| 1 | /* | 
| 2 | Copyright 2018 Google Inc. All Rights Reserved. | 
| 3 |  | 
| 4 | Licensed under the Apache License, Version 2.0 (the "License"); | 
| 5 | you may not use this file except in compliance with the License. | 
| 6 | You may obtain a copy of the License at | 
| 7 |  | 
| 8 |     http://www.apache.org/licenses/LICENSE-2.0 | 
| 9 |  | 
| 10 | Unless required by applicable law or agreed to in writing, software | 
| 11 | distributed under the License is distributed on an "AS-IS" BASIS, | 
| 12 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
| 13 | See the License for the specific language governing permissions and | 
| 14 | limitations under the License. | 
| 15 | */ | 
| 16 |  | 
| 17 | #include "ambisonics/hoa_rotator.h" | 
| 18 |  | 
| 19 | #include <algorithm> | 
| 20 | #include <cmath> | 
| 21 |  | 
| 22 | #include "ambisonics/utils.h" | 
| 23 | #include "base/constants_and_types.h" | 
| 24 | #include "base/logging.h" | 
| 25 | #include "base/misc_math.h" | 
| 26 |  | 
| 27 | namespace vraudio { | 
| 28 |  | 
| 29 | namespace { | 
| 30 |  | 
| 31 | // Below are the helper methods to compute SH rotation using recursion. The code | 
| 32 | // is branched / modified from: | 
| 33 |  | 
| 34 | // maths described in the following papers: | 
| 35 | // | 
| 36 | // [1]  R. Green, "Spherical Harmonic Lighting: The Gritty Details", GDC 2003, | 
| 37 | //      http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.pdf | 
| 38 | // [2]  J. Ivanic and K. Ruedenberg, "Rotation Matrices for Real Spherical | 
| 39 | //      Harmonics. Direct Determination by Recursion", J. Phys. Chem., vol. 100, | 
| 40 | //      no. 15, pp. 6342-6347, 1996. | 
| 41 | //      http://pubs.acs.org/doi/pdf/10.1021/jp953350u | 
| 42 | // [2b] Corrections to initial publication: | 
| 43 | //      http://pubs.acs.org/doi/pdf/10.1021/jp9833350 | 
| 44 |  | 
| 45 | // Kronecker Delta function. | 
| 46 | inline float KroneckerDelta(int i, int j) { return (i == j) ? 1.0f : 0.0f; } | 
| 47 |  | 
| 48 | // [2] uses an odd convention of referring to the rows and columns using | 
| 49 | // centered indices, so the middle row and column are (0, 0) and the upper | 
| 50 | // left would have negative coordinates. | 
| 51 | // | 
| 52 | // This is a convenience function to allow us to access an Eigen::MatrixXf | 
| 53 | // in the same manner, assuming r is a (2l+1)x(2l+1) matrix. | 
| 54 | float GetCenteredElement(const Eigen::MatrixXf& r, int i, int j) { | 
| 55 |   // The shift to go from [-l, l] to [0, 2l] is (rows - 1) / 2 = l, | 
| 56 |   // (since the matrix is assumed to be square, rows == cols). | 
| 57 |   const int offset = (static_cast<int>(r.rows()) - 1) / 2; | 
| 58 |   return r(i + offset, j + offset); | 
| 59 | } | 
| 60 |  | 
| 61 | // Helper function defined in [2] that is used by the functions U, V, W. | 
| 62 | // This should not be called on its own, as U, V, and W (and their coefficients) | 
| 63 | // select the appropriate matrix elements to access arguments |a| and |b|. | 
| 64 | float P(int i, int a, int b, int l, const std::vector<Eigen::MatrixXf>& r) { | 
| 65 |   if (b == l) { | 
| 66 |     return GetCenteredElement(r: r[1], i, j: 1) * | 
| 67 |                GetCenteredElement(r: r[l - 1], i: a, j: l - 1) - | 
| 68 |            GetCenteredElement(r: r[1], i, j: -1) * | 
| 69 |                GetCenteredElement(r: r[l - 1], i: a, j: -l + 1); | 
| 70 |   } else if (b == -l) { | 
| 71 |     return GetCenteredElement(r: r[1], i, j: 1) * | 
| 72 |                GetCenteredElement(r: r[l - 1], i: a, j: -l + 1) + | 
| 73 |            GetCenteredElement(r: r[1], i, j: -1) * | 
| 74 |                GetCenteredElement(r: r[l - 1], i: a, j: l - 1); | 
| 75 |   } else { | 
| 76 |     return GetCenteredElement(r: r[1], i, j: 0) * GetCenteredElement(r: r[l - 1], i: a, j: b); | 
| 77 |   } | 
| 78 | } | 
| 79 |  | 
| 80 | // The functions U, V, and W should only be called if the correspondingly | 
| 81 | // named coefficient u, v, w from the function ComputeUVWCoeff() is non-zero. | 
| 82 | // When the coefficient is 0, these would attempt to access matrix elements that | 
| 83 | // are out of bounds. The vector of rotations, |r|, must have the |l - 1| | 
| 84 | // previously completed band rotations. These functions are valid for |l >= 2|. | 
| 85 |  | 
| 86 | float U(int m, int n, int l, const std::vector<Eigen::MatrixXf>& r) { | 
| 87 |   // Although [1, 2] split U into three cases for m == 0, m < 0, m > 0 | 
| 88 |   // the actual values are the same for all three cases. | 
| 89 |   return P(i: 0, a: m, b: n, l, r); | 
| 90 | } | 
| 91 |  | 
| 92 | float V(int m, int n, int l, const std::vector<Eigen::MatrixXf>& r) { | 
| 93 |   if (m == 0) { | 
| 94 |     return P(i: 1, a: 1, b: n, l, r) + P(i: -1, a: -1, b: n, l, r); | 
| 95 |   } else if (m > 0) { | 
| 96 |     const float d = KroneckerDelta(i: m, j: 1); | 
| 97 |     return P(i: 1, a: m - 1, b: n, l, r) * std::sqrt(x: 1 + d) - | 
| 98 |            P(i: -1, a: -m + 1, b: n, l, r) * (1 - d); | 
| 99 |   } else { | 
| 100 |     // Note there is apparent errata in [1,2,2b] dealing with this particular | 
| 101 |     // case. [2b] writes it should be P*(1-d)+P*(1-d)^0.5 | 
| 102 |     // [1] writes it as P*(1+d)+P*(1-d)^0.5, but going through the math by hand, | 
| 103 |     // you must have it as P*(1-d)+P*(1+d)^0.5 to form a 2^.5 term, which | 
| 104 |     // parallels the case where m > 0. | 
| 105 |     const float d = KroneckerDelta(i: m, j: -1); | 
| 106 |     return P(i: 1, a: m + 1, b: n, l, r) * (1 - d) + | 
| 107 |            P(i: -1, a: -m - 1, b: n, l, r) * std::sqrt(x: 1 + d); | 
| 108 |   } | 
| 109 | } | 
| 110 |  | 
| 111 | float W(int m, int n, int l, const std::vector<Eigen::MatrixXf>& r) { | 
| 112 |   if (m == 0) { | 
| 113 |     // Whenever this happens, w is also 0 so W can be anything. | 
| 114 |     return 0.0f; | 
| 115 |   } else if (m > 0) { | 
| 116 |     return P(i: 1, a: m + 1, b: n, l, r) + P(i: -1, a: -m - 1, b: n, l, r); | 
| 117 |   } else { | 
| 118 |     return P(i: 1, a: m - 1, b: n, l, r) - P(i: -1, a: -m + 1, b: n, l, r); | 
| 119 |   } | 
| 120 | } | 
| 121 |  | 
| 122 | // Calculates the coefficients applied to the U, V, and W functions. Because | 
| 123 | // their equations share many common terms they are computed simultaneously. | 
| 124 | void ComputeUVWCoeff(int m, int n, int l, float* u, float* v, float* w) { | 
| 125 |   const float d = KroneckerDelta(i: m, j: 0); | 
| 126 |   const float denom = (abs(x: n) == l ? static_cast<float>(2 * l * (2 * l - 1)) | 
| 127 |                                    : static_cast<float>((l + n) * (l - n))); | 
| 128 |   const float one_over_denom = 1.0f / denom; | 
| 129 |  | 
| 130 |   *u = std::sqrt(x: static_cast<float>((l + m) * (l - m)) * one_over_denom); | 
| 131 |   *v = 0.5f * | 
| 132 |        std::sqrt(x: (1.0f + d) * static_cast<float>(l + abs(x: m) - 1) * | 
| 133 |                  (static_cast<float>(l + abs(x: m))) * one_over_denom) * | 
| 134 |        (1.0f - 2.0f * d); | 
| 135 |   *w = -0.5f * | 
| 136 |        std::sqrt(x: static_cast<float>(l - abs(x: m) - 1) * | 
| 137 |                  (static_cast<float>(l - abs(x: m))) * one_over_denom) * | 
| 138 |        (1.0f - d); | 
| 139 | } | 
| 140 |  | 
| 141 | // Calculates the (2l+1)x(2l+1) rotation matrix for the band l. | 
| 142 | // This uses the matrices computed for band 1 and band l-1 to compute the | 
| 143 | // matrix for band l. |rotations| must contain the previously computed l-1 | 
| 144 | // rotation matrices. | 
| 145 | // | 
| 146 | // This implementation comes from p. 5 (6346), Table 1 and 2 in [2] taking | 
| 147 | // into account the corrections from [2b]. | 
| 148 | void ComputeBandRotation(int l, std::vector<Eigen::MatrixXf>* rotations) { | 
| 149 |   // The lth band rotation matrix has rows and columns equal to the number of | 
| 150 |   // coefficients within that band (-l <= m <= l implies 2l + 1 coefficients). | 
| 151 |   Eigen::MatrixXf rotation(2 * l + 1, 2 * l + 1); | 
| 152 |   for (int m = -l; m <= l; ++m) { | 
| 153 |     for (int n = -l; n <= l; ++n) { | 
| 154 |       float u, v, w; | 
| 155 |       ComputeUVWCoeff(m, n, l, u: &u, v: &v, w: &w); | 
| 156 |  | 
| 157 |       // The functions U, V, W are only safe to call if the coefficients | 
| 158 |       // u, v, w are not zero. | 
| 159 |       if (std::abs(x: u) > 0.0f) u *= U(m, n, l, r: *rotations); | 
| 160 |       if (std::abs(x: v) > 0.0f) v *= V(m, n, l, r: *rotations); | 
| 161 |       if (std::abs(x: w) > 0.0f) w *= W(m, n, l, r: *rotations); | 
| 162 |  | 
| 163 |       rotation(m + l, n + l) = (u + v + w); | 
| 164 |     } | 
| 165 |   } | 
| 166 |   (*rotations)[l] = rotation; | 
| 167 | } | 
| 168 |  | 
| 169 | }  // namespace | 
| 170 |  | 
| 171 | HoaRotator::HoaRotator(int ambisonic_order) | 
| 172 |     : ambisonic_order_(ambisonic_order), | 
| 173 |       rotation_matrices_(ambisonic_order_ + 1), | 
| 174 |       rotation_matrix_( | 
| 175 |           static_cast<int>(GetNumPeriphonicComponents(ambisonic_order)), | 
| 176 |           static_cast<int>(GetNumPeriphonicComponents(ambisonic_order))) { | 
| 177 |   DCHECK_GE(ambisonic_order_, 2); | 
| 178 |  | 
| 179 |   // Initialize rotation sub-matrices. | 
| 180 |   // Order 0  matrix (first band) is simply the 1x1 identity. | 
| 181 |   Eigen::MatrixXf r(1, 1); | 
| 182 |   r(0, 0) = 1.0f; | 
| 183 |   rotation_matrices_[0] = r; | 
| 184 |   // All the other ambisonic orders (bands) are set to identity matrices of | 
| 185 |   // corresponding sizes. | 
| 186 |   for (int l = 1; l <= ambisonic_order_; ++l) { | 
| 187 |     const size_t submatrix_size = GetNumNthOrderPeriphonicComponents(ambisonic_order: l); | 
| 188 |     r.resize(rows: submatrix_size, cols: submatrix_size); | 
| 189 |     rotation_matrices_[l] = r.setIdentity(); | 
| 190 |   } | 
| 191 |   // Initialize the final rotation matrix to an identity matrix. | 
| 192 |   rotation_matrix_.setIdentity(); | 
| 193 | } | 
| 194 |  | 
| 195 | bool HoaRotator::Process(const WorldRotation& target_rotation, | 
| 196 |                          const AudioBuffer& input, AudioBuffer* output) { | 
| 197 |  | 
| 198 |   DCHECK(output); | 
| 199 |   DCHECK_EQ(input.num_channels(), GetNumPeriphonicComponents(ambisonic_order_)); | 
| 200 |   DCHECK_EQ(input.num_channels(), output->num_channels()); | 
| 201 |   DCHECK_EQ(input.num_frames(), output->num_frames()); | 
| 202 |  | 
| 203 |   static const WorldRotation kIdentityRotation; | 
| 204 |  | 
| 205 |   if (current_rotation_.AngularDifferenceRad(other: kIdentityRotation) < | 
| 206 |           kRotationQuantizationRad && | 
| 207 |       target_rotation.AngularDifferenceRad(other: kIdentityRotation) < | 
| 208 |           kRotationQuantizationRad) { | 
| 209 |     return false; | 
| 210 |   } | 
| 211 |  | 
| 212 |   const size_t channel_stride = input.GetChannelStride(); | 
| 213 |  | 
| 214 |   typedef Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> | 
| 215 |       RowMajorMatrixf; | 
| 216 |  | 
| 217 |   const Eigen::Map<const RowMajorMatrixf, Eigen::Aligned, Eigen::OuterStride<>> | 
| 218 |       input_matrix(input[0].begin(), static_cast<int>(input.num_channels()), | 
| 219 |                    static_cast<int>(input.num_frames()), | 
| 220 |                    Eigen::OuterStride<>(static_cast<int>(channel_stride))); | 
| 221 |  | 
| 222 |   Eigen::Map<RowMajorMatrixf, Eigen::Aligned, Eigen::OuterStride<>> | 
| 223 |       output_matrix((*output)[0].begin(), | 
| 224 |                     static_cast<int>(input.num_channels()), | 
| 225 |                     static_cast<int>(input.num_frames()), | 
| 226 |                     Eigen::OuterStride<>(static_cast<int>(channel_stride))); | 
| 227 |  | 
| 228 |   if (current_rotation_.AngularDifferenceRad(other: target_rotation) < | 
| 229 |       kRotationQuantizationRad) { | 
| 230 |     output_matrix = rotation_matrix_ * input_matrix; | 
| 231 |     return true; | 
| 232 |   } | 
| 233 |  | 
| 234 |   // In order to perform a smooth rotation, we divide the buffer into | 
| 235 |   // chunks of size |kSlerpFrameInterval|. | 
| 236 |   // | 
| 237 |  | 
| 238 |   const size_t kSlerpFrameInterval = 32; | 
| 239 |  | 
| 240 |   WorldRotation slerped_rotation; | 
| 241 |   // Rotate the input buffer at every slerp update interval. Truncate the | 
| 242 |   // final chunk if the input buffer is not an integer multiple of the | 
| 243 |   // chunk size. | 
| 244 |   for (size_t i = 0; i < input.num_frames(); i += kSlerpFrameInterval) { | 
| 245 |     const size_t duration = | 
| 246 |         std::min(a: input.num_frames() - i, b: kSlerpFrameInterval); | 
| 247 |     const float interpolation_factor = static_cast<float>(i + duration) / | 
| 248 |                                        static_cast<float>(input.num_frames()); | 
| 249 |     UpdateRotationMatrix( | 
| 250 |         rotation: current_rotation_.slerp(t: interpolation_factor, other: target_rotation)); | 
| 251 |     output_matrix.block(startRow: 0 /* first channel */, startCol: i, blockRows: output->num_channels(), | 
| 252 |                         blockCols: duration) = | 
| 253 |         rotation_matrix_ * input_matrix.block(startRow: 0 /* first channel */, startCol: i, | 
| 254 |                                               blockRows: input.num_channels(), blockCols: duration); | 
| 255 |   } | 
| 256 |   current_rotation_ = target_rotation; | 
| 257 |  | 
| 258 |   return true; | 
| 259 | } | 
| 260 |  | 
| 261 | void HoaRotator::UpdateRotationMatrix(const WorldRotation& rotation) { | 
| 262 |  | 
| 263 |  | 
| 264 |   // There is no need to update 0th order 1-element sub-matrix. | 
| 265 |   // First order sub-matrix can be updated directly from the WorldRotation | 
| 266 |   // quaternion. However, we must account for the flipped left-right and | 
| 267 |   // front-back axis in the World coordinates. | 
| 268 |   AudioRotation rotation_audio_space; | 
| 269 |   ConvertAudioFromWorldRotation(world_rotation: rotation, audio_rotation: &rotation_audio_space); | 
| 270 |   rotation_matrices_[1] = rotation_audio_space.toRotationMatrix(); | 
| 271 |   rotation_matrix_.block(startRow: 1, startCol: 1, blockRows: 3, blockCols: 3) = rotation_matrices_[1]; | 
| 272 |  | 
| 273 |   // Sub-matrices for the remaining orders are updated recursively using the | 
| 274 |   // equations provided in [2, 2b]. An example final rotation matrix composed of | 
| 275 |   // sub-matrices of orders 0 to 3 has the following structure: | 
| 276 |   // | 
| 277 |   // X | 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 0 0 | 
| 278 |   // ------------------------------------- | 
| 279 |   // 0 | X X X | 0 0 0 0 0 | 0 0 0 0 0 0 0 | 
| 280 |   // 0 | X X X | 0 0 0 0 0 | 0 0 0 0 0 0 0 | 
| 281 |   // 0 | X X X | 0 0 0 0 0 | 0 0 0 0 0 0 0 | 
| 282 |   // ------------------------------------- | 
| 283 |   // 0 | 0 0 0 | X X X X X | 0 0 0 0 0 0 0 | 
| 284 |   // 0 | 0 0 0 | X X X X X | 0 0 0 0 0 0 0 | 
| 285 |   // 0 | 0 0 0 | X X X X X | 0 0 0 0 0 0 0 | 
| 286 |   // 0 | 0 0 0 | X X X X X | 0 0 0 0 0 0 0 | 
| 287 |   // 0 | 0 0 0 | X X X X X | 0 0 0 0 0 0 0 | 
| 288 |   // ------------------------------------- | 
| 289 |   // 0 | 0 0 0 | 0 0 0 0 0 | X X X X X X X | 
| 290 |   // 0 | 0 0 0 | 0 0 0 0 0 | X X X X X X X | 
| 291 |   // 0 | 0 0 0 | 0 0 0 0 0 | X X X X X X X | 
| 292 |   // 0 | 0 0 0 | 0 0 0 0 0 | X X X X X X X | 
| 293 |   // 0 | 0 0 0 | 0 0 0 0 0 | X X X X X X X | 
| 294 |   // 0 | 0 0 0 | 0 0 0 0 0 | X X X X X X X | 
| 295 |   // 0 | 0 0 0 | 0 0 0 0 0 | X X X X X X X | 
| 296 |   // | 
| 297 |   for (int current_order = 2; current_order <= ambisonic_order_; | 
| 298 |        ++current_order) { | 
| 299 |     ComputeBandRotation(l: current_order, rotations: &rotation_matrices_); | 
| 300 |     const int index = current_order * current_order; | 
| 301 |     const int size = | 
| 302 |         static_cast<int>(GetNumNthOrderPeriphonicComponents(ambisonic_order: current_order)); | 
| 303 |     rotation_matrix_.block(startRow: index, startCol: index, blockRows: size, blockCols: size) = | 
| 304 |         rotation_matrices_[current_order]; | 
| 305 |   } | 
| 306 | } | 
| 307 |  | 
| 308 | }  // namespace vraudio | 
| 309 |  |