| 1 | /* |
| 2 | Copyright 2018 Google Inc. All Rights Reserved. |
| 3 | |
| 4 | Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | you may not use this file except in compliance with the License. |
| 6 | You may obtain a copy of the License at |
| 7 | |
| 8 | http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | |
| 10 | Unless required by applicable law or agreed to in writing, software |
| 11 | distributed under the License is distributed on an "AS-IS" BASIS, |
| 12 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | See the License for the specific language governing permissions and |
| 14 | limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include "ambisonics/hoa_rotator.h" |
| 18 | |
| 19 | #include <algorithm> |
| 20 | #include <cmath> |
| 21 | |
| 22 | #include "ambisonics/utils.h" |
| 23 | #include "base/constants_and_types.h" |
| 24 | #include "base/logging.h" |
| 25 | #include "base/misc_math.h" |
| 26 | |
| 27 | namespace vraudio { |
| 28 | |
| 29 | namespace { |
| 30 | |
| 31 | // Below are the helper methods to compute SH rotation using recursion. The code |
| 32 | // is branched / modified from: |
| 33 | |
| 34 | // maths described in the following papers: |
| 35 | // |
| 36 | // [1] R. Green, "Spherical Harmonic Lighting: The Gritty Details", GDC 2003, |
| 37 | // http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.pdf |
| 38 | // [2] J. Ivanic and K. Ruedenberg, "Rotation Matrices for Real Spherical |
| 39 | // Harmonics. Direct Determination by Recursion", J. Phys. Chem., vol. 100, |
| 40 | // no. 15, pp. 6342-6347, 1996. |
| 41 | // http://pubs.acs.org/doi/pdf/10.1021/jp953350u |
| 42 | // [2b] Corrections to initial publication: |
| 43 | // http://pubs.acs.org/doi/pdf/10.1021/jp9833350 |
| 44 | |
| 45 | // Kronecker Delta function. |
| 46 | inline float KroneckerDelta(int i, int j) { return (i == j) ? 1.0f : 0.0f; } |
| 47 | |
| 48 | // [2] uses an odd convention of referring to the rows and columns using |
| 49 | // centered indices, so the middle row and column are (0, 0) and the upper |
| 50 | // left would have negative coordinates. |
| 51 | // |
| 52 | // This is a convenience function to allow us to access an Eigen::MatrixXf |
| 53 | // in the same manner, assuming r is a (2l+1)x(2l+1) matrix. |
| 54 | float GetCenteredElement(const Eigen::MatrixXf& r, int i, int j) { |
| 55 | // The shift to go from [-l, l] to [0, 2l] is (rows - 1) / 2 = l, |
| 56 | // (since the matrix is assumed to be square, rows == cols). |
| 57 | const int offset = (static_cast<int>(r.rows()) - 1) / 2; |
| 58 | return r(i + offset, j + offset); |
| 59 | } |
| 60 | |
| 61 | // Helper function defined in [2] that is used by the functions U, V, W. |
| 62 | // This should not be called on its own, as U, V, and W (and their coefficients) |
| 63 | // select the appropriate matrix elements to access arguments |a| and |b|. |
| 64 | float P(int i, int a, int b, int l, const std::vector<Eigen::MatrixXf>& r) { |
| 65 | if (b == l) { |
| 66 | return GetCenteredElement(r: r[1], i, j: 1) * |
| 67 | GetCenteredElement(r: r[l - 1], i: a, j: l - 1) - |
| 68 | GetCenteredElement(r: r[1], i, j: -1) * |
| 69 | GetCenteredElement(r: r[l - 1], i: a, j: -l + 1); |
| 70 | } else if (b == -l) { |
| 71 | return GetCenteredElement(r: r[1], i, j: 1) * |
| 72 | GetCenteredElement(r: r[l - 1], i: a, j: -l + 1) + |
| 73 | GetCenteredElement(r: r[1], i, j: -1) * |
| 74 | GetCenteredElement(r: r[l - 1], i: a, j: l - 1); |
| 75 | } else { |
| 76 | return GetCenteredElement(r: r[1], i, j: 0) * GetCenteredElement(r: r[l - 1], i: a, j: b); |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | // The functions U, V, and W should only be called if the correspondingly |
| 81 | // named coefficient u, v, w from the function ComputeUVWCoeff() is non-zero. |
| 82 | // When the coefficient is 0, these would attempt to access matrix elements that |
| 83 | // are out of bounds. The vector of rotations, |r|, must have the |l - 1| |
| 84 | // previously completed band rotations. These functions are valid for |l >= 2|. |
| 85 | |
| 86 | float U(int m, int n, int l, const std::vector<Eigen::MatrixXf>& r) { |
| 87 | // Although [1, 2] split U into three cases for m == 0, m < 0, m > 0 |
| 88 | // the actual values are the same for all three cases. |
| 89 | return P(i: 0, a: m, b: n, l, r); |
| 90 | } |
| 91 | |
| 92 | float V(int m, int n, int l, const std::vector<Eigen::MatrixXf>& r) { |
| 93 | if (m == 0) { |
| 94 | return P(i: 1, a: 1, b: n, l, r) + P(i: -1, a: -1, b: n, l, r); |
| 95 | } else if (m > 0) { |
| 96 | const float d = KroneckerDelta(i: m, j: 1); |
| 97 | return P(i: 1, a: m - 1, b: n, l, r) * std::sqrt(x: 1 + d) - |
| 98 | P(i: -1, a: -m + 1, b: n, l, r) * (1 - d); |
| 99 | } else { |
| 100 | // Note there is apparent errata in [1,2,2b] dealing with this particular |
| 101 | // case. [2b] writes it should be P*(1-d)+P*(1-d)^0.5 |
| 102 | // [1] writes it as P*(1+d)+P*(1-d)^0.5, but going through the math by hand, |
| 103 | // you must have it as P*(1-d)+P*(1+d)^0.5 to form a 2^.5 term, which |
| 104 | // parallels the case where m > 0. |
| 105 | const float d = KroneckerDelta(i: m, j: -1); |
| 106 | return P(i: 1, a: m + 1, b: n, l, r) * (1 - d) + |
| 107 | P(i: -1, a: -m - 1, b: n, l, r) * std::sqrt(x: 1 + d); |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | float W(int m, int n, int l, const std::vector<Eigen::MatrixXf>& r) { |
| 112 | if (m == 0) { |
| 113 | // Whenever this happens, w is also 0 so W can be anything. |
| 114 | return 0.0f; |
| 115 | } else if (m > 0) { |
| 116 | return P(i: 1, a: m + 1, b: n, l, r) + P(i: -1, a: -m - 1, b: n, l, r); |
| 117 | } else { |
| 118 | return P(i: 1, a: m - 1, b: n, l, r) - P(i: -1, a: -m + 1, b: n, l, r); |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | // Calculates the coefficients applied to the U, V, and W functions. Because |
| 123 | // their equations share many common terms they are computed simultaneously. |
| 124 | void ComputeUVWCoeff(int m, int n, int l, float* u, float* v, float* w) { |
| 125 | const float d = KroneckerDelta(i: m, j: 0); |
| 126 | const float denom = (abs(x: n) == l ? static_cast<float>(2 * l * (2 * l - 1)) |
| 127 | : static_cast<float>((l + n) * (l - n))); |
| 128 | const float one_over_denom = 1.0f / denom; |
| 129 | |
| 130 | *u = std::sqrt(x: static_cast<float>((l + m) * (l - m)) * one_over_denom); |
| 131 | *v = 0.5f * |
| 132 | std::sqrt(x: (1.0f + d) * static_cast<float>(l + abs(x: m) - 1) * |
| 133 | (static_cast<float>(l + abs(x: m))) * one_over_denom) * |
| 134 | (1.0f - 2.0f * d); |
| 135 | *w = -0.5f * |
| 136 | std::sqrt(x: static_cast<float>(l - abs(x: m) - 1) * |
| 137 | (static_cast<float>(l - abs(x: m))) * one_over_denom) * |
| 138 | (1.0f - d); |
| 139 | } |
| 140 | |
| 141 | // Calculates the (2l+1)x(2l+1) rotation matrix for the band l. |
| 142 | // This uses the matrices computed for band 1 and band l-1 to compute the |
| 143 | // matrix for band l. |rotations| must contain the previously computed l-1 |
| 144 | // rotation matrices. |
| 145 | // |
| 146 | // This implementation comes from p. 5 (6346), Table 1 and 2 in [2] taking |
| 147 | // into account the corrections from [2b]. |
| 148 | void ComputeBandRotation(int l, std::vector<Eigen::MatrixXf>* rotations) { |
| 149 | // The lth band rotation matrix has rows and columns equal to the number of |
| 150 | // coefficients within that band (-l <= m <= l implies 2l + 1 coefficients). |
| 151 | Eigen::MatrixXf rotation(2 * l + 1, 2 * l + 1); |
| 152 | for (int m = -l; m <= l; ++m) { |
| 153 | for (int n = -l; n <= l; ++n) { |
| 154 | float u, v, w; |
| 155 | ComputeUVWCoeff(m, n, l, u: &u, v: &v, w: &w); |
| 156 | |
| 157 | // The functions U, V, W are only safe to call if the coefficients |
| 158 | // u, v, w are not zero. |
| 159 | if (std::abs(x: u) > 0.0f) u *= U(m, n, l, r: *rotations); |
| 160 | if (std::abs(x: v) > 0.0f) v *= V(m, n, l, r: *rotations); |
| 161 | if (std::abs(x: w) > 0.0f) w *= W(m, n, l, r: *rotations); |
| 162 | |
| 163 | rotation(m + l, n + l) = (u + v + w); |
| 164 | } |
| 165 | } |
| 166 | (*rotations)[l] = rotation; |
| 167 | } |
| 168 | |
| 169 | } // namespace |
| 170 | |
| 171 | HoaRotator::HoaRotator(int ambisonic_order) |
| 172 | : ambisonic_order_(ambisonic_order), |
| 173 | rotation_matrices_(ambisonic_order_ + 1), |
| 174 | rotation_matrix_( |
| 175 | static_cast<int>(GetNumPeriphonicComponents(ambisonic_order)), |
| 176 | static_cast<int>(GetNumPeriphonicComponents(ambisonic_order))) { |
| 177 | DCHECK_GE(ambisonic_order_, 2); |
| 178 | |
| 179 | // Initialize rotation sub-matrices. |
| 180 | // Order 0 matrix (first band) is simply the 1x1 identity. |
| 181 | Eigen::MatrixXf r(1, 1); |
| 182 | r(0, 0) = 1.0f; |
| 183 | rotation_matrices_[0] = r; |
| 184 | // All the other ambisonic orders (bands) are set to identity matrices of |
| 185 | // corresponding sizes. |
| 186 | for (int l = 1; l <= ambisonic_order_; ++l) { |
| 187 | const size_t submatrix_size = GetNumNthOrderPeriphonicComponents(ambisonic_order: l); |
| 188 | r.resize(rows: submatrix_size, cols: submatrix_size); |
| 189 | rotation_matrices_[l] = r.setIdentity(); |
| 190 | } |
| 191 | // Initialize the final rotation matrix to an identity matrix. |
| 192 | rotation_matrix_.setIdentity(); |
| 193 | } |
| 194 | |
| 195 | bool HoaRotator::Process(const WorldRotation& target_rotation, |
| 196 | const AudioBuffer& input, AudioBuffer* output) { |
| 197 | |
| 198 | DCHECK(output); |
| 199 | DCHECK_EQ(input.num_channels(), GetNumPeriphonicComponents(ambisonic_order_)); |
| 200 | DCHECK_EQ(input.num_channels(), output->num_channels()); |
| 201 | DCHECK_EQ(input.num_frames(), output->num_frames()); |
| 202 | |
| 203 | static const WorldRotation kIdentityRotation; |
| 204 | |
| 205 | if (current_rotation_.AngularDifferenceRad(other: kIdentityRotation) < |
| 206 | kRotationQuantizationRad && |
| 207 | target_rotation.AngularDifferenceRad(other: kIdentityRotation) < |
| 208 | kRotationQuantizationRad) { |
| 209 | return false; |
| 210 | } |
| 211 | |
| 212 | const size_t channel_stride = input.GetChannelStride(); |
| 213 | |
| 214 | typedef Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> |
| 215 | RowMajorMatrixf; |
| 216 | |
| 217 | const Eigen::Map<const RowMajorMatrixf, Eigen::Aligned, Eigen::OuterStride<>> |
| 218 | input_matrix(input[0].begin(), static_cast<int>(input.num_channels()), |
| 219 | static_cast<int>(input.num_frames()), |
| 220 | Eigen::OuterStride<>(static_cast<int>(channel_stride))); |
| 221 | |
| 222 | Eigen::Map<RowMajorMatrixf, Eigen::Aligned, Eigen::OuterStride<>> |
| 223 | output_matrix((*output)[0].begin(), |
| 224 | static_cast<int>(input.num_channels()), |
| 225 | static_cast<int>(input.num_frames()), |
| 226 | Eigen::OuterStride<>(static_cast<int>(channel_stride))); |
| 227 | |
| 228 | if (current_rotation_.AngularDifferenceRad(other: target_rotation) < |
| 229 | kRotationQuantizationRad) { |
| 230 | output_matrix = rotation_matrix_ * input_matrix; |
| 231 | return true; |
| 232 | } |
| 233 | |
| 234 | // In order to perform a smooth rotation, we divide the buffer into |
| 235 | // chunks of size |kSlerpFrameInterval|. |
| 236 | // |
| 237 | |
| 238 | const size_t kSlerpFrameInterval = 32; |
| 239 | |
| 240 | WorldRotation slerped_rotation; |
| 241 | // Rotate the input buffer at every slerp update interval. Truncate the |
| 242 | // final chunk if the input buffer is not an integer multiple of the |
| 243 | // chunk size. |
| 244 | for (size_t i = 0; i < input.num_frames(); i += kSlerpFrameInterval) { |
| 245 | const size_t duration = |
| 246 | std::min(a: input.num_frames() - i, b: kSlerpFrameInterval); |
| 247 | const float interpolation_factor = static_cast<float>(i + duration) / |
| 248 | static_cast<float>(input.num_frames()); |
| 249 | UpdateRotationMatrix( |
| 250 | rotation: current_rotation_.slerp(t: interpolation_factor, other: target_rotation)); |
| 251 | output_matrix.block(startRow: 0 /* first channel */, startCol: i, blockRows: output->num_channels(), |
| 252 | blockCols: duration) = |
| 253 | rotation_matrix_ * input_matrix.block(startRow: 0 /* first channel */, startCol: i, |
| 254 | blockRows: input.num_channels(), blockCols: duration); |
| 255 | } |
| 256 | current_rotation_ = target_rotation; |
| 257 | |
| 258 | return true; |
| 259 | } |
| 260 | |
| 261 | void HoaRotator::UpdateRotationMatrix(const WorldRotation& rotation) { |
| 262 | |
| 263 | |
| 264 | // There is no need to update 0th order 1-element sub-matrix. |
| 265 | // First order sub-matrix can be updated directly from the WorldRotation |
| 266 | // quaternion. However, we must account for the flipped left-right and |
| 267 | // front-back axis in the World coordinates. |
| 268 | AudioRotation rotation_audio_space; |
| 269 | ConvertAudioFromWorldRotation(world_rotation: rotation, audio_rotation: &rotation_audio_space); |
| 270 | rotation_matrices_[1] = rotation_audio_space.toRotationMatrix(); |
| 271 | rotation_matrix_.block(startRow: 1, startCol: 1, blockRows: 3, blockCols: 3) = rotation_matrices_[1]; |
| 272 | |
| 273 | // Sub-matrices for the remaining orders are updated recursively using the |
| 274 | // equations provided in [2, 2b]. An example final rotation matrix composed of |
| 275 | // sub-matrices of orders 0 to 3 has the following structure: |
| 276 | // |
| 277 | // X | 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 0 0 |
| 278 | // ------------------------------------- |
| 279 | // 0 | X X X | 0 0 0 0 0 | 0 0 0 0 0 0 0 |
| 280 | // 0 | X X X | 0 0 0 0 0 | 0 0 0 0 0 0 0 |
| 281 | // 0 | X X X | 0 0 0 0 0 | 0 0 0 0 0 0 0 |
| 282 | // ------------------------------------- |
| 283 | // 0 | 0 0 0 | X X X X X | 0 0 0 0 0 0 0 |
| 284 | // 0 | 0 0 0 | X X X X X | 0 0 0 0 0 0 0 |
| 285 | // 0 | 0 0 0 | X X X X X | 0 0 0 0 0 0 0 |
| 286 | // 0 | 0 0 0 | X X X X X | 0 0 0 0 0 0 0 |
| 287 | // 0 | 0 0 0 | X X X X X | 0 0 0 0 0 0 0 |
| 288 | // ------------------------------------- |
| 289 | // 0 | 0 0 0 | 0 0 0 0 0 | X X X X X X X |
| 290 | // 0 | 0 0 0 | 0 0 0 0 0 | X X X X X X X |
| 291 | // 0 | 0 0 0 | 0 0 0 0 0 | X X X X X X X |
| 292 | // 0 | 0 0 0 | 0 0 0 0 0 | X X X X X X X |
| 293 | // 0 | 0 0 0 | 0 0 0 0 0 | X X X X X X X |
| 294 | // 0 | 0 0 0 | 0 0 0 0 0 | X X X X X X X |
| 295 | // 0 | 0 0 0 | 0 0 0 0 0 | X X X X X X X |
| 296 | // |
| 297 | for (int current_order = 2; current_order <= ambisonic_order_; |
| 298 | ++current_order) { |
| 299 | ComputeBandRotation(l: current_order, rotations: &rotation_matrices_); |
| 300 | const int index = current_order * current_order; |
| 301 | const int size = |
| 302 | static_cast<int>(GetNumNthOrderPeriphonicComponents(ambisonic_order: current_order)); |
| 303 | rotation_matrix_.block(startRow: index, startCol: index, blockRows: size, blockCols: size) = |
| 304 | rotation_matrices_[current_order]; |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | } // namespace vraudio |
| 309 | |