| 1 | // Copyright 2009-2021 Intel Corporation |
| 2 | // SPDX-License-Identifier: Apache-2.0 |
| 3 | |
| 4 | #pragma once |
| 5 | |
| 6 | #include "parallel_for.h" |
| 7 | |
| 8 | namespace embree |
| 9 | { |
| 10 | template<typename ArrayArray, typename Func> |
| 11 | __forceinline void sequential_for_for( ArrayArray& array2, const size_t minStepSize, const Func& func ) |
| 12 | { |
| 13 | size_t k=0; |
| 14 | for (size_t i=0; i!=array2.size(); ++i) { |
| 15 | const size_t N = array2[i]->size(); |
| 16 | if (N) func(array2[i],range<size_t>(0,N),k); |
| 17 | k+=N; |
| 18 | } |
| 19 | } |
| 20 | |
| 21 | class ParallelForForState |
| 22 | { |
| 23 | public: |
| 24 | |
| 25 | enum { MAX_TASKS = 64 }; |
| 26 | |
| 27 | __forceinline ParallelForForState () |
| 28 | : taskCount(0) {} |
| 29 | |
| 30 | template<typename ArrayArray> |
| 31 | __forceinline ParallelForForState (ArrayArray& array2, const size_t minStepSize) { |
| 32 | init(array2,minStepSize); |
| 33 | } |
| 34 | |
| 35 | template<typename ArrayArray> |
| 36 | __forceinline void init ( ArrayArray& array2, const size_t minStepSize ) |
| 37 | { |
| 38 | /* first calculate total number of elements */ |
| 39 | size_t N = 0; |
| 40 | for (size_t i=0; i<array2.size(); i++) { |
| 41 | N += array2[i] ? array2[i]->size() : 0; |
| 42 | } |
| 43 | this->N = N; |
| 44 | |
| 45 | /* calculate number of tasks to use */ |
| 46 | const size_t numThreads = TaskScheduler::threadCount(); |
| 47 | const size_t numBlocks = (N+minStepSize-1)/minStepSize; |
| 48 | taskCount = max(a: size_t(1),b: min(a: numThreads,b: numBlocks,c: size_t(ParallelForForState::MAX_TASKS))); |
| 49 | |
| 50 | /* calculate start (i,j) for each task */ |
| 51 | size_t taskIndex = 0; |
| 52 | i0[taskIndex] = 0; |
| 53 | j0[taskIndex] = 0; |
| 54 | size_t k0 = (++taskIndex)*N/taskCount; |
| 55 | for (size_t i=0, k=0; taskIndex < taskCount; i++) |
| 56 | { |
| 57 | assert(i<array2.size()); |
| 58 | size_t j=0, M = array2[i] ? array2[i]->size() : 0; |
| 59 | while (j<M && k+M-j >= k0 && taskIndex < taskCount) { |
| 60 | assert(taskIndex<taskCount); |
| 61 | i0[taskIndex] = i; |
| 62 | j0[taskIndex] = j += k0-k; |
| 63 | k=k0; |
| 64 | k0 = (++taskIndex)*N/taskCount; |
| 65 | } |
| 66 | k+=M-j; |
| 67 | } |
| 68 | } |
| 69 | |
| 70 | __forceinline size_t size() const { |
| 71 | return N; |
| 72 | } |
| 73 | |
| 74 | public: |
| 75 | size_t i0[MAX_TASKS]; |
| 76 | size_t j0[MAX_TASKS]; |
| 77 | size_t taskCount; |
| 78 | size_t N; |
| 79 | }; |
| 80 | |
| 81 | template<typename ArrayArray, typename Func> |
| 82 | __forceinline void parallel_for_for( ArrayArray& array2, const size_t minStepSize, const Func& func ) |
| 83 | { |
| 84 | ParallelForForState state(array2,minStepSize); |
| 85 | |
| 86 | parallel_for(state.taskCount, [&](const size_t taskIndex) |
| 87 | { |
| 88 | /* calculate range */ |
| 89 | const size_t k0 = (taskIndex+0)*state.size()/state.taskCount; |
| 90 | const size_t k1 = (taskIndex+1)*state.size()/state.taskCount; |
| 91 | size_t i0 = state.i0[taskIndex]; |
| 92 | size_t j0 = state.j0[taskIndex]; |
| 93 | |
| 94 | /* iterate over arrays */ |
| 95 | size_t k=k0; |
| 96 | for (size_t i=i0; k<k1; i++) { |
| 97 | const size_t N = array2[i] ? array2[i]->size() : 0; |
| 98 | const size_t r0 = j0, r1 = min(a: N,b: r0+k1-k); |
| 99 | if (r1 > r0) func(array2[i],range<size_t>(r0,r1),k); |
| 100 | k+=r1-r0; j0 = 0; |
| 101 | } |
| 102 | }); |
| 103 | } |
| 104 | |
| 105 | template<typename ArrayArray, typename Func> |
| 106 | __forceinline void parallel_for_for( ArrayArray& array2, const Func& func ) |
| 107 | { |
| 108 | parallel_for_for(array2,1,func); |
| 109 | } |
| 110 | |
| 111 | template<typename ArrayArray, typename Value, typename Func, typename Reduction> |
| 112 | __forceinline Value parallel_for_for_reduce( ArrayArray& array2, const size_t minStepSize, const Value& identity, const Func& func, const Reduction& reduction ) |
| 113 | { |
| 114 | ParallelForForState state(array2,minStepSize); |
| 115 | Value temp[ParallelForForState::MAX_TASKS]; |
| 116 | |
| 117 | for (size_t i=0; i<state.taskCount; i++) |
| 118 | temp[i] = identity; |
| 119 | |
| 120 | parallel_for(state.taskCount, [&](const size_t taskIndex) |
| 121 | { |
| 122 | /* calculate range */ |
| 123 | const size_t k0 = (taskIndex+0)*state.size()/state.taskCount; |
| 124 | const size_t k1 = (taskIndex+1)*state.size()/state.taskCount; |
| 125 | size_t i0 = state.i0[taskIndex]; |
| 126 | size_t j0 = state.j0[taskIndex]; |
| 127 | |
| 128 | /* iterate over arrays */ |
| 129 | size_t k=k0; |
| 130 | for (size_t i=i0; k<k1; i++) { |
| 131 | const size_t N = array2[i] ? array2[i]->size() : 0; |
| 132 | const size_t r0 = j0, r1 = min(a: N,b: r0+k1-k); |
| 133 | if (r1 > r0) temp[taskIndex] = reduction(temp[taskIndex],func(array2[i],range<size_t>(r0,r1),k)); |
| 134 | k+=r1-r0; j0 = 0; |
| 135 | } |
| 136 | }); |
| 137 | |
| 138 | Value ret = identity; |
| 139 | for (size_t i=0; i<state.taskCount; i++) |
| 140 | ret = reduction(ret,temp[i]); |
| 141 | return ret; |
| 142 | } |
| 143 | |
| 144 | template<typename ArrayArray, typename Value, typename Func, typename Reduction> |
| 145 | __forceinline Value parallel_for_for_reduce( ArrayArray& array2, const Value& identity, const Func& func, const Reduction& reduction) |
| 146 | { |
| 147 | return parallel_for_for_reduce(array2,1,identity,func,reduction); |
| 148 | } |
| 149 | } |
| 150 | |