1 | /* |
2 | Copyright 2018 Google Inc. All Rights Reserved. |
3 | |
4 | Licensed under the Apache License, Version 2.0 (the "License"); |
5 | you may not use this file except in compliance with the License. |
6 | You may obtain a copy of the License at |
7 | |
8 | http://www.apache.org/licenses/LICENSE-2.0 |
9 | |
10 | Unless required by applicable law or agreed to in writing, software |
11 | distributed under the License is distributed on an "AS-IS" BASIS, |
12 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13 | See the License for the specific language governing permissions and |
14 | limitations under the License. |
15 | */ |
16 | |
17 | #include "ambisonics/ambisonic_lookup_table.h" |
18 | |
19 | #include "ambisonics/ambisonic_spread_coefficients.h" |
20 | #include "ambisonics/associated_legendre_polynomials_generator.h" |
21 | #include "ambisonics/utils.h" |
22 | #include "base/constants_and_types.h" |
23 | #include "base/misc_math.h" |
24 | |
25 | |
26 | namespace vraudio { |
27 | |
28 | namespace { |
29 | |
30 | // Number of azimuth angles to store in the pre-computed encoder lookup table |
31 | // (for 0 - 90 degrees using 1 degree increments). |
32 | const size_t kNumAzimuths = 91; |
33 | |
34 | // Number of elevation angles to store in the pre-computed encoder lookup table |
35 | // (for 0 - 90 degrees using 1 degree increments). |
36 | const size_t kNumElevations = 91; |
37 | |
38 | // Number of Cartesian axes for which to compute spherical harmonic symmetries. |
39 | const size_t kNumAxes = 3; |
40 | |
41 | // Minimum angular source spreads at different orders for which we start to |
42 | // apply spread gain correction coefficients. Array index corresponds to |
43 | // ambisonic order. For more information about sound source spread control, |
44 | // please refer to the Matlab code and the corresponding paper. |
45 | const int kMinSpreads[kMaxSupportedAmbisonicOrder + 1] = {361, 54, 40, 31}; |
46 | |
47 | // Spread coefficients are stored sequentially in a 1-d table. Therefore, to |
48 | // access coefficients for the required ambisonic order we need to apply offsets |
49 | // which are equal to the total number of coefficients for previous orders. For |
50 | // example, the total number of coefficient in each ambisonic order 'n' is |
51 | // equal to the number of unique orders multiplied by number of unique spreads, |
52 | // i.e.: (n + 1) * (360 - kMinSpreads[n] + 1). |
53 | const int kSpreadCoeffOffsets[kMaxSupportedAmbisonicOrder + 1] = {0, 1, 615, |
54 | 1578}; |
55 | |
56 | size_t GetEncoderTableIndex(size_t i, size_t j, size_t k, size_t width, |
57 | size_t depth) { |
58 | return i * width * depth + j * depth + k; |
59 | } |
60 | |
61 | size_t GetSymmetriesTableIndex(size_t i, size_t j, size_t width) { |
62 | return i * width + j; |
63 | } |
64 | |
65 | int GetSpreadTableIndex(int ambisonic_order, float source_spread_deg) { |
66 | // Number of unique ambisonic orders in the sound field. For example, in a |
67 | // first order sound field we have components of order 0 and 1. |
68 | const int num_unique_orders = ambisonic_order + 1; |
69 | return kSpreadCoeffOffsets[ambisonic_order] + |
70 | num_unique_orders * (static_cast<int>(source_spread_deg) - |
71 | kMinSpreads[ambisonic_order]); |
72 | } |
73 | |
74 | } // namespace |
75 | |
76 | AmbisonicLookupTable::AmbisonicLookupTable(int max_ambisonic_order) |
77 | : max_ambisonic_order_(max_ambisonic_order), |
78 | max_num_coeffs_in_table_( |
79 | GetNumPeriphonicComponents(ambisonic_order: max_ambisonic_order_) - 1), |
80 | encoder_table_(kNumAzimuths * kNumElevations * max_num_coeffs_in_table_), |
81 | symmetries_table_(kNumAxes * max_num_coeffs_in_table_) { |
82 | DCHECK_GE(max_ambisonic_order_, 0); |
83 | DCHECK_LE(max_ambisonic_order_, kMaxSupportedAmbisonicOrder); |
84 | ComputeEncoderTable(); |
85 | ComputeSymmetriesTable(); |
86 | } |
87 | |
88 | void AmbisonicLookupTable::GetEncodingCoeffs( |
89 | int ambisonic_order, const SphericalAngle& source_direction, |
90 | float source_spread_deg, std::vector<float>* encoding_coeffs) const { |
91 | |
92 | DCHECK_GE(ambisonic_order, 0); |
93 | DCHECK_LE(ambisonic_order, kMaxSupportedAmbisonicOrder); |
94 | DCHECK_GE(source_spread_deg, 0.0f); |
95 | DCHECK_LE(source_spread_deg, 360.0f); |
96 | DCHECK(encoding_coeffs); |
97 | // Raw coefficients are stored only for ambisonic orders 1 and up, since 0th |
98 | // order raw coefficient is always 1. |
99 | const size_t num_raw_coeffs = GetNumPeriphonicComponents(ambisonic_order) - 1; |
100 | // The actual number of returned Ambisonic coefficients is therefore |
101 | // |num_raw_coeffs + 1|. |
102 | DCHECK_EQ(encoding_coeffs->size(), num_raw_coeffs + 1); |
103 | DCHECK_GE(source_direction.azimuth(), -kPi); |
104 | DCHECK_LE(source_direction.azimuth(), kTwoPi); |
105 | DCHECK_GE(source_direction.elevation(), -kHalfPi); |
106 | DCHECK_LE(source_direction.elevation(), kHalfPi); |
107 | const int azimuth_deg = |
108 | source_direction.azimuth() < kPi |
109 | ? static_cast<int>(source_direction.azimuth() * kDegreesFromRadians) |
110 | : static_cast<int>(source_direction.azimuth() * kDegreesFromRadians) - |
111 | 360; |
112 | const int elevation_deg = |
113 | static_cast<int>(source_direction.elevation() * kDegreesFromRadians); |
114 | const size_t abs_azimuth_deg = static_cast<size_t>(std::abs(x: azimuth_deg)); |
115 | const size_t azimuth_idx = |
116 | abs_azimuth_deg > 90 ? 180 - abs_azimuth_deg : abs_azimuth_deg; |
117 | const size_t elevation_idx = static_cast<size_t>(std::abs(x: elevation_deg)); |
118 | (*encoding_coeffs)[0] = 1.0f; |
119 | for (size_t raw_coeff_idx = 0; raw_coeff_idx < num_raw_coeffs; |
120 | ++raw_coeff_idx) { |
121 | // Variable to hold information about spherical harmonic phase flip. 1 means |
122 | // no flip; -1 means 180 degrees flip. |
123 | float flip = 1.0f; |
124 | // The following three 'if' statements implement the logic to correct the |
125 | // phase of the current spherical harmonic, depending on which quadrant the |
126 | // sound source is located in. For more information, please see the Matlab |
127 | // code and the corresponding paper. |
128 | if (azimuth_deg < 0) { |
129 | flip = symmetries_table_[GetSymmetriesTableIndex( |
130 | i: 0, j: raw_coeff_idx, width: max_num_coeffs_in_table_)]; |
131 | } |
132 | if (elevation_deg < 0) { |
133 | flip *= symmetries_table_[GetSymmetriesTableIndex( |
134 | i: 1, j: raw_coeff_idx, width: max_num_coeffs_in_table_)]; |
135 | } |
136 | if (abs_azimuth_deg > 90) { |
137 | flip *= symmetries_table_[GetSymmetriesTableIndex( |
138 | i: 2, j: raw_coeff_idx, width: max_num_coeffs_in_table_)]; |
139 | } |
140 | const size_t encoder_table_idx = |
141 | GetEncoderTableIndex(i: azimuth_idx, j: elevation_idx, k: raw_coeff_idx, |
142 | width: kNumElevations, depth: max_num_coeffs_in_table_); |
143 | (*encoding_coeffs)[raw_coeff_idx + 1] = |
144 | encoder_table_[encoder_table_idx] * flip; |
145 | } |
146 | |
147 | // If the spread is more than min. theoretical spread for the given |
148 | // |ambisonic_order|, multiply the encoding coefficients by the required |
149 | // spread control gains from the |kSpreadCoeffs| lookup table. |
150 | if (source_spread_deg >= kMinSpreads[ambisonic_order]) { |
151 | const int spread_table_idx = |
152 | GetSpreadTableIndex(ambisonic_order, source_spread_deg); |
153 | (*encoding_coeffs)[0] *= kSpreadCoeffs[spread_table_idx]; |
154 | for (size_t coeff = 1; coeff < encoding_coeffs->size(); ++coeff) { |
155 | const int current_coefficient_degree = |
156 | GetPeriphonicAmbisonicOrderForChannel(channel: coeff); |
157 | (*encoding_coeffs)[coeff] *= |
158 | kSpreadCoeffs[spread_table_idx + current_coefficient_degree]; |
159 | } |
160 | } |
161 | } |
162 | |
163 | void AmbisonicLookupTable::ComputeEncoderTable() { |
164 | |
165 | // Associated Legendre polynomial generator. |
166 | AssociatedLegendrePolynomialsGenerator alp_generator( |
167 | max_ambisonic_order_, /*condon_shortley_phase=*/false, |
168 | /*compute_negative_order=*/false); |
169 | // Temporary storage for associated Legendre polynomials generated. |
170 | std::vector<float> temp_associated_legendre_polynomials; |
171 | for (size_t azimuth_idx = 0; azimuth_idx < kNumAzimuths; ++azimuth_idx) { |
172 | for (size_t elevation_idx = 0; elevation_idx < kNumElevations; |
173 | ++elevation_idx) { |
174 | const SphericalAngle angle( |
175 | static_cast<float>(azimuth_idx) * kRadiansFromDegrees, |
176 | static_cast<float>(elevation_idx) * kRadiansFromDegrees); |
177 | temp_associated_legendre_polynomials = |
178 | alp_generator.Generate(x: std::sin(x: angle.elevation())); |
179 | // First spherical harmonic is always equal 1 for all angles so we do not |
180 | // need to compute and store it. |
181 | for (int degree = 1; degree <= max_ambisonic_order_; ++degree) { |
182 | for (int order = -degree; order <= degree; ++order) { |
183 | const size_t alp_index = |
184 | alp_generator.GetIndex(degree, order: std::abs(x: order)); |
185 | const float alp_value = |
186 | temp_associated_legendre_polynomials[alp_index]; |
187 | const size_t raw_coeff_idx = AcnSequence(degree, order) - 1; |
188 | const size_t encoder_table_idx = |
189 | GetEncoderTableIndex(i: azimuth_idx, j: elevation_idx, k: raw_coeff_idx, |
190 | width: kNumElevations, depth: max_num_coeffs_in_table_); |
191 | encoder_table_[encoder_table_idx] = |
192 | Sn3dNormalization(degree, order) * |
193 | UnnormalizedSphericalHarmonic(alp_value, order, azimuth_rad: angle.azimuth()); |
194 | } |
195 | } |
196 | } |
197 | } |
198 | } |
199 | |
200 | void AmbisonicLookupTable::ComputeSymmetriesTable() { |
201 | |
202 | for (int degree = 1; degree <= max_ambisonic_order_; ++degree) { |
203 | for (int order = -degree; order <= degree; ++order) { |
204 | const size_t raw_coeff_idx = AcnSequence(degree, order) - 1; |
205 | // Symmetry wrt the left-right axis (Y). |
206 | symmetries_table_[GetSymmetriesTableIndex(i: 0, j: raw_coeff_idx, |
207 | width: max_num_coeffs_in_table_)] = |
208 | order < 0 ? -1.0f : 1.0f; |
209 | // Symmetry wrt the up-down axis (Z). |
210 | symmetries_table_[GetSymmetriesTableIndex(i: 1, j: raw_coeff_idx, |
211 | width: max_num_coeffs_in_table_)] = |
212 | static_cast<float>(IntegerPow(base: -1, exp: degree + order)); |
213 | // Symmetry wrt the front-back axis (X). |
214 | symmetries_table_[GetSymmetriesTableIndex(i: 2, j: raw_coeff_idx, |
215 | width: max_num_coeffs_in_table_)] = |
216 | order < 0 ? static_cast<float>(-IntegerPow(base: -1, exp: std::abs(x: order))) |
217 | : static_cast<float>(IntegerPow(base: -1, exp: order)); |
218 | } |
219 | } |
220 | } |
221 | |
222 | float AmbisonicLookupTable::UnnormalizedSphericalHarmonic(float alp_value, |
223 | int order, |
224 | float azimuth_rad) { |
225 | const float horizontal_term = |
226 | (order >= 0) ? std::cos(x: static_cast<float>(order) * azimuth_rad) |
227 | : std::sin(x: static_cast<float>(-order) * azimuth_rad); |
228 | return alp_value * horizontal_term; |
229 | } |
230 | |
231 | } // namespace vraudio |
232 | |