1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
5 | // Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
6 | // |
7 | // This Source Code Form is subject to the terms of the Mozilla |
8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
10 | |
11 | #ifndef EIGEN_JACOBISVD_H |
12 | #define EIGEN_JACOBISVD_H |
13 | |
14 | namespace Eigen { |
15 | |
16 | namespace internal { |
17 | // forward declaration (needed by ICC) |
18 | // the empty body is required by MSVC |
19 | template<typename MatrixType, int QRPreconditioner, |
20 | bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex> |
21 | struct svd_precondition_2x2_block_to_be_real {}; |
22 | |
23 | /*** QR preconditioners (R-SVD) |
24 | *** |
25 | *** Their role is to reduce the problem of computing the SVD to the case of a square matrix. |
26 | *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for |
27 | *** JacobiSVD which by itself is only able to work on square matrices. |
28 | ***/ |
29 | |
30 | enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols }; |
31 | |
32 | template<typename MatrixType, int QRPreconditioner, int Case> |
33 | struct qr_preconditioner_should_do_anything |
34 | { |
35 | enum { a = MatrixType::RowsAtCompileTime != Dynamic && |
36 | MatrixType::ColsAtCompileTime != Dynamic && |
37 | MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime, |
38 | b = MatrixType::RowsAtCompileTime != Dynamic && |
39 | MatrixType::ColsAtCompileTime != Dynamic && |
40 | MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime, |
41 | ret = !( (QRPreconditioner == NoQRPreconditioner) || |
42 | (Case == PreconditionIfMoreColsThanRows && bool(a)) || |
43 | (Case == PreconditionIfMoreRowsThanCols && bool(b)) ) |
44 | }; |
45 | }; |
46 | |
47 | template<typename MatrixType, int QRPreconditioner, int Case, |
48 | bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret |
49 | > struct qr_preconditioner_impl {}; |
50 | |
51 | template<typename MatrixType, int QRPreconditioner, int Case> |
52 | class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false> |
53 | { |
54 | public: |
55 | void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {} |
56 | bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&) |
57 | { |
58 | return false; |
59 | } |
60 | }; |
61 | |
62 | /*** preconditioner using FullPivHouseholderQR ***/ |
63 | |
64 | template<typename MatrixType> |
65 | class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> |
66 | { |
67 | public: |
68 | typedef typename MatrixType::Scalar Scalar; |
69 | enum |
70 | { |
71 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
72 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime |
73 | }; |
74 | typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType; |
75 | |
76 | void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd) |
77 | { |
78 | if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) |
79 | { |
80 | m_qr.~QRType(); |
81 | ::new (&m_qr) QRType(svd.rows(), svd.cols()); |
82 | } |
83 | if (svd.m_computeFullU) m_workspace.resize(svd.rows()); |
84 | } |
85 | |
86 | bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) |
87 | { |
88 | if(matrix.rows() > matrix.cols()) |
89 | { |
90 | m_qr.compute(matrix); |
91 | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); |
92 | if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace); |
93 | if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); |
94 | return true; |
95 | } |
96 | return false; |
97 | } |
98 | private: |
99 | typedef FullPivHouseholderQR<MatrixType> QRType; |
100 | QRType m_qr; |
101 | WorkspaceType m_workspace; |
102 | }; |
103 | |
104 | template<typename MatrixType> |
105 | class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> |
106 | { |
107 | public: |
108 | typedef typename MatrixType::Scalar Scalar; |
109 | enum |
110 | { |
111 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
112 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
113 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
114 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
115 | Options = MatrixType::Options |
116 | }; |
117 | |
118 | typedef typename internal::make_proper_matrix_type< |
119 | Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime |
120 | >::type TransposeTypeWithSameStorageOrder; |
121 | |
122 | void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd) |
123 | { |
124 | if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) |
125 | { |
126 | m_qr.~QRType(); |
127 | ::new (&m_qr) QRType(svd.cols(), svd.rows()); |
128 | } |
129 | m_adjoint.resize(svd.cols(), svd.rows()); |
130 | if (svd.m_computeFullV) m_workspace.resize(svd.cols()); |
131 | } |
132 | |
133 | bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) |
134 | { |
135 | if(matrix.cols() > matrix.rows()) |
136 | { |
137 | m_adjoint = matrix.adjoint(); |
138 | m_qr.compute(m_adjoint); |
139 | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); |
140 | if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace); |
141 | if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); |
142 | return true; |
143 | } |
144 | else return false; |
145 | } |
146 | private: |
147 | typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType; |
148 | QRType m_qr; |
149 | TransposeTypeWithSameStorageOrder m_adjoint; |
150 | typename internal::plain_row_type<MatrixType>::type m_workspace; |
151 | }; |
152 | |
153 | /*** preconditioner using ColPivHouseholderQR ***/ |
154 | |
155 | template<typename MatrixType> |
156 | class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> |
157 | { |
158 | public: |
159 | void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd) |
160 | { |
161 | if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) |
162 | { |
163 | m_qr.~QRType(); |
164 | ::new (&m_qr) QRType(svd.rows(), svd.cols()); |
165 | } |
166 | if (svd.m_computeFullU) m_workspace.resize(svd.rows()); |
167 | else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); |
168 | } |
169 | |
170 | bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) |
171 | { |
172 | if(matrix.rows() > matrix.cols()) |
173 | { |
174 | m_qr.compute(matrix); |
175 | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); |
176 | if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); |
177 | else if(svd.m_computeThinU) |
178 | { |
179 | svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); |
180 | m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); |
181 | } |
182 | if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); |
183 | return true; |
184 | } |
185 | return false; |
186 | } |
187 | |
188 | private: |
189 | typedef ColPivHouseholderQR<MatrixType> QRType; |
190 | QRType m_qr; |
191 | typename internal::plain_col_type<MatrixType>::type m_workspace; |
192 | }; |
193 | |
194 | template<typename MatrixType> |
195 | class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> |
196 | { |
197 | public: |
198 | typedef typename MatrixType::Scalar Scalar; |
199 | enum |
200 | { |
201 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
202 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
203 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
204 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
205 | Options = MatrixType::Options |
206 | }; |
207 | |
208 | typedef typename internal::make_proper_matrix_type< |
209 | Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime |
210 | >::type TransposeTypeWithSameStorageOrder; |
211 | |
212 | void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd) |
213 | { |
214 | if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) |
215 | { |
216 | m_qr.~QRType(); |
217 | ::new (&m_qr) QRType(svd.cols(), svd.rows()); |
218 | } |
219 | if (svd.m_computeFullV) m_workspace.resize(svd.cols()); |
220 | else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); |
221 | m_adjoint.resize(svd.cols(), svd.rows()); |
222 | } |
223 | |
224 | bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) |
225 | { |
226 | if(matrix.cols() > matrix.rows()) |
227 | { |
228 | m_adjoint = matrix.adjoint(); |
229 | m_qr.compute(m_adjoint); |
230 | |
231 | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); |
232 | if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); |
233 | else if(svd.m_computeThinV) |
234 | { |
235 | svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); |
236 | m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); |
237 | } |
238 | if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); |
239 | return true; |
240 | } |
241 | else return false; |
242 | } |
243 | |
244 | private: |
245 | typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType; |
246 | QRType m_qr; |
247 | TransposeTypeWithSameStorageOrder m_adjoint; |
248 | typename internal::plain_row_type<MatrixType>::type m_workspace; |
249 | }; |
250 | |
251 | /*** preconditioner using HouseholderQR ***/ |
252 | |
253 | template<typename MatrixType> |
254 | class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> |
255 | { |
256 | public: |
257 | void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd) |
258 | { |
259 | if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) |
260 | { |
261 | m_qr.~QRType(); |
262 | ::new (&m_qr) QRType(svd.rows(), svd.cols()); |
263 | } |
264 | if (svd.m_computeFullU) m_workspace.resize(svd.rows()); |
265 | else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); |
266 | } |
267 | |
268 | bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix) |
269 | { |
270 | if(matrix.rows() > matrix.cols()) |
271 | { |
272 | m_qr.compute(matrix); |
273 | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); |
274 | if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); |
275 | else if(svd.m_computeThinU) |
276 | { |
277 | svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); |
278 | m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); |
279 | } |
280 | if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols()); |
281 | return true; |
282 | } |
283 | return false; |
284 | } |
285 | private: |
286 | typedef HouseholderQR<MatrixType> QRType; |
287 | QRType m_qr; |
288 | typename internal::plain_col_type<MatrixType>::type m_workspace; |
289 | }; |
290 | |
291 | template<typename MatrixType> |
292 | class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> |
293 | { |
294 | public: |
295 | typedef typename MatrixType::Scalar Scalar; |
296 | enum |
297 | { |
298 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
299 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
300 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
301 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
302 | Options = MatrixType::Options |
303 | }; |
304 | |
305 | typedef typename internal::make_proper_matrix_type< |
306 | Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime |
307 | >::type TransposeTypeWithSameStorageOrder; |
308 | |
309 | void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd) |
310 | { |
311 | if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) |
312 | { |
313 | m_qr.~QRType(); |
314 | ::new (&m_qr) QRType(svd.cols(), svd.rows()); |
315 | } |
316 | if (svd.m_computeFullV) m_workspace.resize(svd.cols()); |
317 | else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); |
318 | m_adjoint.resize(svd.cols(), svd.rows()); |
319 | } |
320 | |
321 | bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix) |
322 | { |
323 | if(matrix.cols() > matrix.rows()) |
324 | { |
325 | m_adjoint = matrix.adjoint(); |
326 | m_qr.compute(m_adjoint); |
327 | |
328 | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); |
329 | if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); |
330 | else if(svd.m_computeThinV) |
331 | { |
332 | svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); |
333 | m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); |
334 | } |
335 | if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows()); |
336 | return true; |
337 | } |
338 | else return false; |
339 | } |
340 | |
341 | private: |
342 | typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType; |
343 | QRType m_qr; |
344 | TransposeTypeWithSameStorageOrder m_adjoint; |
345 | typename internal::plain_row_type<MatrixType>::type m_workspace; |
346 | }; |
347 | |
348 | /*** 2x2 SVD implementation |
349 | *** |
350 | *** JacobiSVD consists in performing a series of 2x2 SVD subproblems |
351 | ***/ |
352 | |
353 | template<typename MatrixType, int QRPreconditioner> |
354 | struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false> |
355 | { |
356 | typedef JacobiSVD<MatrixType, QRPreconditioner> SVD; |
357 | typedef typename MatrixType::RealScalar RealScalar; |
358 | static bool run(typename SVD::WorkMatrixType&, SVD&, Index, Index, RealScalar&) { return true; } |
359 | }; |
360 | |
361 | template<typename MatrixType, int QRPreconditioner> |
362 | struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true> |
363 | { |
364 | typedef JacobiSVD<MatrixType, QRPreconditioner> SVD; |
365 | typedef typename MatrixType::Scalar Scalar; |
366 | typedef typename MatrixType::RealScalar RealScalar; |
367 | static bool run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q, RealScalar& maxDiagEntry) |
368 | { |
369 | using std::sqrt; |
370 | using std::abs; |
371 | Scalar z; |
372 | JacobiRotation<Scalar> rot; |
373 | RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p))); |
374 | |
375 | const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); |
376 | const RealScalar precision = NumTraits<Scalar>::epsilon(); |
377 | |
378 | if(n==0) |
379 | { |
380 | // make sure first column is zero |
381 | work_matrix.coeffRef(p,p) = work_matrix.coeffRef(q,p) = Scalar(0); |
382 | |
383 | if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero) |
384 | { |
385 | // work_matrix.coeff(p,q) can be zero if work_matrix.coeff(q,p) is not zero but small enough to underflow when computing n |
386 | z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); |
387 | work_matrix.row(p) *= z; |
388 | if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z); |
389 | } |
390 | if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero) |
391 | { |
392 | z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); |
393 | work_matrix.row(q) *= z; |
394 | if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); |
395 | } |
396 | // otherwise the second row is already zero, so we have nothing to do. |
397 | } |
398 | else |
399 | { |
400 | rot.c() = conj(work_matrix.coeff(p,p)) / n; |
401 | rot.s() = work_matrix.coeff(q,p) / n; |
402 | work_matrix.applyOnTheLeft(p,q,rot); |
403 | if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint()); |
404 | if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero) |
405 | { |
406 | z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); |
407 | work_matrix.col(q) *= z; |
408 | if(svd.computeV()) svd.m_matrixV.col(q) *= z; |
409 | } |
410 | if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero) |
411 | { |
412 | z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); |
413 | work_matrix.row(q) *= z; |
414 | if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); |
415 | } |
416 | } |
417 | |
418 | // update largest diagonal entry |
419 | maxDiagEntry = numext::maxi<RealScalar>(maxDiagEntry,numext::maxi<RealScalar>(abs(work_matrix.coeff(p,p)), abs(work_matrix.coeff(q,q)))); |
420 | // and check whether the 2x2 block is already diagonal |
421 | RealScalar threshold = numext::maxi<RealScalar>(considerAsZero, precision * maxDiagEntry); |
422 | return abs(work_matrix.coeff(p,q))>threshold || abs(work_matrix.coeff(q,p)) > threshold; |
423 | } |
424 | }; |
425 | |
426 | template<typename _MatrixType, int QRPreconditioner> |
427 | struct traits<JacobiSVD<_MatrixType,QRPreconditioner> > |
428 | : traits<_MatrixType> |
429 | { |
430 | typedef _MatrixType MatrixType; |
431 | }; |
432 | |
433 | } // end namespace internal |
434 | |
435 | /** \ingroup SVD_Module |
436 | * |
437 | * |
438 | * \class JacobiSVD |
439 | * |
440 | * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix |
441 | * |
442 | * \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition |
443 | * \tparam QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally |
444 | * for the R-SVD step for non-square matrices. See discussion of possible values below. |
445 | * |
446 | * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product |
447 | * \f[ A = U S V^* \f] |
448 | * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; |
449 | * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left |
450 | * and right \em singular \em vectors of \a A respectively. |
451 | * |
452 | * Singular values are always sorted in decreasing order. |
453 | * |
454 | * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly. |
455 | * |
456 | * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the |
457 | * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual |
458 | * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, |
459 | * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. |
460 | * |
461 | * Here's an example demonstrating basic usage: |
462 | * \include JacobiSVD_basic.cpp |
463 | * Output: \verbinclude JacobiSVD_basic.out |
464 | * |
465 | * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than |
466 | * bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and |
467 | * \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms. |
468 | * In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension. |
469 | * |
470 | * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to |
471 | * terminate in finite (and reasonable) time. |
472 | * |
473 | * The possible values for QRPreconditioner are: |
474 | * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR. |
475 | * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR. |
476 | * Contrary to other QRs, it doesn't allow computing thin unitaries. |
477 | * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR. |
478 | * This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization |
479 | * is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive |
480 | * process is more reliable than the optimized bidiagonal SVD iterations. |
481 | * \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing |
482 | * JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in |
483 | * faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking |
484 | * if QR preconditioning is needed before applying it anyway. |
485 | * |
486 | * \sa MatrixBase::jacobiSvd() |
487 | */ |
488 | template<typename _MatrixType, int QRPreconditioner> class JacobiSVD |
489 | : public SVDBase<JacobiSVD<_MatrixType,QRPreconditioner> > |
490 | { |
491 | typedef SVDBase<JacobiSVD> Base; |
492 | public: |
493 | |
494 | typedef _MatrixType MatrixType; |
495 | typedef typename MatrixType::Scalar Scalar; |
496 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
497 | enum { |
498 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
499 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
500 | DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), |
501 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
502 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
503 | MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), |
504 | MatrixOptions = MatrixType::Options |
505 | }; |
506 | |
507 | typedef typename Base::MatrixUType MatrixUType; |
508 | typedef typename Base::MatrixVType MatrixVType; |
509 | typedef typename Base::SingularValuesType SingularValuesType; |
510 | |
511 | typedef typename internal::plain_row_type<MatrixType>::type RowType; |
512 | typedef typename internal::plain_col_type<MatrixType>::type ColType; |
513 | typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, |
514 | MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime> |
515 | WorkMatrixType; |
516 | |
517 | /** \brief Default Constructor. |
518 | * |
519 | * The default constructor is useful in cases in which the user intends to |
520 | * perform decompositions via JacobiSVD::compute(const MatrixType&). |
521 | */ |
522 | JacobiSVD() |
523 | {} |
524 | |
525 | |
526 | /** \brief Default Constructor with memory preallocation |
527 | * |
528 | * Like the default constructor but with preallocation of the internal data |
529 | * according to the specified problem size. |
530 | * \sa JacobiSVD() |
531 | */ |
532 | JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0) |
533 | { |
534 | allocate(rows, cols, computationOptions); |
535 | } |
536 | |
537 | /** \brief Constructor performing the decomposition of given matrix. |
538 | * |
539 | * \param matrix the matrix to decompose |
540 | * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. |
541 | * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, |
542 | * #ComputeFullV, #ComputeThinV. |
543 | * |
544 | * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not |
545 | * available with the (non-default) FullPivHouseholderQR preconditioner. |
546 | */ |
547 | explicit JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0) |
548 | { |
549 | compute(matrix, computationOptions); |
550 | } |
551 | |
552 | /** \brief Method performing the decomposition of given matrix using custom options. |
553 | * |
554 | * \param matrix the matrix to decompose |
555 | * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. |
556 | * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, |
557 | * #ComputeFullV, #ComputeThinV. |
558 | * |
559 | * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not |
560 | * available with the (non-default) FullPivHouseholderQR preconditioner. |
561 | */ |
562 | JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions); |
563 | |
564 | /** \brief Method performing the decomposition of given matrix using current options. |
565 | * |
566 | * \param matrix the matrix to decompose |
567 | * |
568 | * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). |
569 | */ |
570 | JacobiSVD& compute(const MatrixType& matrix) |
571 | { |
572 | return compute(matrix, m_computationOptions); |
573 | } |
574 | |
575 | using Base::computeU; |
576 | using Base::computeV; |
577 | using Base::rows; |
578 | using Base::cols; |
579 | using Base::rank; |
580 | |
581 | private: |
582 | void allocate(Index rows, Index cols, unsigned int computationOptions); |
583 | |
584 | protected: |
585 | using Base::m_matrixU; |
586 | using Base::m_matrixV; |
587 | using Base::m_singularValues; |
588 | using Base::m_info; |
589 | using Base::m_isInitialized; |
590 | using Base::m_isAllocated; |
591 | using Base::m_usePrescribedThreshold; |
592 | using Base::m_computeFullU; |
593 | using Base::m_computeThinU; |
594 | using Base::m_computeFullV; |
595 | using Base::m_computeThinV; |
596 | using Base::m_computationOptions; |
597 | using Base::m_nonzeroSingularValues; |
598 | using Base::m_rows; |
599 | using Base::m_cols; |
600 | using Base::m_diagSize; |
601 | using Base::m_prescribedThreshold; |
602 | WorkMatrixType m_workMatrix; |
603 | |
604 | template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex> |
605 | friend struct internal::svd_precondition_2x2_block_to_be_real; |
606 | template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything> |
607 | friend struct internal::qr_preconditioner_impl; |
608 | |
609 | internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols; |
610 | internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows; |
611 | MatrixType m_scaledMatrix; |
612 | }; |
613 | |
614 | template<typename MatrixType, int QRPreconditioner> |
615 | void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Eigen::Index rows, Eigen::Index cols, unsigned int computationOptions) |
616 | { |
617 | eigen_assert(rows >= 0 && cols >= 0); |
618 | |
619 | if (m_isAllocated && |
620 | rows == m_rows && |
621 | cols == m_cols && |
622 | computationOptions == m_computationOptions) |
623 | { |
624 | return; |
625 | } |
626 | |
627 | m_rows = rows; |
628 | m_cols = cols; |
629 | m_info = Success; |
630 | m_isInitialized = false; |
631 | m_isAllocated = true; |
632 | m_computationOptions = computationOptions; |
633 | m_computeFullU = (computationOptions & ComputeFullU) != 0; |
634 | m_computeThinU = (computationOptions & ComputeThinU) != 0; |
635 | m_computeFullV = (computationOptions & ComputeFullV) != 0; |
636 | m_computeThinV = (computationOptions & ComputeThinV) != 0; |
637 | eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U" ); |
638 | eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V" ); |
639 | eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) && |
640 | "JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns." ); |
641 | if (QRPreconditioner == FullPivHouseholderQRPreconditioner) |
642 | { |
643 | eigen_assert(!(m_computeThinU || m_computeThinV) && |
644 | "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. " |
645 | "Use the ColPivHouseholderQR preconditioner instead." ); |
646 | } |
647 | m_diagSize = (std::min)(m_rows, m_cols); |
648 | m_singularValues.resize(m_diagSize); |
649 | if(RowsAtCompileTime==Dynamic) |
650 | m_matrixU.resize(m_rows, m_computeFullU ? m_rows |
651 | : m_computeThinU ? m_diagSize |
652 | : 0); |
653 | if(ColsAtCompileTime==Dynamic) |
654 | m_matrixV.resize(m_cols, m_computeFullV ? m_cols |
655 | : m_computeThinV ? m_diagSize |
656 | : 0); |
657 | m_workMatrix.resize(m_diagSize, m_diagSize); |
658 | |
659 | if(m_cols>m_rows) m_qr_precond_morecols.allocate(*this); |
660 | if(m_rows>m_cols) m_qr_precond_morerows.allocate(*this); |
661 | if(m_rows!=m_cols) m_scaledMatrix.resize(rows,cols); |
662 | } |
663 | |
664 | template<typename MatrixType, int QRPreconditioner> |
665 | JacobiSVD<MatrixType, QRPreconditioner>& |
666 | JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions) |
667 | { |
668 | using std::abs; |
669 | allocate(rows: matrix.rows(), cols: matrix.cols(), computationOptions); |
670 | |
671 | // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations, |
672 | // only worsening the precision of U and V as we accumulate more rotations |
673 | const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon(); |
674 | |
675 | // limit for denormal numbers to be considered zero in order to avoid infinite loops (see bug 286) |
676 | const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); |
677 | |
678 | // Scaling factor to reduce over/under-flows |
679 | RealScalar scale = matrix.cwiseAbs().template maxCoeff<PropagateNaN>(); |
680 | if (!(numext::isfinite)(scale)) { |
681 | m_isInitialized = true; |
682 | m_info = InvalidInput; |
683 | return *this; |
684 | } |
685 | if(scale==RealScalar(0)) scale = RealScalar(1); |
686 | |
687 | /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */ |
688 | |
689 | if(m_rows!=m_cols) |
690 | { |
691 | m_scaledMatrix = matrix / scale; |
692 | m_qr_precond_morecols.run(*this, m_scaledMatrix); |
693 | m_qr_precond_morerows.run(*this, m_scaledMatrix); |
694 | } |
695 | else |
696 | { |
697 | m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize) / scale; |
698 | if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows); |
699 | if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize); |
700 | if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols); |
701 | if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize); |
702 | } |
703 | |
704 | /*** step 2. The main Jacobi SVD iteration. ***/ |
705 | RealScalar maxDiagEntry = m_workMatrix.cwiseAbs().diagonal().maxCoeff(); |
706 | |
707 | bool finished = false; |
708 | while(!finished) |
709 | { |
710 | finished = true; |
711 | |
712 | // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix |
713 | |
714 | for(Index p = 1; p < m_diagSize; ++p) |
715 | { |
716 | for(Index q = 0; q < p; ++q) |
717 | { |
718 | // if this 2x2 sub-matrix is not diagonal already... |
719 | // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't |
720 | // keep us iterating forever. Similarly, small denormal numbers are considered zero. |
721 | RealScalar threshold = numext::maxi<RealScalar>(considerAsZero, precision * maxDiagEntry); |
722 | if(abs(m_workMatrix.coeff(p,q))>threshold || abs(m_workMatrix.coeff(q,p)) > threshold) |
723 | { |
724 | finished = false; |
725 | // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal |
726 | // the complex to real operation returns true if the updated 2x2 block is not already diagonal |
727 | if(internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q, maxDiagEntry)) |
728 | { |
729 | JacobiRotation<RealScalar> j_left, j_right; |
730 | internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right); |
731 | |
732 | // accumulate resulting Jacobi rotations |
733 | m_workMatrix.applyOnTheLeft(p,q,j_left); |
734 | if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose()); |
735 | |
736 | m_workMatrix.applyOnTheRight(p,q,j_right); |
737 | if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right); |
738 | |
739 | // keep track of the largest diagonal coefficient |
740 | maxDiagEntry = numext::maxi<RealScalar>(maxDiagEntry,numext::maxi<RealScalar>(abs(m_workMatrix.coeff(p,p)), abs(m_workMatrix.coeff(q,q)))); |
741 | } |
742 | } |
743 | } |
744 | } |
745 | } |
746 | |
747 | /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/ |
748 | |
749 | for(Index i = 0; i < m_diagSize; ++i) |
750 | { |
751 | // For a complex matrix, some diagonal coefficients might note have been |
752 | // treated by svd_precondition_2x2_block_to_be_real, and the imaginary part |
753 | // of some diagonal entry might not be null. |
754 | if(NumTraits<Scalar>::IsComplex && abs(numext::imag(m_workMatrix.coeff(i,i)))>considerAsZero) |
755 | { |
756 | RealScalar a = abs(m_workMatrix.coeff(i,i)); |
757 | m_singularValues.coeffRef(i) = abs(a); |
758 | if(computeU()) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a; |
759 | } |
760 | else |
761 | { |
762 | // m_workMatrix.coeff(i,i) is already real, no difficulty: |
763 | RealScalar a = numext::real(m_workMatrix.coeff(i,i)); |
764 | m_singularValues.coeffRef(i) = abs(a); |
765 | if(computeU() && (a<RealScalar(0))) m_matrixU.col(i) = -m_matrixU.col(i); |
766 | } |
767 | } |
768 | |
769 | m_singularValues *= scale; |
770 | |
771 | /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/ |
772 | |
773 | m_nonzeroSingularValues = m_diagSize; |
774 | for(Index i = 0; i < m_diagSize; i++) |
775 | { |
776 | Index pos; |
777 | RealScalar maxRemainingSingularValue = m_singularValues.tail(m_diagSize-i).maxCoeff(&pos); |
778 | if(maxRemainingSingularValue == RealScalar(0)) |
779 | { |
780 | m_nonzeroSingularValues = i; |
781 | break; |
782 | } |
783 | if(pos) |
784 | { |
785 | pos += i; |
786 | std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos)); |
787 | if(computeU()) m_matrixU.col(pos).swap(m_matrixU.col(i)); |
788 | if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i)); |
789 | } |
790 | } |
791 | |
792 | m_isInitialized = true; |
793 | return *this; |
794 | } |
795 | |
796 | /** \svd_module |
797 | * |
798 | * \return the singular value decomposition of \c *this computed by two-sided |
799 | * Jacobi transformations. |
800 | * |
801 | * \sa class JacobiSVD |
802 | */ |
803 | template<typename Derived> |
804 | JacobiSVD<typename MatrixBase<Derived>::PlainObject> |
805 | MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const |
806 | { |
807 | return JacobiSVD<PlainObject>(*this, computationOptions); |
808 | } |
809 | |
810 | } // end namespace Eigen |
811 | |
812 | #endif // EIGEN_JACOBISVD_H |
813 | |