1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
5 | // |
6 | // This Source Code Form is subject to the terms of the Mozilla |
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
9 | |
10 | #ifndef EIGEN_NUMTRAITS_H |
11 | #define EIGEN_NUMTRAITS_H |
12 | |
13 | namespace Eigen { |
14 | |
15 | namespace internal { |
16 | |
17 | // default implementation of digits10(), based on numeric_limits if specialized, |
18 | // 0 for integer types, and log10(epsilon()) otherwise. |
19 | template< typename T, |
20 | bool use_numeric_limits = std::numeric_limits<T>::is_specialized, |
21 | bool is_integer = NumTraits<T>::IsInteger> |
22 | struct default_digits10_impl |
23 | { |
24 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
25 | static int run() { return std::numeric_limits<T>::digits10; } |
26 | }; |
27 | |
28 | template<typename T> |
29 | struct default_digits10_impl<T,false,false> // Floating point |
30 | { |
31 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
32 | static int run() { |
33 | using std::log10; |
34 | using std::ceil; |
35 | typedef typename NumTraits<T>::Real Real; |
36 | return int(ceil(-log10(NumTraits<Real>::epsilon()))); |
37 | } |
38 | }; |
39 | |
40 | template<typename T> |
41 | struct default_digits10_impl<T,false,true> // Integer |
42 | { |
43 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
44 | static int run() { return 0; } |
45 | }; |
46 | |
47 | |
48 | // default implementation of digits(), based on numeric_limits if specialized, |
49 | // 0 for integer types, and log2(epsilon()) otherwise. |
50 | template< typename T, |
51 | bool use_numeric_limits = std::numeric_limits<T>::is_specialized, |
52 | bool is_integer = NumTraits<T>::IsInteger> |
53 | struct default_digits_impl |
54 | { |
55 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
56 | static int run() { return std::numeric_limits<T>::digits; } |
57 | }; |
58 | |
59 | template<typename T> |
60 | struct default_digits_impl<T,false,false> // Floating point |
61 | { |
62 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
63 | static int run() { |
64 | using std::log; |
65 | using std::ceil; |
66 | typedef typename NumTraits<T>::Real Real; |
67 | return int(ceil(-log(NumTraits<Real>::epsilon())/log(static_cast<Real>(2)))); |
68 | } |
69 | }; |
70 | |
71 | template<typename T> |
72 | struct default_digits_impl<T,false,true> // Integer |
73 | { |
74 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
75 | static int run() { return 0; } |
76 | }; |
77 | |
78 | } // end namespace internal |
79 | |
80 | namespace numext { |
81 | /** \internal bit-wise cast without changing the underlying bit representation. */ |
82 | |
83 | // TODO: Replace by std::bit_cast (available in C++20) |
84 | template <typename Tgt, typename Src> |
85 | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Tgt bit_cast(const Src& src) { |
86 | #if EIGEN_HAS_TYPE_TRAITS |
87 | // The behaviour of memcpy is not specified for non-trivially copyable types |
88 | EIGEN_STATIC_ASSERT(std::is_trivially_copyable<Src>::value, THIS_TYPE_IS_NOT_SUPPORTED); |
89 | EIGEN_STATIC_ASSERT(std::is_trivially_copyable<Tgt>::value && std::is_default_constructible<Tgt>::value, |
90 | THIS_TYPE_IS_NOT_SUPPORTED); |
91 | #endif |
92 | |
93 | EIGEN_STATIC_ASSERT(sizeof(Src) == sizeof(Tgt), THIS_TYPE_IS_NOT_SUPPORTED); |
94 | Tgt tgt; |
95 | EIGEN_USING_STD(memcpy) |
96 | memcpy(&tgt, &src, sizeof(Tgt)); |
97 | return tgt; |
98 | } |
99 | } // namespace numext |
100 | |
101 | /** \class NumTraits |
102 | * \ingroup Core_Module |
103 | * |
104 | * \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen. |
105 | * |
106 | * \tparam T the numeric type at hand |
107 | * |
108 | * This class stores enums, typedefs and static methods giving information about a numeric type. |
109 | * |
110 | * The provided data consists of: |
111 | * \li A typedef \c Real, giving the "real part" type of \a T. If \a T is already real, |
112 | * then \c Real is just a typedef to \a T. If \a T is \c std::complex<U> then \c Real |
113 | * is a typedef to \a U. |
114 | * \li A typedef \c NonInteger, giving the type that should be used for operations producing non-integral values, |
115 | * such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives |
116 | * \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to |
117 | * take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is |
118 | * only intended as a helper for code that needs to explicitly promote types. |
119 | * \li A typedef \c Literal giving the type to use for numeric literals such as "2" or "0.5". For instance, for \c std::complex<U>, Literal is defined as \c U. |
120 | * Of course, this type must be fully compatible with \a T. In doubt, just use \a T here. |
121 | * \li A typedef \a Nested giving the type to use to nest a value inside of the expression tree. If you don't know what |
122 | * this means, just use \a T here. |
123 | * \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c std::complex |
124 | * type, and to 0 otherwise. |
125 | * \li An enum value \a IsInteger. It is equal to \c 1 if \a T is an integer type such as \c int, |
126 | * and to \c 0 otherwise. |
127 | * \li Enum values ReadCost, AddCost and MulCost representing a rough estimate of the number of CPU cycles needed |
128 | * to by move / add / mul instructions respectively, assuming the data is already stored in CPU registers. |
129 | * Stay vague here. No need to do architecture-specific stuff. If you don't know what this means, just use \c Eigen::HugeCost. |
130 | * \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T is unsigned. |
131 | * \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type \a T must |
132 | * be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 otherwise. |
133 | * \li An epsilon() function which, unlike <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/epsilon">std::numeric_limits::epsilon()</a>, |
134 | * it returns a \a Real instead of a \a T. |
135 | * \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a default |
136 | * value by the fuzzy comparison operators. |
137 | * \li highest() and lowest() functions returning the highest and lowest possible values respectively. |
138 | * \li digits() function returning the number of radix digits (non-sign digits for integers, mantissa for floating-point). This is |
139 | * the analogue of <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/digits">std::numeric_limits<T>::digits</a> |
140 | * which is used as the default implementation if specialized. |
141 | * \li digits10() function returning the number of decimal digits that can be represented without change. This is |
142 | * the analogue of <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/digits10">std::numeric_limits<T>::digits10</a> |
143 | * which is used as the default implementation if specialized. |
144 | * \li min_exponent() and max_exponent() functions returning the highest and lowest possible values, respectively, |
145 | * such that the radix raised to the power exponent-1 is a normalized floating-point number. These are equivalent to |
146 | * <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/min_exponent">std::numeric_limits<T>::min_exponent</a>/ |
147 | * <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/max_exponent">std::numeric_limits<T>::max_exponent</a>. |
148 | * \li infinity() function returning a representation of positive infinity, if available. |
149 | * \li quiet_NaN function returning a non-signaling "not-a-number", if available. |
150 | */ |
151 | |
152 | template<typename T> struct GenericNumTraits |
153 | { |
154 | enum { |
155 | IsInteger = std::numeric_limits<T>::is_integer, |
156 | IsSigned = std::numeric_limits<T>::is_signed, |
157 | IsComplex = 0, |
158 | RequireInitialization = internal::is_arithmetic<T>::value ? 0 : 1, |
159 | ReadCost = 1, |
160 | AddCost = 1, |
161 | MulCost = 1 |
162 | }; |
163 | |
164 | typedef T Real; |
165 | typedef typename internal::conditional< |
166 | IsInteger, |
167 | typename internal::conditional<sizeof(T)<=2, float, double>::type, |
168 | T |
169 | >::type NonInteger; |
170 | typedef T Nested; |
171 | typedef T Literal; |
172 | |
173 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
174 | static inline Real epsilon() |
175 | { |
176 | return numext::numeric_limits<T>::epsilon(); |
177 | } |
178 | |
179 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
180 | static inline int digits10() |
181 | { |
182 | return internal::default_digits10_impl<T>::run(); |
183 | } |
184 | |
185 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
186 | static inline int digits() |
187 | { |
188 | return internal::default_digits_impl<T>::run(); |
189 | } |
190 | |
191 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
192 | static inline int min_exponent() |
193 | { |
194 | return numext::numeric_limits<T>::min_exponent; |
195 | } |
196 | |
197 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
198 | static inline int max_exponent() |
199 | { |
200 | return numext::numeric_limits<T>::max_exponent; |
201 | } |
202 | |
203 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
204 | static inline Real dummy_precision() |
205 | { |
206 | // make sure to override this for floating-point types |
207 | return Real(0); |
208 | } |
209 | |
210 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
211 | static inline T highest() { |
212 | return (numext::numeric_limits<T>::max)(); |
213 | } |
214 | |
215 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
216 | static inline T lowest() { |
217 | return IsInteger ? (numext::numeric_limits<T>::min)() |
218 | : static_cast<T>(-(numext::numeric_limits<T>::max)()); |
219 | } |
220 | |
221 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
222 | static inline T infinity() { |
223 | return numext::numeric_limits<T>::infinity(); |
224 | } |
225 | |
226 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
227 | static inline T quiet_NaN() { |
228 | return numext::numeric_limits<T>::quiet_NaN(); |
229 | } |
230 | }; |
231 | |
232 | template<typename T> struct NumTraits : GenericNumTraits<T> |
233 | {}; |
234 | |
235 | template<> struct NumTraits<float> |
236 | : GenericNumTraits<float> |
237 | { |
238 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
239 | static inline float dummy_precision() { return 1e-5f; } |
240 | }; |
241 | |
242 | template<> struct NumTraits<double> : GenericNumTraits<double> |
243 | { |
244 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
245 | static inline double dummy_precision() { return 1e-12; } |
246 | }; |
247 | |
248 | template<> struct NumTraits<long double> |
249 | : GenericNumTraits<long double> |
250 | { |
251 | EIGEN_CONSTEXPR |
252 | static inline long double dummy_precision() { return 1e-15l; } |
253 | }; |
254 | |
255 | template<typename _Real> struct NumTraits<std::complex<_Real> > |
256 | : GenericNumTraits<std::complex<_Real> > |
257 | { |
258 | typedef _Real Real; |
259 | typedef typename NumTraits<_Real>::Literal Literal; |
260 | enum { |
261 | IsComplex = 1, |
262 | RequireInitialization = NumTraits<_Real>::RequireInitialization, |
263 | ReadCost = 2 * NumTraits<_Real>::ReadCost, |
264 | AddCost = 2 * NumTraits<Real>::AddCost, |
265 | MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost |
266 | }; |
267 | |
268 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
269 | static inline Real epsilon() { return NumTraits<Real>::epsilon(); } |
270 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
271 | static inline Real dummy_precision() { return NumTraits<Real>::dummy_precision(); } |
272 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
273 | static inline int digits10() { return NumTraits<Real>::digits10(); } |
274 | }; |
275 | |
276 | template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols> |
277 | struct NumTraits<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > |
278 | { |
279 | typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> ArrayType; |
280 | typedef typename NumTraits<Scalar>::Real RealScalar; |
281 | typedef Array<RealScalar, Rows, Cols, Options, MaxRows, MaxCols> Real; |
282 | typedef typename NumTraits<Scalar>::NonInteger NonIntegerScalar; |
283 | typedef Array<NonIntegerScalar, Rows, Cols, Options, MaxRows, MaxCols> NonInteger; |
284 | typedef ArrayType & Nested; |
285 | typedef typename NumTraits<Scalar>::Literal Literal; |
286 | |
287 | enum { |
288 | IsComplex = NumTraits<Scalar>::IsComplex, |
289 | IsInteger = NumTraits<Scalar>::IsInteger, |
290 | IsSigned = NumTraits<Scalar>::IsSigned, |
291 | RequireInitialization = 1, |
292 | ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * int(NumTraits<Scalar>::ReadCost), |
293 | AddCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * int(NumTraits<Scalar>::AddCost), |
294 | MulCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * int(NumTraits<Scalar>::MulCost) |
295 | }; |
296 | |
297 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
298 | static inline RealScalar epsilon() { return NumTraits<RealScalar>::epsilon(); } |
299 | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
300 | static inline RealScalar dummy_precision() { return NumTraits<RealScalar>::dummy_precision(); } |
301 | |
302 | EIGEN_CONSTEXPR |
303 | static inline int digits10() { return NumTraits<Scalar>::digits10(); } |
304 | }; |
305 | |
306 | template<> struct NumTraits<std::string> |
307 | : GenericNumTraits<std::string> |
308 | { |
309 | enum { |
310 | RequireInitialization = 1, |
311 | ReadCost = HugeCost, |
312 | AddCost = HugeCost, |
313 | MulCost = HugeCost |
314 | }; |
315 | |
316 | EIGEN_CONSTEXPR |
317 | static inline int digits10() { return 0; } |
318 | |
319 | private: |
320 | static inline std::string epsilon(); |
321 | static inline std::string dummy_precision(); |
322 | static inline std::string lowest(); |
323 | static inline std::string highest(); |
324 | static inline std::string infinity(); |
325 | static inline std::string quiet_NaN(); |
326 | }; |
327 | |
328 | // Empty specialization for void to allow template specialization based on NumTraits<T>::Real with T==void and SFINAE. |
329 | template<> struct NumTraits<void> {}; |
330 | |
331 | template<> struct NumTraits<bool> : GenericNumTraits<bool> {}; |
332 | |
333 | } // end namespace Eigen |
334 | |
335 | #endif // EIGEN_NUMTRAITS_H |
336 | |