1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2009 Claire Maurice |
5 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
6 | // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> |
7 | // |
8 | // This Source Code Form is subject to the terms of the Mozilla |
9 | // Public License v. 2.0. If a copy of the MPL was not distributed |
10 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
11 | |
12 | #ifndef EIGEN_COMPLEX_SCHUR_H |
13 | #define EIGEN_COMPLEX_SCHUR_H |
14 | |
15 | #include "./HessenbergDecomposition.h" |
16 | |
17 | namespace Eigen { |
18 | |
19 | namespace internal { |
20 | template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg; |
21 | } |
22 | |
23 | /** \eigenvalues_module \ingroup Eigenvalues_Module |
24 | * |
25 | * |
26 | * \class ComplexSchur |
27 | * |
28 | * \brief Performs a complex Schur decomposition of a real or complex square matrix |
29 | * |
30 | * \tparam _MatrixType the type of the matrix of which we are |
31 | * computing the Schur decomposition; this is expected to be an |
32 | * instantiation of the Matrix class template. |
33 | * |
34 | * Given a real or complex square matrix A, this class computes the |
35 | * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary |
36 | * complex matrix, and T is a complex upper triangular matrix. The |
37 | * diagonal of the matrix T corresponds to the eigenvalues of the |
38 | * matrix A. |
39 | * |
40 | * Call the function compute() to compute the Schur decomposition of |
41 | * a given matrix. Alternatively, you can use the |
42 | * ComplexSchur(const MatrixType&, bool) constructor which computes |
43 | * the Schur decomposition at construction time. Once the |
44 | * decomposition is computed, you can use the matrixU() and matrixT() |
45 | * functions to retrieve the matrices U and V in the decomposition. |
46 | * |
47 | * \note This code is inspired from Jampack |
48 | * |
49 | * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver |
50 | */ |
51 | template<typename _MatrixType> class ComplexSchur |
52 | { |
53 | public: |
54 | typedef _MatrixType MatrixType; |
55 | enum { |
56 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
57 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
58 | Options = MatrixType::Options, |
59 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
60 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
61 | }; |
62 | |
63 | /** \brief Scalar type for matrices of type \p _MatrixType. */ |
64 | typedef typename MatrixType::Scalar Scalar; |
65 | typedef typename NumTraits<Scalar>::Real RealScalar; |
66 | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 |
67 | |
68 | /** \brief Complex scalar type for \p _MatrixType. |
69 | * |
70 | * This is \c std::complex<Scalar> if #Scalar is real (e.g., |
71 | * \c float or \c double) and just \c Scalar if #Scalar is |
72 | * complex. |
73 | */ |
74 | typedef std::complex<RealScalar> ComplexScalar; |
75 | |
76 | /** \brief Type for the matrices in the Schur decomposition. |
77 | * |
78 | * This is a square matrix with entries of type #ComplexScalar. |
79 | * The size is the same as the size of \p _MatrixType. |
80 | */ |
81 | typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType; |
82 | |
83 | /** \brief Default constructor. |
84 | * |
85 | * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed. |
86 | * |
87 | * The default constructor is useful in cases in which the user |
88 | * intends to perform decompositions via compute(). The \p size |
89 | * parameter is only used as a hint. It is not an error to give a |
90 | * wrong \p size, but it may impair performance. |
91 | * |
92 | * \sa compute() for an example. |
93 | */ |
94 | explicit ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) |
95 | : m_matT(size,size), |
96 | m_matU(size,size), |
97 | m_hess(size), |
98 | m_isInitialized(false), |
99 | m_matUisUptodate(false), |
100 | m_maxIters(-1) |
101 | {} |
102 | |
103 | /** \brief Constructor; computes Schur decomposition of given matrix. |
104 | * |
105 | * \param[in] matrix Square matrix whose Schur decomposition is to be computed. |
106 | * \param[in] computeU If true, both T and U are computed; if false, only T is computed. |
107 | * |
108 | * This constructor calls compute() to compute the Schur decomposition. |
109 | * |
110 | * \sa matrixT() and matrixU() for examples. |
111 | */ |
112 | template<typename InputType> |
113 | explicit ComplexSchur(const EigenBase<InputType>& matrix, bool computeU = true) |
114 | : m_matT(matrix.rows(),matrix.cols()), |
115 | m_matU(matrix.rows(),matrix.cols()), |
116 | m_hess(matrix.rows()), |
117 | m_isInitialized(false), |
118 | m_matUisUptodate(false), |
119 | m_maxIters(-1) |
120 | { |
121 | compute(matrix.derived(), computeU); |
122 | } |
123 | |
124 | /** \brief Returns the unitary matrix in the Schur decomposition. |
125 | * |
126 | * \returns A const reference to the matrix U. |
127 | * |
128 | * It is assumed that either the constructor |
129 | * ComplexSchur(const MatrixType& matrix, bool computeU) or the |
130 | * member function compute(const MatrixType& matrix, bool computeU) |
131 | * has been called before to compute the Schur decomposition of a |
132 | * matrix, and that \p computeU was set to true (the default |
133 | * value). |
134 | * |
135 | * Example: \include ComplexSchur_matrixU.cpp |
136 | * Output: \verbinclude ComplexSchur_matrixU.out |
137 | */ |
138 | const ComplexMatrixType& matrixU() const |
139 | { |
140 | eigen_assert(m_isInitialized && "ComplexSchur is not initialized." ); |
141 | eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition." ); |
142 | return m_matU; |
143 | } |
144 | |
145 | /** \brief Returns the triangular matrix in the Schur decomposition. |
146 | * |
147 | * \returns A const reference to the matrix T. |
148 | * |
149 | * It is assumed that either the constructor |
150 | * ComplexSchur(const MatrixType& matrix, bool computeU) or the |
151 | * member function compute(const MatrixType& matrix, bool computeU) |
152 | * has been called before to compute the Schur decomposition of a |
153 | * matrix. |
154 | * |
155 | * Note that this function returns a plain square matrix. If you want to reference |
156 | * only the upper triangular part, use: |
157 | * \code schur.matrixT().triangularView<Upper>() \endcode |
158 | * |
159 | * Example: \include ComplexSchur_matrixT.cpp |
160 | * Output: \verbinclude ComplexSchur_matrixT.out |
161 | */ |
162 | const ComplexMatrixType& matrixT() const |
163 | { |
164 | eigen_assert(m_isInitialized && "ComplexSchur is not initialized." ); |
165 | return m_matT; |
166 | } |
167 | |
168 | /** \brief Computes Schur decomposition of given matrix. |
169 | * |
170 | * \param[in] matrix Square matrix whose Schur decomposition is to be computed. |
171 | * \param[in] computeU If true, both T and U are computed; if false, only T is computed. |
172 | |
173 | * \returns Reference to \c *this |
174 | * |
175 | * The Schur decomposition is computed by first reducing the |
176 | * matrix to Hessenberg form using the class |
177 | * HessenbergDecomposition. The Hessenberg matrix is then reduced |
178 | * to triangular form by performing QR iterations with a single |
179 | * shift. The cost of computing the Schur decomposition depends |
180 | * on the number of iterations; as a rough guide, it may be taken |
181 | * on the number of iterations; as a rough guide, it may be taken |
182 | * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops |
183 | * if \a computeU is false. |
184 | * |
185 | * Example: \include ComplexSchur_compute.cpp |
186 | * Output: \verbinclude ComplexSchur_compute.out |
187 | * |
188 | * \sa compute(const MatrixType&, bool, Index) |
189 | */ |
190 | template<typename InputType> |
191 | ComplexSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true); |
192 | |
193 | /** \brief Compute Schur decomposition from a given Hessenberg matrix |
194 | * \param[in] matrixH Matrix in Hessenberg form H |
195 | * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T |
196 | * \param computeU Computes the matriX U of the Schur vectors |
197 | * \return Reference to \c *this |
198 | * |
199 | * This routine assumes that the matrix is already reduced in Hessenberg form matrixH |
200 | * using either the class HessenbergDecomposition or another mean. |
201 | * It computes the upper quasi-triangular matrix T of the Schur decomposition of H |
202 | * When computeU is true, this routine computes the matrix U such that |
203 | * A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix |
204 | * |
205 | * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix |
206 | * is not available, the user should give an identity matrix (Q.setIdentity()) |
207 | * |
208 | * \sa compute(const MatrixType&, bool) |
209 | */ |
210 | template<typename HessMatrixType, typename OrthMatrixType> |
211 | ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU=true); |
212 | |
213 | /** \brief Reports whether previous computation was successful. |
214 | * |
215 | * \returns \c Success if computation was successful, \c NoConvergence otherwise. |
216 | */ |
217 | ComputationInfo info() const |
218 | { |
219 | eigen_assert(m_isInitialized && "ComplexSchur is not initialized." ); |
220 | return m_info; |
221 | } |
222 | |
223 | /** \brief Sets the maximum number of iterations allowed. |
224 | * |
225 | * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size |
226 | * of the matrix. |
227 | */ |
228 | ComplexSchur& setMaxIterations(Index maxIters) |
229 | { |
230 | m_maxIters = maxIters; |
231 | return *this; |
232 | } |
233 | |
234 | /** \brief Returns the maximum number of iterations. */ |
235 | Index getMaxIterations() |
236 | { |
237 | return m_maxIters; |
238 | } |
239 | |
240 | /** \brief Maximum number of iterations per row. |
241 | * |
242 | * If not otherwise specified, the maximum number of iterations is this number times the size of the |
243 | * matrix. It is currently set to 30. |
244 | */ |
245 | static const int m_maxIterationsPerRow = 30; |
246 | |
247 | protected: |
248 | ComplexMatrixType m_matT, m_matU; |
249 | HessenbergDecomposition<MatrixType> m_hess; |
250 | ComputationInfo m_info; |
251 | bool m_isInitialized; |
252 | bool m_matUisUptodate; |
253 | Index m_maxIters; |
254 | |
255 | private: |
256 | bool subdiagonalEntryIsNeglegible(Index i); |
257 | ComplexScalar computeShift(Index iu, Index iter); |
258 | void reduceToTriangularForm(bool computeU); |
259 | friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>; |
260 | }; |
261 | |
262 | /** If m_matT(i+1,i) is neglegible in floating point arithmetic |
263 | * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and |
264 | * return true, else return false. */ |
265 | template<typename MatrixType> |
266 | inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i) |
267 | { |
268 | RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1)); |
269 | RealScalar sd = numext::norm1(m_matT.coeff(i+1,i)); |
270 | if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon())) |
271 | { |
272 | m_matT.coeffRef(i+1,i) = ComplexScalar(0); |
273 | return true; |
274 | } |
275 | return false; |
276 | } |
277 | |
278 | |
279 | /** Compute the shift in the current QR iteration. */ |
280 | template<typename MatrixType> |
281 | typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter) |
282 | { |
283 | using std::abs; |
284 | if (iter == 10 || iter == 20) |
285 | { |
286 | // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f |
287 | return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2))); |
288 | } |
289 | |
290 | // compute the shift as one of the eigenvalues of t, the 2x2 |
291 | // diagonal block on the bottom of the active submatrix |
292 | Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1); |
293 | RealScalar normt = t.cwiseAbs().sum(); |
294 | t /= normt; // the normalization by sf is to avoid under/overflow |
295 | |
296 | ComplexScalar b = t.coeff(0,1) * t.coeff(1,0); |
297 | ComplexScalar c = t.coeff(0,0) - t.coeff(1,1); |
298 | ComplexScalar disc = sqrt(c*c + RealScalar(4)*b); |
299 | ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b; |
300 | ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1); |
301 | ComplexScalar eival1 = (trace + disc) / RealScalar(2); |
302 | ComplexScalar eival2 = (trace - disc) / RealScalar(2); |
303 | RealScalar eival1_norm = numext::norm1(eival1); |
304 | RealScalar eival2_norm = numext::norm1(eival2); |
305 | // A division by zero can only occur if eival1==eival2==0. |
306 | // In this case, det==0, and all we have to do is checking that eival2_norm!=0 |
307 | if(eival1_norm > eival2_norm) |
308 | eival2 = det / eival1; |
309 | else if(eival2_norm!=RealScalar(0)) |
310 | eival1 = det / eival2; |
311 | |
312 | // choose the eigenvalue closest to the bottom entry of the diagonal |
313 | if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1))) |
314 | return normt * eival1; |
315 | else |
316 | return normt * eival2; |
317 | } |
318 | |
319 | |
320 | template<typename MatrixType> |
321 | template<typename InputType> |
322 | ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU) |
323 | { |
324 | m_matUisUptodate = false; |
325 | eigen_assert(matrix.cols() == matrix.rows()); |
326 | |
327 | if(matrix.cols() == 1) |
328 | { |
329 | m_matT = matrix.derived().template cast<ComplexScalar>(); |
330 | if(computeU) m_matU = ComplexMatrixType::Identity(1,1); |
331 | m_info = Success; |
332 | m_isInitialized = true; |
333 | m_matUisUptodate = computeU; |
334 | return *this; |
335 | } |
336 | |
337 | internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix.derived(), computeU); |
338 | computeFromHessenberg(m_matT, m_matU, computeU); |
339 | return *this; |
340 | } |
341 | |
342 | template<typename MatrixType> |
343 | template<typename HessMatrixType, typename OrthMatrixType> |
344 | ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU) |
345 | { |
346 | m_matT = matrixH; |
347 | if(computeU) |
348 | m_matU = matrixQ; |
349 | reduceToTriangularForm(computeU); |
350 | return *this; |
351 | } |
352 | namespace internal { |
353 | |
354 | /* Reduce given matrix to Hessenberg form */ |
355 | template<typename MatrixType, bool IsComplex> |
356 | struct complex_schur_reduce_to_hessenberg |
357 | { |
358 | // this is the implementation for the case IsComplex = true |
359 | static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU) |
360 | { |
361 | _this.m_hess.compute(matrix); |
362 | _this.m_matT = _this.m_hess.matrixH(); |
363 | if(computeU) _this.m_matU = _this.m_hess.matrixQ(); |
364 | } |
365 | }; |
366 | |
367 | template<typename MatrixType> |
368 | struct complex_schur_reduce_to_hessenberg<MatrixType, false> |
369 | { |
370 | static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU) |
371 | { |
372 | typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar; |
373 | |
374 | // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar |
375 | _this.m_hess.compute(matrix); |
376 | _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>(); |
377 | if(computeU) |
378 | { |
379 | // This may cause an allocation which seems to be avoidable |
380 | MatrixType Q = _this.m_hess.matrixQ(); |
381 | _this.m_matU = Q.template cast<ComplexScalar>(); |
382 | } |
383 | } |
384 | }; |
385 | |
386 | } // end namespace internal |
387 | |
388 | // Reduce the Hessenberg matrix m_matT to triangular form by QR iteration. |
389 | template<typename MatrixType> |
390 | void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU) |
391 | { |
392 | Index maxIters = m_maxIters; |
393 | if (maxIters == -1) |
394 | maxIters = m_maxIterationsPerRow * m_matT.rows(); |
395 | |
396 | // The matrix m_matT is divided in three parts. |
397 | // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. |
398 | // Rows il,...,iu is the part we are working on (the active submatrix). |
399 | // Rows iu+1,...,end are already brought in triangular form. |
400 | Index iu = m_matT.cols() - 1; |
401 | Index il; |
402 | Index iter = 0; // number of iterations we are working on the (iu,iu) element |
403 | Index totalIter = 0; // number of iterations for whole matrix |
404 | |
405 | while(true) |
406 | { |
407 | // find iu, the bottom row of the active submatrix |
408 | while(iu > 0) |
409 | { |
410 | if(!subdiagonalEntryIsNeglegible(i: iu-1)) break; |
411 | iter = 0; |
412 | --iu; |
413 | } |
414 | |
415 | // if iu is zero then we are done; the whole matrix is triangularized |
416 | if(iu==0) break; |
417 | |
418 | // if we spent too many iterations, we give up |
419 | iter++; |
420 | totalIter++; |
421 | if(totalIter > maxIters) break; |
422 | |
423 | // find il, the top row of the active submatrix |
424 | il = iu-1; |
425 | while(il > 0 && !subdiagonalEntryIsNeglegible(i: il-1)) |
426 | { |
427 | --il; |
428 | } |
429 | |
430 | /* perform the QR step using Givens rotations. The first rotation |
431 | creates a bulge; the (il+2,il) element becomes nonzero. This |
432 | bulge is chased down to the bottom of the active submatrix. */ |
433 | |
434 | ComplexScalar shift = computeShift(iu, iter); |
435 | JacobiRotation<ComplexScalar> rot; |
436 | rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il)); |
437 | m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint()); |
438 | m_matT.topRows((std::min)(a: il+2,b: iu)+1).applyOnTheRight(il, il+1, rot); |
439 | if(computeU) m_matU.applyOnTheRight(il, il+1, rot); |
440 | |
441 | for(Index i=il+1 ; i<iu ; i++) |
442 | { |
443 | rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1)); |
444 | m_matT.coeffRef(i+1,i-1) = ComplexScalar(0); |
445 | m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint()); |
446 | m_matT.topRows((std::min)(a: i+2,b: iu)+1).applyOnTheRight(i, i+1, rot); |
447 | if(computeU) m_matU.applyOnTheRight(i, i+1, rot); |
448 | } |
449 | } |
450 | |
451 | if(totalIter <= maxIters) |
452 | m_info = Success; |
453 | else |
454 | m_info = NoConvergence; |
455 | |
456 | m_isInitialized = true; |
457 | m_matUisUptodate = computeU; |
458 | } |
459 | |
460 | } // end namespace Eigen |
461 | |
462 | #endif // EIGEN_COMPLEX_SCHUR_H |
463 | |