1 | // Copyright 2009-2021 Intel Corporation |
2 | // SPDX-License-Identifier: Apache-2.0 |
3 | |
4 | #pragma once |
5 | |
6 | #include "geometry.h" |
7 | #include "buffer.h" |
8 | |
9 | namespace embree |
10 | { |
11 | /*! Quad Mesh */ |
12 | struct QuadMesh : public Geometry |
13 | { |
14 | /*! type of this geometry */ |
15 | static const Geometry::GTypeMask geom_type = Geometry::MTY_QUAD_MESH; |
16 | |
17 | /*! triangle indices */ |
18 | struct Quad |
19 | { |
20 | uint32_t v[4]; |
21 | |
22 | /*! outputs triangle indices */ |
23 | __forceinline friend embree_ostream operator<<(embree_ostream cout, const Quad& q) { |
24 | return cout << "Quad {" << q.v[0] << ", " << q.v[1] << ", " << q.v[2] << ", " << q.v[3] << " }" ; |
25 | } |
26 | }; |
27 | |
28 | public: |
29 | |
30 | /*! quad mesh construction */ |
31 | QuadMesh (Device* device); |
32 | |
33 | /* geometry interface */ |
34 | public: |
35 | void setMask(unsigned mask); |
36 | void setNumTimeSteps (unsigned int numTimeSteps); |
37 | void setVertexAttributeCount (unsigned int N); |
38 | void setBuffer(RTCBufferType type, unsigned int slot, RTCFormat format, const Ref<Buffer>& buffer, size_t offset, size_t stride, unsigned int num); |
39 | void* getBuffer(RTCBufferType type, unsigned int slot); |
40 | void updateBuffer(RTCBufferType type, unsigned int slot); |
41 | void commit(); |
42 | bool verify(); |
43 | void interpolate(const RTCInterpolateArguments* const args); |
44 | void addElementsToCount (GeometryCounts & counts) const; |
45 | |
46 | template<int N> |
47 | void interpolate_impl(const RTCInterpolateArguments* const args) |
48 | { |
49 | unsigned int primID = args->primID; |
50 | float u = args->u; |
51 | float v = args->v; |
52 | RTCBufferType bufferType = args->bufferType; |
53 | unsigned int bufferSlot = args->bufferSlot; |
54 | float* P = args->P; |
55 | float* dPdu = args->dPdu; |
56 | float* dPdv = args->dPdv; |
57 | float* ddPdudu = args->ddPdudu; |
58 | float* ddPdvdv = args->ddPdvdv; |
59 | float* ddPdudv = args->ddPdudv; |
60 | unsigned int valueCount = args->valueCount; |
61 | |
62 | /* calculate base pointer and stride */ |
63 | assert((bufferType == RTC_BUFFER_TYPE_VERTEX && bufferSlot < numTimeSteps) || |
64 | (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE && bufferSlot <= vertexAttribs.size())); |
65 | const char* src = nullptr; |
66 | size_t stride = 0; |
67 | if (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) { |
68 | src = vertexAttribs[bufferSlot].getPtr(); |
69 | stride = vertexAttribs[bufferSlot].getStride(); |
70 | } else { |
71 | src = vertices[bufferSlot].getPtr(); |
72 | stride = vertices[bufferSlot].getStride(); |
73 | } |
74 | |
75 | for (unsigned int i=0; i<valueCount; i+=N) |
76 | { |
77 | const vbool<N> valid = vint<N>((int)i)+vint<N>(step) < vint<N>(int(valueCount)); |
78 | const size_t ofs = i*sizeof(float); |
79 | const Quad& tri = quad(i: primID); |
80 | const vfloat<N> p0 = mem<vfloat<N>>::loadu(valid,(float*)&src[tri.v[0]*stride+ofs]); |
81 | const vfloat<N> p1 = mem<vfloat<N>>::loadu(valid,(float*)&src[tri.v[1]*stride+ofs]); |
82 | const vfloat<N> p2 = mem<vfloat<N>>::loadu(valid,(float*)&src[tri.v[2]*stride+ofs]); |
83 | const vfloat<N> p3 = mem<vfloat<N>>::loadu(valid,(float*)&src[tri.v[3]*stride+ofs]); |
84 | const vbool<N> left = u+v <= 1.0f; |
85 | const vfloat<N> Q0 = select(left,p0,p2); |
86 | const vfloat<N> Q1 = select(left,p1,p3); |
87 | const vfloat<N> Q2 = select(left,p3,p1); |
88 | const vfloat<N> U = select(left,u,vfloat<N>(1.0f)-u); |
89 | const vfloat<N> V = select(left,v,vfloat<N>(1.0f)-v); |
90 | const vfloat<N> W = 1.0f-U-V; |
91 | if (P) { |
92 | mem<vfloat<N>>::storeu(valid,P+i,madd(W,Q0,madd(U,Q1,V*Q2))); |
93 | } |
94 | if (dPdu) { |
95 | assert(dPdu); mem<vfloat<N>>::storeu(valid,dPdu+i,select(left,Q1-Q0,Q0-Q1)); |
96 | assert(dPdv); mem<vfloat<N>>::storeu(valid,dPdv+i,select(left,Q2-Q0,Q0-Q2)); |
97 | } |
98 | if (ddPdudu) { |
99 | assert(ddPdudu); mem<vfloat<N>>::storeu(valid,ddPdudu+i,vfloat<N>(zero)); |
100 | assert(ddPdvdv); mem<vfloat<N>>::storeu(valid,ddPdvdv+i,vfloat<N>(zero)); |
101 | assert(ddPdudv); mem<vfloat<N>>::storeu(valid,ddPdudv+i,vfloat<N>(zero)); |
102 | } |
103 | } |
104 | } |
105 | |
106 | public: |
107 | |
108 | /*! returns number of vertices */ |
109 | __forceinline size_t numVertices() const { |
110 | return vertices[0].size(); |
111 | } |
112 | |
113 | /*! returns i'th quad */ |
114 | __forceinline const Quad& quad(size_t i) const { |
115 | return quads[i]; |
116 | } |
117 | |
118 | /*! returns i'th vertex of itime'th timestep */ |
119 | __forceinline const Vec3fa vertex(size_t i) const { |
120 | return vertices0[i]; |
121 | } |
122 | |
123 | /*! returns i'th vertex of itime'th timestep */ |
124 | __forceinline const char* vertexPtr(size_t i) const { |
125 | return vertices0.getPtr(i); |
126 | } |
127 | |
128 | /*! returns i'th vertex of itime'th timestep */ |
129 | __forceinline const Vec3fa vertex(size_t i, size_t itime) const { |
130 | return vertices[itime][i]; |
131 | } |
132 | |
133 | /*! returns i'th vertex of itime'th timestep */ |
134 | __forceinline const char* vertexPtr(size_t i, size_t itime) const { |
135 | return vertices[itime].getPtr(i); |
136 | } |
137 | |
138 | /*! calculates the bounds of the i'th quad */ |
139 | __forceinline BBox3fa bounds(size_t i) const |
140 | { |
141 | const Quad& q = quad(i); |
142 | const Vec3fa v0 = vertex(i: q.v[0]); |
143 | const Vec3fa v1 = vertex(i: q.v[1]); |
144 | const Vec3fa v2 = vertex(i: q.v[2]); |
145 | const Vec3fa v3 = vertex(i: q.v[3]); |
146 | return BBox3fa(min(a: v0,b: v1,c: v2,d: v3),max(a: v0,b: v1,c: v2,d: v3)); |
147 | } |
148 | |
149 | /*! calculates the bounds of the i'th quad at the itime'th timestep */ |
150 | __forceinline BBox3fa bounds(size_t i, size_t itime) const |
151 | { |
152 | const Quad& q = quad(i); |
153 | const Vec3fa v0 = vertex(i: q.v[0],itime); |
154 | const Vec3fa v1 = vertex(i: q.v[1],itime); |
155 | const Vec3fa v2 = vertex(i: q.v[2],itime); |
156 | const Vec3fa v3 = vertex(i: q.v[3],itime); |
157 | return BBox3fa(min(a: v0,b: v1,c: v2,d: v3),max(a: v0,b: v1,c: v2,d: v3)); |
158 | } |
159 | |
160 | /*! check if the i'th primitive is valid at the itime'th timestep */ |
161 | __forceinline bool valid(size_t i, size_t itime) const { |
162 | return valid(i, itime_range: make_range(begin: itime, end: itime)); |
163 | } |
164 | |
165 | /*! check if the i'th primitive is valid between the specified time range */ |
166 | __forceinline bool valid(size_t i, const range<size_t>& itime_range) const |
167 | { |
168 | const Quad& q = quad(i); |
169 | if (unlikely(q.v[0] >= numVertices())) return false; |
170 | if (unlikely(q.v[1] >= numVertices())) return false; |
171 | if (unlikely(q.v[2] >= numVertices())) return false; |
172 | if (unlikely(q.v[3] >= numVertices())) return false; |
173 | |
174 | for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++) |
175 | { |
176 | if (!isvalid(v: vertex(i: q.v[0],itime))) return false; |
177 | if (!isvalid(v: vertex(i: q.v[1],itime))) return false; |
178 | if (!isvalid(v: vertex(i: q.v[2],itime))) return false; |
179 | if (!isvalid(v: vertex(i: q.v[3],itime))) return false; |
180 | } |
181 | |
182 | return true; |
183 | } |
184 | |
185 | /*! calculates the linear bounds of the i'th quad at the itimeGlobal'th time segment */ |
186 | __forceinline LBBox3fa linearBounds(size_t i, size_t itime) const { |
187 | return LBBox3fa(bounds(i,itime: itime+0),bounds(i,itime: itime+1)); |
188 | } |
189 | |
190 | /*! calculates the build bounds of the i'th primitive, if it's valid */ |
191 | __forceinline bool buildBounds(size_t i, BBox3fa* bbox = nullptr) const |
192 | { |
193 | const Quad& q = quad(i); |
194 | if (q.v[0] >= numVertices()) return false; |
195 | if (q.v[1] >= numVertices()) return false; |
196 | if (q.v[2] >= numVertices()) return false; |
197 | if (q.v[3] >= numVertices()) return false; |
198 | |
199 | for (unsigned int t=0; t<numTimeSteps; t++) |
200 | { |
201 | const Vec3fa v0 = vertex(i: q.v[0],itime: t); |
202 | const Vec3fa v1 = vertex(i: q.v[1],itime: t); |
203 | const Vec3fa v2 = vertex(i: q.v[2],itime: t); |
204 | const Vec3fa v3 = vertex(i: q.v[3],itime: t); |
205 | |
206 | if (unlikely(!isvalid(v0) || !isvalid(v1) || !isvalid(v2) || !isvalid(v3))) |
207 | return false; |
208 | } |
209 | |
210 | if (bbox) |
211 | *bbox = bounds(i); |
212 | |
213 | return true; |
214 | } |
215 | |
216 | /*! calculates the build bounds of the i'th primitive at the itime'th time segment, if it's valid */ |
217 | __forceinline bool buildBounds(size_t i, size_t itime, BBox3fa& bbox) const |
218 | { |
219 | const Quad& q = quad(i); |
220 | if (unlikely(q.v[0] >= numVertices())) return false; |
221 | if (unlikely(q.v[1] >= numVertices())) return false; |
222 | if (unlikely(q.v[2] >= numVertices())) return false; |
223 | if (unlikely(q.v[3] >= numVertices())) return false; |
224 | |
225 | assert(itime+1 < numTimeSteps); |
226 | const Vec3fa a0 = vertex(i: q.v[0],itime: itime+0); if (unlikely(!isvalid(a0))) return false; |
227 | const Vec3fa a1 = vertex(i: q.v[1],itime: itime+0); if (unlikely(!isvalid(a1))) return false; |
228 | const Vec3fa a2 = vertex(i: q.v[2],itime: itime+0); if (unlikely(!isvalid(a2))) return false; |
229 | const Vec3fa a3 = vertex(i: q.v[3],itime: itime+0); if (unlikely(!isvalid(a3))) return false; |
230 | const Vec3fa b0 = vertex(i: q.v[0],itime: itime+1); if (unlikely(!isvalid(b0))) return false; |
231 | const Vec3fa b1 = vertex(i: q.v[1],itime: itime+1); if (unlikely(!isvalid(b1))) return false; |
232 | const Vec3fa b2 = vertex(i: q.v[2],itime: itime+1); if (unlikely(!isvalid(b2))) return false; |
233 | const Vec3fa b3 = vertex(i: q.v[3],itime: itime+1); if (unlikely(!isvalid(b3))) return false; |
234 | |
235 | /* use bounds of first time step in builder */ |
236 | bbox = BBox3fa(min(a: a0,b: a1,c: a2,d: a3),max(a: a0,b: a1,c: a2,d: a3)); |
237 | return true; |
238 | } |
239 | |
240 | /*! calculates the linear bounds of the i'th primitive for the specified time range */ |
241 | __forceinline LBBox3fa linearBounds(size_t primID, const BBox1f& dt) const { |
242 | return LBBox3fa([&] (size_t itime) { return bounds(i: primID, itime); }, dt, time_range, fnumTimeSegments); |
243 | } |
244 | |
245 | /*! calculates the linear bounds of the i'th primitive for the specified time range */ |
246 | __forceinline bool linearBounds(size_t i, const BBox1f& dt, LBBox3fa& bbox) const |
247 | { |
248 | if (!valid(i, itime_range: timeSegmentRange(range: dt))) return false; |
249 | bbox = linearBounds(primID: i, dt); |
250 | return true; |
251 | } |
252 | |
253 | /*! get fast access to first vertex buffer */ |
254 | __forceinline float * getCompactVertexArray () const { |
255 | return (float*) vertices0.getPtr(); |
256 | } |
257 | |
258 | /* gets version info of topology */ |
259 | unsigned int getTopologyVersion() const { |
260 | return quads.modCounter; |
261 | } |
262 | |
263 | /* returns true if topology changed */ |
264 | bool topologyChanged(unsigned int otherVersion) const { |
265 | return quads.isModified(otherModCounter: otherVersion); // || numPrimitivesChanged; |
266 | } |
267 | |
268 | /* returns the projected area */ |
269 | __forceinline float projectedPrimitiveArea(const size_t i) const { |
270 | const Quad& q = quad(i); |
271 | const Vec3fa v0 = vertex(i: q.v[0]); |
272 | const Vec3fa v1 = vertex(i: q.v[1]); |
273 | const Vec3fa v2 = vertex(i: q.v[2]); |
274 | const Vec3fa v3 = vertex(i: q.v[3]); |
275 | return areaProjectedTriangle(v0,v1,v2: v3) + |
276 | areaProjectedTriangle(v0: v1,v1: v2,v2: v3); |
277 | } |
278 | |
279 | public: |
280 | BufferView<Quad> quads; //!< array of quads |
281 | BufferView<Vec3fa> vertices0; //!< fast access to first vertex buffer |
282 | vector<BufferView<Vec3fa>> vertices; //!< vertex array for each timestep |
283 | vector<BufferView<char>> vertexAttribs; //!< vertex attribute buffers |
284 | }; |
285 | |
286 | namespace isa |
287 | { |
288 | struct QuadMeshISA : public QuadMesh |
289 | { |
290 | QuadMeshISA (Device* device) |
291 | : QuadMesh(device) {} |
292 | |
293 | PrimInfo createPrimRefArray(mvector<PrimRef>& prims, const range<size_t>& r, size_t k, unsigned int geomID) const |
294 | { |
295 | PrimInfo pinfo(empty); |
296 | for (size_t j=r.begin(); j<r.end(); j++) |
297 | { |
298 | BBox3fa bounds = empty; |
299 | if (!buildBounds(i: j,bbox: &bounds)) continue; |
300 | const PrimRef prim(bounds,geomID,unsigned(j)); |
301 | pinfo.add_center2(prim); |
302 | prims[k++] = prim; |
303 | } |
304 | return pinfo; |
305 | } |
306 | |
307 | PrimInfo createPrimRefArrayMB(mvector<PrimRef>& prims, size_t itime, const range<size_t>& r, size_t k, unsigned int geomID) const |
308 | { |
309 | PrimInfo pinfo(empty); |
310 | for (size_t j=r.begin(); j<r.end(); j++) |
311 | { |
312 | BBox3fa bounds = empty; |
313 | if (!buildBounds(i: j,itime,bbox&: bounds)) continue; |
314 | const PrimRef prim(bounds,geomID,unsigned(j)); |
315 | pinfo.add_center2(prim); |
316 | prims[k++] = prim; |
317 | } |
318 | return pinfo; |
319 | } |
320 | |
321 | PrimInfoMB createPrimRefMBArray(mvector<PrimRefMB>& prims, const BBox1f& t0t1, const range<size_t>& r, size_t k, unsigned int geomID) const |
322 | { |
323 | PrimInfoMB pinfo(empty); |
324 | for (size_t j=r.begin(); j<r.end(); j++) |
325 | { |
326 | if (!valid(i: j, itime_range: timeSegmentRange(range: t0t1))) continue; |
327 | const PrimRefMB prim(linearBounds(primID: j,dt: t0t1),this->numTimeSegments(),this->time_range,this->numTimeSegments(),geomID,unsigned(j)); |
328 | pinfo.add_primref(prim); |
329 | prims[k++] = prim; |
330 | } |
331 | return pinfo; |
332 | } |
333 | }; |
334 | } |
335 | |
336 | DECLARE_ISA_FUNCTION(QuadMesh*, createQuadMesh, Device*); |
337 | } |
338 | |