| 1 | // This file is part of Eigen, a lightweight C++ template library | 
| 2 | // for linear algebra. | 
| 3 | // | 
| 4 | // Copyright (C) 2009 Claire Maurice | 
| 5 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
| 6 | // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
| 7 | // | 
| 8 | // This Source Code Form is subject to the terms of the Mozilla | 
| 9 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
| 10 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
| 11 |  | 
| 12 | #ifndef EIGEN_COMPLEX_SCHUR_H | 
| 13 | #define EIGEN_COMPLEX_SCHUR_H | 
| 14 |  | 
| 15 | #include "./HessenbergDecomposition.h" | 
| 16 |  | 
| 17 | namespace Eigen {  | 
| 18 |  | 
| 19 | namespace internal { | 
| 20 | template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg; | 
| 21 | } | 
| 22 |  | 
| 23 | /** \eigenvalues_module \ingroup Eigenvalues_Module | 
| 24 |   * | 
| 25 |   * | 
| 26 |   * \class ComplexSchur | 
| 27 |   * | 
| 28 |   * \brief Performs a complex Schur decomposition of a real or complex square matrix | 
| 29 |   * | 
| 30 |   * \tparam _MatrixType the type of the matrix of which we are | 
| 31 |   * computing the Schur decomposition; this is expected to be an | 
| 32 |   * instantiation of the Matrix class template. | 
| 33 |   * | 
| 34 |   * Given a real or complex square matrix A, this class computes the | 
| 35 |   * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary | 
| 36 |   * complex matrix, and T is a complex upper triangular matrix.  The | 
| 37 |   * diagonal of the matrix T corresponds to the eigenvalues of the | 
| 38 |   * matrix A. | 
| 39 |   * | 
| 40 |   * Call the function compute() to compute the Schur decomposition of | 
| 41 |   * a given matrix. Alternatively, you can use the  | 
| 42 |   * ComplexSchur(const MatrixType&, bool) constructor which computes | 
| 43 |   * the Schur decomposition at construction time. Once the | 
| 44 |   * decomposition is computed, you can use the matrixU() and matrixT() | 
| 45 |   * functions to retrieve the matrices U and V in the decomposition. | 
| 46 |   * | 
| 47 |   * \note This code is inspired from Jampack | 
| 48 |   * | 
| 49 |   * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver | 
| 50 |   */ | 
| 51 | template<typename _MatrixType> class ComplexSchur | 
| 52 | { | 
| 53 |   public: | 
| 54 |     typedef _MatrixType MatrixType; | 
| 55 |     enum { | 
| 56 |       RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
| 57 |       ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
| 58 |       Options = MatrixType::Options, | 
| 59 |       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
| 60 |       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
| 61 |     }; | 
| 62 |  | 
| 63 |     /** \brief Scalar type for matrices of type \p _MatrixType. */ | 
| 64 |     typedef typename MatrixType::Scalar Scalar; | 
| 65 |     typedef typename NumTraits<Scalar>::Real RealScalar; | 
| 66 |     typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 | 
| 67 |  | 
| 68 |     /** \brief Complex scalar type for \p _MatrixType.  | 
| 69 |       * | 
| 70 |       * This is \c std::complex<Scalar> if #Scalar is real (e.g., | 
| 71 |       * \c float or \c double) and just \c Scalar if #Scalar is | 
| 72 |       * complex. | 
| 73 |       */ | 
| 74 |     typedef std::complex<RealScalar> ComplexScalar; | 
| 75 |  | 
| 76 |     /** \brief Type for the matrices in the Schur decomposition. | 
| 77 |       * | 
| 78 |       * This is a square matrix with entries of type #ComplexScalar.  | 
| 79 |       * The size is the same as the size of \p _MatrixType. | 
| 80 |       */ | 
| 81 |     typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType; | 
| 82 |  | 
| 83 |     /** \brief Default constructor. | 
| 84 |       * | 
| 85 |       * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed. | 
| 86 |       * | 
| 87 |       * The default constructor is useful in cases in which the user | 
| 88 |       * intends to perform decompositions via compute().  The \p size | 
| 89 |       * parameter is only used as a hint. It is not an error to give a | 
| 90 |       * wrong \p size, but it may impair performance. | 
| 91 |       * | 
| 92 |       * \sa compute() for an example. | 
| 93 |       */ | 
| 94 |     explicit ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) | 
| 95 |       : m_matT(size,size), | 
| 96 |         m_matU(size,size), | 
| 97 |         m_hess(size), | 
| 98 |         m_isInitialized(false), | 
| 99 |         m_matUisUptodate(false), | 
| 100 |         m_maxIters(-1) | 
| 101 |     {} | 
| 102 |  | 
| 103 |     /** \brief Constructor; computes Schur decomposition of given matrix.  | 
| 104 |       *  | 
| 105 |       * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed. | 
| 106 |       * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed. | 
| 107 |       * | 
| 108 |       * This constructor calls compute() to compute the Schur decomposition. | 
| 109 |       * | 
| 110 |       * \sa matrixT() and matrixU() for examples. | 
| 111 |       */ | 
| 112 |     template<typename InputType> | 
| 113 |     explicit ComplexSchur(const EigenBase<InputType>& matrix, bool computeU = true) | 
| 114 |       : m_matT(matrix.rows(),matrix.cols()), | 
| 115 |         m_matU(matrix.rows(),matrix.cols()), | 
| 116 |         m_hess(matrix.rows()), | 
| 117 |         m_isInitialized(false), | 
| 118 |         m_matUisUptodate(false), | 
| 119 |         m_maxIters(-1) | 
| 120 |     { | 
| 121 |       compute(matrix.derived(), computeU); | 
| 122 |     } | 
| 123 |  | 
| 124 |     /** \brief Returns the unitary matrix in the Schur decomposition.  | 
| 125 |       * | 
| 126 |       * \returns A const reference to the matrix U. | 
| 127 |       * | 
| 128 |       * It is assumed that either the constructor | 
| 129 |       * ComplexSchur(const MatrixType& matrix, bool computeU) or the | 
| 130 |       * member function compute(const MatrixType& matrix, bool computeU) | 
| 131 |       * has been called before to compute the Schur decomposition of a | 
| 132 |       * matrix, and that \p computeU was set to true (the default | 
| 133 |       * value). | 
| 134 |       * | 
| 135 |       * Example: \include ComplexSchur_matrixU.cpp | 
| 136 |       * Output: \verbinclude ComplexSchur_matrixU.out | 
| 137 |       */ | 
| 138 |     const ComplexMatrixType& matrixU() const | 
| 139 |     { | 
| 140 |       eigen_assert(m_isInitialized && "ComplexSchur is not initialized." ); | 
| 141 |       eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition." ); | 
| 142 |       return m_matU; | 
| 143 |     } | 
| 144 |  | 
| 145 |     /** \brief Returns the triangular matrix in the Schur decomposition.  | 
| 146 |       * | 
| 147 |       * \returns A const reference to the matrix T. | 
| 148 |       * | 
| 149 |       * It is assumed that either the constructor | 
| 150 |       * ComplexSchur(const MatrixType& matrix, bool computeU) or the | 
| 151 |       * member function compute(const MatrixType& matrix, bool computeU) | 
| 152 |       * has been called before to compute the Schur decomposition of a | 
| 153 |       * matrix. | 
| 154 |       * | 
| 155 |       * Note that this function returns a plain square matrix. If you want to reference | 
| 156 |       * only the upper triangular part, use: | 
| 157 |       * \code schur.matrixT().triangularView<Upper>() \endcode  | 
| 158 |       * | 
| 159 |       * Example: \include ComplexSchur_matrixT.cpp | 
| 160 |       * Output: \verbinclude ComplexSchur_matrixT.out | 
| 161 |       */ | 
| 162 |     const ComplexMatrixType& matrixT() const | 
| 163 |     { | 
| 164 |       eigen_assert(m_isInitialized && "ComplexSchur is not initialized." ); | 
| 165 |       return m_matT; | 
| 166 |     } | 
| 167 |  | 
| 168 |     /** \brief Computes Schur decomposition of given matrix.  | 
| 169 |       *  | 
| 170 |       * \param[in]  matrix  Square matrix whose Schur decomposition is to be computed. | 
| 171 |       * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed. | 
| 172 |  | 
| 173 |       * \returns    Reference to \c *this | 
| 174 |       * | 
| 175 |       * The Schur decomposition is computed by first reducing the | 
| 176 |       * matrix to Hessenberg form using the class | 
| 177 |       * HessenbergDecomposition. The Hessenberg matrix is then reduced | 
| 178 |       * to triangular form by performing QR iterations with a single | 
| 179 |       * shift. The cost of computing the Schur decomposition depends | 
| 180 |       * on the number of iterations; as a rough guide, it may be taken | 
| 181 |       * on the number of iterations; as a rough guide, it may be taken | 
| 182 |       * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops | 
| 183 |       * if \a computeU is false. | 
| 184 |       * | 
| 185 |       * Example: \include ComplexSchur_compute.cpp | 
| 186 |       * Output: \verbinclude ComplexSchur_compute.out | 
| 187 |       * | 
| 188 |       * \sa compute(const MatrixType&, bool, Index) | 
| 189 |       */ | 
| 190 |     template<typename InputType> | 
| 191 |     ComplexSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true); | 
| 192 |      | 
| 193 |     /** \brief Compute Schur decomposition from a given Hessenberg matrix | 
| 194 |      *  \param[in] matrixH Matrix in Hessenberg form H | 
| 195 |      *  \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T | 
| 196 |      *  \param computeU Computes the matriX U of the Schur vectors | 
| 197 |      * \return Reference to \c *this | 
| 198 |      *  | 
| 199 |      *  This routine assumes that the matrix is already reduced in Hessenberg form matrixH | 
| 200 |      *  using either the class HessenbergDecomposition or another mean.  | 
| 201 |      *  It computes the upper quasi-triangular matrix T of the Schur decomposition of H | 
| 202 |      *  When computeU is true, this routine computes the matrix U such that  | 
| 203 |      *  A = U T U^T =  (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix | 
| 204 |      *  | 
| 205 |      * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix | 
| 206 |      * is not available, the user should give an identity matrix (Q.setIdentity()) | 
| 207 |      *  | 
| 208 |      * \sa compute(const MatrixType&, bool) | 
| 209 |      */ | 
| 210 |     template<typename HessMatrixType, typename OrthMatrixType> | 
| 211 |     ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU=true); | 
| 212 |  | 
| 213 |     /** \brief Reports whether previous computation was successful. | 
| 214 |       * | 
| 215 |       * \returns \c Success if computation was successful, \c NoConvergence otherwise. | 
| 216 |       */ | 
| 217 |     ComputationInfo info() const | 
| 218 |     { | 
| 219 |       eigen_assert(m_isInitialized && "ComplexSchur is not initialized." ); | 
| 220 |       return m_info; | 
| 221 |     } | 
| 222 |  | 
| 223 |     /** \brief Sets the maximum number of iterations allowed.  | 
| 224 |       * | 
| 225 |       * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size | 
| 226 |       * of the matrix. | 
| 227 |       */ | 
| 228 |     ComplexSchur& setMaxIterations(Index maxIters) | 
| 229 |     { | 
| 230 |       m_maxIters = maxIters; | 
| 231 |       return *this; | 
| 232 |     } | 
| 233 |  | 
| 234 |     /** \brief Returns the maximum number of iterations. */ | 
| 235 |     Index getMaxIterations() | 
| 236 |     { | 
| 237 |       return m_maxIters; | 
| 238 |     } | 
| 239 |  | 
| 240 |     /** \brief Maximum number of iterations per row. | 
| 241 |       * | 
| 242 |       * If not otherwise specified, the maximum number of iterations is this number times the size of the | 
| 243 |       * matrix. It is currently set to 30. | 
| 244 |       */ | 
| 245 |     static const int m_maxIterationsPerRow = 30; | 
| 246 |  | 
| 247 |   protected: | 
| 248 |     ComplexMatrixType m_matT, m_matU; | 
| 249 |     HessenbergDecomposition<MatrixType> m_hess; | 
| 250 |     ComputationInfo m_info; | 
| 251 |     bool m_isInitialized; | 
| 252 |     bool m_matUisUptodate; | 
| 253 |     Index m_maxIters; | 
| 254 |  | 
| 255 |   private:   | 
| 256 |     bool subdiagonalEntryIsNeglegible(Index i); | 
| 257 |     ComplexScalar computeShift(Index iu, Index iter); | 
| 258 |     void reduceToTriangularForm(bool computeU); | 
| 259 |     friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>; | 
| 260 | }; | 
| 261 |  | 
| 262 | /** If m_matT(i+1,i) is neglegible in floating point arithmetic | 
| 263 |   * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and | 
| 264 |   * return true, else return false. */ | 
| 265 | template<typename MatrixType> | 
| 266 | inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i) | 
| 267 | { | 
| 268 |   RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1)); | 
| 269 |   RealScalar sd = numext::norm1(m_matT.coeff(i+1,i)); | 
| 270 |   if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon())) | 
| 271 |   { | 
| 272 |     m_matT.coeffRef(i+1,i) = ComplexScalar(0); | 
| 273 |     return true; | 
| 274 |   } | 
| 275 |   return false; | 
| 276 | } | 
| 277 |  | 
| 278 |  | 
| 279 | /** Compute the shift in the current QR iteration. */ | 
| 280 | template<typename MatrixType> | 
| 281 | typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter) | 
| 282 | { | 
| 283 |   using std::abs; | 
| 284 |   if (iter == 10 || iter == 20)  | 
| 285 |   { | 
| 286 |     // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f | 
| 287 |     return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2))); | 
| 288 |   } | 
| 289 |  | 
| 290 |   // compute the shift as one of the eigenvalues of t, the 2x2 | 
| 291 |   // diagonal block on the bottom of the active submatrix | 
| 292 |   Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1); | 
| 293 |   RealScalar normt = t.cwiseAbs().sum(); | 
| 294 |   t /= normt;     // the normalization by sf is to avoid under/overflow | 
| 295 |  | 
| 296 |   ComplexScalar b = t.coeff(0,1) * t.coeff(1,0); | 
| 297 |   ComplexScalar c = t.coeff(0,0) - t.coeff(1,1); | 
| 298 |   ComplexScalar disc = sqrt(c*c + RealScalar(4)*b); | 
| 299 |   ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b; | 
| 300 |   ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1); | 
| 301 |   ComplexScalar eival1 = (trace + disc) / RealScalar(2); | 
| 302 |   ComplexScalar eival2 = (trace - disc) / RealScalar(2); | 
| 303 |   RealScalar eival1_norm = numext::norm1(eival1); | 
| 304 |   RealScalar eival2_norm = numext::norm1(eival2); | 
| 305 |   // A division by zero can only occur if eival1==eival2==0. | 
| 306 |   // In this case, det==0, and all we have to do is checking that eival2_norm!=0 | 
| 307 |   if(eival1_norm > eival2_norm) | 
| 308 |     eival2 = det / eival1; | 
| 309 |   else if(eival2_norm!=RealScalar(0)) | 
| 310 |     eival1 = det / eival2; | 
| 311 |  | 
| 312 |   // choose the eigenvalue closest to the bottom entry of the diagonal | 
| 313 |   if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1))) | 
| 314 |     return normt * eival1; | 
| 315 |   else | 
| 316 |     return normt * eival2; | 
| 317 | } | 
| 318 |  | 
| 319 |  | 
| 320 | template<typename MatrixType> | 
| 321 | template<typename InputType> | 
| 322 | ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU) | 
| 323 | { | 
| 324 |   m_matUisUptodate = false; | 
| 325 |   eigen_assert(matrix.cols() == matrix.rows()); | 
| 326 |  | 
| 327 |   if(matrix.cols() == 1) | 
| 328 |   { | 
| 329 |     m_matT = matrix.derived().template cast<ComplexScalar>(); | 
| 330 |     if(computeU)  m_matU = ComplexMatrixType::Identity(1,1); | 
| 331 |     m_info = Success; | 
| 332 |     m_isInitialized = true; | 
| 333 |     m_matUisUptodate = computeU; | 
| 334 |     return *this; | 
| 335 |   } | 
| 336 |  | 
| 337 |   internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix.derived(), computeU); | 
| 338 |   computeFromHessenberg(m_matT, m_matU, computeU); | 
| 339 |   return *this; | 
| 340 | } | 
| 341 |  | 
| 342 | template<typename MatrixType> | 
| 343 | template<typename HessMatrixType, typename OrthMatrixType> | 
| 344 | ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU) | 
| 345 | { | 
| 346 |   m_matT = matrixH; | 
| 347 |   if(computeU) | 
| 348 |     m_matU = matrixQ; | 
| 349 |   reduceToTriangularForm(computeU); | 
| 350 |   return *this; | 
| 351 | } | 
| 352 | namespace internal { | 
| 353 |  | 
| 354 | /* Reduce given matrix to Hessenberg form */ | 
| 355 | template<typename MatrixType, bool IsComplex> | 
| 356 | struct complex_schur_reduce_to_hessenberg | 
| 357 | { | 
| 358 |   // this is the implementation for the case IsComplex = true | 
| 359 |   static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU) | 
| 360 |   { | 
| 361 |     _this.m_hess.compute(matrix); | 
| 362 |     _this.m_matT = _this.m_hess.matrixH(); | 
| 363 |     if(computeU)  _this.m_matU = _this.m_hess.matrixQ(); | 
| 364 |   } | 
| 365 | }; | 
| 366 |  | 
| 367 | template<typename MatrixType> | 
| 368 | struct complex_schur_reduce_to_hessenberg<MatrixType, false> | 
| 369 | { | 
| 370 |   static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU) | 
| 371 |   { | 
| 372 |     typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar; | 
| 373 |  | 
| 374 |     // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar | 
| 375 |     _this.m_hess.compute(matrix); | 
| 376 |     _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>(); | 
| 377 |     if(computeU)   | 
| 378 |     { | 
| 379 |       // This may cause an allocation which seems to be avoidable | 
| 380 |       MatrixType Q = _this.m_hess.matrixQ();  | 
| 381 |       _this.m_matU = Q.template cast<ComplexScalar>(); | 
| 382 |     } | 
| 383 |   } | 
| 384 | }; | 
| 385 |  | 
| 386 | } // end namespace internal | 
| 387 |  | 
| 388 | // Reduce the Hessenberg matrix m_matT to triangular form by QR iteration. | 
| 389 | template<typename MatrixType> | 
| 390 | void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU) | 
| 391 | {   | 
| 392 |   Index maxIters = m_maxIters; | 
| 393 |   if (maxIters == -1) | 
| 394 |     maxIters = m_maxIterationsPerRow * m_matT.rows(); | 
| 395 |  | 
| 396 |   // The matrix m_matT is divided in three parts.  | 
| 397 |   // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.  | 
| 398 |   // Rows il,...,iu is the part we are working on (the active submatrix). | 
| 399 |   // Rows iu+1,...,end are already brought in triangular form. | 
| 400 |   Index iu = m_matT.cols() - 1; | 
| 401 |   Index il; | 
| 402 |   Index iter = 0; // number of iterations we are working on the (iu,iu) element | 
| 403 |   Index totalIter = 0; // number of iterations for whole matrix | 
| 404 |  | 
| 405 |   while(true) | 
| 406 |   { | 
| 407 |     // find iu, the bottom row of the active submatrix | 
| 408 |     while(iu > 0) | 
| 409 |     { | 
| 410 |       if(!subdiagonalEntryIsNeglegible(i: iu-1)) break; | 
| 411 |       iter = 0; | 
| 412 |       --iu; | 
| 413 |     } | 
| 414 |  | 
| 415 |     // if iu is zero then we are done; the whole matrix is triangularized | 
| 416 |     if(iu==0) break; | 
| 417 |  | 
| 418 |     // if we spent too many iterations, we give up | 
| 419 |     iter++; | 
| 420 |     totalIter++; | 
| 421 |     if(totalIter > maxIters) break; | 
| 422 |  | 
| 423 |     // find il, the top row of the active submatrix | 
| 424 |     il = iu-1; | 
| 425 |     while(il > 0 && !subdiagonalEntryIsNeglegible(i: il-1)) | 
| 426 |     { | 
| 427 |       --il; | 
| 428 |     } | 
| 429 |  | 
| 430 |     /* perform the QR step using Givens rotations. The first rotation | 
| 431 |        creates a bulge; the (il+2,il) element becomes nonzero. This | 
| 432 |        bulge is chased down to the bottom of the active submatrix. */ | 
| 433 |  | 
| 434 |     ComplexScalar shift = computeShift(iu, iter); | 
| 435 |     JacobiRotation<ComplexScalar> rot; | 
| 436 |     rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il)); | 
| 437 |     m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint()); | 
| 438 |     m_matT.topRows((std::min)(a: il+2,b: iu)+1).applyOnTheRight(il, il+1, rot); | 
| 439 |     if(computeU) m_matU.applyOnTheRight(il, il+1, rot); | 
| 440 |  | 
| 441 |     for(Index i=il+1 ; i<iu ; i++) | 
| 442 |     { | 
| 443 |       rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1)); | 
| 444 |       m_matT.coeffRef(i+1,i-1) = ComplexScalar(0); | 
| 445 |       m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint()); | 
| 446 |       m_matT.topRows((std::min)(a: i+2,b: iu)+1).applyOnTheRight(i, i+1, rot); | 
| 447 |       if(computeU) m_matU.applyOnTheRight(i, i+1, rot); | 
| 448 |     } | 
| 449 |   } | 
| 450 |  | 
| 451 |   if(totalIter <= maxIters) | 
| 452 |     m_info = Success; | 
| 453 |   else | 
| 454 |     m_info = NoConvergence; | 
| 455 |  | 
| 456 |   m_isInitialized = true; | 
| 457 |   m_matUisUptodate = computeU; | 
| 458 | } | 
| 459 |  | 
| 460 | } // end namespace Eigen | 
| 461 |  | 
| 462 | #endif // EIGEN_COMPLEX_SCHUR_H | 
| 463 |  |