| 1 | // Copyright (C) 2016 The Qt Company Ltd. |
| 2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 3 | |
| 4 | #include "qquicktimeline_p_p.h" |
| 5 | |
| 6 | #include <QDebug> |
| 7 | #include <QMutex> |
| 8 | #include <QThread> |
| 9 | #include <QWaitCondition> |
| 10 | #include <QEvent> |
| 11 | #include <QCoreApplication> |
| 12 | #include <QEasingCurve> |
| 13 | #include <QTime> |
| 14 | #include <QtCore/private/qnumeric_p.h> |
| 15 | #include <QHash> |
| 16 | |
| 17 | #include <algorithm> |
| 18 | |
| 19 | QT_BEGIN_NAMESPACE |
| 20 | |
| 21 | Q_LOGGING_CATEGORY(lcTl, "qt.quick.timeline" ) |
| 22 | |
| 23 | struct Update { |
| 24 | Update(QQuickTimeLineValue *_g, qreal _v) |
| 25 | : g(_g), v(_v) {} |
| 26 | Update(const QQuickTimeLineCallback &_e) |
| 27 | : g(nullptr), v(0), e(_e) {} |
| 28 | |
| 29 | QQuickTimeLineValue *g; |
| 30 | qreal v; |
| 31 | QQuickTimeLineCallback e; |
| 32 | }; |
| 33 | |
| 34 | struct QQuickTimeLinePrivate |
| 35 | { |
| 36 | QQuickTimeLinePrivate(QQuickTimeLine *); |
| 37 | |
| 38 | struct Op { |
| 39 | enum Type { |
| 40 | Pause, // Pauses any value updates |
| 41 | Set, // Instantly changes the value to a target value |
| 42 | Move, // Moves towards a target value over time |
| 43 | MoveBy, // Same as Move, but target value is now an offset from the starting value |
| 44 | Accel, // Moves towards a target value over time with a constant acceleration |
| 45 | AccelDistance, |
| 46 | Execute // Calls back a function |
| 47 | }; |
| 48 | Op() {} |
| 49 | Op(Type t, int l, qreal v, qreal v2, int o, |
| 50 | const QQuickTimeLineCallback &ev = QQuickTimeLineCallback(), const QEasingCurve &es = QEasingCurve()) |
| 51 | : type(t), length(l), value(v), value2(v2), order(o), event(ev), |
| 52 | easing(es) {} |
| 53 | Op(const Op &o) |
| 54 | : type(o.type), length(o.length), value(o.value), value2(o.value2), |
| 55 | order(o.order), event(o.event), easing(o.easing) {} |
| 56 | Op &operator=(const Op &o) { |
| 57 | type = o.type; length = o.length; value = o.value; |
| 58 | value2 = o.value2; order = o.order; event = o.event; |
| 59 | easing = o.easing; |
| 60 | return *this; |
| 61 | } |
| 62 | |
| 63 | Type type; |
| 64 | int length; |
| 65 | qreal value; |
| 66 | qreal value2; |
| 67 | |
| 68 | int order; |
| 69 | QQuickTimeLineCallback event; |
| 70 | QEasingCurve easing; |
| 71 | }; |
| 72 | struct TimeLine |
| 73 | { |
| 74 | TimeLine() {} |
| 75 | QList<Op> ops; |
| 76 | int length = 0; |
| 77 | int consumedOpLength = 0; |
| 78 | qreal base = 0.; |
| 79 | }; |
| 80 | |
| 81 | int length; |
| 82 | int syncPoint; |
| 83 | typedef QHash<QQuickTimeLineObject *, TimeLine> Ops; |
| 84 | Ops ops; |
| 85 | QQuickTimeLine *q; |
| 86 | |
| 87 | void add(QQuickTimeLineObject &, const Op &); |
| 88 | qreal value(const Op &op, int time, qreal base, bool *) const; |
| 89 | |
| 90 | int advance(int); |
| 91 | |
| 92 | bool clockRunning; |
| 93 | int prevTime; |
| 94 | |
| 95 | int order; |
| 96 | |
| 97 | QQuickTimeLine::SyncMode syncMode; |
| 98 | int syncAdj; |
| 99 | QList<QPair<int, Update> > *updateQueue; |
| 100 | }; |
| 101 | |
| 102 | QQuickTimeLinePrivate::QQuickTimeLinePrivate(QQuickTimeLine *parent) |
| 103 | : length(0), syncPoint(0), q(parent), clockRunning(false), prevTime(0), order(0), syncMode(QQuickTimeLine::LocalSync), syncAdj(0), updateQueue(nullptr) |
| 104 | { |
| 105 | } |
| 106 | |
| 107 | void QQuickTimeLinePrivate::add(QQuickTimeLineObject &g, const Op &o) |
| 108 | { |
| 109 | if (g._t && g._t != q) { |
| 110 | qWarning() << "QQuickTimeLine: Cannot modify a QQuickTimeLineValue owned by" |
| 111 | << "another timeline." ; |
| 112 | return; |
| 113 | } |
| 114 | g._t = q; |
| 115 | |
| 116 | Ops::Iterator iter = ops.find(key: &g); |
| 117 | if (iter == ops.end()) { |
| 118 | iter = ops.insert(key: &g, value: TimeLine()); |
| 119 | if (syncPoint > 0) |
| 120 | q->pause(g, syncPoint); |
| 121 | } |
| 122 | if (!iter->ops.isEmpty() && |
| 123 | o.type == Op::Pause && |
| 124 | iter->ops.constLast().type == Op::Pause) { |
| 125 | // If the last operation was a pause, and we're adding another, simply prolong it. |
| 126 | iter->ops.last().length += o.length; |
| 127 | iter->length += o.length; |
| 128 | } else { |
| 129 | // Add to the list of operations |
| 130 | iter->ops.append(t: o); |
| 131 | iter->length += o.length; |
| 132 | } |
| 133 | |
| 134 | if (iter->length > length) |
| 135 | length = iter->length; |
| 136 | |
| 137 | if (!clockRunning) { |
| 138 | q->stop(); |
| 139 | prevTime = 0; |
| 140 | clockRunning = true; |
| 141 | |
| 142 | if (syncMode == QQuickTimeLine::LocalSync) { |
| 143 | syncAdj = -1; |
| 144 | } else { |
| 145 | syncAdj = 0; |
| 146 | } |
| 147 | q->start(); |
| 148 | /* q->tick(0); |
| 149 | if (syncMode == QQuickTimeLine::LocalSync) { |
| 150 | syncAdj = -1; |
| 151 | } else { |
| 152 | syncAdj = 0; |
| 153 | } |
| 154 | */ |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | qreal QQuickTimeLinePrivate::value(const Op &op, int time, qreal base, bool *changed) const |
| 159 | { |
| 160 | Q_ASSERT(time >= 0); |
| 161 | Q_ASSERT(time <= op.length); |
| 162 | *changed = true; |
| 163 | |
| 164 | switch(op.type) { |
| 165 | case Op::Pause: |
| 166 | *changed = false; |
| 167 | return base; |
| 168 | case Op::Set: |
| 169 | return op.value; |
| 170 | case Op::Move: |
| 171 | if (time == 0) { |
| 172 | return base; |
| 173 | } else if (time == (op.length)) { |
| 174 | return op.value; |
| 175 | } else { |
| 176 | qreal delta = op.value - base; |
| 177 | qreal pTime = (qreal)(time) / (qreal)op.length; |
| 178 | if (op.easing.type() == QEasingCurve::Linear) |
| 179 | return base + delta * pTime; |
| 180 | else |
| 181 | return base + delta * op.easing.valueForProgress(progress: pTime); |
| 182 | } |
| 183 | case Op::MoveBy: |
| 184 | if (time == 0) { |
| 185 | return base; |
| 186 | } else if (time == (op.length)) { |
| 187 | return base + op.value; |
| 188 | } else { |
| 189 | qreal delta = op.value; |
| 190 | qreal pTime = (qreal)(time) / (qreal)op.length; |
| 191 | if (op.easing.type() == QEasingCurve::Linear) |
| 192 | return base + delta * pTime; |
| 193 | else |
| 194 | return base + delta * op.easing.valueForProgress(progress: pTime); |
| 195 | } |
| 196 | case Op::Accel: |
| 197 | if (time == 0) { |
| 198 | return base; |
| 199 | } else { |
| 200 | qreal t = (qreal)(time) / 1000.0f; |
| 201 | qreal delta = op.value * t + 0.5f * op.value2 * t * t; |
| 202 | return base + delta; |
| 203 | } |
| 204 | case Op::AccelDistance: |
| 205 | if (time == 0) { |
| 206 | return base; |
| 207 | } else if (time == (op.length)) { |
| 208 | return base + op.value2; |
| 209 | } else { |
| 210 | qreal t = (qreal)(time) / 1000.0f; |
| 211 | qreal accel = -1.0f * 1000.0f * op.value / (qreal)op.length; |
| 212 | qreal delta = op.value * t + 0.5f * accel * t * t; |
| 213 | return base + delta; |
| 214 | |
| 215 | } |
| 216 | case Op::Execute: |
| 217 | op.event.d0(op.event.d1); |
| 218 | *changed = false; |
| 219 | return -1; |
| 220 | } |
| 221 | |
| 222 | return base; |
| 223 | } |
| 224 | |
| 225 | /*! |
| 226 | \internal |
| 227 | \class QQuickTimeLine |
| 228 | \brief The QQuickTimeLine class provides a timeline for controlling animations. |
| 229 | |
| 230 | QQuickTimeLine is similar to QTimeLine except: |
| 231 | \list |
| 232 | \li It updates QQuickTimeLineValue instances directly, rather than maintaining a single |
| 233 | current value. |
| 234 | |
| 235 | For example, the following animates a simple value over 200 milliseconds: |
| 236 | \code |
| 237 | QQuickTimeLineValue v(<starting value>); |
| 238 | QQuickTimeLine tl; |
| 239 | tl.move(v, 100., 200); |
| 240 | tl.start() |
| 241 | \endcode |
| 242 | |
| 243 | If your program needs to know when values are changed, it can either |
| 244 | connect to the QQuickTimeLine's updated() signal, or inherit from QQuickTimeLineValue |
| 245 | and reimplement the QQuickTimeLineValue::setValue() method. |
| 246 | |
| 247 | \li Supports multiple QQuickTimeLineValue, arbitrary start and end values and allows |
| 248 | animations to be strung together for more complex effects. |
| 249 | |
| 250 | For example, the following animation moves the x and y coordinates of |
| 251 | an object from wherever they are to the position (100, 100) in 50 |
| 252 | milliseconds and then further animates them to (100, 200) in 50 |
| 253 | milliseconds: |
| 254 | |
| 255 | \code |
| 256 | QQuickTimeLineValue x(<starting value>); |
| 257 | QQuickTimeLineValue y(<starting value>); |
| 258 | |
| 259 | QQuickTimeLine tl; |
| 260 | tl.start(); |
| 261 | |
| 262 | tl.move(x, 100., 50); |
| 263 | tl.move(y, 100., 50); |
| 264 | tl.move(y, 200., 50); |
| 265 | \endcode |
| 266 | |
| 267 | \li All QQuickTimeLine instances share a single, synchronized clock. |
| 268 | |
| 269 | Actions scheduled within the same event loop tick are scheduled |
| 270 | synchronously against each other, regardless of the wall time between the |
| 271 | scheduling. Synchronized scheduling applies both to within the same |
| 272 | QQuickTimeLine and across separate QQuickTimeLine's within the same process. |
| 273 | |
| 274 | \endlist |
| 275 | |
| 276 | Currently easing functions are not supported. |
| 277 | */ |
| 278 | |
| 279 | |
| 280 | /*! |
| 281 | Construct a new QQuickTimeLine with the specified \a parent. |
| 282 | */ |
| 283 | QQuickTimeLine::QQuickTimeLine(QObject *parent) |
| 284 | : QObject(parent) |
| 285 | { |
| 286 | d = new QQuickTimeLinePrivate(this); |
| 287 | } |
| 288 | |
| 289 | /*! |
| 290 | Destroys the time line. Any inprogress animations are canceled, but not |
| 291 | completed. |
| 292 | */ |
| 293 | QQuickTimeLine::~QQuickTimeLine() |
| 294 | { |
| 295 | for (QQuickTimeLinePrivate::Ops::Iterator iter = d->ops.begin(); |
| 296 | iter != d->ops.end(); |
| 297 | ++iter) |
| 298 | iter.key()->_t = nullptr; |
| 299 | |
| 300 | delete d; d = nullptr; |
| 301 | } |
| 302 | |
| 303 | /*! |
| 304 | \enum QQuickTimeLine::SyncMode |
| 305 | */ |
| 306 | |
| 307 | /*! |
| 308 | Return the timeline's synchronization mode. |
| 309 | */ |
| 310 | QQuickTimeLine::SyncMode QQuickTimeLine::syncMode() const |
| 311 | { |
| 312 | return d->syncMode; |
| 313 | } |
| 314 | |
| 315 | /*! |
| 316 | Set the timeline's synchronization mode to \a syncMode. |
| 317 | */ |
| 318 | void QQuickTimeLine::setSyncMode(SyncMode syncMode) |
| 319 | { |
| 320 | d->syncMode = syncMode; |
| 321 | } |
| 322 | |
| 323 | /*! |
| 324 | Pause \a obj for \a time milliseconds. |
| 325 | */ |
| 326 | void QQuickTimeLine::pause(QQuickTimeLineObject &obj, int time) |
| 327 | { |
| 328 | if (time <= 0) return; |
| 329 | QQuickTimeLinePrivate::Op op(QQuickTimeLinePrivate::Op::Pause, time, 0., 0., d->order++); |
| 330 | d->add(g&: obj, o: op); |
| 331 | } |
| 332 | |
| 333 | /*! |
| 334 | Execute the \a event. |
| 335 | */ |
| 336 | void QQuickTimeLine::callback(const QQuickTimeLineCallback &callback) |
| 337 | { |
| 338 | QQuickTimeLinePrivate::Op op(QQuickTimeLinePrivate::Op::Execute, 0, 0, 0., d->order++, callback); |
| 339 | d->add(g&: *callback.callbackObject(), o: op); |
| 340 | } |
| 341 | |
| 342 | /*! |
| 343 | Set the \a value of \a timeLineValue. |
| 344 | */ |
| 345 | void QQuickTimeLine::set(QQuickTimeLineValue &timeLineValue, qreal value) |
| 346 | { |
| 347 | QQuickTimeLinePrivate::Op op(QQuickTimeLinePrivate::Op::Set, 0, value, 0., d->order++); |
| 348 | d->add(g&: timeLineValue, o: op); |
| 349 | } |
| 350 | |
| 351 | /*! |
| 352 | Decelerate \a timeLineValue from the starting \a velocity to zero at the |
| 353 | given \a acceleration rate. Although the \a acceleration is technically |
| 354 | a deceleration, it should always be positive. The QQuickTimeLine will ensure |
| 355 | that the deceleration is in the opposite direction to the initial velocity. |
| 356 | */ |
| 357 | int QQuickTimeLine::accel(QQuickTimeLineValue &timeLineValue, qreal velocity, qreal acceleration) |
| 358 | { |
| 359 | if (qFuzzyIsNull(d: acceleration) || qt_is_nan(d: acceleration)) |
| 360 | return -1; |
| 361 | |
| 362 | if ((velocity > 0.0f) == (acceleration > 0.0f)) |
| 363 | acceleration = acceleration * -1.0f; |
| 364 | |
| 365 | int time = static_cast<int>(-1000 * velocity / acceleration); |
| 366 | if (time <= 0) return -1; |
| 367 | |
| 368 | QQuickTimeLinePrivate::Op op(QQuickTimeLinePrivate::Op::Accel, time, velocity, acceleration, d->order++); |
| 369 | d->add(g&: timeLineValue, o: op); |
| 370 | |
| 371 | return time; |
| 372 | } |
| 373 | |
| 374 | /*! |
| 375 | \overload |
| 376 | |
| 377 | Decelerate \a timeLineValue from the starting \a velocity to zero at the |
| 378 | given \a acceleration rate over a maximum distance of maxDistance. |
| 379 | |
| 380 | If necessary, QQuickTimeLine will reduce the acceleration to ensure that the |
| 381 | entire operation does not require a move of more than \a maxDistance. |
| 382 | \a maxDistance should always be positive. |
| 383 | */ |
| 384 | int QQuickTimeLine::accel(QQuickTimeLineValue &timeLineValue, qreal velocity, qreal acceleration, qreal maxDistance) |
| 385 | { |
| 386 | if (qFuzzyIsNull(d: maxDistance) || qt_is_nan(d: maxDistance) || qFuzzyIsNull(d: acceleration) || qt_is_nan(d: acceleration)) |
| 387 | return -1; |
| 388 | |
| 389 | Q_ASSERT(acceleration > 0.0f && maxDistance > 0.0f); |
| 390 | |
| 391 | qreal maxAccel = (velocity * velocity) / (2.0f * maxDistance); |
| 392 | if (maxAccel > acceleration) |
| 393 | acceleration = maxAccel; |
| 394 | |
| 395 | if ((velocity > 0.0f) == (acceleration > 0.0f)) |
| 396 | acceleration = acceleration * -1.0f; |
| 397 | |
| 398 | int time = static_cast<int>(-1000 * velocity / acceleration); |
| 399 | if (time <= 0) return -1; |
| 400 | |
| 401 | QQuickTimeLinePrivate::Op op(QQuickTimeLinePrivate::Op::Accel, time, velocity, acceleration, d->order++); |
| 402 | d->add(g&: timeLineValue, o: op); |
| 403 | |
| 404 | return time; |
| 405 | } |
| 406 | |
| 407 | /*! |
| 408 | Decelerate \a timeLineValue from the starting \a velocity to zero over the given |
| 409 | \a distance. This is like accel(), but the QQuickTimeLine calculates the exact |
| 410 | deceleration to use. |
| 411 | |
| 412 | \a distance should be positive. |
| 413 | */ |
| 414 | int QQuickTimeLine::accelDistance(QQuickTimeLineValue &timeLineValue, qreal velocity, qreal distance) |
| 415 | { |
| 416 | if (qFuzzyIsNull(d: distance) || qt_is_nan(d: distance) || qFuzzyIsNull(d: velocity) || qt_is_nan(d: velocity)) |
| 417 | return -1; |
| 418 | |
| 419 | Q_ASSERT((distance >= 0.0f) == (velocity >= 0.0f)); |
| 420 | |
| 421 | int time = static_cast<int>(1000 * (2.0f * distance) / velocity); |
| 422 | if (time <= 0) return -1; |
| 423 | |
| 424 | QQuickTimeLinePrivate::Op op(QQuickTimeLinePrivate::Op::AccelDistance, time, velocity, distance, d->order++); |
| 425 | d->add(g&: timeLineValue, o: op); |
| 426 | |
| 427 | return time; |
| 428 | } |
| 429 | |
| 430 | /*! |
| 431 | Linearly change the \a timeLineValue from its current value to the given |
| 432 | \a destination value over \a time milliseconds. |
| 433 | */ |
| 434 | void QQuickTimeLine::move(QQuickTimeLineValue &timeLineValue, qreal destination, int time) |
| 435 | { |
| 436 | if (time <= 0) return; |
| 437 | QQuickTimeLinePrivate::Op op(QQuickTimeLinePrivate::Op::Move, time, destination, 0.0f, d->order++); |
| 438 | d->add(g&: timeLineValue, o: op); |
| 439 | } |
| 440 | |
| 441 | /*! |
| 442 | Change the \a timeLineValue from its current value to the given \a destination |
| 443 | value over \a time milliseconds using the \a easing curve. |
| 444 | */ |
| 445 | void QQuickTimeLine::move(QQuickTimeLineValue &timeLineValue, qreal destination, const QEasingCurve &easing, int time) |
| 446 | { |
| 447 | if (time <= 0) return; |
| 448 | QQuickTimeLinePrivate::Op op(QQuickTimeLinePrivate::Op::Move, time, destination, 0.0f, d->order++, QQuickTimeLineCallback(), easing); |
| 449 | d->add(g&: timeLineValue, o: op); |
| 450 | } |
| 451 | |
| 452 | /*! |
| 453 | Linearly change the \a timeLineValue from its current value by the \a change amount |
| 454 | over \a time milliseconds. |
| 455 | */ |
| 456 | void QQuickTimeLine::moveBy(QQuickTimeLineValue &timeLineValue, qreal change, int time) |
| 457 | { |
| 458 | if (time <= 0) return; |
| 459 | QQuickTimeLinePrivate::Op op(QQuickTimeLinePrivate::Op::MoveBy, time, change, 0.0f, d->order++); |
| 460 | d->add(g&: timeLineValue, o: op); |
| 461 | } |
| 462 | |
| 463 | /*! |
| 464 | Change the \a timeLineValue from its current value by the \a change amount over |
| 465 | \a time milliseconds using the \a easing curve. |
| 466 | */ |
| 467 | void QQuickTimeLine::moveBy(QQuickTimeLineValue &timeLineValue, qreal change, const QEasingCurve &easing, int time) |
| 468 | { |
| 469 | if (time <= 0) return; |
| 470 | QQuickTimeLinePrivate::Op op(QQuickTimeLinePrivate::Op::MoveBy, time, change, 0.0f, d->order++, QQuickTimeLineCallback(), easing); |
| 471 | d->add(g&: timeLineValue, o: op); |
| 472 | } |
| 473 | |
| 474 | /*! |
| 475 | Cancel (but don't complete) all scheduled actions for \a timeLineValue. |
| 476 | */ |
| 477 | void QQuickTimeLine::reset(QQuickTimeLineValue &timeLineValue) |
| 478 | { |
| 479 | if (!timeLineValue._t) |
| 480 | return; |
| 481 | if (timeLineValue._t != this) { |
| 482 | qWarning() << "QQuickTimeLine: Cannot reset a QQuickTimeLineValue owned by another timeline." ; |
| 483 | return; |
| 484 | } |
| 485 | qCDebug(lcTl) << static_cast<QObject*>(this) << timeLineValue.value(); |
| 486 | remove(&timeLineValue); |
| 487 | timeLineValue._t = nullptr; |
| 488 | } |
| 489 | |
| 490 | int QQuickTimeLine::duration() const |
| 491 | { |
| 492 | return -1; |
| 493 | } |
| 494 | |
| 495 | /*! |
| 496 | Synchronize the end point of \a timeLineValue to the endpoint of \a syncTo |
| 497 | within this timeline. |
| 498 | |
| 499 | Following operations on \a timeLineValue in this timeline will be scheduled after |
| 500 | all the currently scheduled actions on \a syncTo are complete. In |
| 501 | pseudo-code this is equivalent to: |
| 502 | \code |
| 503 | QQuickTimeLine::pause(timeLineValue, min(0, length_of(syncTo) - length_of(timeLineValue))) |
| 504 | \endcode |
| 505 | */ |
| 506 | void QQuickTimeLine::sync(QQuickTimeLineValue &timeLineValue, QQuickTimeLineValue &syncTo) |
| 507 | { |
| 508 | QQuickTimeLinePrivate::Ops::Iterator iter = d->ops.find(key: &syncTo); |
| 509 | if (iter == d->ops.end()) |
| 510 | return; |
| 511 | int length = iter->length; |
| 512 | |
| 513 | iter = d->ops.find(key: &timeLineValue); |
| 514 | if (iter == d->ops.end()) { |
| 515 | pause(obj&: timeLineValue, time: length); |
| 516 | } else { |
| 517 | int glength = iter->length; |
| 518 | pause(obj&: timeLineValue, time: length - glength); |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | /*! |
| 523 | Synchronize the end point of \a timeLineValue to the endpoint of the longest |
| 524 | action cursrently scheduled in the timeline. |
| 525 | |
| 526 | In pseudo-code, this is equivalent to: |
| 527 | \code |
| 528 | QQuickTimeLine::pause(timeLineValue, length_of(timeline) - length_of(timeLineValue)) |
| 529 | \endcode |
| 530 | */ |
| 531 | void QQuickTimeLine::sync(QQuickTimeLineValue &timeLineValue) |
| 532 | { |
| 533 | QQuickTimeLinePrivate::Ops::Iterator iter = d->ops.find(key: &timeLineValue); |
| 534 | if (iter == d->ops.end()) { |
| 535 | pause(obj&: timeLineValue, time: d->length); |
| 536 | } else { |
| 537 | pause(obj&: timeLineValue, time: d->length - iter->length); |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | /* |
| 542 | Synchronize all currently and future scheduled values in this timeline to |
| 543 | the longest action currently scheduled. |
| 544 | |
| 545 | For example: |
| 546 | \code |
| 547 | value1->setValue(0.); |
| 548 | value2->setValue(0.); |
| 549 | value3->setValue(0.); |
| 550 | QQuickTimeLine tl; |
| 551 | ... |
| 552 | tl.move(value1, 10, 200); |
| 553 | tl.move(value2, 10, 100); |
| 554 | tl.sync(); |
| 555 | tl.move(value2, 20, 100); |
| 556 | tl.move(value3, 20, 100); |
| 557 | \endcode |
| 558 | |
| 559 | will result in: |
| 560 | |
| 561 | \table |
| 562 | \header \li \li 0ms \li 50ms \li 100ms \li 150ms \li 200ms \li 250ms \li 300ms |
| 563 | \row \li value1 \li 0 \li 2.5 \li 5.0 \li 7.5 \li 10 \li 10 \li 10 |
| 564 | \row \li value2 \li 0 \li 5.0 \li 10.0 \li 10.0 \li 10.0 \li 15.0 \li 20.0 |
| 565 | \row \li value2 \li 0 \li 0 \li 0 \li 0 \li 0 \li 10.0 \li 20.0 |
| 566 | \endtable |
| 567 | */ |
| 568 | |
| 569 | /*void QQuickTimeLine::sync() |
| 570 | { |
| 571 | for (QQuickTimeLinePrivate::Ops::Iterator iter = d->ops.begin(); |
| 572 | iter != d->ops.end(); |
| 573 | ++iter) |
| 574 | pause(*iter.key(), d->length - iter->length); |
| 575 | d->syncPoint = d->length; |
| 576 | }*/ |
| 577 | |
| 578 | /*! |
| 579 | \internal |
| 580 | |
| 581 | Temporary hack. |
| 582 | */ |
| 583 | void QQuickTimeLine::setSyncPoint(int sp) |
| 584 | { |
| 585 | d->syncPoint = sp; |
| 586 | } |
| 587 | |
| 588 | /*! |
| 589 | \internal |
| 590 | |
| 591 | Temporary hack. |
| 592 | */ |
| 593 | int QQuickTimeLine::syncPoint() const |
| 594 | { |
| 595 | return d->syncPoint; |
| 596 | } |
| 597 | |
| 598 | /*! |
| 599 | Returns true if the timeline is active. An active timeline is one where |
| 600 | QQuickTimeLineValue actions are still pending. |
| 601 | */ |
| 602 | bool QQuickTimeLine::isActive() const |
| 603 | { |
| 604 | return !d->ops.isEmpty(); |
| 605 | } |
| 606 | |
| 607 | /*! |
| 608 | Completes the timeline. All queued actions are played to completion, and then discarded. For example, |
| 609 | \code |
| 610 | QQuickTimeLineValue v(0.); |
| 611 | QQuickTimeLine tl; |
| 612 | tl.move(v, 100., 1000.); |
| 613 | // 500 ms passes |
| 614 | // v.value() == 50. |
| 615 | tl.complete(); |
| 616 | // v.value() == 100. |
| 617 | \endcode |
| 618 | */ |
| 619 | void QQuickTimeLine::complete() |
| 620 | { |
| 621 | d->advance(d->length); |
| 622 | } |
| 623 | |
| 624 | /*! |
| 625 | Resets the timeline. All queued actions are discarded and QQuickTimeLineValue's retain their current value. For example, |
| 626 | \code |
| 627 | QQuickTimeLineValue v(0.); |
| 628 | QQuickTimeLine tl; |
| 629 | tl.move(v, 100., 1000.); |
| 630 | // 500 ms passes |
| 631 | // v.value() == 50. |
| 632 | tl.clear(); |
| 633 | // v.value() == 50. |
| 634 | \endcode |
| 635 | */ |
| 636 | void QQuickTimeLine::clear() |
| 637 | { |
| 638 | for (QQuickTimeLinePrivate::Ops::const_iterator iter = d->ops.cbegin(), cend = d->ops.cend(); iter != cend; ++iter) |
| 639 | iter.key()->_t = nullptr; |
| 640 | d->ops.clear(); |
| 641 | d->length = 0; |
| 642 | d->syncPoint = 0; |
| 643 | //XXX need stop here? |
| 644 | } |
| 645 | |
| 646 | int QQuickTimeLine::time() const |
| 647 | { |
| 648 | return d->prevTime; |
| 649 | } |
| 650 | |
| 651 | /*! |
| 652 | \fn void QQuickTimeLine::updated() |
| 653 | |
| 654 | Emitted each time the timeline modifies QQuickTimeLineValues. Even if multiple |
| 655 | QQuickTimeLineValues are changed, this signal is only emitted once for each clock tick. |
| 656 | */ |
| 657 | |
| 658 | void QQuickTimeLine::updateCurrentTime(int v) |
| 659 | { |
| 660 | if (d->syncAdj == -1) |
| 661 | d->syncAdj = v; |
| 662 | v -= d->syncAdj; |
| 663 | |
| 664 | int timeChanged = v - d->prevTime; |
| 665 | #if 0 |
| 666 | if (!timeChanged) |
| 667 | return; |
| 668 | #endif |
| 669 | d->prevTime = v; |
| 670 | d->advance(timeChanged); |
| 671 | emit updated(); |
| 672 | |
| 673 | // Do we need to stop the clock? |
| 674 | if (d->ops.isEmpty()) { |
| 675 | stop(); |
| 676 | d->prevTime = 0; |
| 677 | d->clockRunning = false; |
| 678 | emit completed(); |
| 679 | } /*else if (pauseTime > 0) { |
| 680 | GfxClock::cancelClock(); |
| 681 | d->prevTime = 0; |
| 682 | GfxClock::pauseFor(pauseTime); |
| 683 | d->syncAdj = 0; |
| 684 | d->clockRunning = false; |
| 685 | }*/ else if (/*!GfxClock::isActive()*/ state() != Running) { |
| 686 | stop(); |
| 687 | d->prevTime = 0; |
| 688 | d->clockRunning = true; |
| 689 | d->syncAdj = 0; |
| 690 | start(); |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | void QQuickTimeLine::debugAnimation(QDebug d) const |
| 695 | { |
| 696 | d << "QuickTimeLine(" << Qt::hex << (const void *) this << Qt::dec << ")" ; |
| 697 | } |
| 698 | |
| 699 | bool operator<(const QPair<int, Update> &lhs, |
| 700 | const QPair<int, Update> &rhs) |
| 701 | { |
| 702 | return lhs.first < rhs.first; |
| 703 | } |
| 704 | |
| 705 | int QQuickTimeLinePrivate::advance(int t) |
| 706 | { |
| 707 | int pauseTime = -1; |
| 708 | |
| 709 | // XXX - surely there is a more efficient way? |
| 710 | do { |
| 711 | pauseTime = -1; |
| 712 | // Minimal advance time |
| 713 | int advanceTime = t; |
| 714 | for (Ops::const_iterator iter = ops.constBegin(), cend = ops.constEnd(); iter != cend; ++iter) { |
| 715 | const TimeLine &tl = *iter; |
| 716 | const Op &op = tl.ops.first(); |
| 717 | int length = op.length - tl.consumedOpLength; |
| 718 | |
| 719 | if (length < advanceTime) { |
| 720 | advanceTime = length; |
| 721 | if (advanceTime == 0) |
| 722 | break; |
| 723 | } |
| 724 | } |
| 725 | t -= advanceTime; |
| 726 | |
| 727 | // Process until then. A zero length advance time will only process |
| 728 | // sets. |
| 729 | QList<QPair<int, Update> > updates; |
| 730 | |
| 731 | for (Ops::Iterator iter = ops.begin(); iter != ops.end(); ) { |
| 732 | QQuickTimeLineValue *v = static_cast<QQuickTimeLineValue *>(iter.key()); |
| 733 | TimeLine &tl = *iter; |
| 734 | Q_ASSERT(!tl.ops.isEmpty()); |
| 735 | |
| 736 | do { |
| 737 | Op &op = tl.ops.first(); |
| 738 | if (advanceTime == 0 && op.length != 0) |
| 739 | continue; |
| 740 | |
| 741 | if (tl.consumedOpLength == 0 && |
| 742 | op.type != Op::Pause && |
| 743 | op.type != Op::Execute) |
| 744 | tl.base = v->value(); |
| 745 | |
| 746 | if ((tl.consumedOpLength + advanceTime) == op.length) { |
| 747 | // Finishing operation, the timeline value will be the operation's target value. |
| 748 | if (op.type == Op::Execute) { |
| 749 | updates << qMakePair(value1&: op.order, value2: Update(op.event)); |
| 750 | } else { |
| 751 | bool changed = false; |
| 752 | qreal val = value(op, time: op.length, base: tl.base, changed: &changed); |
| 753 | if (changed) |
| 754 | updates << qMakePair(value1&: op.order, value2: Update(v, val)); |
| 755 | } |
| 756 | tl.length -= qMin(a: advanceTime, b: tl.length); |
| 757 | tl.consumedOpLength = 0; |
| 758 | tl.ops.removeFirst(); |
| 759 | } else { |
| 760 | // Partially finished operation, the timeline value will be between the base |
| 761 | // value and the target value, depending on progress and type of operation. |
| 762 | tl.consumedOpLength += advanceTime; |
| 763 | bool changed = false; |
| 764 | qreal val = value(op, time: tl.consumedOpLength, base: tl.base, changed: &changed); |
| 765 | if (changed) |
| 766 | updates << qMakePair(value1&: op.order, value2: Update(v, val)); |
| 767 | tl.length -= qMin(a: advanceTime, b: tl.length); |
| 768 | break; |
| 769 | } |
| 770 | |
| 771 | } while(!tl.ops.isEmpty() && advanceTime == 0 && tl.ops.first().length == 0); |
| 772 | |
| 773 | |
| 774 | if (tl.ops.isEmpty()) { |
| 775 | iter = ops.erase(it: iter); |
| 776 | v->_t = nullptr; |
| 777 | } else { |
| 778 | if (tl.ops.first().type == Op::Pause && pauseTime != 0) { |
| 779 | int opPauseTime = tl.ops.first().length - tl.consumedOpLength; |
| 780 | if (pauseTime == -1 || opPauseTime < pauseTime) |
| 781 | pauseTime = opPauseTime; |
| 782 | } else { |
| 783 | pauseTime = 0; |
| 784 | } |
| 785 | ++iter; |
| 786 | } |
| 787 | } |
| 788 | |
| 789 | length -= qMin(a: length, b: advanceTime); |
| 790 | syncPoint -= advanceTime; |
| 791 | |
| 792 | std::sort(first: updates.begin(), last: updates.end()); |
| 793 | updateQueue = &updates; |
| 794 | for (int ii = 0; ii < updates.size(); ++ii) { |
| 795 | const Update &v = updates.at(i: ii).second; |
| 796 | if (v.g) { |
| 797 | v.g->setValue(v.v); |
| 798 | } else { |
| 799 | v.e.d0(v.e.d1); |
| 800 | } |
| 801 | } |
| 802 | updateQueue = nullptr; |
| 803 | } while(t); |
| 804 | |
| 805 | return pauseTime; |
| 806 | } |
| 807 | |
| 808 | void QQuickTimeLine::remove(QQuickTimeLineObject *v) |
| 809 | { |
| 810 | QQuickTimeLinePrivate::Ops::Iterator iter = d->ops.find(key: v); |
| 811 | Q_ASSERT(iter != d->ops.end()); |
| 812 | |
| 813 | int len = iter->length; |
| 814 | d->ops.erase(it: iter); |
| 815 | if (len == d->length) { |
| 816 | // We need to recalculate the length |
| 817 | d->length = 0; |
| 818 | for (QQuickTimeLinePrivate::Ops::Iterator iter = d->ops.begin(); |
| 819 | iter != d->ops.end(); |
| 820 | ++iter) { |
| 821 | |
| 822 | if (iter->length > d->length) |
| 823 | d->length = iter->length; |
| 824 | |
| 825 | } |
| 826 | } |
| 827 | if (d->ops.isEmpty()) { |
| 828 | stop(); |
| 829 | d->clockRunning = false; |
| 830 | } else if (state() != Running) { // was !GfxClock::isActive() |
| 831 | stop(); |
| 832 | d->prevTime = 0; |
| 833 | d->clockRunning = true; |
| 834 | |
| 835 | if (d->syncMode == QQuickTimeLine::LocalSync) { |
| 836 | d->syncAdj = -1; |
| 837 | } else { |
| 838 | d->syncAdj = 0; |
| 839 | } |
| 840 | start(); |
| 841 | } |
| 842 | |
| 843 | if (d->updateQueue) { |
| 844 | for (int ii = 0; ii < d->updateQueue->size(); ++ii) { |
| 845 | if (d->updateQueue->at(i: ii).second.g == v || |
| 846 | d->updateQueue->at(i: ii).second.e.callbackObject() == v) { |
| 847 | d->updateQueue->removeAt(i: ii); |
| 848 | --ii; |
| 849 | } |
| 850 | } |
| 851 | } |
| 852 | |
| 853 | |
| 854 | } |
| 855 | |
| 856 | /*! |
| 857 | \internal |
| 858 | \class QQuickTimeLineValue |
| 859 | \brief The QQuickTimeLineValue class provides a value that can be modified by QQuickTimeLine. |
| 860 | */ |
| 861 | |
| 862 | /*! |
| 863 | \fn QQuickTimeLineValue::QQuickTimeLineValue(qreal value = 0) |
| 864 | |
| 865 | Construct a new QQuickTimeLineValue with an initial \a value. |
| 866 | */ |
| 867 | |
| 868 | /*! |
| 869 | \fn qreal QQuickTimeLineValue::value() const |
| 870 | |
| 871 | Return the current value. |
| 872 | */ |
| 873 | |
| 874 | /*! |
| 875 | \fn void QQuickTimeLineValue::setValue(qreal value) |
| 876 | |
| 877 | Set the current \a value. |
| 878 | */ |
| 879 | |
| 880 | /*! |
| 881 | \fn QQuickTimeLine *QQuickTimeLineValue::timeLine() const |
| 882 | |
| 883 | If a QQuickTimeLine is operating on this value, return a pointer to it, |
| 884 | otherwise return null. |
| 885 | */ |
| 886 | |
| 887 | |
| 888 | QQuickTimeLineObject::QQuickTimeLineObject() |
| 889 | : _t(nullptr) |
| 890 | { |
| 891 | } |
| 892 | |
| 893 | QQuickTimeLineObject::~QQuickTimeLineObject() |
| 894 | { |
| 895 | if (_t) { |
| 896 | _t->remove(v: this); |
| 897 | _t = nullptr; |
| 898 | } |
| 899 | } |
| 900 | |
| 901 | QQuickTimeLineCallback::QQuickTimeLineCallback() |
| 902 | : d0(nullptr), d1(nullptr), d2(nullptr) |
| 903 | { |
| 904 | } |
| 905 | |
| 906 | QQuickTimeLineCallback::QQuickTimeLineCallback(QQuickTimeLineObject *b, Callback f, void *d) |
| 907 | : d0(f), d1(d), d2(b) |
| 908 | { |
| 909 | } |
| 910 | |
| 911 | QQuickTimeLineCallback::QQuickTimeLineCallback(const QQuickTimeLineCallback &o) |
| 912 | : d0(o.d0), d1(o.d1), d2(o.d2) |
| 913 | { |
| 914 | } |
| 915 | |
| 916 | QQuickTimeLineCallback &QQuickTimeLineCallback::operator=(const QQuickTimeLineCallback &o) |
| 917 | { |
| 918 | d0 = o.d0; |
| 919 | d1 = o.d1; |
| 920 | d2 = o.d2; |
| 921 | return *this; |
| 922 | } |
| 923 | |
| 924 | QQuickTimeLineObject *QQuickTimeLineCallback::callbackObject() const |
| 925 | { |
| 926 | return d2; |
| 927 | } |
| 928 | |
| 929 | QT_END_NAMESPACE |
| 930 | |
| 931 | #include "moc_qquicktimeline_p_p.cpp" |
| 932 | |