1 | // Copyright 2009-2021 Intel Corporation |
2 | // SPDX-License-Identifier: Apache-2.0 |
3 | |
4 | #pragma once |
5 | |
6 | #include "../common/primref_mb.h" |
7 | #include "../../common/algorithms/parallel_filter.h" |
8 | |
9 | #define MBLUR_TIME_SPLIT_THRESHOLD 1.25f |
10 | |
11 | namespace embree |
12 | { |
13 | namespace isa |
14 | { |
15 | /*! Performs standard object binning */ |
16 | template<typename PrimRefMB, typename RecalculatePrimRef, size_t BINS> |
17 | struct HeuristicMBlurTemporalSplit |
18 | { |
19 | typedef BinSplit<MBLUR_NUM_OBJECT_BINS> Split; |
20 | typedef mvector<PrimRefMB>* PrimRefVector; |
21 | typedef typename PrimRefMB::BBox BBox; |
22 | |
23 | static const size_t PARALLEL_THRESHOLD = 3 * 1024; |
24 | static const size_t PARALLEL_FIND_BLOCK_SIZE = 1024; |
25 | static const size_t PARALLEL_PARTITION_BLOCK_SIZE = 128; |
26 | |
27 | HeuristicMBlurTemporalSplit (MemoryMonitorInterface* device, const RecalculatePrimRef& recalculatePrimRef) |
28 | : device(device), recalculatePrimRef(recalculatePrimRef) {} |
29 | |
30 | struct TemporalBinInfo |
31 | { |
32 | __forceinline TemporalBinInfo () { |
33 | } |
34 | |
35 | __forceinline TemporalBinInfo (EmptyTy) |
36 | { |
37 | for (size_t i=0; i<BINS-1; i++) |
38 | { |
39 | count0[i] = count1[i] = 0; |
40 | bounds0[i] = bounds1[i] = empty; |
41 | } |
42 | } |
43 | |
44 | void bin(const PrimRefMB* prims, size_t begin, size_t end, BBox1f time_range, const SetMB& set, const RecalculatePrimRef& recalculatePrimRef) |
45 | { |
46 | for (int b=0; b<BINS-1; b++) |
47 | { |
48 | const float t = float(b+1)/float(BINS); |
49 | const float ct = lerp(v0: time_range.lower,v1: time_range.upper,t); |
50 | const float center_time = set.align_time(ct); |
51 | if (center_time <= time_range.lower) continue; |
52 | if (center_time >= time_range.upper) continue; |
53 | const BBox1f dt0(time_range.lower,center_time); |
54 | const BBox1f dt1(center_time,time_range.upper); |
55 | |
56 | /* find linear bounds for both time segments */ |
57 | for (size_t i=begin; i<end; i++) |
58 | { |
59 | if (prims[i].time_range_overlap(dt0)) |
60 | { |
61 | const LBBox3fa bn0 = recalculatePrimRef.linearBounds(prims[i],dt0); |
62 | #if MBLUR_BIN_LBBOX |
63 | bounds0[b].extend(bn0); |
64 | #else |
65 | bounds0[b].extend(bn0.interpolate(0.5f)); |
66 | #endif |
67 | count0[b] += prims[i].timeSegmentRange(dt0).size(); |
68 | } |
69 | |
70 | if (prims[i].time_range_overlap(dt1)) |
71 | { |
72 | const LBBox3fa bn1 = recalculatePrimRef.linearBounds(prims[i],dt1); |
73 | #if MBLUR_BIN_LBBOX |
74 | bounds1[b].extend(bn1); |
75 | #else |
76 | bounds1[b].extend(bn1.interpolate(0.5f)); |
77 | #endif |
78 | count1[b] += prims[i].timeSegmentRange(dt1).size(); |
79 | } |
80 | } |
81 | } |
82 | } |
83 | |
84 | __forceinline void bin_parallel(const PrimRefMB* prims, size_t begin, size_t end, size_t blockSize, size_t parallelThreshold, BBox1f time_range, const SetMB& set, const RecalculatePrimRef& recalculatePrimRef) |
85 | { |
86 | if (likely(end-begin < parallelThreshold)) { |
87 | bin(prims,begin,end,time_range,set,recalculatePrimRef); |
88 | } |
89 | else |
90 | { |
91 | auto bin = [&](const range<size_t>& r) -> TemporalBinInfo { |
92 | TemporalBinInfo binner(empty); binner.bin(prims, r.begin(), r.end(), time_range, set, recalculatePrimRef); return binner; |
93 | }; |
94 | *this = parallel_reduce(begin,end,blockSize,TemporalBinInfo(empty),bin,merge2); |
95 | } |
96 | } |
97 | |
98 | /*! merges in other binning information */ |
99 | __forceinline void merge (const TemporalBinInfo& other) |
100 | { |
101 | for (size_t i=0; i<BINS-1; i++) |
102 | { |
103 | count0[i] += other.count0[i]; |
104 | count1[i] += other.count1[i]; |
105 | bounds0[i].extend(other.bounds0[i]); |
106 | bounds1[i].extend(other.bounds1[i]); |
107 | } |
108 | } |
109 | |
110 | static __forceinline const TemporalBinInfo merge2(const TemporalBinInfo& a, const TemporalBinInfo& b) { |
111 | TemporalBinInfo r = a; r.merge(b); return r; |
112 | } |
113 | |
114 | Split best(int logBlockSize, BBox1f time_range, const SetMB& set) |
115 | { |
116 | float bestSAH = inf; |
117 | float bestPos = 0.0f; |
118 | for (int b=0; b<BINS-1; b++) |
119 | { |
120 | float t = float(b+1)/float(BINS); |
121 | float ct = lerp(v0: time_range.lower,v1: time_range.upper,t); |
122 | const float center_time = set.align_time(ct); |
123 | if (center_time <= time_range.lower) continue; |
124 | if (center_time >= time_range.upper) continue; |
125 | const BBox1f dt0(time_range.lower,center_time); |
126 | const BBox1f dt1(center_time,time_range.upper); |
127 | |
128 | /* calculate sah */ |
129 | const size_t lCount = (count0[b]+(size_t(1) << logBlockSize)-1) >> int(logBlockSize); |
130 | const size_t rCount = (count1[b]+(size_t(1) << logBlockSize)-1) >> int(logBlockSize); |
131 | float sah0 = expectedApproxHalfArea(bounds0[b])*float(lCount)*dt0.size(); |
132 | float sah1 = expectedApproxHalfArea(bounds1[b])*float(rCount)*dt1.size(); |
133 | if (unlikely(lCount == 0)) sah0 = 0.0f; // happens for initial splits when objects not alive over entire shutter time |
134 | if (unlikely(rCount == 0)) sah1 = 0.0f; |
135 | const float sah = sah0+sah1; |
136 | if (sah < bestSAH) { |
137 | bestSAH = sah; |
138 | bestPos = center_time; |
139 | } |
140 | } |
141 | return Split(bestSAH*MBLUR_TIME_SPLIT_THRESHOLD,(unsigned)Split::SPLIT_TEMPORAL,0,bestPos); |
142 | } |
143 | |
144 | public: |
145 | size_t count0[BINS-1]; |
146 | size_t count1[BINS-1]; |
147 | BBox bounds0[BINS-1]; |
148 | BBox bounds1[BINS-1]; |
149 | }; |
150 | |
151 | /*! finds the best split */ |
152 | const Split find(const SetMB& set, const size_t logBlockSize) |
153 | { |
154 | assert(set.size() > 0); |
155 | TemporalBinInfo binner(empty); |
156 | binner.bin_parallel(set.prims->data(),set.begin(),set.end(),PARALLEL_FIND_BLOCK_SIZE,PARALLEL_THRESHOLD,set.time_range,set,recalculatePrimRef); |
157 | Split tsplit = binner.best((int)logBlockSize,set.time_range,set); |
158 | if (!tsplit.valid()) tsplit.data = Split::SPLIT_FALLBACK; // use fallback split |
159 | return tsplit; |
160 | } |
161 | |
162 | __forceinline std::unique_ptr<mvector<PrimRefMB>> split(const Split& tsplit, const SetMB& set, SetMB& lset, SetMB& rset) |
163 | { |
164 | assert(tsplit.sah != float(inf)); |
165 | assert(tsplit.fpos > set.time_range.lower); |
166 | assert(tsplit.fpos < set.time_range.upper); |
167 | |
168 | float center_time = tsplit.fpos; |
169 | const BBox1f time_range0(set.time_range.lower,center_time); |
170 | const BBox1f time_range1(center_time,set.time_range.upper); |
171 | mvector<PrimRefMB>& prims = *set.prims; |
172 | |
173 | /* calculate primrefs for first time range */ |
174 | std::unique_ptr<mvector<PrimRefMB>> new_vector(new mvector<PrimRefMB>(device, set.size())); |
175 | PrimRefVector lprims = new_vector.get(); |
176 | |
177 | auto reduction_func0 = [&] (const range<size_t>& r) { |
178 | PrimInfoMB pinfo = empty; |
179 | for (size_t i=r.begin(); i<r.end(); i++) |
180 | { |
181 | if (likely(prims[i].time_range_overlap(time_range0))) |
182 | { |
183 | const PrimRefMB& prim = recalculatePrimRef(prims[i],time_range0); |
184 | (*lprims)[i-set.begin()] = prim; |
185 | pinfo.add_primref(prim); |
186 | } |
187 | else |
188 | { |
189 | (*lprims)[i-set.begin()] = prims[i]; |
190 | } |
191 | } |
192 | return pinfo; |
193 | }; |
194 | PrimInfoMB linfo = parallel_reduce(set.object_range,PARALLEL_PARTITION_BLOCK_SIZE,PARALLEL_THRESHOLD,PrimInfoMB(empty),reduction_func0,PrimInfoMB::merge2); |
195 | |
196 | /* primrefs for first time range are in lprims[0 .. set.size()) */ |
197 | /* some primitives may need to be filtered out */ |
198 | if (linfo.size() != set.size()) |
199 | linfo.object_range._end = parallel_filter(lprims->data(), size_t(0), set.size(), size_t(1024), |
200 | [&](const PrimRefMB& prim) { return prim.time_range_overlap(time_range0); }); |
201 | |
202 | lset = SetMB(linfo,lprims,time_range0); |
203 | |
204 | /* calculate primrefs for second time range */ |
205 | auto reduction_func1 = [&] (const range<size_t>& r) { |
206 | PrimInfoMB pinfo = empty; |
207 | for (size_t i=r.begin(); i<r.end(); i++) |
208 | { |
209 | if (likely(prims[i].time_range_overlap(time_range1))) |
210 | { |
211 | const PrimRefMB& prim = recalculatePrimRef(prims[i],time_range1); |
212 | prims[i] = prim; |
213 | pinfo.add_primref(prim); |
214 | } |
215 | } |
216 | return pinfo; |
217 | }; |
218 | PrimInfoMB rinfo = parallel_reduce(set.object_range,PARALLEL_PARTITION_BLOCK_SIZE,PARALLEL_THRESHOLD,PrimInfoMB(empty),reduction_func1,PrimInfoMB::merge2); |
219 | rinfo.object_range = range<size_t>(set.begin(), set.begin() + rinfo.size()); |
220 | |
221 | /* primrefs for second time range are in prims[set.begin() .. set.end()) */ |
222 | /* some primitives may need to be filtered out */ |
223 | if (rinfo.size() != set.size()) |
224 | rinfo.object_range._end = parallel_filter(prims.data(), set.begin(), set.end(), size_t(1024), |
225 | [&](const PrimRefMB& prim) { return prim.time_range_overlap(time_range1); }); |
226 | |
227 | rset = SetMB(rinfo,&prims,time_range1); |
228 | |
229 | return new_vector; |
230 | } |
231 | |
232 | private: |
233 | MemoryMonitorInterface* device; // device to report memory usage to |
234 | const RecalculatePrimRef recalculatePrimRef; |
235 | }; |
236 | } |
237 | } |
238 | |