1 | // Copyright 2022 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // Sharp RGB to YUV conversion. |
11 | // |
12 | // Author: Skal (pascal.massimino@gmail.com) |
13 | |
14 | #include "sharpyuv/sharpyuv.h" |
15 | |
16 | #include <assert.h> |
17 | #include <limits.h> |
18 | #include <stddef.h> |
19 | #include <stdlib.h> |
20 | #include <string.h> |
21 | |
22 | #include "src/webp/types.h" |
23 | #include "sharpyuv/sharpyuv_cpu.h" |
24 | #include "sharpyuv/sharpyuv_dsp.h" |
25 | #include "sharpyuv/sharpyuv_gamma.h" |
26 | |
27 | //------------------------------------------------------------------------------ |
28 | |
29 | int SharpYuvGetVersion(void) { |
30 | return SHARPYUV_VERSION; |
31 | } |
32 | |
33 | //------------------------------------------------------------------------------ |
34 | // Sharp RGB->YUV conversion |
35 | |
36 | static const int kNumIterations = 4; |
37 | |
38 | #define YUV_FIX 16 // fixed-point precision for RGB->YUV |
39 | static const int kYuvHalf = 1 << (YUV_FIX - 1); |
40 | |
41 | // Max bit depth so that intermediate calculations fit in 16 bits. |
42 | static const int kMaxBitDepth = 14; |
43 | |
44 | // Returns the precision shift to use based on the input rgb_bit_depth. |
45 | static int GetPrecisionShift(int rgb_bit_depth) { |
46 | // Try to add 2 bits of precision if it fits in kMaxBitDepth. Otherwise remove |
47 | // bits if needed. |
48 | return ((rgb_bit_depth + 2) <= kMaxBitDepth) ? 2 |
49 | : (kMaxBitDepth - rgb_bit_depth); |
50 | } |
51 | |
52 | typedef int16_t fixed_t; // signed type with extra precision for UV |
53 | typedef uint16_t fixed_y_t; // unsigned type with extra precision for W |
54 | |
55 | //------------------------------------------------------------------------------ |
56 | |
57 | static uint8_t clip_8b(fixed_t v) { |
58 | return (!(v & ~0xff)) ? (uint8_t)v : (v < 0) ? 0u : 255u; |
59 | } |
60 | |
61 | static uint16_t clip(fixed_t v, int max) { |
62 | return (v < 0) ? 0 : (v > max) ? max : (uint16_t)v; |
63 | } |
64 | |
65 | static fixed_y_t clip_bit_depth(int y, int bit_depth) { |
66 | const int max = (1 << bit_depth) - 1; |
67 | return (!(y & ~max)) ? (fixed_y_t)y : (y < 0) ? 0 : max; |
68 | } |
69 | |
70 | //------------------------------------------------------------------------------ |
71 | |
72 | static int RGBToGray(int64_t r, int64_t g, int64_t b) { |
73 | const int64_t luma = 13933 * r + 46871 * g + 4732 * b + kYuvHalf; |
74 | return (int)(luma >> YUV_FIX); |
75 | } |
76 | |
77 | static uint32_t ScaleDown(uint16_t a, uint16_t b, uint16_t c, uint16_t d, |
78 | int rgb_bit_depth) { |
79 | const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth); |
80 | const uint32_t A = SharpYuvGammaToLinear(v: a, bit_depth); |
81 | const uint32_t B = SharpYuvGammaToLinear(v: b, bit_depth); |
82 | const uint32_t C = SharpYuvGammaToLinear(v: c, bit_depth); |
83 | const uint32_t D = SharpYuvGammaToLinear(v: d, bit_depth); |
84 | return SharpYuvLinearToGamma(value: (A + B + C + D + 2) >> 2, bit_depth); |
85 | } |
86 | |
87 | static WEBP_INLINE void UpdateW(const fixed_y_t* src, fixed_y_t* dst, int w, |
88 | int rgb_bit_depth) { |
89 | const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth); |
90 | int i; |
91 | for (i = 0; i < w; ++i) { |
92 | const uint32_t R = SharpYuvGammaToLinear(v: src[0 * w + i], bit_depth); |
93 | const uint32_t G = SharpYuvGammaToLinear(v: src[1 * w + i], bit_depth); |
94 | const uint32_t B = SharpYuvGammaToLinear(v: src[2 * w + i], bit_depth); |
95 | const uint32_t Y = RGBToGray(r: R, g: G, b: B); |
96 | dst[i] = (fixed_y_t)SharpYuvLinearToGamma(value: Y, bit_depth); |
97 | } |
98 | } |
99 | |
100 | static void UpdateChroma(const fixed_y_t* src1, const fixed_y_t* src2, |
101 | fixed_t* dst, int uv_w, int rgb_bit_depth) { |
102 | int i; |
103 | for (i = 0; i < uv_w; ++i) { |
104 | const int r = |
105 | ScaleDown(a: src1[0 * uv_w + 0], b: src1[0 * uv_w + 1], c: src2[0 * uv_w + 0], |
106 | d: src2[0 * uv_w + 1], rgb_bit_depth); |
107 | const int g = |
108 | ScaleDown(a: src1[2 * uv_w + 0], b: src1[2 * uv_w + 1], c: src2[2 * uv_w + 0], |
109 | d: src2[2 * uv_w + 1], rgb_bit_depth); |
110 | const int b = |
111 | ScaleDown(a: src1[4 * uv_w + 0], b: src1[4 * uv_w + 1], c: src2[4 * uv_w + 0], |
112 | d: src2[4 * uv_w + 1], rgb_bit_depth); |
113 | const int W = RGBToGray(r, g, b); |
114 | dst[0 * uv_w] = (fixed_t)(r - W); |
115 | dst[1 * uv_w] = (fixed_t)(g - W); |
116 | dst[2 * uv_w] = (fixed_t)(b - W); |
117 | dst += 1; |
118 | src1 += 2; |
119 | src2 += 2; |
120 | } |
121 | } |
122 | |
123 | static void StoreGray(const fixed_y_t* rgb, fixed_y_t* y, int w) { |
124 | int i; |
125 | assert(w > 0); |
126 | for (i = 0; i < w; ++i) { |
127 | y[i] = RGBToGray(r: rgb[0 * w + i], g: rgb[1 * w + i], b: rgb[2 * w + i]); |
128 | } |
129 | } |
130 | |
131 | //------------------------------------------------------------------------------ |
132 | |
133 | static WEBP_INLINE fixed_y_t Filter2(int A, int B, int W0, int bit_depth) { |
134 | const int v0 = (A * 3 + B + 2) >> 2; |
135 | return clip_bit_depth(y: v0 + W0, bit_depth); |
136 | } |
137 | |
138 | //------------------------------------------------------------------------------ |
139 | |
140 | static WEBP_INLINE int Shift(int v, int shift) { |
141 | return (shift >= 0) ? (v << shift) : (v >> -shift); |
142 | } |
143 | |
144 | static void ImportOneRow(const uint8_t* const r_ptr, |
145 | const uint8_t* const g_ptr, |
146 | const uint8_t* const b_ptr, |
147 | int rgb_step, |
148 | int rgb_bit_depth, |
149 | int pic_width, |
150 | fixed_y_t* const dst) { |
151 | // Convert the rgb_step from a number of bytes to a number of uint8_t or |
152 | // uint16_t values depending the bit depth. |
153 | const int step = (rgb_bit_depth > 8) ? rgb_step / 2 : rgb_step; |
154 | int i; |
155 | const int w = (pic_width + 1) & ~1; |
156 | for (i = 0; i < pic_width; ++i) { |
157 | const int off = i * step; |
158 | const int shift = GetPrecisionShift(rgb_bit_depth); |
159 | if (rgb_bit_depth == 8) { |
160 | dst[i + 0 * w] = Shift(v: r_ptr[off], shift); |
161 | dst[i + 1 * w] = Shift(v: g_ptr[off], shift); |
162 | dst[i + 2 * w] = Shift(v: b_ptr[off], shift); |
163 | } else { |
164 | dst[i + 0 * w] = Shift(v: ((uint16_t*)r_ptr)[off], shift); |
165 | dst[i + 1 * w] = Shift(v: ((uint16_t*)g_ptr)[off], shift); |
166 | dst[i + 2 * w] = Shift(v: ((uint16_t*)b_ptr)[off], shift); |
167 | } |
168 | } |
169 | if (pic_width & 1) { // replicate rightmost pixel |
170 | dst[pic_width + 0 * w] = dst[pic_width + 0 * w - 1]; |
171 | dst[pic_width + 1 * w] = dst[pic_width + 1 * w - 1]; |
172 | dst[pic_width + 2 * w] = dst[pic_width + 2 * w - 1]; |
173 | } |
174 | } |
175 | |
176 | static void InterpolateTwoRows(const fixed_y_t* const best_y, |
177 | const fixed_t* prev_uv, |
178 | const fixed_t* cur_uv, |
179 | const fixed_t* next_uv, |
180 | int w, |
181 | fixed_y_t* out1, |
182 | fixed_y_t* out2, |
183 | int rgb_bit_depth) { |
184 | const int uv_w = w >> 1; |
185 | const int len = (w - 1) >> 1; // length to filter |
186 | int k = 3; |
187 | const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth); |
188 | while (k-- > 0) { // process each R/G/B segments in turn |
189 | // special boundary case for i==0 |
190 | out1[0] = Filter2(A: cur_uv[0], B: prev_uv[0], W0: best_y[0], bit_depth); |
191 | out2[0] = Filter2(A: cur_uv[0], B: next_uv[0], W0: best_y[w], bit_depth); |
192 | |
193 | SharpYuvFilterRow(cur_uv, prev_uv, len, best_y + 0 + 1, out1 + 1, |
194 | bit_depth); |
195 | SharpYuvFilterRow(cur_uv, next_uv, len, best_y + w + 1, out2 + 1, |
196 | bit_depth); |
197 | |
198 | // special boundary case for i == w - 1 when w is even |
199 | if (!(w & 1)) { |
200 | out1[w - 1] = Filter2(A: cur_uv[uv_w - 1], B: prev_uv[uv_w - 1], |
201 | W0: best_y[w - 1 + 0], bit_depth); |
202 | out2[w - 1] = Filter2(A: cur_uv[uv_w - 1], B: next_uv[uv_w - 1], |
203 | W0: best_y[w - 1 + w], bit_depth); |
204 | } |
205 | out1 += w; |
206 | out2 += w; |
207 | prev_uv += uv_w; |
208 | cur_uv += uv_w; |
209 | next_uv += uv_w; |
210 | } |
211 | } |
212 | |
213 | static WEBP_INLINE int RGBToYUVComponent(int r, int g, int b, |
214 | const int coeffs[4], int sfix) { |
215 | const int srounder = 1 << (YUV_FIX + sfix - 1); |
216 | const int luma = coeffs[0] * r + coeffs[1] * g + coeffs[2] * b + |
217 | coeffs[3] + srounder; |
218 | return (luma >> (YUV_FIX + sfix)); |
219 | } |
220 | |
221 | static int ConvertWRGBToYUV(const fixed_y_t* best_y, const fixed_t* best_uv, |
222 | uint8_t* y_ptr, int y_stride, uint8_t* u_ptr, |
223 | int u_stride, uint8_t* v_ptr, int v_stride, |
224 | int rgb_bit_depth, |
225 | int yuv_bit_depth, int width, int height, |
226 | const SharpYuvConversionMatrix* yuv_matrix) { |
227 | int i, j; |
228 | const fixed_t* const best_uv_base = best_uv; |
229 | const int w = (width + 1) & ~1; |
230 | const int h = (height + 1) & ~1; |
231 | const int uv_w = w >> 1; |
232 | const int uv_h = h >> 1; |
233 | const int sfix = GetPrecisionShift(rgb_bit_depth); |
234 | const int yuv_max = (1 << yuv_bit_depth) - 1; |
235 | |
236 | for (best_uv = best_uv_base, j = 0; j < height; ++j) { |
237 | for (i = 0; i < width; ++i) { |
238 | const int off = (i >> 1); |
239 | const int W = best_y[i]; |
240 | const int r = best_uv[off + 0 * uv_w] + W; |
241 | const int g = best_uv[off + 1 * uv_w] + W; |
242 | const int b = best_uv[off + 2 * uv_w] + W; |
243 | const int y = RGBToYUVComponent(r, g, b, coeffs: yuv_matrix->rgb_to_y, sfix); |
244 | if (yuv_bit_depth <= 8) { |
245 | y_ptr[i] = clip_8b(v: y); |
246 | } else { |
247 | ((uint16_t*)y_ptr)[i] = clip(v: y, max: yuv_max); |
248 | } |
249 | } |
250 | best_y += w; |
251 | best_uv += (j & 1) * 3 * uv_w; |
252 | y_ptr += y_stride; |
253 | } |
254 | for (best_uv = best_uv_base, j = 0; j < uv_h; ++j) { |
255 | for (i = 0; i < uv_w; ++i) { |
256 | const int off = i; |
257 | // Note r, g and b values here are off by W, but a constant offset on all |
258 | // 3 components doesn't change the value of u and v with a YCbCr matrix. |
259 | const int r = best_uv[off + 0 * uv_w]; |
260 | const int g = best_uv[off + 1 * uv_w]; |
261 | const int b = best_uv[off + 2 * uv_w]; |
262 | const int u = RGBToYUVComponent(r, g, b, coeffs: yuv_matrix->rgb_to_u, sfix); |
263 | const int v = RGBToYUVComponent(r, g, b, coeffs: yuv_matrix->rgb_to_v, sfix); |
264 | if (yuv_bit_depth <= 8) { |
265 | u_ptr[i] = clip_8b(v: u); |
266 | v_ptr[i] = clip_8b(v); |
267 | } else { |
268 | ((uint16_t*)u_ptr)[i] = clip(v: u, max: yuv_max); |
269 | ((uint16_t*)v_ptr)[i] = clip(v, max: yuv_max); |
270 | } |
271 | } |
272 | best_uv += 3 * uv_w; |
273 | u_ptr += u_stride; |
274 | v_ptr += v_stride; |
275 | } |
276 | return 1; |
277 | } |
278 | |
279 | //------------------------------------------------------------------------------ |
280 | // Main function |
281 | |
282 | static void* SafeMalloc(uint64_t nmemb, size_t size) { |
283 | const uint64_t total_size = nmemb * (uint64_t)size; |
284 | if (total_size != (size_t)total_size) return NULL; |
285 | return malloc(size: (size_t)total_size); |
286 | } |
287 | |
288 | #define SAFE_ALLOC(W, H, T) ((T*)SafeMalloc((W) * (H), sizeof(T))) |
289 | |
290 | static int DoSharpArgbToYuv(const uint8_t* r_ptr, const uint8_t* g_ptr, |
291 | const uint8_t* b_ptr, int rgb_step, int rgb_stride, |
292 | int rgb_bit_depth, uint8_t* y_ptr, int y_stride, |
293 | uint8_t* u_ptr, int u_stride, uint8_t* v_ptr, |
294 | int v_stride, int yuv_bit_depth, int width, |
295 | int height, |
296 | const SharpYuvConversionMatrix* yuv_matrix) { |
297 | // we expand the right/bottom border if needed |
298 | const int w = (width + 1) & ~1; |
299 | const int h = (height + 1) & ~1; |
300 | const int uv_w = w >> 1; |
301 | const int uv_h = h >> 1; |
302 | uint64_t prev_diff_y_sum = ~0; |
303 | int j, iter; |
304 | |
305 | // TODO(skal): allocate one big memory chunk. But for now, it's easier |
306 | // for valgrind debugging to have several chunks. |
307 | fixed_y_t* const tmp_buffer = SAFE_ALLOC(w * 3, 2, fixed_y_t); // scratch |
308 | fixed_y_t* const best_y_base = SAFE_ALLOC(w, h, fixed_y_t); |
309 | fixed_y_t* const target_y_base = SAFE_ALLOC(w, h, fixed_y_t); |
310 | fixed_y_t* const best_rgb_y = SAFE_ALLOC(w, 2, fixed_y_t); |
311 | fixed_t* const best_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t); |
312 | fixed_t* const target_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t); |
313 | fixed_t* const best_rgb_uv = SAFE_ALLOC(uv_w * 3, 1, fixed_t); |
314 | fixed_y_t* best_y = best_y_base; |
315 | fixed_y_t* target_y = target_y_base; |
316 | fixed_t* best_uv = best_uv_base; |
317 | fixed_t* target_uv = target_uv_base; |
318 | const uint64_t diff_y_threshold = (uint64_t)(3.0 * w * h); |
319 | int ok; |
320 | assert(w > 0); |
321 | assert(h > 0); |
322 | |
323 | if (best_y_base == NULL || best_uv_base == NULL || |
324 | target_y_base == NULL || target_uv_base == NULL || |
325 | best_rgb_y == NULL || best_rgb_uv == NULL || |
326 | tmp_buffer == NULL) { |
327 | ok = 0; |
328 | goto End; |
329 | } |
330 | |
331 | // Import RGB samples to W/RGB representation. |
332 | for (j = 0; j < height; j += 2) { |
333 | const int is_last_row = (j == height - 1); |
334 | fixed_y_t* const src1 = tmp_buffer + 0 * w; |
335 | fixed_y_t* const src2 = tmp_buffer + 3 * w; |
336 | |
337 | // prepare two rows of input |
338 | ImportOneRow(r_ptr, g_ptr, b_ptr, rgb_step, rgb_bit_depth, pic_width: width, |
339 | dst: src1); |
340 | if (!is_last_row) { |
341 | ImportOneRow(r_ptr: r_ptr + rgb_stride, g_ptr: g_ptr + rgb_stride, b_ptr: b_ptr + rgb_stride, |
342 | rgb_step, rgb_bit_depth, pic_width: width, dst: src2); |
343 | } else { |
344 | memcpy(dest: src2, src: src1, n: 3 * w * sizeof(*src2)); |
345 | } |
346 | StoreGray(rgb: src1, y: best_y + 0, w); |
347 | StoreGray(rgb: src2, y: best_y + w, w); |
348 | |
349 | UpdateW(src: src1, dst: target_y, w, rgb_bit_depth); |
350 | UpdateW(src: src2, dst: target_y + w, w, rgb_bit_depth); |
351 | UpdateChroma(src1, src2, dst: target_uv, uv_w, rgb_bit_depth); |
352 | memcpy(dest: best_uv, src: target_uv, n: 3 * uv_w * sizeof(*best_uv)); |
353 | best_y += 2 * w; |
354 | best_uv += 3 * uv_w; |
355 | target_y += 2 * w; |
356 | target_uv += 3 * uv_w; |
357 | r_ptr += 2 * rgb_stride; |
358 | g_ptr += 2 * rgb_stride; |
359 | b_ptr += 2 * rgb_stride; |
360 | } |
361 | |
362 | // Iterate and resolve clipping conflicts. |
363 | for (iter = 0; iter < kNumIterations; ++iter) { |
364 | const fixed_t* cur_uv = best_uv_base; |
365 | const fixed_t* prev_uv = best_uv_base; |
366 | uint64_t diff_y_sum = 0; |
367 | |
368 | best_y = best_y_base; |
369 | best_uv = best_uv_base; |
370 | target_y = target_y_base; |
371 | target_uv = target_uv_base; |
372 | for (j = 0; j < h; j += 2) { |
373 | fixed_y_t* const src1 = tmp_buffer + 0 * w; |
374 | fixed_y_t* const src2 = tmp_buffer + 3 * w; |
375 | { |
376 | const fixed_t* const next_uv = cur_uv + ((j < h - 2) ? 3 * uv_w : 0); |
377 | InterpolateTwoRows(best_y, prev_uv, cur_uv, next_uv, w, |
378 | out1: src1, out2: src2, rgb_bit_depth); |
379 | prev_uv = cur_uv; |
380 | cur_uv = next_uv; |
381 | } |
382 | |
383 | UpdateW(src: src1, dst: best_rgb_y + 0 * w, w, rgb_bit_depth); |
384 | UpdateW(src: src2, dst: best_rgb_y + 1 * w, w, rgb_bit_depth); |
385 | UpdateChroma(src1, src2, dst: best_rgb_uv, uv_w, rgb_bit_depth); |
386 | |
387 | // update two rows of Y and one row of RGB |
388 | diff_y_sum += |
389 | SharpYuvUpdateY(target_y, best_rgb_y, best_y, 2 * w, |
390 | rgb_bit_depth + GetPrecisionShift(rgb_bit_depth)); |
391 | SharpYuvUpdateRGB(target_uv, best_rgb_uv, best_uv, 3 * uv_w); |
392 | |
393 | best_y += 2 * w; |
394 | best_uv += 3 * uv_w; |
395 | target_y += 2 * w; |
396 | target_uv += 3 * uv_w; |
397 | } |
398 | // test exit condition |
399 | if (iter > 0) { |
400 | if (diff_y_sum < diff_y_threshold) break; |
401 | if (diff_y_sum > prev_diff_y_sum) break; |
402 | } |
403 | prev_diff_y_sum = diff_y_sum; |
404 | } |
405 | |
406 | // final reconstruction |
407 | ok = ConvertWRGBToYUV(best_y: best_y_base, best_uv: best_uv_base, y_ptr, y_stride, u_ptr, |
408 | u_stride, v_ptr, v_stride, rgb_bit_depth, yuv_bit_depth, |
409 | width, height, yuv_matrix); |
410 | |
411 | End: |
412 | free(ptr: best_y_base); |
413 | free(ptr: best_uv_base); |
414 | free(ptr: target_y_base); |
415 | free(ptr: target_uv_base); |
416 | free(ptr: best_rgb_y); |
417 | free(ptr: best_rgb_uv); |
418 | free(ptr: tmp_buffer); |
419 | return ok; |
420 | } |
421 | #undef SAFE_ALLOC |
422 | |
423 | #if defined(WEBP_USE_THREAD) && !defined(_WIN32) |
424 | #include <pthread.h> // NOLINT |
425 | |
426 | #define LOCK_ACCESS \ |
427 | static pthread_mutex_t sharpyuv_lock = PTHREAD_MUTEX_INITIALIZER; \ |
428 | if (pthread_mutex_lock(&sharpyuv_lock)) return |
429 | #define UNLOCK_ACCESS_AND_RETURN \ |
430 | do { \ |
431 | (void)pthread_mutex_unlock(&sharpyuv_lock); \ |
432 | return; \ |
433 | } while (0) |
434 | #else // !(defined(WEBP_USE_THREAD) && !defined(_WIN32)) |
435 | #define LOCK_ACCESS do {} while (0) |
436 | #define UNLOCK_ACCESS_AND_RETURN return |
437 | #endif // defined(WEBP_USE_THREAD) && !defined(_WIN32) |
438 | |
439 | // Hidden exported init function. |
440 | // By default SharpYuvConvert calls it with SharpYuvGetCPUInfo. If needed, |
441 | // users can declare it as extern and call it with an alternate VP8CPUInfo |
442 | // function. |
443 | extern VP8CPUInfo SharpYuvGetCPUInfo; |
444 | SHARPYUV_EXTERN void SharpYuvInit(VP8CPUInfo cpu_info_func); |
445 | void SharpYuvInit(VP8CPUInfo cpu_info_func) { |
446 | static volatile VP8CPUInfo sharpyuv_last_cpuinfo_used = |
447 | (VP8CPUInfo)&sharpyuv_last_cpuinfo_used; |
448 | LOCK_ACCESS; |
449 | // Only update SharpYuvGetCPUInfo when called from external code to avoid a |
450 | // race on reading the value in SharpYuvConvert(). |
451 | if (cpu_info_func != (VP8CPUInfo)&SharpYuvGetCPUInfo) { |
452 | SharpYuvGetCPUInfo = cpu_info_func; |
453 | } |
454 | if (sharpyuv_last_cpuinfo_used == SharpYuvGetCPUInfo) { |
455 | UNLOCK_ACCESS_AND_RETURN; |
456 | } |
457 | |
458 | SharpYuvInitDsp(); |
459 | SharpYuvInitGammaTables(); |
460 | |
461 | sharpyuv_last_cpuinfo_used = SharpYuvGetCPUInfo; |
462 | UNLOCK_ACCESS_AND_RETURN; |
463 | } |
464 | |
465 | int SharpYuvConvert(const void* r_ptr, const void* g_ptr, |
466 | const void* b_ptr, int rgb_step, int rgb_stride, |
467 | int rgb_bit_depth, void* y_ptr, int y_stride, |
468 | void* u_ptr, int u_stride, void* v_ptr, |
469 | int v_stride, int yuv_bit_depth, int width, |
470 | int height, const SharpYuvConversionMatrix* yuv_matrix) { |
471 | SharpYuvConversionMatrix scaled_matrix; |
472 | const int rgb_max = (1 << rgb_bit_depth) - 1; |
473 | const int rgb_round = 1 << (rgb_bit_depth - 1); |
474 | const int yuv_max = (1 << yuv_bit_depth) - 1; |
475 | const int sfix = GetPrecisionShift(rgb_bit_depth); |
476 | |
477 | if (width < 1 || height < 1 || width == INT_MAX || height == INT_MAX || |
478 | r_ptr == NULL || g_ptr == NULL || b_ptr == NULL || y_ptr == NULL || |
479 | u_ptr == NULL || v_ptr == NULL) { |
480 | return 0; |
481 | } |
482 | if (rgb_bit_depth != 8 && rgb_bit_depth != 10 && rgb_bit_depth != 12 && |
483 | rgb_bit_depth != 16) { |
484 | return 0; |
485 | } |
486 | if (yuv_bit_depth != 8 && yuv_bit_depth != 10 && yuv_bit_depth != 12) { |
487 | return 0; |
488 | } |
489 | if (rgb_bit_depth > 8 && (rgb_step % 2 != 0 || rgb_stride %2 != 0)) { |
490 | // Step/stride should be even for uint16_t buffers. |
491 | return 0; |
492 | } |
493 | if (yuv_bit_depth > 8 && |
494 | (y_stride % 2 != 0 || u_stride % 2 != 0 || v_stride % 2 != 0)) { |
495 | // Stride should be even for uint16_t buffers. |
496 | return 0; |
497 | } |
498 | // The address of the function pointer is used to avoid a read race. |
499 | SharpYuvInit(cpu_info_func: (VP8CPUInfo)&SharpYuvGetCPUInfo); |
500 | |
501 | // Add scaling factor to go from rgb_bit_depth to yuv_bit_depth, to the |
502 | // rgb->yuv conversion matrix. |
503 | if (rgb_bit_depth == yuv_bit_depth) { |
504 | memcpy(dest: &scaled_matrix, src: yuv_matrix, n: sizeof(scaled_matrix)); |
505 | } else { |
506 | int i; |
507 | for (i = 0; i < 3; ++i) { |
508 | scaled_matrix.rgb_to_y[i] = |
509 | (yuv_matrix->rgb_to_y[i] * yuv_max + rgb_round) / rgb_max; |
510 | scaled_matrix.rgb_to_u[i] = |
511 | (yuv_matrix->rgb_to_u[i] * yuv_max + rgb_round) / rgb_max; |
512 | scaled_matrix.rgb_to_v[i] = |
513 | (yuv_matrix->rgb_to_v[i] * yuv_max + rgb_round) / rgb_max; |
514 | } |
515 | } |
516 | // Also incorporate precision change scaling. |
517 | scaled_matrix.rgb_to_y[3] = Shift(v: yuv_matrix->rgb_to_y[3], shift: sfix); |
518 | scaled_matrix.rgb_to_u[3] = Shift(v: yuv_matrix->rgb_to_u[3], shift: sfix); |
519 | scaled_matrix.rgb_to_v[3] = Shift(v: yuv_matrix->rgb_to_v[3], shift: sfix); |
520 | |
521 | return DoSharpArgbToYuv(r_ptr, g_ptr, b_ptr, rgb_step, rgb_stride, |
522 | rgb_bit_depth, y_ptr, y_stride, u_ptr, u_stride, |
523 | v_ptr, v_stride, yuv_bit_depth, width, height, |
524 | yuv_matrix: &scaled_matrix); |
525 | } |
526 | |
527 | //------------------------------------------------------------------------------ |
528 | |