| 1 | #ifndef TINYEXR_H_ |
| 2 | #define TINYEXR_H_ |
| 3 | /* |
| 4 | Copyright (c) 2014 - 2021, Syoyo Fujita and many contributors. |
| 5 | All rights reserved. |
| 6 | |
| 7 | Redistribution and use in source and binary forms, with or without |
| 8 | modification, are permitted provided that the following conditions are met: |
| 9 | * Redistributions of source code must retain the above copyright |
| 10 | notice, this list of conditions and the following disclaimer. |
| 11 | * Redistributions in binary form must reproduce the above copyright |
| 12 | notice, this list of conditions and the following disclaimer in the |
| 13 | documentation and/or other materials provided with the distribution. |
| 14 | * Neither the name of the Syoyo Fujita nor the |
| 15 | names of its contributors may be used to endorse or promote products |
| 16 | derived from this software without specific prior written permission. |
| 17 | |
| 18 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
| 19 | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 20 | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 21 | DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY |
| 22 | DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 23 | (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 24 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 25 | ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 26 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 27 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 28 | */ |
| 29 | |
| 30 | // TinyEXR contains some OpenEXR code, which is licensed under ------------ |
| 31 | |
| 32 | /////////////////////////////////////////////////////////////////////////// |
| 33 | // |
| 34 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
| 35 | // Digital Ltd. LLC |
| 36 | // |
| 37 | // All rights reserved. |
| 38 | // |
| 39 | // Redistribution and use in source and binary forms, with or without |
| 40 | // modification, are permitted provided that the following conditions are |
| 41 | // met: |
| 42 | // * Redistributions of source code must retain the above copyright |
| 43 | // notice, this list of conditions and the following disclaimer. |
| 44 | // * Redistributions in binary form must reproduce the above |
| 45 | // copyright notice, this list of conditions and the following disclaimer |
| 46 | // in the documentation and/or other materials provided with the |
| 47 | // distribution. |
| 48 | // * Neither the name of Industrial Light & Magic nor the names of |
| 49 | // its contributors may be used to endorse or promote products derived |
| 50 | // from this software without specific prior written permission. |
| 51 | // |
| 52 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 53 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 54 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 55 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 56 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 57 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 58 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 59 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 60 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 61 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 62 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 63 | // |
| 64 | /////////////////////////////////////////////////////////////////////////// |
| 65 | |
| 66 | // End of OpenEXR license ------------------------------------------------- |
| 67 | |
| 68 | |
| 69 | // |
| 70 | // |
| 71 | // Do this: |
| 72 | // #define TINYEXR_IMPLEMENTATION |
| 73 | // before you include this file in *one* C or C++ file to create the |
| 74 | // implementation. |
| 75 | // |
| 76 | // // i.e. it should look like this: |
| 77 | // #include ... |
| 78 | // #include ... |
| 79 | // #include ... |
| 80 | // #define TINYEXR_IMPLEMENTATION |
| 81 | // #include "tinyexr.h" |
| 82 | // |
| 83 | // |
| 84 | |
| 85 | #include <stddef.h> // for size_t |
| 86 | #include <stdint.h> // guess stdint.h is available(C99) |
| 87 | |
| 88 | #ifdef __cplusplus |
| 89 | extern "C" { |
| 90 | #endif |
| 91 | |
| 92 | #if defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || \ |
| 93 | defined(__i386) || defined(__i486__) || defined(__i486) || \ |
| 94 | defined(i386) || defined(__ia64__) || defined(__x86_64__) |
| 95 | #define TINYEXR_X86_OR_X64_CPU 1 |
| 96 | #else |
| 97 | #define TINYEXR_X86_OR_X64_CPU 0 |
| 98 | #endif |
| 99 | |
| 100 | #if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || TINYEXR_X86_OR_X64_CPU |
| 101 | #define TINYEXR_LITTLE_ENDIAN 1 |
| 102 | #else |
| 103 | #define TINYEXR_LITTLE_ENDIAN 0 |
| 104 | #endif |
| 105 | |
| 106 | // Use miniz or not to decode ZIP format pixel. Linking with zlib |
| 107 | // required if this flag is 0 and TINYEXR_USE_STB_ZLIB is 0. |
| 108 | #ifndef TINYEXR_USE_MINIZ |
| 109 | #define TINYEXR_USE_MINIZ (1) |
| 110 | #endif |
| 111 | |
| 112 | // Use the ZIP implementation of stb_image.h and stb_image_write.h. |
| 113 | #ifndef TINYEXR_USE_STB_ZLIB |
| 114 | #define TINYEXR_USE_STB_ZLIB (0) |
| 115 | #endif |
| 116 | |
| 117 | // Use nanozlib. |
| 118 | #ifndef TINYEXR_USE_NANOZLIB |
| 119 | #define TINYEXR_USE_NANOZLIB (0) |
| 120 | #endif |
| 121 | |
| 122 | // Disable PIZ compression when applying cpplint. |
| 123 | #ifndef TINYEXR_USE_PIZ |
| 124 | #define TINYEXR_USE_PIZ (1) |
| 125 | #endif |
| 126 | |
| 127 | #ifndef TINYEXR_USE_ZFP |
| 128 | #define TINYEXR_USE_ZFP (0) // TinyEXR extension. |
| 129 | // http://computation.llnl.gov/projects/floating-point-compression |
| 130 | #endif |
| 131 | |
| 132 | #ifndef TINYEXR_USE_THREAD |
| 133 | #define TINYEXR_USE_THREAD (0) // No threaded loading. |
| 134 | #else |
| 135 | // When using threading a reduced custom upperbound can be specified by setting TINYEXR_MAX_THREADS |
| 136 | #ifndef TINYEXR_MAX_THREADS // if not defined define it as 0 meaning upper limit is taken from hardware_concurrency() |
| 137 | #define TINYEXR_MAX_THREADS (0) |
| 138 | #endif |
| 139 | #endif |
| 140 | |
| 141 | #ifndef TINYEXR_USE_OPENMP |
| 142 | #ifdef _OPENMP |
| 143 | #define TINYEXR_USE_OPENMP (1) |
| 144 | #else |
| 145 | #define TINYEXR_USE_OPENMP (0) |
| 146 | #endif |
| 147 | #endif |
| 148 | |
| 149 | #ifndef TINYEXR_USE_COMPILER_FP16 |
| 150 | #define TINYEXR_USE_COMPILER_FP16 (0) |
| 151 | #endif |
| 152 | |
| 153 | #if TINYEXR_USE_COMPILER_FP16 |
| 154 | #ifndef _MSC_VER |
| 155 | #if defined( __GNUC__ ) || defined( __clang__ ) |
| 156 | #if defined( __SSE2__ ) |
| 157 | #if ( __GNUC__ > 11 ) || ( __clang_major__ > 14 ) |
| 158 | #ifndef __STDC_WANT_IEC_60559_TYPES_EXT__ |
| 159 | #define __STDC_WANT_IEC_60559_TYPES_EXT__ |
| 160 | #endif |
| 161 | #include <float.h> |
| 162 | #include <math.h> |
| 163 | #define TINYEXR_FP16_COMPILER_TYPE _Float16 |
| 164 | #endif |
| 165 | #endif |
| 166 | #if defined( __ARM_NEON__ ) || defined( __ARM_NEON ) |
| 167 | #define TINYEXR_FP16_COMPILER_TYPE __fp16 |
| 168 | #endif |
| 169 | #endif |
| 170 | #else |
| 171 | #if (defined(_M_IX86) || defined(_M_X64)) && defined(__AVX2__) |
| 172 | #include <intrin.h> |
| 173 | #define TINYEXR_FP16_COMPILER_TYPE uint16_t |
| 174 | #endif |
| 175 | #endif |
| 176 | #endif |
| 177 | |
| 178 | #ifdef TINYEXR_FP16_COMPILER_TYPE |
| 179 | #define TINYEXR_HAS_FP16_COMPILER_TYPE (1) |
| 180 | #else |
| 181 | #define TINYEXR_HAS_FP16_COMPILER_TYPE (0) |
| 182 | #endif |
| 183 | |
| 184 | #define TINYEXR_SUCCESS (0) |
| 185 | #define TINYEXR_ERROR_INVALID_MAGIC_NUMBER (-1) |
| 186 | #define TINYEXR_ERROR_INVALID_EXR_VERSION (-2) |
| 187 | #define TINYEXR_ERROR_INVALID_ARGUMENT (-3) |
| 188 | #define TINYEXR_ERROR_INVALID_DATA (-4) |
| 189 | #define TINYEXR_ERROR_INVALID_FILE (-5) |
| 190 | #define TINYEXR_ERROR_INVALID_PARAMETER (-6) |
| 191 | #define TINYEXR_ERROR_CANT_OPEN_FILE (-7) |
| 192 | #define TINYEXR_ERROR_UNSUPPORTED_FORMAT (-8) |
| 193 | #define (-9) |
| 194 | #define TINYEXR_ERROR_UNSUPPORTED_FEATURE (-10) |
| 195 | #define TINYEXR_ERROR_CANT_WRITE_FILE (-11) |
| 196 | #define TINYEXR_ERROR_SERIALIZATION_FAILED (-12) |
| 197 | #define TINYEXR_ERROR_LAYER_NOT_FOUND (-13) |
| 198 | #define TINYEXR_ERROR_DATA_TOO_LARGE (-14) |
| 199 | |
| 200 | // @note { OpenEXR file format: http://www.openexr.com/openexrfilelayout.pdf } |
| 201 | |
| 202 | // pixel type: possible values are: UINT = 0 HALF = 1 FLOAT = 2 |
| 203 | #define TINYEXR_PIXELTYPE_UINT (0) |
| 204 | #define TINYEXR_PIXELTYPE_HALF (1) |
| 205 | #define TINYEXR_PIXELTYPE_FLOAT (2) |
| 206 | |
| 207 | #define (1024) |
| 208 | #define TINYEXR_MAX_CUSTOM_ATTRIBUTES (128) |
| 209 | |
| 210 | #define TINYEXR_COMPRESSIONTYPE_NONE (0) |
| 211 | #define TINYEXR_COMPRESSIONTYPE_RLE (1) |
| 212 | #define TINYEXR_COMPRESSIONTYPE_ZIPS (2) |
| 213 | #define TINYEXR_COMPRESSIONTYPE_ZIP (3) |
| 214 | #define TINYEXR_COMPRESSIONTYPE_PIZ (4) |
| 215 | #define TINYEXR_COMPRESSIONTYPE_ZFP (128) // TinyEXR extension |
| 216 | |
| 217 | #define TINYEXR_ZFP_COMPRESSIONTYPE_RATE (0) |
| 218 | #define TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION (1) |
| 219 | #define TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY (2) |
| 220 | |
| 221 | #define TINYEXR_TILE_ONE_LEVEL (0) |
| 222 | #define TINYEXR_TILE_MIPMAP_LEVELS (1) |
| 223 | #define TINYEXR_TILE_RIPMAP_LEVELS (2) |
| 224 | |
| 225 | #define TINYEXR_TILE_ROUND_DOWN (0) |
| 226 | #define TINYEXR_TILE_ROUND_UP (1) |
| 227 | |
| 228 | typedef struct TEXRVersion { |
| 229 | int version; // this must be 2 |
| 230 | // tile format image; |
| 231 | // not zero for only a single-part "normal" tiled file (according to spec.) |
| 232 | int tiled; |
| 233 | int long_name; // long name attribute |
| 234 | // deep image(EXR 2.0); |
| 235 | // for a multi-part file, indicates that at least one part is of type deep* (according to spec.) |
| 236 | int non_image; |
| 237 | int multipart; // multi-part(EXR 2.0) |
| 238 | } EXRVersion; |
| 239 | |
| 240 | typedef struct TEXRAttribute { |
| 241 | char name[256]; // name and type are up to 255 chars long. |
| 242 | char type[256]; |
| 243 | unsigned char *value; // uint8_t* |
| 244 | int size; |
| 245 | int pad0; |
| 246 | } EXRAttribute; |
| 247 | |
| 248 | typedef struct TEXRChannelInfo { |
| 249 | char name[256]; // less than 255 bytes long |
| 250 | int pixel_type; |
| 251 | int x_sampling; |
| 252 | int y_sampling; |
| 253 | unsigned char p_linear; |
| 254 | unsigned char pad[3]; |
| 255 | } EXRChannelInfo; |
| 256 | |
| 257 | typedef struct TEXRTile { |
| 258 | int offset_x; |
| 259 | int offset_y; |
| 260 | int level_x; |
| 261 | int level_y; |
| 262 | |
| 263 | int width; // actual width in a tile. |
| 264 | int height; // actual height int a tile. |
| 265 | |
| 266 | unsigned char **images; // image[channels][pixels] |
| 267 | } EXRTile; |
| 268 | |
| 269 | typedef struct TEXRBox2i { |
| 270 | int min_x; |
| 271 | int min_y; |
| 272 | int max_x; |
| 273 | int max_y; |
| 274 | } EXRBox2i; |
| 275 | |
| 276 | typedef struct { |
| 277 | float ; |
| 278 | int ; |
| 279 | EXRBox2i ; |
| 280 | EXRBox2i ; |
| 281 | float [2]; |
| 282 | float ; |
| 283 | |
| 284 | int ; |
| 285 | |
| 286 | // Properties for tiled format(`tiledesc`). |
| 287 | int ; |
| 288 | int ; |
| 289 | int ; |
| 290 | int ; |
| 291 | int ; |
| 292 | |
| 293 | int ; |
| 294 | // for a single-part file, agree with the version field bit 11 |
| 295 | // for a multi-part file, it is consistent with the type of part |
| 296 | int ; |
| 297 | int ; |
| 298 | unsigned int ; |
| 299 | |
| 300 | // Custom attributes(exludes required attributes(e.g. `channels`, |
| 301 | // `compression`, etc) |
| 302 | int ; |
| 303 | EXRAttribute *; // array of EXRAttribute. size = |
| 304 | // `num_custom_attributes`. |
| 305 | |
| 306 | EXRChannelInfo *; // [num_channels] |
| 307 | |
| 308 | int *; // Loaded pixel type(TINYEXR_PIXELTYPE_*) of `images` for |
| 309 | // each channel. This is overwritten with `requested_pixel_types` when |
| 310 | // loading. |
| 311 | int ; |
| 312 | |
| 313 | int ; // compression type(TINYEXR_COMPRESSIONTYPE_*) |
| 314 | int *; // Filled initially by |
| 315 | // ParseEXRHeaderFrom(Meomory|File), then users |
| 316 | // can edit it(only valid for HALF pixel type |
| 317 | // channel) |
| 318 | // name attribute required for multipart files; |
| 319 | // must be unique and non empty (according to spec.); |
| 320 | // use EXRSetNameAttr for setting value; |
| 321 | // max 255 character allowed - excluding terminating zero |
| 322 | char [256]; |
| 323 | } ; |
| 324 | |
| 325 | typedef struct { |
| 326 | int ; |
| 327 | EXRHeader *; |
| 328 | |
| 329 | } ; |
| 330 | |
| 331 | typedef struct TEXRImage { |
| 332 | EXRTile *tiles; // Tiled pixel data. The application must reconstruct image |
| 333 | // from tiles manually. NULL if scanline format. |
| 334 | struct TEXRImage* next_level; // NULL if scanline format or image is the last level. |
| 335 | int level_x; // x level index |
| 336 | int level_y; // y level index |
| 337 | |
| 338 | unsigned char **images; // image[channels][pixels]. NULL if tiled format. |
| 339 | |
| 340 | int width; |
| 341 | int height; |
| 342 | int num_channels; |
| 343 | |
| 344 | // Properties for tile format. |
| 345 | int num_tiles; |
| 346 | |
| 347 | } EXRImage; |
| 348 | |
| 349 | typedef struct TEXRMultiPartImage { |
| 350 | int num_images; |
| 351 | EXRImage *images; |
| 352 | |
| 353 | } EXRMultiPartImage; |
| 354 | |
| 355 | typedef struct TDeepImage { |
| 356 | const char **channel_names; |
| 357 | float ***image; // image[channels][scanlines][samples] |
| 358 | int **offset_table; // offset_table[scanline][offsets] |
| 359 | int num_channels; |
| 360 | int width; |
| 361 | int height; |
| 362 | int pad0; |
| 363 | } DeepImage; |
| 364 | |
| 365 | // @deprecated { For backward compatibility. Not recommended to use. } |
| 366 | // Loads single-frame OpenEXR image. Assume EXR image contains A(single channel |
| 367 | // alpha) or RGB(A) channels. |
| 368 | // Application must free image data as returned by `out_rgba` |
| 369 | // Result image format is: float x RGBA x width x hight |
| 370 | // Returns negative value and may set error string in `err` when there's an |
| 371 | // error |
| 372 | extern int LoadEXR(float **out_rgba, int *width, int *height, |
| 373 | const char *filename, const char **err); |
| 374 | |
| 375 | // Loads single-frame OpenEXR image by specifying layer name. Assume EXR image |
| 376 | // contains A(single channel alpha) or RGB(A) channels. Application must free |
| 377 | // image data as returned by `out_rgba` Result image format is: float x RGBA x |
| 378 | // width x hight Returns negative value and may set error string in `err` when |
| 379 | // there's an error When the specified layer name is not found in the EXR file, |
| 380 | // the function will return `TINYEXR_ERROR_LAYER_NOT_FOUND`. |
| 381 | extern int LoadEXRWithLayer(float **out_rgba, int *width, int *height, |
| 382 | const char *filename, const char *layer_name, |
| 383 | const char **err); |
| 384 | |
| 385 | // |
| 386 | // Get layer infos from EXR file. |
| 387 | // |
| 388 | // @param[out] layer_names List of layer names. Application must free memory |
| 389 | // after using this. |
| 390 | // @param[out] num_layers The number of layers |
| 391 | // @param[out] err Error string(will be filled when the function returns error |
| 392 | // code). Free it using FreeEXRErrorMessage after using this value. |
| 393 | // |
| 394 | // @return TINYEXR_SUCCEES upon success. |
| 395 | // |
| 396 | extern int EXRLayers(const char *filename, const char **layer_names[], |
| 397 | int *num_layers, const char **err); |
| 398 | |
| 399 | // @deprecated |
| 400 | // Simple wrapper API for ParseEXRHeaderFromFile. |
| 401 | // checking given file is a EXR file(by just look up header) |
| 402 | // @return TINYEXR_SUCCEES for EXR image, TINYEXR_ERROR_INVALID_HEADER for |
| 403 | // others |
| 404 | extern int IsEXR(const char *filename); |
| 405 | |
| 406 | // Simple wrapper API for ParseEXRHeaderFromMemory. |
| 407 | // Check if given data is a EXR image(by just looking up a header section) |
| 408 | // @return TINYEXR_SUCCEES for EXR image, TINYEXR_ERROR_INVALID_HEADER for |
| 409 | // others |
| 410 | extern int IsEXRFromMemory(const unsigned char *memory, size_t size); |
| 411 | |
| 412 | // @deprecated |
| 413 | // Saves single-frame OpenEXR image to a buffer. Assume EXR image contains RGB(A) channels. |
| 414 | // components must be 1(Grayscale), 3(RGB) or 4(RGBA). |
| 415 | // Input image format is: `float x width x height`, or `float x RGB(A) x width x |
| 416 | // hight` |
| 417 | // Save image as fp16(HALF) format when `save_as_fp16` is positive non-zero |
| 418 | // value. |
| 419 | // Save image as fp32(FLOAT) format when `save_as_fp16` is 0. |
| 420 | // Use ZIP compression by default. |
| 421 | // `buffer` is the pointer to write EXR data. |
| 422 | // Memory for `buffer` is allocated internally in SaveEXRToMemory. |
| 423 | // Returns the data size of EXR file when the value is positive(up to 2GB EXR data). |
| 424 | // Returns negative value and may set error string in `err` when there's an |
| 425 | // error |
| 426 | extern int SaveEXRToMemory(const float *data, const int width, const int height, |
| 427 | const int components, const int save_as_fp16, |
| 428 | unsigned char **buffer, const char **err); |
| 429 | |
| 430 | // @deprecated { Not recommended, but handy to use. } |
| 431 | // Saves single-frame OpenEXR image to a buffer. Assume EXR image contains RGB(A) channels. |
| 432 | // components must be 1(Grayscale), 3(RGB) or 4(RGBA). |
| 433 | // Input image format is: `float x width x height`, or `float x RGB(A) x width x |
| 434 | // hight` |
| 435 | // Save image as fp16(HALF) format when `save_as_fp16` is positive non-zero |
| 436 | // value. |
| 437 | // Save image as fp32(FLOAT) format when `save_as_fp16` is 0. |
| 438 | // Use ZIP compression by default. |
| 439 | // Returns TINYEXR_SUCCEES(0) when success. |
| 440 | // Returns negative value and may set error string in `err` when there's an |
| 441 | // error |
| 442 | extern int SaveEXR(const float *data, const int width, const int height, |
| 443 | const int components, const int save_as_fp16, |
| 444 | const char *filename, const char **err); |
| 445 | |
| 446 | // Returns the number of resolution levels of the image (including the base) |
| 447 | extern int EXRNumLevels(const EXRImage* exr_image); |
| 448 | |
| 449 | // Initialize EXRHeader struct |
| 450 | extern void InitEXRHeader(EXRHeader *); |
| 451 | |
| 452 | // Set name attribute of EXRHeader struct (it makes a copy) |
| 453 | extern void EXRSetNameAttr(EXRHeader *, const char* name); |
| 454 | |
| 455 | // Initialize EXRImage struct |
| 456 | extern void InitEXRImage(EXRImage *exr_image); |
| 457 | |
| 458 | // Frees internal data of EXRHeader struct |
| 459 | extern int FreeEXRHeader(EXRHeader *); |
| 460 | |
| 461 | // Frees internal data of EXRImage struct |
| 462 | extern int FreeEXRImage(EXRImage *exr_image); |
| 463 | |
| 464 | // Frees error message |
| 465 | extern void FreeEXRErrorMessage(const char *msg); |
| 466 | |
| 467 | // Parse EXR version header of a file. |
| 468 | extern int ParseEXRVersionFromFile(EXRVersion *version, const char *filename); |
| 469 | |
| 470 | // Parse EXR version header from memory-mapped EXR data. |
| 471 | extern int ParseEXRVersionFromMemory(EXRVersion *version, |
| 472 | const unsigned char *memory, size_t size); |
| 473 | |
| 474 | // Parse single-part OpenEXR header from a file and initialize `EXRHeader`. |
| 475 | // When there was an error message, Application must free `err` with |
| 476 | // FreeEXRErrorMessage() |
| 477 | extern int ParseEXRHeaderFromFile(EXRHeader *, const EXRVersion *version, |
| 478 | const char *filename, const char **err); |
| 479 | |
| 480 | // Parse single-part OpenEXR header from a memory and initialize `EXRHeader`. |
| 481 | // When there was an error message, Application must free `err` with |
| 482 | // FreeEXRErrorMessage() |
| 483 | extern int ParseEXRHeaderFromMemory(EXRHeader *, |
| 484 | const EXRVersion *version, |
| 485 | const unsigned char *memory, size_t size, |
| 486 | const char **err); |
| 487 | |
| 488 | // Parse multi-part OpenEXR headers from a file and initialize `EXRHeader*` |
| 489 | // array. |
| 490 | // When there was an error message, Application must free `err` with |
| 491 | // FreeEXRErrorMessage() |
| 492 | extern int ParseEXRMultipartHeaderFromFile(EXRHeader ***, |
| 493 | int *, |
| 494 | const EXRVersion *version, |
| 495 | const char *filename, |
| 496 | const char **err); |
| 497 | |
| 498 | // Parse multi-part OpenEXR headers from a memory and initialize `EXRHeader*` |
| 499 | // array |
| 500 | // When there was an error message, Application must free `err` with |
| 501 | // FreeEXRErrorMessage() |
| 502 | extern int ParseEXRMultipartHeaderFromMemory(EXRHeader ***, |
| 503 | int *, |
| 504 | const EXRVersion *version, |
| 505 | const unsigned char *memory, |
| 506 | size_t size, const char **err); |
| 507 | |
| 508 | // Loads single-part OpenEXR image from a file. |
| 509 | // Application must setup `ParseEXRHeaderFromFile` before calling this function. |
| 510 | // Application can free EXRImage using `FreeEXRImage` |
| 511 | // Returns negative value and may set error string in `err` when there's an |
| 512 | // error |
| 513 | // When there was an error message, Application must free `err` with |
| 514 | // FreeEXRErrorMessage() |
| 515 | extern int LoadEXRImageFromFile(EXRImage *image, const EXRHeader *, |
| 516 | const char *filename, const char **err); |
| 517 | |
| 518 | // Loads single-part OpenEXR image from a memory. |
| 519 | // Application must setup `EXRHeader` with |
| 520 | // `ParseEXRHeaderFromMemory` before calling this function. |
| 521 | // Application can free EXRImage using `FreeEXRImage` |
| 522 | // Returns negative value and may set error string in `err` when there's an |
| 523 | // error |
| 524 | // When there was an error message, Application must free `err` with |
| 525 | // FreeEXRErrorMessage() |
| 526 | extern int LoadEXRImageFromMemory(EXRImage *image, const EXRHeader *, |
| 527 | const unsigned char *memory, |
| 528 | const size_t size, const char **err); |
| 529 | |
| 530 | // Loads multi-part OpenEXR image from a file. |
| 531 | // Application must setup `ParseEXRMultipartHeaderFromFile` before calling this |
| 532 | // function. |
| 533 | // Application can free EXRImage using `FreeEXRImage` |
| 534 | // Returns negative value and may set error string in `err` when there's an |
| 535 | // error |
| 536 | // When there was an error message, Application must free `err` with |
| 537 | // FreeEXRErrorMessage() |
| 538 | extern int LoadEXRMultipartImageFromFile(EXRImage *images, |
| 539 | const EXRHeader **, |
| 540 | unsigned int num_parts, |
| 541 | const char *filename, |
| 542 | const char **err); |
| 543 | |
| 544 | // Loads multi-part OpenEXR image from a memory. |
| 545 | // Application must setup `EXRHeader*` array with |
| 546 | // `ParseEXRMultipartHeaderFromMemory` before calling this function. |
| 547 | // Application can free EXRImage using `FreeEXRImage` |
| 548 | // Returns negative value and may set error string in `err` when there's an |
| 549 | // error |
| 550 | // When there was an error message, Application must free `err` with |
| 551 | // FreeEXRErrorMessage() |
| 552 | extern int LoadEXRMultipartImageFromMemory(EXRImage *images, |
| 553 | const EXRHeader **, |
| 554 | unsigned int num_parts, |
| 555 | const unsigned char *memory, |
| 556 | const size_t size, const char **err); |
| 557 | |
| 558 | // Saves multi-channel, single-frame OpenEXR image to a file. |
| 559 | // Returns negative value and may set error string in `err` when there's an |
| 560 | // error |
| 561 | // When there was an error message, Application must free `err` with |
| 562 | // FreeEXRErrorMessage() |
| 563 | extern int SaveEXRImageToFile(const EXRImage *image, |
| 564 | const EXRHeader *, const char *filename, |
| 565 | const char **err); |
| 566 | |
| 567 | // Saves multi-channel, single-frame OpenEXR image to a memory. |
| 568 | // Image is compressed using EXRImage.compression value. |
| 569 | // Return the number of bytes if success. |
| 570 | // Return zero and will set error string in `err` when there's an |
| 571 | // error. |
| 572 | // When there was an error message, Application must free `err` with |
| 573 | // FreeEXRErrorMessage() |
| 574 | extern size_t SaveEXRImageToMemory(const EXRImage *image, |
| 575 | const EXRHeader *, |
| 576 | unsigned char **memory, const char **err); |
| 577 | |
| 578 | // Saves multi-channel, multi-frame OpenEXR image to a memory. |
| 579 | // Image is compressed using EXRImage.compression value. |
| 580 | // File global attributes (eg. display_window) must be set in the first header. |
| 581 | // Returns negative value and may set error string in `err` when there's an |
| 582 | // error |
| 583 | // When there was an error message, Application must free `err` with |
| 584 | // FreeEXRErrorMessage() |
| 585 | extern int SaveEXRMultipartImageToFile(const EXRImage *images, |
| 586 | const EXRHeader **, |
| 587 | unsigned int num_parts, |
| 588 | const char *filename, const char **err); |
| 589 | |
| 590 | // Saves multi-channel, multi-frame OpenEXR image to a memory. |
| 591 | // Image is compressed using EXRImage.compression value. |
| 592 | // File global attributes (eg. display_window) must be set in the first header. |
| 593 | // Return the number of bytes if success. |
| 594 | // Return zero and will set error string in `err` when there's an |
| 595 | // error. |
| 596 | // When there was an error message, Application must free `err` with |
| 597 | // FreeEXRErrorMessage() |
| 598 | extern size_t SaveEXRMultipartImageToMemory(const EXRImage *images, |
| 599 | const EXRHeader **, |
| 600 | unsigned int num_parts, |
| 601 | unsigned char **memory, const char **err); |
| 602 | // Loads single-frame OpenEXR deep image. |
| 603 | // Application must free memory of variables in DeepImage(image, offset_table) |
| 604 | // Returns negative value and may set error string in `err` when there's an |
| 605 | // error |
| 606 | // When there was an error message, Application must free `err` with |
| 607 | // FreeEXRErrorMessage() |
| 608 | extern int LoadDeepEXR(DeepImage *out_image, const char *filename, |
| 609 | const char **err); |
| 610 | |
| 611 | // NOT YET IMPLEMENTED: |
| 612 | // Saves single-frame OpenEXR deep image. |
| 613 | // Returns negative value and may set error string in `err` when there's an |
| 614 | // error |
| 615 | // extern int SaveDeepEXR(const DeepImage *in_image, const char *filename, |
| 616 | // const char **err); |
| 617 | |
| 618 | // NOT YET IMPLEMENTED: |
| 619 | // Loads multi-part OpenEXR deep image. |
| 620 | // Application must free memory of variables in DeepImage(image, offset_table) |
| 621 | // extern int LoadMultiPartDeepEXR(DeepImage **out_image, int num_parts, const |
| 622 | // char *filename, |
| 623 | // const char **err); |
| 624 | |
| 625 | // For emscripten. |
| 626 | // Loads single-frame OpenEXR image from memory. Assume EXR image contains |
| 627 | // RGB(A) channels. |
| 628 | // Returns negative value and may set error string in `err` when there's an |
| 629 | // error |
| 630 | // When there was an error message, Application must free `err` with |
| 631 | // FreeEXRErrorMessage() |
| 632 | extern int LoadEXRFromMemory(float **out_rgba, int *width, int *height, |
| 633 | const unsigned char *memory, size_t size, |
| 634 | const char **err); |
| 635 | |
| 636 | #ifdef __cplusplus |
| 637 | } |
| 638 | #endif |
| 639 | |
| 640 | #endif // TINYEXR_H_ |
| 641 | |
| 642 | #ifdef TINYEXR_IMPLEMENTATION |
| 643 | #ifndef TINYEXR_IMPLEMENTATION_DEFINED |
| 644 | #define TINYEXR_IMPLEMENTATION_DEFINED |
| 645 | |
| 646 | #ifdef _WIN32 |
| 647 | |
| 648 | #ifndef WIN32_LEAN_AND_MEAN |
| 649 | #define WIN32_LEAN_AND_MEAN |
| 650 | #endif |
| 651 | #ifndef NOMINMAX |
| 652 | #define NOMINMAX |
| 653 | #endif |
| 654 | #include <windows.h> // for UTF-8 and memory-mapping |
| 655 | |
| 656 | #if !defined(WINAPI_FAMILY) || (WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP) |
| 657 | #define TINYEXR_USE_WIN32_MMAP (1) |
| 658 | #endif |
| 659 | |
| 660 | #elif defined(__linux__) || defined(__unix__) |
| 661 | #include <fcntl.h> // for open() |
| 662 | #include <sys/mman.h> // for memory-mapping |
| 663 | #include <sys/stat.h> // for stat |
| 664 | #include <unistd.h> // for close() |
| 665 | #define TINYEXR_USE_POSIX_MMAP (1) |
| 666 | #endif |
| 667 | |
| 668 | #include <algorithm> |
| 669 | #include <cstdio> |
| 670 | #include <cstdlib> |
| 671 | #include <cstring> |
| 672 | #include <sstream> |
| 673 | |
| 674 | //#include <iostream> // debug |
| 675 | |
| 676 | #include <limits> |
| 677 | #include <string> |
| 678 | #include <vector> |
| 679 | #include <set> |
| 680 | |
| 681 | // https://stackoverflow.com/questions/5047971/how-do-i-check-for-c11-support |
| 682 | #if __cplusplus > 199711L || (defined(_MSC_VER) && _MSC_VER >= 1900) |
| 683 | #define TINYEXR_HAS_CXX11 (1) |
| 684 | // C++11 |
| 685 | #include <cstdint> |
| 686 | |
| 687 | #if TINYEXR_USE_THREAD |
| 688 | #include <atomic> |
| 689 | #include <thread> |
| 690 | #endif |
| 691 | |
| 692 | #else // __cplusplus > 199711L |
| 693 | #define TINYEXR_HAS_CXX11 (0) |
| 694 | #endif // __cplusplus > 199711L |
| 695 | |
| 696 | #if TINYEXR_USE_OPENMP |
| 697 | #include <omp.h> |
| 698 | #endif |
| 699 | |
| 700 | #if defined(TINYEXR_USE_MINIZ) && (TINYEXR_USE_MINIZ==1) |
| 701 | #include <miniz.h> |
| 702 | #else |
| 703 | // Issue #46. Please include your own zlib-compatible API header before |
| 704 | // including `tinyexr.h` |
| 705 | //#include "zlib.h" |
| 706 | #endif |
| 707 | |
| 708 | #if defined(TINYEXR_USE_NANOZLIB) && (TINYEXR_USE_NANOZLIB==1) |
| 709 | #define NANOZLIB_IMPLEMENTATION |
| 710 | #include "nanozlib.h" |
| 711 | #endif |
| 712 | |
| 713 | #if TINYEXR_USE_STB_ZLIB |
| 714 | // Since we don't know where a project has stb_image.h and stb_image_write.h |
| 715 | // and whether they are in the include path, we don't include them here, and |
| 716 | // instead declare the two relevant functions manually. |
| 717 | // from stb_image.h: |
| 718 | extern "C" int stbi_zlib_decode_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); |
| 719 | // from stb_image_write.h: |
| 720 | extern "C" unsigned char *stbi_zlib_compress(unsigned char *data, int data_len, int *out_len, int quality); |
| 721 | #endif |
| 722 | |
| 723 | |
| 724 | #if TINYEXR_USE_ZFP |
| 725 | |
| 726 | #ifdef __clang__ |
| 727 | #pragma clang diagnostic push |
| 728 | #pragma clang diagnostic ignored "-Weverything" |
| 729 | #endif |
| 730 | |
| 731 | #include "zfp.h" |
| 732 | |
| 733 | #ifdef __clang__ |
| 734 | #pragma clang diagnostic pop |
| 735 | #endif |
| 736 | |
| 737 | #endif |
| 738 | |
| 739 | // cond: conditional expression |
| 740 | // msg: std::string |
| 741 | // err: std::string* |
| 742 | #define TINYEXR_CHECK_AND_RETURN_MSG(cond, msg, err) do { \ |
| 743 | if (!(cond)) { \ |
| 744 | if (!err) { \ |
| 745 | std::ostringstream ss_e; \ |
| 746 | ss_e << __func__ << "():" << __LINE__ << msg << "\n"; \ |
| 747 | (*err) += ss_e.str(); \ |
| 748 | } \ |
| 749 | return false;\ |
| 750 | } \ |
| 751 | } while(0) |
| 752 | |
| 753 | // no error message. |
| 754 | #define TINYEXR_CHECK_AND_RETURN_C(cond, retcode) do { \ |
| 755 | if (!(cond)) { \ |
| 756 | return retcode; \ |
| 757 | } \ |
| 758 | } while(0) |
| 759 | |
| 760 | namespace tinyexr { |
| 761 | |
| 762 | #if __cplusplus > 199711L |
| 763 | // C++11 |
| 764 | typedef uint64_t tinyexr_uint64; |
| 765 | typedef int64_t tinyexr_int64; |
| 766 | #else |
| 767 | // Although `long long` is not a standard type pre C++11, assume it is defined |
| 768 | // as a compiler's extension. |
| 769 | #ifdef __clang__ |
| 770 | #pragma clang diagnostic push |
| 771 | #pragma clang diagnostic ignored "-Wc++11-long-long" |
| 772 | #endif |
| 773 | typedef unsigned long long tinyexr_uint64; |
| 774 | typedef long long tinyexr_int64; |
| 775 | #ifdef __clang__ |
| 776 | #pragma clang diagnostic pop |
| 777 | #endif |
| 778 | #endif |
| 779 | |
| 780 | // static bool IsBigEndian(void) { |
| 781 | // union { |
| 782 | // unsigned int i; |
| 783 | // char c[4]; |
| 784 | // } bint = {0x01020304}; |
| 785 | // |
| 786 | // return bint.c[0] == 1; |
| 787 | //} |
| 788 | |
| 789 | static void SetErrorMessage(const std::string &msg, const char **err) { |
| 790 | if (err) { |
| 791 | #ifdef _WIN32 |
| 792 | (*err) = _strdup(msg.c_str()); |
| 793 | #else |
| 794 | (*err) = strdup(s: msg.c_str()); |
| 795 | #endif |
| 796 | } |
| 797 | } |
| 798 | |
| 799 | #if 0 |
| 800 | static void SetWarningMessage(const std::string &msg, const char **warn) { |
| 801 | if (warn) { |
| 802 | #ifdef _WIN32 |
| 803 | (*warn) = _strdup(msg.c_str()); |
| 804 | #else |
| 805 | (*warn) = strdup(msg.c_str()); |
| 806 | #endif |
| 807 | } |
| 808 | } |
| 809 | #endif |
| 810 | |
| 811 | static const int kEXRVersionSize = 8; |
| 812 | |
| 813 | static void inline cpy2(unsigned short *dst_val, const unsigned short *src_val) { |
| 814 | unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val); |
| 815 | const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val); |
| 816 | |
| 817 | dst[0] = src[0]; |
| 818 | dst[1] = src[1]; |
| 819 | } |
| 820 | |
| 821 | static void inline swap2(unsigned short *val) { |
| 822 | #if TINYEXR_LITTLE_ENDIAN |
| 823 | (void)val; |
| 824 | #else |
| 825 | unsigned short tmp = *val; |
| 826 | unsigned char *dst = reinterpret_cast<unsigned char *>(val); |
| 827 | unsigned char *src = reinterpret_cast<unsigned char *>(&tmp); |
| 828 | |
| 829 | dst[0] = src[1]; |
| 830 | dst[1] = src[0]; |
| 831 | #endif |
| 832 | } |
| 833 | |
| 834 | #ifdef __clang__ |
| 835 | #pragma clang diagnostic push |
| 836 | #pragma clang diagnostic ignored "-Wunused-function" |
| 837 | #endif |
| 838 | |
| 839 | #ifdef __GNUC__ |
| 840 | #pragma GCC diagnostic push |
| 841 | #pragma GCC diagnostic ignored "-Wunused-function" |
| 842 | #endif |
| 843 | static void inline cpy4(int *dst_val, const int *src_val) { |
| 844 | unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val); |
| 845 | const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val); |
| 846 | |
| 847 | dst[0] = src[0]; |
| 848 | dst[1] = src[1]; |
| 849 | dst[2] = src[2]; |
| 850 | dst[3] = src[3]; |
| 851 | } |
| 852 | |
| 853 | static void inline cpy4(unsigned int *dst_val, const unsigned int *src_val) { |
| 854 | unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val); |
| 855 | const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val); |
| 856 | |
| 857 | dst[0] = src[0]; |
| 858 | dst[1] = src[1]; |
| 859 | dst[2] = src[2]; |
| 860 | dst[3] = src[3]; |
| 861 | } |
| 862 | |
| 863 | static void inline cpy4(float *dst_val, const float *src_val) { |
| 864 | unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val); |
| 865 | const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val); |
| 866 | |
| 867 | dst[0] = src[0]; |
| 868 | dst[1] = src[1]; |
| 869 | dst[2] = src[2]; |
| 870 | dst[3] = src[3]; |
| 871 | } |
| 872 | #ifdef __clang__ |
| 873 | #pragma clang diagnostic pop |
| 874 | #endif |
| 875 | |
| 876 | #ifdef __GNUC__ |
| 877 | #pragma GCC diagnostic pop |
| 878 | #endif |
| 879 | |
| 880 | static void inline swap4(unsigned int *val) { |
| 881 | #if TINYEXR_LITTLE_ENDIAN |
| 882 | (void)val; |
| 883 | #else |
| 884 | unsigned int tmp = *val; |
| 885 | unsigned char *dst = reinterpret_cast<unsigned char *>(val); |
| 886 | unsigned char *src = reinterpret_cast<unsigned char *>(&tmp); |
| 887 | |
| 888 | dst[0] = src[3]; |
| 889 | dst[1] = src[2]; |
| 890 | dst[2] = src[1]; |
| 891 | dst[3] = src[0]; |
| 892 | #endif |
| 893 | } |
| 894 | |
| 895 | static void inline swap4(int *val) { |
| 896 | #if TINYEXR_LITTLE_ENDIAN |
| 897 | (void)val; |
| 898 | #else |
| 899 | int tmp = *val; |
| 900 | unsigned char *dst = reinterpret_cast<unsigned char *>(val); |
| 901 | unsigned char *src = reinterpret_cast<unsigned char *>(&tmp); |
| 902 | |
| 903 | dst[0] = src[3]; |
| 904 | dst[1] = src[2]; |
| 905 | dst[2] = src[1]; |
| 906 | dst[3] = src[0]; |
| 907 | #endif |
| 908 | } |
| 909 | |
| 910 | static void inline swap4(float *val) { |
| 911 | #if TINYEXR_LITTLE_ENDIAN |
| 912 | (void)val; |
| 913 | #else |
| 914 | float tmp = *val; |
| 915 | unsigned char *dst = reinterpret_cast<unsigned char *>(val); |
| 916 | unsigned char *src = reinterpret_cast<unsigned char *>(&tmp); |
| 917 | |
| 918 | dst[0] = src[3]; |
| 919 | dst[1] = src[2]; |
| 920 | dst[2] = src[1]; |
| 921 | dst[3] = src[0]; |
| 922 | #endif |
| 923 | } |
| 924 | |
| 925 | #if 0 |
| 926 | static void inline cpy8(tinyexr::tinyexr_uint64 *dst_val, const tinyexr::tinyexr_uint64 *src_val) { |
| 927 | unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val); |
| 928 | const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val); |
| 929 | |
| 930 | dst[0] = src[0]; |
| 931 | dst[1] = src[1]; |
| 932 | dst[2] = src[2]; |
| 933 | dst[3] = src[3]; |
| 934 | dst[4] = src[4]; |
| 935 | dst[5] = src[5]; |
| 936 | dst[6] = src[6]; |
| 937 | dst[7] = src[7]; |
| 938 | } |
| 939 | #endif |
| 940 | |
| 941 | static void inline swap8(tinyexr::tinyexr_uint64 *val) { |
| 942 | #if TINYEXR_LITTLE_ENDIAN |
| 943 | (void)val; |
| 944 | #else |
| 945 | tinyexr::tinyexr_uint64 tmp = (*val); |
| 946 | unsigned char *dst = reinterpret_cast<unsigned char *>(val); |
| 947 | unsigned char *src = reinterpret_cast<unsigned char *>(&tmp); |
| 948 | |
| 949 | dst[0] = src[7]; |
| 950 | dst[1] = src[6]; |
| 951 | dst[2] = src[5]; |
| 952 | dst[3] = src[4]; |
| 953 | dst[4] = src[3]; |
| 954 | dst[5] = src[2]; |
| 955 | dst[6] = src[1]; |
| 956 | dst[7] = src[0]; |
| 957 | #endif |
| 958 | } |
| 959 | |
| 960 | // https://gist.github.com/rygorous/2156668 |
| 961 | #if TINYEXR_HAS_FP16_COMPILER_TYPE && (TINYEXR_USE_COMPILER_FP16 > 0) |
| 962 | union FP32 { |
| 963 | float f; |
| 964 | }; |
| 965 | #else |
| 966 | union FP32 { |
| 967 | unsigned int u; |
| 968 | float f; |
| 969 | struct { |
| 970 | #if TINYEXR_LITTLE_ENDIAN |
| 971 | unsigned int Mantissa : 23; |
| 972 | unsigned int Exponent : 8; |
| 973 | unsigned int Sign : 1; |
| 974 | #else |
| 975 | unsigned int Sign : 1; |
| 976 | unsigned int Exponent : 8; |
| 977 | unsigned int Mantissa : 23; |
| 978 | #endif |
| 979 | } s; |
| 980 | }; |
| 981 | #endif |
| 982 | |
| 983 | #ifdef __clang__ |
| 984 | #pragma clang diagnostic push |
| 985 | #pragma clang diagnostic ignored "-Wpadded" |
| 986 | #endif |
| 987 | |
| 988 | #if TINYEXR_HAS_FP16_COMPILER_TYPE && (TINYEXR_USE_COMPILER_FP16 > 0) |
| 989 | union FP16 { |
| 990 | TINYEXR_FP16_COMPILER_TYPE f; |
| 991 | unsigned short u; |
| 992 | }; |
| 993 | |
| 994 | #else |
| 995 | |
| 996 | union FP16 { |
| 997 | unsigned short u; |
| 998 | struct { |
| 999 | #if TINYEXR_LITTLE_ENDIAN |
| 1000 | unsigned int Mantissa : 10; |
| 1001 | unsigned int Exponent : 5; |
| 1002 | unsigned int Sign : 1; |
| 1003 | #else |
| 1004 | unsigned int Sign : 1; |
| 1005 | unsigned int Exponent : 5; |
| 1006 | unsigned int Mantissa : 10; |
| 1007 | #endif |
| 1008 | } s; |
| 1009 | }; |
| 1010 | #endif |
| 1011 | |
| 1012 | #ifdef __clang__ |
| 1013 | #pragma clang diagnostic pop |
| 1014 | #endif |
| 1015 | |
| 1016 | #if TINYEXR_HAS_FP16_COMPILER_TYPE && (TINYEXR_USE_COMPILER_FP16 > 0) |
| 1017 | static inline FP32 half_to_float(FP16 h) { |
| 1018 | FP32 o; |
| 1019 | #if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64)) && defined(__AVX2__) |
| 1020 | o.f =_mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(static_cast<int> (h.u)))); |
| 1021 | #else |
| 1022 | o.f = static_cast<float> (h.f); |
| 1023 | #endif |
| 1024 | return o; |
| 1025 | } |
| 1026 | static inline FP16 float_to_half_full(FP32 f) { |
| 1027 | FP16 o; |
| 1028 | #if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64)) && defined(__AVX2__) |
| 1029 | o.f = static_cast<TINYEXR_FP16_COMPILER_TYPE> (_mm_cvtsi128_si32(_mm_cvtps_ph(_mm_set_ss(f.f), _MM_FROUND_CUR_DIRECTION))); |
| 1030 | #else |
| 1031 | o.f = static_cast<TINYEXR_FP16_COMPILER_TYPE> (f.f); |
| 1032 | #endif |
| 1033 | return o; |
| 1034 | } |
| 1035 | #else |
| 1036 | static FP32 half_to_float(FP16 h) { |
| 1037 | static const FP32 magic = {.u: 113 << 23}; |
| 1038 | static const unsigned int shifted_exp = 0x7c00 |
| 1039 | << 13; // exponent mask after shift |
| 1040 | FP32 o; |
| 1041 | |
| 1042 | o.u = (h.u & 0x7fffU) << 13U; // exponent/mantissa bits |
| 1043 | unsigned int exp_ = shifted_exp & o.u; // just the exponent |
| 1044 | o.u += (127 - 15) << 23; // exponent adjust |
| 1045 | |
| 1046 | // handle exponent special cases |
| 1047 | if (exp_ == shifted_exp) // Inf/NaN? |
| 1048 | o.u += (128 - 16) << 23; // extra exp adjust |
| 1049 | else if (exp_ == 0) // Zero/Denormal? |
| 1050 | { |
| 1051 | o.u += 1 << 23; // extra exp adjust |
| 1052 | o.f -= magic.f; // renormalize |
| 1053 | } |
| 1054 | |
| 1055 | o.u |= (h.u & 0x8000U) << 16U; // sign bit |
| 1056 | return o; |
| 1057 | } |
| 1058 | |
| 1059 | static FP16 float_to_half_full(FP32 f) { |
| 1060 | FP16 o = {.u: 0}; |
| 1061 | |
| 1062 | // Based on ISPC reference code (with minor modifications) |
| 1063 | if (f.s.Exponent == 0) // Signed zero/denormal (which will underflow) |
| 1064 | o.s.Exponent = 0; |
| 1065 | else if (f.s.Exponent == 255) // Inf or NaN (all exponent bits set) |
| 1066 | { |
| 1067 | o.s.Exponent = 31; |
| 1068 | o.s.Mantissa = f.s.Mantissa ? 0x200 : 0; // NaN->qNaN and Inf->Inf |
| 1069 | } else // Normalized number |
| 1070 | { |
| 1071 | // Exponent unbias the single, then bias the halfp |
| 1072 | int newexp = f.s.Exponent - 127 + 15; |
| 1073 | if (newexp >= 31) // Overflow, return signed infinity |
| 1074 | o.s.Exponent = 31; |
| 1075 | else if (newexp <= 0) // Underflow |
| 1076 | { |
| 1077 | if ((14 - newexp) <= 24) // Mantissa might be non-zero |
| 1078 | { |
| 1079 | unsigned int mant = f.s.Mantissa | 0x800000; // Hidden 1 bit |
| 1080 | o.s.Mantissa = mant >> (14 - newexp); |
| 1081 | if ((mant >> (13 - newexp)) & 1) // Check for rounding |
| 1082 | o.u++; // Round, might overflow into exp bit, but this is OK |
| 1083 | } |
| 1084 | } else { |
| 1085 | o.s.Exponent = static_cast<unsigned int>(newexp); |
| 1086 | o.s.Mantissa = f.s.Mantissa >> 13; |
| 1087 | if (f.s.Mantissa & 0x1000) // Check for rounding |
| 1088 | o.u++; // Round, might overflow to inf, this is OK |
| 1089 | } |
| 1090 | } |
| 1091 | |
| 1092 | o.s.Sign = f.s.Sign; |
| 1093 | return o; |
| 1094 | } |
| 1095 | #endif |
| 1096 | // NOTE: From OpenEXR code |
| 1097 | // #define IMF_INCREASING_Y 0 |
| 1098 | // #define IMF_DECREASING_Y 1 |
| 1099 | // #define IMF_RAMDOM_Y 2 |
| 1100 | // |
| 1101 | // #define IMF_NO_COMPRESSION 0 |
| 1102 | // #define IMF_RLE_COMPRESSION 1 |
| 1103 | // #define IMF_ZIPS_COMPRESSION 2 |
| 1104 | // #define IMF_ZIP_COMPRESSION 3 |
| 1105 | // #define IMF_PIZ_COMPRESSION 4 |
| 1106 | // #define IMF_PXR24_COMPRESSION 5 |
| 1107 | // #define IMF_B44_COMPRESSION 6 |
| 1108 | // #define IMF_B44A_COMPRESSION 7 |
| 1109 | |
| 1110 | #ifdef __clang__ |
| 1111 | #pragma clang diagnostic push |
| 1112 | |
| 1113 | #if __has_warning("-Wzero-as-null-pointer-constant") |
| 1114 | #pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant" |
| 1115 | #endif |
| 1116 | |
| 1117 | #endif |
| 1118 | |
| 1119 | static const char *ReadString(std::string *s, const char *ptr, size_t len) { |
| 1120 | // Read untile NULL(\0). |
| 1121 | const char *p = ptr; |
| 1122 | const char *q = ptr; |
| 1123 | while ((size_t(q - ptr) < len) && (*q) != 0) { |
| 1124 | q++; |
| 1125 | } |
| 1126 | |
| 1127 | if (size_t(q - ptr) >= len) { |
| 1128 | (*s).clear(); |
| 1129 | return NULL; |
| 1130 | } |
| 1131 | |
| 1132 | (*s) = std::string(p, q); |
| 1133 | |
| 1134 | return q + 1; // skip '\0' |
| 1135 | } |
| 1136 | |
| 1137 | static bool ReadAttribute(std::string *name, std::string *type, |
| 1138 | std::vector<unsigned char> *data, size_t *marker_size, |
| 1139 | const char *marker, size_t size) { |
| 1140 | size_t name_len = strnlen(string: marker, maxlen: size); |
| 1141 | if (name_len == size) { |
| 1142 | // String does not have a terminating character. |
| 1143 | return false; |
| 1144 | } |
| 1145 | *name = std::string(marker, name_len); |
| 1146 | |
| 1147 | marker += name_len + 1; |
| 1148 | size -= name_len + 1; |
| 1149 | |
| 1150 | size_t type_len = strnlen(string: marker, maxlen: size); |
| 1151 | if (type_len == size) { |
| 1152 | return false; |
| 1153 | } |
| 1154 | *type = std::string(marker, type_len); |
| 1155 | |
| 1156 | marker += type_len + 1; |
| 1157 | size -= type_len + 1; |
| 1158 | |
| 1159 | if (size < sizeof(uint32_t)) { |
| 1160 | return false; |
| 1161 | } |
| 1162 | |
| 1163 | uint32_t data_len; |
| 1164 | memcpy(dest: &data_len, src: marker, n: sizeof(uint32_t)); |
| 1165 | tinyexr::swap4(val: reinterpret_cast<unsigned int *>(&data_len)); |
| 1166 | |
| 1167 | if (data_len == 0) { |
| 1168 | if ((*type).compare(s: "string" ) == 0) { |
| 1169 | // Accept empty string attribute. |
| 1170 | |
| 1171 | marker += sizeof(uint32_t); |
| 1172 | size -= sizeof(uint32_t); |
| 1173 | |
| 1174 | *marker_size = name_len + 1 + type_len + 1 + sizeof(uint32_t); |
| 1175 | |
| 1176 | data->resize(new_size: 1); |
| 1177 | (*data)[0] = '\0'; |
| 1178 | |
| 1179 | return true; |
| 1180 | } else { |
| 1181 | return false; |
| 1182 | } |
| 1183 | } |
| 1184 | |
| 1185 | marker += sizeof(uint32_t); |
| 1186 | size -= sizeof(uint32_t); |
| 1187 | |
| 1188 | if (size < data_len) { |
| 1189 | return false; |
| 1190 | } |
| 1191 | |
| 1192 | data->resize(new_size: static_cast<size_t>(data_len)); |
| 1193 | memcpy(dest: &data->at(n: 0), src: marker, n: static_cast<size_t>(data_len)); |
| 1194 | |
| 1195 | *marker_size = name_len + 1 + type_len + 1 + sizeof(uint32_t) + data_len; |
| 1196 | return true; |
| 1197 | } |
| 1198 | |
| 1199 | static void WriteAttributeToMemory(std::vector<unsigned char> *out, |
| 1200 | const char *name, const char *type, |
| 1201 | const unsigned char *data, int len) { |
| 1202 | out->insert(position: out->end(), first: name, last: name + strlen(s: name) + 1); |
| 1203 | out->insert(position: out->end(), first: type, last: type + strlen(s: type) + 1); |
| 1204 | |
| 1205 | int outLen = len; |
| 1206 | tinyexr::swap4(val: &outLen); |
| 1207 | out->insert(position: out->end(), first: reinterpret_cast<unsigned char *>(&outLen), |
| 1208 | last: reinterpret_cast<unsigned char *>(&outLen) + sizeof(int)); |
| 1209 | out->insert(position: out->end(), first: data, last: data + len); |
| 1210 | } |
| 1211 | |
| 1212 | typedef struct TChannelInfo { |
| 1213 | std::string name; // less than 255 bytes long |
| 1214 | int pixel_type; |
| 1215 | int requested_pixel_type; |
| 1216 | int x_sampling; |
| 1217 | int y_sampling; |
| 1218 | unsigned char p_linear; |
| 1219 | unsigned char pad[3]; |
| 1220 | } ChannelInfo; |
| 1221 | |
| 1222 | typedef struct { |
| 1223 | int min_x; |
| 1224 | int min_y; |
| 1225 | int max_x; |
| 1226 | int max_y; |
| 1227 | } Box2iInfo; |
| 1228 | |
| 1229 | struct { |
| 1230 | std::vector<tinyexr::ChannelInfo> ; |
| 1231 | std::vector<EXRAttribute> ; |
| 1232 | |
| 1233 | Box2iInfo ; |
| 1234 | int ; |
| 1235 | Box2iInfo ; |
| 1236 | float [2]; |
| 1237 | float ; |
| 1238 | float ; |
| 1239 | |
| 1240 | int ; |
| 1241 | |
| 1242 | // Tiled format |
| 1243 | int ; // Non-zero if the part is tiled. |
| 1244 | int ; |
| 1245 | int ; |
| 1246 | int ; |
| 1247 | int ; |
| 1248 | |
| 1249 | unsigned int ; |
| 1250 | |
| 1251 | int ; |
| 1252 | |
| 1253 | // required for multi-part or non-image files |
| 1254 | std::string ; |
| 1255 | // required for multi-part or non-image files |
| 1256 | std::string ; |
| 1257 | |
| 1258 | void () { |
| 1259 | channels.clear(); |
| 1260 | attributes.clear(); |
| 1261 | |
| 1262 | data_window.min_x = 0; |
| 1263 | data_window.min_y = 0; |
| 1264 | data_window.max_x = 0; |
| 1265 | data_window.max_y = 0; |
| 1266 | line_order = 0; |
| 1267 | display_window.min_x = 0; |
| 1268 | display_window.min_y = 0; |
| 1269 | display_window.max_x = 0; |
| 1270 | display_window.max_y = 0; |
| 1271 | screen_window_center[0] = 0.0f; |
| 1272 | screen_window_center[1] = 0.0f; |
| 1273 | screen_window_width = 0.0f; |
| 1274 | pixel_aspect_ratio = 0.0f; |
| 1275 | |
| 1276 | chunk_count = 0; |
| 1277 | |
| 1278 | // Tiled format |
| 1279 | tiled = 0; |
| 1280 | tile_size_x = 0; |
| 1281 | tile_size_y = 0; |
| 1282 | tile_level_mode = 0; |
| 1283 | tile_rounding_mode = 0; |
| 1284 | |
| 1285 | header_len = 0; |
| 1286 | compression_type = 0; |
| 1287 | |
| 1288 | name.clear(); |
| 1289 | type.clear(); |
| 1290 | } |
| 1291 | }; |
| 1292 | |
| 1293 | static bool ReadChannelInfo(std::vector<ChannelInfo> &channels, |
| 1294 | const std::vector<unsigned char> &data) { |
| 1295 | const char *p = reinterpret_cast<const char *>(&data.at(n: 0)); |
| 1296 | |
| 1297 | for (;;) { |
| 1298 | if ((*p) == 0) { |
| 1299 | break; |
| 1300 | } |
| 1301 | ChannelInfo info; |
| 1302 | info.requested_pixel_type = 0; |
| 1303 | |
| 1304 | tinyexr_int64 data_len = static_cast<tinyexr_int64>(data.size()) - |
| 1305 | (p - reinterpret_cast<const char *>(data.data())); |
| 1306 | if (data_len < 0) { |
| 1307 | return false; |
| 1308 | } |
| 1309 | |
| 1310 | p = ReadString(s: &info.name, ptr: p, len: size_t(data_len)); |
| 1311 | if ((p == NULL) && (info.name.empty())) { |
| 1312 | // Buffer overrun. Issue #51. |
| 1313 | return false; |
| 1314 | } |
| 1315 | |
| 1316 | const unsigned char *data_end = |
| 1317 | reinterpret_cast<const unsigned char *>(p) + 16; |
| 1318 | if (data_end >= (data.data() + data.size())) { |
| 1319 | return false; |
| 1320 | } |
| 1321 | |
| 1322 | memcpy(dest: &info.pixel_type, src: p, n: sizeof(int)); |
| 1323 | p += 4; |
| 1324 | info.p_linear = static_cast<unsigned char>(p[0]); // uchar |
| 1325 | p += 1 + 3; // reserved: uchar[3] |
| 1326 | memcpy(dest: &info.x_sampling, src: p, n: sizeof(int)); // int |
| 1327 | p += 4; |
| 1328 | memcpy(dest: &info.y_sampling, src: p, n: sizeof(int)); // int |
| 1329 | p += 4; |
| 1330 | |
| 1331 | tinyexr::swap4(val: &info.pixel_type); |
| 1332 | tinyexr::swap4(val: &info.x_sampling); |
| 1333 | tinyexr::swap4(val: &info.y_sampling); |
| 1334 | |
| 1335 | channels.push_back(x: info); |
| 1336 | } |
| 1337 | |
| 1338 | return true; |
| 1339 | } |
| 1340 | |
| 1341 | static void WriteChannelInfo(std::vector<unsigned char> &data, |
| 1342 | const std::vector<ChannelInfo> &channels) { |
| 1343 | size_t sz = 0; |
| 1344 | |
| 1345 | // Calculate total size. |
| 1346 | for (size_t c = 0; c < channels.size(); c++) { |
| 1347 | sz += channels[c].name.length() + 1; // +1 for \0 |
| 1348 | sz += 16; // 4 * int |
| 1349 | } |
| 1350 | data.resize(new_size: sz + 1); |
| 1351 | |
| 1352 | unsigned char *p = &data.at(n: 0); |
| 1353 | |
| 1354 | for (size_t c = 0; c < channels.size(); c++) { |
| 1355 | memcpy(dest: p, src: channels[c].name.c_str(), n: channels[c].name.length()); |
| 1356 | p += channels[c].name.length(); |
| 1357 | (*p) = '\0'; |
| 1358 | p++; |
| 1359 | |
| 1360 | int pixel_type = channels[c].requested_pixel_type; |
| 1361 | int x_sampling = channels[c].x_sampling; |
| 1362 | int y_sampling = channels[c].y_sampling; |
| 1363 | tinyexr::swap4(val: &pixel_type); |
| 1364 | tinyexr::swap4(val: &x_sampling); |
| 1365 | tinyexr::swap4(val: &y_sampling); |
| 1366 | |
| 1367 | memcpy(dest: p, src: &pixel_type, n: sizeof(int)); |
| 1368 | p += sizeof(int); |
| 1369 | |
| 1370 | (*p) = channels[c].p_linear; |
| 1371 | p += 4; |
| 1372 | |
| 1373 | memcpy(dest: p, src: &x_sampling, n: sizeof(int)); |
| 1374 | p += sizeof(int); |
| 1375 | |
| 1376 | memcpy(dest: p, src: &y_sampling, n: sizeof(int)); |
| 1377 | p += sizeof(int); |
| 1378 | } |
| 1379 | |
| 1380 | (*p) = '\0'; |
| 1381 | } |
| 1382 | |
| 1383 | static bool CompressZip(unsigned char *dst, |
| 1384 | tinyexr::tinyexr_uint64 &compressedSize, |
| 1385 | const unsigned char *src, unsigned long src_size) { |
| 1386 | std::vector<unsigned char> tmpBuf(src_size); |
| 1387 | |
| 1388 | // |
| 1389 | // Apply EXR-specific? postprocess. Grabbed from OpenEXR's |
| 1390 | // ImfZipCompressor.cpp |
| 1391 | // |
| 1392 | |
| 1393 | // |
| 1394 | // Reorder the pixel data. |
| 1395 | // |
| 1396 | |
| 1397 | const char *srcPtr = reinterpret_cast<const char *>(src); |
| 1398 | |
| 1399 | { |
| 1400 | char *t1 = reinterpret_cast<char *>(&tmpBuf.at(n: 0)); |
| 1401 | char *t2 = reinterpret_cast<char *>(&tmpBuf.at(n: 0)) + (src_size + 1) / 2; |
| 1402 | const char *stop = srcPtr + src_size; |
| 1403 | |
| 1404 | for (;;) { |
| 1405 | if (srcPtr < stop) |
| 1406 | *(t1++) = *(srcPtr++); |
| 1407 | else |
| 1408 | break; |
| 1409 | |
| 1410 | if (srcPtr < stop) |
| 1411 | *(t2++) = *(srcPtr++); |
| 1412 | else |
| 1413 | break; |
| 1414 | } |
| 1415 | } |
| 1416 | |
| 1417 | // |
| 1418 | // Predictor. |
| 1419 | // |
| 1420 | |
| 1421 | { |
| 1422 | unsigned char *t = &tmpBuf.at(n: 0) + 1; |
| 1423 | unsigned char *stop = &tmpBuf.at(n: 0) + src_size; |
| 1424 | int p = t[-1]; |
| 1425 | |
| 1426 | while (t < stop) { |
| 1427 | int d = int(t[0]) - p + (128 + 256); |
| 1428 | p = t[0]; |
| 1429 | t[0] = static_cast<unsigned char>(d); |
| 1430 | ++t; |
| 1431 | } |
| 1432 | } |
| 1433 | |
| 1434 | #if defined(TINYEXR_USE_MINIZ) && (TINYEXR_USE_MINIZ==1) |
| 1435 | // |
| 1436 | // Compress the data using miniz |
| 1437 | // |
| 1438 | |
| 1439 | mz_ulong outSize = mz_compressBound(src_size); |
| 1440 | int ret = mz_compress( |
| 1441 | dst, &outSize, static_cast<const unsigned char *>(&tmpBuf.at(0)), |
| 1442 | src_size); |
| 1443 | if (ret != MZ_OK) { |
| 1444 | return false; |
| 1445 | } |
| 1446 | |
| 1447 | compressedSize = outSize; |
| 1448 | #elif defined(TINYEXR_USE_STB_ZLIB) && (TINYEXR_USE_STB_ZLIB==1) |
| 1449 | int outSize; |
| 1450 | unsigned char* ret = stbi_zlib_compress(const_cast<unsigned char*>(&tmpBuf.at(0)), src_size, &outSize, 8); |
| 1451 | if (!ret) { |
| 1452 | return false; |
| 1453 | } |
| 1454 | memcpy(dst, ret, outSize); |
| 1455 | free(ret); |
| 1456 | |
| 1457 | compressedSize = outSize; |
| 1458 | #elif defined(TINYEXR_USE_NANOZLIB) && (TINYEXR_USE_NANOZLIB==1) |
| 1459 | uint64_t dstSize = nanoz_compressBound(static_cast<uint64_t>(src_size)); |
| 1460 | int outSize{0}; |
| 1461 | unsigned char *ret = nanoz_compress(&tmpBuf.at(0), src_size, &outSize, /* quality */8); |
| 1462 | if (!ret) { |
| 1463 | return false; |
| 1464 | } |
| 1465 | |
| 1466 | memcpy(dst, ret, outSize); |
| 1467 | free(ret); |
| 1468 | |
| 1469 | compressedSize = outSize; |
| 1470 | #else |
| 1471 | uLong outSize = compressBound(sourceLen: static_cast<uLong>(src_size)); |
| 1472 | int ret = compress(dest: dst, destLen: &outSize, source: static_cast<const Bytef *>(&tmpBuf.at(n: 0)), |
| 1473 | sourceLen: src_size); |
| 1474 | if (ret != Z_OK) { |
| 1475 | return false; |
| 1476 | } |
| 1477 | |
| 1478 | compressedSize = outSize; |
| 1479 | #endif |
| 1480 | |
| 1481 | // Use uncompressed data when compressed data is larger than uncompressed. |
| 1482 | // (Issue 40) |
| 1483 | if (compressedSize >= src_size) { |
| 1484 | compressedSize = src_size; |
| 1485 | memcpy(dest: dst, src: src, n: src_size); |
| 1486 | } |
| 1487 | |
| 1488 | return true; |
| 1489 | } |
| 1490 | |
| 1491 | static bool DecompressZip(unsigned char *dst, |
| 1492 | unsigned long *uncompressed_size /* inout */, |
| 1493 | const unsigned char *src, unsigned long src_size) { |
| 1494 | if ((*uncompressed_size) == src_size) { |
| 1495 | // Data is not compressed(Issue 40). |
| 1496 | memcpy(dest: dst, src: src, n: src_size); |
| 1497 | return true; |
| 1498 | } |
| 1499 | std::vector<unsigned char> tmpBuf(*uncompressed_size); |
| 1500 | |
| 1501 | #if defined(TINYEXR_USE_MINIZ) && (TINYEXR_USE_MINIZ==1) |
| 1502 | int ret = |
| 1503 | mz_uncompress(&tmpBuf.at(0), uncompressed_size, src, src_size); |
| 1504 | if (MZ_OK != ret) { |
| 1505 | return false; |
| 1506 | } |
| 1507 | #elif TINYEXR_USE_STB_ZLIB |
| 1508 | int ret = stbi_zlib_decode_buffer(reinterpret_cast<char*>(&tmpBuf.at(0)), |
| 1509 | *uncompressed_size, reinterpret_cast<const char*>(src), src_size); |
| 1510 | if (ret < 0) { |
| 1511 | return false; |
| 1512 | } |
| 1513 | #elif defined(TINYEXR_USE_NANOZLIB) && (TINYEXR_USE_NANOZLIB==1) |
| 1514 | uint64_t dest_size = (*uncompressed_size); |
| 1515 | uint64_t uncomp_size{0}; |
| 1516 | nanoz_status_t ret = |
| 1517 | nanoz_uncompress(src, src_size, dest_size, &tmpBuf.at(0), &uncomp_size); |
| 1518 | if (NANOZ_SUCCESS != ret) { |
| 1519 | return false; |
| 1520 | } |
| 1521 | if ((*uncompressed_size) != uncomp_size) { |
| 1522 | return false; |
| 1523 | } |
| 1524 | #else |
| 1525 | int ret = uncompress(dest: &tmpBuf.at(n: 0), destLen: uncompressed_size, source: src, sourceLen: src_size); |
| 1526 | if (Z_OK != ret) { |
| 1527 | return false; |
| 1528 | } |
| 1529 | #endif |
| 1530 | |
| 1531 | // |
| 1532 | // Apply EXR-specific? postprocess. Grabbed from OpenEXR's |
| 1533 | // ImfZipCompressor.cpp |
| 1534 | // |
| 1535 | |
| 1536 | // Predictor. |
| 1537 | { |
| 1538 | unsigned char *t = &tmpBuf.at(n: 0) + 1; |
| 1539 | unsigned char *stop = &tmpBuf.at(n: 0) + (*uncompressed_size); |
| 1540 | |
| 1541 | while (t < stop) { |
| 1542 | int d = int(t[-1]) + int(t[0]) - 128; |
| 1543 | t[0] = static_cast<unsigned char>(d); |
| 1544 | ++t; |
| 1545 | } |
| 1546 | } |
| 1547 | |
| 1548 | // Reorder the pixel data. |
| 1549 | { |
| 1550 | const char *t1 = reinterpret_cast<const char *>(&tmpBuf.at(n: 0)); |
| 1551 | const char *t2 = reinterpret_cast<const char *>(&tmpBuf.at(n: 0)) + |
| 1552 | (*uncompressed_size + 1) / 2; |
| 1553 | char *s = reinterpret_cast<char *>(dst); |
| 1554 | char *stop = s + (*uncompressed_size); |
| 1555 | |
| 1556 | for (;;) { |
| 1557 | if (s < stop) |
| 1558 | *(s++) = *(t1++); |
| 1559 | else |
| 1560 | break; |
| 1561 | |
| 1562 | if (s < stop) |
| 1563 | *(s++) = *(t2++); |
| 1564 | else |
| 1565 | break; |
| 1566 | } |
| 1567 | } |
| 1568 | |
| 1569 | return true; |
| 1570 | } |
| 1571 | |
| 1572 | // RLE code from OpenEXR -------------------------------------- |
| 1573 | |
| 1574 | #ifdef __clang__ |
| 1575 | #pragma clang diagnostic push |
| 1576 | #pragma clang diagnostic ignored "-Wsign-conversion" |
| 1577 | #if __has_warning("-Wextra-semi-stmt") |
| 1578 | #pragma clang diagnostic ignored "-Wextra-semi-stmt" |
| 1579 | #endif |
| 1580 | #endif |
| 1581 | |
| 1582 | #ifdef _MSC_VER |
| 1583 | #pragma warning(push) |
| 1584 | #pragma warning(disable : 4204) // nonstandard extension used : non-constant |
| 1585 | // aggregate initializer (also supported by GNU |
| 1586 | // C and C99, so no big deal) |
| 1587 | #pragma warning(disable : 4244) // 'initializing': conversion from '__int64' to |
| 1588 | // 'int', possible loss of data |
| 1589 | #pragma warning(disable : 4267) // 'argument': conversion from '__int64' to |
| 1590 | // 'int', possible loss of data |
| 1591 | #pragma warning(disable : 4996) // 'strdup': The POSIX name for this item is |
| 1592 | // deprecated. Instead, use the ISO C and C++ |
| 1593 | // conformant name: _strdup. |
| 1594 | #endif |
| 1595 | |
| 1596 | const int MIN_RUN_LENGTH = 3; |
| 1597 | const int MAX_RUN_LENGTH = 127; |
| 1598 | |
| 1599 | // |
| 1600 | // Compress an array of bytes, using run-length encoding, |
| 1601 | // and return the length of the compressed data. |
| 1602 | // |
| 1603 | |
| 1604 | static int rleCompress(int inLength, const char in[], signed char out[]) { |
| 1605 | const char *inEnd = in + inLength; |
| 1606 | const char *runStart = in; |
| 1607 | const char *runEnd = in + 1; |
| 1608 | signed char *outWrite = out; |
| 1609 | |
| 1610 | while (runStart < inEnd) { |
| 1611 | while (runEnd < inEnd && *runStart == *runEnd && |
| 1612 | runEnd - runStart - 1 < MAX_RUN_LENGTH) { |
| 1613 | ++runEnd; |
| 1614 | } |
| 1615 | |
| 1616 | if (runEnd - runStart >= MIN_RUN_LENGTH) { |
| 1617 | // |
| 1618 | // Compressible run |
| 1619 | // |
| 1620 | |
| 1621 | *outWrite++ = static_cast<char>(runEnd - runStart) - 1; |
| 1622 | *outWrite++ = *(reinterpret_cast<const signed char *>(runStart)); |
| 1623 | runStart = runEnd; |
| 1624 | } else { |
| 1625 | // |
| 1626 | // Uncompressable run |
| 1627 | // |
| 1628 | |
| 1629 | while (runEnd < inEnd && |
| 1630 | ((runEnd + 1 >= inEnd || *runEnd != *(runEnd + 1)) || |
| 1631 | (runEnd + 2 >= inEnd || *(runEnd + 1) != *(runEnd + 2))) && |
| 1632 | runEnd - runStart < MAX_RUN_LENGTH) { |
| 1633 | ++runEnd; |
| 1634 | } |
| 1635 | |
| 1636 | *outWrite++ = static_cast<char>(runStart - runEnd); |
| 1637 | |
| 1638 | while (runStart < runEnd) { |
| 1639 | *outWrite++ = *(reinterpret_cast<const signed char *>(runStart++)); |
| 1640 | } |
| 1641 | } |
| 1642 | |
| 1643 | ++runEnd; |
| 1644 | } |
| 1645 | |
| 1646 | return static_cast<int>(outWrite - out); |
| 1647 | } |
| 1648 | |
| 1649 | // |
| 1650 | // Uncompress an array of bytes compressed with rleCompress(). |
| 1651 | // Returns the length of the uncompressed data, or 0 if the |
| 1652 | // length of the uncompressed data would be more than maxLength. |
| 1653 | // |
| 1654 | |
| 1655 | static int rleUncompress(int inLength, int maxLength, const signed char in[], |
| 1656 | char out[]) { |
| 1657 | char *outStart = out; |
| 1658 | |
| 1659 | while (inLength > 0) { |
| 1660 | if (*in < 0) { |
| 1661 | int count = -(static_cast<int>(*in++)); |
| 1662 | inLength -= count + 1; |
| 1663 | |
| 1664 | // Fixes #116: Add bounds check to in buffer. |
| 1665 | if ((0 > (maxLength -= count)) || (inLength < 0)) return 0; |
| 1666 | |
| 1667 | memcpy(dest: out, src: in, n: count); |
| 1668 | out += count; |
| 1669 | in += count; |
| 1670 | } else { |
| 1671 | int count = *in++; |
| 1672 | inLength -= 2; |
| 1673 | |
| 1674 | if ((0 > (maxLength -= count + 1)) || (inLength < 0)) return 0; |
| 1675 | |
| 1676 | memset(s: out, c: *reinterpret_cast<const char *>(in), n: count + 1); |
| 1677 | out += count + 1; |
| 1678 | |
| 1679 | in++; |
| 1680 | } |
| 1681 | } |
| 1682 | |
| 1683 | return static_cast<int>(out - outStart); |
| 1684 | } |
| 1685 | |
| 1686 | #ifdef __clang__ |
| 1687 | #pragma clang diagnostic pop |
| 1688 | #endif |
| 1689 | |
| 1690 | // End of RLE code from OpenEXR ----------------------------------- |
| 1691 | |
| 1692 | static bool CompressRle(unsigned char *dst, |
| 1693 | tinyexr::tinyexr_uint64 &compressedSize, |
| 1694 | const unsigned char *src, unsigned long src_size) { |
| 1695 | std::vector<unsigned char> tmpBuf(src_size); |
| 1696 | |
| 1697 | // |
| 1698 | // Apply EXR-specific? postprocess. Grabbed from OpenEXR's |
| 1699 | // ImfRleCompressor.cpp |
| 1700 | // |
| 1701 | |
| 1702 | // |
| 1703 | // Reorder the pixel data. |
| 1704 | // |
| 1705 | |
| 1706 | const char *srcPtr = reinterpret_cast<const char *>(src); |
| 1707 | |
| 1708 | { |
| 1709 | char *t1 = reinterpret_cast<char *>(&tmpBuf.at(n: 0)); |
| 1710 | char *t2 = reinterpret_cast<char *>(&tmpBuf.at(n: 0)) + (src_size + 1) / 2; |
| 1711 | const char *stop = srcPtr + src_size; |
| 1712 | |
| 1713 | for (;;) { |
| 1714 | if (srcPtr < stop) |
| 1715 | *(t1++) = *(srcPtr++); |
| 1716 | else |
| 1717 | break; |
| 1718 | |
| 1719 | if (srcPtr < stop) |
| 1720 | *(t2++) = *(srcPtr++); |
| 1721 | else |
| 1722 | break; |
| 1723 | } |
| 1724 | } |
| 1725 | |
| 1726 | // |
| 1727 | // Predictor. |
| 1728 | // |
| 1729 | |
| 1730 | { |
| 1731 | unsigned char *t = &tmpBuf.at(n: 0) + 1; |
| 1732 | unsigned char *stop = &tmpBuf.at(n: 0) + src_size; |
| 1733 | int p = t[-1]; |
| 1734 | |
| 1735 | while (t < stop) { |
| 1736 | int d = int(t[0]) - p + (128 + 256); |
| 1737 | p = t[0]; |
| 1738 | t[0] = static_cast<unsigned char>(d); |
| 1739 | ++t; |
| 1740 | } |
| 1741 | } |
| 1742 | |
| 1743 | // outSize will be (srcSiz * 3) / 2 at max. |
| 1744 | int outSize = rleCompress(inLength: static_cast<int>(src_size), |
| 1745 | in: reinterpret_cast<const char *>(&tmpBuf.at(n: 0)), |
| 1746 | out: reinterpret_cast<signed char *>(dst)); |
| 1747 | TINYEXR_CHECK_AND_RETURN_C(outSize > 0, false); |
| 1748 | |
| 1749 | compressedSize = static_cast<tinyexr::tinyexr_uint64>(outSize); |
| 1750 | |
| 1751 | // Use uncompressed data when compressed data is larger than uncompressed. |
| 1752 | // (Issue 40) |
| 1753 | if (compressedSize >= src_size) { |
| 1754 | compressedSize = src_size; |
| 1755 | memcpy(dest: dst, src: src, n: src_size); |
| 1756 | } |
| 1757 | |
| 1758 | return true; |
| 1759 | } |
| 1760 | |
| 1761 | static bool DecompressRle(unsigned char *dst, |
| 1762 | const unsigned long uncompressed_size, |
| 1763 | const unsigned char *src, unsigned long src_size) { |
| 1764 | if (uncompressed_size == src_size) { |
| 1765 | // Data is not compressed(Issue 40). |
| 1766 | memcpy(dest: dst, src: src, n: src_size); |
| 1767 | return true; |
| 1768 | } |
| 1769 | |
| 1770 | // Workaround for issue #112. |
| 1771 | // TODO(syoyo): Add more robust out-of-bounds check in `rleUncompress`. |
| 1772 | if (src_size <= 2) { |
| 1773 | return false; |
| 1774 | } |
| 1775 | |
| 1776 | std::vector<unsigned char> tmpBuf(uncompressed_size); |
| 1777 | |
| 1778 | int ret = rleUncompress(inLength: static_cast<int>(src_size), |
| 1779 | maxLength: static_cast<int>(uncompressed_size), |
| 1780 | in: reinterpret_cast<const signed char *>(src), |
| 1781 | out: reinterpret_cast<char *>(&tmpBuf.at(n: 0))); |
| 1782 | if (ret != static_cast<int>(uncompressed_size)) { |
| 1783 | return false; |
| 1784 | } |
| 1785 | |
| 1786 | // |
| 1787 | // Apply EXR-specific? postprocess. Grabbed from OpenEXR's |
| 1788 | // ImfRleCompressor.cpp |
| 1789 | // |
| 1790 | |
| 1791 | // Predictor. |
| 1792 | { |
| 1793 | unsigned char *t = &tmpBuf.at(n: 0) + 1; |
| 1794 | unsigned char *stop = &tmpBuf.at(n: 0) + uncompressed_size; |
| 1795 | |
| 1796 | while (t < stop) { |
| 1797 | int d = int(t[-1]) + int(t[0]) - 128; |
| 1798 | t[0] = static_cast<unsigned char>(d); |
| 1799 | ++t; |
| 1800 | } |
| 1801 | } |
| 1802 | |
| 1803 | // Reorder the pixel data. |
| 1804 | { |
| 1805 | const char *t1 = reinterpret_cast<const char *>(&tmpBuf.at(n: 0)); |
| 1806 | const char *t2 = reinterpret_cast<const char *>(&tmpBuf.at(n: 0)) + |
| 1807 | (uncompressed_size + 1) / 2; |
| 1808 | char *s = reinterpret_cast<char *>(dst); |
| 1809 | char *stop = s + uncompressed_size; |
| 1810 | |
| 1811 | for (;;) { |
| 1812 | if (s < stop) |
| 1813 | *(s++) = *(t1++); |
| 1814 | else |
| 1815 | break; |
| 1816 | |
| 1817 | if (s < stop) |
| 1818 | *(s++) = *(t2++); |
| 1819 | else |
| 1820 | break; |
| 1821 | } |
| 1822 | } |
| 1823 | |
| 1824 | return true; |
| 1825 | } |
| 1826 | |
| 1827 | #if TINYEXR_USE_PIZ |
| 1828 | |
| 1829 | #ifdef __clang__ |
| 1830 | #pragma clang diagnostic push |
| 1831 | #pragma clang diagnostic ignored "-Wc++11-long-long" |
| 1832 | #pragma clang diagnostic ignored "-Wold-style-cast" |
| 1833 | #pragma clang diagnostic ignored "-Wpadded" |
| 1834 | #pragma clang diagnostic ignored "-Wsign-conversion" |
| 1835 | #pragma clang diagnostic ignored "-Wc++11-extensions" |
| 1836 | #pragma clang diagnostic ignored "-Wconversion" |
| 1837 | #pragma clang diagnostic ignored "-Wc++98-compat-pedantic" |
| 1838 | |
| 1839 | #if __has_warning("-Wcast-qual") |
| 1840 | #pragma clang diagnostic ignored "-Wcast-qual" |
| 1841 | #endif |
| 1842 | |
| 1843 | #if __has_warning("-Wextra-semi-stmt") |
| 1844 | #pragma clang diagnostic ignored "-Wextra-semi-stmt" |
| 1845 | #endif |
| 1846 | |
| 1847 | #endif |
| 1848 | |
| 1849 | // |
| 1850 | // PIZ compress/uncompress, based on OpenEXR's ImfPizCompressor.cpp |
| 1851 | // |
| 1852 | // ----------------------------------------------------------------- |
| 1853 | // Copyright (c) 2004, Industrial Light & Magic, a division of Lucas |
| 1854 | // Digital Ltd. LLC) |
| 1855 | // (3 clause BSD license) |
| 1856 | // |
| 1857 | |
| 1858 | struct PIZChannelData { |
| 1859 | unsigned short *start; |
| 1860 | unsigned short *end; |
| 1861 | int nx; |
| 1862 | int ny; |
| 1863 | int ys; |
| 1864 | int size; |
| 1865 | }; |
| 1866 | |
| 1867 | //----------------------------------------------------------------------------- |
| 1868 | // |
| 1869 | // 16-bit Haar Wavelet encoding and decoding |
| 1870 | // |
| 1871 | // The source code in this file is derived from the encoding |
| 1872 | // and decoding routines written by Christian Rouet for his |
| 1873 | // PIZ image file format. |
| 1874 | // |
| 1875 | //----------------------------------------------------------------------------- |
| 1876 | |
| 1877 | // |
| 1878 | // Wavelet basis functions without modulo arithmetic; they produce |
| 1879 | // the best compression ratios when the wavelet-transformed data are |
| 1880 | // Huffman-encoded, but the wavelet transform works only for 14-bit |
| 1881 | // data (untransformed data values must be less than (1 << 14)). |
| 1882 | // |
| 1883 | |
| 1884 | inline void wenc14(unsigned short a, unsigned short b, unsigned short &l, |
| 1885 | unsigned short &h) { |
| 1886 | short as = static_cast<short>(a); |
| 1887 | short bs = static_cast<short>(b); |
| 1888 | |
| 1889 | short ms = (as + bs) >> 1; |
| 1890 | short ds = as - bs; |
| 1891 | |
| 1892 | l = static_cast<unsigned short>(ms); |
| 1893 | h = static_cast<unsigned short>(ds); |
| 1894 | } |
| 1895 | |
| 1896 | inline void wdec14(unsigned short l, unsigned short h, unsigned short &a, |
| 1897 | unsigned short &b) { |
| 1898 | short ls = static_cast<short>(l); |
| 1899 | short hs = static_cast<short>(h); |
| 1900 | |
| 1901 | int hi = hs; |
| 1902 | int ai = ls + (hi & 1) + (hi >> 1); |
| 1903 | |
| 1904 | short as = static_cast<short>(ai); |
| 1905 | short bs = static_cast<short>(ai - hi); |
| 1906 | |
| 1907 | a = static_cast<unsigned short>(as); |
| 1908 | b = static_cast<unsigned short>(bs); |
| 1909 | } |
| 1910 | |
| 1911 | // |
| 1912 | // Wavelet basis functions with modulo arithmetic; they work with full |
| 1913 | // 16-bit data, but Huffman-encoding the wavelet-transformed data doesn't |
| 1914 | // compress the data quite as well. |
| 1915 | // |
| 1916 | |
| 1917 | const int NBITS = 16; |
| 1918 | const int A_OFFSET = 1 << (NBITS - 1); |
| 1919 | const int M_OFFSET = 1 << (NBITS - 1); |
| 1920 | const int MOD_MASK = (1 << NBITS) - 1; |
| 1921 | |
| 1922 | inline void wenc16(unsigned short a, unsigned short b, unsigned short &l, |
| 1923 | unsigned short &h) { |
| 1924 | int ao = (a + A_OFFSET) & MOD_MASK; |
| 1925 | int m = ((ao + b) >> 1); |
| 1926 | int d = ao - b; |
| 1927 | |
| 1928 | if (d < 0) m = (m + M_OFFSET) & MOD_MASK; |
| 1929 | |
| 1930 | d &= MOD_MASK; |
| 1931 | |
| 1932 | l = static_cast<unsigned short>(m); |
| 1933 | h = static_cast<unsigned short>(d); |
| 1934 | } |
| 1935 | |
| 1936 | inline void wdec16(unsigned short l, unsigned short h, unsigned short &a, |
| 1937 | unsigned short &b) { |
| 1938 | int m = l; |
| 1939 | int d = h; |
| 1940 | int bb = (m - (d >> 1)) & MOD_MASK; |
| 1941 | int aa = (d + bb - A_OFFSET) & MOD_MASK; |
| 1942 | b = static_cast<unsigned short>(bb); |
| 1943 | a = static_cast<unsigned short>(aa); |
| 1944 | } |
| 1945 | |
| 1946 | // |
| 1947 | // 2D Wavelet encoding: |
| 1948 | // |
| 1949 | |
| 1950 | static void wav2Encode( |
| 1951 | unsigned short *in, // io: values are transformed in place |
| 1952 | int nx, // i : x size |
| 1953 | int ox, // i : x offset |
| 1954 | int ny, // i : y size |
| 1955 | int oy, // i : y offset |
| 1956 | unsigned short mx) // i : maximum in[x][y] value |
| 1957 | { |
| 1958 | bool w14 = (mx < (1 << 14)); |
| 1959 | int n = (nx > ny) ? ny : nx; |
| 1960 | int p = 1; // == 1 << level |
| 1961 | int p2 = 2; // == 1 << (level+1) |
| 1962 | |
| 1963 | // |
| 1964 | // Hierarchical loop on smaller dimension n |
| 1965 | // |
| 1966 | |
| 1967 | while (p2 <= n) { |
| 1968 | unsigned short *py = in; |
| 1969 | unsigned short *ey = in + oy * (ny - p2); |
| 1970 | int oy1 = oy * p; |
| 1971 | int oy2 = oy * p2; |
| 1972 | int ox1 = ox * p; |
| 1973 | int ox2 = ox * p2; |
| 1974 | unsigned short i00, i01, i10, i11; |
| 1975 | |
| 1976 | // |
| 1977 | // Y loop |
| 1978 | // |
| 1979 | |
| 1980 | for (; py <= ey; py += oy2) { |
| 1981 | unsigned short *px = py; |
| 1982 | unsigned short *ex = py + ox * (nx - p2); |
| 1983 | |
| 1984 | // |
| 1985 | // X loop |
| 1986 | // |
| 1987 | |
| 1988 | for (; px <= ex; px += ox2) { |
| 1989 | unsigned short *p01 = px + ox1; |
| 1990 | unsigned short *p10 = px + oy1; |
| 1991 | unsigned short *p11 = p10 + ox1; |
| 1992 | |
| 1993 | // |
| 1994 | // 2D wavelet encoding |
| 1995 | // |
| 1996 | |
| 1997 | if (w14) { |
| 1998 | wenc14(a: *px, b: *p01, l&: i00, h&: i01); |
| 1999 | wenc14(a: *p10, b: *p11, l&: i10, h&: i11); |
| 2000 | wenc14(a: i00, b: i10, l&: *px, h&: *p10); |
| 2001 | wenc14(a: i01, b: i11, l&: *p01, h&: *p11); |
| 2002 | } else { |
| 2003 | wenc16(a: *px, b: *p01, l&: i00, h&: i01); |
| 2004 | wenc16(a: *p10, b: *p11, l&: i10, h&: i11); |
| 2005 | wenc16(a: i00, b: i10, l&: *px, h&: *p10); |
| 2006 | wenc16(a: i01, b: i11, l&: *p01, h&: *p11); |
| 2007 | } |
| 2008 | } |
| 2009 | |
| 2010 | // |
| 2011 | // Encode (1D) odd column (still in Y loop) |
| 2012 | // |
| 2013 | |
| 2014 | if (nx & p) { |
| 2015 | unsigned short *p10 = px + oy1; |
| 2016 | |
| 2017 | if (w14) |
| 2018 | wenc14(a: *px, b: *p10, l&: i00, h&: *p10); |
| 2019 | else |
| 2020 | wenc16(a: *px, b: *p10, l&: i00, h&: *p10); |
| 2021 | |
| 2022 | *px = i00; |
| 2023 | } |
| 2024 | } |
| 2025 | |
| 2026 | // |
| 2027 | // Encode (1D) odd line (must loop in X) |
| 2028 | // |
| 2029 | |
| 2030 | if (ny & p) { |
| 2031 | unsigned short *px = py; |
| 2032 | unsigned short *ex = py + ox * (nx - p2); |
| 2033 | |
| 2034 | for (; px <= ex; px += ox2) { |
| 2035 | unsigned short *p01 = px + ox1; |
| 2036 | |
| 2037 | if (w14) |
| 2038 | wenc14(a: *px, b: *p01, l&: i00, h&: *p01); |
| 2039 | else |
| 2040 | wenc16(a: *px, b: *p01, l&: i00, h&: *p01); |
| 2041 | |
| 2042 | *px = i00; |
| 2043 | } |
| 2044 | } |
| 2045 | |
| 2046 | // |
| 2047 | // Next level |
| 2048 | // |
| 2049 | |
| 2050 | p = p2; |
| 2051 | p2 <<= 1; |
| 2052 | } |
| 2053 | } |
| 2054 | |
| 2055 | // |
| 2056 | // 2D Wavelet decoding: |
| 2057 | // |
| 2058 | |
| 2059 | static void wav2Decode( |
| 2060 | unsigned short *in, // io: values are transformed in place |
| 2061 | int nx, // i : x size |
| 2062 | int ox, // i : x offset |
| 2063 | int ny, // i : y size |
| 2064 | int oy, // i : y offset |
| 2065 | unsigned short mx) // i : maximum in[x][y] value |
| 2066 | { |
| 2067 | bool w14 = (mx < (1 << 14)); |
| 2068 | int n = (nx > ny) ? ny : nx; |
| 2069 | int p = 1; |
| 2070 | int p2; |
| 2071 | |
| 2072 | // |
| 2073 | // Search max level |
| 2074 | // |
| 2075 | |
| 2076 | while (p <= n) p <<= 1; |
| 2077 | |
| 2078 | p >>= 1; |
| 2079 | p2 = p; |
| 2080 | p >>= 1; |
| 2081 | |
| 2082 | // |
| 2083 | // Hierarchical loop on smaller dimension n |
| 2084 | // |
| 2085 | |
| 2086 | while (p >= 1) { |
| 2087 | unsigned short *py = in; |
| 2088 | unsigned short *ey = in + oy * (ny - p2); |
| 2089 | int oy1 = oy * p; |
| 2090 | int oy2 = oy * p2; |
| 2091 | int ox1 = ox * p; |
| 2092 | int ox2 = ox * p2; |
| 2093 | unsigned short i00, i01, i10, i11; |
| 2094 | |
| 2095 | // |
| 2096 | // Y loop |
| 2097 | // |
| 2098 | |
| 2099 | for (; py <= ey; py += oy2) { |
| 2100 | unsigned short *px = py; |
| 2101 | unsigned short *ex = py + ox * (nx - p2); |
| 2102 | |
| 2103 | // |
| 2104 | // X loop |
| 2105 | // |
| 2106 | |
| 2107 | for (; px <= ex; px += ox2) { |
| 2108 | unsigned short *p01 = px + ox1; |
| 2109 | unsigned short *p10 = px + oy1; |
| 2110 | unsigned short *p11 = p10 + ox1; |
| 2111 | |
| 2112 | // |
| 2113 | // 2D wavelet decoding |
| 2114 | // |
| 2115 | |
| 2116 | if (w14) { |
| 2117 | wdec14(l: *px, h: *p10, a&: i00, b&: i10); |
| 2118 | wdec14(l: *p01, h: *p11, a&: i01, b&: i11); |
| 2119 | wdec14(l: i00, h: i01, a&: *px, b&: *p01); |
| 2120 | wdec14(l: i10, h: i11, a&: *p10, b&: *p11); |
| 2121 | } else { |
| 2122 | wdec16(l: *px, h: *p10, a&: i00, b&: i10); |
| 2123 | wdec16(l: *p01, h: *p11, a&: i01, b&: i11); |
| 2124 | wdec16(l: i00, h: i01, a&: *px, b&: *p01); |
| 2125 | wdec16(l: i10, h: i11, a&: *p10, b&: *p11); |
| 2126 | } |
| 2127 | } |
| 2128 | |
| 2129 | // |
| 2130 | // Decode (1D) odd column (still in Y loop) |
| 2131 | // |
| 2132 | |
| 2133 | if (nx & p) { |
| 2134 | unsigned short *p10 = px + oy1; |
| 2135 | |
| 2136 | if (w14) |
| 2137 | wdec14(l: *px, h: *p10, a&: i00, b&: *p10); |
| 2138 | else |
| 2139 | wdec16(l: *px, h: *p10, a&: i00, b&: *p10); |
| 2140 | |
| 2141 | *px = i00; |
| 2142 | } |
| 2143 | } |
| 2144 | |
| 2145 | // |
| 2146 | // Decode (1D) odd line (must loop in X) |
| 2147 | // |
| 2148 | |
| 2149 | if (ny & p) { |
| 2150 | unsigned short *px = py; |
| 2151 | unsigned short *ex = py + ox * (nx - p2); |
| 2152 | |
| 2153 | for (; px <= ex; px += ox2) { |
| 2154 | unsigned short *p01 = px + ox1; |
| 2155 | |
| 2156 | if (w14) |
| 2157 | wdec14(l: *px, h: *p01, a&: i00, b&: *p01); |
| 2158 | else |
| 2159 | wdec16(l: *px, h: *p01, a&: i00, b&: *p01); |
| 2160 | |
| 2161 | *px = i00; |
| 2162 | } |
| 2163 | } |
| 2164 | |
| 2165 | // |
| 2166 | // Next level |
| 2167 | // |
| 2168 | |
| 2169 | p2 = p; |
| 2170 | p >>= 1; |
| 2171 | } |
| 2172 | } |
| 2173 | |
| 2174 | //----------------------------------------------------------------------------- |
| 2175 | // |
| 2176 | // 16-bit Huffman compression and decompression. |
| 2177 | // |
| 2178 | // The source code in this file is derived from the 8-bit |
| 2179 | // Huffman compression and decompression routines written |
| 2180 | // by Christian Rouet for his PIZ image file format. |
| 2181 | // |
| 2182 | //----------------------------------------------------------------------------- |
| 2183 | |
| 2184 | // Adds some modification for tinyexr. |
| 2185 | |
| 2186 | const int HUF_ENCBITS = 16; // literal (value) bit length |
| 2187 | const int HUF_DECBITS = 14; // decoding bit size (>= 8) |
| 2188 | |
| 2189 | const int HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1; // encoding table size |
| 2190 | const int HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size |
| 2191 | const int HUF_DECMASK = HUF_DECSIZE - 1; |
| 2192 | |
| 2193 | struct HufDec { // short code long code |
| 2194 | //------------------------------- |
| 2195 | unsigned int len : 8; // code length 0 |
| 2196 | unsigned int lit : 24; // lit p size |
| 2197 | unsigned int *p; // 0 lits |
| 2198 | }; |
| 2199 | |
| 2200 | inline long long hufLength(long long code) { return code & 63; } |
| 2201 | |
| 2202 | inline long long hufCode(long long code) { return code >> 6; } |
| 2203 | |
| 2204 | inline void outputBits(int nBits, long long bits, long long &c, int &lc, |
| 2205 | char *&out) { |
| 2206 | c <<= nBits; |
| 2207 | lc += nBits; |
| 2208 | |
| 2209 | c |= bits; |
| 2210 | |
| 2211 | while (lc >= 8) *out++ = static_cast<char>((c >> (lc -= 8))); |
| 2212 | } |
| 2213 | |
| 2214 | inline long long getBits(int nBits, long long &c, int &lc, const char *&in) { |
| 2215 | while (lc < nBits) { |
| 2216 | c = (c << 8) | *(reinterpret_cast<const unsigned char *>(in++)); |
| 2217 | lc += 8; |
| 2218 | } |
| 2219 | |
| 2220 | lc -= nBits; |
| 2221 | return (c >> lc) & ((1 << nBits) - 1); |
| 2222 | } |
| 2223 | |
| 2224 | // |
| 2225 | // ENCODING TABLE BUILDING & (UN)PACKING |
| 2226 | // |
| 2227 | |
| 2228 | // |
| 2229 | // Build a "canonical" Huffman code table: |
| 2230 | // - for each (uncompressed) symbol, hcode contains the length |
| 2231 | // of the corresponding code (in the compressed data) |
| 2232 | // - canonical codes are computed and stored in hcode |
| 2233 | // - the rules for constructing canonical codes are as follows: |
| 2234 | // * shorter codes (if filled with zeroes to the right) |
| 2235 | // have a numerically higher value than longer codes |
| 2236 | // * for codes with the same length, numerical values |
| 2237 | // increase with numerical symbol values |
| 2238 | // - because the canonical code table can be constructed from |
| 2239 | // symbol lengths alone, the code table can be transmitted |
| 2240 | // without sending the actual code values |
| 2241 | // - see http://www.compressconsult.com/huffman/ |
| 2242 | // |
| 2243 | |
| 2244 | static void hufCanonicalCodeTable(long long hcode[HUF_ENCSIZE]) { |
| 2245 | long long n[59]; |
| 2246 | |
| 2247 | // |
| 2248 | // For each i from 0 through 58, count the |
| 2249 | // number of different codes of length i, and |
| 2250 | // store the count in n[i]. |
| 2251 | // |
| 2252 | |
| 2253 | for (int i = 0; i <= 58; ++i) n[i] = 0; |
| 2254 | |
| 2255 | for (int i = 0; i < HUF_ENCSIZE; ++i) n[hcode[i]] += 1; |
| 2256 | |
| 2257 | // |
| 2258 | // For each i from 58 through 1, compute the |
| 2259 | // numerically lowest code with length i, and |
| 2260 | // store that code in n[i]. |
| 2261 | // |
| 2262 | |
| 2263 | long long c = 0; |
| 2264 | |
| 2265 | for (int i = 58; i > 0; --i) { |
| 2266 | long long nc = ((c + n[i]) >> 1); |
| 2267 | n[i] = c; |
| 2268 | c = nc; |
| 2269 | } |
| 2270 | |
| 2271 | // |
| 2272 | // hcode[i] contains the length, l, of the |
| 2273 | // code for symbol i. Assign the next available |
| 2274 | // code of length l to the symbol and store both |
| 2275 | // l and the code in hcode[i]. |
| 2276 | // |
| 2277 | |
| 2278 | for (int i = 0; i < HUF_ENCSIZE; ++i) { |
| 2279 | int l = static_cast<int>(hcode[i]); |
| 2280 | |
| 2281 | if (l > 0) hcode[i] = l | (n[l]++ << 6); |
| 2282 | } |
| 2283 | } |
| 2284 | |
| 2285 | // |
| 2286 | // Compute Huffman codes (based on frq input) and store them in frq: |
| 2287 | // - code structure is : [63:lsb - 6:msb] | [5-0: bit length]; |
| 2288 | // - max code length is 58 bits; |
| 2289 | // - codes outside the range [im-iM] have a null length (unused values); |
| 2290 | // - original frequencies are destroyed; |
| 2291 | // - encoding tables are used by hufEncode() and hufBuildDecTable(); |
| 2292 | // |
| 2293 | |
| 2294 | struct FHeapCompare { |
| 2295 | bool operator()(long long *a, long long *b) { return *a > *b; } |
| 2296 | }; |
| 2297 | |
| 2298 | static bool hufBuildEncTable( |
| 2299 | long long *frq, // io: input frequencies [HUF_ENCSIZE], output table |
| 2300 | int *im, // o: min frq index |
| 2301 | int *iM) // o: max frq index |
| 2302 | { |
| 2303 | // |
| 2304 | // This function assumes that when it is called, array frq |
| 2305 | // indicates the frequency of all possible symbols in the data |
| 2306 | // that are to be Huffman-encoded. (frq[i] contains the number |
| 2307 | // of occurrences of symbol i in the data.) |
| 2308 | // |
| 2309 | // The loop below does three things: |
| 2310 | // |
| 2311 | // 1) Finds the minimum and maximum indices that point |
| 2312 | // to non-zero entries in frq: |
| 2313 | // |
| 2314 | // frq[im] != 0, and frq[i] == 0 for all i < im |
| 2315 | // frq[iM] != 0, and frq[i] == 0 for all i > iM |
| 2316 | // |
| 2317 | // 2) Fills array fHeap with pointers to all non-zero |
| 2318 | // entries in frq. |
| 2319 | // |
| 2320 | // 3) Initializes array hlink such that hlink[i] == i |
| 2321 | // for all array entries. |
| 2322 | // |
| 2323 | |
| 2324 | std::vector<int> hlink(HUF_ENCSIZE); |
| 2325 | std::vector<long long *> fHeap(HUF_ENCSIZE); |
| 2326 | |
| 2327 | *im = 0; |
| 2328 | |
| 2329 | while (!frq[*im]) (*im)++; |
| 2330 | |
| 2331 | int nf = 0; |
| 2332 | |
| 2333 | for (int i = *im; i < HUF_ENCSIZE; i++) { |
| 2334 | hlink[i] = i; |
| 2335 | |
| 2336 | if (frq[i]) { |
| 2337 | fHeap[nf] = &frq[i]; |
| 2338 | nf++; |
| 2339 | *iM = i; |
| 2340 | } |
| 2341 | } |
| 2342 | |
| 2343 | // |
| 2344 | // Add a pseudo-symbol, with a frequency count of 1, to frq; |
| 2345 | // adjust the fHeap and hlink array accordingly. Function |
| 2346 | // hufEncode() uses the pseudo-symbol for run-length encoding. |
| 2347 | // |
| 2348 | |
| 2349 | (*iM)++; |
| 2350 | frq[*iM] = 1; |
| 2351 | fHeap[nf] = &frq[*iM]; |
| 2352 | nf++; |
| 2353 | |
| 2354 | // |
| 2355 | // Build an array, scode, such that scode[i] contains the number |
| 2356 | // of bits assigned to symbol i. Conceptually this is done by |
| 2357 | // constructing a tree whose leaves are the symbols with non-zero |
| 2358 | // frequency: |
| 2359 | // |
| 2360 | // Make a heap that contains all symbols with a non-zero frequency, |
| 2361 | // with the least frequent symbol on top. |
| 2362 | // |
| 2363 | // Repeat until only one symbol is left on the heap: |
| 2364 | // |
| 2365 | // Take the two least frequent symbols off the top of the heap. |
| 2366 | // Create a new node that has first two nodes as children, and |
| 2367 | // whose frequency is the sum of the frequencies of the first |
| 2368 | // two nodes. Put the new node back into the heap. |
| 2369 | // |
| 2370 | // The last node left on the heap is the root of the tree. For each |
| 2371 | // leaf node, the distance between the root and the leaf is the length |
| 2372 | // of the code for the corresponding symbol. |
| 2373 | // |
| 2374 | // The loop below doesn't actually build the tree; instead we compute |
| 2375 | // the distances of the leaves from the root on the fly. When a new |
| 2376 | // node is added to the heap, then that node's descendants are linked |
| 2377 | // into a single linear list that starts at the new node, and the code |
| 2378 | // lengths of the descendants (that is, their distance from the root |
| 2379 | // of the tree) are incremented by one. |
| 2380 | // |
| 2381 | |
| 2382 | std::make_heap(first: &fHeap[0], last: &fHeap[nf], comp: FHeapCompare()); |
| 2383 | |
| 2384 | std::vector<long long> scode(HUF_ENCSIZE); |
| 2385 | memset(s: scode.data(), c: 0, n: sizeof(long long) * HUF_ENCSIZE); |
| 2386 | |
| 2387 | while (nf > 1) { |
| 2388 | // |
| 2389 | // Find the indices, mm and m, of the two smallest non-zero frq |
| 2390 | // values in fHeap, add the smallest frq to the second-smallest |
| 2391 | // frq, and remove the smallest frq value from fHeap. |
| 2392 | // |
| 2393 | |
| 2394 | int mm = fHeap[0] - frq; |
| 2395 | std::pop_heap(first: &fHeap[0], last: &fHeap[nf], comp: FHeapCompare()); |
| 2396 | --nf; |
| 2397 | |
| 2398 | int m = fHeap[0] - frq; |
| 2399 | std::pop_heap(first: &fHeap[0], last: &fHeap[nf], comp: FHeapCompare()); |
| 2400 | |
| 2401 | frq[m] += frq[mm]; |
| 2402 | std::push_heap(first: &fHeap[0], last: &fHeap[nf], comp: FHeapCompare()); |
| 2403 | |
| 2404 | // |
| 2405 | // The entries in scode are linked into lists with the |
| 2406 | // entries in hlink serving as "next" pointers and with |
| 2407 | // the end of a list marked by hlink[j] == j. |
| 2408 | // |
| 2409 | // Traverse the lists that start at scode[m] and scode[mm]. |
| 2410 | // For each element visited, increment the length of the |
| 2411 | // corresponding code by one bit. (If we visit scode[j] |
| 2412 | // during the traversal, then the code for symbol j becomes |
| 2413 | // one bit longer.) |
| 2414 | // |
| 2415 | // Merge the lists that start at scode[m] and scode[mm] |
| 2416 | // into a single list that starts at scode[m]. |
| 2417 | // |
| 2418 | |
| 2419 | // |
| 2420 | // Add a bit to all codes in the first list. |
| 2421 | // |
| 2422 | |
| 2423 | for (int j = m;; j = hlink[j]) { |
| 2424 | scode[j]++; |
| 2425 | |
| 2426 | TINYEXR_CHECK_AND_RETURN_C(scode[j] <= 58, false); |
| 2427 | |
| 2428 | if (hlink[j] == j) { |
| 2429 | // |
| 2430 | // Merge the two lists. |
| 2431 | // |
| 2432 | |
| 2433 | hlink[j] = mm; |
| 2434 | break; |
| 2435 | } |
| 2436 | } |
| 2437 | |
| 2438 | // |
| 2439 | // Add a bit to all codes in the second list |
| 2440 | // |
| 2441 | |
| 2442 | for (int j = mm;; j = hlink[j]) { |
| 2443 | scode[j]++; |
| 2444 | |
| 2445 | TINYEXR_CHECK_AND_RETURN_C(scode[j] <= 58, false); |
| 2446 | |
| 2447 | if (hlink[j] == j) break; |
| 2448 | } |
| 2449 | } |
| 2450 | |
| 2451 | // |
| 2452 | // Build a canonical Huffman code table, replacing the code |
| 2453 | // lengths in scode with (code, code length) pairs. Copy the |
| 2454 | // code table from scode into frq. |
| 2455 | // |
| 2456 | |
| 2457 | hufCanonicalCodeTable(hcode: scode.data()); |
| 2458 | memcpy(dest: frq, src: scode.data(), n: sizeof(long long) * HUF_ENCSIZE); |
| 2459 | |
| 2460 | return true; |
| 2461 | } |
| 2462 | |
| 2463 | // |
| 2464 | // Pack an encoding table: |
| 2465 | // - only code lengths, not actual codes, are stored |
| 2466 | // - runs of zeroes are compressed as follows: |
| 2467 | // |
| 2468 | // unpacked packed |
| 2469 | // -------------------------------- |
| 2470 | // 1 zero 0 (6 bits) |
| 2471 | // 2 zeroes 59 |
| 2472 | // 3 zeroes 60 |
| 2473 | // 4 zeroes 61 |
| 2474 | // 5 zeroes 62 |
| 2475 | // n zeroes (6 or more) 63 n-6 (6 + 8 bits) |
| 2476 | // |
| 2477 | |
| 2478 | const int SHORT_ZEROCODE_RUN = 59; |
| 2479 | const int LONG_ZEROCODE_RUN = 63; |
| 2480 | const int SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN; |
| 2481 | const int LONGEST_LONG_RUN = 255 + SHORTEST_LONG_RUN; |
| 2482 | |
| 2483 | static void hufPackEncTable( |
| 2484 | const long long *hcode, // i : encoding table [HUF_ENCSIZE] |
| 2485 | int im, // i : min hcode index |
| 2486 | int iM, // i : max hcode index |
| 2487 | char **pcode) // o: ptr to packed table (updated) |
| 2488 | { |
| 2489 | char *p = *pcode; |
| 2490 | long long c = 0; |
| 2491 | int lc = 0; |
| 2492 | |
| 2493 | for (; im <= iM; im++) { |
| 2494 | int l = hufLength(code: hcode[im]); |
| 2495 | |
| 2496 | if (l == 0) { |
| 2497 | int zerun = 1; |
| 2498 | |
| 2499 | while ((im < iM) && (zerun < LONGEST_LONG_RUN)) { |
| 2500 | if (hufLength(code: hcode[im + 1]) > 0) break; |
| 2501 | im++; |
| 2502 | zerun++; |
| 2503 | } |
| 2504 | |
| 2505 | if (zerun >= 2) { |
| 2506 | if (zerun >= SHORTEST_LONG_RUN) { |
| 2507 | outputBits(nBits: 6, bits: LONG_ZEROCODE_RUN, c, lc, out&: p); |
| 2508 | outputBits(nBits: 8, bits: zerun - SHORTEST_LONG_RUN, c, lc, out&: p); |
| 2509 | } else { |
| 2510 | outputBits(nBits: 6, bits: SHORT_ZEROCODE_RUN + zerun - 2, c, lc, out&: p); |
| 2511 | } |
| 2512 | continue; |
| 2513 | } |
| 2514 | } |
| 2515 | |
| 2516 | outputBits(nBits: 6, bits: l, c, lc, out&: p); |
| 2517 | } |
| 2518 | |
| 2519 | if (lc > 0) *p++ = (unsigned char)(c << (8 - lc)); |
| 2520 | |
| 2521 | *pcode = p; |
| 2522 | } |
| 2523 | |
| 2524 | // |
| 2525 | // Unpack an encoding table packed by hufPackEncTable(): |
| 2526 | // |
| 2527 | |
| 2528 | static bool hufUnpackEncTable( |
| 2529 | const char **pcode, // io: ptr to packed table (updated) |
| 2530 | int ni, // i : input size (in bytes) |
| 2531 | int im, // i : min hcode index |
| 2532 | int iM, // i : max hcode index |
| 2533 | long long *hcode) // o: encoding table [HUF_ENCSIZE] |
| 2534 | { |
| 2535 | memset(s: hcode, c: 0, n: sizeof(long long) * HUF_ENCSIZE); |
| 2536 | |
| 2537 | const char *p = *pcode; |
| 2538 | long long c = 0; |
| 2539 | int lc = 0; |
| 2540 | |
| 2541 | for (; im <= iM; im++) { |
| 2542 | if (p - *pcode >= ni) { |
| 2543 | return false; |
| 2544 | } |
| 2545 | |
| 2546 | long long l = hcode[im] = getBits(nBits: 6, c, lc, in&: p); // code length |
| 2547 | |
| 2548 | if (l == (long long)LONG_ZEROCODE_RUN) { |
| 2549 | if (p - *pcode > ni) { |
| 2550 | return false; |
| 2551 | } |
| 2552 | |
| 2553 | int zerun = getBits(nBits: 8, c, lc, in&: p) + SHORTEST_LONG_RUN; |
| 2554 | |
| 2555 | if (im + zerun > iM + 1) { |
| 2556 | return false; |
| 2557 | } |
| 2558 | |
| 2559 | while (zerun--) hcode[im++] = 0; |
| 2560 | |
| 2561 | im--; |
| 2562 | } else if (l >= (long long)SHORT_ZEROCODE_RUN) { |
| 2563 | int zerun = l - SHORT_ZEROCODE_RUN + 2; |
| 2564 | |
| 2565 | if (im + zerun > iM + 1) { |
| 2566 | return false; |
| 2567 | } |
| 2568 | |
| 2569 | while (zerun--) hcode[im++] = 0; |
| 2570 | |
| 2571 | im--; |
| 2572 | } |
| 2573 | } |
| 2574 | |
| 2575 | *pcode = const_cast<char *>(p); |
| 2576 | |
| 2577 | hufCanonicalCodeTable(hcode); |
| 2578 | |
| 2579 | return true; |
| 2580 | } |
| 2581 | |
| 2582 | // |
| 2583 | // DECODING TABLE BUILDING |
| 2584 | // |
| 2585 | |
| 2586 | // |
| 2587 | // Clear a newly allocated decoding table so that it contains only zeroes. |
| 2588 | // |
| 2589 | |
| 2590 | static void hufClearDecTable(HufDec *hdecod) // io: (allocated by caller) |
| 2591 | // decoding table [HUF_DECSIZE] |
| 2592 | { |
| 2593 | for (int i = 0; i < HUF_DECSIZE; i++) { |
| 2594 | hdecod[i].len = 0; |
| 2595 | hdecod[i].lit = 0; |
| 2596 | hdecod[i].p = NULL; |
| 2597 | } |
| 2598 | // memset(hdecod, 0, sizeof(HufDec) * HUF_DECSIZE); |
| 2599 | } |
| 2600 | |
| 2601 | // |
| 2602 | // Build a decoding hash table based on the encoding table hcode: |
| 2603 | // - short codes (<= HUF_DECBITS) are resolved with a single table access; |
| 2604 | // - long code entry allocations are not optimized, because long codes are |
| 2605 | // unfrequent; |
| 2606 | // - decoding tables are used by hufDecode(); |
| 2607 | // |
| 2608 | |
| 2609 | static bool hufBuildDecTable(const long long *hcode, // i : encoding table |
| 2610 | int im, // i : min index in hcode |
| 2611 | int iM, // i : max index in hcode |
| 2612 | HufDec *hdecod) // o: (allocated by caller) |
| 2613 | // decoding table [HUF_DECSIZE] |
| 2614 | { |
| 2615 | // |
| 2616 | // Init hashtable & loop on all codes. |
| 2617 | // Assumes that hufClearDecTable(hdecod) has already been called. |
| 2618 | // |
| 2619 | |
| 2620 | for (; im <= iM; im++) { |
| 2621 | long long c = hufCode(code: hcode[im]); |
| 2622 | int l = hufLength(code: hcode[im]); |
| 2623 | |
| 2624 | if (c >> l) { |
| 2625 | // |
| 2626 | // Error: c is supposed to be an l-bit code, |
| 2627 | // but c contains a value that is greater |
| 2628 | // than the largest l-bit number. |
| 2629 | // |
| 2630 | |
| 2631 | // invalidTableEntry(); |
| 2632 | return false; |
| 2633 | } |
| 2634 | |
| 2635 | if (l > HUF_DECBITS) { |
| 2636 | // |
| 2637 | // Long code: add a secondary entry |
| 2638 | // |
| 2639 | |
| 2640 | HufDec *pl = hdecod + (c >> (l - HUF_DECBITS)); |
| 2641 | |
| 2642 | if (pl->len) { |
| 2643 | // |
| 2644 | // Error: a short code has already |
| 2645 | // been stored in table entry *pl. |
| 2646 | // |
| 2647 | |
| 2648 | // invalidTableEntry(); |
| 2649 | return false; |
| 2650 | } |
| 2651 | |
| 2652 | pl->lit++; |
| 2653 | |
| 2654 | if (pl->p) { |
| 2655 | unsigned int *p = pl->p; |
| 2656 | pl->p = new unsigned int[pl->lit]; |
| 2657 | |
| 2658 | for (unsigned int i = 0; i < pl->lit - 1u; ++i) pl->p[i] = p[i]; |
| 2659 | |
| 2660 | delete[] p; |
| 2661 | } else { |
| 2662 | pl->p = new unsigned int[1]; |
| 2663 | } |
| 2664 | |
| 2665 | pl->p[pl->lit - 1] = im; |
| 2666 | } else if (l) { |
| 2667 | // |
| 2668 | // Short code: init all primary entries |
| 2669 | // |
| 2670 | |
| 2671 | HufDec *pl = hdecod + (c << (HUF_DECBITS - l)); |
| 2672 | |
| 2673 | for (long long i = 1ULL << (HUF_DECBITS - l); i > 0; i--, pl++) { |
| 2674 | if (pl->len || pl->p) { |
| 2675 | // |
| 2676 | // Error: a short code or a long code has |
| 2677 | // already been stored in table entry *pl. |
| 2678 | // |
| 2679 | |
| 2680 | // invalidTableEntry(); |
| 2681 | return false; |
| 2682 | } |
| 2683 | |
| 2684 | pl->len = l; |
| 2685 | pl->lit = im; |
| 2686 | } |
| 2687 | } |
| 2688 | } |
| 2689 | |
| 2690 | return true; |
| 2691 | } |
| 2692 | |
| 2693 | // |
| 2694 | // Free the long code entries of a decoding table built by hufBuildDecTable() |
| 2695 | // |
| 2696 | |
| 2697 | static void hufFreeDecTable(HufDec *hdecod) // io: Decoding table |
| 2698 | { |
| 2699 | for (int i = 0; i < HUF_DECSIZE; i++) { |
| 2700 | if (hdecod[i].p) { |
| 2701 | delete[] hdecod[i].p; |
| 2702 | hdecod[i].p = 0; |
| 2703 | } |
| 2704 | } |
| 2705 | } |
| 2706 | |
| 2707 | // |
| 2708 | // ENCODING |
| 2709 | // |
| 2710 | |
| 2711 | inline void outputCode(long long code, long long &c, int &lc, char *&out) { |
| 2712 | outputBits(nBits: hufLength(code), bits: hufCode(code), c, lc, out); |
| 2713 | } |
| 2714 | |
| 2715 | inline void sendCode(long long sCode, int runCount, long long runCode, |
| 2716 | long long &c, int &lc, char *&out) { |
| 2717 | // |
| 2718 | // Output a run of runCount instances of the symbol sCount. |
| 2719 | // Output the symbols explicitly, or if that is shorter, output |
| 2720 | // the sCode symbol once followed by a runCode symbol and runCount |
| 2721 | // expressed as an 8-bit number. |
| 2722 | // |
| 2723 | |
| 2724 | if (hufLength(code: sCode) + hufLength(code: runCode) + 8 < hufLength(code: sCode) * runCount) { |
| 2725 | outputCode(code: sCode, c, lc, out); |
| 2726 | outputCode(code: runCode, c, lc, out); |
| 2727 | outputBits(nBits: 8, bits: runCount, c, lc, out); |
| 2728 | } else { |
| 2729 | while (runCount-- >= 0) outputCode(code: sCode, c, lc, out); |
| 2730 | } |
| 2731 | } |
| 2732 | |
| 2733 | // |
| 2734 | // Encode (compress) ni values based on the Huffman encoding table hcode: |
| 2735 | // |
| 2736 | |
| 2737 | static int hufEncode // return: output size (in bits) |
| 2738 | (const long long *hcode, // i : encoding table |
| 2739 | const unsigned short *in, // i : uncompressed input buffer |
| 2740 | const int ni, // i : input buffer size (in bytes) |
| 2741 | int rlc, // i : rl code |
| 2742 | char *out) // o: compressed output buffer |
| 2743 | { |
| 2744 | char *outStart = out; |
| 2745 | long long c = 0; // bits not yet written to out |
| 2746 | int lc = 0; // number of valid bits in c (LSB) |
| 2747 | int s = in[0]; |
| 2748 | int cs = 0; |
| 2749 | |
| 2750 | // |
| 2751 | // Loop on input values |
| 2752 | // |
| 2753 | |
| 2754 | for (int i = 1; i < ni; i++) { |
| 2755 | // |
| 2756 | // Count same values or send code |
| 2757 | // |
| 2758 | |
| 2759 | if (s == in[i] && cs < 255) { |
| 2760 | cs++; |
| 2761 | } else { |
| 2762 | sendCode(sCode: hcode[s], runCount: cs, runCode: hcode[rlc], c, lc, out); |
| 2763 | cs = 0; |
| 2764 | } |
| 2765 | |
| 2766 | s = in[i]; |
| 2767 | } |
| 2768 | |
| 2769 | // |
| 2770 | // Send remaining code |
| 2771 | // |
| 2772 | |
| 2773 | sendCode(sCode: hcode[s], runCount: cs, runCode: hcode[rlc], c, lc, out); |
| 2774 | |
| 2775 | if (lc) *out = (c << (8 - lc)) & 0xff; |
| 2776 | |
| 2777 | return (out - outStart) * 8 + lc; |
| 2778 | } |
| 2779 | |
| 2780 | // |
| 2781 | // DECODING |
| 2782 | // |
| 2783 | |
| 2784 | // |
| 2785 | // In order to force the compiler to inline them, |
| 2786 | // getChar() and getCode() are implemented as macros |
| 2787 | // instead of "inline" functions. |
| 2788 | // |
| 2789 | |
| 2790 | #define getChar(c, lc, in) \ |
| 2791 | { \ |
| 2792 | c = (c << 8) | *(unsigned char *)(in++); \ |
| 2793 | lc += 8; \ |
| 2794 | } |
| 2795 | |
| 2796 | #if 0 |
| 2797 | #define getCode(po, rlc, c, lc, in, out, ob, oe) \ |
| 2798 | { \ |
| 2799 | if (po == rlc) { \ |
| 2800 | if (lc < 8) getChar(c, lc, in); \ |
| 2801 | \ |
| 2802 | lc -= 8; \ |
| 2803 | \ |
| 2804 | unsigned char cs = (c >> lc); \ |
| 2805 | \ |
| 2806 | if (out + cs > oe) return false; \ |
| 2807 | \ |
| 2808 | /* TinyEXR issue 78 */ \ |
| 2809 | unsigned short s = out[-1]; \ |
| 2810 | \ |
| 2811 | while (cs-- > 0) *out++ = s; \ |
| 2812 | } else if (out < oe) { \ |
| 2813 | *out++ = po; \ |
| 2814 | } else { \ |
| 2815 | return false; \ |
| 2816 | } \ |
| 2817 | } |
| 2818 | #else |
| 2819 | static bool getCode(int po, int rlc, long long &c, int &lc, const char *&in, |
| 2820 | const char *in_end, unsigned short *&out, |
| 2821 | const unsigned short *ob, const unsigned short *oe) { |
| 2822 | (void)ob; |
| 2823 | if (po == rlc) { |
| 2824 | if (lc < 8) { |
| 2825 | /* TinyEXR issue 78 */ |
| 2826 | /* TinyEXR issue 160. in + 1 -> in */ |
| 2827 | if (in >= in_end) { |
| 2828 | return false; |
| 2829 | } |
| 2830 | |
| 2831 | getChar(c, lc, in); |
| 2832 | } |
| 2833 | |
| 2834 | lc -= 8; |
| 2835 | |
| 2836 | unsigned char cs = (c >> lc); |
| 2837 | |
| 2838 | if (out + cs > oe) return false; |
| 2839 | |
| 2840 | // Bounds check for safety |
| 2841 | // Issue 100. |
| 2842 | if ((out - 1) < ob) return false; |
| 2843 | unsigned short s = out[-1]; |
| 2844 | |
| 2845 | while (cs-- > 0) *out++ = s; |
| 2846 | } else if (out < oe) { |
| 2847 | *out++ = po; |
| 2848 | } else { |
| 2849 | return false; |
| 2850 | } |
| 2851 | return true; |
| 2852 | } |
| 2853 | #endif |
| 2854 | |
| 2855 | // |
| 2856 | // Decode (uncompress) ni bits based on encoding & decoding tables: |
| 2857 | // |
| 2858 | |
| 2859 | static bool hufDecode(const long long *hcode, // i : encoding table |
| 2860 | const HufDec *hdecod, // i : decoding table |
| 2861 | const char *in, // i : compressed input buffer |
| 2862 | int ni, // i : input size (in bits) |
| 2863 | int rlc, // i : run-length code |
| 2864 | int no, // i : expected output size (in bytes) |
| 2865 | unsigned short *out) // o: uncompressed output buffer |
| 2866 | { |
| 2867 | long long c = 0; |
| 2868 | int lc = 0; |
| 2869 | unsigned short *outb = out; // begin |
| 2870 | unsigned short *oe = out + no; // end |
| 2871 | const char *ie = in + (ni + 7) / 8; // input byte size |
| 2872 | |
| 2873 | // |
| 2874 | // Loop on input bytes |
| 2875 | // |
| 2876 | |
| 2877 | while (in < ie) { |
| 2878 | getChar(c, lc, in); |
| 2879 | |
| 2880 | // |
| 2881 | // Access decoding table |
| 2882 | // |
| 2883 | |
| 2884 | while (lc >= HUF_DECBITS) { |
| 2885 | const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK]; |
| 2886 | |
| 2887 | if (pl.len) { |
| 2888 | // |
| 2889 | // Get short code |
| 2890 | // |
| 2891 | |
| 2892 | lc -= pl.len; |
| 2893 | // std::cout << "lit = " << pl.lit << std::endl; |
| 2894 | // std::cout << "rlc = " << rlc << std::endl; |
| 2895 | // std::cout << "c = " << c << std::endl; |
| 2896 | // std::cout << "lc = " << lc << std::endl; |
| 2897 | // std::cout << "in = " << in << std::endl; |
| 2898 | // std::cout << "out = " << out << std::endl; |
| 2899 | // std::cout << "oe = " << oe << std::endl; |
| 2900 | if (!getCode(po: pl.lit, rlc, c, lc, in, in_end: ie, out, ob: outb, oe)) { |
| 2901 | return false; |
| 2902 | } |
| 2903 | } else { |
| 2904 | if (!pl.p) { |
| 2905 | return false; |
| 2906 | } |
| 2907 | // invalidCode(); // wrong code |
| 2908 | |
| 2909 | // |
| 2910 | // Search long code |
| 2911 | // |
| 2912 | |
| 2913 | unsigned int j; |
| 2914 | |
| 2915 | for (j = 0; j < pl.lit; j++) { |
| 2916 | int l = hufLength(code: hcode[pl.p[j]]); |
| 2917 | |
| 2918 | while (lc < l && in < ie) // get more bits |
| 2919 | getChar(c, lc, in); |
| 2920 | |
| 2921 | if (lc >= l) { |
| 2922 | if (hufCode(code: hcode[pl.p[j]]) == |
| 2923 | ((c >> (lc - l)) & (((long long)(1) << l) - 1))) { |
| 2924 | // |
| 2925 | // Found : get long code |
| 2926 | // |
| 2927 | |
| 2928 | lc -= l; |
| 2929 | if (!getCode(po: pl.p[j], rlc, c, lc, in, in_end: ie, out, ob: outb, oe)) { |
| 2930 | return false; |
| 2931 | } |
| 2932 | break; |
| 2933 | } |
| 2934 | } |
| 2935 | } |
| 2936 | |
| 2937 | if (j == pl.lit) { |
| 2938 | return false; |
| 2939 | // invalidCode(); // Not found |
| 2940 | } |
| 2941 | } |
| 2942 | } |
| 2943 | } |
| 2944 | |
| 2945 | // |
| 2946 | // Get remaining (short) codes |
| 2947 | // |
| 2948 | |
| 2949 | int i = (8 - ni) & 7; |
| 2950 | c >>= i; |
| 2951 | lc -= i; |
| 2952 | |
| 2953 | while (lc > 0) { |
| 2954 | const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK]; |
| 2955 | |
| 2956 | if (pl.len) { |
| 2957 | lc -= pl.len; |
| 2958 | if (!getCode(po: pl.lit, rlc, c, lc, in, in_end: ie, out, ob: outb, oe)) { |
| 2959 | return false; |
| 2960 | } |
| 2961 | } else { |
| 2962 | return false; |
| 2963 | // invalidCode(); // wrong (long) code |
| 2964 | } |
| 2965 | } |
| 2966 | |
| 2967 | if (out - outb != no) { |
| 2968 | return false; |
| 2969 | } |
| 2970 | // notEnoughData (); |
| 2971 | |
| 2972 | return true; |
| 2973 | } |
| 2974 | |
| 2975 | static void countFrequencies(std::vector<long long> &freq, |
| 2976 | const unsigned short data[/*n*/], int n) { |
| 2977 | for (int i = 0; i < HUF_ENCSIZE; ++i) freq[i] = 0; |
| 2978 | |
| 2979 | for (int i = 0; i < n; ++i) ++freq[data[i]]; |
| 2980 | } |
| 2981 | |
| 2982 | static void writeUInt(char buf[4], unsigned int i) { |
| 2983 | unsigned char *b = (unsigned char *)buf; |
| 2984 | |
| 2985 | b[0] = i; |
| 2986 | b[1] = i >> 8; |
| 2987 | b[2] = i >> 16; |
| 2988 | b[3] = i >> 24; |
| 2989 | } |
| 2990 | |
| 2991 | static unsigned int readUInt(const char buf[4]) { |
| 2992 | const unsigned char *b = (const unsigned char *)buf; |
| 2993 | |
| 2994 | return (b[0] & 0x000000ff) | ((b[1] << 8) & 0x0000ff00) | |
| 2995 | ((b[2] << 16) & 0x00ff0000) | ((b[3] << 24) & 0xff000000); |
| 2996 | } |
| 2997 | |
| 2998 | // |
| 2999 | // EXTERNAL INTERFACE |
| 3000 | // |
| 3001 | |
| 3002 | static int hufCompress(const unsigned short raw[], int nRaw, |
| 3003 | char compressed[]) { |
| 3004 | if (nRaw == 0) return 0; |
| 3005 | |
| 3006 | std::vector<long long> freq(HUF_ENCSIZE); |
| 3007 | |
| 3008 | countFrequencies(freq, data: raw, n: nRaw); |
| 3009 | |
| 3010 | int im = 0; |
| 3011 | int iM = 0; |
| 3012 | hufBuildEncTable(frq: freq.data(), im: &im, iM: &iM); |
| 3013 | |
| 3014 | char *tableStart = compressed + 20; |
| 3015 | char *tableEnd = tableStart; |
| 3016 | hufPackEncTable(hcode: freq.data(), im, iM, pcode: &tableEnd); |
| 3017 | int tableLength = tableEnd - tableStart; |
| 3018 | |
| 3019 | char *dataStart = tableEnd; |
| 3020 | int nBits = hufEncode(hcode: freq.data(), in: raw, ni: nRaw, rlc: iM, out: dataStart); |
| 3021 | int data_length = (nBits + 7) / 8; |
| 3022 | |
| 3023 | writeUInt(buf: compressed, i: im); |
| 3024 | writeUInt(buf: compressed + 4, i: iM); |
| 3025 | writeUInt(buf: compressed + 8, i: tableLength); |
| 3026 | writeUInt(buf: compressed + 12, i: nBits); |
| 3027 | writeUInt(buf: compressed + 16, i: 0); // room for future extensions |
| 3028 | |
| 3029 | return dataStart + data_length - compressed; |
| 3030 | } |
| 3031 | |
| 3032 | static bool hufUncompress(const char compressed[], int nCompressed, |
| 3033 | std::vector<unsigned short> *raw) { |
| 3034 | if (nCompressed == 0) { |
| 3035 | if (raw->size() != 0) return false; |
| 3036 | |
| 3037 | return false; |
| 3038 | } |
| 3039 | |
| 3040 | int im = readUInt(buf: compressed); |
| 3041 | int iM = readUInt(buf: compressed + 4); |
| 3042 | // int tableLength = readUInt (compressed + 8); |
| 3043 | int nBits = readUInt(buf: compressed + 12); |
| 3044 | |
| 3045 | if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE) return false; |
| 3046 | |
| 3047 | const char *ptr = compressed + 20; |
| 3048 | |
| 3049 | // |
| 3050 | // Fast decoder needs at least 2x64-bits of compressed data, and |
| 3051 | // needs to be run-able on this platform. Otherwise, fall back |
| 3052 | // to the original decoder |
| 3053 | // |
| 3054 | |
| 3055 | // if (FastHufDecoder::enabled() && nBits > 128) |
| 3056 | //{ |
| 3057 | // FastHufDecoder fhd (ptr, nCompressed - (ptr - compressed), im, iM, iM); |
| 3058 | // fhd.decode ((unsigned char*)ptr, nBits, raw, nRaw); |
| 3059 | //} |
| 3060 | // else |
| 3061 | { |
| 3062 | std::vector<long long> freq(HUF_ENCSIZE); |
| 3063 | std::vector<HufDec> hdec(HUF_DECSIZE); |
| 3064 | |
| 3065 | hufClearDecTable(hdecod: &hdec.at(n: 0)); |
| 3066 | |
| 3067 | hufUnpackEncTable(pcode: &ptr, ni: nCompressed - (ptr - compressed), im, iM, |
| 3068 | hcode: &freq.at(n: 0)); |
| 3069 | |
| 3070 | { |
| 3071 | if (nBits > 8 * (nCompressed - (ptr - compressed))) { |
| 3072 | return false; |
| 3073 | } |
| 3074 | |
| 3075 | hufBuildDecTable(hcode: &freq.at(n: 0), im, iM, hdecod: &hdec.at(n: 0)); |
| 3076 | hufDecode(hcode: &freq.at(n: 0), hdecod: &hdec.at(n: 0), in: ptr, ni: nBits, rlc: iM, no: raw->size(), |
| 3077 | out: raw->data()); |
| 3078 | } |
| 3079 | // catch (...) |
| 3080 | //{ |
| 3081 | // hufFreeDecTable (hdec); |
| 3082 | // throw; |
| 3083 | //} |
| 3084 | |
| 3085 | hufFreeDecTable(hdecod: &hdec.at(n: 0)); |
| 3086 | } |
| 3087 | |
| 3088 | return true; |
| 3089 | } |
| 3090 | |
| 3091 | // |
| 3092 | // Functions to compress the range of values in the pixel data |
| 3093 | // |
| 3094 | |
| 3095 | const int USHORT_RANGE = (1 << 16); |
| 3096 | const int BITMAP_SIZE = (USHORT_RANGE >> 3); |
| 3097 | |
| 3098 | static void bitmapFromData(const unsigned short data[/*nData*/], int nData, |
| 3099 | unsigned char bitmap[BITMAP_SIZE], |
| 3100 | unsigned short &minNonZero, |
| 3101 | unsigned short &maxNonZero) { |
| 3102 | for (int i = 0; i < BITMAP_SIZE; ++i) bitmap[i] = 0; |
| 3103 | |
| 3104 | for (int i = 0; i < nData; ++i) bitmap[data[i] >> 3] |= (1 << (data[i] & 7)); |
| 3105 | |
| 3106 | bitmap[0] &= ~1; // zero is not explicitly stored in |
| 3107 | // the bitmap; we assume that the |
| 3108 | // data always contain zeroes |
| 3109 | minNonZero = BITMAP_SIZE - 1; |
| 3110 | maxNonZero = 0; |
| 3111 | |
| 3112 | for (int i = 0; i < BITMAP_SIZE; ++i) { |
| 3113 | if (bitmap[i]) { |
| 3114 | if (minNonZero > i) minNonZero = i; |
| 3115 | if (maxNonZero < i) maxNonZero = i; |
| 3116 | } |
| 3117 | } |
| 3118 | } |
| 3119 | |
| 3120 | static unsigned short forwardLutFromBitmap( |
| 3121 | const unsigned char bitmap[BITMAP_SIZE], unsigned short lut[USHORT_RANGE]) { |
| 3122 | int k = 0; |
| 3123 | |
| 3124 | for (int i = 0; i < USHORT_RANGE; ++i) { |
| 3125 | if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7)))) |
| 3126 | lut[i] = k++; |
| 3127 | else |
| 3128 | lut[i] = 0; |
| 3129 | } |
| 3130 | |
| 3131 | return k - 1; // maximum value stored in lut[], |
| 3132 | } // i.e. number of ones in bitmap minus 1 |
| 3133 | |
| 3134 | static unsigned short reverseLutFromBitmap( |
| 3135 | const unsigned char bitmap[BITMAP_SIZE], unsigned short lut[USHORT_RANGE]) { |
| 3136 | int k = 0; |
| 3137 | |
| 3138 | for (int i = 0; i < USHORT_RANGE; ++i) { |
| 3139 | if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7)))) lut[k++] = i; |
| 3140 | } |
| 3141 | |
| 3142 | int n = k - 1; |
| 3143 | |
| 3144 | while (k < USHORT_RANGE) lut[k++] = 0; |
| 3145 | |
| 3146 | return n; // maximum k where lut[k] is non-zero, |
| 3147 | } // i.e. number of ones in bitmap minus 1 |
| 3148 | |
| 3149 | static void applyLut(const unsigned short lut[USHORT_RANGE], |
| 3150 | unsigned short data[/*nData*/], int nData) { |
| 3151 | for (int i = 0; i < nData; ++i) data[i] = lut[data[i]]; |
| 3152 | } |
| 3153 | |
| 3154 | #ifdef __clang__ |
| 3155 | #pragma clang diagnostic pop |
| 3156 | #endif // __clang__ |
| 3157 | |
| 3158 | #ifdef _MSC_VER |
| 3159 | #pragma warning(pop) |
| 3160 | #endif |
| 3161 | |
| 3162 | static bool CompressPiz(unsigned char *outPtr, unsigned int *outSize, |
| 3163 | const unsigned char *inPtr, size_t inSize, |
| 3164 | const std::vector<ChannelInfo> &channelInfo, |
| 3165 | int data_width, int num_lines) { |
| 3166 | std::vector<unsigned char> bitmap(BITMAP_SIZE); |
| 3167 | unsigned short minNonZero; |
| 3168 | unsigned short maxNonZero; |
| 3169 | |
| 3170 | #if !TINYEXR_LITTLE_ENDIAN |
| 3171 | // @todo { PIZ compression on BigEndian architecture. } |
| 3172 | return false; |
| 3173 | #endif |
| 3174 | |
| 3175 | // Assume `inSize` is multiple of 2 or 4. |
| 3176 | std::vector<unsigned short> tmpBuffer(inSize / sizeof(unsigned short)); |
| 3177 | |
| 3178 | std::vector<PIZChannelData> channelData(channelInfo.size()); |
| 3179 | unsigned short *tmpBufferEnd = &tmpBuffer.at(n: 0); |
| 3180 | |
| 3181 | for (size_t c = 0; c < channelData.size(); c++) { |
| 3182 | PIZChannelData &cd = channelData[c]; |
| 3183 | |
| 3184 | cd.start = tmpBufferEnd; |
| 3185 | cd.end = cd.start; |
| 3186 | |
| 3187 | cd.nx = data_width; |
| 3188 | cd.ny = num_lines; |
| 3189 | // cd.ys = c.channel().ySampling; |
| 3190 | |
| 3191 | size_t pixelSize = sizeof(int); // UINT and FLOAT |
| 3192 | if (channelInfo[c].requested_pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| 3193 | pixelSize = sizeof(short); |
| 3194 | } |
| 3195 | |
| 3196 | cd.size = static_cast<int>(pixelSize / sizeof(short)); |
| 3197 | |
| 3198 | tmpBufferEnd += cd.nx * cd.ny * cd.size; |
| 3199 | } |
| 3200 | |
| 3201 | const unsigned char *ptr = inPtr; |
| 3202 | for (int y = 0; y < num_lines; ++y) { |
| 3203 | for (size_t i = 0; i < channelData.size(); ++i) { |
| 3204 | PIZChannelData &cd = channelData[i]; |
| 3205 | |
| 3206 | // if (modp (y, cd.ys) != 0) |
| 3207 | // continue; |
| 3208 | |
| 3209 | size_t n = static_cast<size_t>(cd.nx * cd.size); |
| 3210 | memcpy(dest: cd.end, src: ptr, n: n * sizeof(unsigned short)); |
| 3211 | ptr += n * sizeof(unsigned short); |
| 3212 | cd.end += n; |
| 3213 | } |
| 3214 | } |
| 3215 | |
| 3216 | bitmapFromData(data: &tmpBuffer.at(n: 0), nData: static_cast<int>(tmpBuffer.size()), |
| 3217 | bitmap: bitmap.data(), minNonZero, maxNonZero); |
| 3218 | |
| 3219 | std::vector<unsigned short> lut(USHORT_RANGE); |
| 3220 | unsigned short maxValue = forwardLutFromBitmap(bitmap: bitmap.data(), lut: lut.data()); |
| 3221 | applyLut(lut: lut.data(), data: &tmpBuffer.at(n: 0), nData: static_cast<int>(tmpBuffer.size())); |
| 3222 | |
| 3223 | // |
| 3224 | // Store range compression info in _outBuffer |
| 3225 | // |
| 3226 | |
| 3227 | char *buf = reinterpret_cast<char *>(outPtr); |
| 3228 | |
| 3229 | memcpy(dest: buf, src: &minNonZero, n: sizeof(unsigned short)); |
| 3230 | buf += sizeof(unsigned short); |
| 3231 | memcpy(dest: buf, src: &maxNonZero, n: sizeof(unsigned short)); |
| 3232 | buf += sizeof(unsigned short); |
| 3233 | |
| 3234 | if (minNonZero <= maxNonZero) { |
| 3235 | memcpy(dest: buf, src: reinterpret_cast<char *>(&bitmap[0] + minNonZero), |
| 3236 | n: maxNonZero - minNonZero + 1); |
| 3237 | buf += maxNonZero - minNonZero + 1; |
| 3238 | } |
| 3239 | |
| 3240 | // |
| 3241 | // Apply wavelet encoding |
| 3242 | // |
| 3243 | |
| 3244 | for (size_t i = 0; i < channelData.size(); ++i) { |
| 3245 | PIZChannelData &cd = channelData[i]; |
| 3246 | |
| 3247 | for (int j = 0; j < cd.size; ++j) { |
| 3248 | wav2Encode(in: cd.start + j, nx: cd.nx, ox: cd.size, ny: cd.ny, oy: cd.nx * cd.size, |
| 3249 | mx: maxValue); |
| 3250 | } |
| 3251 | } |
| 3252 | |
| 3253 | // |
| 3254 | // Apply Huffman encoding; append the result to _outBuffer |
| 3255 | // |
| 3256 | |
| 3257 | // length header(4byte), then huff data. Initialize length header with zero, |
| 3258 | // then later fill it by `length`. |
| 3259 | char *lengthPtr = buf; |
| 3260 | int zero = 0; |
| 3261 | memcpy(dest: buf, src: &zero, n: sizeof(int)); |
| 3262 | buf += sizeof(int); |
| 3263 | |
| 3264 | int length = |
| 3265 | hufCompress(raw: &tmpBuffer.at(n: 0), nRaw: static_cast<int>(tmpBuffer.size()), compressed: buf); |
| 3266 | memcpy(dest: lengthPtr, src: &length, n: sizeof(int)); |
| 3267 | |
| 3268 | (*outSize) = static_cast<unsigned int>( |
| 3269 | (reinterpret_cast<unsigned char *>(buf) - outPtr) + |
| 3270 | static_cast<unsigned int>(length)); |
| 3271 | |
| 3272 | // Use uncompressed data when compressed data is larger than uncompressed. |
| 3273 | // (Issue 40) |
| 3274 | if ((*outSize) >= inSize) { |
| 3275 | (*outSize) = static_cast<unsigned int>(inSize); |
| 3276 | memcpy(dest: outPtr, src: inPtr, n: inSize); |
| 3277 | } |
| 3278 | return true; |
| 3279 | } |
| 3280 | |
| 3281 | static bool DecompressPiz(unsigned char *outPtr, const unsigned char *inPtr, |
| 3282 | size_t tmpBufSizeInBytes, size_t inLen, int num_channels, |
| 3283 | const EXRChannelInfo *channels, int data_width, |
| 3284 | int num_lines) { |
| 3285 | if (inLen == tmpBufSizeInBytes) { |
| 3286 | // Data is not compressed(Issue 40). |
| 3287 | memcpy(dest: outPtr, src: inPtr, n: inLen); |
| 3288 | return true; |
| 3289 | } |
| 3290 | |
| 3291 | std::vector<unsigned char> bitmap(BITMAP_SIZE); |
| 3292 | unsigned short minNonZero; |
| 3293 | unsigned short maxNonZero; |
| 3294 | |
| 3295 | #if !TINYEXR_LITTLE_ENDIAN |
| 3296 | // @todo { PIZ compression on BigEndian architecture. } |
| 3297 | return false; |
| 3298 | #endif |
| 3299 | |
| 3300 | memset(s: bitmap.data(), c: 0, n: BITMAP_SIZE); |
| 3301 | |
| 3302 | if (inLen < 4) { |
| 3303 | return false; |
| 3304 | } |
| 3305 | |
| 3306 | size_t readLen = 0; |
| 3307 | |
| 3308 | const unsigned char *ptr = inPtr; |
| 3309 | // minNonZero = *(reinterpret_cast<const unsigned short *>(ptr)); |
| 3310 | tinyexr::cpy2(dst_val: &minNonZero, src_val: reinterpret_cast<const unsigned short *>(ptr)); |
| 3311 | // maxNonZero = *(reinterpret_cast<const unsigned short *>(ptr + 2)); |
| 3312 | tinyexr::cpy2(dst_val: &maxNonZero, src_val: reinterpret_cast<const unsigned short *>(ptr + 2)); |
| 3313 | ptr += 4; |
| 3314 | readLen += 4; |
| 3315 | |
| 3316 | if (maxNonZero >= BITMAP_SIZE) { |
| 3317 | return false; |
| 3318 | } |
| 3319 | |
| 3320 | //printf("maxNonZero = %d\n", maxNonZero); |
| 3321 | //printf("minNonZero = %d\n", minNonZero); |
| 3322 | //printf("len = %d\n", (maxNonZero - minNonZero + 1)); |
| 3323 | //printf("BITMAPSIZE - min = %d\n", (BITMAP_SIZE - minNonZero)); |
| 3324 | |
| 3325 | if (minNonZero <= maxNonZero) { |
| 3326 | if (((maxNonZero - minNonZero + 1) + readLen) > inLen) { |
| 3327 | // Input too short |
| 3328 | return false; |
| 3329 | } |
| 3330 | |
| 3331 | memcpy(dest: reinterpret_cast<char *>(&bitmap[0] + minNonZero), src: ptr, |
| 3332 | n: maxNonZero - minNonZero + 1); |
| 3333 | ptr += maxNonZero - minNonZero + 1; |
| 3334 | readLen += maxNonZero - minNonZero + 1; |
| 3335 | } else { |
| 3336 | // Issue 194 |
| 3337 | if ((minNonZero == (BITMAP_SIZE - 1)) && (maxNonZero == 0)) { |
| 3338 | // OK. all pixels are zero. And no need to read `bitmap` data. |
| 3339 | } else { |
| 3340 | // invalid minNonZero/maxNonZero combination. |
| 3341 | return false; |
| 3342 | } |
| 3343 | } |
| 3344 | |
| 3345 | std::vector<unsigned short> lut(USHORT_RANGE); |
| 3346 | memset(s: lut.data(), c: 0, n: sizeof(unsigned short) * USHORT_RANGE); |
| 3347 | unsigned short maxValue = reverseLutFromBitmap(bitmap: bitmap.data(), lut: lut.data()); |
| 3348 | |
| 3349 | // |
| 3350 | // Huffman decoding |
| 3351 | // |
| 3352 | |
| 3353 | if ((readLen + 4) > inLen) { |
| 3354 | return false; |
| 3355 | } |
| 3356 | |
| 3357 | int length=0; |
| 3358 | |
| 3359 | // length = *(reinterpret_cast<const int *>(ptr)); |
| 3360 | tinyexr::cpy4(dst_val: &length, src_val: reinterpret_cast<const int *>(ptr)); |
| 3361 | ptr += sizeof(int); |
| 3362 | |
| 3363 | if (size_t((ptr - inPtr) + length) > inLen) { |
| 3364 | return false; |
| 3365 | } |
| 3366 | |
| 3367 | std::vector<unsigned short> tmpBuffer(tmpBufSizeInBytes / sizeof(unsigned short)); |
| 3368 | hufUncompress(compressed: reinterpret_cast<const char *>(ptr), nCompressed: length, raw: &tmpBuffer); |
| 3369 | |
| 3370 | // |
| 3371 | // Wavelet decoding |
| 3372 | // |
| 3373 | |
| 3374 | std::vector<PIZChannelData> channelData(static_cast<size_t>(num_channels)); |
| 3375 | |
| 3376 | unsigned short *tmpBufferEnd = &tmpBuffer.at(n: 0); |
| 3377 | |
| 3378 | for (size_t i = 0; i < static_cast<size_t>(num_channels); ++i) { |
| 3379 | const EXRChannelInfo &chan = channels[i]; |
| 3380 | |
| 3381 | size_t pixelSize = sizeof(int); // UINT and FLOAT |
| 3382 | if (chan.pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| 3383 | pixelSize = sizeof(short); |
| 3384 | } |
| 3385 | |
| 3386 | channelData[i].start = tmpBufferEnd; |
| 3387 | channelData[i].end = channelData[i].start; |
| 3388 | channelData[i].nx = data_width; |
| 3389 | channelData[i].ny = num_lines; |
| 3390 | // channelData[i].ys = 1; |
| 3391 | channelData[i].size = static_cast<int>(pixelSize / sizeof(short)); |
| 3392 | |
| 3393 | tmpBufferEnd += channelData[i].nx * channelData[i].ny * channelData[i].size; |
| 3394 | } |
| 3395 | |
| 3396 | for (size_t i = 0; i < channelData.size(); ++i) { |
| 3397 | PIZChannelData &cd = channelData[i]; |
| 3398 | |
| 3399 | for (int j = 0; j < cd.size; ++j) { |
| 3400 | wav2Decode(in: cd.start + j, nx: cd.nx, ox: cd.size, ny: cd.ny, oy: cd.nx * cd.size, |
| 3401 | mx: maxValue); |
| 3402 | } |
| 3403 | } |
| 3404 | |
| 3405 | // |
| 3406 | // Expand the pixel data to their original range |
| 3407 | // |
| 3408 | |
| 3409 | applyLut(lut: lut.data(), data: &tmpBuffer.at(n: 0), nData: static_cast<int>(tmpBufSizeInBytes / sizeof(unsigned short))); |
| 3410 | |
| 3411 | for (int y = 0; y < num_lines; y++) { |
| 3412 | for (size_t i = 0; i < channelData.size(); ++i) { |
| 3413 | PIZChannelData &cd = channelData[i]; |
| 3414 | |
| 3415 | // if (modp (y, cd.ys) != 0) |
| 3416 | // continue; |
| 3417 | |
| 3418 | size_t n = static_cast<size_t>(cd.nx * cd.size); |
| 3419 | memcpy(dest: outPtr, src: cd.end, n: static_cast<size_t>(n * sizeof(unsigned short))); |
| 3420 | outPtr += n * sizeof(unsigned short); |
| 3421 | cd.end += n; |
| 3422 | } |
| 3423 | } |
| 3424 | |
| 3425 | return true; |
| 3426 | } |
| 3427 | #endif // TINYEXR_USE_PIZ |
| 3428 | |
| 3429 | #if TINYEXR_USE_ZFP |
| 3430 | |
| 3431 | struct ZFPCompressionParam { |
| 3432 | double rate; |
| 3433 | unsigned int precision; |
| 3434 | unsigned int __pad0; |
| 3435 | double tolerance; |
| 3436 | int type; // TINYEXR_ZFP_COMPRESSIONTYPE_* |
| 3437 | unsigned int __pad1; |
| 3438 | |
| 3439 | ZFPCompressionParam() { |
| 3440 | type = TINYEXR_ZFP_COMPRESSIONTYPE_RATE; |
| 3441 | rate = 2.0; |
| 3442 | precision = 0; |
| 3443 | tolerance = 0.0; |
| 3444 | } |
| 3445 | }; |
| 3446 | |
| 3447 | static bool FindZFPCompressionParam(ZFPCompressionParam *param, |
| 3448 | const EXRAttribute *attributes, |
| 3449 | int num_attributes, std::string *err) { |
| 3450 | bool foundType = false; |
| 3451 | |
| 3452 | for (int i = 0; i < num_attributes; i++) { |
| 3453 | if ((strcmp(attributes[i].name, "zfpCompressionType" ) == 0)) { |
| 3454 | if (attributes[i].size == 1) { |
| 3455 | param->type = static_cast<int>(attributes[i].value[0]); |
| 3456 | foundType = true; |
| 3457 | break; |
| 3458 | } else { |
| 3459 | if (err) { |
| 3460 | (*err) += |
| 3461 | "zfpCompressionType attribute must be uchar(1 byte) type.\n" ; |
| 3462 | } |
| 3463 | return false; |
| 3464 | } |
| 3465 | } |
| 3466 | } |
| 3467 | |
| 3468 | if (!foundType) { |
| 3469 | if (err) { |
| 3470 | (*err) += "`zfpCompressionType` attribute not found.\n" ; |
| 3471 | } |
| 3472 | return false; |
| 3473 | } |
| 3474 | |
| 3475 | if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) { |
| 3476 | for (int i = 0; i < num_attributes; i++) { |
| 3477 | if ((strcmp(attributes[i].name, "zfpCompressionRate" ) == 0) && |
| 3478 | (attributes[i].size == 8)) { |
| 3479 | param->rate = *(reinterpret_cast<double *>(attributes[i].value)); |
| 3480 | return true; |
| 3481 | } |
| 3482 | } |
| 3483 | |
| 3484 | if (err) { |
| 3485 | (*err) += "`zfpCompressionRate` attribute not found.\n" ; |
| 3486 | } |
| 3487 | |
| 3488 | } else if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) { |
| 3489 | for (int i = 0; i < num_attributes; i++) { |
| 3490 | if ((strcmp(attributes[i].name, "zfpCompressionPrecision" ) == 0) && |
| 3491 | (attributes[i].size == 4)) { |
| 3492 | param->rate = *(reinterpret_cast<int *>(attributes[i].value)); |
| 3493 | return true; |
| 3494 | } |
| 3495 | } |
| 3496 | |
| 3497 | if (err) { |
| 3498 | (*err) += "`zfpCompressionPrecision` attribute not found.\n" ; |
| 3499 | } |
| 3500 | |
| 3501 | } else if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) { |
| 3502 | for (int i = 0; i < num_attributes; i++) { |
| 3503 | if ((strcmp(attributes[i].name, "zfpCompressionTolerance" ) == 0) && |
| 3504 | (attributes[i].size == 8)) { |
| 3505 | param->tolerance = *(reinterpret_cast<double *>(attributes[i].value)); |
| 3506 | return true; |
| 3507 | } |
| 3508 | } |
| 3509 | |
| 3510 | if (err) { |
| 3511 | (*err) += "`zfpCompressionTolerance` attribute not found.\n" ; |
| 3512 | } |
| 3513 | } else { |
| 3514 | if (err) { |
| 3515 | (*err) += "Unknown value specified for `zfpCompressionType`.\n" ; |
| 3516 | } |
| 3517 | } |
| 3518 | |
| 3519 | return false; |
| 3520 | } |
| 3521 | |
| 3522 | // Assume pixel format is FLOAT for all channels. |
| 3523 | static bool DecompressZfp(float *dst, int dst_width, int dst_num_lines, |
| 3524 | size_t num_channels, const unsigned char *src, |
| 3525 | unsigned long src_size, |
| 3526 | const ZFPCompressionParam ¶m) { |
| 3527 | size_t uncompressed_size = |
| 3528 | size_t(dst_width) * size_t(dst_num_lines) * num_channels; |
| 3529 | |
| 3530 | if (uncompressed_size == src_size) { |
| 3531 | // Data is not compressed(Issue 40). |
| 3532 | memcpy(dst, src, src_size); |
| 3533 | } |
| 3534 | |
| 3535 | zfp_stream *zfp = NULL; |
| 3536 | zfp_field *field = NULL; |
| 3537 | |
| 3538 | TINYEXR_CHECK_AND_RETURN_C((dst_width % 4) == 0, false); |
| 3539 | TINYEXR_CHECK_AND_RETURN_C((dst_num_lines % 4) == 0, false); |
| 3540 | |
| 3541 | if ((size_t(dst_width) & 3U) || (size_t(dst_num_lines) & 3U)) { |
| 3542 | return false; |
| 3543 | } |
| 3544 | |
| 3545 | field = |
| 3546 | zfp_field_2d(reinterpret_cast<void *>(const_cast<unsigned char *>(src)), |
| 3547 | zfp_type_float, static_cast<unsigned int>(dst_width), |
| 3548 | static_cast<unsigned int>(dst_num_lines) * |
| 3549 | static_cast<unsigned int>(num_channels)); |
| 3550 | zfp = zfp_stream_open(NULL); |
| 3551 | |
| 3552 | if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) { |
| 3553 | zfp_stream_set_rate(zfp, param.rate, zfp_type_float, /* dimension */ 2, |
| 3554 | /* write random access */ 0); |
| 3555 | } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) { |
| 3556 | zfp_stream_set_precision(zfp, param.precision); |
| 3557 | } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) { |
| 3558 | zfp_stream_set_accuracy(zfp, param.tolerance); |
| 3559 | } else { |
| 3560 | return false; |
| 3561 | } |
| 3562 | |
| 3563 | size_t buf_size = zfp_stream_maximum_size(zfp, field); |
| 3564 | std::vector<unsigned char> buf(buf_size); |
| 3565 | memcpy(&buf.at(0), src, src_size); |
| 3566 | |
| 3567 | bitstream *stream = stream_open(&buf.at(0), buf_size); |
| 3568 | zfp_stream_set_bit_stream(zfp, stream); |
| 3569 | zfp_stream_rewind(zfp); |
| 3570 | |
| 3571 | size_t image_size = size_t(dst_width) * size_t(dst_num_lines); |
| 3572 | |
| 3573 | for (size_t c = 0; c < size_t(num_channels); c++) { |
| 3574 | // decompress 4x4 pixel block. |
| 3575 | for (size_t y = 0; y < size_t(dst_num_lines); y += 4) { |
| 3576 | for (size_t x = 0; x < size_t(dst_width); x += 4) { |
| 3577 | float fblock[16]; |
| 3578 | zfp_decode_block_float_2(zfp, fblock); |
| 3579 | for (size_t j = 0; j < 4; j++) { |
| 3580 | for (size_t i = 0; i < 4; i++) { |
| 3581 | dst[c * image_size + ((y + j) * size_t(dst_width) + (x + i))] = |
| 3582 | fblock[j * 4 + i]; |
| 3583 | } |
| 3584 | } |
| 3585 | } |
| 3586 | } |
| 3587 | } |
| 3588 | |
| 3589 | zfp_field_free(field); |
| 3590 | zfp_stream_close(zfp); |
| 3591 | stream_close(stream); |
| 3592 | |
| 3593 | return true; |
| 3594 | } |
| 3595 | |
| 3596 | // Assume pixel format is FLOAT for all channels. |
| 3597 | static bool CompressZfp(std::vector<unsigned char> *outBuf, |
| 3598 | unsigned int *outSize, const float *inPtr, int width, |
| 3599 | int num_lines, int num_channels, |
| 3600 | const ZFPCompressionParam ¶m) { |
| 3601 | zfp_stream *zfp = NULL; |
| 3602 | zfp_field *field = NULL; |
| 3603 | |
| 3604 | TINYEXR_CHECK_AND_RETURN_C((width % 4) == 0, false); |
| 3605 | TINYEXR_CHECK_AND_RETURN_C((num_lines % 4) == 0, false); |
| 3606 | |
| 3607 | if ((size_t(width) & 3U) || (size_t(num_lines) & 3U)) { |
| 3608 | return false; |
| 3609 | } |
| 3610 | |
| 3611 | // create input array. |
| 3612 | field = zfp_field_2d(reinterpret_cast<void *>(const_cast<float *>(inPtr)), |
| 3613 | zfp_type_float, static_cast<unsigned int>(width), |
| 3614 | static_cast<unsigned int>(num_lines * num_channels)); |
| 3615 | |
| 3616 | zfp = zfp_stream_open(NULL); |
| 3617 | |
| 3618 | if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) { |
| 3619 | zfp_stream_set_rate(zfp, param.rate, zfp_type_float, 2, 0); |
| 3620 | } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) { |
| 3621 | zfp_stream_set_precision(zfp, param.precision); |
| 3622 | } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) { |
| 3623 | zfp_stream_set_accuracy(zfp, param.tolerance); |
| 3624 | } else { |
| 3625 | return false; |
| 3626 | } |
| 3627 | |
| 3628 | size_t buf_size = zfp_stream_maximum_size(zfp, field); |
| 3629 | |
| 3630 | outBuf->resize(buf_size); |
| 3631 | |
| 3632 | bitstream *stream = stream_open(&outBuf->at(0), buf_size); |
| 3633 | zfp_stream_set_bit_stream(zfp, stream); |
| 3634 | zfp_field_free(field); |
| 3635 | |
| 3636 | size_t image_size = size_t(width) * size_t(num_lines); |
| 3637 | |
| 3638 | for (size_t c = 0; c < size_t(num_channels); c++) { |
| 3639 | // compress 4x4 pixel block. |
| 3640 | for (size_t y = 0; y < size_t(num_lines); y += 4) { |
| 3641 | for (size_t x = 0; x < size_t(width); x += 4) { |
| 3642 | float fblock[16]; |
| 3643 | for (size_t j = 0; j < 4; j++) { |
| 3644 | for (size_t i = 0; i < 4; i++) { |
| 3645 | fblock[j * 4 + i] = |
| 3646 | inPtr[c * image_size + ((y + j) * size_t(width) + (x + i))]; |
| 3647 | } |
| 3648 | } |
| 3649 | zfp_encode_block_float_2(zfp, fblock); |
| 3650 | } |
| 3651 | } |
| 3652 | } |
| 3653 | |
| 3654 | zfp_stream_flush(zfp); |
| 3655 | (*outSize) = static_cast<unsigned int>(zfp_stream_compressed_size(zfp)); |
| 3656 | |
| 3657 | zfp_stream_close(zfp); |
| 3658 | |
| 3659 | return true; |
| 3660 | } |
| 3661 | |
| 3662 | #endif |
| 3663 | |
| 3664 | // |
| 3665 | // ----------------------------------------------------------------- |
| 3666 | // |
| 3667 | |
| 3668 | // heuristics |
| 3669 | #define TINYEXR_DIMENSION_THRESHOLD (1024 * 8192) |
| 3670 | |
| 3671 | // TODO(syoyo): Refactor function arguments. |
| 3672 | static bool DecodePixelData(/* out */ unsigned char **out_images, |
| 3673 | const int *requested_pixel_types, |
| 3674 | const unsigned char *data_ptr, size_t data_len, |
| 3675 | int compression_type, int line_order, int width, |
| 3676 | int height, int x_stride, int y, int line_no, |
| 3677 | int num_lines, size_t pixel_data_size, |
| 3678 | size_t num_attributes, |
| 3679 | const EXRAttribute *attributes, size_t num_channels, |
| 3680 | const EXRChannelInfo *channels, |
| 3681 | const std::vector<size_t> &channel_offset_list) { |
| 3682 | if (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { // PIZ |
| 3683 | #if TINYEXR_USE_PIZ |
| 3684 | if ((width == 0) || (num_lines == 0) || (pixel_data_size == 0)) { |
| 3685 | // Invalid input #90 |
| 3686 | return false; |
| 3687 | } |
| 3688 | |
| 3689 | // Allocate original data size. |
| 3690 | std::vector<unsigned char> outBuf(static_cast<size_t>( |
| 3691 | static_cast<size_t>(width * num_lines) * pixel_data_size)); |
| 3692 | size_t tmpBufLen = outBuf.size(); |
| 3693 | |
| 3694 | bool ret = tinyexr::DecompressPiz( |
| 3695 | outPtr: reinterpret_cast<unsigned char *>(&outBuf.at(n: 0)), inPtr: data_ptr, tmpBufSizeInBytes: tmpBufLen, |
| 3696 | inLen: data_len, num_channels: static_cast<int>(num_channels), channels, data_width: width, num_lines); |
| 3697 | |
| 3698 | if (!ret) { |
| 3699 | return false; |
| 3700 | } |
| 3701 | |
| 3702 | // For PIZ_COMPRESSION: |
| 3703 | // pixel sample data for channel 0 for scanline 0 |
| 3704 | // pixel sample data for channel 1 for scanline 0 |
| 3705 | // pixel sample data for channel ... for scanline 0 |
| 3706 | // pixel sample data for channel n for scanline 0 |
| 3707 | // pixel sample data for channel 0 for scanline 1 |
| 3708 | // pixel sample data for channel 1 for scanline 1 |
| 3709 | // pixel sample data for channel ... for scanline 1 |
| 3710 | // pixel sample data for channel n for scanline 1 |
| 3711 | // ... |
| 3712 | for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| 3713 | if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| 3714 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 3715 | const unsigned short *line_ptr = reinterpret_cast<unsigned short *>( |
| 3716 | &outBuf.at(n: v * pixel_data_size * static_cast<size_t>(width) + |
| 3717 | channel_offset_list[c] * static_cast<size_t>(width))); |
| 3718 | for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| 3719 | FP16 hf; |
| 3720 | |
| 3721 | // hf.u = line_ptr[u]; |
| 3722 | // use `cpy` to avoid unaligned memory access when compiler's |
| 3723 | // optimization is on. |
| 3724 | tinyexr::cpy2(dst_val: &(hf.u), src_val: line_ptr + u); |
| 3725 | |
| 3726 | tinyexr::swap2(val: reinterpret_cast<unsigned short *>(&hf.u)); |
| 3727 | |
| 3728 | if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { |
| 3729 | unsigned short *image = |
| 3730 | reinterpret_cast<unsigned short **>(out_images)[c]; |
| 3731 | if (line_order == 0) { |
| 3732 | image += (static_cast<size_t>(line_no) + v) * |
| 3733 | static_cast<size_t>(x_stride) + |
| 3734 | u; |
| 3735 | } else { |
| 3736 | image += static_cast<size_t>( |
| 3737 | (height - 1 - (line_no + static_cast<int>(v)))) * |
| 3738 | static_cast<size_t>(x_stride) + |
| 3739 | u; |
| 3740 | } |
| 3741 | *image = hf.u; |
| 3742 | } else { // HALF -> FLOAT |
| 3743 | FP32 f32 = half_to_float(h: hf); |
| 3744 | float *image = reinterpret_cast<float **>(out_images)[c]; |
| 3745 | size_t offset = 0; |
| 3746 | if (line_order == 0) { |
| 3747 | offset = (static_cast<size_t>(line_no) + v) * |
| 3748 | static_cast<size_t>(x_stride) + |
| 3749 | u; |
| 3750 | } else { |
| 3751 | offset = static_cast<size_t>( |
| 3752 | (height - 1 - (line_no + static_cast<int>(v)))) * |
| 3753 | static_cast<size_t>(x_stride) + |
| 3754 | u; |
| 3755 | } |
| 3756 | image += offset; |
| 3757 | *image = f32.f; |
| 3758 | } |
| 3759 | } |
| 3760 | } |
| 3761 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| 3762 | TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT, false); |
| 3763 | |
| 3764 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 3765 | const unsigned int *line_ptr = reinterpret_cast<unsigned int *>( |
| 3766 | &outBuf.at(n: v * pixel_data_size * static_cast<size_t>(width) + |
| 3767 | channel_offset_list[c] * static_cast<size_t>(width))); |
| 3768 | for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| 3769 | unsigned int val; |
| 3770 | // val = line_ptr[u]; |
| 3771 | tinyexr::cpy4(dst_val: &val, src_val: line_ptr + u); |
| 3772 | |
| 3773 | tinyexr::swap4(val: &val); |
| 3774 | |
| 3775 | unsigned int *image = |
| 3776 | reinterpret_cast<unsigned int **>(out_images)[c]; |
| 3777 | if (line_order == 0) { |
| 3778 | image += (static_cast<size_t>(line_no) + v) * |
| 3779 | static_cast<size_t>(x_stride) + |
| 3780 | u; |
| 3781 | } else { |
| 3782 | image += static_cast<size_t>( |
| 3783 | (height - 1 - (line_no + static_cast<int>(v)))) * |
| 3784 | static_cast<size_t>(x_stride) + |
| 3785 | u; |
| 3786 | } |
| 3787 | *image = val; |
| 3788 | } |
| 3789 | } |
| 3790 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| 3791 | TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT, false); |
| 3792 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 3793 | const float *line_ptr = reinterpret_cast<float *>(&outBuf.at( |
| 3794 | n: v * pixel_data_size * static_cast<size_t>(width) + |
| 3795 | channel_offset_list[c] * static_cast<size_t>(width))); |
| 3796 | for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| 3797 | float val; |
| 3798 | // val = line_ptr[u]; |
| 3799 | tinyexr::cpy4(dst_val: &val, src_val: line_ptr + u); |
| 3800 | |
| 3801 | tinyexr::swap4(val: reinterpret_cast<unsigned int *>(&val)); |
| 3802 | |
| 3803 | float *image = reinterpret_cast<float **>(out_images)[c]; |
| 3804 | if (line_order == 0) { |
| 3805 | image += (static_cast<size_t>(line_no) + v) * |
| 3806 | static_cast<size_t>(x_stride) + |
| 3807 | u; |
| 3808 | } else { |
| 3809 | image += static_cast<size_t>( |
| 3810 | (height - 1 - (line_no + static_cast<int>(v)))) * |
| 3811 | static_cast<size_t>(x_stride) + |
| 3812 | u; |
| 3813 | } |
| 3814 | *image = val; |
| 3815 | } |
| 3816 | } |
| 3817 | } else { |
| 3818 | return false; |
| 3819 | } |
| 3820 | } |
| 3821 | #else |
| 3822 | return false; |
| 3823 | #endif |
| 3824 | |
| 3825 | } else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS || |
| 3826 | compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) { |
| 3827 | // Allocate original data size. |
| 3828 | std::vector<unsigned char> outBuf(static_cast<size_t>(width) * |
| 3829 | static_cast<size_t>(num_lines) * |
| 3830 | pixel_data_size); |
| 3831 | |
| 3832 | unsigned long dstLen = static_cast<unsigned long>(outBuf.size()); |
| 3833 | TINYEXR_CHECK_AND_RETURN_C(dstLen > 0, false); |
| 3834 | if (!tinyexr::DecompressZip( |
| 3835 | dst: reinterpret_cast<unsigned char *>(&outBuf.at(n: 0)), uncompressed_size: &dstLen, src: data_ptr, |
| 3836 | src_size: static_cast<unsigned long>(data_len))) { |
| 3837 | return false; |
| 3838 | } |
| 3839 | |
| 3840 | // For ZIP_COMPRESSION: |
| 3841 | // pixel sample data for channel 0 for scanline 0 |
| 3842 | // pixel sample data for channel 1 for scanline 0 |
| 3843 | // pixel sample data for channel ... for scanline 0 |
| 3844 | // pixel sample data for channel n for scanline 0 |
| 3845 | // pixel sample data for channel 0 for scanline 1 |
| 3846 | // pixel sample data for channel 1 for scanline 1 |
| 3847 | // pixel sample data for channel ... for scanline 1 |
| 3848 | // pixel sample data for channel n for scanline 1 |
| 3849 | // ... |
| 3850 | for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| 3851 | if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| 3852 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 3853 | const unsigned short *line_ptr = reinterpret_cast<unsigned short *>( |
| 3854 | &outBuf.at(n: v * static_cast<size_t>(pixel_data_size) * |
| 3855 | static_cast<size_t>(width) + |
| 3856 | channel_offset_list[c] * static_cast<size_t>(width))); |
| 3857 | for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| 3858 | tinyexr::FP16 hf; |
| 3859 | |
| 3860 | // hf.u = line_ptr[u]; |
| 3861 | tinyexr::cpy2(dst_val: &(hf.u), src_val: line_ptr + u); |
| 3862 | |
| 3863 | tinyexr::swap2(val: reinterpret_cast<unsigned short *>(&hf.u)); |
| 3864 | |
| 3865 | if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { |
| 3866 | unsigned short *image = |
| 3867 | reinterpret_cast<unsigned short **>(out_images)[c]; |
| 3868 | if (line_order == 0) { |
| 3869 | image += (static_cast<size_t>(line_no) + v) * |
| 3870 | static_cast<size_t>(x_stride) + |
| 3871 | u; |
| 3872 | } else { |
| 3873 | image += (static_cast<size_t>(height) - 1U - |
| 3874 | (static_cast<size_t>(line_no) + v)) * |
| 3875 | static_cast<size_t>(x_stride) + |
| 3876 | u; |
| 3877 | } |
| 3878 | *image = hf.u; |
| 3879 | } else { // HALF -> FLOAT |
| 3880 | tinyexr::FP32 f32 = half_to_float(h: hf); |
| 3881 | float *image = reinterpret_cast<float **>(out_images)[c]; |
| 3882 | size_t offset = 0; |
| 3883 | if (line_order == 0) { |
| 3884 | offset = (static_cast<size_t>(line_no) + v) * |
| 3885 | static_cast<size_t>(x_stride) + |
| 3886 | u; |
| 3887 | } else { |
| 3888 | offset = (static_cast<size_t>(height) - 1U - |
| 3889 | (static_cast<size_t>(line_no) + v)) * |
| 3890 | static_cast<size_t>(x_stride) + |
| 3891 | u; |
| 3892 | } |
| 3893 | image += offset; |
| 3894 | |
| 3895 | *image = f32.f; |
| 3896 | } |
| 3897 | } |
| 3898 | } |
| 3899 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| 3900 | TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT, false); |
| 3901 | |
| 3902 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 3903 | const unsigned int *line_ptr = reinterpret_cast<unsigned int *>( |
| 3904 | &outBuf.at(n: v * pixel_data_size * static_cast<size_t>(width) + |
| 3905 | channel_offset_list[c] * static_cast<size_t>(width))); |
| 3906 | for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| 3907 | unsigned int val; |
| 3908 | // val = line_ptr[u]; |
| 3909 | tinyexr::cpy4(dst_val: &val, src_val: line_ptr + u); |
| 3910 | |
| 3911 | tinyexr::swap4(val: &val); |
| 3912 | |
| 3913 | unsigned int *image = |
| 3914 | reinterpret_cast<unsigned int **>(out_images)[c]; |
| 3915 | if (line_order == 0) { |
| 3916 | image += (static_cast<size_t>(line_no) + v) * |
| 3917 | static_cast<size_t>(x_stride) + |
| 3918 | u; |
| 3919 | } else { |
| 3920 | image += (static_cast<size_t>(height) - 1U - |
| 3921 | (static_cast<size_t>(line_no) + v)) * |
| 3922 | static_cast<size_t>(x_stride) + |
| 3923 | u; |
| 3924 | } |
| 3925 | *image = val; |
| 3926 | } |
| 3927 | } |
| 3928 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| 3929 | TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT, false); |
| 3930 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 3931 | const float *line_ptr = reinterpret_cast<float *>( |
| 3932 | &outBuf.at(n: v * pixel_data_size * static_cast<size_t>(width) + |
| 3933 | channel_offset_list[c] * static_cast<size_t>(width))); |
| 3934 | for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| 3935 | float val; |
| 3936 | // val = line_ptr[u]; |
| 3937 | tinyexr::cpy4(dst_val: &val, src_val: line_ptr + u); |
| 3938 | |
| 3939 | tinyexr::swap4(val: reinterpret_cast<unsigned int *>(&val)); |
| 3940 | |
| 3941 | float *image = reinterpret_cast<float **>(out_images)[c]; |
| 3942 | if (line_order == 0) { |
| 3943 | image += (static_cast<size_t>(line_no) + v) * |
| 3944 | static_cast<size_t>(x_stride) + |
| 3945 | u; |
| 3946 | } else { |
| 3947 | image += (static_cast<size_t>(height) - 1U - |
| 3948 | (static_cast<size_t>(line_no) + v)) * |
| 3949 | static_cast<size_t>(x_stride) + |
| 3950 | u; |
| 3951 | } |
| 3952 | *image = val; |
| 3953 | } |
| 3954 | } |
| 3955 | } else { |
| 3956 | return false; |
| 3957 | } |
| 3958 | } |
| 3959 | } else if (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) { |
| 3960 | // Allocate original data size. |
| 3961 | std::vector<unsigned char> outBuf(static_cast<size_t>(width) * |
| 3962 | static_cast<size_t>(num_lines) * |
| 3963 | pixel_data_size); |
| 3964 | |
| 3965 | unsigned long dstLen = static_cast<unsigned long>(outBuf.size()); |
| 3966 | if (dstLen == 0) { |
| 3967 | return false; |
| 3968 | } |
| 3969 | |
| 3970 | if (!tinyexr::DecompressRle( |
| 3971 | dst: reinterpret_cast<unsigned char *>(&outBuf.at(n: 0)), uncompressed_size: dstLen, src: data_ptr, |
| 3972 | src_size: static_cast<unsigned long>(data_len))) { |
| 3973 | return false; |
| 3974 | } |
| 3975 | |
| 3976 | // For RLE_COMPRESSION: |
| 3977 | // pixel sample data for channel 0 for scanline 0 |
| 3978 | // pixel sample data for channel 1 for scanline 0 |
| 3979 | // pixel sample data for channel ... for scanline 0 |
| 3980 | // pixel sample data for channel n for scanline 0 |
| 3981 | // pixel sample data for channel 0 for scanline 1 |
| 3982 | // pixel sample data for channel 1 for scanline 1 |
| 3983 | // pixel sample data for channel ... for scanline 1 |
| 3984 | // pixel sample data for channel n for scanline 1 |
| 3985 | // ... |
| 3986 | for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| 3987 | if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| 3988 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 3989 | const unsigned short *line_ptr = reinterpret_cast<unsigned short *>( |
| 3990 | &outBuf.at(n: v * static_cast<size_t>(pixel_data_size) * |
| 3991 | static_cast<size_t>(width) + |
| 3992 | channel_offset_list[c] * static_cast<size_t>(width))); |
| 3993 | for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| 3994 | tinyexr::FP16 hf; |
| 3995 | |
| 3996 | // hf.u = line_ptr[u]; |
| 3997 | tinyexr::cpy2(dst_val: &(hf.u), src_val: line_ptr + u); |
| 3998 | |
| 3999 | tinyexr::swap2(val: reinterpret_cast<unsigned short *>(&hf.u)); |
| 4000 | |
| 4001 | if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { |
| 4002 | unsigned short *image = |
| 4003 | reinterpret_cast<unsigned short **>(out_images)[c]; |
| 4004 | if (line_order == 0) { |
| 4005 | image += (static_cast<size_t>(line_no) + v) * |
| 4006 | static_cast<size_t>(x_stride) + |
| 4007 | u; |
| 4008 | } else { |
| 4009 | image += (static_cast<size_t>(height) - 1U - |
| 4010 | (static_cast<size_t>(line_no) + v)) * |
| 4011 | static_cast<size_t>(x_stride) + |
| 4012 | u; |
| 4013 | } |
| 4014 | *image = hf.u; |
| 4015 | } else { // HALF -> FLOAT |
| 4016 | tinyexr::FP32 f32 = half_to_float(h: hf); |
| 4017 | float *image = reinterpret_cast<float **>(out_images)[c]; |
| 4018 | if (line_order == 0) { |
| 4019 | image += (static_cast<size_t>(line_no) + v) * |
| 4020 | static_cast<size_t>(x_stride) + |
| 4021 | u; |
| 4022 | } else { |
| 4023 | image += (static_cast<size_t>(height) - 1U - |
| 4024 | (static_cast<size_t>(line_no) + v)) * |
| 4025 | static_cast<size_t>(x_stride) + |
| 4026 | u; |
| 4027 | } |
| 4028 | *image = f32.f; |
| 4029 | } |
| 4030 | } |
| 4031 | } |
| 4032 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| 4033 | TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT, false); |
| 4034 | |
| 4035 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 4036 | const unsigned int *line_ptr = reinterpret_cast<unsigned int *>( |
| 4037 | &outBuf.at(n: v * pixel_data_size * static_cast<size_t>(width) + |
| 4038 | channel_offset_list[c] * static_cast<size_t>(width))); |
| 4039 | for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| 4040 | unsigned int val; |
| 4041 | // val = line_ptr[u]; |
| 4042 | tinyexr::cpy4(dst_val: &val, src_val: line_ptr + u); |
| 4043 | |
| 4044 | tinyexr::swap4(val: &val); |
| 4045 | |
| 4046 | unsigned int *image = |
| 4047 | reinterpret_cast<unsigned int **>(out_images)[c]; |
| 4048 | if (line_order == 0) { |
| 4049 | image += (static_cast<size_t>(line_no) + v) * |
| 4050 | static_cast<size_t>(x_stride) + |
| 4051 | u; |
| 4052 | } else { |
| 4053 | image += (static_cast<size_t>(height) - 1U - |
| 4054 | (static_cast<size_t>(line_no) + v)) * |
| 4055 | static_cast<size_t>(x_stride) + |
| 4056 | u; |
| 4057 | } |
| 4058 | *image = val; |
| 4059 | } |
| 4060 | } |
| 4061 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| 4062 | TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT, false); |
| 4063 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 4064 | const float *line_ptr = reinterpret_cast<float *>( |
| 4065 | &outBuf.at(n: v * pixel_data_size * static_cast<size_t>(width) + |
| 4066 | channel_offset_list[c] * static_cast<size_t>(width))); |
| 4067 | for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| 4068 | float val; |
| 4069 | // val = line_ptr[u]; |
| 4070 | tinyexr::cpy4(dst_val: &val, src_val: line_ptr + u); |
| 4071 | |
| 4072 | tinyexr::swap4(val: reinterpret_cast<unsigned int *>(&val)); |
| 4073 | |
| 4074 | float *image = reinterpret_cast<float **>(out_images)[c]; |
| 4075 | if (line_order == 0) { |
| 4076 | image += (static_cast<size_t>(line_no) + v) * |
| 4077 | static_cast<size_t>(x_stride) + |
| 4078 | u; |
| 4079 | } else { |
| 4080 | image += (static_cast<size_t>(height) - 1U - |
| 4081 | (static_cast<size_t>(line_no) + v)) * |
| 4082 | static_cast<size_t>(x_stride) + |
| 4083 | u; |
| 4084 | } |
| 4085 | *image = val; |
| 4086 | } |
| 4087 | } |
| 4088 | } else { |
| 4089 | return false; |
| 4090 | } |
| 4091 | } |
| 4092 | } else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| 4093 | #if TINYEXR_USE_ZFP |
| 4094 | tinyexr::ZFPCompressionParam zfp_compression_param; |
| 4095 | std::string e; |
| 4096 | if (!tinyexr::FindZFPCompressionParam(&zfp_compression_param, attributes, |
| 4097 | int(num_attributes), &e)) { |
| 4098 | // This code path should not be reachable. |
| 4099 | return false; |
| 4100 | } |
| 4101 | |
| 4102 | // Allocate original data size. |
| 4103 | std::vector<unsigned char> outBuf(static_cast<size_t>(width) * |
| 4104 | static_cast<size_t>(num_lines) * |
| 4105 | pixel_data_size); |
| 4106 | |
| 4107 | unsigned long dstLen = outBuf.size(); |
| 4108 | TINYEXR_CHECK_AND_RETURN_C(dstLen > 0, false); |
| 4109 | tinyexr::DecompressZfp(reinterpret_cast<float *>(&outBuf.at(0)), width, |
| 4110 | num_lines, num_channels, data_ptr, |
| 4111 | static_cast<unsigned long>(data_len), |
| 4112 | zfp_compression_param); |
| 4113 | |
| 4114 | // For ZFP_COMPRESSION: |
| 4115 | // pixel sample data for channel 0 for scanline 0 |
| 4116 | // pixel sample data for channel 1 for scanline 0 |
| 4117 | // pixel sample data for channel ... for scanline 0 |
| 4118 | // pixel sample data for channel n for scanline 0 |
| 4119 | // pixel sample data for channel 0 for scanline 1 |
| 4120 | // pixel sample data for channel 1 for scanline 1 |
| 4121 | // pixel sample data for channel ... for scanline 1 |
| 4122 | // pixel sample data for channel n for scanline 1 |
| 4123 | // ... |
| 4124 | for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| 4125 | TINYEXR_CHECK_AND_RETURN_C(channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT, false); |
| 4126 | if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| 4127 | TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT, false); |
| 4128 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 4129 | const float *line_ptr = reinterpret_cast<float *>( |
| 4130 | &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + |
| 4131 | channel_offset_list[c] * static_cast<size_t>(width))); |
| 4132 | for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| 4133 | float val; |
| 4134 | tinyexr::cpy4(&val, line_ptr + u); |
| 4135 | |
| 4136 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); |
| 4137 | |
| 4138 | float *image = reinterpret_cast<float **>(out_images)[c]; |
| 4139 | if (line_order == 0) { |
| 4140 | image += (static_cast<size_t>(line_no) + v) * |
| 4141 | static_cast<size_t>(x_stride) + |
| 4142 | u; |
| 4143 | } else { |
| 4144 | image += (static_cast<size_t>(height) - 1U - |
| 4145 | (static_cast<size_t>(line_no) + v)) * |
| 4146 | static_cast<size_t>(x_stride) + |
| 4147 | u; |
| 4148 | } |
| 4149 | *image = val; |
| 4150 | } |
| 4151 | } |
| 4152 | } else { |
| 4153 | return false; |
| 4154 | } |
| 4155 | } |
| 4156 | #else |
| 4157 | (void)attributes; |
| 4158 | (void)num_attributes; |
| 4159 | (void)num_channels; |
| 4160 | return false; |
| 4161 | #endif |
| 4162 | } else if (compression_type == TINYEXR_COMPRESSIONTYPE_NONE) { |
| 4163 | for (size_t c = 0; c < num_channels; c++) { |
| 4164 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 4165 | if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| 4166 | const unsigned short *line_ptr = |
| 4167 | reinterpret_cast<const unsigned short *>( |
| 4168 | data_ptr + v * pixel_data_size * size_t(width) + |
| 4169 | channel_offset_list[c] * static_cast<size_t>(width)); |
| 4170 | |
| 4171 | if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { |
| 4172 | unsigned short *outLine = |
| 4173 | reinterpret_cast<unsigned short *>(out_images[c]); |
| 4174 | if (line_order == 0) { |
| 4175 | outLine += (size_t(y) + v) * size_t(x_stride); |
| 4176 | } else { |
| 4177 | outLine += |
| 4178 | (size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride); |
| 4179 | } |
| 4180 | |
| 4181 | for (int u = 0; u < width; u++) { |
| 4182 | tinyexr::FP16 hf; |
| 4183 | |
| 4184 | // hf.u = line_ptr[u]; |
| 4185 | tinyexr::cpy2(dst_val: &(hf.u), src_val: line_ptr + u); |
| 4186 | |
| 4187 | tinyexr::swap2(val: reinterpret_cast<unsigned short *>(&hf.u)); |
| 4188 | |
| 4189 | outLine[u] = hf.u; |
| 4190 | } |
| 4191 | } else if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) { |
| 4192 | float *outLine = reinterpret_cast<float *>(out_images[c]); |
| 4193 | if (line_order == 0) { |
| 4194 | outLine += (size_t(y) + v) * size_t(x_stride); |
| 4195 | } else { |
| 4196 | outLine += |
| 4197 | (size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride); |
| 4198 | } |
| 4199 | |
| 4200 | if (reinterpret_cast<const unsigned char *>(line_ptr + width) > |
| 4201 | (data_ptr + data_len)) { |
| 4202 | // Insufficient data size |
| 4203 | return false; |
| 4204 | } |
| 4205 | |
| 4206 | for (int u = 0; u < width; u++) { |
| 4207 | tinyexr::FP16 hf; |
| 4208 | |
| 4209 | // address may not be aligned. use byte-wise copy for safety.#76 |
| 4210 | // hf.u = line_ptr[u]; |
| 4211 | tinyexr::cpy2(dst_val: &(hf.u), src_val: line_ptr + u); |
| 4212 | |
| 4213 | tinyexr::swap2(val: reinterpret_cast<unsigned short *>(&hf.u)); |
| 4214 | |
| 4215 | tinyexr::FP32 f32 = half_to_float(h: hf); |
| 4216 | |
| 4217 | outLine[u] = f32.f; |
| 4218 | } |
| 4219 | } else { |
| 4220 | return false; |
| 4221 | } |
| 4222 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| 4223 | const float *line_ptr = reinterpret_cast<const float *>( |
| 4224 | data_ptr + v * pixel_data_size * size_t(width) + |
| 4225 | channel_offset_list[c] * static_cast<size_t>(width)); |
| 4226 | |
| 4227 | float *outLine = reinterpret_cast<float *>(out_images[c]); |
| 4228 | if (line_order == 0) { |
| 4229 | outLine += (size_t(y) + v) * size_t(x_stride); |
| 4230 | } else { |
| 4231 | outLine += |
| 4232 | (size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride); |
| 4233 | } |
| 4234 | |
| 4235 | if (reinterpret_cast<const unsigned char *>(line_ptr + width) > |
| 4236 | (data_ptr + data_len)) { |
| 4237 | // Insufficient data size |
| 4238 | return false; |
| 4239 | } |
| 4240 | |
| 4241 | for (int u = 0; u < width; u++) { |
| 4242 | float val; |
| 4243 | tinyexr::cpy4(dst_val: &val, src_val: line_ptr + u); |
| 4244 | |
| 4245 | tinyexr::swap4(val: reinterpret_cast<unsigned int *>(&val)); |
| 4246 | |
| 4247 | outLine[u] = val; |
| 4248 | } |
| 4249 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| 4250 | const unsigned int *line_ptr = reinterpret_cast<const unsigned int *>( |
| 4251 | data_ptr + v * pixel_data_size * size_t(width) + |
| 4252 | channel_offset_list[c] * static_cast<size_t>(width)); |
| 4253 | |
| 4254 | unsigned int *outLine = |
| 4255 | reinterpret_cast<unsigned int *>(out_images[c]); |
| 4256 | if (line_order == 0) { |
| 4257 | outLine += (size_t(y) + v) * size_t(x_stride); |
| 4258 | } else { |
| 4259 | outLine += |
| 4260 | (size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride); |
| 4261 | } |
| 4262 | |
| 4263 | if (reinterpret_cast<const unsigned char *>(line_ptr + width) > |
| 4264 | (data_ptr + data_len)) { |
| 4265 | // Corrupted data |
| 4266 | return false; |
| 4267 | } |
| 4268 | |
| 4269 | for (int u = 0; u < width; u++) { |
| 4270 | |
| 4271 | unsigned int val; |
| 4272 | tinyexr::cpy4(dst_val: &val, src_val: line_ptr + u); |
| 4273 | |
| 4274 | tinyexr::swap4(val: reinterpret_cast<unsigned int *>(&val)); |
| 4275 | |
| 4276 | outLine[u] = val; |
| 4277 | } |
| 4278 | } |
| 4279 | } |
| 4280 | } |
| 4281 | } |
| 4282 | |
| 4283 | return true; |
| 4284 | } |
| 4285 | |
| 4286 | static bool DecodeTiledPixelData( |
| 4287 | unsigned char **out_images, int *width, int *height, |
| 4288 | const int *requested_pixel_types, const unsigned char *data_ptr, |
| 4289 | size_t data_len, int compression_type, int data_width, |
| 4290 | int data_height, int tile_offset_x, int tile_offset_y, int tile_size_x, |
| 4291 | int tile_size_y, size_t pixel_data_size, size_t num_attributes, |
| 4292 | const EXRAttribute *attributes, size_t num_channels, |
| 4293 | const EXRChannelInfo *channels, |
| 4294 | const std::vector<size_t> &channel_offset_list) { |
| 4295 | // Here, data_width and data_height are the dimensions of the current (sub)level. |
| 4296 | if (tile_size_x * tile_offset_x > data_width || |
| 4297 | tile_size_y * tile_offset_y > data_height) { |
| 4298 | return false; |
| 4299 | } |
| 4300 | |
| 4301 | // Compute actual image size in a tile. |
| 4302 | if ((tile_offset_x + 1) * tile_size_x >= data_width) { |
| 4303 | (*width) = data_width - (tile_offset_x * tile_size_x); |
| 4304 | } else { |
| 4305 | (*width) = tile_size_x; |
| 4306 | } |
| 4307 | |
| 4308 | if ((tile_offset_y + 1) * tile_size_y >= data_height) { |
| 4309 | (*height) = data_height - (tile_offset_y * tile_size_y); |
| 4310 | } else { |
| 4311 | (*height) = tile_size_y; |
| 4312 | } |
| 4313 | |
| 4314 | // Image size = tile size. |
| 4315 | // Line order within tiles is always increasing. |
| 4316 | return DecodePixelData(out_images, requested_pixel_types, data_ptr, data_len, |
| 4317 | compression_type, /* line_order*/ line_order: 0, width: (*width), height: tile_size_y, |
| 4318 | /* stride */ x_stride: tile_size_x, /* y */ y: 0, /* line_no */ line_no: 0, |
| 4319 | num_lines: (*height), pixel_data_size, num_attributes, attributes, |
| 4320 | num_channels, channels, channel_offset_list); |
| 4321 | } |
| 4322 | |
| 4323 | static bool ComputeChannelLayout(std::vector<size_t> *channel_offset_list, |
| 4324 | int *pixel_data_size, size_t *channel_offset, |
| 4325 | int num_channels, |
| 4326 | const EXRChannelInfo *channels) { |
| 4327 | channel_offset_list->resize(new_size: static_cast<size_t>(num_channels)); |
| 4328 | |
| 4329 | (*pixel_data_size) = 0; |
| 4330 | (*channel_offset) = 0; |
| 4331 | |
| 4332 | for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| 4333 | (*channel_offset_list)[c] = (*channel_offset); |
| 4334 | if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| 4335 | (*pixel_data_size) += sizeof(unsigned short); |
| 4336 | (*channel_offset) += sizeof(unsigned short); |
| 4337 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| 4338 | (*pixel_data_size) += sizeof(float); |
| 4339 | (*channel_offset) += sizeof(float); |
| 4340 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| 4341 | (*pixel_data_size) += sizeof(unsigned int); |
| 4342 | (*channel_offset) += sizeof(unsigned int); |
| 4343 | } else { |
| 4344 | // ??? |
| 4345 | return false; |
| 4346 | } |
| 4347 | } |
| 4348 | return true; |
| 4349 | } |
| 4350 | |
| 4351 | // TODO: Simply return nullptr when failed to allocate? |
| 4352 | static unsigned char **AllocateImage(int num_channels, |
| 4353 | const EXRChannelInfo *channels, |
| 4354 | const int *requested_pixel_types, |
| 4355 | int data_width, int data_height, bool *success) { |
| 4356 | unsigned char **images = |
| 4357 | reinterpret_cast<unsigned char **>(static_cast<float **>( |
| 4358 | malloc(size: sizeof(float *) * static_cast<size_t>(num_channels)))); |
| 4359 | |
| 4360 | for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| 4361 | images[c] = NULL; |
| 4362 | } |
| 4363 | |
| 4364 | bool valid = true; |
| 4365 | |
| 4366 | for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| 4367 | size_t data_len = |
| 4368 | static_cast<size_t>(data_width) * static_cast<size_t>(data_height); |
| 4369 | if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| 4370 | // pixel_data_size += sizeof(unsigned short); |
| 4371 | // channel_offset += sizeof(unsigned short); |
| 4372 | // Alloc internal image for half type. |
| 4373 | if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { |
| 4374 | images[c] = |
| 4375 | reinterpret_cast<unsigned char *>(static_cast<unsigned short *>( |
| 4376 | malloc(size: sizeof(unsigned short) * data_len))); |
| 4377 | } else if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) { |
| 4378 | images[c] = reinterpret_cast<unsigned char *>( |
| 4379 | static_cast<float *>(malloc(size: sizeof(float) * data_len))); |
| 4380 | } else { |
| 4381 | images[c] = NULL; // just in case. |
| 4382 | valid = false; |
| 4383 | break; |
| 4384 | } |
| 4385 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| 4386 | // pixel_data_size += sizeof(float); |
| 4387 | // channel_offset += sizeof(float); |
| 4388 | images[c] = reinterpret_cast<unsigned char *>( |
| 4389 | static_cast<float *>(malloc(size: sizeof(float) * data_len))); |
| 4390 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| 4391 | // pixel_data_size += sizeof(unsigned int); |
| 4392 | // channel_offset += sizeof(unsigned int); |
| 4393 | images[c] = reinterpret_cast<unsigned char *>( |
| 4394 | static_cast<unsigned int *>(malloc(size: sizeof(unsigned int) * data_len))); |
| 4395 | } else { |
| 4396 | images[c] = NULL; // just in case. |
| 4397 | valid = false; |
| 4398 | break; |
| 4399 | } |
| 4400 | } |
| 4401 | |
| 4402 | if (!valid) { |
| 4403 | for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| 4404 | if (images[c]) { |
| 4405 | free(ptr: images[c]); |
| 4406 | images[c] = NULL; |
| 4407 | } |
| 4408 | } |
| 4409 | |
| 4410 | if (success) { |
| 4411 | (*success) = false; |
| 4412 | } |
| 4413 | } else { |
| 4414 | if (success) { |
| 4415 | (*success) = true; |
| 4416 | } |
| 4417 | } |
| 4418 | |
| 4419 | return images; |
| 4420 | } |
| 4421 | |
| 4422 | #ifdef _WIN32 |
| 4423 | static inline std::wstring UTF8ToWchar(const std::string &str) { |
| 4424 | int wstr_size = |
| 4425 | MultiByteToWideChar(CP_UTF8, 0, str.data(), (int)str.size(), NULL, 0); |
| 4426 | std::wstring wstr(wstr_size, 0); |
| 4427 | MultiByteToWideChar(CP_UTF8, 0, str.data(), (int)str.size(), &wstr[0], |
| 4428 | (int)wstr.size()); |
| 4429 | return wstr; |
| 4430 | } |
| 4431 | #endif |
| 4432 | |
| 4433 | |
| 4434 | static int (HeaderInfo *info, bool *, |
| 4435 | const EXRVersion *version, std::string *err, |
| 4436 | const unsigned char *buf, size_t size) { |
| 4437 | const char *marker = reinterpret_cast<const char *>(&buf[0]); |
| 4438 | |
| 4439 | if (empty_header) { |
| 4440 | (*empty_header) = false; |
| 4441 | } |
| 4442 | |
| 4443 | if (version->multipart) { |
| 4444 | if (size > 0 && marker[0] == '\0') { |
| 4445 | // End of header list. |
| 4446 | if (empty_header) { |
| 4447 | (*empty_header) = true; |
| 4448 | } |
| 4449 | return TINYEXR_SUCCESS; |
| 4450 | } |
| 4451 | } |
| 4452 | |
| 4453 | // According to the spec, the header of every OpenEXR file must contain at |
| 4454 | // least the following attributes: |
| 4455 | // |
| 4456 | // channels chlist |
| 4457 | // compression compression |
| 4458 | // dataWindow box2i |
| 4459 | // displayWindow box2i |
| 4460 | // lineOrder lineOrder |
| 4461 | // pixelAspectRatio float |
| 4462 | // screenWindowCenter v2f |
| 4463 | // screenWindowWidth float |
| 4464 | bool has_channels = false; |
| 4465 | bool has_compression = false; |
| 4466 | bool has_data_window = false; |
| 4467 | bool has_display_window = false; |
| 4468 | bool has_line_order = false; |
| 4469 | bool has_pixel_aspect_ratio = false; |
| 4470 | bool has_screen_window_center = false; |
| 4471 | bool has_screen_window_width = false; |
| 4472 | bool has_name = false; |
| 4473 | bool has_type = false; |
| 4474 | |
| 4475 | info->name.clear(); |
| 4476 | info->type.clear(); |
| 4477 | |
| 4478 | info->data_window.min_x = 0; |
| 4479 | info->data_window.min_y = 0; |
| 4480 | info->data_window.max_x = 0; |
| 4481 | info->data_window.max_y = 0; |
| 4482 | info->line_order = 0; // @fixme |
| 4483 | info->display_window.min_x = 0; |
| 4484 | info->display_window.min_y = 0; |
| 4485 | info->display_window.max_x = 0; |
| 4486 | info->display_window.max_y = 0; |
| 4487 | info->screen_window_center[0] = 0.0f; |
| 4488 | info->screen_window_center[1] = 0.0f; |
| 4489 | info->screen_window_width = -1.0f; |
| 4490 | info->pixel_aspect_ratio = -1.0f; |
| 4491 | |
| 4492 | info->tiled = 0; |
| 4493 | info->tile_size_x = -1; |
| 4494 | info->tile_size_y = -1; |
| 4495 | info->tile_level_mode = -1; |
| 4496 | info->tile_rounding_mode = -1; |
| 4497 | |
| 4498 | info->attributes.clear(); |
| 4499 | |
| 4500 | // Read attributes |
| 4501 | size_t orig_size = size; |
| 4502 | for (size_t nattr = 0; nattr < TINYEXR_MAX_HEADER_ATTRIBUTES; nattr++) { |
| 4503 | if (0 == size) { |
| 4504 | if (err) { |
| 4505 | (*err) += "Insufficient data size for attributes.\n" ; |
| 4506 | } |
| 4507 | return TINYEXR_ERROR_INVALID_DATA; |
| 4508 | } else if (marker[0] == '\0') { |
| 4509 | size--; |
| 4510 | break; |
| 4511 | } |
| 4512 | |
| 4513 | std::string attr_name; |
| 4514 | std::string attr_type; |
| 4515 | std::vector<unsigned char> data; |
| 4516 | size_t marker_size; |
| 4517 | if (!tinyexr::ReadAttribute(name: &attr_name, type: &attr_type, data: &data, marker_size: &marker_size, |
| 4518 | marker, size)) { |
| 4519 | if (err) { |
| 4520 | (*err) += "Failed to read attribute.\n" ; |
| 4521 | } |
| 4522 | return TINYEXR_ERROR_INVALID_DATA; |
| 4523 | } |
| 4524 | marker += marker_size; |
| 4525 | size -= marker_size; |
| 4526 | |
| 4527 | // For a multipart file, the version field 9th bit is 0. |
| 4528 | if ((version->tiled || version->multipart || version->non_image) && attr_name.compare(s: "tiles" ) == 0) { |
| 4529 | unsigned int x_size, y_size; |
| 4530 | unsigned char tile_mode; |
| 4531 | if (data.size() != 9) { |
| 4532 | if (err) { |
| 4533 | (*err) += "(ParseEXRHeader) Invalid attribute data size. Attribute data size must be 9.\n" ; |
| 4534 | } |
| 4535 | return TINYEXR_ERROR_INVALID_DATA; |
| 4536 | } |
| 4537 | |
| 4538 | memcpy(dest: &x_size, src: &data.at(n: 0), n: sizeof(int)); |
| 4539 | memcpy(dest: &y_size, src: &data.at(n: 4), n: sizeof(int)); |
| 4540 | tile_mode = data[8]; |
| 4541 | tinyexr::swap4(val: &x_size); |
| 4542 | tinyexr::swap4(val: &y_size); |
| 4543 | |
| 4544 | if (x_size > static_cast<unsigned int>(std::numeric_limits<int>::max()) || |
| 4545 | y_size > static_cast<unsigned int>(std::numeric_limits<int>::max())) { |
| 4546 | if (err) { |
| 4547 | (*err) = "Tile sizes were invalid." ; |
| 4548 | } |
| 4549 | return TINYEXR_ERROR_UNSUPPORTED_FORMAT; |
| 4550 | } |
| 4551 | |
| 4552 | info->tile_size_x = static_cast<int>(x_size); |
| 4553 | info->tile_size_y = static_cast<int>(y_size); |
| 4554 | |
| 4555 | // mode = levelMode + roundingMode * 16 |
| 4556 | info->tile_level_mode = tile_mode & 0x3; |
| 4557 | info->tile_rounding_mode = (tile_mode >> 4) & 0x1; |
| 4558 | info->tiled = 1; |
| 4559 | } else if (attr_name.compare(s: "compression" ) == 0) { |
| 4560 | bool ok = false; |
| 4561 | if (data[0] < TINYEXR_COMPRESSIONTYPE_PIZ) { |
| 4562 | ok = true; |
| 4563 | } |
| 4564 | |
| 4565 | if (data[0] == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| 4566 | #if TINYEXR_USE_PIZ |
| 4567 | ok = true; |
| 4568 | #else |
| 4569 | if (err) { |
| 4570 | (*err) = "PIZ compression is not supported." ; |
| 4571 | } |
| 4572 | return TINYEXR_ERROR_UNSUPPORTED_FORMAT; |
| 4573 | #endif |
| 4574 | } |
| 4575 | |
| 4576 | if (data[0] == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| 4577 | #if TINYEXR_USE_ZFP |
| 4578 | ok = true; |
| 4579 | #else |
| 4580 | if (err) { |
| 4581 | (*err) = "ZFP compression is not supported." ; |
| 4582 | } |
| 4583 | return TINYEXR_ERROR_UNSUPPORTED_FORMAT; |
| 4584 | #endif |
| 4585 | } |
| 4586 | |
| 4587 | if (!ok) { |
| 4588 | if (err) { |
| 4589 | (*err) = "Unknown compression type." ; |
| 4590 | } |
| 4591 | return TINYEXR_ERROR_UNSUPPORTED_FORMAT; |
| 4592 | } |
| 4593 | |
| 4594 | info->compression_type = static_cast<int>(data[0]); |
| 4595 | has_compression = true; |
| 4596 | |
| 4597 | } else if (attr_name.compare(s: "channels" ) == 0) { |
| 4598 | // name: zero-terminated string, from 1 to 255 bytes long |
| 4599 | // pixel type: int, possible values are: UINT = 0 HALF = 1 FLOAT = 2 |
| 4600 | // pLinear: unsigned char, possible values are 0 and 1 |
| 4601 | // reserved: three chars, should be zero |
| 4602 | // xSampling: int |
| 4603 | // ySampling: int |
| 4604 | |
| 4605 | if (!ReadChannelInfo(channels&: info->channels, data)) { |
| 4606 | if (err) { |
| 4607 | (*err) += "Failed to parse channel info.\n" ; |
| 4608 | } |
| 4609 | return TINYEXR_ERROR_INVALID_DATA; |
| 4610 | } |
| 4611 | |
| 4612 | if (info->channels.size() < 1) { |
| 4613 | if (err) { |
| 4614 | (*err) += "# of channels is zero.\n" ; |
| 4615 | } |
| 4616 | return TINYEXR_ERROR_INVALID_DATA; |
| 4617 | } |
| 4618 | |
| 4619 | has_channels = true; |
| 4620 | |
| 4621 | } else if (attr_name.compare(s: "dataWindow" ) == 0) { |
| 4622 | if (data.size() >= 16) { |
| 4623 | memcpy(dest: &info->data_window.min_x, src: &data.at(n: 0), n: sizeof(int)); |
| 4624 | memcpy(dest: &info->data_window.min_y, src: &data.at(n: 4), n: sizeof(int)); |
| 4625 | memcpy(dest: &info->data_window.max_x, src: &data.at(n: 8), n: sizeof(int)); |
| 4626 | memcpy(dest: &info->data_window.max_y, src: &data.at(n: 12), n: sizeof(int)); |
| 4627 | tinyexr::swap4(val: &info->data_window.min_x); |
| 4628 | tinyexr::swap4(val: &info->data_window.min_y); |
| 4629 | tinyexr::swap4(val: &info->data_window.max_x); |
| 4630 | tinyexr::swap4(val: &info->data_window.max_y); |
| 4631 | has_data_window = true; |
| 4632 | } |
| 4633 | } else if (attr_name.compare(s: "displayWindow" ) == 0) { |
| 4634 | if (data.size() >= 16) { |
| 4635 | memcpy(dest: &info->display_window.min_x, src: &data.at(n: 0), n: sizeof(int)); |
| 4636 | memcpy(dest: &info->display_window.min_y, src: &data.at(n: 4), n: sizeof(int)); |
| 4637 | memcpy(dest: &info->display_window.max_x, src: &data.at(n: 8), n: sizeof(int)); |
| 4638 | memcpy(dest: &info->display_window.max_y, src: &data.at(n: 12), n: sizeof(int)); |
| 4639 | tinyexr::swap4(val: &info->display_window.min_x); |
| 4640 | tinyexr::swap4(val: &info->display_window.min_y); |
| 4641 | tinyexr::swap4(val: &info->display_window.max_x); |
| 4642 | tinyexr::swap4(val: &info->display_window.max_y); |
| 4643 | |
| 4644 | has_display_window = true; |
| 4645 | } |
| 4646 | } else if (attr_name.compare(s: "lineOrder" ) == 0) { |
| 4647 | if (data.size() >= 1) { |
| 4648 | info->line_order = static_cast<int>(data[0]); |
| 4649 | has_line_order = true; |
| 4650 | } |
| 4651 | } else if (attr_name.compare(s: "pixelAspectRatio" ) == 0) { |
| 4652 | if (data.size() >= sizeof(float)) { |
| 4653 | memcpy(dest: &info->pixel_aspect_ratio, src: &data.at(n: 0), n: sizeof(float)); |
| 4654 | tinyexr::swap4(val: &info->pixel_aspect_ratio); |
| 4655 | has_pixel_aspect_ratio = true; |
| 4656 | } |
| 4657 | } else if (attr_name.compare(s: "screenWindowCenter" ) == 0) { |
| 4658 | if (data.size() >= 8) { |
| 4659 | memcpy(dest: &info->screen_window_center[0], src: &data.at(n: 0), n: sizeof(float)); |
| 4660 | memcpy(dest: &info->screen_window_center[1], src: &data.at(n: 4), n: sizeof(float)); |
| 4661 | tinyexr::swap4(val: &info->screen_window_center[0]); |
| 4662 | tinyexr::swap4(val: &info->screen_window_center[1]); |
| 4663 | has_screen_window_center = true; |
| 4664 | } |
| 4665 | } else if (attr_name.compare(s: "screenWindowWidth" ) == 0) { |
| 4666 | if (data.size() >= sizeof(float)) { |
| 4667 | memcpy(dest: &info->screen_window_width, src: &data.at(n: 0), n: sizeof(float)); |
| 4668 | tinyexr::swap4(val: &info->screen_window_width); |
| 4669 | |
| 4670 | has_screen_window_width = true; |
| 4671 | } |
| 4672 | } else if (attr_name.compare(s: "chunkCount" ) == 0) { |
| 4673 | if (data.size() >= sizeof(int)) { |
| 4674 | memcpy(dest: &info->chunk_count, src: &data.at(n: 0), n: sizeof(int)); |
| 4675 | tinyexr::swap4(val: &info->chunk_count); |
| 4676 | } |
| 4677 | } else if (attr_name.compare(s: "name" ) == 0) { |
| 4678 | if (!data.empty() && data[0]) { |
| 4679 | data.push_back(x: 0); |
| 4680 | size_t len = strlen(s: reinterpret_cast<const char*>(&data[0])); |
| 4681 | info->name.resize(n: len); |
| 4682 | info->name.assign(s: reinterpret_cast<const char*>(&data[0]), n: len); |
| 4683 | has_name = true; |
| 4684 | } |
| 4685 | } else if (attr_name.compare(s: "type" ) == 0) { |
| 4686 | if (!data.empty() && data[0]) { |
| 4687 | data.push_back(x: 0); |
| 4688 | size_t len = strlen(s: reinterpret_cast<const char*>(&data[0])); |
| 4689 | info->type.resize(n: len); |
| 4690 | info->type.assign(s: reinterpret_cast<const char*>(&data[0]), n: len); |
| 4691 | has_type = true; |
| 4692 | } |
| 4693 | } else { |
| 4694 | // Custom attribute(up to TINYEXR_MAX_CUSTOM_ATTRIBUTES) |
| 4695 | if (info->attributes.size() < TINYEXR_MAX_CUSTOM_ATTRIBUTES) { |
| 4696 | EXRAttribute attrib; |
| 4697 | #ifdef _MSC_VER |
| 4698 | strncpy_s(attrib.name, attr_name.c_str(), 255); |
| 4699 | strncpy_s(attrib.type, attr_type.c_str(), 255); |
| 4700 | #else |
| 4701 | strncpy(dest: attrib.name, src: attr_name.c_str(), n: 255); |
| 4702 | strncpy(dest: attrib.type, src: attr_type.c_str(), n: 255); |
| 4703 | #endif |
| 4704 | attrib.name[255] = '\0'; |
| 4705 | attrib.type[255] = '\0'; |
| 4706 | //std::cout << "i = " << info->attributes.size() << ", dsize = " << data.size() << "\n"; |
| 4707 | attrib.size = static_cast<int>(data.size()); |
| 4708 | attrib.value = static_cast<unsigned char *>(malloc(size: data.size())); |
| 4709 | memcpy(dest: reinterpret_cast<char *>(attrib.value), src: &data.at(n: 0), |
| 4710 | n: data.size()); |
| 4711 | info->attributes.push_back(x: attrib); |
| 4712 | } |
| 4713 | } |
| 4714 | } |
| 4715 | |
| 4716 | // Check if required attributes exist |
| 4717 | { |
| 4718 | std::stringstream ss_err; |
| 4719 | |
| 4720 | if (!has_compression) { |
| 4721 | ss_err << "\"compression\" attribute not found in the header." |
| 4722 | << std::endl; |
| 4723 | } |
| 4724 | |
| 4725 | if (!has_channels) { |
| 4726 | ss_err << "\"channels\" attribute not found in the header." << std::endl; |
| 4727 | } |
| 4728 | |
| 4729 | if (!has_line_order) { |
| 4730 | ss_err << "\"lineOrder\" attribute not found in the header." << std::endl; |
| 4731 | } |
| 4732 | |
| 4733 | if (!has_display_window) { |
| 4734 | ss_err << "\"displayWindow\" attribute not found in the header." |
| 4735 | << std::endl; |
| 4736 | } |
| 4737 | |
| 4738 | if (!has_data_window) { |
| 4739 | ss_err << "\"dataWindow\" attribute not found in the header or invalid." |
| 4740 | << std::endl; |
| 4741 | } |
| 4742 | |
| 4743 | if (!has_pixel_aspect_ratio) { |
| 4744 | ss_err << "\"pixelAspectRatio\" attribute not found in the header." |
| 4745 | << std::endl; |
| 4746 | } |
| 4747 | |
| 4748 | if (!has_screen_window_width) { |
| 4749 | ss_err << "\"screenWindowWidth\" attribute not found in the header." |
| 4750 | << std::endl; |
| 4751 | } |
| 4752 | |
| 4753 | if (!has_screen_window_center) { |
| 4754 | ss_err << "\"screenWindowCenter\" attribute not found in the header." |
| 4755 | << std::endl; |
| 4756 | } |
| 4757 | |
| 4758 | if (version->multipart || version->non_image) { |
| 4759 | if (!has_name) { |
| 4760 | ss_err << "\"name\" attribute not found in the header." |
| 4761 | << std::endl; |
| 4762 | } |
| 4763 | if (!has_type) { |
| 4764 | ss_err << "\"type\" attribute not found in the header." |
| 4765 | << std::endl; |
| 4766 | } |
| 4767 | } |
| 4768 | |
| 4769 | if (!(ss_err.str().empty())) { |
| 4770 | if (err) { |
| 4771 | (*err) += ss_err.str(); |
| 4772 | } |
| 4773 | |
| 4774 | return TINYEXR_ERROR_INVALID_HEADER; |
| 4775 | } |
| 4776 | } |
| 4777 | |
| 4778 | info->header_len = static_cast<unsigned int>(orig_size - size); |
| 4779 | |
| 4780 | return TINYEXR_SUCCESS; |
| 4781 | } |
| 4782 | |
| 4783 | // C++ HeaderInfo to C EXRHeader conversion. |
| 4784 | static bool (EXRHeader *, const HeaderInfo &info, std::string *warn, std::string *err) { |
| 4785 | exr_header->pixel_aspect_ratio = info.pixel_aspect_ratio; |
| 4786 | exr_header->screen_window_center[0] = info.screen_window_center[0]; |
| 4787 | exr_header->screen_window_center[1] = info.screen_window_center[1]; |
| 4788 | exr_header->screen_window_width = info.screen_window_width; |
| 4789 | exr_header->chunk_count = info.chunk_count; |
| 4790 | exr_header->display_window.min_x = info.display_window.min_x; |
| 4791 | exr_header->display_window.min_y = info.display_window.min_y; |
| 4792 | exr_header->display_window.max_x = info.display_window.max_x; |
| 4793 | exr_header->display_window.max_y = info.display_window.max_y; |
| 4794 | exr_header->data_window.min_x = info.data_window.min_x; |
| 4795 | exr_header->data_window.min_y = info.data_window.min_y; |
| 4796 | exr_header->data_window.max_x = info.data_window.max_x; |
| 4797 | exr_header->data_window.max_y = info.data_window.max_y; |
| 4798 | exr_header->line_order = info.line_order; |
| 4799 | exr_header->compression_type = info.compression_type; |
| 4800 | exr_header->tiled = info.tiled; |
| 4801 | exr_header->tile_size_x = info.tile_size_x; |
| 4802 | exr_header->tile_size_y = info.tile_size_y; |
| 4803 | exr_header->tile_level_mode = info.tile_level_mode; |
| 4804 | exr_header->tile_rounding_mode = info.tile_rounding_mode; |
| 4805 | |
| 4806 | EXRSetNameAttr(exr_header, name: info.name.c_str()); |
| 4807 | |
| 4808 | |
| 4809 | if (!info.type.empty()) { |
| 4810 | bool valid = true; |
| 4811 | if (info.type == "scanlineimage" ) { |
| 4812 | if (exr_header->tiled) { |
| 4813 | if (err) { |
| 4814 | (*err) += "(ConvertHeader) tiled bit must be off for `scanlineimage` type.\n" ; |
| 4815 | } |
| 4816 | valid = false; |
| 4817 | } |
| 4818 | } else if (info.type == "tiledimage" ) { |
| 4819 | if (!exr_header->tiled) { |
| 4820 | if (err) { |
| 4821 | (*err) += "(ConvertHeader) tiled bit must be on for `tiledimage` type.\n" ; |
| 4822 | } |
| 4823 | valid = false; |
| 4824 | } |
| 4825 | } else if (info.type == "deeptile" ) { |
| 4826 | exr_header->non_image = 1; |
| 4827 | if (!exr_header->tiled) { |
| 4828 | if (err) { |
| 4829 | (*err) += "(ConvertHeader) tiled bit must be on for `deeptile` type.\n" ; |
| 4830 | } |
| 4831 | valid = false; |
| 4832 | } |
| 4833 | } else if (info.type == "deepscanline" ) { |
| 4834 | exr_header->non_image = 1; |
| 4835 | if (exr_header->tiled) { |
| 4836 | if (err) { |
| 4837 | (*err) += "(ConvertHeader) tiled bit must be off for `deepscanline` type.\n" ; |
| 4838 | } |
| 4839 | //valid = false; |
| 4840 | } |
| 4841 | } else { |
| 4842 | if (warn) { |
| 4843 | std::stringstream ss; |
| 4844 | ss << "(ConvertHeader) Unsupported or unknown info.type: " << info.type << "\n" ; |
| 4845 | (*warn) += ss.str(); |
| 4846 | } |
| 4847 | } |
| 4848 | |
| 4849 | if (!valid) { |
| 4850 | return false; |
| 4851 | } |
| 4852 | } |
| 4853 | |
| 4854 | exr_header->num_channels = static_cast<int>(info.channels.size()); |
| 4855 | |
| 4856 | exr_header->channels = static_cast<EXRChannelInfo *>(malloc( |
| 4857 | size: sizeof(EXRChannelInfo) * static_cast<size_t>(exr_header->num_channels))); |
| 4858 | for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) { |
| 4859 | #ifdef _MSC_VER |
| 4860 | strncpy_s(exr_header->channels[c].name, info.channels[c].name.c_str(), 255); |
| 4861 | #else |
| 4862 | strncpy(dest: exr_header->channels[c].name, src: info.channels[c].name.c_str(), n: 255); |
| 4863 | #endif |
| 4864 | // manually add '\0' for safety. |
| 4865 | exr_header->channels[c].name[255] = '\0'; |
| 4866 | |
| 4867 | exr_header->channels[c].pixel_type = info.channels[c].pixel_type; |
| 4868 | exr_header->channels[c].p_linear = info.channels[c].p_linear; |
| 4869 | exr_header->channels[c].x_sampling = info.channels[c].x_sampling; |
| 4870 | exr_header->channels[c].y_sampling = info.channels[c].y_sampling; |
| 4871 | } |
| 4872 | |
| 4873 | exr_header->pixel_types = static_cast<int *>( |
| 4874 | malloc(size: sizeof(int) * static_cast<size_t>(exr_header->num_channels))); |
| 4875 | for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) { |
| 4876 | exr_header->pixel_types[c] = info.channels[c].pixel_type; |
| 4877 | } |
| 4878 | |
| 4879 | // Initially fill with values of `pixel_types` |
| 4880 | exr_header->requested_pixel_types = static_cast<int *>( |
| 4881 | malloc(size: sizeof(int) * static_cast<size_t>(exr_header->num_channels))); |
| 4882 | for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) { |
| 4883 | exr_header->requested_pixel_types[c] = info.channels[c].pixel_type; |
| 4884 | } |
| 4885 | |
| 4886 | exr_header->num_custom_attributes = static_cast<int>(info.attributes.size()); |
| 4887 | |
| 4888 | if (exr_header->num_custom_attributes > 0) { |
| 4889 | // TODO(syoyo): Report warning when # of attributes exceeds |
| 4890 | // `TINYEXR_MAX_CUSTOM_ATTRIBUTES` |
| 4891 | if (exr_header->num_custom_attributes > TINYEXR_MAX_CUSTOM_ATTRIBUTES) { |
| 4892 | exr_header->num_custom_attributes = TINYEXR_MAX_CUSTOM_ATTRIBUTES; |
| 4893 | } |
| 4894 | |
| 4895 | exr_header->custom_attributes = static_cast<EXRAttribute *>(malloc( |
| 4896 | size: sizeof(EXRAttribute) * size_t(exr_header->num_custom_attributes))); |
| 4897 | |
| 4898 | for (size_t i = 0; i < size_t(exr_header->num_custom_attributes); i++) { |
| 4899 | memcpy(dest: exr_header->custom_attributes[i].name, src: info.attributes[i].name, |
| 4900 | n: 256); |
| 4901 | memcpy(dest: exr_header->custom_attributes[i].type, src: info.attributes[i].type, |
| 4902 | n: 256); |
| 4903 | exr_header->custom_attributes[i].size = info.attributes[i].size; |
| 4904 | // Just copy pointer |
| 4905 | exr_header->custom_attributes[i].value = info.attributes[i].value; |
| 4906 | } |
| 4907 | |
| 4908 | } else { |
| 4909 | exr_header->custom_attributes = NULL; |
| 4910 | } |
| 4911 | |
| 4912 | exr_header->header_len = info.header_len; |
| 4913 | |
| 4914 | return true; |
| 4915 | } |
| 4916 | |
| 4917 | struct OffsetData { |
| 4918 | OffsetData() : num_x_levels(0), num_y_levels(0) {} |
| 4919 | std::vector<std::vector<std::vector <tinyexr::tinyexr_uint64> > > offsets; |
| 4920 | int num_x_levels; |
| 4921 | int num_y_levels; |
| 4922 | }; |
| 4923 | |
| 4924 | // -1 = error |
| 4925 | static int LevelIndex(int lx, int ly, int tile_level_mode, int num_x_levels) { |
| 4926 | switch (tile_level_mode) { |
| 4927 | case TINYEXR_TILE_ONE_LEVEL: |
| 4928 | return 0; |
| 4929 | |
| 4930 | case TINYEXR_TILE_MIPMAP_LEVELS: |
| 4931 | return lx; |
| 4932 | |
| 4933 | case TINYEXR_TILE_RIPMAP_LEVELS: |
| 4934 | return lx + ly * num_x_levels; |
| 4935 | |
| 4936 | default: |
| 4937 | return -1; |
| 4938 | } |
| 4939 | return 0; |
| 4940 | } |
| 4941 | |
| 4942 | static int LevelSize(int toplevel_size, int level, int tile_rounding_mode) { |
| 4943 | if (level < 0) { |
| 4944 | return -1; |
| 4945 | } |
| 4946 | |
| 4947 | int b = static_cast<int>(1u << static_cast<unsigned int>(level)); |
| 4948 | int level_size = toplevel_size / b; |
| 4949 | |
| 4950 | if (tile_rounding_mode == TINYEXR_TILE_ROUND_UP && level_size * b < toplevel_size) |
| 4951 | level_size += 1; |
| 4952 | |
| 4953 | return std::max(a: level_size, b: 1); |
| 4954 | } |
| 4955 | |
| 4956 | static int (EXRImage* exr_image, const EXRHeader* , |
| 4957 | const OffsetData& offset_data, |
| 4958 | const std::vector<size_t>& channel_offset_list, |
| 4959 | int pixel_data_size, |
| 4960 | const unsigned char* head, const size_t size, |
| 4961 | std::string* err) { |
| 4962 | int num_channels = exr_header->num_channels; |
| 4963 | |
| 4964 | int level_index = LevelIndex(lx: exr_image->level_x, ly: exr_image->level_y, tile_level_mode: exr_header->tile_level_mode, num_x_levels: offset_data.num_x_levels); |
| 4965 | int num_y_tiles = int(offset_data.offsets[size_t(level_index)].size()); |
| 4966 | if (num_y_tiles < 1) { |
| 4967 | return TINYEXR_ERROR_INVALID_DATA; |
| 4968 | } |
| 4969 | int num_x_tiles = int(offset_data.offsets[size_t(level_index)][0].size()); |
| 4970 | if (num_x_tiles < 1) { |
| 4971 | return TINYEXR_ERROR_INVALID_DATA; |
| 4972 | } |
| 4973 | int num_tiles = num_x_tiles * num_y_tiles; |
| 4974 | |
| 4975 | int err_code = TINYEXR_SUCCESS; |
| 4976 | |
| 4977 | enum { |
| 4978 | EF_SUCCESS = 0, |
| 4979 | EF_INVALID_DATA = 1, |
| 4980 | EF_INSUFFICIENT_DATA = 2, |
| 4981 | EF_FAILED_TO_DECODE = 4 |
| 4982 | }; |
| 4983 | #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| 4984 | std::atomic<unsigned> error_flag(EF_SUCCESS); |
| 4985 | #else |
| 4986 | unsigned error_flag(EF_SUCCESS); |
| 4987 | #endif |
| 4988 | |
| 4989 | // Although the spec says : "...the data window is subdivided into an array of smaller rectangles...", |
| 4990 | // the IlmImf library allows the dimensions of the tile to be larger (or equal) than the dimensions of the data window. |
| 4991 | #if 0 |
| 4992 | if ((exr_header->tile_size_x > exr_image->width || exr_header->tile_size_y > exr_image->height) && |
| 4993 | exr_image->level_x == 0 && exr_image->level_y == 0) { |
| 4994 | if (err) { |
| 4995 | (*err) += "Failed to decode tile data.\n" ; |
| 4996 | } |
| 4997 | err_code = TINYEXR_ERROR_INVALID_DATA; |
| 4998 | } |
| 4999 | #endif |
| 5000 | exr_image->tiles = static_cast<EXRTile*>( |
| 5001 | calloc(nmemb: static_cast<size_t>(num_tiles), size: sizeof(EXRTile))); |
| 5002 | |
| 5003 | #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| 5004 | std::vector<std::thread> workers; |
| 5005 | std::atomic<int> tile_count(0); |
| 5006 | |
| 5007 | int num_threads = std::max(a: 1, b: int(std::thread::hardware_concurrency())); |
| 5008 | #if (TINYEXR_MAX_THREADS > 0) |
| 5009 | num_threads = std::min(num_threads,TINYEXR_MAX_THREADS); |
| 5010 | #endif |
| 5011 | if (num_threads > int(num_tiles)) { |
| 5012 | num_threads = int(num_tiles); |
| 5013 | } |
| 5014 | for (int t = 0; t < num_threads; t++) { |
| 5015 | workers.emplace_back(args: std::thread([&]() |
| 5016 | { |
| 5017 | int tile_idx = 0; |
| 5018 | while ((tile_idx = tile_count++) < num_tiles) { |
| 5019 | |
| 5020 | #else |
| 5021 | #if TINYEXR_USE_OPENMP |
| 5022 | #pragma omp parallel for |
| 5023 | #endif |
| 5024 | for (int tile_idx = 0; tile_idx < num_tiles; tile_idx++) { |
| 5025 | #endif |
| 5026 | // Allocate memory for each tile. |
| 5027 | bool alloc_success = false; |
| 5028 | exr_image->tiles[tile_idx].images = tinyexr::AllocateImage( |
| 5029 | num_channels, channels: exr_header->channels, |
| 5030 | requested_pixel_types: exr_header->requested_pixel_types, data_width: exr_header->tile_size_x, |
| 5031 | data_height: exr_header->tile_size_y, success: &alloc_success); |
| 5032 | |
| 5033 | if (!alloc_success) { |
| 5034 | error_flag |= EF_INVALID_DATA; |
| 5035 | continue; |
| 5036 | } |
| 5037 | |
| 5038 | int x_tile = tile_idx % num_x_tiles; |
| 5039 | int y_tile = tile_idx / num_x_tiles; |
| 5040 | // 16 byte: tile coordinates |
| 5041 | // 4 byte : data size |
| 5042 | // ~ : data(uncompressed or compressed) |
| 5043 | tinyexr::tinyexr_uint64 offset = offset_data.offsets[size_t(level_index)][size_t(y_tile)][size_t(x_tile)]; |
| 5044 | if (offset + sizeof(int) * 5 > size) { |
| 5045 | // Insufficient data size. |
| 5046 | error_flag |= EF_INSUFFICIENT_DATA; |
| 5047 | continue; |
| 5048 | } |
| 5049 | |
| 5050 | size_t data_size = |
| 5051 | size_t(size - (offset + sizeof(int) * 5)); |
| 5052 | const unsigned char* data_ptr = |
| 5053 | reinterpret_cast<const unsigned char*>(head + offset); |
| 5054 | |
| 5055 | int tile_coordinates[4]; |
| 5056 | memcpy(dest: tile_coordinates, src: data_ptr, n: sizeof(int) * 4); |
| 5057 | tinyexr::swap4(val: &tile_coordinates[0]); |
| 5058 | tinyexr::swap4(val: &tile_coordinates[1]); |
| 5059 | tinyexr::swap4(val: &tile_coordinates[2]); |
| 5060 | tinyexr::swap4(val: &tile_coordinates[3]); |
| 5061 | |
| 5062 | if (tile_coordinates[2] != exr_image->level_x) { |
| 5063 | // Invalid data. |
| 5064 | error_flag |= EF_INVALID_DATA; |
| 5065 | continue; |
| 5066 | } |
| 5067 | if (tile_coordinates[3] != exr_image->level_y) { |
| 5068 | // Invalid data. |
| 5069 | error_flag |= EF_INVALID_DATA; |
| 5070 | continue; |
| 5071 | } |
| 5072 | |
| 5073 | int data_len; |
| 5074 | memcpy(dest: &data_len, src: data_ptr + 16, |
| 5075 | n: sizeof(int)); // 16 = sizeof(tile_coordinates) |
| 5076 | tinyexr::swap4(val: &data_len); |
| 5077 | |
| 5078 | if (data_len < 2 || size_t(data_len) > data_size) { |
| 5079 | // Insufficient data size. |
| 5080 | error_flag |= EF_INSUFFICIENT_DATA; |
| 5081 | continue; |
| 5082 | } |
| 5083 | |
| 5084 | // Move to data addr: 20 = 16 + 4; |
| 5085 | data_ptr += 20; |
| 5086 | bool ret = tinyexr::DecodeTiledPixelData( |
| 5087 | out_images: exr_image->tiles[tile_idx].images, |
| 5088 | width: &(exr_image->tiles[tile_idx].width), |
| 5089 | height: &(exr_image->tiles[tile_idx].height), |
| 5090 | requested_pixel_types: exr_header->requested_pixel_types, data_ptr, |
| 5091 | data_len: static_cast<size_t>(data_len), compression_type: exr_header->compression_type, |
| 5092 | data_width: exr_image->width, data_height: exr_image->height, |
| 5093 | tile_offset_x: tile_coordinates[0], tile_offset_y: tile_coordinates[1], tile_size_x: exr_header->tile_size_x, |
| 5094 | tile_size_y: exr_header->tile_size_y, pixel_data_size: static_cast<size_t>(pixel_data_size), |
| 5095 | num_attributes: static_cast<size_t>(exr_header->num_custom_attributes), |
| 5096 | attributes: exr_header->custom_attributes, |
| 5097 | num_channels: static_cast<size_t>(exr_header->num_channels), |
| 5098 | channels: exr_header->channels, channel_offset_list); |
| 5099 | |
| 5100 | if (!ret) { |
| 5101 | // Failed to decode tile data. |
| 5102 | error_flag |= EF_FAILED_TO_DECODE; |
| 5103 | } |
| 5104 | |
| 5105 | exr_image->tiles[tile_idx].offset_x = tile_coordinates[0]; |
| 5106 | exr_image->tiles[tile_idx].offset_y = tile_coordinates[1]; |
| 5107 | exr_image->tiles[tile_idx].level_x = tile_coordinates[2]; |
| 5108 | exr_image->tiles[tile_idx].level_y = tile_coordinates[3]; |
| 5109 | |
| 5110 | #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| 5111 | } |
| 5112 | })); |
| 5113 | } // num_thread loop |
| 5114 | |
| 5115 | for (auto& t : workers) { |
| 5116 | t.join(); |
| 5117 | } |
| 5118 | |
| 5119 | #else |
| 5120 | } // parallel for |
| 5121 | #endif |
| 5122 | |
| 5123 | // Even in the event of an error, the reserved memory may be freed. |
| 5124 | exr_image->num_channels = num_channels; |
| 5125 | exr_image->num_tiles = static_cast<int>(num_tiles); |
| 5126 | |
| 5127 | if (error_flag) err_code = TINYEXR_ERROR_INVALID_DATA; |
| 5128 | if (err) { |
| 5129 | if (error_flag & EF_INSUFFICIENT_DATA) { |
| 5130 | (*err) += "Insufficient data length.\n" ; |
| 5131 | } |
| 5132 | if (error_flag & EF_FAILED_TO_DECODE) { |
| 5133 | (*err) += "Failed to decode tile data.\n" ; |
| 5134 | } |
| 5135 | } |
| 5136 | return err_code; |
| 5137 | } |
| 5138 | |
| 5139 | static int (EXRImage *exr_image, const EXRHeader *, |
| 5140 | const OffsetData& offset_data, |
| 5141 | const unsigned char *head, const size_t size, |
| 5142 | std::string *err) { |
| 5143 | int num_channels = exr_header->num_channels; |
| 5144 | |
| 5145 | int num_scanline_blocks = 1; |
| 5146 | if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) { |
| 5147 | num_scanline_blocks = 16; |
| 5148 | } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| 5149 | num_scanline_blocks = 32; |
| 5150 | } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| 5151 | num_scanline_blocks = 16; |
| 5152 | |
| 5153 | #if TINYEXR_USE_ZFP |
| 5154 | tinyexr::ZFPCompressionParam zfp_compression_param; |
| 5155 | if (!FindZFPCompressionParam(&zfp_compression_param, |
| 5156 | exr_header->custom_attributes, |
| 5157 | int(exr_header->num_custom_attributes), err)) { |
| 5158 | return TINYEXR_ERROR_INVALID_HEADER; |
| 5159 | } |
| 5160 | #endif |
| 5161 | } |
| 5162 | |
| 5163 | if (exr_header->data_window.max_x < exr_header->data_window.min_x || |
| 5164 | exr_header->data_window.max_y < exr_header->data_window.min_y) { |
| 5165 | if (err) { |
| 5166 | (*err) += "Invalid data window.\n" ; |
| 5167 | } |
| 5168 | return TINYEXR_ERROR_INVALID_DATA; |
| 5169 | } |
| 5170 | |
| 5171 | tinyexr_int64 data_width = |
| 5172 | static_cast<tinyexr_int64>(exr_header->data_window.max_x) - static_cast<tinyexr_int64>(exr_header->data_window.min_x) + static_cast<tinyexr_int64>(1); |
| 5173 | tinyexr_int64 data_height = |
| 5174 | static_cast<tinyexr_int64>(exr_header->data_window.max_y) - static_cast<tinyexr_int64>(exr_header->data_window.min_y) + static_cast<tinyexr_int64>(1); |
| 5175 | |
| 5176 | if (data_width <= 0) { |
| 5177 | if (err) { |
| 5178 | (*err) += "Invalid data window width.\n" ; |
| 5179 | } |
| 5180 | return TINYEXR_ERROR_INVALID_DATA; |
| 5181 | } |
| 5182 | |
| 5183 | if (data_height <= 0) { |
| 5184 | if (err) { |
| 5185 | (*err) += "Invalid data window height.\n" ; |
| 5186 | } |
| 5187 | return TINYEXR_ERROR_INVALID_DATA; |
| 5188 | } |
| 5189 | |
| 5190 | // Do not allow too large data_width and data_height. header invalid? |
| 5191 | { |
| 5192 | if ((data_width > TINYEXR_DIMENSION_THRESHOLD) || (data_height > TINYEXR_DIMENSION_THRESHOLD)) { |
| 5193 | if (err) { |
| 5194 | std::stringstream ss; |
| 5195 | ss << "data_with or data_height too large. data_width: " << data_width |
| 5196 | << ", " |
| 5197 | << "data_height = " << data_height << std::endl; |
| 5198 | (*err) += ss.str(); |
| 5199 | } |
| 5200 | return TINYEXR_ERROR_INVALID_DATA; |
| 5201 | } |
| 5202 | if (exr_header->tiled) { |
| 5203 | if ((exr_header->tile_size_x > TINYEXR_DIMENSION_THRESHOLD) || (exr_header->tile_size_y > TINYEXR_DIMENSION_THRESHOLD)) { |
| 5204 | if (err) { |
| 5205 | std::stringstream ss; |
| 5206 | ss << "tile with or tile height too large. tile width: " << exr_header->tile_size_x |
| 5207 | << ", " |
| 5208 | << "tile height = " << exr_header->tile_size_y << std::endl; |
| 5209 | (*err) += ss.str(); |
| 5210 | } |
| 5211 | return TINYEXR_ERROR_INVALID_DATA; |
| 5212 | } |
| 5213 | } |
| 5214 | } |
| 5215 | |
| 5216 | const std::vector<tinyexr::tinyexr_uint64>& offsets = offset_data.offsets[0][0]; |
| 5217 | size_t num_blocks = offsets.size(); |
| 5218 | |
| 5219 | std::vector<size_t> channel_offset_list; |
| 5220 | int pixel_data_size = 0; |
| 5221 | size_t channel_offset = 0; |
| 5222 | if (!tinyexr::ComputeChannelLayout(channel_offset_list: &channel_offset_list, pixel_data_size: &pixel_data_size, |
| 5223 | channel_offset: &channel_offset, num_channels, |
| 5224 | channels: exr_header->channels)) { |
| 5225 | if (err) { |
| 5226 | (*err) += "Failed to compute channel layout.\n" ; |
| 5227 | } |
| 5228 | return TINYEXR_ERROR_INVALID_DATA; |
| 5229 | } |
| 5230 | |
| 5231 | #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| 5232 | std::atomic<bool> invalid_data(false); |
| 5233 | #else |
| 5234 | bool invalid_data(false); |
| 5235 | #endif |
| 5236 | |
| 5237 | if (exr_header->tiled) { |
| 5238 | // value check |
| 5239 | if (exr_header->tile_size_x < 0) { |
| 5240 | if (err) { |
| 5241 | std::stringstream ss; |
| 5242 | ss << "Invalid tile size x : " << exr_header->tile_size_x << "\n" ; |
| 5243 | (*err) += ss.str(); |
| 5244 | } |
| 5245 | return TINYEXR_ERROR_INVALID_HEADER; |
| 5246 | } |
| 5247 | |
| 5248 | if (exr_header->tile_size_y < 0) { |
| 5249 | if (err) { |
| 5250 | std::stringstream ss; |
| 5251 | ss << "Invalid tile size y : " << exr_header->tile_size_y << "\n" ; |
| 5252 | (*err) += ss.str(); |
| 5253 | } |
| 5254 | return TINYEXR_ERROR_INVALID_HEADER; |
| 5255 | } |
| 5256 | if (exr_header->tile_level_mode != TINYEXR_TILE_RIPMAP_LEVELS) { |
| 5257 | EXRImage* level_image = NULL; |
| 5258 | for (int level = 0; level < offset_data.num_x_levels; ++level) { |
| 5259 | if (!level_image) { |
| 5260 | level_image = exr_image; |
| 5261 | } else { |
| 5262 | level_image->next_level = new EXRImage; |
| 5263 | InitEXRImage(exr_image: level_image->next_level); |
| 5264 | level_image = level_image->next_level; |
| 5265 | } |
| 5266 | level_image->width = |
| 5267 | LevelSize(toplevel_size: exr_header->data_window.max_x - exr_header->data_window.min_x + 1, level, tile_rounding_mode: exr_header->tile_rounding_mode); |
| 5268 | if (level_image->width < 1) { |
| 5269 | return TINYEXR_ERROR_INVALID_DATA; |
| 5270 | } |
| 5271 | |
| 5272 | level_image->height = |
| 5273 | LevelSize(toplevel_size: exr_header->data_window.max_y - exr_header->data_window.min_y + 1, level, tile_rounding_mode: exr_header->tile_rounding_mode); |
| 5274 | |
| 5275 | if (level_image->height < 1) { |
| 5276 | return TINYEXR_ERROR_INVALID_DATA; |
| 5277 | } |
| 5278 | |
| 5279 | level_image->level_x = level; |
| 5280 | level_image->level_y = level; |
| 5281 | |
| 5282 | int ret = DecodeTiledLevel(exr_image: level_image, exr_header, |
| 5283 | offset_data, |
| 5284 | channel_offset_list, |
| 5285 | pixel_data_size, |
| 5286 | head, size, |
| 5287 | err); |
| 5288 | if (ret != TINYEXR_SUCCESS) return ret; |
| 5289 | } |
| 5290 | } else { |
| 5291 | EXRImage* level_image = NULL; |
| 5292 | for (int level_y = 0; level_y < offset_data.num_y_levels; ++level_y) |
| 5293 | for (int level_x = 0; level_x < offset_data.num_x_levels; ++level_x) { |
| 5294 | if (!level_image) { |
| 5295 | level_image = exr_image; |
| 5296 | } else { |
| 5297 | level_image->next_level = new EXRImage; |
| 5298 | InitEXRImage(exr_image: level_image->next_level); |
| 5299 | level_image = level_image->next_level; |
| 5300 | } |
| 5301 | |
| 5302 | level_image->width = |
| 5303 | LevelSize(toplevel_size: exr_header->data_window.max_x - exr_header->data_window.min_x + 1, level: level_x, tile_rounding_mode: exr_header->tile_rounding_mode); |
| 5304 | if (level_image->width < 1) { |
| 5305 | return TINYEXR_ERROR_INVALID_DATA; |
| 5306 | } |
| 5307 | |
| 5308 | level_image->height = |
| 5309 | LevelSize(toplevel_size: exr_header->data_window.max_y - exr_header->data_window.min_y + 1, level: level_y, tile_rounding_mode: exr_header->tile_rounding_mode); |
| 5310 | if (level_image->height < 1) { |
| 5311 | return TINYEXR_ERROR_INVALID_DATA; |
| 5312 | } |
| 5313 | |
| 5314 | level_image->level_x = level_x; |
| 5315 | level_image->level_y = level_y; |
| 5316 | |
| 5317 | int ret = DecodeTiledLevel(exr_image: level_image, exr_header, |
| 5318 | offset_data, |
| 5319 | channel_offset_list, |
| 5320 | pixel_data_size, |
| 5321 | head, size, |
| 5322 | err); |
| 5323 | if (ret != TINYEXR_SUCCESS) return ret; |
| 5324 | } |
| 5325 | } |
| 5326 | } else { // scanline format |
| 5327 | // Don't allow too large image(256GB * pixel_data_size or more). Workaround |
| 5328 | // for #104. |
| 5329 | size_t total_data_len = |
| 5330 | size_t(data_width) * size_t(data_height) * size_t(num_channels); |
| 5331 | const bool total_data_len_overflown = |
| 5332 | sizeof(void *) == 8 ? (total_data_len >= 0x4000000000) : false; |
| 5333 | if ((total_data_len == 0) || total_data_len_overflown) { |
| 5334 | if (err) { |
| 5335 | std::stringstream ss; |
| 5336 | ss << "Image data size is zero or too large: width = " << data_width |
| 5337 | << ", height = " << data_height << ", channels = " << num_channels |
| 5338 | << std::endl; |
| 5339 | (*err) += ss.str(); |
| 5340 | } |
| 5341 | return TINYEXR_ERROR_INVALID_DATA; |
| 5342 | } |
| 5343 | |
| 5344 | bool alloc_success = false; |
| 5345 | exr_image->images = tinyexr::AllocateImage( |
| 5346 | num_channels, channels: exr_header->channels, requested_pixel_types: exr_header->requested_pixel_types, |
| 5347 | data_width: int(data_width), data_height: int(data_height), success: &alloc_success); |
| 5348 | |
| 5349 | if (!alloc_success) { |
| 5350 | if (err) { |
| 5351 | std::stringstream ss; |
| 5352 | ss << "Failed to allocate memory for Images. Maybe EXR header is corrupted or Image data size is too large: width = " << data_width |
| 5353 | << ", height = " << data_height << ", channels = " << num_channels |
| 5354 | << std::endl; |
| 5355 | (*err) += ss.str(); |
| 5356 | } |
| 5357 | return TINYEXR_ERROR_INVALID_DATA; |
| 5358 | } |
| 5359 | |
| 5360 | #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| 5361 | std::vector<std::thread> workers; |
| 5362 | std::atomic<int> y_count(0); |
| 5363 | |
| 5364 | int num_threads = std::max(a: 1, b: int(std::thread::hardware_concurrency())); |
| 5365 | #if (TINYEXR_MAX_THREADS > 0) |
| 5366 | num_threads = std::min(num_threads,TINYEXR_MAX_THREADS); |
| 5367 | #endif |
| 5368 | if (num_threads > int(num_blocks)) { |
| 5369 | num_threads = int(num_blocks); |
| 5370 | } |
| 5371 | for (int t = 0; t < num_threads; t++) { |
| 5372 | workers.emplace_back(args: std::thread([&]() { |
| 5373 | int y = 0; |
| 5374 | while ((y = y_count++) < int(num_blocks)) { |
| 5375 | |
| 5376 | #else |
| 5377 | |
| 5378 | #if TINYEXR_USE_OPENMP |
| 5379 | #pragma omp parallel for |
| 5380 | #endif |
| 5381 | for (int y = 0; y < static_cast<int>(num_blocks); y++) { |
| 5382 | |
| 5383 | #endif |
| 5384 | size_t y_idx = static_cast<size_t>(y); |
| 5385 | |
| 5386 | if (offsets[y_idx] + sizeof(int) * 2 > size) { |
| 5387 | invalid_data = true; |
| 5388 | } else { |
| 5389 | // 4 byte: scan line |
| 5390 | // 4 byte: data size |
| 5391 | // ~ : pixel data(uncompressed or compressed) |
| 5392 | size_t data_size = |
| 5393 | size_t(size - (offsets[y_idx] + sizeof(int) * 2)); |
| 5394 | const unsigned char *data_ptr = |
| 5395 | reinterpret_cast<const unsigned char *>(head + offsets[y_idx]); |
| 5396 | |
| 5397 | int line_no; |
| 5398 | memcpy(dest: &line_no, src: data_ptr, n: sizeof(int)); |
| 5399 | int data_len; |
| 5400 | memcpy(dest: &data_len, src: data_ptr + 4, n: sizeof(int)); |
| 5401 | tinyexr::swap4(val: &line_no); |
| 5402 | tinyexr::swap4(val: &data_len); |
| 5403 | |
| 5404 | if (size_t(data_len) > data_size) { |
| 5405 | invalid_data = true; |
| 5406 | |
| 5407 | } else if ((line_no > (2 << 20)) || (line_no < -(2 << 20))) { |
| 5408 | // Too large value. Assume this is invalid |
| 5409 | // 2**20 = 1048576 = heuristic value. |
| 5410 | invalid_data = true; |
| 5411 | } else if (data_len == 0) { |
| 5412 | // TODO(syoyo): May be ok to raise the threshold for example |
| 5413 | // `data_len < 4` |
| 5414 | invalid_data = true; |
| 5415 | } else { |
| 5416 | // line_no may be negative. |
| 5417 | int end_line_no = (std::min)(a: line_no + num_scanline_blocks, |
| 5418 | b: (exr_header->data_window.max_y + 1)); |
| 5419 | |
| 5420 | int num_lines = end_line_no - line_no; |
| 5421 | |
| 5422 | if (num_lines <= 0) { |
| 5423 | invalid_data = true; |
| 5424 | } else { |
| 5425 | // Move to data addr: 8 = 4 + 4; |
| 5426 | data_ptr += 8; |
| 5427 | |
| 5428 | // Adjust line_no with data_window.bmin.y |
| 5429 | |
| 5430 | // overflow check |
| 5431 | tinyexr_int64 lno = |
| 5432 | static_cast<tinyexr_int64>(line_no) - |
| 5433 | static_cast<tinyexr_int64>(exr_header->data_window.min_y); |
| 5434 | if (lno > std::numeric_limits<int>::max()) { |
| 5435 | line_no = -1; // invalid |
| 5436 | } else if (lno < -std::numeric_limits<int>::max()) { |
| 5437 | line_no = -1; // invalid |
| 5438 | } else { |
| 5439 | line_no -= exr_header->data_window.min_y; |
| 5440 | } |
| 5441 | |
| 5442 | if (line_no < 0) { |
| 5443 | invalid_data = true; |
| 5444 | } else { |
| 5445 | // Line order is increasing because we read in line offset table order. |
| 5446 | if (!tinyexr::DecodePixelData( |
| 5447 | out_images: exr_image->images, requested_pixel_types: exr_header->requested_pixel_types, |
| 5448 | data_ptr, data_len: static_cast<size_t>(data_len), |
| 5449 | compression_type: exr_header->compression_type, /* line_order*/ line_order: 0, |
| 5450 | width: int(data_width), height: int(data_height), x_stride: int(data_width), y, line_no, |
| 5451 | num_lines, pixel_data_size: static_cast<size_t>(pixel_data_size), |
| 5452 | num_attributes: static_cast<size_t>( |
| 5453 | exr_header->num_custom_attributes), |
| 5454 | attributes: exr_header->custom_attributes, |
| 5455 | num_channels: static_cast<size_t>(exr_header->num_channels), |
| 5456 | channels: exr_header->channels, channel_offset_list)) { |
| 5457 | invalid_data = true; |
| 5458 | } |
| 5459 | } |
| 5460 | } |
| 5461 | } |
| 5462 | } |
| 5463 | |
| 5464 | #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| 5465 | } |
| 5466 | })); |
| 5467 | } |
| 5468 | |
| 5469 | for (auto &t : workers) { |
| 5470 | t.join(); |
| 5471 | } |
| 5472 | #else |
| 5473 | } // omp parallel |
| 5474 | #endif |
| 5475 | } |
| 5476 | |
| 5477 | if (invalid_data) { |
| 5478 | if (err) { |
| 5479 | (*err) += "Invalid/Corrupted data found when decoding pixels.\n" ; |
| 5480 | } |
| 5481 | |
| 5482 | // free alloced image. |
| 5483 | for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| 5484 | if (exr_image->images[c]) { |
| 5485 | free(ptr: exr_image->images[c]); |
| 5486 | exr_image->images[c] = NULL; |
| 5487 | } |
| 5488 | } |
| 5489 | return TINYEXR_ERROR_INVALID_DATA; |
| 5490 | } |
| 5491 | |
| 5492 | // Overwrite `pixel_type` with `requested_pixel_type`. |
| 5493 | { |
| 5494 | for (int c = 0; c < exr_header->num_channels; c++) { |
| 5495 | exr_header->pixel_types[c] = exr_header->requested_pixel_types[c]; |
| 5496 | } |
| 5497 | } |
| 5498 | |
| 5499 | { |
| 5500 | exr_image->num_channels = num_channels; |
| 5501 | |
| 5502 | exr_image->width = int(data_width); |
| 5503 | exr_image->height = int(data_height); |
| 5504 | } |
| 5505 | |
| 5506 | return TINYEXR_SUCCESS; |
| 5507 | } |
| 5508 | |
| 5509 | static bool ReconstructLineOffsets( |
| 5510 | std::vector<tinyexr::tinyexr_uint64> *offsets, size_t n, |
| 5511 | const unsigned char *head, const unsigned char *marker, const size_t size) { |
| 5512 | if (head >= marker) { |
| 5513 | return false; |
| 5514 | } |
| 5515 | if (offsets->size() != n) { |
| 5516 | return false; |
| 5517 | } |
| 5518 | |
| 5519 | for (size_t i = 0; i < n; i++) { |
| 5520 | size_t offset = static_cast<size_t>(marker - head); |
| 5521 | // Offset should not exceed whole EXR file/data size. |
| 5522 | if ((offset + sizeof(tinyexr::tinyexr_uint64)) >= size) { |
| 5523 | return false; |
| 5524 | } |
| 5525 | |
| 5526 | int y; |
| 5527 | unsigned int data_len; |
| 5528 | |
| 5529 | memcpy(dest: &y, src: marker, n: sizeof(int)); |
| 5530 | memcpy(dest: &data_len, src: marker + 4, n: sizeof(unsigned int)); |
| 5531 | |
| 5532 | if (data_len >= size) { |
| 5533 | return false; |
| 5534 | } |
| 5535 | |
| 5536 | tinyexr::swap4(val: &y); |
| 5537 | tinyexr::swap4(val: &data_len); |
| 5538 | |
| 5539 | (*offsets)[i] = offset; |
| 5540 | |
| 5541 | marker += data_len + 8; // 8 = 4 bytes(y) + 4 bytes(data_len) |
| 5542 | } |
| 5543 | |
| 5544 | return true; |
| 5545 | } |
| 5546 | |
| 5547 | |
| 5548 | static int FloorLog2(unsigned x) { |
| 5549 | // |
| 5550 | // For x > 0, floorLog2(y) returns floor(log(x)/log(2)). |
| 5551 | // |
| 5552 | int y = 0; |
| 5553 | while (x > 1) { |
| 5554 | y += 1; |
| 5555 | x >>= 1u; |
| 5556 | } |
| 5557 | return y; |
| 5558 | } |
| 5559 | |
| 5560 | |
| 5561 | static int CeilLog2(unsigned x) { |
| 5562 | // |
| 5563 | // For x > 0, ceilLog2(y) returns ceil(log(x)/log(2)). |
| 5564 | // |
| 5565 | int y = 0; |
| 5566 | int r = 0; |
| 5567 | while (x > 1) { |
| 5568 | if (x & 1) |
| 5569 | r = 1; |
| 5570 | |
| 5571 | y += 1; |
| 5572 | x >>= 1u; |
| 5573 | } |
| 5574 | return y + r; |
| 5575 | } |
| 5576 | |
| 5577 | static int RoundLog2(int x, int tile_rounding_mode) { |
| 5578 | return (tile_rounding_mode == TINYEXR_TILE_ROUND_DOWN) ? FloorLog2(x: static_cast<unsigned>(x)) : CeilLog2(x: static_cast<unsigned>(x)); |
| 5579 | } |
| 5580 | |
| 5581 | static int (const EXRHeader* ) { |
| 5582 | int min_x = exr_header->data_window.min_x; |
| 5583 | int max_x = exr_header->data_window.max_x; |
| 5584 | int min_y = exr_header->data_window.min_y; |
| 5585 | int max_y = exr_header->data_window.max_y; |
| 5586 | |
| 5587 | int num = 0; |
| 5588 | switch (exr_header->tile_level_mode) { |
| 5589 | case TINYEXR_TILE_ONE_LEVEL: |
| 5590 | |
| 5591 | num = 1; |
| 5592 | break; |
| 5593 | |
| 5594 | case TINYEXR_TILE_MIPMAP_LEVELS: |
| 5595 | |
| 5596 | { |
| 5597 | int w = max_x - min_x + 1; |
| 5598 | int h = max_y - min_y + 1; |
| 5599 | num = RoundLog2(x: std::max(a: w, b: h), tile_rounding_mode: exr_header->tile_rounding_mode) + 1; |
| 5600 | } |
| 5601 | break; |
| 5602 | |
| 5603 | case TINYEXR_TILE_RIPMAP_LEVELS: |
| 5604 | |
| 5605 | { |
| 5606 | int w = max_x - min_x + 1; |
| 5607 | num = RoundLog2(x: w, tile_rounding_mode: exr_header->tile_rounding_mode) + 1; |
| 5608 | } |
| 5609 | break; |
| 5610 | |
| 5611 | default: |
| 5612 | |
| 5613 | return -1; |
| 5614 | } |
| 5615 | |
| 5616 | return num; |
| 5617 | } |
| 5618 | |
| 5619 | static int (const EXRHeader* ) { |
| 5620 | int min_x = exr_header->data_window.min_x; |
| 5621 | int max_x = exr_header->data_window.max_x; |
| 5622 | int min_y = exr_header->data_window.min_y; |
| 5623 | int max_y = exr_header->data_window.max_y; |
| 5624 | int num = 0; |
| 5625 | |
| 5626 | switch (exr_header->tile_level_mode) { |
| 5627 | case TINYEXR_TILE_ONE_LEVEL: |
| 5628 | |
| 5629 | num = 1; |
| 5630 | break; |
| 5631 | |
| 5632 | case TINYEXR_TILE_MIPMAP_LEVELS: |
| 5633 | |
| 5634 | { |
| 5635 | int w = max_x - min_x + 1; |
| 5636 | int h = max_y - min_y + 1; |
| 5637 | num = RoundLog2(x: std::max(a: w, b: h), tile_rounding_mode: exr_header->tile_rounding_mode) + 1; |
| 5638 | } |
| 5639 | break; |
| 5640 | |
| 5641 | case TINYEXR_TILE_RIPMAP_LEVELS: |
| 5642 | |
| 5643 | { |
| 5644 | int h = max_y - min_y + 1; |
| 5645 | num = RoundLog2(x: h, tile_rounding_mode: exr_header->tile_rounding_mode) + 1; |
| 5646 | } |
| 5647 | break; |
| 5648 | |
| 5649 | default: |
| 5650 | |
| 5651 | return -1; |
| 5652 | } |
| 5653 | |
| 5654 | return num; |
| 5655 | } |
| 5656 | |
| 5657 | static bool CalculateNumTiles(std::vector<int>& numTiles, |
| 5658 | int toplevel_size, |
| 5659 | int size, |
| 5660 | int tile_rounding_mode) { |
| 5661 | for (unsigned i = 0; i < numTiles.size(); i++) { |
| 5662 | int l = LevelSize(toplevel_size, level: int(i), tile_rounding_mode); |
| 5663 | if (l < 0) { |
| 5664 | return false; |
| 5665 | } |
| 5666 | TINYEXR_CHECK_AND_RETURN_C(l <= std::numeric_limits<int>::max() - size + 1, false); |
| 5667 | |
| 5668 | numTiles[i] = (l + size - 1) / size; |
| 5669 | } |
| 5670 | return true; |
| 5671 | } |
| 5672 | |
| 5673 | static bool (std::vector<int>& num_x_tiles, |
| 5674 | std::vector<int>& num_y_tiles, |
| 5675 | const EXRHeader* ) { |
| 5676 | int min_x = exr_header->data_window.min_x; |
| 5677 | int max_x = exr_header->data_window.max_x; |
| 5678 | int min_y = exr_header->data_window.min_y; |
| 5679 | int max_y = exr_header->data_window.max_y; |
| 5680 | |
| 5681 | int num_x_levels = CalculateNumXLevels(exr_header); |
| 5682 | |
| 5683 | if (num_x_levels < 0) { |
| 5684 | return false; |
| 5685 | } |
| 5686 | |
| 5687 | int num_y_levels = CalculateNumYLevels(exr_header); |
| 5688 | |
| 5689 | if (num_y_levels < 0) { |
| 5690 | return false; |
| 5691 | } |
| 5692 | |
| 5693 | num_x_tiles.resize(new_size: size_t(num_x_levels)); |
| 5694 | num_y_tiles.resize(new_size: size_t(num_y_levels)); |
| 5695 | |
| 5696 | if (!CalculateNumTiles(numTiles&: num_x_tiles, |
| 5697 | toplevel_size: max_x - min_x + 1, |
| 5698 | size: exr_header->tile_size_x, |
| 5699 | tile_rounding_mode: exr_header->tile_rounding_mode)) { |
| 5700 | return false; |
| 5701 | } |
| 5702 | |
| 5703 | if (!CalculateNumTiles(numTiles&: num_y_tiles, |
| 5704 | toplevel_size: max_y - min_y + 1, |
| 5705 | size: exr_header->tile_size_y, |
| 5706 | tile_rounding_mode: exr_header->tile_rounding_mode)) { |
| 5707 | return false; |
| 5708 | } |
| 5709 | |
| 5710 | return true; |
| 5711 | } |
| 5712 | |
| 5713 | static void InitSingleResolutionOffsets(OffsetData& offset_data, size_t num_blocks) { |
| 5714 | offset_data.offsets.resize(new_size: 1); |
| 5715 | offset_data.offsets[0].resize(new_size: 1); |
| 5716 | offset_data.offsets[0][0].resize(new_size: num_blocks); |
| 5717 | offset_data.num_x_levels = 1; |
| 5718 | offset_data.num_y_levels = 1; |
| 5719 | } |
| 5720 | |
| 5721 | // Return sum of tile blocks. |
| 5722 | // 0 = error |
| 5723 | static int (OffsetData& offset_data, |
| 5724 | const EXRHeader* , |
| 5725 | const std::vector<int>& num_x_tiles, |
| 5726 | const std::vector<int>& num_y_tiles) { |
| 5727 | int num_tile_blocks = 0; |
| 5728 | offset_data.num_x_levels = static_cast<int>(num_x_tiles.size()); |
| 5729 | offset_data.num_y_levels = static_cast<int>(num_y_tiles.size()); |
| 5730 | switch (exr_header->tile_level_mode) { |
| 5731 | case TINYEXR_TILE_ONE_LEVEL: |
| 5732 | case TINYEXR_TILE_MIPMAP_LEVELS: |
| 5733 | TINYEXR_CHECK_AND_RETURN_C(offset_data.num_x_levels == offset_data.num_y_levels, 0); |
| 5734 | offset_data.offsets.resize(new_size: size_t(offset_data.num_x_levels)); |
| 5735 | |
| 5736 | for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) { |
| 5737 | offset_data.offsets[l].resize(new_size: size_t(num_y_tiles[l])); |
| 5738 | |
| 5739 | for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) { |
| 5740 | offset_data.offsets[l][dy].resize(new_size: size_t(num_x_tiles[l])); |
| 5741 | num_tile_blocks += num_x_tiles[l]; |
| 5742 | } |
| 5743 | } |
| 5744 | break; |
| 5745 | |
| 5746 | case TINYEXR_TILE_RIPMAP_LEVELS: |
| 5747 | |
| 5748 | offset_data.offsets.resize(new_size: static_cast<size_t>(offset_data.num_x_levels) * static_cast<size_t>(offset_data.num_y_levels)); |
| 5749 | |
| 5750 | for (int ly = 0; ly < offset_data.num_y_levels; ++ly) { |
| 5751 | for (int lx = 0; lx < offset_data.num_x_levels; ++lx) { |
| 5752 | int l = ly * offset_data.num_x_levels + lx; |
| 5753 | offset_data.offsets[size_t(l)].resize(new_size: size_t(num_y_tiles[size_t(ly)])); |
| 5754 | |
| 5755 | for (size_t dy = 0; dy < offset_data.offsets[size_t(l)].size(); ++dy) { |
| 5756 | offset_data.offsets[size_t(l)][dy].resize(new_size: size_t(num_x_tiles[size_t(lx)])); |
| 5757 | num_tile_blocks += num_x_tiles[size_t(lx)]; |
| 5758 | } |
| 5759 | } |
| 5760 | } |
| 5761 | break; |
| 5762 | |
| 5763 | default: |
| 5764 | return 0; |
| 5765 | } |
| 5766 | return num_tile_blocks; |
| 5767 | } |
| 5768 | |
| 5769 | static bool IsAnyOffsetsAreInvalid(const OffsetData& offset_data) { |
| 5770 | for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) |
| 5771 | for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) |
| 5772 | for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) |
| 5773 | if (reinterpret_cast<const tinyexr::tinyexr_int64&>(offset_data.offsets[l][dy][dx]) <= 0) |
| 5774 | return true; |
| 5775 | |
| 5776 | return false; |
| 5777 | } |
| 5778 | |
| 5779 | static bool (const EXRHeader* , |
| 5780 | const OffsetData& offset_data, |
| 5781 | int dx, int dy, int lx, int ly) { |
| 5782 | if (lx < 0 || ly < 0 || dx < 0 || dy < 0) return false; |
| 5783 | int num_x_levels = offset_data.num_x_levels; |
| 5784 | int num_y_levels = offset_data.num_y_levels; |
| 5785 | switch (exr_header->tile_level_mode) { |
| 5786 | case TINYEXR_TILE_ONE_LEVEL: |
| 5787 | |
| 5788 | if (lx == 0 && |
| 5789 | ly == 0 && |
| 5790 | offset_data.offsets.size() > 0 && |
| 5791 | offset_data.offsets[0].size() > static_cast<size_t>(dy) && |
| 5792 | offset_data.offsets[0][size_t(dy)].size() > static_cast<size_t>(dx)) { |
| 5793 | return true; |
| 5794 | } |
| 5795 | |
| 5796 | break; |
| 5797 | |
| 5798 | case TINYEXR_TILE_MIPMAP_LEVELS: |
| 5799 | |
| 5800 | if (lx < num_x_levels && |
| 5801 | ly < num_y_levels && |
| 5802 | offset_data.offsets.size() > static_cast<size_t>(lx) && |
| 5803 | offset_data.offsets[size_t(lx)].size() > static_cast<size_t>(dy) && |
| 5804 | offset_data.offsets[size_t(lx)][size_t(dy)].size() > static_cast<size_t>(dx)) { |
| 5805 | return true; |
| 5806 | } |
| 5807 | |
| 5808 | break; |
| 5809 | |
| 5810 | case TINYEXR_TILE_RIPMAP_LEVELS: |
| 5811 | { |
| 5812 | size_t idx = static_cast<size_t>(lx) + static_cast<size_t>(ly)* static_cast<size_t>(num_x_levels); |
| 5813 | if (lx < num_x_levels && |
| 5814 | ly < num_y_levels && |
| 5815 | (offset_data.offsets.size() > idx) && |
| 5816 | offset_data.offsets[idx].size() > static_cast<size_t>(dy) && |
| 5817 | offset_data.offsets[idx][size_t(dy)].size() > static_cast<size_t>(dx)) { |
| 5818 | return true; |
| 5819 | } |
| 5820 | } |
| 5821 | |
| 5822 | break; |
| 5823 | |
| 5824 | default: |
| 5825 | |
| 5826 | return false; |
| 5827 | } |
| 5828 | |
| 5829 | return false; |
| 5830 | } |
| 5831 | |
| 5832 | static bool (OffsetData& offset_data, |
| 5833 | const EXRHeader* , |
| 5834 | const unsigned char* head, const unsigned char* marker, const size_t size, |
| 5835 | bool isMultiPartFile, |
| 5836 | bool isDeep) { |
| 5837 | int numXLevels = offset_data.num_x_levels; |
| 5838 | for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) { |
| 5839 | for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) { |
| 5840 | for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) { |
| 5841 | tinyexr::tinyexr_uint64 tileOffset = tinyexr::tinyexr_uint64(marker - head); |
| 5842 | |
| 5843 | |
| 5844 | if (isMultiPartFile) { |
| 5845 | if ((marker + sizeof(int)) >= (head + size)) { |
| 5846 | return false; |
| 5847 | } |
| 5848 | |
| 5849 | //int partNumber; |
| 5850 | marker += sizeof(int); |
| 5851 | } |
| 5852 | |
| 5853 | if ((marker + 4 * sizeof(int)) >= (head + size)) { |
| 5854 | return false; |
| 5855 | } |
| 5856 | |
| 5857 | int tileX; |
| 5858 | memcpy(dest: &tileX, src: marker, n: sizeof(int)); |
| 5859 | tinyexr::swap4(val: &tileX); |
| 5860 | marker += sizeof(int); |
| 5861 | |
| 5862 | int tileY; |
| 5863 | memcpy(dest: &tileY, src: marker, n: sizeof(int)); |
| 5864 | tinyexr::swap4(val: &tileY); |
| 5865 | marker += sizeof(int); |
| 5866 | |
| 5867 | int levelX; |
| 5868 | memcpy(dest: &levelX, src: marker, n: sizeof(int)); |
| 5869 | tinyexr::swap4(val: &levelX); |
| 5870 | marker += sizeof(int); |
| 5871 | |
| 5872 | int levelY; |
| 5873 | memcpy(dest: &levelY, src: marker, n: sizeof(int)); |
| 5874 | tinyexr::swap4(val: &levelY); |
| 5875 | marker += sizeof(int); |
| 5876 | |
| 5877 | if (isDeep) { |
| 5878 | if ((marker + 2 * sizeof(tinyexr::tinyexr_int64)) >= (head + size)) { |
| 5879 | return false; |
| 5880 | } |
| 5881 | tinyexr::tinyexr_int64 packed_offset_table_size; |
| 5882 | memcpy(dest: &packed_offset_table_size, src: marker, n: sizeof(tinyexr::tinyexr_int64)); |
| 5883 | tinyexr::swap8(val: reinterpret_cast<tinyexr::tinyexr_uint64*>(&packed_offset_table_size)); |
| 5884 | marker += sizeof(tinyexr::tinyexr_int64); |
| 5885 | |
| 5886 | tinyexr::tinyexr_int64 packed_sample_size; |
| 5887 | memcpy(dest: &packed_sample_size, src: marker, n: sizeof(tinyexr::tinyexr_int64)); |
| 5888 | tinyexr::swap8(val: reinterpret_cast<tinyexr::tinyexr_uint64*>(&packed_sample_size)); |
| 5889 | marker += sizeof(tinyexr::tinyexr_int64); |
| 5890 | |
| 5891 | // next Int64 is unpacked sample size - skip that too |
| 5892 | marker += packed_offset_table_size + packed_sample_size + 8; |
| 5893 | |
| 5894 | if (marker >= (head + size)) { |
| 5895 | return false; |
| 5896 | } |
| 5897 | |
| 5898 | } else { |
| 5899 | |
| 5900 | if ((marker + sizeof(uint32_t)) >= (head + size)) { |
| 5901 | return false; |
| 5902 | } |
| 5903 | |
| 5904 | uint32_t dataSize; |
| 5905 | memcpy(dest: &dataSize, src: marker, n: sizeof(uint32_t)); |
| 5906 | tinyexr::swap4(val: &dataSize); |
| 5907 | marker += sizeof(uint32_t); |
| 5908 | |
| 5909 | marker += dataSize; |
| 5910 | |
| 5911 | if (marker >= (head + size)) { |
| 5912 | return false; |
| 5913 | } |
| 5914 | } |
| 5915 | |
| 5916 | if (!isValidTile(exr_header, offset_data, |
| 5917 | dx: tileX, dy: tileY, lx: levelX, ly: levelY)) { |
| 5918 | return false; |
| 5919 | } |
| 5920 | |
| 5921 | int level_idx = LevelIndex(lx: levelX, ly: levelY, tile_level_mode: exr_header->tile_level_mode, num_x_levels: numXLevels); |
| 5922 | if (level_idx < 0) { |
| 5923 | return false; |
| 5924 | } |
| 5925 | |
| 5926 | if (size_t(level_idx) >= offset_data.offsets.size()) { |
| 5927 | return false; |
| 5928 | } |
| 5929 | |
| 5930 | if (size_t(tileY) >= offset_data.offsets[size_t(level_idx)].size()) { |
| 5931 | return false; |
| 5932 | } |
| 5933 | |
| 5934 | if (size_t(tileX) >= offset_data.offsets[size_t(level_idx)][size_t(tileY)].size()) { |
| 5935 | return false; |
| 5936 | } |
| 5937 | |
| 5938 | offset_data.offsets[size_t(level_idx)][size_t(tileY)][size_t(tileX)] = tileOffset; |
| 5939 | } |
| 5940 | } |
| 5941 | } |
| 5942 | return true; |
| 5943 | } |
| 5944 | |
| 5945 | // marker output is also |
| 5946 | static int ReadOffsets(OffsetData& offset_data, |
| 5947 | const unsigned char* head, |
| 5948 | const unsigned char*& marker, |
| 5949 | const size_t size, |
| 5950 | const char** err) { |
| 5951 | for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) { |
| 5952 | for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) { |
| 5953 | for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) { |
| 5954 | tinyexr::tinyexr_uint64 offset; |
| 5955 | if ((marker + sizeof(tinyexr_uint64)) >= (head + size)) { |
| 5956 | tinyexr::SetErrorMessage(msg: "Insufficient data size in offset table." , err); |
| 5957 | return TINYEXR_ERROR_INVALID_DATA; |
| 5958 | } |
| 5959 | |
| 5960 | memcpy(dest: &offset, src: marker, n: sizeof(tinyexr::tinyexr_uint64)); |
| 5961 | tinyexr::swap8(val: &offset); |
| 5962 | if (offset >= size) { |
| 5963 | tinyexr::SetErrorMessage(msg: "Invalid offset value in DecodeEXRImage." , err); |
| 5964 | return TINYEXR_ERROR_INVALID_DATA; |
| 5965 | } |
| 5966 | marker += sizeof(tinyexr::tinyexr_uint64); // = 8 |
| 5967 | offset_data.offsets[l][dy][dx] = offset; |
| 5968 | } |
| 5969 | } |
| 5970 | } |
| 5971 | return TINYEXR_SUCCESS; |
| 5972 | } |
| 5973 | |
| 5974 | static int (EXRImage *exr_image, const EXRHeader *, |
| 5975 | const unsigned char *head, |
| 5976 | const unsigned char *marker, const size_t size, |
| 5977 | const char **err) { |
| 5978 | if (exr_image == NULL || exr_header == NULL || head == NULL || |
| 5979 | marker == NULL || (size <= tinyexr::kEXRVersionSize)) { |
| 5980 | tinyexr::SetErrorMessage(msg: "Invalid argument for DecodeEXRImage()." , err); |
| 5981 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 5982 | } |
| 5983 | |
| 5984 | int num_scanline_blocks = 1; |
| 5985 | if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) { |
| 5986 | num_scanline_blocks = 16; |
| 5987 | } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| 5988 | num_scanline_blocks = 32; |
| 5989 | } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| 5990 | num_scanline_blocks = 16; |
| 5991 | } |
| 5992 | |
| 5993 | if (exr_header->data_window.max_x < exr_header->data_window.min_x || |
| 5994 | exr_header->data_window.max_x - exr_header->data_window.min_x == |
| 5995 | std::numeric_limits<int>::max()) { |
| 5996 | // Issue 63 |
| 5997 | tinyexr::SetErrorMessage(msg: "Invalid data width value" , err); |
| 5998 | return TINYEXR_ERROR_INVALID_DATA; |
| 5999 | } |
| 6000 | tinyexr_int64 data_width = |
| 6001 | static_cast<tinyexr_int64>(exr_header->data_window.max_x) - static_cast<tinyexr_int64>(exr_header->data_window.min_x) + static_cast<tinyexr_int64>(1); |
| 6002 | if (data_width <= 0) { |
| 6003 | tinyexr::SetErrorMessage(msg: "Invalid data window width value" , err); |
| 6004 | return TINYEXR_ERROR_INVALID_DATA; |
| 6005 | } |
| 6006 | |
| 6007 | if (exr_header->data_window.max_y < exr_header->data_window.min_y || |
| 6008 | exr_header->data_window.max_y - exr_header->data_window.min_y == |
| 6009 | std::numeric_limits<int>::max()) { |
| 6010 | tinyexr::SetErrorMessage(msg: "Invalid data height value" , err); |
| 6011 | return TINYEXR_ERROR_INVALID_DATA; |
| 6012 | } |
| 6013 | tinyexr_int64 data_height = |
| 6014 | static_cast<tinyexr_int64>(exr_header->data_window.max_y) - static_cast<tinyexr_int64>(exr_header->data_window.min_y) + static_cast<tinyexr_int64>(1); |
| 6015 | |
| 6016 | if (data_height <= 0) { |
| 6017 | tinyexr::SetErrorMessage(msg: "Invalid data window height value" , err); |
| 6018 | return TINYEXR_ERROR_INVALID_DATA; |
| 6019 | } |
| 6020 | |
| 6021 | // Do not allow too large data_width and data_height. header invalid? |
| 6022 | { |
| 6023 | if (data_width > TINYEXR_DIMENSION_THRESHOLD) { |
| 6024 | tinyexr::SetErrorMessage(msg: "data width too large." , err); |
| 6025 | return TINYEXR_ERROR_INVALID_DATA; |
| 6026 | } |
| 6027 | if (data_height > TINYEXR_DIMENSION_THRESHOLD) { |
| 6028 | tinyexr::SetErrorMessage(msg: "data height too large." , err); |
| 6029 | return TINYEXR_ERROR_INVALID_DATA; |
| 6030 | } |
| 6031 | } |
| 6032 | |
| 6033 | if (exr_header->tiled) { |
| 6034 | if (exr_header->tile_size_x > TINYEXR_DIMENSION_THRESHOLD) { |
| 6035 | tinyexr::SetErrorMessage(msg: "tile width too large." , err); |
| 6036 | return TINYEXR_ERROR_INVALID_DATA; |
| 6037 | } |
| 6038 | if (exr_header->tile_size_y > TINYEXR_DIMENSION_THRESHOLD) { |
| 6039 | tinyexr::SetErrorMessage(msg: "tile height too large." , err); |
| 6040 | return TINYEXR_ERROR_INVALID_DATA; |
| 6041 | } |
| 6042 | } |
| 6043 | |
| 6044 | // Read offset tables. |
| 6045 | OffsetData offset_data; |
| 6046 | size_t num_blocks = 0; |
| 6047 | // For a multi-resolution image, the size of the offset table will be calculated from the other attributes of the header. |
| 6048 | // If chunk_count > 0 then chunk_count must be equal to the calculated tile count. |
| 6049 | if (exr_header->tiled) { |
| 6050 | { |
| 6051 | std::vector<int> num_x_tiles, num_y_tiles; |
| 6052 | if (!PrecalculateTileInfo(num_x_tiles, num_y_tiles, exr_header)) { |
| 6053 | tinyexr::SetErrorMessage(msg: "Failed to precalculate tile info." , err); |
| 6054 | return TINYEXR_ERROR_INVALID_DATA; |
| 6055 | } |
| 6056 | num_blocks = size_t(InitTileOffsets(offset_data, exr_header, num_x_tiles, num_y_tiles)); |
| 6057 | if (exr_header->chunk_count > 0) { |
| 6058 | if (exr_header->chunk_count != static_cast<int>(num_blocks)) { |
| 6059 | tinyexr::SetErrorMessage(msg: "Invalid offset table size." , err); |
| 6060 | return TINYEXR_ERROR_INVALID_DATA; |
| 6061 | } |
| 6062 | } |
| 6063 | } |
| 6064 | |
| 6065 | int ret = ReadOffsets(offset_data, head, marker, size, err); |
| 6066 | if (ret != TINYEXR_SUCCESS) return ret; |
| 6067 | if (IsAnyOffsetsAreInvalid(offset_data)) { |
| 6068 | if (!ReconstructTileOffsets(offset_data, exr_header, |
| 6069 | head, marker, size, |
| 6070 | isMultiPartFile: exr_header->multipart, isDeep: exr_header->non_image)) { |
| 6071 | |
| 6072 | tinyexr::SetErrorMessage(msg: "Invalid Tile Offsets data." , err); |
| 6073 | return TINYEXR_ERROR_INVALID_DATA; |
| 6074 | } |
| 6075 | } |
| 6076 | } else if (exr_header->chunk_count > 0) { |
| 6077 | // Use `chunkCount` attribute. |
| 6078 | num_blocks = static_cast<size_t>(exr_header->chunk_count); |
| 6079 | InitSingleResolutionOffsets(offset_data, num_blocks); |
| 6080 | } else { |
| 6081 | num_blocks = static_cast<size_t>(data_height) / |
| 6082 | static_cast<size_t>(num_scanline_blocks); |
| 6083 | if (num_blocks * static_cast<size_t>(num_scanline_blocks) < |
| 6084 | static_cast<size_t>(data_height)) { |
| 6085 | num_blocks++; |
| 6086 | } |
| 6087 | |
| 6088 | InitSingleResolutionOffsets(offset_data, num_blocks); |
| 6089 | } |
| 6090 | |
| 6091 | if (!exr_header->tiled) { |
| 6092 | std::vector<tinyexr::tinyexr_uint64>& offsets = offset_data.offsets[0][0]; |
| 6093 | for (size_t y = 0; y < num_blocks; y++) { |
| 6094 | tinyexr::tinyexr_uint64 offset; |
| 6095 | // Issue #81 |
| 6096 | if ((marker + sizeof(tinyexr_uint64)) >= (head + size)) { |
| 6097 | tinyexr::SetErrorMessage(msg: "Insufficient data size in offset table." , err); |
| 6098 | return TINYEXR_ERROR_INVALID_DATA; |
| 6099 | } |
| 6100 | |
| 6101 | memcpy(dest: &offset, src: marker, n: sizeof(tinyexr::tinyexr_uint64)); |
| 6102 | tinyexr::swap8(val: &offset); |
| 6103 | if (offset >= size) { |
| 6104 | tinyexr::SetErrorMessage(msg: "Invalid offset value in DecodeEXRImage." , err); |
| 6105 | return TINYEXR_ERROR_INVALID_DATA; |
| 6106 | } |
| 6107 | marker += sizeof(tinyexr::tinyexr_uint64); // = 8 |
| 6108 | offsets[y] = offset; |
| 6109 | } |
| 6110 | |
| 6111 | // If line offsets are invalid, we try to reconstruct it. |
| 6112 | // See OpenEXR/IlmImf/ImfScanLineInputFile.cpp::readLineOffsets() for details. |
| 6113 | for (size_t y = 0; y < num_blocks; y++) { |
| 6114 | if (offsets[y] <= 0) { |
| 6115 | // TODO(syoyo) Report as warning? |
| 6116 | // if (err) { |
| 6117 | // stringstream ss; |
| 6118 | // ss << "Incomplete lineOffsets." << std::endl; |
| 6119 | // (*err) += ss.str(); |
| 6120 | //} |
| 6121 | bool ret = |
| 6122 | ReconstructLineOffsets(offsets: &offsets, n: num_blocks, head, marker, size); |
| 6123 | if (ret) { |
| 6124 | // OK |
| 6125 | break; |
| 6126 | } else { |
| 6127 | tinyexr::SetErrorMessage( |
| 6128 | msg: "Cannot reconstruct lineOffset table in DecodeEXRImage." , err); |
| 6129 | return TINYEXR_ERROR_INVALID_DATA; |
| 6130 | } |
| 6131 | } |
| 6132 | } |
| 6133 | } |
| 6134 | |
| 6135 | { |
| 6136 | std::string e; |
| 6137 | int ret = DecodeChunk(exr_image, exr_header, offset_data, head, size, err: &e); |
| 6138 | |
| 6139 | if (ret != TINYEXR_SUCCESS) { |
| 6140 | if (!e.empty()) { |
| 6141 | tinyexr::SetErrorMessage(msg: e, err); |
| 6142 | } |
| 6143 | |
| 6144 | #if 1 |
| 6145 | FreeEXRImage(exr_image); |
| 6146 | #else |
| 6147 | // release memory(if exists) |
| 6148 | if ((exr_header->num_channels > 0) && exr_image && exr_image->images) { |
| 6149 | for (size_t c = 0; c < size_t(exr_header->num_channels); c++) { |
| 6150 | if (exr_image->images[c]) { |
| 6151 | free(exr_image->images[c]); |
| 6152 | exr_image->images[c] = NULL; |
| 6153 | } |
| 6154 | } |
| 6155 | free(exr_image->images); |
| 6156 | exr_image->images = NULL; |
| 6157 | } |
| 6158 | #endif |
| 6159 | } |
| 6160 | |
| 6161 | return ret; |
| 6162 | } |
| 6163 | } |
| 6164 | |
| 6165 | static void (const EXRHeader &, |
| 6166 | std::vector<std::string> &layer_names) { |
| 6167 | // Naive implementation |
| 6168 | // Group channels by layers |
| 6169 | // go over all channel names, split by periods |
| 6170 | // collect unique names |
| 6171 | layer_names.clear(); |
| 6172 | for (int c = 0; c < exr_header.num_channels; c++) { |
| 6173 | std::string full_name(exr_header.channels[c].name); |
| 6174 | const size_t pos = full_name.find_last_of(c: '.'); |
| 6175 | if (pos != std::string::npos && pos != 0 && pos + 1 < full_name.size()) { |
| 6176 | full_name.erase(pos: pos); |
| 6177 | if (std::find(first: layer_names.begin(), last: layer_names.end(), val: full_name) == |
| 6178 | layer_names.end()) |
| 6179 | layer_names.push_back(x: full_name); |
| 6180 | } |
| 6181 | } |
| 6182 | } |
| 6183 | |
| 6184 | struct LayerChannel { |
| 6185 | explicit LayerChannel(size_t i, std::string n) : index(i), name(n) {} |
| 6186 | size_t index; |
| 6187 | std::string name; |
| 6188 | }; |
| 6189 | |
| 6190 | static void (const EXRHeader &, |
| 6191 | const std::string &layer_name, |
| 6192 | std::vector<LayerChannel> &channels) { |
| 6193 | channels.clear(); |
| 6194 | //std::cout << "layer_name = " << layer_name << "\n"; |
| 6195 | for (int c = 0; c < exr_header.num_channels; c++) { |
| 6196 | //std::cout << "chan[" << c << "] = " << exr_header.channels[c].name << "\n"; |
| 6197 | std::string ch_name(exr_header.channels[c].name); |
| 6198 | if (layer_name.empty()) { |
| 6199 | const size_t pos = ch_name.find_last_of(c: '.'); |
| 6200 | if (pos != std::string::npos && pos < ch_name.size()) { |
| 6201 | if (pos != 0) continue; |
| 6202 | ch_name = ch_name.substr(pos: pos + 1); |
| 6203 | } |
| 6204 | } else { |
| 6205 | const size_t pos = ch_name.find(str: layer_name + '.'); |
| 6206 | if (pos == std::string::npos) continue; |
| 6207 | if (pos == 0) { |
| 6208 | ch_name = ch_name.substr(pos: layer_name.size() + 1); |
| 6209 | } |
| 6210 | } |
| 6211 | LayerChannel ch(size_t(c), ch_name); |
| 6212 | channels.push_back(x: ch); |
| 6213 | } |
| 6214 | } |
| 6215 | |
| 6216 | } // namespace tinyexr |
| 6217 | |
| 6218 | int EXRLayers(const char *filename, const char **layer_names[], int *num_layers, |
| 6219 | const char **err) { |
| 6220 | EXRVersion exr_version; |
| 6221 | EXRHeader ; |
| 6222 | InitEXRHeader(exr_header: &exr_header); |
| 6223 | |
| 6224 | { |
| 6225 | int ret = ParseEXRVersionFromFile(version: &exr_version, filename); |
| 6226 | if (ret != TINYEXR_SUCCESS) { |
| 6227 | tinyexr::SetErrorMessage(msg: "Invalid EXR header." , err); |
| 6228 | return ret; |
| 6229 | } |
| 6230 | |
| 6231 | if (exr_version.multipart || exr_version.non_image) { |
| 6232 | tinyexr::SetErrorMessage( |
| 6233 | msg: "Loading multipart or DeepImage is not supported in LoadEXR() API" , |
| 6234 | err); |
| 6235 | return TINYEXR_ERROR_INVALID_DATA; // @fixme. |
| 6236 | } |
| 6237 | } |
| 6238 | |
| 6239 | int ret = ParseEXRHeaderFromFile(header: &exr_header, version: &exr_version, filename, err); |
| 6240 | if (ret != TINYEXR_SUCCESS) { |
| 6241 | FreeEXRHeader(exr_header: &exr_header); |
| 6242 | return ret; |
| 6243 | } |
| 6244 | |
| 6245 | std::vector<std::string> layer_vec; |
| 6246 | tinyexr::GetLayers(exr_header, layer_names&: layer_vec); |
| 6247 | |
| 6248 | (*num_layers) = int(layer_vec.size()); |
| 6249 | (*layer_names) = static_cast<const char **>( |
| 6250 | malloc(size: sizeof(const char *) * static_cast<size_t>(layer_vec.size()))); |
| 6251 | for (size_t c = 0; c < static_cast<size_t>(layer_vec.size()); c++) { |
| 6252 | #ifdef _MSC_VER |
| 6253 | (*layer_names)[c] = _strdup(layer_vec[c].c_str()); |
| 6254 | #else |
| 6255 | (*layer_names)[c] = strdup(s: layer_vec[c].c_str()); |
| 6256 | #endif |
| 6257 | } |
| 6258 | |
| 6259 | FreeEXRHeader(exr_header: &exr_header); |
| 6260 | return TINYEXR_SUCCESS; |
| 6261 | } |
| 6262 | |
| 6263 | int LoadEXR(float **out_rgba, int *width, int *height, const char *filename, |
| 6264 | const char **err) { |
| 6265 | return LoadEXRWithLayer(out_rgba, width, height, filename, |
| 6266 | /* layername */ NULL, err); |
| 6267 | } |
| 6268 | |
| 6269 | int LoadEXRWithLayer(float **out_rgba, int *width, int *height, |
| 6270 | const char *filename, const char *layername, |
| 6271 | const char **err) { |
| 6272 | if (out_rgba == NULL) { |
| 6273 | tinyexr::SetErrorMessage(msg: "Invalid argument for LoadEXR()" , err); |
| 6274 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 6275 | } |
| 6276 | |
| 6277 | EXRVersion exr_version; |
| 6278 | EXRImage exr_image; |
| 6279 | EXRHeader ; |
| 6280 | InitEXRHeader(exr_header: &exr_header); |
| 6281 | InitEXRImage(exr_image: &exr_image); |
| 6282 | |
| 6283 | { |
| 6284 | int ret = ParseEXRVersionFromFile(version: &exr_version, filename); |
| 6285 | if (ret != TINYEXR_SUCCESS) { |
| 6286 | std::stringstream ss; |
| 6287 | ss << "Failed to open EXR file or read version info from EXR file. code(" |
| 6288 | << ret << ")" ; |
| 6289 | tinyexr::SetErrorMessage(msg: ss.str(), err); |
| 6290 | return ret; |
| 6291 | } |
| 6292 | |
| 6293 | if (exr_version.multipart || exr_version.non_image) { |
| 6294 | tinyexr::SetErrorMessage( |
| 6295 | msg: "Loading multipart or DeepImage is not supported in LoadEXR() API" , |
| 6296 | err); |
| 6297 | return TINYEXR_ERROR_INVALID_DATA; // @fixme. |
| 6298 | } |
| 6299 | } |
| 6300 | |
| 6301 | { |
| 6302 | int ret = ParseEXRHeaderFromFile(header: &exr_header, version: &exr_version, filename, err); |
| 6303 | if (ret != TINYEXR_SUCCESS) { |
| 6304 | FreeEXRHeader(exr_header: &exr_header); |
| 6305 | return ret; |
| 6306 | } |
| 6307 | } |
| 6308 | |
| 6309 | // Read HALF channel as FLOAT. |
| 6310 | for (int i = 0; i < exr_header.num_channels; i++) { |
| 6311 | if (exr_header.pixel_types[i] == TINYEXR_PIXELTYPE_HALF) { |
| 6312 | exr_header.requested_pixel_types[i] = TINYEXR_PIXELTYPE_FLOAT; |
| 6313 | } |
| 6314 | } |
| 6315 | |
| 6316 | // TODO: Probably limit loading to layers (channels) selected by layer index |
| 6317 | { |
| 6318 | int ret = LoadEXRImageFromFile(image: &exr_image, header: &exr_header, filename, err); |
| 6319 | if (ret != TINYEXR_SUCCESS) { |
| 6320 | FreeEXRHeader(exr_header: &exr_header); |
| 6321 | return ret; |
| 6322 | } |
| 6323 | } |
| 6324 | |
| 6325 | // RGBA |
| 6326 | int idxR = -1; |
| 6327 | int idxG = -1; |
| 6328 | int idxB = -1; |
| 6329 | int idxA = -1; |
| 6330 | |
| 6331 | std::vector<std::string> layer_names; |
| 6332 | tinyexr::GetLayers(exr_header, layer_names); |
| 6333 | |
| 6334 | std::vector<tinyexr::LayerChannel> channels; |
| 6335 | tinyexr::ChannelsInLayer( |
| 6336 | exr_header, layer_name: layername == NULL ? "" : std::string(layername), channels); |
| 6337 | |
| 6338 | |
| 6339 | if (channels.size() < 1) { |
| 6340 | if (layername == NULL) { |
| 6341 | tinyexr::SetErrorMessage(msg: "Layer Not Found. Seems EXR contains channels with layer(e.g. `diffuse.R`). if you are using LoadEXR(), please try LoadEXRWithLayer(). LoadEXR() cannot load EXR having channels with layer." , err); |
| 6342 | |
| 6343 | } else { |
| 6344 | tinyexr::SetErrorMessage(msg: "Layer Not Found" , err); |
| 6345 | } |
| 6346 | FreeEXRHeader(exr_header: &exr_header); |
| 6347 | FreeEXRImage(exr_image: &exr_image); |
| 6348 | return TINYEXR_ERROR_LAYER_NOT_FOUND; |
| 6349 | } |
| 6350 | |
| 6351 | size_t ch_count = channels.size() < 4 ? channels.size() : 4; |
| 6352 | for (size_t c = 0; c < ch_count; c++) { |
| 6353 | const tinyexr::LayerChannel &ch = channels[c]; |
| 6354 | |
| 6355 | if (ch.name == "R" ) { |
| 6356 | idxR = int(ch.index); |
| 6357 | } else if (ch.name == "G" ) { |
| 6358 | idxG = int(ch.index); |
| 6359 | } else if (ch.name == "B" ) { |
| 6360 | idxB = int(ch.index); |
| 6361 | } else if (ch.name == "A" ) { |
| 6362 | idxA = int(ch.index); |
| 6363 | } |
| 6364 | } |
| 6365 | |
| 6366 | if (channels.size() == 1) { |
| 6367 | int chIdx = int(channels.front().index); |
| 6368 | // Grayscale channel only. |
| 6369 | |
| 6370 | (*out_rgba) = reinterpret_cast<float *>( |
| 6371 | malloc(size: 4 * sizeof(float) * static_cast<size_t>(exr_image.width) * |
| 6372 | static_cast<size_t>(exr_image.height))); |
| 6373 | |
| 6374 | if (exr_header.tiled) { |
| 6375 | const size_t tile_size_x = static_cast<size_t>(exr_header.tile_size_x); |
| 6376 | const size_t tile_size_y = static_cast<size_t>(exr_header.tile_size_y); |
| 6377 | for (int it = 0; it < exr_image.num_tiles; it++) { |
| 6378 | for (size_t j = 0; j < tile_size_y; j++) { |
| 6379 | for (size_t i = 0; i < tile_size_x; i++) { |
| 6380 | const size_t ii = |
| 6381 | static_cast<size_t>(exr_image.tiles[it].offset_x) * tile_size_x + |
| 6382 | i; |
| 6383 | const size_t jj = |
| 6384 | static_cast<size_t>(exr_image.tiles[it].offset_y) * tile_size_y + |
| 6385 | j; |
| 6386 | const size_t idx = ii + jj * static_cast<size_t>(exr_image.width); |
| 6387 | |
| 6388 | // out of region check. |
| 6389 | if (ii >= static_cast<size_t>(exr_image.width)) { |
| 6390 | continue; |
| 6391 | } |
| 6392 | if (jj >= static_cast<size_t>(exr_image.height)) { |
| 6393 | continue; |
| 6394 | } |
| 6395 | const size_t srcIdx = i + j * tile_size_x; |
| 6396 | unsigned char **src = exr_image.tiles[it].images; |
| 6397 | (*out_rgba)[4 * idx + 0] = |
| 6398 | reinterpret_cast<float **>(src)[chIdx][srcIdx]; |
| 6399 | (*out_rgba)[4 * idx + 1] = |
| 6400 | reinterpret_cast<float **>(src)[chIdx][srcIdx]; |
| 6401 | (*out_rgba)[4 * idx + 2] = |
| 6402 | reinterpret_cast<float **>(src)[chIdx][srcIdx]; |
| 6403 | (*out_rgba)[4 * idx + 3] = |
| 6404 | reinterpret_cast<float **>(src)[chIdx][srcIdx]; |
| 6405 | } |
| 6406 | } |
| 6407 | } |
| 6408 | } else { |
| 6409 | const size_t pixel_size = static_cast<size_t>(exr_image.width) * |
| 6410 | static_cast<size_t>(exr_image.height); |
| 6411 | for (size_t i = 0; i < pixel_size; i++) { |
| 6412 | const float val = |
| 6413 | reinterpret_cast<float **>(exr_image.images)[chIdx][i]; |
| 6414 | (*out_rgba)[4 * i + 0] = val; |
| 6415 | (*out_rgba)[4 * i + 1] = val; |
| 6416 | (*out_rgba)[4 * i + 2] = val; |
| 6417 | (*out_rgba)[4 * i + 3] = val; |
| 6418 | } |
| 6419 | } |
| 6420 | } else { |
| 6421 | // Assume RGB(A) |
| 6422 | |
| 6423 | if (idxR == -1) { |
| 6424 | tinyexr::SetErrorMessage(msg: "R channel not found" , err); |
| 6425 | |
| 6426 | FreeEXRHeader(exr_header: &exr_header); |
| 6427 | FreeEXRImage(exr_image: &exr_image); |
| 6428 | return TINYEXR_ERROR_INVALID_DATA; |
| 6429 | } |
| 6430 | |
| 6431 | if (idxG == -1) { |
| 6432 | tinyexr::SetErrorMessage(msg: "G channel not found" , err); |
| 6433 | FreeEXRHeader(exr_header: &exr_header); |
| 6434 | FreeEXRImage(exr_image: &exr_image); |
| 6435 | return TINYEXR_ERROR_INVALID_DATA; |
| 6436 | } |
| 6437 | |
| 6438 | if (idxB == -1) { |
| 6439 | tinyexr::SetErrorMessage(msg: "B channel not found" , err); |
| 6440 | FreeEXRHeader(exr_header: &exr_header); |
| 6441 | FreeEXRImage(exr_image: &exr_image); |
| 6442 | return TINYEXR_ERROR_INVALID_DATA; |
| 6443 | } |
| 6444 | |
| 6445 | (*out_rgba) = reinterpret_cast<float *>( |
| 6446 | malloc(size: 4 * sizeof(float) * static_cast<size_t>(exr_image.width) * |
| 6447 | static_cast<size_t>(exr_image.height))); |
| 6448 | if (exr_header.tiled) { |
| 6449 | const size_t tile_size_x = static_cast<size_t>(exr_header.tile_size_x); |
| 6450 | const size_t tile_size_y = static_cast<size_t>(exr_header.tile_size_y); |
| 6451 | for (int it = 0; it < exr_image.num_tiles; it++) { |
| 6452 | for (size_t j = 0; j < tile_size_y; j++) { |
| 6453 | for (size_t i = 0; i < tile_size_x; i++) { |
| 6454 | const size_t ii = |
| 6455 | static_cast<size_t>(exr_image.tiles[it].offset_x) * |
| 6456 | tile_size_x + |
| 6457 | i; |
| 6458 | const size_t jj = |
| 6459 | static_cast<size_t>(exr_image.tiles[it].offset_y) * |
| 6460 | tile_size_y + |
| 6461 | j; |
| 6462 | const size_t idx = ii + jj * static_cast<size_t>(exr_image.width); |
| 6463 | |
| 6464 | // out of region check. |
| 6465 | if (ii >= static_cast<size_t>(exr_image.width)) { |
| 6466 | continue; |
| 6467 | } |
| 6468 | if (jj >= static_cast<size_t>(exr_image.height)) { |
| 6469 | continue; |
| 6470 | } |
| 6471 | const size_t srcIdx = i + j * tile_size_x; |
| 6472 | unsigned char **src = exr_image.tiles[it].images; |
| 6473 | (*out_rgba)[4 * idx + 0] = |
| 6474 | reinterpret_cast<float **>(src)[idxR][srcIdx]; |
| 6475 | (*out_rgba)[4 * idx + 1] = |
| 6476 | reinterpret_cast<float **>(src)[idxG][srcIdx]; |
| 6477 | (*out_rgba)[4 * idx + 2] = |
| 6478 | reinterpret_cast<float **>(src)[idxB][srcIdx]; |
| 6479 | if (idxA != -1) { |
| 6480 | (*out_rgba)[4 * idx + 3] = |
| 6481 | reinterpret_cast<float **>(src)[idxA][srcIdx]; |
| 6482 | } else { |
| 6483 | (*out_rgba)[4 * idx + 3] = 1.0; |
| 6484 | } |
| 6485 | } |
| 6486 | } |
| 6487 | } |
| 6488 | } else { |
| 6489 | const size_t pixel_size = static_cast<size_t>(exr_image.width) * |
| 6490 | static_cast<size_t>(exr_image.height); |
| 6491 | for (size_t i = 0; i < pixel_size; i++) { |
| 6492 | (*out_rgba)[4 * i + 0] = |
| 6493 | reinterpret_cast<float **>(exr_image.images)[idxR][i]; |
| 6494 | (*out_rgba)[4 * i + 1] = |
| 6495 | reinterpret_cast<float **>(exr_image.images)[idxG][i]; |
| 6496 | (*out_rgba)[4 * i + 2] = |
| 6497 | reinterpret_cast<float **>(exr_image.images)[idxB][i]; |
| 6498 | if (idxA != -1) { |
| 6499 | (*out_rgba)[4 * i + 3] = |
| 6500 | reinterpret_cast<float **>(exr_image.images)[idxA][i]; |
| 6501 | } else { |
| 6502 | (*out_rgba)[4 * i + 3] = 1.0; |
| 6503 | } |
| 6504 | } |
| 6505 | } |
| 6506 | } |
| 6507 | |
| 6508 | (*width) = exr_image.width; |
| 6509 | (*height) = exr_image.height; |
| 6510 | |
| 6511 | FreeEXRHeader(exr_header: &exr_header); |
| 6512 | FreeEXRImage(exr_image: &exr_image); |
| 6513 | |
| 6514 | return TINYEXR_SUCCESS; |
| 6515 | } |
| 6516 | |
| 6517 | int IsEXR(const char *filename) { |
| 6518 | EXRVersion exr_version; |
| 6519 | |
| 6520 | int ret = ParseEXRVersionFromFile(version: &exr_version, filename); |
| 6521 | if (ret != TINYEXR_SUCCESS) { |
| 6522 | return ret; |
| 6523 | } |
| 6524 | |
| 6525 | return TINYEXR_SUCCESS; |
| 6526 | } |
| 6527 | |
| 6528 | int IsEXRFromMemory(const unsigned char *memory, size_t size) { |
| 6529 | EXRVersion exr_version; |
| 6530 | |
| 6531 | int ret = ParseEXRVersionFromMemory(version: &exr_version, memory, size); |
| 6532 | if (ret != TINYEXR_SUCCESS) { |
| 6533 | return ret; |
| 6534 | } |
| 6535 | |
| 6536 | return TINYEXR_SUCCESS; |
| 6537 | } |
| 6538 | |
| 6539 | int (EXRHeader *, const EXRVersion *version, |
| 6540 | const unsigned char *memory, size_t size, |
| 6541 | const char **err) { |
| 6542 | if (memory == NULL || exr_header == NULL) { |
| 6543 | tinyexr::SetErrorMessage( |
| 6544 | msg: "Invalid argument. `memory` or `exr_header` argument is null in " |
| 6545 | "ParseEXRHeaderFromMemory()" , |
| 6546 | err); |
| 6547 | |
| 6548 | // Invalid argument |
| 6549 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 6550 | } |
| 6551 | |
| 6552 | if (size < tinyexr::kEXRVersionSize) { |
| 6553 | tinyexr::SetErrorMessage(msg: "Insufficient header/data size.\n" , err); |
| 6554 | return TINYEXR_ERROR_INVALID_DATA; |
| 6555 | } |
| 6556 | |
| 6557 | const unsigned char *marker = memory + tinyexr::kEXRVersionSize; |
| 6558 | size_t marker_size = size - tinyexr::kEXRVersionSize; |
| 6559 | |
| 6560 | tinyexr::HeaderInfo info; |
| 6561 | info.clear(); |
| 6562 | |
| 6563 | int ret; |
| 6564 | { |
| 6565 | std::string err_str; |
| 6566 | ret = ParseEXRHeader(info: &info, NULL, version, err: &err_str, buf: marker, size: marker_size); |
| 6567 | |
| 6568 | if (ret != TINYEXR_SUCCESS) { |
| 6569 | if (err && !err_str.empty()) { |
| 6570 | tinyexr::SetErrorMessage(msg: err_str, err); |
| 6571 | } |
| 6572 | } |
| 6573 | } |
| 6574 | |
| 6575 | { |
| 6576 | std::string warn; |
| 6577 | std::string err_str; |
| 6578 | |
| 6579 | if (!ConvertHeader(exr_header, info, warn: &warn, err: &err_str)) { |
| 6580 | // release mem |
| 6581 | for (size_t i = 0; i < info.attributes.size(); i++) { |
| 6582 | if (info.attributes[i].value) { |
| 6583 | free(ptr: info.attributes[i].value); |
| 6584 | } |
| 6585 | } |
| 6586 | if (err && !err_str.empty()) { |
| 6587 | tinyexr::SetErrorMessage(msg: err_str, err); |
| 6588 | } |
| 6589 | ret = TINYEXR_ERROR_INVALID_HEADER; |
| 6590 | } |
| 6591 | } |
| 6592 | |
| 6593 | exr_header->multipart = version->multipart ? 1 : 0; |
| 6594 | exr_header->non_image = version->non_image ? 1 : 0; |
| 6595 | |
| 6596 | return ret; |
| 6597 | } |
| 6598 | |
| 6599 | int LoadEXRFromMemory(float **out_rgba, int *width, int *height, |
| 6600 | const unsigned char *memory, size_t size, |
| 6601 | const char **err) { |
| 6602 | if (out_rgba == NULL || memory == NULL) { |
| 6603 | tinyexr::SetErrorMessage(msg: "Invalid argument for LoadEXRFromMemory" , err); |
| 6604 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 6605 | } |
| 6606 | |
| 6607 | EXRVersion exr_version; |
| 6608 | EXRImage exr_image; |
| 6609 | EXRHeader ; |
| 6610 | |
| 6611 | InitEXRHeader(exr_header: &exr_header); |
| 6612 | |
| 6613 | int ret = ParseEXRVersionFromMemory(version: &exr_version, memory, size); |
| 6614 | if (ret != TINYEXR_SUCCESS) { |
| 6615 | std::stringstream ss; |
| 6616 | ss << "Failed to parse EXR version. code(" << ret << ")" ; |
| 6617 | tinyexr::SetErrorMessage(msg: ss.str(), err); |
| 6618 | return ret; |
| 6619 | } |
| 6620 | |
| 6621 | ret = ParseEXRHeaderFromMemory(exr_header: &exr_header, version: &exr_version, memory, size, err); |
| 6622 | if (ret != TINYEXR_SUCCESS) { |
| 6623 | return ret; |
| 6624 | } |
| 6625 | |
| 6626 | // Read HALF channel as FLOAT. |
| 6627 | for (int i = 0; i < exr_header.num_channels; i++) { |
| 6628 | if (exr_header.pixel_types[i] == TINYEXR_PIXELTYPE_HALF) { |
| 6629 | exr_header.requested_pixel_types[i] = TINYEXR_PIXELTYPE_FLOAT; |
| 6630 | } |
| 6631 | } |
| 6632 | |
| 6633 | InitEXRImage(exr_image: &exr_image); |
| 6634 | ret = LoadEXRImageFromMemory(image: &exr_image, header: &exr_header, memory, size, err); |
| 6635 | if (ret != TINYEXR_SUCCESS) { |
| 6636 | return ret; |
| 6637 | } |
| 6638 | |
| 6639 | // RGBA |
| 6640 | int idxR = -1; |
| 6641 | int idxG = -1; |
| 6642 | int idxB = -1; |
| 6643 | int idxA = -1; |
| 6644 | for (int c = 0; c < exr_header.num_channels; c++) { |
| 6645 | if (strcmp(s1: exr_header.channels[c].name, s2: "R" ) == 0) { |
| 6646 | idxR = c; |
| 6647 | } else if (strcmp(s1: exr_header.channels[c].name, s2: "G" ) == 0) { |
| 6648 | idxG = c; |
| 6649 | } else if (strcmp(s1: exr_header.channels[c].name, s2: "B" ) == 0) { |
| 6650 | idxB = c; |
| 6651 | } else if (strcmp(s1: exr_header.channels[c].name, s2: "A" ) == 0) { |
| 6652 | idxA = c; |
| 6653 | } |
| 6654 | } |
| 6655 | |
| 6656 | // TODO(syoyo): Refactor removing same code as used in LoadEXR(). |
| 6657 | if (exr_header.num_channels == 1) { |
| 6658 | // Grayscale channel only. |
| 6659 | |
| 6660 | (*out_rgba) = reinterpret_cast<float *>( |
| 6661 | malloc(size: 4 * sizeof(float) * static_cast<size_t>(exr_image.width) * |
| 6662 | static_cast<size_t>(exr_image.height))); |
| 6663 | |
| 6664 | if (exr_header.tiled) { |
| 6665 | const size_t tile_size_x = static_cast<size_t>(exr_header.tile_size_x); |
| 6666 | const size_t tile_size_y = static_cast<size_t>(exr_header.tile_size_y); |
| 6667 | for (int it = 0; it < exr_image.num_tiles; it++) { |
| 6668 | for (size_t j = 0; j < tile_size_y; j++) { |
| 6669 | for (size_t i = 0; i < tile_size_x; i++) { |
| 6670 | const size_t ii = |
| 6671 | static_cast<size_t>(exr_image.tiles[it].offset_x) * |
| 6672 | tile_size_x + |
| 6673 | i; |
| 6674 | const size_t jj = |
| 6675 | static_cast<size_t>(exr_image.tiles[it].offset_y) * |
| 6676 | tile_size_y + |
| 6677 | j; |
| 6678 | const size_t idx = ii + jj * static_cast<size_t>(exr_image.width); |
| 6679 | |
| 6680 | // out of region check. |
| 6681 | if (ii >= static_cast<size_t>(exr_image.width)) { |
| 6682 | continue; |
| 6683 | } |
| 6684 | if (jj >= static_cast<size_t>(exr_image.height)) { |
| 6685 | continue; |
| 6686 | } |
| 6687 | const size_t srcIdx = i + j * tile_size_x; |
| 6688 | unsigned char **src = exr_image.tiles[it].images; |
| 6689 | (*out_rgba)[4 * idx + 0] = |
| 6690 | reinterpret_cast<float **>(src)[0][srcIdx]; |
| 6691 | (*out_rgba)[4 * idx + 1] = |
| 6692 | reinterpret_cast<float **>(src)[0][srcIdx]; |
| 6693 | (*out_rgba)[4 * idx + 2] = |
| 6694 | reinterpret_cast<float **>(src)[0][srcIdx]; |
| 6695 | (*out_rgba)[4 * idx + 3] = |
| 6696 | reinterpret_cast<float **>(src)[0][srcIdx]; |
| 6697 | } |
| 6698 | } |
| 6699 | } |
| 6700 | } else { |
| 6701 | const size_t pixel_size = static_cast<size_t>(exr_image.width) * |
| 6702 | static_cast<size_t>(exr_image.height); |
| 6703 | for (size_t i = 0; i < pixel_size; i++) { |
| 6704 | const float val = reinterpret_cast<float **>(exr_image.images)[0][i]; |
| 6705 | (*out_rgba)[4 * i + 0] = val; |
| 6706 | (*out_rgba)[4 * i + 1] = val; |
| 6707 | (*out_rgba)[4 * i + 2] = val; |
| 6708 | (*out_rgba)[4 * i + 3] = val; |
| 6709 | } |
| 6710 | } |
| 6711 | |
| 6712 | } else { |
| 6713 | // TODO(syoyo): Support non RGBA image. |
| 6714 | |
| 6715 | if (idxR == -1) { |
| 6716 | tinyexr::SetErrorMessage(msg: "R channel not found" , err); |
| 6717 | |
| 6718 | // @todo { free exr_image } |
| 6719 | return TINYEXR_ERROR_INVALID_DATA; |
| 6720 | } |
| 6721 | |
| 6722 | if (idxG == -1) { |
| 6723 | tinyexr::SetErrorMessage(msg: "G channel not found" , err); |
| 6724 | // @todo { free exr_image } |
| 6725 | return TINYEXR_ERROR_INVALID_DATA; |
| 6726 | } |
| 6727 | |
| 6728 | if (idxB == -1) { |
| 6729 | tinyexr::SetErrorMessage(msg: "B channel not found" , err); |
| 6730 | // @todo { free exr_image } |
| 6731 | return TINYEXR_ERROR_INVALID_DATA; |
| 6732 | } |
| 6733 | |
| 6734 | (*out_rgba) = reinterpret_cast<float *>( |
| 6735 | malloc(size: 4 * sizeof(float) * static_cast<size_t>(exr_image.width) * |
| 6736 | static_cast<size_t>(exr_image.height))); |
| 6737 | |
| 6738 | if (exr_header.tiled) { |
| 6739 | const size_t tile_size_x = static_cast<size_t>(exr_header.tile_size_x); |
| 6740 | const size_t tile_size_y = static_cast<size_t>(exr_header.tile_size_y); |
| 6741 | for (int it = 0; it < exr_image.num_tiles; it++) { |
| 6742 | for (size_t j = 0; j < tile_size_y; j++) |
| 6743 | for (size_t i = 0; i < tile_size_x; i++) { |
| 6744 | const size_t ii = |
| 6745 | static_cast<size_t>(exr_image.tiles[it].offset_x) * |
| 6746 | tile_size_x + |
| 6747 | i; |
| 6748 | const size_t jj = |
| 6749 | static_cast<size_t>(exr_image.tiles[it].offset_y) * |
| 6750 | tile_size_y + |
| 6751 | j; |
| 6752 | const size_t idx = ii + jj * static_cast<size_t>(exr_image.width); |
| 6753 | |
| 6754 | // out of region check. |
| 6755 | if (ii >= static_cast<size_t>(exr_image.width)) { |
| 6756 | continue; |
| 6757 | } |
| 6758 | if (jj >= static_cast<size_t>(exr_image.height)) { |
| 6759 | continue; |
| 6760 | } |
| 6761 | const size_t srcIdx = i + j * tile_size_x; |
| 6762 | unsigned char **src = exr_image.tiles[it].images; |
| 6763 | (*out_rgba)[4 * idx + 0] = |
| 6764 | reinterpret_cast<float **>(src)[idxR][srcIdx]; |
| 6765 | (*out_rgba)[4 * idx + 1] = |
| 6766 | reinterpret_cast<float **>(src)[idxG][srcIdx]; |
| 6767 | (*out_rgba)[4 * idx + 2] = |
| 6768 | reinterpret_cast<float **>(src)[idxB][srcIdx]; |
| 6769 | if (idxA != -1) { |
| 6770 | (*out_rgba)[4 * idx + 3] = |
| 6771 | reinterpret_cast<float **>(src)[idxA][srcIdx]; |
| 6772 | } else { |
| 6773 | (*out_rgba)[4 * idx + 3] = 1.0; |
| 6774 | } |
| 6775 | } |
| 6776 | } |
| 6777 | } else { |
| 6778 | const size_t pixel_size = static_cast<size_t>(exr_image.width) * |
| 6779 | static_cast<size_t>(exr_image.height); |
| 6780 | for (size_t i = 0; i < pixel_size; i++) { |
| 6781 | (*out_rgba)[4 * i + 0] = |
| 6782 | reinterpret_cast<float **>(exr_image.images)[idxR][i]; |
| 6783 | (*out_rgba)[4 * i + 1] = |
| 6784 | reinterpret_cast<float **>(exr_image.images)[idxG][i]; |
| 6785 | (*out_rgba)[4 * i + 2] = |
| 6786 | reinterpret_cast<float **>(exr_image.images)[idxB][i]; |
| 6787 | if (idxA != -1) { |
| 6788 | (*out_rgba)[4 * i + 3] = |
| 6789 | reinterpret_cast<float **>(exr_image.images)[idxA][i]; |
| 6790 | } else { |
| 6791 | (*out_rgba)[4 * i + 3] = 1.0; |
| 6792 | } |
| 6793 | } |
| 6794 | } |
| 6795 | } |
| 6796 | |
| 6797 | (*width) = exr_image.width; |
| 6798 | (*height) = exr_image.height; |
| 6799 | |
| 6800 | FreeEXRHeader(exr_header: &exr_header); |
| 6801 | FreeEXRImage(exr_image: &exr_image); |
| 6802 | |
| 6803 | return TINYEXR_SUCCESS; |
| 6804 | } |
| 6805 | |
| 6806 | // Represents a read-only file mapped to an address space in memory. |
| 6807 | // If no memory-mapping API is available, falls back to allocating a buffer |
| 6808 | // with a copy of the file's data. |
| 6809 | struct MemoryMappedFile { |
| 6810 | unsigned char *data; // To the start of the file's data. |
| 6811 | size_t size; // The size of the file in bytes. |
| 6812 | #ifdef TINYEXR_USE_WIN32_MMAP |
| 6813 | HANDLE windows_file; |
| 6814 | HANDLE windows_file_mapping; |
| 6815 | #elif defined(TINYEXR_USE_POSIX_MMAP) |
| 6816 | int posix_descriptor; |
| 6817 | #endif |
| 6818 | |
| 6819 | // MemoryMappedFile's constructor tries to map memory to a file. |
| 6820 | // If this succeeds, valid() will return true and all fields |
| 6821 | // are usable; otherwise, valid() will return false. |
| 6822 | MemoryMappedFile(const char *filename) { |
| 6823 | data = NULL; |
| 6824 | size = 0; |
| 6825 | #ifdef TINYEXR_USE_WIN32_MMAP |
| 6826 | windows_file_mapping = NULL; |
| 6827 | windows_file = |
| 6828 | CreateFileW(tinyexr::UTF8ToWchar(filename).c_str(), // lpFileName |
| 6829 | GENERIC_READ, // dwDesiredAccess |
| 6830 | FILE_SHARE_READ, // dwShareMode |
| 6831 | NULL, // lpSecurityAttributes |
| 6832 | OPEN_EXISTING, // dwCreationDisposition |
| 6833 | FILE_ATTRIBUTE_READONLY, // dwFlagsAndAttributes |
| 6834 | NULL); // hTemplateFile |
| 6835 | if (windows_file == INVALID_HANDLE_VALUE) { |
| 6836 | return; |
| 6837 | } |
| 6838 | |
| 6839 | windows_file_mapping = CreateFileMapping(windows_file, // hFile |
| 6840 | NULL, // lpFileMappingAttributes |
| 6841 | PAGE_READONLY, // flProtect |
| 6842 | 0, // dwMaximumSizeHigh |
| 6843 | 0, // dwMaximumSizeLow |
| 6844 | NULL); // lpName |
| 6845 | if (windows_file_mapping == NULL) { |
| 6846 | return; |
| 6847 | } |
| 6848 | |
| 6849 | data = reinterpret_cast<unsigned char *>( |
| 6850 | MapViewOfFile(windows_file_mapping, // hFileMappingObject |
| 6851 | FILE_MAP_READ, // dwDesiredAccess |
| 6852 | 0, // dwFileOffsetHigh |
| 6853 | 0, // dwFileOffsetLow |
| 6854 | 0)); // dwNumberOfBytesToMap |
| 6855 | if (!data) { |
| 6856 | return; |
| 6857 | } |
| 6858 | |
| 6859 | LARGE_INTEGER windows_file_size = {}; |
| 6860 | if (!GetFileSizeEx(windows_file, &windows_file_size) || |
| 6861 | static_cast<ULONGLONG>(windows_file_size.QuadPart) > |
| 6862 | std::numeric_limits<size_t>::max()) { |
| 6863 | UnmapViewOfFile(data); |
| 6864 | data = NULL; |
| 6865 | return; |
| 6866 | } |
| 6867 | size = static_cast<size_t>(windows_file_size.QuadPart); |
| 6868 | #elif defined(TINYEXR_USE_POSIX_MMAP) |
| 6869 | posix_descriptor = open(file: filename, O_RDONLY); |
| 6870 | if (posix_descriptor == -1) { |
| 6871 | return; |
| 6872 | } |
| 6873 | |
| 6874 | struct stat info; |
| 6875 | if (fstat(fd: posix_descriptor, buf: &info) < 0) { |
| 6876 | return; |
| 6877 | } |
| 6878 | // Make sure st_size is in the valid range for a size_t. The second case |
| 6879 | // can only fail if a POSIX implementation defines off_t to be a larger |
| 6880 | // type than size_t - for instance, compiling with _FILE_OFFSET_BITS=64 |
| 6881 | // on a 32-bit system. On current 64-bit systems, this check can never |
| 6882 | // fail, so we turn off clang's Wtautological-type-limit-compare warning |
| 6883 | // around this code. |
| 6884 | #ifdef __clang__ |
| 6885 | #pragma clang diagnostic push |
| 6886 | #pragma clang diagnostic ignored "-Wtautological-type-limit-compare" |
| 6887 | #endif |
| 6888 | if (info.st_size < 0 || |
| 6889 | info.st_size > std::numeric_limits<ssize_t>::max()) { |
| 6890 | return; |
| 6891 | } |
| 6892 | #ifdef __clang__ |
| 6893 | #pragma clang diagnostic pop |
| 6894 | #endif |
| 6895 | size = static_cast<size_t>(info.st_size); |
| 6896 | |
| 6897 | data = reinterpret_cast<unsigned char *>( |
| 6898 | mmap(addr: 0, len: size, PROT_READ, MAP_SHARED, fd: posix_descriptor, offset: 0)); |
| 6899 | if (data == MAP_FAILED) { |
| 6900 | data = nullptr; |
| 6901 | return; |
| 6902 | } |
| 6903 | #else |
| 6904 | FILE *fp = fopen(filename, "rb" ); |
| 6905 | if (!fp) { |
| 6906 | return; |
| 6907 | } |
| 6908 | |
| 6909 | // Calling fseek(fp, 0, SEEK_END) isn't strictly-conforming C code, but |
| 6910 | // since neither the WIN32 nor POSIX APIs are available in this branch, this |
| 6911 | // is a reasonable fallback option. |
| 6912 | if (fseek(fp, 0, SEEK_END) != 0) { |
| 6913 | fclose(fp); |
| 6914 | return; |
| 6915 | } |
| 6916 | const long ftell_result = ftell(fp); |
| 6917 | if (ftell_result < 0) { |
| 6918 | // Error from ftell |
| 6919 | fclose(fp); |
| 6920 | return; |
| 6921 | } |
| 6922 | size = static_cast<size_t>(ftell_result); |
| 6923 | if (fseek(fp, 0, SEEK_SET) != 0) { |
| 6924 | fclose(fp); |
| 6925 | size = 0; |
| 6926 | return; |
| 6927 | } |
| 6928 | |
| 6929 | data = reinterpret_cast<unsigned char *>(malloc(size)); |
| 6930 | if (!data) { |
| 6931 | size = 0; |
| 6932 | fclose(fp); |
| 6933 | return; |
| 6934 | } |
| 6935 | size_t read_bytes = fread(data, 1, size, fp); |
| 6936 | if (read_bytes != size) { |
| 6937 | // TODO: Try to read data until reading `size` bytes. |
| 6938 | fclose(fp); |
| 6939 | size = 0; |
| 6940 | data = nullptr; |
| 6941 | return; |
| 6942 | } |
| 6943 | fclose(fp); |
| 6944 | #endif |
| 6945 | } |
| 6946 | |
| 6947 | // MemoryMappedFile's destructor closes all its handles. |
| 6948 | ~MemoryMappedFile() { |
| 6949 | #ifdef TINYEXR_USE_WIN32_MMAP |
| 6950 | if (data) { |
| 6951 | (void)UnmapViewOfFile(data); |
| 6952 | data = NULL; |
| 6953 | } |
| 6954 | |
| 6955 | if (windows_file_mapping != NULL) { |
| 6956 | (void)CloseHandle(windows_file_mapping); |
| 6957 | } |
| 6958 | |
| 6959 | if (windows_file != INVALID_HANDLE_VALUE) { |
| 6960 | (void)CloseHandle(windows_file); |
| 6961 | } |
| 6962 | #elif defined(TINYEXR_USE_POSIX_MMAP) |
| 6963 | if (data) { |
| 6964 | (void)munmap(addr: data, len: size); |
| 6965 | data = NULL; |
| 6966 | } |
| 6967 | |
| 6968 | if (posix_descriptor != -1) { |
| 6969 | (void)close(fd: posix_descriptor); |
| 6970 | } |
| 6971 | #else |
| 6972 | if (data) { |
| 6973 | (void)free(data); |
| 6974 | } |
| 6975 | data = NULL; |
| 6976 | #endif |
| 6977 | } |
| 6978 | |
| 6979 | // A MemoryMappedFile cannot be copied or moved. |
| 6980 | // Only check for this when compiling with C++11 or higher, since deleted |
| 6981 | // function definitions were added then. |
| 6982 | #if TINYEXR_HAS_CXX11 |
| 6983 | #ifdef __clang__ |
| 6984 | #pragma clang diagnostic push |
| 6985 | #pragma clang diagnostic ignored "-Wc++98-compat" |
| 6986 | #endif |
| 6987 | MemoryMappedFile(const MemoryMappedFile &) = delete; |
| 6988 | MemoryMappedFile &operator=(const MemoryMappedFile &) = delete; |
| 6989 | MemoryMappedFile(MemoryMappedFile &&other) noexcept = delete; |
| 6990 | MemoryMappedFile &operator=(MemoryMappedFile &&other) noexcept = delete; |
| 6991 | #ifdef __clang__ |
| 6992 | #pragma clang diagnostic pop |
| 6993 | #endif |
| 6994 | #endif |
| 6995 | |
| 6996 | // Returns whether this was successfully opened. |
| 6997 | bool valid() const { return data; } |
| 6998 | }; |
| 6999 | |
| 7000 | int LoadEXRImageFromFile(EXRImage *exr_image, const EXRHeader *, |
| 7001 | const char *filename, const char **err) { |
| 7002 | if (exr_image == NULL) { |
| 7003 | tinyexr::SetErrorMessage(msg: "Invalid argument for LoadEXRImageFromFile" , err); |
| 7004 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 7005 | } |
| 7006 | |
| 7007 | MemoryMappedFile file(filename); |
| 7008 | if (!file.valid()) { |
| 7009 | tinyexr::SetErrorMessage(msg: "Cannot read file " + std::string(filename), err); |
| 7010 | return TINYEXR_ERROR_CANT_OPEN_FILE; |
| 7011 | } |
| 7012 | |
| 7013 | if (file.size < 16) { |
| 7014 | tinyexr::SetErrorMessage(msg: "File size too short : " + std::string(filename), |
| 7015 | err); |
| 7016 | return TINYEXR_ERROR_INVALID_FILE; |
| 7017 | } |
| 7018 | |
| 7019 | return LoadEXRImageFromMemory(image: exr_image, header: exr_header, memory: file.data, size: file.size, |
| 7020 | err); |
| 7021 | } |
| 7022 | |
| 7023 | int LoadEXRImageFromMemory(EXRImage *exr_image, const EXRHeader *, |
| 7024 | const unsigned char *memory, const size_t size, |
| 7025 | const char **err) { |
| 7026 | if (exr_image == NULL || memory == NULL || |
| 7027 | (size < tinyexr::kEXRVersionSize)) { |
| 7028 | tinyexr::SetErrorMessage(msg: "Invalid argument for LoadEXRImageFromMemory" , |
| 7029 | err); |
| 7030 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 7031 | } |
| 7032 | |
| 7033 | if (exr_header->header_len == 0) { |
| 7034 | tinyexr::SetErrorMessage(msg: "EXRHeader variable is not initialized." , err); |
| 7035 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 7036 | } |
| 7037 | |
| 7038 | const unsigned char *head = memory; |
| 7039 | const unsigned char *marker = reinterpret_cast<const unsigned char *>( |
| 7040 | memory + exr_header->header_len + |
| 7041 | 8); // +8 for magic number + version header. |
| 7042 | return tinyexr::DecodeEXRImage(exr_image, exr_header, head, marker, size, |
| 7043 | err); |
| 7044 | } |
| 7045 | |
| 7046 | namespace tinyexr |
| 7047 | { |
| 7048 | |
| 7049 | #ifdef __clang__ |
| 7050 | #pragma clang diagnostic push |
| 7051 | #pragma clang diagnostic ignored "-Wsign-conversion" |
| 7052 | #endif |
| 7053 | |
| 7054 | // out_data must be allocated initially with the block-header size |
| 7055 | // of the current image(-part) type |
| 7056 | static bool EncodePixelData(/* out */ std::vector<unsigned char>& out_data, |
| 7057 | const unsigned char* const* images, |
| 7058 | int compression_type, |
| 7059 | int /*line_order*/, |
| 7060 | int width, // for tiled : tile.width |
| 7061 | int /*height*/, // for tiled : header.tile_size_y |
| 7062 | int x_stride, // for tiled : header.tile_size_x |
| 7063 | int line_no, // for tiled : 0 |
| 7064 | int num_lines, // for tiled : tile.height |
| 7065 | size_t pixel_data_size, |
| 7066 | const std::vector<ChannelInfo>& channels, |
| 7067 | const std::vector<size_t>& channel_offset_list, |
| 7068 | std::string *err, |
| 7069 | const void* compression_param = 0) // zfp compression param |
| 7070 | { |
| 7071 | size_t buf_size = static_cast<size_t>(width) * |
| 7072 | static_cast<size_t>(num_lines) * |
| 7073 | static_cast<size_t>(pixel_data_size); |
| 7074 | //int last2bit = (buf_size & 3); |
| 7075 | // buf_size must be multiple of four |
| 7076 | //if(last2bit) buf_size += 4 - last2bit; |
| 7077 | std::vector<unsigned char> buf(buf_size); |
| 7078 | |
| 7079 | size_t start_y = static_cast<size_t>(line_no); |
| 7080 | for (size_t c = 0; c < channels.size(); c++) { |
| 7081 | if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| 7082 | if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| 7083 | for (int y = 0; y < num_lines; y++) { |
| 7084 | // Assume increasing Y |
| 7085 | float *line_ptr = reinterpret_cast<float *>(&buf.at( |
| 7086 | n: static_cast<size_t>(pixel_data_size * size_t(y) * size_t(width)) + |
| 7087 | channel_offset_list[c] * |
| 7088 | static_cast<size_t>(width))); |
| 7089 | for (int x = 0; x < width; x++) { |
| 7090 | tinyexr::FP16 h16; |
| 7091 | h16.u = reinterpret_cast<const unsigned short * const *>( |
| 7092 | images)[c][(y + start_y) * size_t(x_stride) + size_t(x)]; |
| 7093 | |
| 7094 | tinyexr::FP32 f32 = half_to_float(h: h16); |
| 7095 | |
| 7096 | tinyexr::swap4(val: &f32.f); |
| 7097 | |
| 7098 | // line_ptr[x] = f32.f; |
| 7099 | tinyexr::cpy4(dst_val: line_ptr + x, src_val: &(f32.f)); |
| 7100 | } |
| 7101 | } |
| 7102 | } else if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| 7103 | for (int y = 0; y < num_lines; y++) { |
| 7104 | // Assume increasing Y |
| 7105 | unsigned short *line_ptr = reinterpret_cast<unsigned short *>( |
| 7106 | &buf.at(n: static_cast<size_t>(pixel_data_size * y * |
| 7107 | width) + |
| 7108 | channel_offset_list[c] * |
| 7109 | static_cast<size_t>(width))); |
| 7110 | for (int x = 0; x < width; x++) { |
| 7111 | unsigned short val = reinterpret_cast<const unsigned short * const *>( |
| 7112 | images)[c][(y + start_y) * x_stride + x]; |
| 7113 | |
| 7114 | tinyexr::swap2(val: &val); |
| 7115 | |
| 7116 | // line_ptr[x] = val; |
| 7117 | tinyexr::cpy2(dst_val: line_ptr + x, src_val: &val); |
| 7118 | } |
| 7119 | } |
| 7120 | } else { |
| 7121 | if (err) { |
| 7122 | (*err) += "Invalid requested_pixel_type.\n" ; |
| 7123 | } |
| 7124 | return false; |
| 7125 | } |
| 7126 | |
| 7127 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| 7128 | if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| 7129 | for (int y = 0; y < num_lines; y++) { |
| 7130 | // Assume increasing Y |
| 7131 | unsigned short *line_ptr = reinterpret_cast<unsigned short *>( |
| 7132 | &buf.at(n: static_cast<size_t>(pixel_data_size * y * |
| 7133 | width) + |
| 7134 | channel_offset_list[c] * |
| 7135 | static_cast<size_t>(width))); |
| 7136 | for (int x = 0; x < width; x++) { |
| 7137 | tinyexr::FP32 f32; |
| 7138 | f32.f = reinterpret_cast<const float * const *>( |
| 7139 | images)[c][(y + start_y) * x_stride + x]; |
| 7140 | |
| 7141 | tinyexr::FP16 h16; |
| 7142 | h16 = float_to_half_full(f: f32); |
| 7143 | |
| 7144 | tinyexr::swap2(val: reinterpret_cast<unsigned short *>(&h16.u)); |
| 7145 | |
| 7146 | // line_ptr[x] = h16.u; |
| 7147 | tinyexr::cpy2(dst_val: line_ptr + x, src_val: &(h16.u)); |
| 7148 | } |
| 7149 | } |
| 7150 | } else if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| 7151 | for (int y = 0; y < num_lines; y++) { |
| 7152 | // Assume increasing Y |
| 7153 | float *line_ptr = reinterpret_cast<float *>(&buf.at( |
| 7154 | n: static_cast<size_t>(pixel_data_size * y * width) + |
| 7155 | channel_offset_list[c] * |
| 7156 | static_cast<size_t>(width))); |
| 7157 | for (int x = 0; x < width; x++) { |
| 7158 | float val = reinterpret_cast<const float * const *>( |
| 7159 | images)[c][(y + start_y) * x_stride + x]; |
| 7160 | |
| 7161 | tinyexr::swap4(val: &val); |
| 7162 | |
| 7163 | // line_ptr[x] = val; |
| 7164 | tinyexr::cpy4(dst_val: line_ptr + x, src_val: &val); |
| 7165 | } |
| 7166 | } |
| 7167 | } else { |
| 7168 | if (err) { |
| 7169 | (*err) += "Invalid requested_pixel_type.\n" ; |
| 7170 | } |
| 7171 | return false; |
| 7172 | } |
| 7173 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| 7174 | for (int y = 0; y < num_lines; y++) { |
| 7175 | // Assume increasing Y |
| 7176 | unsigned int *line_ptr = reinterpret_cast<unsigned int *>(&buf.at( |
| 7177 | n: static_cast<size_t>(pixel_data_size * y * width) + |
| 7178 | channel_offset_list[c] * static_cast<size_t>(width))); |
| 7179 | for (int x = 0; x < width; x++) { |
| 7180 | unsigned int val = reinterpret_cast<const unsigned int * const *>( |
| 7181 | images)[c][(y + start_y) * x_stride + x]; |
| 7182 | |
| 7183 | tinyexr::swap4(val: &val); |
| 7184 | |
| 7185 | // line_ptr[x] = val; |
| 7186 | tinyexr::cpy4(dst_val: line_ptr + x, src_val: &val); |
| 7187 | } |
| 7188 | } |
| 7189 | } |
| 7190 | } |
| 7191 | |
| 7192 | if (compression_type == TINYEXR_COMPRESSIONTYPE_NONE) { |
| 7193 | // 4 byte: scan line |
| 7194 | // 4 byte: data size |
| 7195 | // ~ : pixel data(uncompressed) |
| 7196 | out_data.insert(position: out_data.end(), first: buf.begin(), last: buf.end()); |
| 7197 | |
| 7198 | } else if ((compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) || |
| 7199 | (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP)) { |
| 7200 | #if defined(TINYEXR_USE_MINIZ) && (TINYEXR_USE_MINIZ==1) |
| 7201 | std::vector<unsigned char> block(mz_compressBound( |
| 7202 | static_cast<unsigned long>(buf.size()))); |
| 7203 | #elif TINYEXR_USE_STB_ZLIB |
| 7204 | // there is no compressBound() function, so we use a value that |
| 7205 | // is grossly overestimated, but should always work |
| 7206 | std::vector<unsigned char> block(256 + 2 * buf.size()); |
| 7207 | #elif defined(TINYEXR_USE_NANOZLIB) && (TINYEXR_USE_NANOZLIB == 1) |
| 7208 | std::vector<unsigned char> block(nanoz_compressBound( |
| 7209 | static_cast<unsigned long>(buf.size()))); |
| 7210 | #else |
| 7211 | std::vector<unsigned char> block( |
| 7212 | compressBound(sourceLen: static_cast<uLong>(buf.size()))); |
| 7213 | #endif |
| 7214 | tinyexr::tinyexr_uint64 outSize = block.size(); |
| 7215 | |
| 7216 | if (!tinyexr::CompressZip(dst: &block.at(n: 0), compressedSize&: outSize, |
| 7217 | src: reinterpret_cast<const unsigned char *>(&buf.at(n: 0)), |
| 7218 | src_size: static_cast<unsigned long>(buf.size()))) { |
| 7219 | if (err) { |
| 7220 | (*err) += "Zip compresssion failed.\n" ; |
| 7221 | } |
| 7222 | return false; |
| 7223 | } |
| 7224 | |
| 7225 | // 4 byte: scan line |
| 7226 | // 4 byte: data size |
| 7227 | // ~ : pixel data(compressed) |
| 7228 | unsigned int data_len = static_cast<unsigned int>(outSize); // truncate |
| 7229 | |
| 7230 | out_data.insert(position: out_data.end(), first: block.begin(), last: block.begin() + data_len); |
| 7231 | |
| 7232 | } else if (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) { |
| 7233 | // (buf.size() * 3) / 2 would be enough. |
| 7234 | std::vector<unsigned char> block((buf.size() * 3) / 2); |
| 7235 | |
| 7236 | tinyexr::tinyexr_uint64 outSize = block.size(); |
| 7237 | |
| 7238 | if (!tinyexr::CompressRle(dst: &block.at(n: 0), compressedSize&: outSize, |
| 7239 | src: reinterpret_cast<const unsigned char *>(&buf.at(n: 0)), |
| 7240 | src_size: static_cast<unsigned long>(buf.size()))) { |
| 7241 | if (err) { |
| 7242 | (*err) += "RLE compresssion failed.\n" ; |
| 7243 | } |
| 7244 | return false; |
| 7245 | } |
| 7246 | |
| 7247 | // 4 byte: scan line |
| 7248 | // 4 byte: data size |
| 7249 | // ~ : pixel data(compressed) |
| 7250 | unsigned int data_len = static_cast<unsigned int>(outSize); // truncate |
| 7251 | out_data.insert(position: out_data.end(), first: block.begin(), last: block.begin() + data_len); |
| 7252 | |
| 7253 | } else if (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| 7254 | #if TINYEXR_USE_PIZ |
| 7255 | unsigned int bufLen = |
| 7256 | 8192 + static_cast<unsigned int>( |
| 7257 | 2 * static_cast<unsigned int>( |
| 7258 | buf.size())); // @fixme { compute good bound. } |
| 7259 | std::vector<unsigned char> block(bufLen); |
| 7260 | unsigned int outSize = static_cast<unsigned int>(block.size()); |
| 7261 | |
| 7262 | if (!CompressPiz(outPtr: &block.at(n: 0), outSize: &outSize, |
| 7263 | inPtr: reinterpret_cast<const unsigned char *>(&buf.at(n: 0)), |
| 7264 | inSize: buf.size(), channelInfo: channels, data_width: width, num_lines)) { |
| 7265 | if (err) { |
| 7266 | (*err) += "PIZ compresssion failed.\n" ; |
| 7267 | } |
| 7268 | return false; |
| 7269 | } |
| 7270 | |
| 7271 | // 4 byte: scan line |
| 7272 | // 4 byte: data size |
| 7273 | // ~ : pixel data(compressed) |
| 7274 | unsigned int data_len = outSize; |
| 7275 | out_data.insert(position: out_data.end(), first: block.begin(), last: block.begin() + data_len); |
| 7276 | |
| 7277 | #else |
| 7278 | if (err) { |
| 7279 | (*err) += "PIZ compression is disabled in this build.\n" ; |
| 7280 | } |
| 7281 | return false; |
| 7282 | #endif |
| 7283 | } else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| 7284 | #if TINYEXR_USE_ZFP |
| 7285 | const ZFPCompressionParam* zfp_compression_param = reinterpret_cast<const ZFPCompressionParam*>(compression_param); |
| 7286 | std::vector<unsigned char> block; |
| 7287 | unsigned int outSize; |
| 7288 | |
| 7289 | tinyexr::CompressZfp( |
| 7290 | &block, &outSize, reinterpret_cast<const float *>(&buf.at(0)), |
| 7291 | width, num_lines, static_cast<int>(channels.size()), *zfp_compression_param); |
| 7292 | |
| 7293 | // 4 byte: scan line |
| 7294 | // 4 byte: data size |
| 7295 | // ~ : pixel data(compressed) |
| 7296 | unsigned int data_len = outSize; |
| 7297 | out_data.insert(out_data.end(), block.begin(), block.begin() + data_len); |
| 7298 | |
| 7299 | #else |
| 7300 | if (err) { |
| 7301 | (*err) += "ZFP compression is disabled in this build.\n" ; |
| 7302 | } |
| 7303 | (void)compression_param; |
| 7304 | return false; |
| 7305 | #endif |
| 7306 | } else { |
| 7307 | return false; |
| 7308 | } |
| 7309 | |
| 7310 | return true; |
| 7311 | } |
| 7312 | |
| 7313 | static int (const EXRImage* level_image, const EXRHeader* , |
| 7314 | const std::vector<tinyexr::ChannelInfo>& channels, |
| 7315 | std::vector<std::vector<unsigned char> >& data_list, |
| 7316 | size_t start_index, // for data_list |
| 7317 | int num_x_tiles, int num_y_tiles, |
| 7318 | const std::vector<size_t>& channel_offset_list, |
| 7319 | int pixel_data_size, |
| 7320 | const void* compression_param, // must be set if zfp compression is enabled |
| 7321 | std::string* err) { |
| 7322 | int num_tiles = num_x_tiles * num_y_tiles; |
| 7323 | if (num_tiles != level_image->num_tiles) { |
| 7324 | if (err) { |
| 7325 | (*err) += "Invalid number of tiles in argument.\n" ; |
| 7326 | } |
| 7327 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 7328 | } |
| 7329 | |
| 7330 | if ((exr_header->tile_size_x > level_image->width || exr_header->tile_size_y > level_image->height) && |
| 7331 | level_image->level_x == 0 && level_image->level_y == 0) { |
| 7332 | if (err) { |
| 7333 | (*err) += "Failed to encode tile data.\n" ; |
| 7334 | } |
| 7335 | return TINYEXR_ERROR_INVALID_DATA; |
| 7336 | } |
| 7337 | |
| 7338 | |
| 7339 | #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| 7340 | std::atomic<bool> invalid_data(false); |
| 7341 | #else |
| 7342 | bool invalid_data(false); |
| 7343 | #endif |
| 7344 | |
| 7345 | #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| 7346 | std::vector<std::thread> workers; |
| 7347 | std::atomic<int> tile_count(0); |
| 7348 | |
| 7349 | int num_threads = std::max(a: 1, b: int(std::thread::hardware_concurrency())); |
| 7350 | #if (TINYEXR_MAX_THREADS > 0) |
| 7351 | num_threads = std::min(num_threads,TINYEXR_MAX_THREADS); |
| 7352 | #endif |
| 7353 | if (num_threads > int(num_tiles)) { |
| 7354 | num_threads = int(num_tiles); |
| 7355 | } |
| 7356 | |
| 7357 | for (int t = 0; t < num_threads; t++) { |
| 7358 | workers.emplace_back(args: std::thread([&]() { |
| 7359 | int i = 0; |
| 7360 | while ((i = tile_count++) < num_tiles) { |
| 7361 | |
| 7362 | #else |
| 7363 | // Use signed int since some OpenMP compiler doesn't allow unsigned type for |
| 7364 | // `parallel for` |
| 7365 | #if TINYEXR_USE_OPENMP |
| 7366 | #pragma omp parallel for |
| 7367 | #endif |
| 7368 | for (int i = 0; i < num_tiles; i++) { |
| 7369 | |
| 7370 | #endif |
| 7371 | size_t tile_idx = static_cast<size_t>(i); |
| 7372 | size_t data_idx = tile_idx + start_index; |
| 7373 | |
| 7374 | int x_tile = i % num_x_tiles; |
| 7375 | int y_tile = i / num_x_tiles; |
| 7376 | |
| 7377 | EXRTile& tile = level_image->tiles[tile_idx]; |
| 7378 | |
| 7379 | const unsigned char* const* images = |
| 7380 | static_cast<const unsigned char* const*>(tile.images); |
| 7381 | |
| 7382 | data_list[data_idx].resize(new_size: 5*sizeof(int)); |
| 7383 | size_t = data_list[data_idx].size(); |
| 7384 | bool ret = EncodePixelData(out_data&: data_list[data_idx], |
| 7385 | images, |
| 7386 | compression_type: exr_header->compression_type, |
| 7387 | 0, // increasing y |
| 7388 | width: tile.width, |
| 7389 | exr_header->tile_size_y, |
| 7390 | x_stride: exr_header->tile_size_x, |
| 7391 | line_no: 0, |
| 7392 | num_lines: tile.height, |
| 7393 | pixel_data_size, |
| 7394 | channels, |
| 7395 | channel_offset_list, |
| 7396 | err, compression_param); |
| 7397 | if (!ret) { |
| 7398 | invalid_data = true; |
| 7399 | continue; |
| 7400 | } |
| 7401 | if (data_list[data_idx].size() <= data_header_size) { |
| 7402 | invalid_data = true; |
| 7403 | continue; |
| 7404 | } |
| 7405 | |
| 7406 | int data_len = static_cast<int>(data_list[data_idx].size() - data_header_size); |
| 7407 | //tileX, tileY, levelX, levelY // pixel_data_size(int) |
| 7408 | memcpy(dest: &data_list[data_idx][0], src: &x_tile, n: sizeof(int)); |
| 7409 | memcpy(dest: &data_list[data_idx][4], src: &y_tile, n: sizeof(int)); |
| 7410 | memcpy(dest: &data_list[data_idx][8], src: &level_image->level_x, n: sizeof(int)); |
| 7411 | memcpy(dest: &data_list[data_idx][12], src: &level_image->level_y, n: sizeof(int)); |
| 7412 | memcpy(dest: &data_list[data_idx][16], src: &data_len, n: sizeof(int)); |
| 7413 | |
| 7414 | swap4(val: reinterpret_cast<int*>(&data_list[data_idx][0])); |
| 7415 | swap4(val: reinterpret_cast<int*>(&data_list[data_idx][4])); |
| 7416 | swap4(val: reinterpret_cast<int*>(&data_list[data_idx][8])); |
| 7417 | swap4(val: reinterpret_cast<int*>(&data_list[data_idx][12])); |
| 7418 | swap4(val: reinterpret_cast<int*>(&data_list[data_idx][16])); |
| 7419 | |
| 7420 | #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| 7421 | } |
| 7422 | })); |
| 7423 | } |
| 7424 | |
| 7425 | for (auto &t : workers) { |
| 7426 | t.join(); |
| 7427 | } |
| 7428 | #else |
| 7429 | } // omp parallel |
| 7430 | #endif |
| 7431 | |
| 7432 | if (invalid_data) { |
| 7433 | if (err) { |
| 7434 | (*err) += "Failed to encode tile data.\n" ; |
| 7435 | } |
| 7436 | return TINYEXR_ERROR_INVALID_DATA; |
| 7437 | } |
| 7438 | return TINYEXR_SUCCESS; |
| 7439 | } |
| 7440 | |
| 7441 | static int NumScanlines(int compression_type) { |
| 7442 | int num_scanlines = 1; |
| 7443 | if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) { |
| 7444 | num_scanlines = 16; |
| 7445 | } else if (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| 7446 | num_scanlines = 32; |
| 7447 | } else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| 7448 | num_scanlines = 16; |
| 7449 | } |
| 7450 | return num_scanlines; |
| 7451 | } |
| 7452 | |
| 7453 | static int (const EXRImage* exr_image, const EXRHeader* , |
| 7454 | const std::vector<ChannelInfo>& channels, |
| 7455 | int num_blocks, |
| 7456 | tinyexr_uint64 chunk_offset, // starting offset of current chunk |
| 7457 | bool is_multipart, |
| 7458 | OffsetData& offset_data, // output block offsets, must be initialized |
| 7459 | std::vector<std::vector<unsigned char> >& data_list, // output |
| 7460 | tinyexr_uint64& total_size, // output: ending offset of current chunk |
| 7461 | std::string* err) { |
| 7462 | int num_scanlines = NumScanlines(compression_type: exr_header->compression_type); |
| 7463 | |
| 7464 | data_list.resize(new_size: num_blocks); |
| 7465 | |
| 7466 | std::vector<size_t> channel_offset_list( |
| 7467 | static_cast<size_t>(exr_header->num_channels)); |
| 7468 | |
| 7469 | int pixel_data_size = 0; |
| 7470 | { |
| 7471 | size_t channel_offset = 0; |
| 7472 | for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) { |
| 7473 | channel_offset_list[c] = channel_offset; |
| 7474 | if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| 7475 | pixel_data_size += sizeof(unsigned short); |
| 7476 | channel_offset += sizeof(unsigned short); |
| 7477 | } else if (channels[c].requested_pixel_type == |
| 7478 | TINYEXR_PIXELTYPE_FLOAT) { |
| 7479 | pixel_data_size += sizeof(float); |
| 7480 | channel_offset += sizeof(float); |
| 7481 | } else if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| 7482 | pixel_data_size += sizeof(unsigned int); |
| 7483 | channel_offset += sizeof(unsigned int); |
| 7484 | } else { |
| 7485 | if (err) { |
| 7486 | (*err) += "Invalid requested_pixel_type.\n" ; |
| 7487 | } |
| 7488 | return TINYEXR_ERROR_INVALID_DATA; |
| 7489 | } |
| 7490 | } |
| 7491 | } |
| 7492 | |
| 7493 | const void* compression_param = 0; |
| 7494 | #if TINYEXR_USE_ZFP |
| 7495 | tinyexr::ZFPCompressionParam zfp_compression_param; |
| 7496 | |
| 7497 | // Use ZFP compression parameter from custom attributes(if such a parameter |
| 7498 | // exists) |
| 7499 | { |
| 7500 | std::string e; |
| 7501 | bool ret = tinyexr::FindZFPCompressionParam( |
| 7502 | &zfp_compression_param, exr_header->custom_attributes, |
| 7503 | exr_header->num_custom_attributes, &e); |
| 7504 | |
| 7505 | if (!ret) { |
| 7506 | // Use predefined compression parameter. |
| 7507 | zfp_compression_param.type = 0; |
| 7508 | zfp_compression_param.rate = 2; |
| 7509 | } |
| 7510 | compression_param = &zfp_compression_param; |
| 7511 | } |
| 7512 | #endif |
| 7513 | |
| 7514 | tinyexr_uint64 offset = chunk_offset; |
| 7515 | tinyexr_uint64 doffset = is_multipart ? 4u : 0u; |
| 7516 | |
| 7517 | if (exr_image->tiles) { |
| 7518 | const EXRImage* level_image = exr_image; |
| 7519 | size_t block_idx = 0; |
| 7520 | //tinyexr::tinyexr_uint64 block_data_size = 0; |
| 7521 | int num_levels = (exr_header->tile_level_mode != TINYEXR_TILE_RIPMAP_LEVELS) ? |
| 7522 | offset_data.num_x_levels : (offset_data.num_x_levels * offset_data.num_y_levels); |
| 7523 | for (int level_index = 0; level_index < num_levels; ++level_index) { |
| 7524 | if (!level_image) { |
| 7525 | if (err) { |
| 7526 | (*err) += "Invalid number of tiled levels for EncodeChunk\n" ; |
| 7527 | } |
| 7528 | return TINYEXR_ERROR_INVALID_DATA; |
| 7529 | } |
| 7530 | |
| 7531 | int level_index_from_image = LevelIndex(lx: level_image->level_x, ly: level_image->level_y, |
| 7532 | tile_level_mode: exr_header->tile_level_mode, num_x_levels: offset_data.num_x_levels); |
| 7533 | if (level_index_from_image < 0) { |
| 7534 | if (err) { |
| 7535 | (*err) += "Invalid tile level mode\n" ; |
| 7536 | } |
| 7537 | return TINYEXR_ERROR_INVALID_DATA; |
| 7538 | } |
| 7539 | |
| 7540 | if (level_index_from_image != level_index) { |
| 7541 | if (err) { |
| 7542 | (*err) += "Incorrect level ordering in tiled image\n" ; |
| 7543 | } |
| 7544 | return TINYEXR_ERROR_INVALID_DATA; |
| 7545 | } |
| 7546 | int num_y_tiles = int(offset_data.offsets[level_index].size()); |
| 7547 | if (num_y_tiles <= 0) { |
| 7548 | if (err) { |
| 7549 | (*err) += "Invalid Y tile size\n" ; |
| 7550 | } |
| 7551 | return TINYEXR_ERROR_INVALID_DATA; |
| 7552 | } |
| 7553 | |
| 7554 | int num_x_tiles = int(offset_data.offsets[level_index][0].size()); |
| 7555 | if (num_x_tiles <= 0) { |
| 7556 | if (err) { |
| 7557 | (*err) += "Invalid X tile size\n" ; |
| 7558 | } |
| 7559 | return TINYEXR_ERROR_INVALID_DATA; |
| 7560 | } |
| 7561 | |
| 7562 | std::string e; |
| 7563 | int ret = EncodeTiledLevel(level_image, |
| 7564 | exr_header, |
| 7565 | channels, |
| 7566 | data_list, |
| 7567 | start_index: block_idx, |
| 7568 | num_x_tiles, |
| 7569 | num_y_tiles, |
| 7570 | channel_offset_list, |
| 7571 | pixel_data_size, |
| 7572 | compression_param, |
| 7573 | err: &e); |
| 7574 | if (ret != TINYEXR_SUCCESS) { |
| 7575 | if (!e.empty() && err) { |
| 7576 | (*err) += e; |
| 7577 | } |
| 7578 | return ret; |
| 7579 | } |
| 7580 | |
| 7581 | for (size_t j = 0; j < static_cast<size_t>(num_y_tiles); ++j) |
| 7582 | for (size_t i = 0; i < static_cast<size_t>(num_x_tiles); ++i) { |
| 7583 | offset_data.offsets[level_index][j][i] = offset; |
| 7584 | swap8(val: reinterpret_cast<tinyexr_uint64*>(&offset_data.offsets[level_index][j][i])); |
| 7585 | offset += data_list[block_idx].size() + doffset; |
| 7586 | //block_data_size += data_list[block_idx].size(); |
| 7587 | ++block_idx; |
| 7588 | } |
| 7589 | level_image = level_image->next_level; |
| 7590 | } |
| 7591 | TINYEXR_CHECK_AND_RETURN_C(static_cast<int>(block_idx) == num_blocks, TINYEXR_ERROR_INVALID_DATA); |
| 7592 | total_size = offset; |
| 7593 | } else { // scanlines |
| 7594 | std::vector<tinyexr::tinyexr_uint64>& offsets = offset_data.offsets[0][0]; |
| 7595 | |
| 7596 | #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| 7597 | std::atomic<bool> invalid_data(false); |
| 7598 | std::vector<std::thread> workers; |
| 7599 | std::atomic<int> block_count(0); |
| 7600 | |
| 7601 | int num_threads = std::min(a: std::max(a: 1, b: int(std::thread::hardware_concurrency())), b: num_blocks); |
| 7602 | #if (TINYEXR_MAX_THREADS > 0) |
| 7603 | num_threads = std::min(num_threads,TINYEXR_MAX_THREADS); |
| 7604 | #endif |
| 7605 | for (int t = 0; t < num_threads; t++) { |
| 7606 | workers.emplace_back(args: std::thread([&]() { |
| 7607 | int i = 0; |
| 7608 | while ((i = block_count++) < num_blocks) { |
| 7609 | |
| 7610 | #else |
| 7611 | bool invalid_data(false); |
| 7612 | #if TINYEXR_USE_OPENMP |
| 7613 | #pragma omp parallel for |
| 7614 | #endif |
| 7615 | for (int i = 0; i < num_blocks; i++) { |
| 7616 | |
| 7617 | #endif |
| 7618 | int start_y = num_scanlines * i; |
| 7619 | int end_Y = (std::min)(a: num_scanlines * (i + 1), b: exr_image->height); |
| 7620 | int num_lines = end_Y - start_y; |
| 7621 | |
| 7622 | const unsigned char* const* images = |
| 7623 | static_cast<const unsigned char* const*>(exr_image->images); |
| 7624 | |
| 7625 | data_list[i].resize(new_size: 2*sizeof(int)); |
| 7626 | size_t = data_list[i].size(); |
| 7627 | |
| 7628 | bool ret = EncodePixelData(out_data&: data_list[i], |
| 7629 | images, |
| 7630 | compression_type: exr_header->compression_type, |
| 7631 | 0, // increasing y |
| 7632 | width: exr_image->width, |
| 7633 | exr_image->height, |
| 7634 | x_stride: exr_image->width, |
| 7635 | line_no: start_y, |
| 7636 | num_lines, |
| 7637 | pixel_data_size, |
| 7638 | channels, |
| 7639 | channel_offset_list, |
| 7640 | err, |
| 7641 | compression_param); |
| 7642 | if (!ret) { |
| 7643 | invalid_data = true; |
| 7644 | continue; // "break" cannot be used with OpenMP |
| 7645 | } |
| 7646 | if (data_list[i].size() <= data_header_size) { |
| 7647 | invalid_data = true; |
| 7648 | continue; // "break" cannot be used with OpenMP |
| 7649 | } |
| 7650 | int data_len = static_cast<int>(data_list[i].size() - data_header_size); |
| 7651 | memcpy(dest: &data_list[i][0], src: &start_y, n: sizeof(int)); |
| 7652 | memcpy(dest: &data_list[i][4], src: &data_len, n: sizeof(int)); |
| 7653 | |
| 7654 | swap4(val: reinterpret_cast<int*>(&data_list[i][0])); |
| 7655 | swap4(val: reinterpret_cast<int*>(&data_list[i][4])); |
| 7656 | #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| 7657 | } |
| 7658 | })); |
| 7659 | } |
| 7660 | |
| 7661 | for (auto &t : workers) { |
| 7662 | t.join(); |
| 7663 | } |
| 7664 | #else |
| 7665 | } // omp parallel |
| 7666 | #endif |
| 7667 | |
| 7668 | if (invalid_data) { |
| 7669 | if (err) { |
| 7670 | (*err) += "Failed to encode scanline data.\n" ; |
| 7671 | } |
| 7672 | return TINYEXR_ERROR_INVALID_DATA; |
| 7673 | } |
| 7674 | |
| 7675 | for (size_t i = 0; i < static_cast<size_t>(num_blocks); i++) { |
| 7676 | offsets[i] = offset; |
| 7677 | tinyexr::swap8(val: reinterpret_cast<tinyexr::tinyexr_uint64 *>(&offsets[i])); |
| 7678 | offset += data_list[i].size() + doffset; |
| 7679 | } |
| 7680 | |
| 7681 | total_size = static_cast<size_t>(offset); |
| 7682 | } |
| 7683 | return TINYEXR_SUCCESS; |
| 7684 | } |
| 7685 | |
| 7686 | // can save a single or multi-part image (no deep* formats) |
| 7687 | static size_t (const EXRImage* exr_images, |
| 7688 | const EXRHeader** , |
| 7689 | unsigned int num_parts, |
| 7690 | unsigned char** memory_out, const char** err) { |
| 7691 | if (exr_images == NULL || exr_headers == NULL || num_parts == 0 || |
| 7692 | memory_out == NULL) { |
| 7693 | SetErrorMessage(msg: "Invalid argument for SaveEXRNPartImageToMemory" , |
| 7694 | err); |
| 7695 | return 0; |
| 7696 | } |
| 7697 | { |
| 7698 | for (unsigned int i = 0; i < num_parts; ++i) { |
| 7699 | if (exr_headers[i]->compression_type < 0) { |
| 7700 | SetErrorMessage(msg: "Invalid argument for SaveEXRNPartImageToMemory" , |
| 7701 | err); |
| 7702 | return 0; |
| 7703 | } |
| 7704 | #if !TINYEXR_USE_PIZ |
| 7705 | if (exr_headers[i]->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| 7706 | SetErrorMessage("PIZ compression is not supported in this build" , |
| 7707 | err); |
| 7708 | return 0; |
| 7709 | } |
| 7710 | #endif |
| 7711 | if (exr_headers[i]->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| 7712 | #if !TINYEXR_USE_ZFP |
| 7713 | SetErrorMessage(msg: "ZFP compression is not supported in this build" , |
| 7714 | err); |
| 7715 | return 0; |
| 7716 | #else |
| 7717 | // All channels must be fp32. |
| 7718 | // No fp16 support in ZFP atm(as of 2023 June) |
| 7719 | // https://github.com/LLNL/fpzip/issues/2 |
| 7720 | for (int c = 0; c < exr_headers[i]->num_channels; ++c) { |
| 7721 | if (exr_headers[i]->requested_pixel_types[c] != TINYEXR_PIXELTYPE_FLOAT) { |
| 7722 | SetErrorMessage("Pixel type must be FLOAT for ZFP compression" , |
| 7723 | err); |
| 7724 | return 0; |
| 7725 | } |
| 7726 | } |
| 7727 | #endif |
| 7728 | } |
| 7729 | } |
| 7730 | } |
| 7731 | |
| 7732 | std::vector<unsigned char> memory; |
| 7733 | |
| 7734 | // Header |
| 7735 | { |
| 7736 | const char [] = { 0x76, 0x2f, 0x31, 0x01 }; |
| 7737 | memory.insert(position: memory.end(), first: header, last: header + 4); |
| 7738 | } |
| 7739 | |
| 7740 | // Version |
| 7741 | // using value from the first header |
| 7742 | int long_name = exr_headers[0]->long_name; |
| 7743 | { |
| 7744 | char marker[] = { 2, 0, 0, 0 }; |
| 7745 | /* @todo |
| 7746 | if (exr_header->non_image) { |
| 7747 | marker[1] |= 0x8; |
| 7748 | } |
| 7749 | */ |
| 7750 | // tiled |
| 7751 | if (num_parts == 1 && exr_images[0].tiles) { |
| 7752 | marker[1] |= 0x2; |
| 7753 | } |
| 7754 | // long_name |
| 7755 | if (long_name) { |
| 7756 | marker[1] |= 0x4; |
| 7757 | } |
| 7758 | // multipart |
| 7759 | if (num_parts > 1) { |
| 7760 | marker[1] |= 0x10; |
| 7761 | } |
| 7762 | memory.insert(position: memory.end(), first: marker, last: marker + 4); |
| 7763 | } |
| 7764 | |
| 7765 | int total_chunk_count = 0; |
| 7766 | std::vector<int> chunk_count(num_parts); |
| 7767 | std::vector<OffsetData> offset_data(num_parts); |
| 7768 | for (unsigned int i = 0; i < num_parts; ++i) { |
| 7769 | if (!exr_images[i].tiles) { |
| 7770 | int num_scanlines = NumScanlines(compression_type: exr_headers[i]->compression_type); |
| 7771 | chunk_count[i] = |
| 7772 | (exr_images[i].height + num_scanlines - 1) / num_scanlines; |
| 7773 | InitSingleResolutionOffsets(offset_data&: offset_data[i], num_blocks: chunk_count[i]); |
| 7774 | total_chunk_count += chunk_count[i]; |
| 7775 | } else { |
| 7776 | { |
| 7777 | std::vector<int> num_x_tiles, num_y_tiles; |
| 7778 | if (!PrecalculateTileInfo(num_x_tiles, num_y_tiles, exr_header: exr_headers[i])) { |
| 7779 | SetErrorMessage(msg: "Failed to precalculate Tile info" , |
| 7780 | err); |
| 7781 | return TINYEXR_ERROR_INVALID_DATA; |
| 7782 | } |
| 7783 | int ntiles = InitTileOffsets(offset_data&: offset_data[i], exr_header: exr_headers[i], num_x_tiles, num_y_tiles); |
| 7784 | if (ntiles > 0) { |
| 7785 | chunk_count[i] = ntiles; |
| 7786 | } else { |
| 7787 | SetErrorMessage(msg: "Failed to compute Tile offsets" , |
| 7788 | err); |
| 7789 | return TINYEXR_ERROR_INVALID_DATA; |
| 7790 | |
| 7791 | } |
| 7792 | total_chunk_count += chunk_count[i]; |
| 7793 | } |
| 7794 | } |
| 7795 | } |
| 7796 | // Write attributes to memory buffer. |
| 7797 | std::vector< std::vector<tinyexr::ChannelInfo> > channels(num_parts); |
| 7798 | { |
| 7799 | std::set<std::string> partnames; |
| 7800 | for (unsigned int i = 0; i < num_parts; ++i) { |
| 7801 | //channels |
| 7802 | { |
| 7803 | std::vector<unsigned char> data; |
| 7804 | |
| 7805 | for (int c = 0; c < exr_headers[i]->num_channels; c++) { |
| 7806 | tinyexr::ChannelInfo info; |
| 7807 | info.p_linear = 0; |
| 7808 | info.pixel_type = exr_headers[i]->pixel_types[c]; |
| 7809 | info.requested_pixel_type = exr_headers[i]->requested_pixel_types[c]; |
| 7810 | info.x_sampling = 1; |
| 7811 | info.y_sampling = 1; |
| 7812 | info.name = std::string(exr_headers[i]->channels[c].name); |
| 7813 | channels[i].push_back(x: info); |
| 7814 | } |
| 7815 | |
| 7816 | tinyexr::WriteChannelInfo(data, channels: channels[i]); |
| 7817 | |
| 7818 | tinyexr::WriteAttributeToMemory(out: &memory, name: "channels" , type: "chlist" , data: &data.at(n: 0), |
| 7819 | len: static_cast<int>(data.size())); |
| 7820 | } |
| 7821 | |
| 7822 | { |
| 7823 | int comp = exr_headers[i]->compression_type; |
| 7824 | swap4(val: &comp); |
| 7825 | WriteAttributeToMemory( |
| 7826 | out: &memory, name: "compression" , type: "compression" , |
| 7827 | data: reinterpret_cast<const unsigned char*>(&comp), len: 1); |
| 7828 | } |
| 7829 | |
| 7830 | { |
| 7831 | int data[4] = { 0, 0, exr_images[i].width - 1, exr_images[i].height - 1 }; |
| 7832 | swap4(val: &data[0]); |
| 7833 | swap4(val: &data[1]); |
| 7834 | swap4(val: &data[2]); |
| 7835 | swap4(val: &data[3]); |
| 7836 | WriteAttributeToMemory( |
| 7837 | out: &memory, name: "dataWindow" , type: "box2i" , |
| 7838 | data: reinterpret_cast<const unsigned char*>(data), len: sizeof(int) * 4); |
| 7839 | |
| 7840 | int data0[4] = { 0, 0, exr_images[0].width - 1, exr_images[0].height - 1 }; |
| 7841 | swap4(val: &data0[0]); |
| 7842 | swap4(val: &data0[1]); |
| 7843 | swap4(val: &data0[2]); |
| 7844 | swap4(val: &data0[3]); |
| 7845 | // Note: must be the same across parts (currently, using value from the first header) |
| 7846 | WriteAttributeToMemory( |
| 7847 | out: &memory, name: "displayWindow" , type: "box2i" , |
| 7848 | data: reinterpret_cast<const unsigned char*>(data0), len: sizeof(int) * 4); |
| 7849 | } |
| 7850 | |
| 7851 | { |
| 7852 | unsigned char line_order = 0; // @fixme { read line_order from EXRHeader } |
| 7853 | WriteAttributeToMemory(out: &memory, name: "lineOrder" , type: "lineOrder" , |
| 7854 | data: &line_order, len: 1); |
| 7855 | } |
| 7856 | |
| 7857 | { |
| 7858 | // Note: must be the same across parts |
| 7859 | float aspectRatio = 1.0f; |
| 7860 | swap4(val: &aspectRatio); |
| 7861 | WriteAttributeToMemory( |
| 7862 | out: &memory, name: "pixelAspectRatio" , type: "float" , |
| 7863 | data: reinterpret_cast<const unsigned char*>(&aspectRatio), len: sizeof(float)); |
| 7864 | } |
| 7865 | |
| 7866 | { |
| 7867 | float center[2] = { 0.0f, 0.0f }; |
| 7868 | swap4(val: ¢er[0]); |
| 7869 | swap4(val: ¢er[1]); |
| 7870 | WriteAttributeToMemory( |
| 7871 | out: &memory, name: "screenWindowCenter" , type: "v2f" , |
| 7872 | data: reinterpret_cast<const unsigned char*>(center), len: 2 * sizeof(float)); |
| 7873 | } |
| 7874 | |
| 7875 | { |
| 7876 | float w = 1.0f; |
| 7877 | swap4(val: &w); |
| 7878 | WriteAttributeToMemory(out: &memory, name: "screenWindowWidth" , type: "float" , |
| 7879 | data: reinterpret_cast<const unsigned char*>(&w), |
| 7880 | len: sizeof(float)); |
| 7881 | } |
| 7882 | |
| 7883 | if (exr_images[i].tiles) { |
| 7884 | unsigned char tile_mode = static_cast<unsigned char>(exr_headers[i]->tile_level_mode & 0x3); |
| 7885 | if (exr_headers[i]->tile_rounding_mode) tile_mode |= (1u << 4u); |
| 7886 | //unsigned char data[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }; |
| 7887 | unsigned int datai[3] = { 0, 0, 0 }; |
| 7888 | unsigned char* data = reinterpret_cast<unsigned char*>(&datai[0]); |
| 7889 | datai[0] = static_cast<unsigned int>(exr_headers[i]->tile_size_x); |
| 7890 | datai[1] = static_cast<unsigned int>(exr_headers[i]->tile_size_y); |
| 7891 | data[8] = tile_mode; |
| 7892 | swap4(val: reinterpret_cast<unsigned int*>(&data[0])); |
| 7893 | swap4(val: reinterpret_cast<unsigned int*>(&data[4])); |
| 7894 | WriteAttributeToMemory( |
| 7895 | out: &memory, name: "tiles" , type: "tiledesc" , |
| 7896 | data: reinterpret_cast<const unsigned char*>(data), len: 9); |
| 7897 | } |
| 7898 | |
| 7899 | // must be present for multi-part files - according to spec. |
| 7900 | if (num_parts > 1) { |
| 7901 | // name |
| 7902 | { |
| 7903 | size_t len = 0; |
| 7904 | if ((len = strlen(s: exr_headers[i]->name)) > 0) { |
| 7905 | #if TINYEXR_HAS_CXX11 |
| 7906 | partnames.emplace(args: exr_headers[i]->name); |
| 7907 | #else |
| 7908 | partnames.insert(std::string(exr_headers[i]->name)); |
| 7909 | #endif |
| 7910 | if (partnames.size() != i + 1) { |
| 7911 | SetErrorMessage(msg: "'name' attributes must be unique for a multi-part file" , err); |
| 7912 | return 0; |
| 7913 | } |
| 7914 | WriteAttributeToMemory( |
| 7915 | out: &memory, name: "name" , type: "string" , |
| 7916 | data: reinterpret_cast<const unsigned char*>(exr_headers[i]->name), |
| 7917 | len: static_cast<int>(len)); |
| 7918 | } else { |
| 7919 | SetErrorMessage(msg: "Invalid 'name' attribute for a multi-part file" , err); |
| 7920 | return 0; |
| 7921 | } |
| 7922 | } |
| 7923 | // type |
| 7924 | { |
| 7925 | const char* type = "scanlineimage" ; |
| 7926 | if (exr_images[i].tiles) type = "tiledimage" ; |
| 7927 | WriteAttributeToMemory( |
| 7928 | out: &memory, name: "type" , type: "string" , |
| 7929 | data: reinterpret_cast<const unsigned char*>(type), |
| 7930 | len: static_cast<int>(strlen(s: type))); |
| 7931 | } |
| 7932 | // chunkCount |
| 7933 | { |
| 7934 | WriteAttributeToMemory( |
| 7935 | out: &memory, name: "chunkCount" , type: "int" , |
| 7936 | data: reinterpret_cast<const unsigned char*>(&chunk_count[i]), |
| 7937 | len: 4); |
| 7938 | } |
| 7939 | } |
| 7940 | |
| 7941 | // Custom attributes |
| 7942 | if (exr_headers[i]->num_custom_attributes > 0) { |
| 7943 | for (int j = 0; j < exr_headers[i]->num_custom_attributes; j++) { |
| 7944 | tinyexr::WriteAttributeToMemory( |
| 7945 | out: &memory, name: exr_headers[i]->custom_attributes[j].name, |
| 7946 | type: exr_headers[i]->custom_attributes[j].type, |
| 7947 | data: reinterpret_cast<const unsigned char*>( |
| 7948 | exr_headers[i]->custom_attributes[j].value), |
| 7949 | len: exr_headers[i]->custom_attributes[j].size); |
| 7950 | } |
| 7951 | } |
| 7952 | |
| 7953 | { // end of header |
| 7954 | memory.push_back(x: 0); |
| 7955 | } |
| 7956 | } |
| 7957 | } |
| 7958 | if (num_parts > 1) { |
| 7959 | // end of header list |
| 7960 | memory.push_back(x: 0); |
| 7961 | } |
| 7962 | |
| 7963 | tinyexr_uint64 chunk_offset = memory.size() + size_t(total_chunk_count) * sizeof(tinyexr_uint64); |
| 7964 | |
| 7965 | tinyexr_uint64 total_size = 0; |
| 7966 | std::vector< std::vector< std::vector<unsigned char> > > data_lists(num_parts); |
| 7967 | for (unsigned int i = 0; i < num_parts; ++i) { |
| 7968 | std::string e; |
| 7969 | int ret = EncodeChunk(exr_image: &exr_images[i], exr_header: exr_headers[i], |
| 7970 | channels: channels[i], |
| 7971 | num_blocks: chunk_count[i], |
| 7972 | // starting offset of current chunk after part-number |
| 7973 | chunk_offset, |
| 7974 | is_multipart: num_parts > 1, |
| 7975 | offset_data&: offset_data[i], // output: block offsets, must be initialized |
| 7976 | data_list&: data_lists[i], // output |
| 7977 | total_size, // output |
| 7978 | err: &e); |
| 7979 | if (ret != TINYEXR_SUCCESS) { |
| 7980 | if (!e.empty()) { |
| 7981 | tinyexr::SetErrorMessage(msg: e, err); |
| 7982 | } |
| 7983 | return 0; |
| 7984 | } |
| 7985 | chunk_offset = total_size; |
| 7986 | } |
| 7987 | |
| 7988 | // Allocating required memory |
| 7989 | if (total_size == 0) { // something went wrong |
| 7990 | tinyexr::SetErrorMessage(msg: "Output memory size is zero" , err); |
| 7991 | return TINYEXR_ERROR_INVALID_DATA; |
| 7992 | } |
| 7993 | (*memory_out) = static_cast<unsigned char*>(malloc(size: size_t(total_size))); |
| 7994 | |
| 7995 | // Writing header |
| 7996 | memcpy(dest: (*memory_out), src: &memory[0], n: memory.size()); |
| 7997 | unsigned char* memory_ptr = *memory_out + memory.size(); |
| 7998 | size_t sum = memory.size(); |
| 7999 | |
| 8000 | // Writing offset data for chunks |
| 8001 | for (unsigned int i = 0; i < num_parts; ++i) { |
| 8002 | if (exr_images[i].tiles) { |
| 8003 | const EXRImage* level_image = &exr_images[i]; |
| 8004 | int num_levels = (exr_headers[i]->tile_level_mode != TINYEXR_TILE_RIPMAP_LEVELS) ? |
| 8005 | offset_data[i].num_x_levels : (offset_data[i].num_x_levels * offset_data[i].num_y_levels); |
| 8006 | for (int level_index = 0; level_index < num_levels; ++level_index) { |
| 8007 | for (size_t j = 0; j < offset_data[i].offsets[level_index].size(); ++j) { |
| 8008 | size_t num_bytes = sizeof(tinyexr_uint64) * offset_data[i].offsets[level_index][j].size(); |
| 8009 | sum += num_bytes; |
| 8010 | if (sum > total_size) { |
| 8011 | tinyexr::SetErrorMessage(msg: "Invalid offset bytes in Tiled Part image." , err); |
| 8012 | return TINYEXR_ERROR_INVALID_DATA; |
| 8013 | } |
| 8014 | |
| 8015 | memcpy(dest: memory_ptr, |
| 8016 | src: reinterpret_cast<unsigned char*>(&offset_data[i].offsets[level_index][j][0]), |
| 8017 | n: num_bytes); |
| 8018 | memory_ptr += num_bytes; |
| 8019 | } |
| 8020 | level_image = level_image->next_level; |
| 8021 | } |
| 8022 | } else { |
| 8023 | size_t num_bytes = sizeof(tinyexr::tinyexr_uint64) * static_cast<size_t>(chunk_count[i]); |
| 8024 | sum += num_bytes; |
| 8025 | if (sum > total_size) { |
| 8026 | tinyexr::SetErrorMessage(msg: "Invalid offset bytes in Part image." , err); |
| 8027 | return TINYEXR_ERROR_INVALID_DATA; |
| 8028 | } |
| 8029 | std::vector<tinyexr::tinyexr_uint64>& offsets = offset_data[i].offsets[0][0]; |
| 8030 | memcpy(dest: memory_ptr, src: reinterpret_cast<unsigned char*>(&offsets[0]), n: num_bytes); |
| 8031 | memory_ptr += num_bytes; |
| 8032 | } |
| 8033 | } |
| 8034 | |
| 8035 | // Writing chunk data |
| 8036 | for (unsigned int i = 0; i < num_parts; ++i) { |
| 8037 | for (size_t j = 0; j < static_cast<size_t>(chunk_count[i]); ++j) { |
| 8038 | if (num_parts > 1) { |
| 8039 | sum += 4; |
| 8040 | if (sum > total_size) { |
| 8041 | tinyexr::SetErrorMessage(msg: "Buffer overrun in reading Part image chunk data." , err); |
| 8042 | return TINYEXR_ERROR_INVALID_DATA; |
| 8043 | } |
| 8044 | unsigned int part_number = i; |
| 8045 | swap4(val: &part_number); |
| 8046 | memcpy(dest: memory_ptr, src: &part_number, n: 4); |
| 8047 | memory_ptr += 4; |
| 8048 | } |
| 8049 | sum += data_lists[i][j].size(); |
| 8050 | if (sum > total_size) { |
| 8051 | tinyexr::SetErrorMessage(msg: "Buffer overrun in reading Part image chunk data." , err); |
| 8052 | return TINYEXR_ERROR_INVALID_DATA; |
| 8053 | } |
| 8054 | memcpy(dest: memory_ptr, src: &data_lists[i][j][0], n: data_lists[i][j].size()); |
| 8055 | memory_ptr += data_lists[i][j].size(); |
| 8056 | } |
| 8057 | } |
| 8058 | |
| 8059 | if (sum != total_size) { |
| 8060 | tinyexr::SetErrorMessage(msg: "Corrupted Part image chunk data." , err); |
| 8061 | return TINYEXR_ERROR_INVALID_DATA; |
| 8062 | } |
| 8063 | |
| 8064 | return size_t(total_size); // OK |
| 8065 | } |
| 8066 | |
| 8067 | #ifdef __clang__ |
| 8068 | #pragma clang diagnostic pop |
| 8069 | #endif |
| 8070 | |
| 8071 | } // tinyexr |
| 8072 | |
| 8073 | size_t SaveEXRImageToMemory(const EXRImage* exr_image, |
| 8074 | const EXRHeader* , |
| 8075 | unsigned char** memory_out, const char** err) { |
| 8076 | return tinyexr::SaveEXRNPartImageToMemory(exr_images: exr_image, exr_headers: &exr_header, num_parts: 1, memory_out, err); |
| 8077 | } |
| 8078 | |
| 8079 | int SaveEXRImageToFile(const EXRImage *exr_image, const EXRHeader *, |
| 8080 | const char *filename, const char **err) { |
| 8081 | if (exr_image == NULL || filename == NULL || |
| 8082 | exr_header->compression_type < 0) { |
| 8083 | tinyexr::SetErrorMessage(msg: "Invalid argument for SaveEXRImageToFile" , err); |
| 8084 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 8085 | } |
| 8086 | |
| 8087 | #if !TINYEXR_USE_PIZ |
| 8088 | if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| 8089 | tinyexr::SetErrorMessage("PIZ compression is not supported in this build" , |
| 8090 | err); |
| 8091 | return TINYEXR_ERROR_UNSUPPORTED_FEATURE; |
| 8092 | } |
| 8093 | #endif |
| 8094 | |
| 8095 | #if !TINYEXR_USE_ZFP |
| 8096 | if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| 8097 | tinyexr::SetErrorMessage(msg: "ZFP compression is not supported in this build" , |
| 8098 | err); |
| 8099 | return TINYEXR_ERROR_UNSUPPORTED_FEATURE; |
| 8100 | } |
| 8101 | #endif |
| 8102 | |
| 8103 | FILE *fp = NULL; |
| 8104 | #ifdef _WIN32 |
| 8105 | #if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang |
| 8106 | errno_t errcode = |
| 8107 | _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"wb" ); |
| 8108 | if (errcode != 0) { |
| 8109 | tinyexr::SetErrorMessage("Cannot write a file: " + std::string(filename), |
| 8110 | err); |
| 8111 | return TINYEXR_ERROR_CANT_WRITE_FILE; |
| 8112 | } |
| 8113 | #else |
| 8114 | // Unknown compiler or MinGW without MINGW_HAS_SECURE_API. |
| 8115 | fp = fopen(filename, "wb" ); |
| 8116 | #endif |
| 8117 | #else |
| 8118 | fp = fopen(filename: filename, modes: "wb" ); |
| 8119 | #endif |
| 8120 | if (!fp) { |
| 8121 | tinyexr::SetErrorMessage(msg: "Cannot write a file: " + std::string(filename), |
| 8122 | err); |
| 8123 | return TINYEXR_ERROR_CANT_WRITE_FILE; |
| 8124 | } |
| 8125 | |
| 8126 | unsigned char *mem = NULL; |
| 8127 | size_t mem_size = SaveEXRImageToMemory(exr_image, exr_header, memory_out: &mem, err); |
| 8128 | if (mem_size == 0) { |
| 8129 | fclose(stream: fp); |
| 8130 | return TINYEXR_ERROR_SERIALIZATION_FAILED; |
| 8131 | } |
| 8132 | |
| 8133 | size_t written_size = 0; |
| 8134 | if ((mem_size > 0) && mem) { |
| 8135 | written_size = fwrite(ptr: mem, size: 1, n: mem_size, s: fp); |
| 8136 | } |
| 8137 | free(ptr: mem); |
| 8138 | |
| 8139 | fclose(stream: fp); |
| 8140 | |
| 8141 | if (written_size != mem_size) { |
| 8142 | tinyexr::SetErrorMessage(msg: "Cannot write a file" , err); |
| 8143 | return TINYEXR_ERROR_CANT_WRITE_FILE; |
| 8144 | } |
| 8145 | |
| 8146 | return TINYEXR_SUCCESS; |
| 8147 | } |
| 8148 | |
| 8149 | size_t SaveEXRMultipartImageToMemory(const EXRImage* exr_images, |
| 8150 | const EXRHeader** , |
| 8151 | unsigned int num_parts, |
| 8152 | unsigned char** memory_out, const char** err) { |
| 8153 | if (exr_images == NULL || exr_headers == NULL || num_parts == 0 || |
| 8154 | memory_out == NULL) { |
| 8155 | tinyexr::SetErrorMessage(msg: "Invalid argument for SaveEXRNPartImageToMemory" , |
| 8156 | err); |
| 8157 | return 0; |
| 8158 | } |
| 8159 | return tinyexr::SaveEXRNPartImageToMemory(exr_images, exr_headers, num_parts, memory_out, err); |
| 8160 | } |
| 8161 | |
| 8162 | int SaveEXRMultipartImageToFile(const EXRImage* exr_images, |
| 8163 | const EXRHeader** , |
| 8164 | unsigned int num_parts, |
| 8165 | const char* filename, |
| 8166 | const char** err) { |
| 8167 | if (exr_images == NULL || exr_headers == NULL || num_parts == 0) { |
| 8168 | tinyexr::SetErrorMessage(msg: "Invalid argument for SaveEXRMultipartImageToFile" , |
| 8169 | err); |
| 8170 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 8171 | } |
| 8172 | |
| 8173 | FILE *fp = NULL; |
| 8174 | #ifdef _WIN32 |
| 8175 | #if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang. |
| 8176 | errno_t errcode = |
| 8177 | _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"wb" ); |
| 8178 | if (errcode != 0) { |
| 8179 | tinyexr::SetErrorMessage("Cannot write a file: " + std::string(filename), |
| 8180 | err); |
| 8181 | return TINYEXR_ERROR_CANT_WRITE_FILE; |
| 8182 | } |
| 8183 | #else |
| 8184 | // Unknown compiler or MinGW without MINGW_HAS_SECURE_API. |
| 8185 | fp = fopen(filename, "wb" ); |
| 8186 | #endif |
| 8187 | #else |
| 8188 | fp = fopen(filename: filename, modes: "wb" ); |
| 8189 | #endif |
| 8190 | if (!fp) { |
| 8191 | tinyexr::SetErrorMessage(msg: "Cannot write a file: " + std::string(filename), |
| 8192 | err); |
| 8193 | return TINYEXR_ERROR_CANT_WRITE_FILE; |
| 8194 | } |
| 8195 | |
| 8196 | unsigned char *mem = NULL; |
| 8197 | size_t mem_size = SaveEXRMultipartImageToMemory(exr_images, exr_headers, num_parts, memory_out: &mem, err); |
| 8198 | if (mem_size == 0) { |
| 8199 | fclose(stream: fp); |
| 8200 | return TINYEXR_ERROR_SERIALIZATION_FAILED; |
| 8201 | } |
| 8202 | |
| 8203 | size_t written_size = 0; |
| 8204 | if ((mem_size > 0) && mem) { |
| 8205 | written_size = fwrite(ptr: mem, size: 1, n: mem_size, s: fp); |
| 8206 | } |
| 8207 | free(ptr: mem); |
| 8208 | |
| 8209 | fclose(stream: fp); |
| 8210 | |
| 8211 | if (written_size != mem_size) { |
| 8212 | tinyexr::SetErrorMessage(msg: "Cannot write a file" , err); |
| 8213 | return TINYEXR_ERROR_CANT_WRITE_FILE; |
| 8214 | } |
| 8215 | |
| 8216 | return TINYEXR_SUCCESS; |
| 8217 | } |
| 8218 | |
| 8219 | int LoadDeepEXR(DeepImage *deep_image, const char *filename, const char **err) { |
| 8220 | if (deep_image == NULL) { |
| 8221 | tinyexr::SetErrorMessage(msg: "Invalid argument for LoadDeepEXR" , err); |
| 8222 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 8223 | } |
| 8224 | |
| 8225 | MemoryMappedFile file(filename); |
| 8226 | if (!file.valid()) { |
| 8227 | tinyexr::SetErrorMessage(msg: "Cannot read file " + std::string(filename), err); |
| 8228 | return TINYEXR_ERROR_CANT_OPEN_FILE; |
| 8229 | } |
| 8230 | |
| 8231 | if (file.size == 0) { |
| 8232 | tinyexr::SetErrorMessage(msg: "File size is zero : " + std::string(filename), |
| 8233 | err); |
| 8234 | return TINYEXR_ERROR_INVALID_FILE; |
| 8235 | } |
| 8236 | |
| 8237 | const char *head = reinterpret_cast<const char *>(file.data); |
| 8238 | const char *marker = reinterpret_cast<const char *>(file.data); |
| 8239 | |
| 8240 | // Header check. |
| 8241 | { |
| 8242 | const char [] = {0x76, 0x2f, 0x31, 0x01}; |
| 8243 | |
| 8244 | if (memcmp(s1: marker, s2: header, n: 4) != 0) { |
| 8245 | tinyexr::SetErrorMessage(msg: "Invalid magic number" , err); |
| 8246 | return TINYEXR_ERROR_INVALID_MAGIC_NUMBER; |
| 8247 | } |
| 8248 | marker += 4; |
| 8249 | } |
| 8250 | |
| 8251 | // Version, scanline. |
| 8252 | { |
| 8253 | // ver 2.0, scanline, deep bit on(0x800) |
| 8254 | // must be [2, 0, 0, 0] |
| 8255 | if (marker[0] != 2 || marker[1] != 8 || marker[2] != 0 || marker[3] != 0) { |
| 8256 | tinyexr::SetErrorMessage(msg: "Unsupported version or scanline" , err); |
| 8257 | return TINYEXR_ERROR_UNSUPPORTED_FORMAT; |
| 8258 | } |
| 8259 | |
| 8260 | marker += 4; |
| 8261 | } |
| 8262 | |
| 8263 | int dx = -1; |
| 8264 | int dy = -1; |
| 8265 | int dw = -1; |
| 8266 | int dh = -1; |
| 8267 | int num_scanline_blocks = 1; // 16 for ZIP compression. |
| 8268 | int compression_type = -1; |
| 8269 | int num_channels = -1; |
| 8270 | std::vector<tinyexr::ChannelInfo> channels; |
| 8271 | |
| 8272 | // Read attributes |
| 8273 | size_t size = file.size - tinyexr::kEXRVersionSize; |
| 8274 | for (;;) { |
| 8275 | if (0 == size) { |
| 8276 | return TINYEXR_ERROR_INVALID_DATA; |
| 8277 | } else if (marker[0] == '\0') { |
| 8278 | marker++; |
| 8279 | size--; |
| 8280 | break; |
| 8281 | } |
| 8282 | |
| 8283 | std::string attr_name; |
| 8284 | std::string attr_type; |
| 8285 | std::vector<unsigned char> data; |
| 8286 | size_t marker_size; |
| 8287 | if (!tinyexr::ReadAttribute(name: &attr_name, type: &attr_type, data: &data, marker_size: &marker_size, |
| 8288 | marker, size)) { |
| 8289 | std::stringstream ss; |
| 8290 | ss << "Failed to parse attribute\n" ; |
| 8291 | tinyexr::SetErrorMessage(msg: ss.str(), err); |
| 8292 | return TINYEXR_ERROR_INVALID_DATA; |
| 8293 | } |
| 8294 | marker += marker_size; |
| 8295 | size -= marker_size; |
| 8296 | |
| 8297 | if (attr_name.compare(s: "compression" ) == 0) { |
| 8298 | compression_type = data[0]; |
| 8299 | if (compression_type > TINYEXR_COMPRESSIONTYPE_PIZ) { |
| 8300 | std::stringstream ss; |
| 8301 | ss << "Unsupported compression type : " << compression_type; |
| 8302 | tinyexr::SetErrorMessage(msg: ss.str(), err); |
| 8303 | return TINYEXR_ERROR_UNSUPPORTED_FORMAT; |
| 8304 | } |
| 8305 | |
| 8306 | if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) { |
| 8307 | num_scanline_blocks = 16; |
| 8308 | } |
| 8309 | |
| 8310 | } else if (attr_name.compare(s: "channels" ) == 0) { |
| 8311 | // name: zero-terminated string, from 1 to 255 bytes long |
| 8312 | // pixel type: int, possible values are: UINT = 0 HALF = 1 FLOAT = 2 |
| 8313 | // pLinear: unsigned char, possible values are 0 and 1 |
| 8314 | // reserved: three chars, should be zero |
| 8315 | // xSampling: int |
| 8316 | // ySampling: int |
| 8317 | |
| 8318 | if (!tinyexr::ReadChannelInfo(channels, data)) { |
| 8319 | tinyexr::SetErrorMessage(msg: "Failed to parse channel info" , err); |
| 8320 | return TINYEXR_ERROR_INVALID_DATA; |
| 8321 | } |
| 8322 | |
| 8323 | num_channels = static_cast<int>(channels.size()); |
| 8324 | |
| 8325 | if (num_channels < 1) { |
| 8326 | tinyexr::SetErrorMessage(msg: "Invalid channels format" , err); |
| 8327 | return TINYEXR_ERROR_INVALID_DATA; |
| 8328 | } |
| 8329 | |
| 8330 | } else if (attr_name.compare(s: "dataWindow" ) == 0) { |
| 8331 | memcpy(dest: &dx, src: &data.at(n: 0), n: sizeof(int)); |
| 8332 | memcpy(dest: &dy, src: &data.at(n: 4), n: sizeof(int)); |
| 8333 | memcpy(dest: &dw, src: &data.at(n: 8), n: sizeof(int)); |
| 8334 | memcpy(dest: &dh, src: &data.at(n: 12), n: sizeof(int)); |
| 8335 | tinyexr::swap4(val: &dx); |
| 8336 | tinyexr::swap4(val: &dy); |
| 8337 | tinyexr::swap4(val: &dw); |
| 8338 | tinyexr::swap4(val: &dh); |
| 8339 | |
| 8340 | } else if (attr_name.compare(s: "displayWindow" ) == 0) { |
| 8341 | int x; |
| 8342 | int y; |
| 8343 | int w; |
| 8344 | int h; |
| 8345 | memcpy(dest: &x, src: &data.at(n: 0), n: sizeof(int)); |
| 8346 | memcpy(dest: &y, src: &data.at(n: 4), n: sizeof(int)); |
| 8347 | memcpy(dest: &w, src: &data.at(n: 8), n: sizeof(int)); |
| 8348 | memcpy(dest: &h, src: &data.at(n: 12), n: sizeof(int)); |
| 8349 | tinyexr::swap4(val: &x); |
| 8350 | tinyexr::swap4(val: &y); |
| 8351 | tinyexr::swap4(val: &w); |
| 8352 | tinyexr::swap4(val: &h); |
| 8353 | } |
| 8354 | } |
| 8355 | |
| 8356 | TINYEXR_CHECK_AND_RETURN_C(dx >= 0, TINYEXR_ERROR_INVALID_DATA); |
| 8357 | TINYEXR_CHECK_AND_RETURN_C(dy >= 0, TINYEXR_ERROR_INVALID_DATA); |
| 8358 | TINYEXR_CHECK_AND_RETURN_C(dw >= 0, TINYEXR_ERROR_INVALID_DATA); |
| 8359 | TINYEXR_CHECK_AND_RETURN_C(dh >= 0, TINYEXR_ERROR_INVALID_DATA); |
| 8360 | TINYEXR_CHECK_AND_RETURN_C(num_channels >= 1, TINYEXR_ERROR_INVALID_DATA); |
| 8361 | |
| 8362 | int data_width = dw - dx + 1; |
| 8363 | int data_height = dh - dy + 1; |
| 8364 | |
| 8365 | // Read offset tables. |
| 8366 | int num_blocks = data_height / num_scanline_blocks; |
| 8367 | if (num_blocks * num_scanline_blocks < data_height) { |
| 8368 | num_blocks++; |
| 8369 | } |
| 8370 | |
| 8371 | std::vector<tinyexr::tinyexr_int64> offsets(static_cast<size_t>(num_blocks)); |
| 8372 | |
| 8373 | for (size_t y = 0; y < static_cast<size_t>(num_blocks); y++) { |
| 8374 | tinyexr::tinyexr_int64 offset; |
| 8375 | memcpy(dest: &offset, src: marker, n: sizeof(tinyexr::tinyexr_int64)); |
| 8376 | tinyexr::swap8(val: reinterpret_cast<tinyexr::tinyexr_uint64 *>(&offset)); |
| 8377 | marker += sizeof(tinyexr::tinyexr_int64); // = 8 |
| 8378 | offsets[y] = offset; |
| 8379 | } |
| 8380 | |
| 8381 | #if TINYEXR_USE_PIZ |
| 8382 | if ((compression_type == TINYEXR_COMPRESSIONTYPE_NONE) || |
| 8383 | (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) || |
| 8384 | (compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) || |
| 8385 | (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) || |
| 8386 | (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ)) { |
| 8387 | #else |
| 8388 | if ((compression_type == TINYEXR_COMPRESSIONTYPE_NONE) || |
| 8389 | (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) || |
| 8390 | (compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) || |
| 8391 | (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP)) { |
| 8392 | #endif |
| 8393 | // OK |
| 8394 | } else { |
| 8395 | tinyexr::SetErrorMessage(msg: "Unsupported compression format" , err); |
| 8396 | return TINYEXR_ERROR_UNSUPPORTED_FORMAT; |
| 8397 | } |
| 8398 | |
| 8399 | deep_image->image = static_cast<float ***>( |
| 8400 | malloc(size: sizeof(float **) * static_cast<size_t>(num_channels))); |
| 8401 | for (int c = 0; c < num_channels; c++) { |
| 8402 | deep_image->image[c] = static_cast<float **>( |
| 8403 | malloc(size: sizeof(float *) * static_cast<size_t>(data_height))); |
| 8404 | for (int y = 0; y < data_height; y++) { |
| 8405 | } |
| 8406 | } |
| 8407 | |
| 8408 | deep_image->offset_table = static_cast<int **>( |
| 8409 | malloc(size: sizeof(int *) * static_cast<size_t>(data_height))); |
| 8410 | for (int y = 0; y < data_height; y++) { |
| 8411 | deep_image->offset_table[y] = static_cast<int *>( |
| 8412 | malloc(size: sizeof(int) * static_cast<size_t>(data_width))); |
| 8413 | } |
| 8414 | |
| 8415 | for (size_t y = 0; y < static_cast<size_t>(num_blocks); y++) { |
| 8416 | const unsigned char *data_ptr = |
| 8417 | reinterpret_cast<const unsigned char *>(head + offsets[y]); |
| 8418 | |
| 8419 | // int: y coordinate |
| 8420 | // int64: packed size of pixel offset table |
| 8421 | // int64: packed size of sample data |
| 8422 | // int64: unpacked size of sample data |
| 8423 | // compressed pixel offset table |
| 8424 | // compressed sample data |
| 8425 | int line_no; |
| 8426 | tinyexr::tinyexr_int64 packedOffsetTableSize; |
| 8427 | tinyexr::tinyexr_int64 packedSampleDataSize; |
| 8428 | tinyexr::tinyexr_int64 unpackedSampleDataSize; |
| 8429 | memcpy(dest: &line_no, src: data_ptr, n: sizeof(int)); |
| 8430 | memcpy(dest: &packedOffsetTableSize, src: data_ptr + 4, |
| 8431 | n: sizeof(tinyexr::tinyexr_int64)); |
| 8432 | memcpy(dest: &packedSampleDataSize, src: data_ptr + 12, |
| 8433 | n: sizeof(tinyexr::tinyexr_int64)); |
| 8434 | memcpy(dest: &unpackedSampleDataSize, src: data_ptr + 20, |
| 8435 | n: sizeof(tinyexr::tinyexr_int64)); |
| 8436 | |
| 8437 | tinyexr::swap4(val: &line_no); |
| 8438 | tinyexr::swap8( |
| 8439 | val: reinterpret_cast<tinyexr::tinyexr_uint64 *>(&packedOffsetTableSize)); |
| 8440 | tinyexr::swap8( |
| 8441 | val: reinterpret_cast<tinyexr::tinyexr_uint64 *>(&packedSampleDataSize)); |
| 8442 | tinyexr::swap8( |
| 8443 | val: reinterpret_cast<tinyexr::tinyexr_uint64 *>(&unpackedSampleDataSize)); |
| 8444 | |
| 8445 | std::vector<int> pixelOffsetTable(static_cast<size_t>(data_width)); |
| 8446 | |
| 8447 | // decode pixel offset table. |
| 8448 | { |
| 8449 | unsigned long dstLen = |
| 8450 | static_cast<unsigned long>(pixelOffsetTable.size() * sizeof(int)); |
| 8451 | if (!tinyexr::DecompressZip( |
| 8452 | dst: reinterpret_cast<unsigned char *>(&pixelOffsetTable.at(n: 0)), |
| 8453 | uncompressed_size: &dstLen, src: data_ptr + 28, |
| 8454 | src_size: static_cast<unsigned long>(packedOffsetTableSize))) { |
| 8455 | return false; |
| 8456 | } |
| 8457 | |
| 8458 | TINYEXR_CHECK_AND_RETURN_C(dstLen == pixelOffsetTable.size() * sizeof(int), TINYEXR_ERROR_INVALID_DATA); |
| 8459 | for (size_t i = 0; i < static_cast<size_t>(data_width); i++) { |
| 8460 | deep_image->offset_table[y][i] = pixelOffsetTable[i]; |
| 8461 | } |
| 8462 | } |
| 8463 | |
| 8464 | std::vector<unsigned char> sample_data( |
| 8465 | static_cast<size_t>(unpackedSampleDataSize)); |
| 8466 | |
| 8467 | // decode sample data. |
| 8468 | { |
| 8469 | unsigned long dstLen = static_cast<unsigned long>(unpackedSampleDataSize); |
| 8470 | if (dstLen) { |
| 8471 | if (!tinyexr::DecompressZip( |
| 8472 | dst: reinterpret_cast<unsigned char *>(&sample_data.at(n: 0)), uncompressed_size: &dstLen, |
| 8473 | src: data_ptr + 28 + packedOffsetTableSize, |
| 8474 | src_size: static_cast<unsigned long>(packedSampleDataSize))) { |
| 8475 | return false; |
| 8476 | } |
| 8477 | TINYEXR_CHECK_AND_RETURN_C(dstLen == static_cast<unsigned long>(unpackedSampleDataSize), TINYEXR_ERROR_INVALID_DATA); |
| 8478 | } |
| 8479 | } |
| 8480 | |
| 8481 | // decode sample |
| 8482 | int sampleSize = -1; |
| 8483 | std::vector<int> channel_offset_list(static_cast<size_t>(num_channels)); |
| 8484 | { |
| 8485 | int channel_offset = 0; |
| 8486 | for (size_t i = 0; i < static_cast<size_t>(num_channels); i++) { |
| 8487 | channel_offset_list[i] = channel_offset; |
| 8488 | if (channels[i].pixel_type == TINYEXR_PIXELTYPE_UINT) { // UINT |
| 8489 | channel_offset += 4; |
| 8490 | } else if (channels[i].pixel_type == TINYEXR_PIXELTYPE_HALF) { // half |
| 8491 | channel_offset += 2; |
| 8492 | } else if (channels[i].pixel_type == |
| 8493 | TINYEXR_PIXELTYPE_FLOAT) { // float |
| 8494 | channel_offset += 4; |
| 8495 | } else { |
| 8496 | tinyexr::SetErrorMessage(msg: "Invalid pixel_type in chnnels." , err); |
| 8497 | return TINYEXR_ERROR_INVALID_DATA; |
| 8498 | } |
| 8499 | } |
| 8500 | sampleSize = channel_offset; |
| 8501 | } |
| 8502 | TINYEXR_CHECK_AND_RETURN_C(sampleSize >= 2, TINYEXR_ERROR_INVALID_DATA); |
| 8503 | |
| 8504 | TINYEXR_CHECK_AND_RETURN_C(static_cast<size_t>( |
| 8505 | pixelOffsetTable[static_cast<size_t>(data_width - 1)] * |
| 8506 | sampleSize) == sample_data.size(), TINYEXR_ERROR_INVALID_DATA); |
| 8507 | int samples_per_line = static_cast<int>(sample_data.size()) / sampleSize; |
| 8508 | |
| 8509 | // |
| 8510 | // Alloc memory |
| 8511 | // |
| 8512 | |
| 8513 | // |
| 8514 | // pixel data is stored as image[channels][pixel_samples] |
| 8515 | // |
| 8516 | { |
| 8517 | tinyexr::tinyexr_uint64 data_offset = 0; |
| 8518 | for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| 8519 | deep_image->image[c][y] = static_cast<float *>( |
| 8520 | malloc(size: sizeof(float) * static_cast<size_t>(samples_per_line))); |
| 8521 | |
| 8522 | if (channels[c].pixel_type == 0) { // UINT |
| 8523 | for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) { |
| 8524 | unsigned int ui; |
| 8525 | unsigned int *src_ptr = reinterpret_cast<unsigned int *>( |
| 8526 | &sample_data.at(n: size_t(data_offset) + x * sizeof(int))); |
| 8527 | tinyexr::cpy4(dst_val: &ui, src_val: src_ptr); |
| 8528 | deep_image->image[c][y][x] = static_cast<float>(ui); // @fixme |
| 8529 | } |
| 8530 | data_offset += |
| 8531 | sizeof(unsigned int) * static_cast<size_t>(samples_per_line); |
| 8532 | } else if (channels[c].pixel_type == 1) { // half |
| 8533 | for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) { |
| 8534 | tinyexr::FP16 f16; |
| 8535 | const unsigned short *src_ptr = reinterpret_cast<unsigned short *>( |
| 8536 | &sample_data.at(n: size_t(data_offset) + x * sizeof(short))); |
| 8537 | tinyexr::cpy2(dst_val: &(f16.u), src_val: src_ptr); |
| 8538 | tinyexr::FP32 f32 = half_to_float(h: f16); |
| 8539 | deep_image->image[c][y][x] = f32.f; |
| 8540 | } |
| 8541 | data_offset += sizeof(short) * static_cast<size_t>(samples_per_line); |
| 8542 | } else { // float |
| 8543 | for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) { |
| 8544 | float f; |
| 8545 | const float *src_ptr = reinterpret_cast<float *>( |
| 8546 | &sample_data.at(n: size_t(data_offset) + x * sizeof(float))); |
| 8547 | tinyexr::cpy4(dst_val: &f, src_val: src_ptr); |
| 8548 | deep_image->image[c][y][x] = f; |
| 8549 | } |
| 8550 | data_offset += sizeof(float) * static_cast<size_t>(samples_per_line); |
| 8551 | } |
| 8552 | } |
| 8553 | } |
| 8554 | } // y |
| 8555 | |
| 8556 | deep_image->width = data_width; |
| 8557 | deep_image->height = data_height; |
| 8558 | |
| 8559 | deep_image->channel_names = static_cast<const char **>( |
| 8560 | malloc(size: sizeof(const char *) * static_cast<size_t>(num_channels))); |
| 8561 | for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| 8562 | #ifdef _WIN32 |
| 8563 | deep_image->channel_names[c] = _strdup(channels[c].name.c_str()); |
| 8564 | #else |
| 8565 | deep_image->channel_names[c] = strdup(s: channels[c].name.c_str()); |
| 8566 | #endif |
| 8567 | } |
| 8568 | deep_image->num_channels = num_channels; |
| 8569 | |
| 8570 | return TINYEXR_SUCCESS; |
| 8571 | } |
| 8572 | |
| 8573 | void InitEXRImage(EXRImage *exr_image) { |
| 8574 | if (exr_image == NULL) { |
| 8575 | return; |
| 8576 | } |
| 8577 | |
| 8578 | exr_image->width = 0; |
| 8579 | exr_image->height = 0; |
| 8580 | exr_image->num_channels = 0; |
| 8581 | |
| 8582 | exr_image->images = NULL; |
| 8583 | exr_image->tiles = NULL; |
| 8584 | exr_image->next_level = NULL; |
| 8585 | exr_image->level_x = 0; |
| 8586 | exr_image->level_y = 0; |
| 8587 | |
| 8588 | exr_image->num_tiles = 0; |
| 8589 | } |
| 8590 | |
| 8591 | void FreeEXRErrorMessage(const char *msg) { |
| 8592 | if (msg) { |
| 8593 | free(ptr: reinterpret_cast<void *>(const_cast<char *>(msg))); |
| 8594 | } |
| 8595 | return; |
| 8596 | } |
| 8597 | |
| 8598 | void (EXRHeader *) { |
| 8599 | if (exr_header == NULL) { |
| 8600 | return; |
| 8601 | } |
| 8602 | |
| 8603 | memset(s: exr_header, c: 0, n: sizeof(EXRHeader)); |
| 8604 | } |
| 8605 | |
| 8606 | int (EXRHeader *) { |
| 8607 | if (exr_header == NULL) { |
| 8608 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 8609 | } |
| 8610 | |
| 8611 | if (exr_header->channels) { |
| 8612 | free(ptr: exr_header->channels); |
| 8613 | } |
| 8614 | |
| 8615 | if (exr_header->pixel_types) { |
| 8616 | free(ptr: exr_header->pixel_types); |
| 8617 | } |
| 8618 | |
| 8619 | if (exr_header->requested_pixel_types) { |
| 8620 | free(ptr: exr_header->requested_pixel_types); |
| 8621 | } |
| 8622 | |
| 8623 | for (int i = 0; i < exr_header->num_custom_attributes; i++) { |
| 8624 | if (exr_header->custom_attributes[i].value) { |
| 8625 | free(ptr: exr_header->custom_attributes[i].value); |
| 8626 | } |
| 8627 | } |
| 8628 | |
| 8629 | if (exr_header->custom_attributes) { |
| 8630 | free(ptr: exr_header->custom_attributes); |
| 8631 | } |
| 8632 | |
| 8633 | EXRSetNameAttr(exr_header, NULL); |
| 8634 | |
| 8635 | return TINYEXR_SUCCESS; |
| 8636 | } |
| 8637 | |
| 8638 | void EXRSetNameAttr(EXRHeader* , const char* name) { |
| 8639 | if (exr_header == NULL) { |
| 8640 | return; |
| 8641 | } |
| 8642 | memset(s: exr_header->name, c: 0, n: 256); |
| 8643 | if (name != NULL) { |
| 8644 | size_t len = std::min(a: strlen(s: name), b: size_t(255)); |
| 8645 | if (len) { |
| 8646 | memcpy(dest: exr_header->name, src: name, n: len); |
| 8647 | } |
| 8648 | } |
| 8649 | } |
| 8650 | |
| 8651 | int EXRNumLevels(const EXRImage* exr_image) { |
| 8652 | if (exr_image == NULL) return 0; |
| 8653 | if(exr_image->images) return 1; // scanlines |
| 8654 | int levels = 1; |
| 8655 | const EXRImage* level_image = exr_image; |
| 8656 | while((level_image = level_image->next_level)) ++levels; |
| 8657 | return levels; |
| 8658 | } |
| 8659 | |
| 8660 | int FreeEXRImage(EXRImage *exr_image) { |
| 8661 | if (exr_image == NULL) { |
| 8662 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 8663 | } |
| 8664 | |
| 8665 | if (exr_image->next_level) { |
| 8666 | FreeEXRImage(exr_image: exr_image->next_level); |
| 8667 | delete exr_image->next_level; |
| 8668 | } |
| 8669 | |
| 8670 | for (int i = 0; i < exr_image->num_channels; i++) { |
| 8671 | if (exr_image->images && exr_image->images[i]) { |
| 8672 | free(ptr: exr_image->images[i]); |
| 8673 | } |
| 8674 | } |
| 8675 | |
| 8676 | if (exr_image->images) { |
| 8677 | free(ptr: exr_image->images); |
| 8678 | } |
| 8679 | |
| 8680 | if (exr_image->tiles) { |
| 8681 | for (int tid = 0; tid < exr_image->num_tiles; tid++) { |
| 8682 | for (int i = 0; i < exr_image->num_channels; i++) { |
| 8683 | if (exr_image->tiles[tid].images && exr_image->tiles[tid].images[i]) { |
| 8684 | free(ptr: exr_image->tiles[tid].images[i]); |
| 8685 | } |
| 8686 | } |
| 8687 | if (exr_image->tiles[tid].images) { |
| 8688 | free(ptr: exr_image->tiles[tid].images); |
| 8689 | } |
| 8690 | } |
| 8691 | free(ptr: exr_image->tiles); |
| 8692 | } |
| 8693 | |
| 8694 | return TINYEXR_SUCCESS; |
| 8695 | } |
| 8696 | |
| 8697 | int (EXRHeader *, const EXRVersion *exr_version, |
| 8698 | const char *filename, const char **err) { |
| 8699 | if (exr_header == NULL || exr_version == NULL || filename == NULL) { |
| 8700 | tinyexr::SetErrorMessage(msg: "Invalid argument for ParseEXRHeaderFromFile" , |
| 8701 | err); |
| 8702 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 8703 | } |
| 8704 | |
| 8705 | MemoryMappedFile file(filename); |
| 8706 | if (!file.valid()) { |
| 8707 | tinyexr::SetErrorMessage(msg: "Cannot read file " + std::string(filename), err); |
| 8708 | return TINYEXR_ERROR_CANT_OPEN_FILE; |
| 8709 | } |
| 8710 | |
| 8711 | return ParseEXRHeaderFromMemory(exr_header, version: exr_version, memory: file.data, size: file.size, |
| 8712 | err); |
| 8713 | } |
| 8714 | |
| 8715 | int (EXRHeader ***, |
| 8716 | int *, |
| 8717 | const EXRVersion *exr_version, |
| 8718 | const unsigned char *memory, size_t size, |
| 8719 | const char **err) { |
| 8720 | if (memory == NULL || exr_headers == NULL || num_headers == NULL || |
| 8721 | exr_version == NULL) { |
| 8722 | // Invalid argument |
| 8723 | tinyexr::SetErrorMessage( |
| 8724 | msg: "Invalid argument for ParseEXRMultipartHeaderFromMemory" , err); |
| 8725 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 8726 | } |
| 8727 | |
| 8728 | if (size < tinyexr::kEXRVersionSize) { |
| 8729 | tinyexr::SetErrorMessage(msg: "Data size too short" , err); |
| 8730 | return TINYEXR_ERROR_INVALID_DATA; |
| 8731 | } |
| 8732 | |
| 8733 | const unsigned char *marker = memory + tinyexr::kEXRVersionSize; |
| 8734 | size_t marker_size = size - tinyexr::kEXRVersionSize; |
| 8735 | |
| 8736 | std::vector<tinyexr::HeaderInfo> infos; |
| 8737 | |
| 8738 | for (;;) { |
| 8739 | tinyexr::HeaderInfo info; |
| 8740 | info.clear(); |
| 8741 | |
| 8742 | std::string err_str; |
| 8743 | bool = false; |
| 8744 | int ret = ParseEXRHeader(info: &info, empty_header: &empty_header, version: exr_version, err: &err_str, |
| 8745 | buf: marker, size: marker_size); |
| 8746 | |
| 8747 | if (ret != TINYEXR_SUCCESS) { |
| 8748 | |
| 8749 | // Free malloc-allocated memory here. |
| 8750 | for (size_t i = 0; i < info.attributes.size(); i++) { |
| 8751 | if (info.attributes[i].value) { |
| 8752 | free(ptr: info.attributes[i].value); |
| 8753 | } |
| 8754 | } |
| 8755 | |
| 8756 | tinyexr::SetErrorMessage(msg: err_str, err); |
| 8757 | return ret; |
| 8758 | } |
| 8759 | |
| 8760 | if (empty_header) { |
| 8761 | marker += 1; // skip '\0' |
| 8762 | break; |
| 8763 | } |
| 8764 | |
| 8765 | // `chunkCount` must exist in the header. |
| 8766 | if (info.chunk_count == 0) { |
| 8767 | |
| 8768 | // Free malloc-allocated memory here. |
| 8769 | for (size_t i = 0; i < info.attributes.size(); i++) { |
| 8770 | if (info.attributes[i].value) { |
| 8771 | free(ptr: info.attributes[i].value); |
| 8772 | } |
| 8773 | } |
| 8774 | |
| 8775 | tinyexr::SetErrorMessage( |
| 8776 | msg: "`chunkCount' attribute is not found in the header." , err); |
| 8777 | return TINYEXR_ERROR_INVALID_DATA; |
| 8778 | } |
| 8779 | |
| 8780 | infos.push_back(x: info); |
| 8781 | |
| 8782 | // move to next header. |
| 8783 | marker += info.header_len; |
| 8784 | size -= info.header_len; |
| 8785 | } |
| 8786 | |
| 8787 | // allocate memory for EXRHeader and create array of EXRHeader pointers. |
| 8788 | (*exr_headers) = |
| 8789 | static_cast<EXRHeader **>(malloc(size: sizeof(EXRHeader *) * infos.size())); |
| 8790 | |
| 8791 | |
| 8792 | int retcode = TINYEXR_SUCCESS; |
| 8793 | |
| 8794 | for (size_t i = 0; i < infos.size(); i++) { |
| 8795 | EXRHeader * = static_cast<EXRHeader *>(malloc(size: sizeof(EXRHeader))); |
| 8796 | memset(s: exr_header, c: 0, n: sizeof(EXRHeader)); |
| 8797 | |
| 8798 | std::string warn; |
| 8799 | std::string _err; |
| 8800 | if (!ConvertHeader(exr_header, info: infos[i], warn: &warn, err: &_err)) { |
| 8801 | |
| 8802 | // Free malloc-allocated memory here. |
| 8803 | for (size_t k = 0; k < infos[i].attributes.size(); k++) { |
| 8804 | if (infos[i].attributes[k].value) { |
| 8805 | free(ptr: infos[i].attributes[k].value); |
| 8806 | } |
| 8807 | } |
| 8808 | |
| 8809 | if (!_err.empty()) { |
| 8810 | tinyexr::SetErrorMessage( |
| 8811 | msg: _err, err); |
| 8812 | } |
| 8813 | // continue to converting headers |
| 8814 | retcode = TINYEXR_ERROR_INVALID_HEADER; |
| 8815 | } |
| 8816 | |
| 8817 | exr_header->multipart = exr_version->multipart ? 1 : 0; |
| 8818 | |
| 8819 | (*exr_headers)[i] = exr_header; |
| 8820 | } |
| 8821 | |
| 8822 | (*num_headers) = static_cast<int>(infos.size()); |
| 8823 | |
| 8824 | return retcode; |
| 8825 | } |
| 8826 | |
| 8827 | int (EXRHeader ***, int *, |
| 8828 | const EXRVersion *exr_version, |
| 8829 | const char *filename, const char **err) { |
| 8830 | if (exr_headers == NULL || num_headers == NULL || exr_version == NULL || |
| 8831 | filename == NULL) { |
| 8832 | tinyexr::SetErrorMessage( |
| 8833 | msg: "Invalid argument for ParseEXRMultipartHeaderFromFile()" , err); |
| 8834 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 8835 | } |
| 8836 | |
| 8837 | MemoryMappedFile file(filename); |
| 8838 | if (!file.valid()) { |
| 8839 | tinyexr::SetErrorMessage(msg: "Cannot read file " + std::string(filename), err); |
| 8840 | return TINYEXR_ERROR_CANT_OPEN_FILE; |
| 8841 | } |
| 8842 | |
| 8843 | return ParseEXRMultipartHeaderFromMemory( |
| 8844 | exr_headers, num_headers, exr_version, memory: file.data, size: file.size, err); |
| 8845 | } |
| 8846 | |
| 8847 | int ParseEXRVersionFromMemory(EXRVersion *version, const unsigned char *memory, |
| 8848 | size_t size) { |
| 8849 | if (version == NULL || memory == NULL) { |
| 8850 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 8851 | } |
| 8852 | |
| 8853 | if (size < tinyexr::kEXRVersionSize) { |
| 8854 | return TINYEXR_ERROR_INVALID_DATA; |
| 8855 | } |
| 8856 | |
| 8857 | const unsigned char *marker = memory; |
| 8858 | |
| 8859 | // Header check. |
| 8860 | { |
| 8861 | const char [] = {0x76, 0x2f, 0x31, 0x01}; |
| 8862 | |
| 8863 | if (memcmp(s1: marker, s2: header, n: 4) != 0) { |
| 8864 | return TINYEXR_ERROR_INVALID_MAGIC_NUMBER; |
| 8865 | } |
| 8866 | marker += 4; |
| 8867 | } |
| 8868 | |
| 8869 | version->tiled = false; |
| 8870 | version->long_name = false; |
| 8871 | version->non_image = false; |
| 8872 | version->multipart = false; |
| 8873 | |
| 8874 | // Parse version header. |
| 8875 | { |
| 8876 | // must be 2 |
| 8877 | if (marker[0] != 2) { |
| 8878 | return TINYEXR_ERROR_INVALID_EXR_VERSION; |
| 8879 | } |
| 8880 | |
| 8881 | if (version == NULL) { |
| 8882 | return TINYEXR_SUCCESS; // May OK |
| 8883 | } |
| 8884 | |
| 8885 | version->version = 2; |
| 8886 | |
| 8887 | if (marker[1] & 0x2) { // 9th bit |
| 8888 | version->tiled = true; |
| 8889 | } |
| 8890 | if (marker[1] & 0x4) { // 10th bit |
| 8891 | version->long_name = true; |
| 8892 | } |
| 8893 | if (marker[1] & 0x8) { // 11th bit |
| 8894 | version->non_image = true; // (deep image) |
| 8895 | } |
| 8896 | if (marker[1] & 0x10) { // 12th bit |
| 8897 | version->multipart = true; |
| 8898 | } |
| 8899 | } |
| 8900 | |
| 8901 | return TINYEXR_SUCCESS; |
| 8902 | } |
| 8903 | |
| 8904 | int ParseEXRVersionFromFile(EXRVersion *version, const char *filename) { |
| 8905 | if (filename == NULL) { |
| 8906 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 8907 | } |
| 8908 | |
| 8909 | FILE *fp = NULL; |
| 8910 | #ifdef _WIN32 |
| 8911 | #if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang. |
| 8912 | errno_t err = _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb" ); |
| 8913 | if (err != 0) { |
| 8914 | // TODO(syoyo): return wfopen_s erro code |
| 8915 | return TINYEXR_ERROR_CANT_OPEN_FILE; |
| 8916 | } |
| 8917 | #else |
| 8918 | // Unknown compiler or MinGW without MINGW_HAS_SECURE_API. |
| 8919 | fp = fopen(filename, "rb" ); |
| 8920 | #endif |
| 8921 | #else |
| 8922 | fp = fopen(filename: filename, modes: "rb" ); |
| 8923 | #endif |
| 8924 | if (!fp) { |
| 8925 | return TINYEXR_ERROR_CANT_OPEN_FILE; |
| 8926 | } |
| 8927 | |
| 8928 | // Try to read kEXRVersionSize bytes; if the file is shorter than |
| 8929 | // kEXRVersionSize, this will produce an error. This avoids a call to |
| 8930 | // fseek(fp, 0, SEEK_END), which is not required to be supported by C |
| 8931 | // implementations. |
| 8932 | unsigned char buf[tinyexr::kEXRVersionSize]; |
| 8933 | size_t ret = fread(ptr: &buf[0], size: 1, n: tinyexr::kEXRVersionSize, stream: fp); |
| 8934 | fclose(stream: fp); |
| 8935 | |
| 8936 | if (ret != tinyexr::kEXRVersionSize) { |
| 8937 | return TINYEXR_ERROR_INVALID_FILE; |
| 8938 | } |
| 8939 | |
| 8940 | return ParseEXRVersionFromMemory(version, memory: buf, size: tinyexr::kEXRVersionSize); |
| 8941 | } |
| 8942 | |
| 8943 | int LoadEXRMultipartImageFromMemory(EXRImage *exr_images, |
| 8944 | const EXRHeader **, |
| 8945 | unsigned int num_parts, |
| 8946 | const unsigned char *memory, |
| 8947 | const size_t size, const char **err) { |
| 8948 | if (exr_images == NULL || exr_headers == NULL || num_parts == 0 || |
| 8949 | memory == NULL || (size <= tinyexr::kEXRVersionSize)) { |
| 8950 | tinyexr::SetErrorMessage( |
| 8951 | msg: "Invalid argument for LoadEXRMultipartImageFromMemory()" , err); |
| 8952 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 8953 | } |
| 8954 | |
| 8955 | // compute total header size. |
| 8956 | size_t = 0; |
| 8957 | for (unsigned int i = 0; i < num_parts; i++) { |
| 8958 | if (exr_headers[i]->header_len == 0) { |
| 8959 | tinyexr::SetErrorMessage(msg: "EXRHeader variable is not initialized." , err); |
| 8960 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 8961 | } |
| 8962 | |
| 8963 | total_header_size += exr_headers[i]->header_len; |
| 8964 | } |
| 8965 | |
| 8966 | const char *marker = reinterpret_cast<const char *>( |
| 8967 | memory + total_header_size + 4 + |
| 8968 | 4); // +8 for magic number and version header. |
| 8969 | |
| 8970 | marker += 1; // Skip empty header. |
| 8971 | |
| 8972 | // NOTE 1: |
| 8973 | // In multipart image, There is 'part number' before chunk data. |
| 8974 | // 4 byte : part number |
| 8975 | // 4+ : chunk |
| 8976 | // |
| 8977 | // NOTE 2: |
| 8978 | // EXR spec says 'part number' is 'unsigned long' but actually this is |
| 8979 | // 'unsigned int(4 bytes)' in OpenEXR implementation... |
| 8980 | // http://www.openexr.com/openexrfilelayout.pdf |
| 8981 | |
| 8982 | // Load chunk offset table. |
| 8983 | std::vector<tinyexr::OffsetData> chunk_offset_table_list; |
| 8984 | chunk_offset_table_list.reserve(n: num_parts); |
| 8985 | for (size_t i = 0; i < static_cast<size_t>(num_parts); i++) { |
| 8986 | chunk_offset_table_list.resize(new_size: chunk_offset_table_list.size() + 1); |
| 8987 | tinyexr::OffsetData& offset_data = chunk_offset_table_list.back(); |
| 8988 | if (!exr_headers[i]->tiled || exr_headers[i]->tile_level_mode == TINYEXR_TILE_ONE_LEVEL) { |
| 8989 | tinyexr::InitSingleResolutionOffsets(offset_data, num_blocks: size_t(exr_headers[i]->chunk_count)); |
| 8990 | std::vector<tinyexr::tinyexr_uint64>& offset_table = offset_data.offsets[0][0]; |
| 8991 | |
| 8992 | for (size_t c = 0; c < offset_table.size(); c++) { |
| 8993 | tinyexr::tinyexr_uint64 offset; |
| 8994 | memcpy(dest: &offset, src: marker, n: 8); |
| 8995 | tinyexr::swap8(val: &offset); |
| 8996 | |
| 8997 | if (offset >= size) { |
| 8998 | tinyexr::SetErrorMessage(msg: "Invalid offset size in EXR header chunks." , |
| 8999 | err); |
| 9000 | return TINYEXR_ERROR_INVALID_DATA; |
| 9001 | } |
| 9002 | |
| 9003 | offset_table[c] = offset + 4; // +4 to skip 'part number' |
| 9004 | marker += 8; |
| 9005 | } |
| 9006 | } else { |
| 9007 | { |
| 9008 | std::vector<int> num_x_tiles, num_y_tiles; |
| 9009 | if (!tinyexr::PrecalculateTileInfo(num_x_tiles, num_y_tiles, exr_header: exr_headers[i])) { |
| 9010 | tinyexr::SetErrorMessage(msg: "Invalid tile info." , err); |
| 9011 | return TINYEXR_ERROR_INVALID_DATA; |
| 9012 | } |
| 9013 | int num_blocks = InitTileOffsets(offset_data, exr_header: exr_headers[i], num_x_tiles, num_y_tiles); |
| 9014 | if (num_blocks != exr_headers[i]->chunk_count) { |
| 9015 | tinyexr::SetErrorMessage(msg: "Invalid offset table size." , err); |
| 9016 | return TINYEXR_ERROR_INVALID_DATA; |
| 9017 | } |
| 9018 | } |
| 9019 | for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) { |
| 9020 | for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) { |
| 9021 | for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) { |
| 9022 | tinyexr::tinyexr_uint64 offset; |
| 9023 | memcpy(dest: &offset, src: marker, n: sizeof(tinyexr::tinyexr_uint64)); |
| 9024 | tinyexr::swap8(val: &offset); |
| 9025 | if (offset >= size) { |
| 9026 | tinyexr::SetErrorMessage(msg: "Invalid offset size in EXR header chunks." , |
| 9027 | err); |
| 9028 | return TINYEXR_ERROR_INVALID_DATA; |
| 9029 | } |
| 9030 | offset_data.offsets[l][dy][dx] = offset + 4; // +4 to skip 'part number' |
| 9031 | marker += sizeof(tinyexr::tinyexr_uint64); // = 8 |
| 9032 | } |
| 9033 | } |
| 9034 | } |
| 9035 | } |
| 9036 | } |
| 9037 | |
| 9038 | // Decode image. |
| 9039 | for (size_t i = 0; i < static_cast<size_t>(num_parts); i++) { |
| 9040 | tinyexr::OffsetData &offset_data = chunk_offset_table_list[i]; |
| 9041 | |
| 9042 | // First check 'part number' is identical to 'i' |
| 9043 | for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) |
| 9044 | for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) |
| 9045 | for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) { |
| 9046 | |
| 9047 | const unsigned char *part_number_addr = |
| 9048 | memory + offset_data.offsets[l][dy][dx] - 4; // -4 to move to 'part number' field. |
| 9049 | unsigned int part_no; |
| 9050 | memcpy(dest: &part_no, src: part_number_addr, n: sizeof(unsigned int)); // 4 |
| 9051 | tinyexr::swap4(val: &part_no); |
| 9052 | |
| 9053 | if (part_no != i) { |
| 9054 | tinyexr::SetErrorMessage(msg: "Invalid `part number' in EXR header chunks." , |
| 9055 | err); |
| 9056 | return TINYEXR_ERROR_INVALID_DATA; |
| 9057 | } |
| 9058 | } |
| 9059 | |
| 9060 | std::string e; |
| 9061 | int ret = tinyexr::DecodeChunk(exr_image: &exr_images[i], exr_header: exr_headers[i], offset_data, |
| 9062 | head: memory, size, err: &e); |
| 9063 | if (ret != TINYEXR_SUCCESS) { |
| 9064 | if (!e.empty()) { |
| 9065 | tinyexr::SetErrorMessage(msg: e, err); |
| 9066 | } |
| 9067 | return ret; |
| 9068 | } |
| 9069 | } |
| 9070 | |
| 9071 | return TINYEXR_SUCCESS; |
| 9072 | } |
| 9073 | |
| 9074 | int LoadEXRMultipartImageFromFile(EXRImage *exr_images, |
| 9075 | const EXRHeader **, |
| 9076 | unsigned int num_parts, const char *filename, |
| 9077 | const char **err) { |
| 9078 | if (exr_images == NULL || exr_headers == NULL || num_parts == 0) { |
| 9079 | tinyexr::SetErrorMessage( |
| 9080 | msg: "Invalid argument for LoadEXRMultipartImageFromFile" , err); |
| 9081 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 9082 | } |
| 9083 | |
| 9084 | MemoryMappedFile file(filename); |
| 9085 | if (!file.valid()) { |
| 9086 | tinyexr::SetErrorMessage(msg: "Cannot read file " + std::string(filename), err); |
| 9087 | return TINYEXR_ERROR_CANT_OPEN_FILE; |
| 9088 | } |
| 9089 | |
| 9090 | return LoadEXRMultipartImageFromMemory(exr_images, exr_headers, num_parts, |
| 9091 | memory: file.data, size: file.size, err); |
| 9092 | } |
| 9093 | |
| 9094 | int SaveEXRToMemory(const float *data, int width, int height, int components, |
| 9095 | const int save_as_fp16, unsigned char **outbuf, const char **err) { |
| 9096 | |
| 9097 | if ((components == 1) || components == 3 || components == 4) { |
| 9098 | // OK |
| 9099 | } else { |
| 9100 | std::stringstream ss; |
| 9101 | ss << "Unsupported component value : " << components << std::endl; |
| 9102 | |
| 9103 | tinyexr::SetErrorMessage(msg: ss.str(), err); |
| 9104 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 9105 | } |
| 9106 | |
| 9107 | EXRHeader ; |
| 9108 | InitEXRHeader(exr_header: &header); |
| 9109 | |
| 9110 | if ((width < 16) && (height < 16)) { |
| 9111 | // No compression for small image. |
| 9112 | header.compression_type = TINYEXR_COMPRESSIONTYPE_NONE; |
| 9113 | } else { |
| 9114 | header.compression_type = TINYEXR_COMPRESSIONTYPE_ZIP; |
| 9115 | } |
| 9116 | |
| 9117 | EXRImage image; |
| 9118 | InitEXRImage(exr_image: &image); |
| 9119 | |
| 9120 | image.num_channels = components; |
| 9121 | |
| 9122 | std::vector<float> images[4]; |
| 9123 | |
| 9124 | if (components == 1) { |
| 9125 | images[0].resize(new_size: static_cast<size_t>(width * height)); |
| 9126 | memcpy(dest: images[0].data(), src: data, n: sizeof(float) * size_t(width * height)); |
| 9127 | } else { |
| 9128 | images[0].resize(new_size: static_cast<size_t>(width * height)); |
| 9129 | images[1].resize(new_size: static_cast<size_t>(width * height)); |
| 9130 | images[2].resize(new_size: static_cast<size_t>(width * height)); |
| 9131 | images[3].resize(new_size: static_cast<size_t>(width * height)); |
| 9132 | |
| 9133 | // Split RGB(A)RGB(A)RGB(A)... into R, G and B(and A) layers |
| 9134 | if (components == 4) { |
| 9135 | for (size_t i = 0; i < static_cast<size_t>(width * height); i++) { |
| 9136 | images[0][i] = data[static_cast<size_t>(components) * i + 0]; |
| 9137 | images[1][i] = data[static_cast<size_t>(components) * i + 1]; |
| 9138 | images[2][i] = data[static_cast<size_t>(components) * i + 2]; |
| 9139 | images[3][i] = data[static_cast<size_t>(components) * i + 3]; |
| 9140 | } |
| 9141 | } else { |
| 9142 | for (size_t i = 0; i < static_cast<size_t>(width * height); i++) { |
| 9143 | images[0][i] = data[static_cast<size_t>(components) * i + 0]; |
| 9144 | images[1][i] = data[static_cast<size_t>(components) * i + 1]; |
| 9145 | images[2][i] = data[static_cast<size_t>(components) * i + 2]; |
| 9146 | } |
| 9147 | } |
| 9148 | } |
| 9149 | |
| 9150 | float *image_ptr[4] = {0, 0, 0, 0}; |
| 9151 | if (components == 4) { |
| 9152 | image_ptr[0] = &(images[3].at(n: 0)); // A |
| 9153 | image_ptr[1] = &(images[2].at(n: 0)); // B |
| 9154 | image_ptr[2] = &(images[1].at(n: 0)); // G |
| 9155 | image_ptr[3] = &(images[0].at(n: 0)); // R |
| 9156 | } else if (components == 3) { |
| 9157 | image_ptr[0] = &(images[2].at(n: 0)); // B |
| 9158 | image_ptr[1] = &(images[1].at(n: 0)); // G |
| 9159 | image_ptr[2] = &(images[0].at(n: 0)); // R |
| 9160 | } else if (components == 1) { |
| 9161 | image_ptr[0] = &(images[0].at(n: 0)); // A |
| 9162 | } |
| 9163 | |
| 9164 | image.images = reinterpret_cast<unsigned char **>(image_ptr); |
| 9165 | image.width = width; |
| 9166 | image.height = height; |
| 9167 | |
| 9168 | header.num_channels = components; |
| 9169 | header.channels = static_cast<EXRChannelInfo *>(malloc( |
| 9170 | size: sizeof(EXRChannelInfo) * static_cast<size_t>(header.num_channels))); |
| 9171 | // Must be (A)BGR order, since most of EXR viewers expect this channel order. |
| 9172 | if (components == 4) { |
| 9173 | #ifdef _MSC_VER |
| 9174 | strncpy_s(header.channels[0].name, "A" , 255); |
| 9175 | strncpy_s(header.channels[1].name, "B" , 255); |
| 9176 | strncpy_s(header.channels[2].name, "G" , 255); |
| 9177 | strncpy_s(header.channels[3].name, "R" , 255); |
| 9178 | #else |
| 9179 | strncpy(dest: header.channels[0].name, src: "A" , n: 255); |
| 9180 | strncpy(dest: header.channels[1].name, src: "B" , n: 255); |
| 9181 | strncpy(dest: header.channels[2].name, src: "G" , n: 255); |
| 9182 | strncpy(dest: header.channels[3].name, src: "R" , n: 255); |
| 9183 | #endif |
| 9184 | header.channels[0].name[strlen(s: "A" )] = '\0'; |
| 9185 | header.channels[1].name[strlen(s: "B" )] = '\0'; |
| 9186 | header.channels[2].name[strlen(s: "G" )] = '\0'; |
| 9187 | header.channels[3].name[strlen(s: "R" )] = '\0'; |
| 9188 | } else if (components == 3) { |
| 9189 | #ifdef _MSC_VER |
| 9190 | strncpy_s(header.channels[0].name, "B" , 255); |
| 9191 | strncpy_s(header.channels[1].name, "G" , 255); |
| 9192 | strncpy_s(header.channels[2].name, "R" , 255); |
| 9193 | #else |
| 9194 | strncpy(dest: header.channels[0].name, src: "B" , n: 255); |
| 9195 | strncpy(dest: header.channels[1].name, src: "G" , n: 255); |
| 9196 | strncpy(dest: header.channels[2].name, src: "R" , n: 255); |
| 9197 | #endif |
| 9198 | header.channels[0].name[strlen(s: "B" )] = '\0'; |
| 9199 | header.channels[1].name[strlen(s: "G" )] = '\0'; |
| 9200 | header.channels[2].name[strlen(s: "R" )] = '\0'; |
| 9201 | } else { |
| 9202 | #ifdef _MSC_VER |
| 9203 | strncpy_s(header.channels[0].name, "A" , 255); |
| 9204 | #else |
| 9205 | strncpy(dest: header.channels[0].name, src: "A" , n: 255); |
| 9206 | #endif |
| 9207 | header.channels[0].name[strlen(s: "A" )] = '\0'; |
| 9208 | } |
| 9209 | |
| 9210 | header.pixel_types = static_cast<int *>( |
| 9211 | malloc(size: sizeof(int) * static_cast<size_t>(header.num_channels))); |
| 9212 | header.requested_pixel_types = static_cast<int *>( |
| 9213 | malloc(size: sizeof(int) * static_cast<size_t>(header.num_channels))); |
| 9214 | for (int i = 0; i < header.num_channels; i++) { |
| 9215 | header.pixel_types[i] = |
| 9216 | TINYEXR_PIXELTYPE_FLOAT; // pixel type of input image |
| 9217 | |
| 9218 | if (save_as_fp16 > 0) { |
| 9219 | header.requested_pixel_types[i] = |
| 9220 | TINYEXR_PIXELTYPE_HALF; // save with half(fp16) pixel format |
| 9221 | } else { |
| 9222 | header.requested_pixel_types[i] = |
| 9223 | TINYEXR_PIXELTYPE_FLOAT; // save with float(fp32) pixel format(i.e. |
| 9224 | // no precision reduction) |
| 9225 | } |
| 9226 | } |
| 9227 | |
| 9228 | |
| 9229 | unsigned char *mem_buf; |
| 9230 | size_t mem_size = SaveEXRImageToMemory(exr_image: &image, exr_header: &header, memory_out: &mem_buf, err); |
| 9231 | |
| 9232 | if (mem_size == 0) { |
| 9233 | return TINYEXR_ERROR_SERIALIZATION_FAILED; |
| 9234 | } |
| 9235 | |
| 9236 | free(ptr: header.channels); |
| 9237 | free(ptr: header.pixel_types); |
| 9238 | free(ptr: header.requested_pixel_types); |
| 9239 | |
| 9240 | if (mem_size > size_t(std::numeric_limits<int>::max())) { |
| 9241 | free(ptr: mem_buf); |
| 9242 | return TINYEXR_ERROR_DATA_TOO_LARGE; |
| 9243 | } |
| 9244 | |
| 9245 | (*outbuf) = mem_buf; |
| 9246 | |
| 9247 | return int(mem_size); |
| 9248 | } |
| 9249 | |
| 9250 | int SaveEXR(const float *data, int width, int height, int components, |
| 9251 | const int save_as_fp16, const char *outfilename, const char **err) { |
| 9252 | if ((components == 1) || components == 3 || components == 4) { |
| 9253 | // OK |
| 9254 | } else { |
| 9255 | std::stringstream ss; |
| 9256 | ss << "Unsupported component value : " << components << std::endl; |
| 9257 | |
| 9258 | tinyexr::SetErrorMessage(msg: ss.str(), err); |
| 9259 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 9260 | } |
| 9261 | |
| 9262 | EXRHeader ; |
| 9263 | InitEXRHeader(exr_header: &header); |
| 9264 | |
| 9265 | if ((width < 16) && (height < 16)) { |
| 9266 | // No compression for small image. |
| 9267 | header.compression_type = TINYEXR_COMPRESSIONTYPE_NONE; |
| 9268 | } else { |
| 9269 | header.compression_type = TINYEXR_COMPRESSIONTYPE_ZIP; |
| 9270 | } |
| 9271 | |
| 9272 | EXRImage image; |
| 9273 | InitEXRImage(exr_image: &image); |
| 9274 | |
| 9275 | image.num_channels = components; |
| 9276 | |
| 9277 | std::vector<float> images[4]; |
| 9278 | const size_t pixel_count = |
| 9279 | static_cast<size_t>(width) * static_cast<size_t>(height); |
| 9280 | |
| 9281 | if (components == 1) { |
| 9282 | images[0].resize(new_size: pixel_count); |
| 9283 | memcpy(dest: images[0].data(), src: data, n: sizeof(float) * pixel_count); |
| 9284 | } else { |
| 9285 | images[0].resize(new_size: pixel_count); |
| 9286 | images[1].resize(new_size: pixel_count); |
| 9287 | images[2].resize(new_size: pixel_count); |
| 9288 | images[3].resize(new_size: pixel_count); |
| 9289 | |
| 9290 | // Split RGB(A)RGB(A)RGB(A)... into R, G and B(and A) layers |
| 9291 | if (components == 4) { |
| 9292 | for (size_t i = 0; i < pixel_count; i++) { |
| 9293 | images[0][i] = data[static_cast<size_t>(components) * i + 0]; |
| 9294 | images[1][i] = data[static_cast<size_t>(components) * i + 1]; |
| 9295 | images[2][i] = data[static_cast<size_t>(components) * i + 2]; |
| 9296 | images[3][i] = data[static_cast<size_t>(components) * i + 3]; |
| 9297 | } |
| 9298 | } else { |
| 9299 | for (size_t i = 0; i < pixel_count; i++) { |
| 9300 | images[0][i] = data[static_cast<size_t>(components) * i + 0]; |
| 9301 | images[1][i] = data[static_cast<size_t>(components) * i + 1]; |
| 9302 | images[2][i] = data[static_cast<size_t>(components) * i + 2]; |
| 9303 | } |
| 9304 | } |
| 9305 | } |
| 9306 | |
| 9307 | float *image_ptr[4] = {0, 0, 0, 0}; |
| 9308 | if (components == 4) { |
| 9309 | image_ptr[0] = &(images[3].at(n: 0)); // A |
| 9310 | image_ptr[1] = &(images[2].at(n: 0)); // B |
| 9311 | image_ptr[2] = &(images[1].at(n: 0)); // G |
| 9312 | image_ptr[3] = &(images[0].at(n: 0)); // R |
| 9313 | } else if (components == 3) { |
| 9314 | image_ptr[0] = &(images[2].at(n: 0)); // B |
| 9315 | image_ptr[1] = &(images[1].at(n: 0)); // G |
| 9316 | image_ptr[2] = &(images[0].at(n: 0)); // R |
| 9317 | } else if (components == 1) { |
| 9318 | image_ptr[0] = &(images[0].at(n: 0)); // A |
| 9319 | } |
| 9320 | |
| 9321 | image.images = reinterpret_cast<unsigned char **>(image_ptr); |
| 9322 | image.width = width; |
| 9323 | image.height = height; |
| 9324 | |
| 9325 | header.num_channels = components; |
| 9326 | header.channels = static_cast<EXRChannelInfo *>(malloc( |
| 9327 | size: sizeof(EXRChannelInfo) * static_cast<size_t>(header.num_channels))); |
| 9328 | // Must be (A)BGR order, since most of EXR viewers expect this channel order. |
| 9329 | if (components == 4) { |
| 9330 | #ifdef _MSC_VER |
| 9331 | strncpy_s(header.channels[0].name, "A" , 255); |
| 9332 | strncpy_s(header.channels[1].name, "B" , 255); |
| 9333 | strncpy_s(header.channels[2].name, "G" , 255); |
| 9334 | strncpy_s(header.channels[3].name, "R" , 255); |
| 9335 | #else |
| 9336 | strncpy(dest: header.channels[0].name, src: "A" , n: 255); |
| 9337 | strncpy(dest: header.channels[1].name, src: "B" , n: 255); |
| 9338 | strncpy(dest: header.channels[2].name, src: "G" , n: 255); |
| 9339 | strncpy(dest: header.channels[3].name, src: "R" , n: 255); |
| 9340 | #endif |
| 9341 | header.channels[0].name[strlen(s: "A" )] = '\0'; |
| 9342 | header.channels[1].name[strlen(s: "B" )] = '\0'; |
| 9343 | header.channels[2].name[strlen(s: "G" )] = '\0'; |
| 9344 | header.channels[3].name[strlen(s: "R" )] = '\0'; |
| 9345 | } else if (components == 3) { |
| 9346 | #ifdef _MSC_VER |
| 9347 | strncpy_s(header.channels[0].name, "B" , 255); |
| 9348 | strncpy_s(header.channels[1].name, "G" , 255); |
| 9349 | strncpy_s(header.channels[2].name, "R" , 255); |
| 9350 | #else |
| 9351 | strncpy(dest: header.channels[0].name, src: "B" , n: 255); |
| 9352 | strncpy(dest: header.channels[1].name, src: "G" , n: 255); |
| 9353 | strncpy(dest: header.channels[2].name, src: "R" , n: 255); |
| 9354 | #endif |
| 9355 | header.channels[0].name[strlen(s: "B" )] = '\0'; |
| 9356 | header.channels[1].name[strlen(s: "G" )] = '\0'; |
| 9357 | header.channels[2].name[strlen(s: "R" )] = '\0'; |
| 9358 | } else { |
| 9359 | #ifdef _MSC_VER |
| 9360 | strncpy_s(header.channels[0].name, "A" , 255); |
| 9361 | #else |
| 9362 | strncpy(dest: header.channels[0].name, src: "A" , n: 255); |
| 9363 | #endif |
| 9364 | header.channels[0].name[strlen(s: "A" )] = '\0'; |
| 9365 | } |
| 9366 | |
| 9367 | header.pixel_types = static_cast<int *>( |
| 9368 | malloc(size: sizeof(int) * static_cast<size_t>(header.num_channels))); |
| 9369 | header.requested_pixel_types = static_cast<int *>( |
| 9370 | malloc(size: sizeof(int) * static_cast<size_t>(header.num_channels))); |
| 9371 | for (int i = 0; i < header.num_channels; i++) { |
| 9372 | header.pixel_types[i] = |
| 9373 | TINYEXR_PIXELTYPE_FLOAT; // pixel type of input image |
| 9374 | |
| 9375 | if (save_as_fp16 > 0) { |
| 9376 | header.requested_pixel_types[i] = |
| 9377 | TINYEXR_PIXELTYPE_HALF; // save with half(fp16) pixel format |
| 9378 | } else { |
| 9379 | header.requested_pixel_types[i] = |
| 9380 | TINYEXR_PIXELTYPE_FLOAT; // save with float(fp32) pixel format(i.e. |
| 9381 | // no precision reduction) |
| 9382 | } |
| 9383 | } |
| 9384 | |
| 9385 | int ret = SaveEXRImageToFile(exr_image: &image, exr_header: &header, filename: outfilename, err); |
| 9386 | |
| 9387 | free(ptr: header.channels); |
| 9388 | free(ptr: header.pixel_types); |
| 9389 | free(ptr: header.requested_pixel_types); |
| 9390 | |
| 9391 | return ret; |
| 9392 | } |
| 9393 | |
| 9394 | #ifdef __clang__ |
| 9395 | // zero-as-null-pointer-constant |
| 9396 | #pragma clang diagnostic pop |
| 9397 | #endif |
| 9398 | |
| 9399 | #endif // TINYEXR_IMPLEMENTATION_DEFINED |
| 9400 | #endif // TINYEXR_IMPLEMENTATION |
| 9401 | |