | |
| 82 | #if OS(DARWIN) |
| 83 | |
| 84 | // Work around a bug in the Mac OS X libc where ceil(-0.1) return +0. |
| 85 | inline double wtf_ceil(double x) { return copysign(ceil(x), x); } |
| 86 | |
| 87 | #define ceil(x) wtf_ceil(x) |
| 88 | |
| 89 | #endif |
| 90 | |
| 91 | #if OS(SOLARIS) && __cplusplus < 201103L |
| 92 | |
| 93 | namespace std { |
| 94 | |
| 95 | #ifndef isfinite |
| 96 | inline bool isfinite(double x) { return finite(x) && !isnand(x); } |
| 97 | #endif |
| 98 | #ifndef signbit |
| 99 | inline bool signbit(double x) { return copysign(1.0, x) < 0; } |
| 100 | #endif |
| 101 | #ifndef isinf |
| 102 | inline bool isinf(double x) { return !finite(x) && !isnand(x); } |
| 103 | #endif |
| 104 | |
| 105 | } // namespace std |
| 106 | |
| 107 | #endif |
| 108 | |
| 109 | #if OS(OPENBSD) && __cplusplus < 201103L |
| 110 | |
| 111 | namespace std { |
| 112 | |
| 113 | #ifndef isfinite |
| 114 | inline bool isfinite(double x) { return finite(x); } |
| 115 | #endif |
| 116 | #ifndef signbit |
| 117 | inline bool signbit(double x) { struct ieee_double *p = (struct ieee_double *)&x; return p->dbl_sign; } |
| 118 | #endif |
| 119 | |
| 120 | } // namespace std |
| 121 | |
| 122 | #endif |
| 123 | |
| 124 | #if COMPILER(MSVC) |
| 125 | |
| 126 | #if _MSC_VER < 1800 |
| 127 | // We must not do 'num + 0.5' or 'num - 0.5' because they can cause precision loss. |
| 128 | static double round(double num) |
| 129 | { |
| 130 | double integer = ceil(num); |
| 131 | if (num > 0) |
| 132 | return integer - num > 0.5 ? integer - 1.0 : integer; |
| 133 | return integer - num >= 0.5 ? integer - 1.0 : integer; |
| 134 | } |
| 135 | static float roundf(float num) |
| 136 | { |
| 137 | float integer = ceilf(num); |
| 138 | if (num > 0) |
| 139 | return integer - num > 0.5f ? integer - 1.0f : integer; |
| 140 | return integer - num >= 0.5f ? integer - 1.0f : integer; |
| 141 | } |
| 142 | #endif |
| 143 | inline long long llround(double num) { return static_cast<long long>(round(num)); } |
| 144 | inline long long llroundf(float num) { return static_cast<long long>(roundf(num)); } |
| 145 | inline long lround(double num) { return static_cast<long>(round(num)); } |
| 146 | inline long lroundf(float num) { return static_cast<long>(roundf(num)); } |
| 147 | |
| 148 | #endif |
| 149 | |
| 150 | #if COMPILER(MSVC) && COMPILER(MSVC12_OR_LOWER) |
| 151 | // MSVC's math.h does not currently supply log2 or log2f. |
| 152 | inline double log2(double num) |
| 153 | { |
| 154 | // This constant is roughly M_LN2, which is not provided by default on Windows. |
| 155 | return log(num) / 0.693147180559945309417232121458176568; |
| 156 | } |
| 157 | |
| 158 | inline float log2f(float num) |
| 159 | { |
| 160 | // This constant is roughly M_LN2, which is not provided by default on Windows. |
| 161 | return logf(num) / 0.693147180559945309417232121458176568f; |
| 162 | } |
| 163 | #endif |
| 164 | |
| 165 | #if COMPILER(MSVC) |
| 166 | // The 64bit version of abs() is already defined in stdlib.h which comes with VC10 |
| 167 | #if COMPILER(MSVC9_OR_LOWER) |
| 168 | inline long long abs(long long num) { return _abs64(num); } |
| 169 | #endif |
| 170 | |
| 171 | #if COMPILER(MSVC12_OR_LOWER) |
| 172 | |
| 173 | inline double nextafter(double x, double y) { return _nextafter(x, y); } |
| 174 | inline float nextafterf(float x, float y) { return x > y ? x - FLT_EPSILON : x + FLT_EPSILON; } |
| 175 | |
| 176 | inline double copysign(double x, double y) { return _copysign(x, y); } |
| 177 | |
| 178 | #endif // COMPILER(MSVC12_OR_LOWER) |
| 179 | |
| 180 | // Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN instead of specific values. |
| 181 | inline double wtf_atan2(double x, double y) |
| 182 | { |
| 183 | double posInf = std::numeric_limits<double>::infinity(); |
| 184 | double negInf = -std::numeric_limits<double>::infinity(); |
| 185 | double nan = std::numeric_limits<double>::quiet_NaN(); |
| 186 | |
| 187 | double result = nan; |
| 188 | |
| 189 | if (x == posInf && y == posInf) |
| 190 | result = piOverFourDouble; |
| 191 | else if (x == posInf && y == negInf) |
| 192 | result = 3 * piOverFourDouble; |
| 193 | else if (x == negInf && y == posInf) |
| 194 | result = -piOverFourDouble; |
| 195 | else if (x == negInf && y == negInf) |
| 196 | result = -3 * piOverFourDouble; |
| 197 | else |
| 198 | result = ::atan2(x, y); |
| 199 | |
| 200 | return result; |
| 201 | } |
| 202 | |
| 203 | // Work around a bug in the Microsoft CRT, where fmod(x, +-infinity) yields NaN instead of x. |
| 204 | inline double wtf_fmod(double x, double y) { return (!std::isinf(x) && std::isinf(y)) ? x : fmod(x, y); } |
| 205 | |
| 206 | // Work around a bug in the Microsoft CRT, where pow(NaN, 0) yields NaN instead of 1. |
| 207 | inline double wtf_pow(double x, double y) { return y == 0 ? 1 : pow(x, y); } |
| 208 | |
| 209 | #define atan2(x, y) wtf_atan2(x, y) |
| 210 | #define fmod(x, y) wtf_fmod(x, y) |
| 211 | #define pow(x, y) wtf_pow(x, y) |
| 212 | |
| 213 | #if COMPILER(MSVC12_OR_LOWER) |
| 214 | |
| 215 | // MSVC's math functions do not bring lrint. |
| 216 | inline long int lrint(double flt) |
| 217 | { |
| 218 | int64_t intgr; |
| 219 | #if CPU(X86) |
| 220 | __asm { |
| 221 | fld flt |
| 222 | fistp intgr |
| 223 | }; |
| 224 | #else |
| 225 | ASSERT(std::isfinite(flt)); |
| 226 | double rounded = round(flt); |
| 227 | intgr = static_cast<int64_t>(rounded); |
| 228 | // If the fractional part is exactly 0.5, we need to check whether |
| 229 | // the rounded result is even. If it is not we need to add 1 to |
| 230 | // negative values and subtract one from positive values. |
| 231 | if ((fabs(intgr - flt) == 0.5) & intgr) |
| 232 | intgr -= ((intgr >> 62) | 1); // 1 with the sign of result, i.e. -1 or 1. |
| 233 | #endif |
| 234 | return static_cast<long int>(intgr); |
| 235 | } |
| 236 | |
| 237 | #endif // COMPILER(MSVC12_OR_LOWER) |
| 238 | #endif // COMPILER(MSVC) |
| 239 | |
| 240 | inline double deg2rad(double d) { return d * piDouble / 180.0; } |
| 241 | inline double rad2deg(double r) { return r * 180.0 / piDouble; } |
| 242 | inline double deg2grad(double d) { return d * 400.0 / 360.0; } |
| 243 | inline double grad2deg(double g) { return g * 360.0 / 400.0; } |
| 244 | inline double turn2deg(double t) { return t * 360.0; } |
| 245 | inline double deg2turn(double d) { return d / 360.0; } |
| 246 | inline double rad2grad(double r) { return r * 200.0 / piDouble; } |
| 247 | inline double grad2rad(double g) { return g * piDouble / 200.0; } |
| 248 | |
| 249 | inline float deg2rad(float d) { return d * piFloat / 180.0f; } |
| 250 | inline float rad2deg(float r) { return r * 180.0f / piFloat; } |
| 251 | inline float deg2grad(float d) { return d * 400.0f / 360.0f; } |
| 252 | inline float grad2deg(float g) { return g * 360.0f / 400.0f; } |
| 253 | inline float turn2deg(float t) { return t * 360.0f; } |
| 254 | inline float deg2turn(float d) { return d / 360.0f; } |
| 255 | inline float rad2grad(float r) { return r * 200.0f / piFloat; } |
| 256 | inline float grad2rad(float g) { return g * piFloat / 200.0f; } |
| 257 | |
| 258 | // std::numeric_limits<T>::min() returns the smallest positive value for floating point types |
| 259 | template<typename T> inline T defaultMinimumForClamp() { return std::numeric_limits<T>::min(); } |
| 260 | template<> inline float defaultMinimumForClamp() { return -std::numeric_limits<float>::max(); } |
| 261 | template<> inline double defaultMinimumForClamp() { return -std::numeric_limits<double>::max(); } |
| 262 | template<typename T> inline T defaultMaximumForClamp() { return std::numeric_limits<T>::max(); } |
| 263 | |
| 264 | template<typename T> inline T clampTo(double value, T min = defaultMinimumForClamp<T>(), T max = defaultMaximumForClamp<T>()) |
| 265 | { |
| 266 | if (value >= static_cast<double>(max)) |
| 267 | return max; |
| 268 | if (value <= static_cast<double>(min)) |
| 269 | return min; |
| 270 | return static_cast<T>(value); |
| 271 | } |
| 272 | template<> long long int clampTo(double, long long int, long long int); // clampTo does not support long long ints. |
| 273 | |
| 274 | inline int clampToInteger(double value) |
| 275 | { |
| 276 | return clampTo<int>(value); |
| 277 | } |
| 278 | |
| 279 | inline float clampToFloat(double value) |
| 280 | { |
| 281 | return clampTo<float>(value); |
| 282 | } |
| 283 | |
| 284 | inline int clampToPositiveInteger(double value) |
| 285 | { |
| 286 | return clampTo<int>(value, min: 0); |
| 287 | } |
| 288 | |
| 289 | inline int clampToInteger(float value) |
| 290 | { |
| 291 | return clampTo<int>(value); |
| 292 | } |
| 293 | |
| 294 | inline int clampToInteger(unsigned x) |
| 295 | { |
| 296 | const unsigned intMax = static_cast<unsigned>(std::numeric_limits<int>::max()); |
| 297 | |
| 298 | if (x >= intMax) |
| 299 | return std::numeric_limits<int>::max(); |
| 300 | return static_cast<int>(x); |
| 301 | } |
| 302 | |
| 303 | inline bool isWithinIntRange(float x) |
| 304 | { |
| 305 | return x > static_cast<float>(std::numeric_limits<int>::min()) && x < static_cast<float>(std::numeric_limits<int>::max()); |
| 306 | } |
| 307 | |
| 308 | template<typename T> inline bool hasOneBitSet(T value) |
| 309 | { |
| 310 | return !((value - 1) & value) && value; |
| 311 | } |
| 312 | |
| 313 | template<typename T> inline bool hasZeroOrOneBitsSet(T value) |
| 314 | { |
| 315 | return !((value - 1) & value); |
| 316 | } |
| 317 | |
| 318 | template<typename T> inline bool hasTwoOrMoreBitsSet(T value) |
| 319 | { |
| 320 | return !hasZeroOrOneBitsSet(value); |
| 321 | } |
| 322 | |
| 323 | template <typename T> inline unsigned getLSBSet(T value) |
| 324 | { |
| 325 | unsigned result = 0; |
| 326 | |
| 327 | while (value >>= 1) |
| 328 | ++result; |
| 329 | |
| 330 | return result; |
| 331 | } |
| 332 | |
| 333 | template<typename T> inline T timesThreePlusOneDividedByTwo(T value) |
| 334 | { |
| 335 | // Mathematically equivalent to: |
| 336 | // (value * 3 + 1) / 2; |
| 337 | // or: |
| 338 | // (unsigned)ceil(value * 1.5)); |
| 339 | // This form is not prone to internal overflow. |
| 340 | return value + (value >> 1) + (value & 1); |
| 341 | } |
| 342 | |
| 343 | #ifndef UINT64_C |
| 344 | #if COMPILER(MSVC) |
| 345 | #define UINT64_C(c) c ## ui64 |
| 346 | #else |
| 347 | #define UINT64_C(c) c ## ull |
| 348 | #endif |
| 349 | #endif |
| 350 | |
| 351 | #if COMPILER(MINGW64) && (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1) |
| 352 | inline double wtf_pow(double x, double y) |
| 353 | { |
| 354 | // MinGW-w64 has a custom implementation for pow. |
| 355 | // This handles certain special cases that are different. |
| 356 | if ((x == 0.0 || std::isinf(x)) && std::isfinite(y)) { |
| 357 | double f; |
| 358 | if (modf(y, &f) != 0.0) |
| 359 | return ((x == 0.0) ^ (y > 0.0)) ? std::numeric_limits<double>::infinity() : 0.0; |
| 360 | } |
| 361 | |
| 362 | if (x == 2.0) { |
| 363 | int yInt = static_cast<int>(y); |
| 364 | if (y == yInt) |
| 365 | return ldexp(1.0, yInt); |
| 366 | } |
| 367 | |
| 368 | return pow(x, y); |
| 369 | } |
| 370 | #define pow(x, y) wtf_pow(x, y) |
| 371 | #endif // COMPILER(MINGW64) && (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1) |
| 372 | |
| 373 | |
| 374 | // decompose 'number' to its sign, exponent, and mantissa components. |
| 375 | // The result is interpreted as: |
| 376 | // (sign ? -1 : 1) * pow(2, exponent) * (mantissa / (1 << 52)) |
| 377 | inline void decomposeDouble(double number, bool& sign, int32_t& exponent, uint64_t& mantissa) |
| 378 | { |
| 379 | ASSERT(std::isfinite(number)); |
| 380 | |
| 381 | sign = std::signbit(x: number); |
| 382 | |
| 383 | uint64_t bits = WTF::bitwise_cast<uint64_t>(from: number); |
| 384 | exponent = (static_cast<int32_t>(bits >> 52) & 0x7ff) - 0x3ff; |
| 385 | mantissa = bits & 0xFFFFFFFFFFFFFull; |
| 386 | |
| 387 | // Check for zero/denormal values; if so, adjust the exponent, |
| 388 | // if not insert the implicit, omitted leading 1 bit. |
| 389 | if (exponent == -0x3ff) |
| 390 | exponent = mantissa ? -0x3fe : 0; |
| 391 | else |
| 392 | mantissa |= 0x10000000000000ull; |
| 393 | } |
| 394 | |
| 395 | // Calculate d % 2^{64}. |
| 396 | inline void doubleToInteger(double d, unsigned long long& value) |
| 397 | { |
| 398 | if (std::isnan(x: d) || std::isinf(x: d)) |
| 399 | value = 0; |
| 400 | else { |
| 401 | // -2^{64} < fmodValue < 2^{64}. |
| 402 | double fmodValue = fmod(x: trunc(x: d), y: -2.0 * std::numeric_limits<long long>::min()); |
| 403 | if (fmodValue >= 0) { |
| 404 | // 0 <= fmodValue < 2^{64}. |
| 405 | // 0 <= value < 2^{64}. This cast causes no loss. |
| 406 | value = static_cast<unsigned long long>(fmodValue); |
| 407 | } else { |
| 408 | // -2^{64} < fmodValue < 0. |
| 409 | // 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss. |
| 410 | unsigned long long fmodValueInUnsignedLongLong = static_cast<unsigned long long>(-fmodValue); |
| 411 | // -1 < (std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong) < 2^{64} - 1. |
| 412 | // 0 < value < 2^{64}. |
| 413 | value = std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong + 1; |
| 414 | } |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | namespace WTF { |
| 419 | |
| 420 | // From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 |
| 421 | inline uint32_t roundUpToPowerOfTwo(uint32_t v) |
| 422 | { |
| 423 | v--; |
| 424 | v |= v >> 1; |
| 425 | v |= v >> 2; |
| 426 | v |= v >> 4; |
| 427 | v |= v >> 8; |
| 428 | v |= v >> 16; |
| 429 | v++; |
| 430 | return v; |
| 431 | } |
| 432 | |
| 433 | inline unsigned fastLog2(unsigned i) |
| 434 | { |
| 435 | unsigned log2 = 0; |
| 436 | if (i & (i - 1)) |
| 437 | log2 += 1; |
| 438 | if (i >> 16) |
| 439 | log2 += 16, i >>= 16; |
| 440 | if (i >> 8) |
| 441 | log2 += 8, i >>= 8; |
| 442 | if (i >> 4) |
| 443 | log2 += 4, i >>= 4; |
| 444 | if (i >> 2) |
| 445 | log2 += 2, i >>= 2; |
| 446 | if (i >> 1) |
| 447 | log2 += 1; |
| 448 | return log2; |
| 449 | } |
| 450 | |
| 451 | } // namespace WTF |
| 452 | |
| 453 | #endif // #ifndef WTF_MathExtras_h |
| 454 | |