| 1 | // Copyright (C) 2019 The Qt Company Ltd. |
| 2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR GPL-3.0-only |
| 3 | |
| 4 | #include "qssgmesh_p.h" |
| 5 | |
| 6 | #include <QtCore/QVector> |
| 7 | #include <QtQuick3DUtils/private/qssgdataref_p.h> |
| 8 | #include <QtQuick3DUtils/private/qssglightmapuvgenerator_p.h> |
| 9 | |
| 10 | #include "meshoptimizer.h" |
| 11 | |
| 12 | #include <algorithm> |
| 13 | |
| 14 | QT_BEGIN_NAMESPACE |
| 15 | |
| 16 | namespace QSSGMesh { |
| 17 | |
| 18 | // fileId, fileVersion, offset, count |
| 19 | static const size_t = 16; |
| 20 | |
| 21 | // meshOffset, meshId, padding |
| 22 | static const size_t MULTI_ENTRY_STRUCT_SIZE = 16; |
| 23 | |
| 24 | // fileId, fileVersion, flags, size |
| 25 | static const size_t = 12; |
| 26 | |
| 27 | // vertexBuffer, indexBuffer, subsets, joints, drawMode, winding |
| 28 | static const size_t MESH_STRUCT_SIZE = 56; |
| 29 | |
| 30 | // vertex buffer entry list: nameOffset, componentType, componentCount, offset |
| 31 | static const size_t VERTEX_BUFFER_ENTRY_STRUCT_SIZE = 16; |
| 32 | |
| 33 | // subset list: count, offset, minXYZ, maxXYZ, nameOffset, nameLength |
| 34 | static const size_t SUBSET_STRUCT_SIZE_V3_V4 = 40; |
| 35 | // subset list: count, offset, minXYZ, maxXYZ, nameOffset, nameLength, lightmapSizeWidth, lightmapSizeHeight |
| 36 | static const size_t SUBSET_STRUCT_SIZE_V5 = 48; |
| 37 | // subset list: count, offset, minXYZ, maxXYZ, nameOffset, nameLength, lightmapSizeWidth, lightmapSizeHeight, lodCount |
| 38 | static const size_t SUBSET_STRUCT_SIZE_V6 = 52; |
| 39 | |
| 40 | //lod entry: count, offset, distance |
| 41 | static const size_t LOD_STRUCT_SIZE = 12; |
| 42 | |
| 43 | MeshInternal::MultiMeshInfo MeshInternal::(QIODevice *device) |
| 44 | { |
| 45 | const qint64 = device->size() - qint64(MULTI_HEADER_STRUCT_SIZE); |
| 46 | |
| 47 | device->seek(pos: multiHeaderStartOffset); |
| 48 | QDataStream inputStream(device); |
| 49 | inputStream.setByteOrder(QDataStream::LittleEndian); |
| 50 | inputStream.setFloatingPointPrecision(QDataStream::SinglePrecision); |
| 51 | |
| 52 | MultiMeshInfo meshFileInfo; |
| 53 | inputStream >> meshFileInfo.fileId >> meshFileInfo.fileVersion; |
| 54 | |
| 55 | if (!meshFileInfo.isValid()) { |
| 56 | qWarning(msg: "Mesh file invalid" ); |
| 57 | return {}; |
| 58 | } |
| 59 | |
| 60 | quint32 multiEntriesOffset; // unused, the entry list is right before the header |
| 61 | quint32 meshCount; |
| 62 | inputStream >> multiEntriesOffset >> meshCount; |
| 63 | |
| 64 | for (quint32 i = 0; i < meshCount; ++i) { |
| 65 | device->seek(pos: multiHeaderStartOffset |
| 66 | - (qint64(MULTI_ENTRY_STRUCT_SIZE) * meshCount) |
| 67 | + (qint64(MULTI_ENTRY_STRUCT_SIZE) * i)); |
| 68 | quint64 offset; |
| 69 | quint32 id; |
| 70 | inputStream >> offset >> id; |
| 71 | meshFileInfo.meshEntries.insert(key: id, value: offset); |
| 72 | } |
| 73 | |
| 74 | return meshFileInfo; |
| 75 | } |
| 76 | |
| 77 | void MeshInternal::(QIODevice *device, const MeshInternal::MultiMeshInfo &meshFileInfo) |
| 78 | { |
| 79 | QDataStream outputStream(device); |
| 80 | outputStream.setByteOrder(QDataStream::LittleEndian); |
| 81 | outputStream.setFloatingPointPrecision(QDataStream::SinglePrecision); |
| 82 | |
| 83 | const quint32 multiEntriesOffset = device->pos(); |
| 84 | for (auto it = meshFileInfo.meshEntries.cbegin(), end = meshFileInfo.meshEntries.cend(); it != end; ++it) { |
| 85 | const quint32 id = it.key(); |
| 86 | const quint64 offset = it.value(); |
| 87 | const quint32 padding = 0; |
| 88 | outputStream << offset << id << padding; |
| 89 | } |
| 90 | |
| 91 | const quint32 meshCount = meshFileInfo.meshEntries.size(); |
| 92 | outputStream << meshFileInfo.fileId << meshFileInfo.fileVersion << multiEntriesOffset << meshCount; |
| 93 | } |
| 94 | |
| 95 | quint64 MeshInternal::(QIODevice *device, quint64 offset, Mesh *mesh, MeshDataHeader *) |
| 96 | { |
| 97 | static char alignPadding[4] = {}; |
| 98 | |
| 99 | device->seek(pos: offset); |
| 100 | QDataStream inputStream(device); |
| 101 | inputStream.setByteOrder(QDataStream::LittleEndian); |
| 102 | inputStream.setFloatingPointPrecision(QDataStream::SinglePrecision); |
| 103 | |
| 104 | inputStream >> header->fileId >> header->fileVersion >> header->flags >> header->sizeInBytes; |
| 105 | if (!header->isValid()) { |
| 106 | qWarning() << "Mesh data invalid" ; |
| 107 | if (header->fileId == MeshDataHeader::FILE_ID) { |
| 108 | if (header->fileVersion > MeshDataHeader::FILE_VERSION) |
| 109 | qWarning() << "File version " << header->fileVersion << " newer than " << MeshDataHeader::FILE_VERSION; |
| 110 | if (header->fileVersion < MeshDataHeader::LEGACY_MESH_FILE_VERSION) |
| 111 | qWarning() << "File version " << header->fileVersion << " older than " << MeshDataHeader::LEGACY_MESH_FILE_VERSION; |
| 112 | } else { |
| 113 | qWarning() << "Invalid file ID" << header->fileId; |
| 114 | } |
| 115 | return 0; |
| 116 | } |
| 117 | |
| 118 | MeshInternal::MeshOffsetTracker offsetTracker(offset + MESH_HEADER_STRUCT_SIZE); |
| 119 | Q_ASSERT(offsetTracker.offset() == device->pos()); |
| 120 | |
| 121 | quint32 targetBufferEntriesCount; |
| 122 | quint32 vertexBufferEntriesCount; |
| 123 | quint32 targetBufferDataSize; |
| 124 | quint32 vertexBufferDataSize; |
| 125 | inputStream >> targetBufferEntriesCount |
| 126 | >> vertexBufferEntriesCount |
| 127 | >> mesh->m_vertexBuffer.stride |
| 128 | >> targetBufferDataSize |
| 129 | >> vertexBufferDataSize; |
| 130 | |
| 131 | if (!header->hasSeparateTargetBuffer()) { |
| 132 | targetBufferEntriesCount = 0; |
| 133 | targetBufferDataSize = 0; |
| 134 | } |
| 135 | |
| 136 | quint32 indexBufferComponentType; |
| 137 | quint32 indexBufferDataOffset; |
| 138 | quint32 indexBufferDataSize; |
| 139 | inputStream >> indexBufferComponentType |
| 140 | >> indexBufferDataOffset |
| 141 | >> indexBufferDataSize; |
| 142 | mesh->m_indexBuffer.componentType = Mesh::ComponentType(indexBufferComponentType); |
| 143 | |
| 144 | quint32 targetCount; |
| 145 | quint32 subsetsCount; |
| 146 | inputStream >> targetCount >> subsetsCount; |
| 147 | mesh->m_targetBuffer.numTargets = targetCount; |
| 148 | |
| 149 | quint32 jointsOffsets; // unused |
| 150 | quint32 jointsCount; // unused |
| 151 | inputStream >> jointsOffsets >> jointsCount; |
| 152 | quint32 drawMode; |
| 153 | quint32 winding; |
| 154 | inputStream >> drawMode >> winding; |
| 155 | mesh->m_drawMode = Mesh::DrawMode(drawMode); |
| 156 | mesh->m_winding = Mesh::Winding(winding); |
| 157 | |
| 158 | offsetTracker.advance(advanceAmount: MESH_STRUCT_SIZE); |
| 159 | |
| 160 | quint32 entriesByteSize = 0; |
| 161 | for (quint32 i = 0; i < vertexBufferEntriesCount; ++i) { |
| 162 | Mesh::VertexBufferEntry vertexBufferEntry; |
| 163 | quint32 componentType; |
| 164 | quint32 nameOffset; // unused |
| 165 | inputStream >> nameOffset |
| 166 | >> componentType |
| 167 | >> vertexBufferEntry.componentCount |
| 168 | >> vertexBufferEntry.offset; |
| 169 | vertexBufferEntry.componentType = Mesh::ComponentType(componentType); |
| 170 | mesh->m_vertexBuffer.entries.append(t: vertexBufferEntry); |
| 171 | entriesByteSize += VERTEX_BUFFER_ENTRY_STRUCT_SIZE; |
| 172 | } |
| 173 | quint32 alignAmount = offsetTracker.alignedAdvance(advanceAmount: entriesByteSize); |
| 174 | if (alignAmount) |
| 175 | device->read(data: alignPadding, maxlen: alignAmount); |
| 176 | |
| 177 | // vertex buffer entry names |
| 178 | quint32 numTargets = 0; |
| 179 | // used for recording the target attributes supported by the mesh |
| 180 | // and re-construting it when meeting attr_unsupported |
| 181 | QList<QByteArray> attrNames; |
| 182 | for (auto &entry : mesh->m_vertexBuffer.entries) { |
| 183 | quint32 nameLength; |
| 184 | inputStream >> nameLength; |
| 185 | offsetTracker.advance(advanceAmount: sizeof(quint32)); |
| 186 | const QByteArray nameWithZeroTerminator = device->read(maxlen: nameLength); |
| 187 | entry.name = QByteArray(nameWithZeroTerminator.constData(), qMax(a: 0, b: nameWithZeroTerminator.size() - 1)); |
| 188 | alignAmount = offsetTracker.alignedAdvance(advanceAmount: nameLength); |
| 189 | if (alignAmount) |
| 190 | device->read(data: alignPadding, maxlen: alignAmount); |
| 191 | // Old morph meshes' target attributes were appended sequentially |
| 192 | // behind vertex attributes. However, since the number of targets are restricted by 8 |
| 193 | // the other attributes were named by "attr_unsupported" |
| 194 | // So just checking numTargets is safe with the above assumption and |
| 195 | // it will try to reconstruct the unsupported attributes. |
| 196 | if (numTargets > 0 || (!header->hasSeparateTargetBuffer() && entry.name.startsWith(bv: "attr_t" ))) { |
| 197 | if (entry.name.sliced(pos: 6).startsWith(bv: "pos" )) { |
| 198 | const quint32 targetId = entry.name.mid(index: 9).toUInt(); |
| 199 | // All the attributes of the first target should be recorded correctly. |
| 200 | if (targetId == 0) |
| 201 | attrNames.append(t: MeshInternal::getPositionAttrName()); |
| 202 | numTargets = qMax(a: numTargets, b: targetId + 1); |
| 203 | entry.name = MeshInternal::getPositionAttrName(); |
| 204 | mesh->m_targetBuffer.entries.append(t: entry); |
| 205 | targetBufferEntriesCount++; |
| 206 | } else if (entry.name.sliced(pos: 6).startsWith(bv: "norm" )) { |
| 207 | const quint32 targetId = entry.name.mid(index: 10).toUInt(); |
| 208 | if (targetId == 0) |
| 209 | attrNames.append(t: MeshInternal::getNormalAttrName()); |
| 210 | numTargets = qMax(a: numTargets, b: targetId + 1); |
| 211 | entry.name = MeshInternal::getNormalAttrName(); |
| 212 | mesh->m_targetBuffer.entries.append(t: entry); |
| 213 | targetBufferEntriesCount++; |
| 214 | } else if (entry.name.sliced(pos: 6).startsWith(bv: "tan" )) { |
| 215 | const quint32 targetId = entry.name.mid(index: 9).toUInt(); |
| 216 | if (targetId == 0) |
| 217 | attrNames.append(t: MeshInternal::getTexTanAttrName()); |
| 218 | numTargets = qMax(a: numTargets, b: targetId + 1); |
| 219 | entry.name = MeshInternal::getTexTanAttrName(); |
| 220 | mesh->m_targetBuffer.entries.append(t: entry); |
| 221 | targetBufferEntriesCount++; |
| 222 | } else if (entry.name.sliced(pos: 6).startsWith(bv: "binorm" )) { |
| 223 | const quint32 targetId = entry.name.mid(index: 12).toUInt(); |
| 224 | if (targetId == 0) |
| 225 | attrNames.append(t: MeshInternal::getTexBinormalAttrName()); |
| 226 | numTargets = qMax(a: numTargets, b: targetId + 1); |
| 227 | entry.name = MeshInternal::getTexBinormalAttrName(); |
| 228 | mesh->m_targetBuffer.entries.append(t: entry); |
| 229 | targetBufferEntriesCount++; |
| 230 | } else if (entry.name.startsWith(bv: "attr_unsupported" )) { |
| 231 | // Reconstruct |
| 232 | entry.name = attrNames[targetBufferEntriesCount % attrNames.size()]; |
| 233 | mesh->m_targetBuffer.entries.append(t: entry); |
| 234 | targetBufferEntriesCount++; |
| 235 | } |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | mesh->m_vertexBuffer.data = device->read(maxlen: vertexBufferDataSize); |
| 240 | alignAmount = offsetTracker.alignedAdvance(advanceAmount: vertexBufferDataSize); |
| 241 | if (alignAmount) |
| 242 | device->read(data: alignPadding, maxlen: alignAmount); |
| 243 | |
| 244 | mesh->m_indexBuffer.data = device->read(maxlen: indexBufferDataSize); |
| 245 | alignAmount = offsetTracker.alignedAdvance(advanceAmount: indexBufferDataSize); |
| 246 | if (alignAmount) |
| 247 | device->read(data: alignPadding, maxlen: alignAmount); |
| 248 | |
| 249 | quint32 subsetByteSize = 0; |
| 250 | QVector<MeshInternal::Subset> internalSubsets; |
| 251 | for (quint32 i = 0; i < subsetsCount; ++i) { |
| 252 | MeshInternal::Subset subset; |
| 253 | float minX; |
| 254 | float minY; |
| 255 | float minZ; |
| 256 | float maxX; |
| 257 | float maxY; |
| 258 | float maxZ; |
| 259 | quint32 nameOffset; // unused |
| 260 | inputStream >> subset.count |
| 261 | >> subset.offset |
| 262 | >> minX |
| 263 | >> minY |
| 264 | >> minZ |
| 265 | >> maxX |
| 266 | >> maxY |
| 267 | >> maxZ |
| 268 | >> nameOffset |
| 269 | >> subset.nameLength; |
| 270 | subset.bounds.min = QVector3D(minX, minY, minZ); |
| 271 | subset.bounds.max = QVector3D(maxX, maxY, maxZ); |
| 272 | if (header->hasLightmapSizeHint()) { |
| 273 | quint32 width = 0; |
| 274 | quint32 height = 0; |
| 275 | inputStream >> width >> height; |
| 276 | subset.lightmapSizeHint = QSize(width, height); |
| 277 | if (header->hasLodDataHint()) { |
| 278 | quint32 lodCount = 0; |
| 279 | inputStream >> lodCount; |
| 280 | subset.lodCount = lodCount; |
| 281 | subsetByteSize += SUBSET_STRUCT_SIZE_V6; |
| 282 | } else { |
| 283 | subsetByteSize += SUBSET_STRUCT_SIZE_V5; |
| 284 | } |
| 285 | } else { |
| 286 | subset.lightmapSizeHint = QSize(0, 0); |
| 287 | subsetByteSize += SUBSET_STRUCT_SIZE_V3_V4; |
| 288 | } |
| 289 | internalSubsets.append(t: subset); |
| 290 | |
| 291 | } |
| 292 | alignAmount = offsetTracker.alignedAdvance(advanceAmount: subsetByteSize); |
| 293 | if (alignAmount) |
| 294 | device->read(data: alignPadding, maxlen: alignAmount); |
| 295 | |
| 296 | for (MeshInternal::Subset &internalSubset : internalSubsets) { |
| 297 | internalSubset.rawNameUtf16 = device->read(maxlen: internalSubset.nameLength * 2); //UTF_16_le |
| 298 | alignAmount = offsetTracker.alignedAdvance(advanceAmount: internalSubset.nameLength * 2); |
| 299 | if (alignAmount) |
| 300 | device->read(data: alignPadding, maxlen: alignAmount); |
| 301 | } |
| 302 | |
| 303 | quint32 lodByteSize = 0; |
| 304 | for (const MeshInternal::Subset &internalSubset : internalSubsets) { |
| 305 | auto meshSubset = internalSubset.toMeshSubset(); |
| 306 | // Read Level of Detail data here |
| 307 | for (auto &lod : meshSubset.lods) { |
| 308 | quint32 count = 0; |
| 309 | quint32 offset = 0; |
| 310 | float distance = 0.0; |
| 311 | inputStream >> count >> offset >> distance; |
| 312 | lod.count = count; |
| 313 | lod.offset = offset; |
| 314 | lod.distance = distance; |
| 315 | lodByteSize += LOD_STRUCT_SIZE; |
| 316 | } |
| 317 | |
| 318 | mesh->m_subsets.append(t: meshSubset); |
| 319 | } |
| 320 | alignAmount = offsetTracker.alignedAdvance(advanceAmount: lodByteSize); |
| 321 | if (alignAmount) |
| 322 | device->read(data: alignPadding, maxlen: alignAmount); |
| 323 | |
| 324 | |
| 325 | // Data for morphTargets |
| 326 | if (targetBufferEntriesCount > 0) { |
| 327 | if (header->hasSeparateTargetBuffer()) { |
| 328 | entriesByteSize = 0; |
| 329 | for (quint32 i = 0; i < targetBufferEntriesCount; ++i) { |
| 330 | Mesh::VertexBufferEntry targetBufferEntry; |
| 331 | quint32 componentType; |
| 332 | quint32 nameOffset; // unused |
| 333 | inputStream >> nameOffset |
| 334 | >> componentType |
| 335 | >> targetBufferEntry.componentCount |
| 336 | >> targetBufferEntry.offset; |
| 337 | targetBufferEntry.componentType = Mesh::ComponentType(componentType); |
| 338 | mesh->m_targetBuffer.entries.append(t: targetBufferEntry); |
| 339 | entriesByteSize += VERTEX_BUFFER_ENTRY_STRUCT_SIZE; |
| 340 | } |
| 341 | alignAmount = offsetTracker.alignedAdvance(advanceAmount: entriesByteSize); |
| 342 | if (alignAmount) |
| 343 | device->read(data: alignPadding, maxlen: alignAmount); |
| 344 | |
| 345 | for (auto &entry : mesh->m_targetBuffer.entries) { |
| 346 | quint32 nameLength; |
| 347 | inputStream >> nameLength; |
| 348 | offsetTracker.advance(advanceAmount: sizeof(quint32)); |
| 349 | const QByteArray nameWithZeroTerminator = device->read(maxlen: nameLength); |
| 350 | entry.name = QByteArray(nameWithZeroTerminator.constData(), qMax(a: 0, b: nameWithZeroTerminator.size() - 1)); |
| 351 | alignAmount = offsetTracker.alignedAdvance(advanceAmount: nameLength); |
| 352 | if (alignAmount) |
| 353 | device->read(data: alignPadding, maxlen: alignAmount); |
| 354 | } |
| 355 | |
| 356 | mesh->m_targetBuffer.data = device->read(maxlen: targetBufferDataSize); |
| 357 | } else { |
| 358 | // remove target entries from vertexbuffer entries |
| 359 | mesh->m_vertexBuffer.entries.remove(i: vertexBufferEntriesCount - targetBufferEntriesCount, |
| 360 | n: targetBufferEntriesCount); |
| 361 | const quint32 vertexCount = vertexBufferDataSize / mesh->m_vertexBuffer.stride; |
| 362 | const quint32 targetEntryTexWidth = qCeil(v: qSqrt(v: vertexCount)); |
| 363 | const quint32 targetCompStride = targetEntryTexWidth * targetEntryTexWidth * 4 * sizeof(float); |
| 364 | mesh->m_targetBuffer.data.resize(size: targetCompStride * targetBufferEntriesCount); |
| 365 | const quint32 numComps = targetBufferEntriesCount / numTargets; |
| 366 | for (quint32 i = 0; i < targetBufferEntriesCount; ++i) { |
| 367 | auto &entry = mesh->m_targetBuffer.entries[i]; |
| 368 | char *dstBuf = mesh->m_targetBuffer.data.data() |
| 369 | + (i / numComps) * targetCompStride |
| 370 | + (i % numComps) * (targetCompStride * numTargets); |
| 371 | const char *srcBuf = mesh->m_vertexBuffer.data.constData() + entry.offset; |
| 372 | for (quint32 j = 0; j < vertexCount; ++j) { |
| 373 | // The number of old target components is fixed as 3 |
| 374 | memcpy(dest: dstBuf + j * 4 * sizeof(float), |
| 375 | src: srcBuf + j * mesh->m_vertexBuffer.stride, |
| 376 | n: 3 * sizeof(float)); |
| 377 | } |
| 378 | entry.offset = i * targetCompStride; |
| 379 | } |
| 380 | // now we don't need to have redundant targetbuffer entries |
| 381 | mesh->m_targetBuffer.entries.remove(i: numComps, n: targetBufferEntriesCount - numComps); |
| 382 | mesh->m_targetBuffer.numTargets = numTargets; |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | return header->sizeInBytes; |
| 387 | } |
| 388 | |
| 389 | void MeshInternal::(QIODevice *device, const MeshDataHeader &) |
| 390 | { |
| 391 | QDataStream outputStream(device); |
| 392 | outputStream.setByteOrder(QDataStream::LittleEndian); |
| 393 | outputStream.setFloatingPointPrecision(QDataStream::SinglePrecision); |
| 394 | |
| 395 | outputStream << header.fileId << header.fileVersion << header.flags << header.sizeInBytes; |
| 396 | } |
| 397 | |
| 398 | // The legacy, now-removed, insane mesh code used to use a "serialization" |
| 399 | // strategy with dumping memory, yet combined with with an in-memory layout |
| 400 | // that is different from what's in the file. In version 4 we no longer write |
| 401 | // out valid offset values (see the // legacy offset comments), because the new |
| 402 | // loader does not need them, and calculating them is not sensible, especially |
| 403 | // due to the different layouts. We still do the alignment padding, even though |
| 404 | // that's also legacy nonsense, but having that allows the reader not have to |
| 405 | // branch based on the version. |
| 406 | |
| 407 | quint64 MeshInternal::writeMeshData(QIODevice *device, const Mesh &mesh) |
| 408 | { |
| 409 | static const char alignPadding[4] = {}; |
| 410 | |
| 411 | QDataStream outputStream(device); |
| 412 | outputStream.setByteOrder(QDataStream::LittleEndian); |
| 413 | outputStream.setFloatingPointPrecision(QDataStream::SinglePrecision); |
| 414 | |
| 415 | const qint64 startPos = device->pos(); |
| 416 | MeshInternal::MeshOffsetTracker offsetTracker(startPos); |
| 417 | Q_ASSERT(offsetTracker.offset() == device->pos()); |
| 418 | |
| 419 | const quint32 vertexBufferEntriesCount = mesh.m_vertexBuffer.entries.size(); |
| 420 | const quint32 vertexBufferDataSize = mesh.m_vertexBuffer.data.size(); |
| 421 | const quint32 vertexBufferStride = mesh.m_vertexBuffer.stride; |
| 422 | const quint32 targetBufferEntriesCount = mesh.m_targetBuffer.entries.count(); |
| 423 | const quint32 targetBufferDataSize = mesh.m_targetBuffer.data.size(); |
| 424 | outputStream << targetBufferEntriesCount |
| 425 | << vertexBufferEntriesCount |
| 426 | << vertexBufferStride; |
| 427 | outputStream << targetBufferDataSize |
| 428 | << vertexBufferDataSize; |
| 429 | |
| 430 | const quint32 indexBufferDataSize = mesh.m_indexBuffer.data.size(); |
| 431 | const quint32 indexComponentType = quint32(mesh.m_indexBuffer.componentType); |
| 432 | outputStream << indexComponentType; |
| 433 | outputStream << quint32(0) // legacy offset |
| 434 | << indexBufferDataSize; |
| 435 | |
| 436 | const quint32 targetCount = mesh.m_targetBuffer.numTargets; |
| 437 | const quint32 subsetsCount = mesh.m_subsets.size(); |
| 438 | outputStream << targetCount |
| 439 | << subsetsCount; |
| 440 | |
| 441 | outputStream << quint32(0) // legacy offset |
| 442 | << quint32(0); // legacy jointsCount |
| 443 | |
| 444 | const quint32 drawMode = quint32(mesh.m_drawMode); |
| 445 | const quint32 winding = quint32(mesh.m_winding); |
| 446 | outputStream << drawMode |
| 447 | << winding; |
| 448 | |
| 449 | offsetTracker.advance(advanceAmount: MESH_STRUCT_SIZE); |
| 450 | |
| 451 | quint32 entriesByteSize = 0; |
| 452 | for (quint32 i = 0; i < vertexBufferEntriesCount; ++i) { |
| 453 | const Mesh::VertexBufferEntry &entry(mesh.m_vertexBuffer.entries[i]); |
| 454 | const quint32 componentType = quint32(entry.componentType); |
| 455 | const quint32 componentCount = entry.componentCount; |
| 456 | const quint32 offset = entry.offset; |
| 457 | outputStream << quint32(0) // legacy offset |
| 458 | << componentType |
| 459 | << componentCount |
| 460 | << offset; |
| 461 | entriesByteSize += VERTEX_BUFFER_ENTRY_STRUCT_SIZE; |
| 462 | } |
| 463 | quint32 alignAmount = offsetTracker.alignedAdvance(advanceAmount: entriesByteSize); |
| 464 | if (alignAmount) |
| 465 | device->write(data: alignPadding, len: alignAmount); |
| 466 | |
| 467 | for (quint32 i = 0; i < vertexBufferEntriesCount; ++i) { |
| 468 | const Mesh::VertexBufferEntry &entry(mesh.m_vertexBuffer.entries[i]); |
| 469 | const quint32 nameLength = entry.name.size() + 1; |
| 470 | outputStream << nameLength; |
| 471 | device->write(data: entry.name.constData(), len: nameLength); // with zero terminator included |
| 472 | alignAmount = offsetTracker.alignedAdvance(advanceAmount: sizeof(quint32) + nameLength); |
| 473 | if (alignAmount) |
| 474 | device->write(data: alignPadding, len: alignAmount); |
| 475 | } |
| 476 | |
| 477 | device->write(data: mesh.m_vertexBuffer.data.constData(), len: vertexBufferDataSize); |
| 478 | alignAmount = offsetTracker.alignedAdvance(advanceAmount: vertexBufferDataSize); |
| 479 | if (alignAmount) |
| 480 | device->write(data: alignPadding, len: alignAmount); |
| 481 | |
| 482 | device->write(data: mesh.m_indexBuffer.data.constData(), len: indexBufferDataSize); |
| 483 | alignAmount = offsetTracker.alignedAdvance(advanceAmount: indexBufferDataSize); |
| 484 | if (alignAmount) |
| 485 | device->write(data: alignPadding, len: alignAmount); |
| 486 | |
| 487 | quint32 subsetByteSize = 0; |
| 488 | for (quint32 i = 0; i < subsetsCount; ++i) { |
| 489 | const Mesh::Subset &subset(mesh.m_subsets[i]); |
| 490 | const quint32 subsetCount = subset.count; |
| 491 | const quint32 subsetOffset = subset.offset; |
| 492 | const float minX = subset.bounds.min.x(); |
| 493 | const float minY = subset.bounds.min.y(); |
| 494 | const float minZ = subset.bounds.min.z(); |
| 495 | const float maxX = subset.bounds.max.x(); |
| 496 | const float maxY = subset.bounds.max.y(); |
| 497 | const float maxZ = subset.bounds.max.z(); |
| 498 | const quint32 nameLength = subset.name.size() + 1; |
| 499 | const quint32 lightmapSizeHintWidth = qMax(a: 0, b: subset.lightmapSizeHint.width()); |
| 500 | const quint32 lightmapSizeHintHeight = qMax(a: 0, b: subset.lightmapSizeHint.height()); |
| 501 | const quint32 lodCount = subset.lods.size(); |
| 502 | outputStream << subsetCount |
| 503 | << subsetOffset |
| 504 | << minX |
| 505 | << minY |
| 506 | << minZ |
| 507 | << maxX |
| 508 | << maxY |
| 509 | << maxZ; |
| 510 | outputStream << quint32(0) // legacy offset |
| 511 | << nameLength; |
| 512 | outputStream << lightmapSizeHintWidth |
| 513 | << lightmapSizeHintHeight; |
| 514 | outputStream << lodCount; |
| 515 | subsetByteSize += SUBSET_STRUCT_SIZE_V6; |
| 516 | } |
| 517 | alignAmount = offsetTracker.alignedAdvance(advanceAmount: subsetByteSize); |
| 518 | if (alignAmount) |
| 519 | device->write(data: alignPadding, len: alignAmount); |
| 520 | |
| 521 | for (quint32 i = 0; i < subsetsCount; ++i) { |
| 522 | const Mesh::Subset &subset(mesh.m_subsets[i]); |
| 523 | const char *utf16Name = reinterpret_cast<const char *>(subset.name.utf16()); |
| 524 | const quint32 nameByteSize = (subset.name.size() + 1) * 2; |
| 525 | device->write(data: utf16Name, len: nameByteSize); |
| 526 | alignAmount = offsetTracker.alignedAdvance(advanceAmount: nameByteSize); |
| 527 | if (alignAmount) |
| 528 | device->write(data: alignPadding, len: alignAmount); |
| 529 | } |
| 530 | |
| 531 | // LOD data |
| 532 | quint32 lodDataByteSize = 0; |
| 533 | for (quint32 i = 0; i < subsetsCount; ++i) { |
| 534 | const Mesh::Subset &subset(mesh.m_subsets[i]); |
| 535 | for (auto lod : subset.lods) { |
| 536 | const quint32 count = lod.count; |
| 537 | const quint32 offset = lod.offset; |
| 538 | const float distance = lod.distance; |
| 539 | outputStream << count << offset << distance; |
| 540 | lodDataByteSize += LOD_STRUCT_SIZE; |
| 541 | } |
| 542 | } |
| 543 | alignAmount = offsetTracker.alignedAdvance(advanceAmount: lodDataByteSize); |
| 544 | if (alignAmount) |
| 545 | device->write(data: alignPadding, len: alignAmount); |
| 546 | |
| 547 | // Data for morphTargets |
| 548 | for (quint32 i = 0; i < targetBufferEntriesCount; ++i) { |
| 549 | const Mesh::VertexBufferEntry &entry(mesh.m_targetBuffer.entries[i]); |
| 550 | const quint32 componentType = quint32(entry.componentType); |
| 551 | const quint32 componentCount = entry.componentCount; |
| 552 | const quint32 offset = entry.offset; |
| 553 | outputStream << quint32(0) // legacy offset |
| 554 | << componentType |
| 555 | << componentCount |
| 556 | << offset; |
| 557 | entriesByteSize += VERTEX_BUFFER_ENTRY_STRUCT_SIZE; |
| 558 | } |
| 559 | alignAmount = offsetTracker.alignedAdvance(advanceAmount: entriesByteSize); |
| 560 | if (alignAmount) |
| 561 | device->write(data: alignPadding, len: alignAmount); |
| 562 | |
| 563 | for (quint32 i = 0; i < targetBufferEntriesCount; ++i) { |
| 564 | const Mesh::VertexBufferEntry &entry(mesh.m_targetBuffer.entries[i]); |
| 565 | const quint32 nameLength = entry.name.size() + 1; |
| 566 | outputStream << nameLength; |
| 567 | device->write(data: entry.name.constData(), len: nameLength); // with zero terminator included |
| 568 | alignAmount = offsetTracker.alignedAdvance(advanceAmount: sizeof(quint32) + nameLength); |
| 569 | if (alignAmount) |
| 570 | device->write(data: alignPadding, len: alignAmount); |
| 571 | } |
| 572 | |
| 573 | device->write(data: mesh.m_targetBuffer.data.constData(), len: targetBufferDataSize); |
| 574 | |
| 575 | const quint32 endPos = device->pos(); |
| 576 | const quint32 sizeInBytes = endPos - startPos; |
| 577 | device->seek(pos: endPos); |
| 578 | return sizeInBytes; |
| 579 | } |
| 580 | |
| 581 | Mesh Mesh::loadMesh(QIODevice *device, quint32 id) |
| 582 | { |
| 583 | MeshInternal::MeshDataHeader ; |
| 584 | const MeshInternal::MultiMeshInfo meshFileInfo = MeshInternal::readFileHeader(device); |
| 585 | auto it = meshFileInfo.meshEntries.constFind(key: id); |
| 586 | if (it != meshFileInfo.meshEntries.constEnd()) { |
| 587 | Mesh mesh; |
| 588 | quint64 size = MeshInternal::readMeshData(device, offset: *it, mesh: &mesh, header: &header); |
| 589 | if (size) |
| 590 | return mesh; |
| 591 | } else if (id == 0 && !meshFileInfo.meshEntries.isEmpty()) { |
| 592 | Mesh mesh; |
| 593 | quint64 size = MeshInternal::readMeshData(device, offset: *meshFileInfo.meshEntries.cbegin(), mesh: &mesh, header: &header); |
| 594 | if (size) |
| 595 | return mesh; |
| 596 | } |
| 597 | return Mesh(); |
| 598 | } |
| 599 | |
| 600 | QMap<quint32, Mesh> Mesh::loadAll(QIODevice *device) |
| 601 | { |
| 602 | MeshInternal::MeshDataHeader ; |
| 603 | const MeshInternal::MultiMeshInfo meshFileInfo = MeshInternal::readFileHeader(device); |
| 604 | QMap<quint32, Mesh> meshes; |
| 605 | for (auto it = meshFileInfo.meshEntries.cbegin(), end = meshFileInfo.meshEntries.cend(); it != end; ++it) { |
| 606 | Mesh mesh; |
| 607 | quint64 size = MeshInternal::readMeshData(device, offset: *it, mesh: &mesh, header: &header); |
| 608 | if (size) |
| 609 | meshes.insert(key: it.key(), value: mesh); |
| 610 | else |
| 611 | qWarning(msg: "Failed to find mesh #%u" , it.key()); |
| 612 | } |
| 613 | return meshes; |
| 614 | } |
| 615 | |
| 616 | static inline quint32 getAlignedOffset(quint32 offset, quint32 align) |
| 617 | { |
| 618 | Q_ASSERT(align > 0); |
| 619 | const quint32 leftover = (align > 0) ? offset % align : 0; |
| 620 | if (leftover) |
| 621 | return offset + (align - leftover); |
| 622 | return offset; |
| 623 | } |
| 624 | |
| 625 | Mesh Mesh::fromAssetData(const QVector<AssetVertexEntry> &vbufEntries, |
| 626 | const QByteArray &indexBufferData, |
| 627 | ComponentType indexComponentType, |
| 628 | const QVector<AssetMeshSubset> &subsets, |
| 629 | quint32 numTargets, |
| 630 | quint32 numTargetComps) |
| 631 | { |
| 632 | Mesh mesh; |
| 633 | quint32 currentOffset = 0; |
| 634 | quint32 bufferAlignment = 0; |
| 635 | quint32 numItems = 0; |
| 636 | bool ok = true; |
| 637 | |
| 638 | mesh.m_targetBuffer.numTargets = numTargets; |
| 639 | quint32 targetCurrentComp = 0; |
| 640 | quint32 targetCompStride = 0; |
| 641 | |
| 642 | QVector<AssetVertexEntry> vEntries; |
| 643 | for (const AssetVertexEntry &entry : vbufEntries) { |
| 644 | // Ignore entries with no data. |
| 645 | if (entry.data.isEmpty()) |
| 646 | continue; |
| 647 | |
| 648 | VertexBufferEntry meshEntry; |
| 649 | meshEntry.componentType = entry.componentType; |
| 650 | meshEntry.componentCount = entry.componentCount; |
| 651 | meshEntry.name = entry.name; |
| 652 | |
| 653 | if (entry.morphTargetId < 0) { |
| 654 | const quint32 alignment = MeshInternal::byteSizeForComponentType(componentType: entry.componentType); |
| 655 | const quint32 byteSize = alignment * entry.componentCount; |
| 656 | |
| 657 | if (entry.data.size() % alignment != 0) { |
| 658 | Q_ASSERT(false); |
| 659 | ok = false; |
| 660 | } |
| 661 | |
| 662 | quint32 localNumItems = entry.data.size() / byteSize; |
| 663 | if (numItems == 0) { |
| 664 | numItems = localNumItems; |
| 665 | } else if (numItems != localNumItems) { |
| 666 | Q_ASSERT(false); |
| 667 | ok = false; |
| 668 | numItems = qMin(a: numItems, b: localNumItems); |
| 669 | } |
| 670 | |
| 671 | currentOffset = getAlignedOffset(offset: currentOffset, align: alignment); |
| 672 | meshEntry.offset = currentOffset; |
| 673 | |
| 674 | mesh.m_vertexBuffer.entries.append(t: meshEntry); |
| 675 | currentOffset += byteSize; |
| 676 | bufferAlignment = qMax(a: bufferAlignment, b: alignment); |
| 677 | vEntries.append(t: entry); |
| 678 | } else { |
| 679 | if (!targetCompStride) { |
| 680 | const quint32 targetEntrySize = entry.data.size(); |
| 681 | quint32 targetEntryTexWidth = qCeil(v: qSqrt(v: ((targetEntrySize + 15) >> 4))); |
| 682 | targetCompStride = targetEntryTexWidth * targetEntryTexWidth * 4 * sizeof(float); |
| 683 | mesh.m_targetBuffer.data.resize(size: targetCompStride * numTargets * numTargetComps); |
| 684 | } |
| 685 | |
| 686 | // At assets, these entries are appended sequentially from target 0 to target N - 1 |
| 687 | // It is safe to calculate the offset by the data size |
| 688 | meshEntry.offset = (targetCurrentComp * numTargets + entry.morphTargetId) |
| 689 | * targetCompStride; |
| 690 | memcpy(dest: mesh.m_targetBuffer.data.data() + meshEntry.offset, |
| 691 | src: entry.data.constData(), n: entry.data.size()); |
| 692 | |
| 693 | // Note: the targetBuffer will not be interleaved, |
| 694 | // data will be just appended in order and used for a texture array. |
| 695 | if (entry.morphTargetId == 0) |
| 696 | mesh.m_targetBuffer.entries.append(t: meshEntry); |
| 697 | |
| 698 | targetCurrentComp = (targetCurrentComp + 1 < numTargetComps) ? targetCurrentComp + 1 : 0; |
| 699 | } |
| 700 | } |
| 701 | |
| 702 | if (!ok) |
| 703 | return Mesh(); |
| 704 | |
| 705 | mesh.m_vertexBuffer.stride = getAlignedOffset(offset: currentOffset, align: bufferAlignment); |
| 706 | |
| 707 | // Packed interleave the data. |
| 708 | for (quint32 idx = 0; idx < numItems; ++idx) { |
| 709 | quint32 dataOffset = 0; |
| 710 | for (const AssetVertexEntry &entry : vEntries) { |
| 711 | if (entry.data.isEmpty()) |
| 712 | continue; |
| 713 | |
| 714 | const quint32 alignment = MeshInternal::byteSizeForComponentType(componentType: entry.componentType); |
| 715 | const quint32 byteSize = alignment * entry.componentCount; |
| 716 | const quint32 offset = byteSize * idx; |
| 717 | const quint32 newOffset = getAlignedOffset(offset: dataOffset, align: alignment); |
| 718 | if (newOffset != dataOffset) { |
| 719 | QByteArray filler(newOffset - dataOffset, '\0'); |
| 720 | mesh.m_vertexBuffer.data.append(a: filler); |
| 721 | } |
| 722 | |
| 723 | mesh.m_vertexBuffer.data.append(s: entry.data.constData() + offset, len: byteSize); |
| 724 | dataOffset = newOffset + byteSize; |
| 725 | } |
| 726 | Q_ASSERT(dataOffset == mesh.m_vertexBuffer.stride); |
| 727 | } |
| 728 | |
| 729 | mesh.m_indexBuffer.componentType = indexComponentType; |
| 730 | mesh.m_indexBuffer.data = indexBufferData; |
| 731 | |
| 732 | for (const AssetMeshSubset &subset : subsets) { |
| 733 | Mesh::Subset meshSubset; |
| 734 | meshSubset.name = subset.name; |
| 735 | meshSubset.count = subset.count; |
| 736 | meshSubset.offset = subset.offset; |
| 737 | |
| 738 | // TODO: QTBUG-102026 |
| 739 | if (subset.boundsPositionEntryIndex != std::numeric_limits<quint32>::max()) { |
| 740 | const QSSGBounds3 bounds = MeshInternal::calculateSubsetBounds( |
| 741 | entry: mesh.m_vertexBuffer.entries[subset.boundsPositionEntryIndex], |
| 742 | vertexBufferData: mesh.m_vertexBuffer.data, |
| 743 | vertexBufferStride: mesh.m_vertexBuffer.stride, |
| 744 | indexBufferData: mesh.m_indexBuffer.data, |
| 745 | indexComponentType: mesh.m_indexBuffer.componentType, |
| 746 | subsetCount: subset.count, |
| 747 | subsetOffset: subset.offset); |
| 748 | meshSubset.bounds.min = bounds.minimum; |
| 749 | meshSubset.bounds.max = bounds.maximum; |
| 750 | } |
| 751 | |
| 752 | meshSubset.lightmapSizeHint = QSize(subset.lightmapWidth, subset.lightmapHeight); |
| 753 | meshSubset.lods = subset.lods; |
| 754 | |
| 755 | mesh.m_subsets.append(t: meshSubset); |
| 756 | } |
| 757 | |
| 758 | mesh.m_drawMode = DrawMode::Triangles; |
| 759 | mesh.m_winding = Winding::CounterClockwise; |
| 760 | |
| 761 | return mesh; |
| 762 | } |
| 763 | |
| 764 | Mesh Mesh::fromRuntimeData(const RuntimeMeshData &data, QString *error) |
| 765 | { |
| 766 | if (data.m_vertexBuffer.size() == 0) { |
| 767 | *error = QObject::tr(s: "Vertex buffer empty" ); |
| 768 | return Mesh(); |
| 769 | } |
| 770 | if (data.m_attributeCount == 0) { |
| 771 | *error = QObject::tr(s: "No attributes defined" ); |
| 772 | return Mesh(); |
| 773 | } |
| 774 | |
| 775 | Mesh mesh; |
| 776 | mesh.m_drawMode = data.m_primitiveType; |
| 777 | mesh.m_winding = Winding::CounterClockwise; |
| 778 | |
| 779 | for (int i = 0; i < data.m_attributeCount; ++i) { |
| 780 | const RuntimeMeshData::Attribute &att = data.m_attributes[i]; |
| 781 | if (att.semantic == RuntimeMeshData::Attribute::IndexSemantic) { |
| 782 | mesh.m_indexBuffer.componentType = att.componentType; |
| 783 | } else { |
| 784 | const char *name = nullptr; |
| 785 | switch (att.semantic) { |
| 786 | case RuntimeMeshData::Attribute::PositionSemantic: |
| 787 | name = MeshInternal::getPositionAttrName(); |
| 788 | break; |
| 789 | case RuntimeMeshData::Attribute::NormalSemantic: |
| 790 | name = MeshInternal::getNormalAttrName(); |
| 791 | break; |
| 792 | case RuntimeMeshData::Attribute::TexCoord0Semantic: |
| 793 | name = MeshInternal::getUV0AttrName(); |
| 794 | break; |
| 795 | case RuntimeMeshData::Attribute::TexCoord1Semantic: |
| 796 | name = MeshInternal::getUV1AttrName(); |
| 797 | break; |
| 798 | case RuntimeMeshData::Attribute::TangentSemantic: |
| 799 | name = MeshInternal::getTexTanAttrName(); |
| 800 | break; |
| 801 | case RuntimeMeshData::Attribute::BinormalSemantic: |
| 802 | name = MeshInternal::getTexBinormalAttrName(); |
| 803 | break; |
| 804 | case RuntimeMeshData::Attribute::JointSemantic: |
| 805 | name = MeshInternal::getJointAttrName(); |
| 806 | break; |
| 807 | case RuntimeMeshData::Attribute::WeightSemantic: |
| 808 | name = MeshInternal::getWeightAttrName(); |
| 809 | break; |
| 810 | case RuntimeMeshData::Attribute::ColorSemantic: |
| 811 | name = MeshInternal::getColorAttrName(); |
| 812 | break; |
| 813 | default: |
| 814 | *error = QObject::tr(s: "Warning: Invalid attribute semantic: %1" ) |
| 815 | .arg(a: att.semantic); |
| 816 | return Mesh(); |
| 817 | } |
| 818 | |
| 819 | VertexBufferEntry entry; |
| 820 | entry.componentType = att.componentType; |
| 821 | entry.componentCount = att.componentCount(); |
| 822 | entry.offset = att.offset; |
| 823 | entry.name = name; |
| 824 | mesh.m_vertexBuffer.entries.append(t: entry); |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | mesh.m_vertexBuffer.data = data.m_vertexBuffer; |
| 829 | // Only interleaved vertex attribute packing is supported, both internally |
| 830 | // and in the QQuick3DGeometry API, hence the per-vertex buffer stride. |
| 831 | mesh.m_vertexBuffer.stride = data.m_stride; |
| 832 | mesh.m_subsets = data.m_subsets; |
| 833 | mesh.m_indexBuffer.data = data.m_indexBuffer; |
| 834 | |
| 835 | if (!data.m_targetBuffer.isEmpty()) { |
| 836 | const quint32 vertexCount = data.m_vertexBuffer.size() / data.m_stride; |
| 837 | const quint32 targetEntryTexWidth = qCeil(v: qSqrt(v: vertexCount)); |
| 838 | const quint32 targetCompStride = targetEntryTexWidth * targetEntryTexWidth * 4 * sizeof(float); |
| 839 | mesh.m_targetBuffer.data.resize(size: targetCompStride * data.m_targetAttributeCount); |
| 840 | |
| 841 | QVarLengthArray<RuntimeMeshData::TargetAttribute> sortedAttribs( |
| 842 | data.m_targetAttributes, |
| 843 | data.m_targetAttributes + data.m_targetAttributeCount); |
| 844 | std::sort(first: sortedAttribs.begin(), last: sortedAttribs.end(), |
| 845 | comp: [] (RuntimeMeshData::TargetAttribute a, RuntimeMeshData::TargetAttribute b) { |
| 846 | return (a.targetId == b.targetId) ? a.attr.semantic < b.attr.semantic : |
| 847 | a.targetId < b.targetId; }); |
| 848 | for (int i = 0; i < data.m_targetAttributeCount; ++i) { |
| 849 | const RuntimeMeshData::Attribute &att = sortedAttribs[i].attr; |
| 850 | const int stride = (sortedAttribs[i].stride < 1) ? att.componentCount() * sizeof(float) |
| 851 | : sortedAttribs[i].stride; |
| 852 | const char *name = nullptr; |
| 853 | switch (att.semantic) { |
| 854 | case RuntimeMeshData::Attribute::PositionSemantic: |
| 855 | name = MeshInternal::getPositionAttrName(); |
| 856 | break; |
| 857 | case RuntimeMeshData::Attribute::NormalSemantic: |
| 858 | name = MeshInternal::getNormalAttrName(); |
| 859 | break; |
| 860 | case RuntimeMeshData::Attribute::TexCoord0Semantic: |
| 861 | name = MeshInternal::getUV0AttrName(); |
| 862 | break; |
| 863 | case RuntimeMeshData::Attribute::TexCoord1Semantic: |
| 864 | name = MeshInternal::getUV1AttrName(); |
| 865 | break; |
| 866 | case RuntimeMeshData::Attribute::TangentSemantic: |
| 867 | name = MeshInternal::getTexTanAttrName(); |
| 868 | break; |
| 869 | case RuntimeMeshData::Attribute::BinormalSemantic: |
| 870 | name = MeshInternal::getTexBinormalAttrName(); |
| 871 | break; |
| 872 | case RuntimeMeshData::Attribute::IndexSemantic: |
| 873 | case RuntimeMeshData::Attribute::JointSemantic: |
| 874 | case RuntimeMeshData::Attribute::WeightSemantic: |
| 875 | *error = QObject::tr(s: "Warning: Invalid target attribute semantic: %1" ) |
| 876 | .arg(a: att.semantic); |
| 877 | continue; |
| 878 | case RuntimeMeshData::Attribute::ColorSemantic: |
| 879 | name = MeshInternal::getColorAttrName(); |
| 880 | break; |
| 881 | default: |
| 882 | *error = QObject::tr(s: "Warning: Invalid target attribute semantic: %1" ) |
| 883 | .arg(a: att.semantic); |
| 884 | return Mesh(); |
| 885 | } |
| 886 | char *dstBuf = mesh.m_targetBuffer.data.data() + i * targetCompStride; |
| 887 | const char *srcBuf = data.m_targetBuffer.constData() + att.offset; |
| 888 | Q_ASSERT(att.componentType == Mesh::ComponentType::Float32); |
| 889 | if (stride == 4 * sizeof(float)) { |
| 890 | memcpy(dest: dstBuf, src: srcBuf, n: vertexCount * stride); |
| 891 | } else { |
| 892 | for (quint32 j = 0; j < vertexCount; ++j) { |
| 893 | memcpy(dest: dstBuf + j * 4 * sizeof(float), |
| 894 | src: srcBuf + j * stride, |
| 895 | n: att.componentCount() * sizeof(float)); |
| 896 | } |
| 897 | } |
| 898 | |
| 899 | if (sortedAttribs[i].targetId == 0) { |
| 900 | VertexBufferEntry entry; |
| 901 | entry.componentType = att.componentType; |
| 902 | entry.componentCount = att.componentCount(); |
| 903 | entry.offset = i * targetCompStride; |
| 904 | entry.name = name; |
| 905 | mesh.m_targetBuffer.entries.append(t: entry); |
| 906 | } |
| 907 | } |
| 908 | mesh.m_targetBuffer.numTargets = data.m_targetAttributeCount / mesh.m_targetBuffer.entries.size(); |
| 909 | } |
| 910 | return mesh; |
| 911 | } |
| 912 | |
| 913 | quint32 Mesh::save(QIODevice *device, quint32 id) const |
| 914 | { |
| 915 | qint64 newMeshStartPosFromEnd = 0; |
| 916 | quint32 newId = 1; |
| 917 | MeshInternal::MultiMeshInfo ; |
| 918 | |
| 919 | if (device->size() > 0) { |
| 920 | header = MeshInternal::readFileHeader(device); |
| 921 | if (!header.isValid()) { |
| 922 | qWarning(msg: "There is existing data, but mesh file header is invalid; cannot save" ); |
| 923 | return 0; |
| 924 | } |
| 925 | for (auto it = header.meshEntries.cbegin(), end = header.meshEntries.cend(); it != end; ++it) { |
| 926 | if (id) { |
| 927 | Q_ASSERT(id != it.key()); |
| 928 | newId = id; |
| 929 | } else { |
| 930 | newId = qMax(a: newId, b: it.key() + 1); |
| 931 | } |
| 932 | } |
| 933 | newMeshStartPosFromEnd = MULTI_HEADER_STRUCT_SIZE + header.meshEntries.size() * MULTI_ENTRY_STRUCT_SIZE; |
| 934 | } else { |
| 935 | header = MeshInternal::MultiMeshInfo::withDefaults(); |
| 936 | } |
| 937 | |
| 938 | // the new mesh data overwrites the entry list and file header |
| 939 | device->seek(pos: device->size() - newMeshStartPosFromEnd); |
| 940 | const qint64 meshOffset = device->pos(); |
| 941 | header.meshEntries.insert(key: newId, value: meshOffset); |
| 942 | |
| 943 | MeshInternal::MeshDataHeader = MeshInternal::MeshDataHeader::withDefaults(); |
| 944 | // skip the space for the mesh header for now |
| 945 | device->seek(pos: device->pos() + MESH_HEADER_STRUCT_SIZE); |
| 946 | meshHeader.sizeInBytes = MeshInternal::writeMeshData(device, mesh: *this); |
| 947 | // now the mesh header is ready to be written out |
| 948 | device->seek(pos: meshOffset); |
| 949 | MeshInternal::writeMeshHeader(device, header: meshHeader); |
| 950 | device->seek(pos: meshOffset + MESH_HEADER_STRUCT_SIZE + meshHeader.sizeInBytes); |
| 951 | // write out new entry list and file header |
| 952 | MeshInternal::writeFileHeader(device, meshFileInfo: header); |
| 953 | |
| 954 | return newId; |
| 955 | } |
| 956 | |
| 957 | QSSGBounds3 MeshInternal::calculateSubsetBounds(const Mesh::VertexBufferEntry &entry, |
| 958 | const QByteArray &vertexBufferData, |
| 959 | quint32 vertexBufferStride, |
| 960 | const QByteArray &indexBufferData, |
| 961 | Mesh::ComponentType indexComponentType, |
| 962 | quint32 subsetCount, |
| 963 | quint32 subsetOffset) |
| 964 | { |
| 965 | QSSGBounds3 result; |
| 966 | if (entry.componentType != Mesh::ComponentType::Float32 || entry.componentCount != 3) { |
| 967 | Q_ASSERT(false); |
| 968 | return result; |
| 969 | } |
| 970 | |
| 971 | const int indexComponentByteSize = byteSizeForComponentType(componentType: indexComponentType); |
| 972 | if (indexComponentByteSize != 2 && indexComponentByteSize != 4) { |
| 973 | Q_ASSERT(false); |
| 974 | return result; |
| 975 | } |
| 976 | |
| 977 | const quint32 indexBufferCount = indexBufferData.size() / indexComponentByteSize; |
| 978 | const quint32 vertexBufferByteSize = vertexBufferData.size(); |
| 979 | const char *vertexSrcPtr = vertexBufferData.constData(); |
| 980 | const char *indexSrcPtr = indexBufferData.constData(); |
| 981 | |
| 982 | for (quint32 idx = 0, numItems = subsetCount; idx < numItems; ++idx) { |
| 983 | if (idx + subsetOffset >= indexBufferCount) |
| 984 | continue; |
| 985 | |
| 986 | quint32 vertexIdx = 0; |
| 987 | switch (indexComponentByteSize) { |
| 988 | case 2: |
| 989 | vertexIdx = reinterpret_cast<const quint16 *>(indexSrcPtr)[idx + subsetOffset]; |
| 990 | break; |
| 991 | case 4: |
| 992 | vertexIdx = reinterpret_cast<const quint32 *>(indexSrcPtr)[idx + subsetOffset]; |
| 993 | break; |
| 994 | default: |
| 995 | Q_UNREACHABLE(); |
| 996 | break; |
| 997 | } |
| 998 | |
| 999 | const quint32 finalOffset = entry.offset + (vertexIdx * vertexBufferStride); |
| 1000 | float v[3]; |
| 1001 | if (finalOffset + sizeof(v) <= vertexBufferByteSize) { |
| 1002 | memcpy(dest: v, src: vertexSrcPtr + finalOffset, n: sizeof(v)); |
| 1003 | result.include(v: QVector3D(v[0], v[1], v[2])); |
| 1004 | } else { |
| 1005 | Q_ASSERT(false); |
| 1006 | } |
| 1007 | } |
| 1008 | |
| 1009 | return result; |
| 1010 | } |
| 1011 | |
| 1012 | bool Mesh::hasLightmapUVChannel() const |
| 1013 | { |
| 1014 | const char *lightmapAttrName = MeshInternal::getLightmapUVAttrName(); |
| 1015 | for (const VertexBufferEntry &vbe : std::as_const(t: m_vertexBuffer.entries)) { |
| 1016 | if (vbe.name == lightmapAttrName) |
| 1017 | return true; |
| 1018 | } |
| 1019 | return false; |
| 1020 | } |
| 1021 | |
| 1022 | bool Mesh::createLightmapUVChannel(uint lightmapBaseResolution) |
| 1023 | { |
| 1024 | const char *posAttrName = MeshInternal::getPositionAttrName(); |
| 1025 | const char *normalAttrName = MeshInternal::getNormalAttrName(); |
| 1026 | const char *uvAttrName = MeshInternal::getUV0AttrName(); |
| 1027 | const char *lightmapAttrName = MeshInternal::getLightmapUVAttrName(); |
| 1028 | |
| 1029 | // this function should do nothing if there is already an attr_lightmapuv |
| 1030 | if (hasLightmapUVChannel()) |
| 1031 | return true; |
| 1032 | |
| 1033 | const char *srcVertexData = m_vertexBuffer.data.constData(); |
| 1034 | const quint32 srcVertexStride = m_vertexBuffer.stride; |
| 1035 | if (!srcVertexStride) { |
| 1036 | qWarning(msg: "Lightmap UV unwrapping encountered a Mesh with 0 vertex stride, this cannot happen" ); |
| 1037 | return false; |
| 1038 | } |
| 1039 | if (m_indexBuffer.data.isEmpty()) { |
| 1040 | qWarning(msg: "Lightmap UV unwrapping encountered a Mesh without index data, this cannot happen" ); |
| 1041 | return false; |
| 1042 | } |
| 1043 | |
| 1044 | quint32 positionOffset = UINT32_MAX; |
| 1045 | quint32 normalOffset = UINT32_MAX; |
| 1046 | quint32 uvOffset = UINT32_MAX; |
| 1047 | |
| 1048 | for (const VertexBufferEntry &vbe : std::as_const(t&: m_vertexBuffer.entries)) { |
| 1049 | if (vbe.name == posAttrName) { |
| 1050 | if (vbe.componentCount != 3) { |
| 1051 | qWarning(msg: "Lightmap UV unwrapping encountered a Mesh non-float3 position data, this cannot happen" ); |
| 1052 | return false; |
| 1053 | } |
| 1054 | positionOffset = vbe.offset; |
| 1055 | } else if (vbe.name == normalAttrName) { |
| 1056 | if (vbe.componentCount != 3) { |
| 1057 | qWarning(msg: "Lightmap UV unwrapping encountered a Mesh non-float3 normal data, this cannot happen" ); |
| 1058 | return false; |
| 1059 | } |
| 1060 | normalOffset = vbe.offset; |
| 1061 | } else if (vbe.name == uvAttrName) { |
| 1062 | if (vbe.componentCount != 2) { |
| 1063 | qWarning(msg: "Lightmap UV unwrapping encountered a Mesh non-float2 UV0 data, this cannot happen" ); |
| 1064 | return false; |
| 1065 | } |
| 1066 | uvOffset = vbe.offset; |
| 1067 | } |
| 1068 | } |
| 1069 | |
| 1070 | if (positionOffset == UINT32_MAX) { |
| 1071 | qWarning(msg: "Lightmap UV unwrapping encountered a Mesh without vertex positions, this cannot happen" ); |
| 1072 | return false; |
| 1073 | } |
| 1074 | // normal and uv0 are optional |
| 1075 | |
| 1076 | const qsizetype vertexCount = m_vertexBuffer.data.size() / srcVertexStride; |
| 1077 | QByteArray positionData(vertexCount * 3 * sizeof(float), Qt::Uninitialized); |
| 1078 | float *posPtr = reinterpret_cast<float *>(positionData.data()); |
| 1079 | for (qsizetype i = 0; i < vertexCount; ++i) { |
| 1080 | const char *vertexBasePtr = srcVertexData + i * srcVertexStride; |
| 1081 | const float *srcPos = reinterpret_cast<const float *>(vertexBasePtr + positionOffset); |
| 1082 | *posPtr++ = *srcPos++; |
| 1083 | *posPtr++ = *srcPos++; |
| 1084 | *posPtr++ = *srcPos++; |
| 1085 | } |
| 1086 | |
| 1087 | QByteArray normalData; |
| 1088 | if (normalOffset != UINT32_MAX) { |
| 1089 | normalData.resize(size: vertexCount * 3 * sizeof(float)); |
| 1090 | float *normPtr = reinterpret_cast<float *>(normalData.data()); |
| 1091 | for (qsizetype i = 0; i < vertexCount; ++i) { |
| 1092 | const char *vertexBasePtr = srcVertexData + i * srcVertexStride; |
| 1093 | const float *srcNormal = reinterpret_cast<const float *>(vertexBasePtr + normalOffset); |
| 1094 | *normPtr++ = *srcNormal++; |
| 1095 | *normPtr++ = *srcNormal++; |
| 1096 | *normPtr++ = *srcNormal++; |
| 1097 | } |
| 1098 | } |
| 1099 | |
| 1100 | QByteArray uvData; |
| 1101 | if (uvOffset != UINT32_MAX) { |
| 1102 | uvData.resize(size: vertexCount * 2 * sizeof(float)); |
| 1103 | float *uvPtr = reinterpret_cast<float *>(uvData.data()); |
| 1104 | for (qsizetype i = 0; i < vertexCount; ++i) { |
| 1105 | const char *vertexBasePtr = srcVertexData + i * srcVertexStride; |
| 1106 | const float *srcUv = reinterpret_cast<const float *>(vertexBasePtr + uvOffset); |
| 1107 | *uvPtr++ = *srcUv++; |
| 1108 | *uvPtr++ = *srcUv++; |
| 1109 | } |
| 1110 | } |
| 1111 | |
| 1112 | QSSGLightmapUVGenerator uvGen; |
| 1113 | QSSGLightmapUVGeneratorResult r = uvGen.run(positions: positionData, normals: normalData, uv0: uvData, |
| 1114 | index: m_indexBuffer.data, indexComponentType: m_indexBuffer.componentType, |
| 1115 | baseResolution: lightmapBaseResolution); |
| 1116 | if (!r.isValid()) |
| 1117 | return false; |
| 1118 | |
| 1119 | // the result can have more (but never less) vertices than the input |
| 1120 | const int newVertexCount = r.vertexMap.size(); |
| 1121 | |
| 1122 | // r.indexData contains the new index data that has the same number of elements as before |
| 1123 | const quint32 *newIndex = reinterpret_cast<const quint32 *>(r.indexData.constData()); |
| 1124 | if (m_indexBuffer.componentType == QSSGMesh::Mesh::ComponentType::UnsignedInt32) { |
| 1125 | if (r.indexData.size() != m_indexBuffer.data.size()) { |
| 1126 | qWarning(msg: "Index buffer size mismatch after lightmap UV unwrapping" ); |
| 1127 | return false; |
| 1128 | } |
| 1129 | quint32 *indexDst = reinterpret_cast<quint32 *>(m_indexBuffer.data.data()); |
| 1130 | memcpy(dest: indexDst, src: newIndex, n: m_indexBuffer.data.size()); |
| 1131 | } else { |
| 1132 | if (r.indexData.size() != m_indexBuffer.data.size() * 2) { |
| 1133 | qWarning(msg: "Index buffer size mismatch after lightmap UV unwrapping" ); |
| 1134 | return false; |
| 1135 | } |
| 1136 | quint16 *indexDst = reinterpret_cast<quint16 *>(m_indexBuffer.data.data()); |
| 1137 | for (size_t i = 0, count = m_indexBuffer.data.size() / sizeof(quint16); i != count; ++i) |
| 1138 | *indexDst++ = *newIndex++; |
| 1139 | } |
| 1140 | |
| 1141 | QVarLengthArray<QByteArray, 8> newData; |
| 1142 | newData.reserve(sz: m_vertexBuffer.entries.size()); |
| 1143 | |
| 1144 | for (const VertexBufferEntry &vbe : std::as_const(t&: m_vertexBuffer.entries)) { |
| 1145 | const qsizetype byteSize = vbe.componentCount * MeshInternal::byteSizeForComponentType(componentType: vbe.componentType); |
| 1146 | QByteArray data(byteSize * vertexCount, Qt::Uninitialized); |
| 1147 | char *dst = data.data(); |
| 1148 | for (qsizetype i = 0; i < vertexCount; ++i) { |
| 1149 | memcpy(dest: dst, src: srcVertexData + i * srcVertexStride + vbe.offset, n: byteSize); |
| 1150 | dst += byteSize; |
| 1151 | } |
| 1152 | switch (vbe.componentType) { |
| 1153 | case ComponentType::UnsignedInt8: |
| 1154 | newData.append(t: QSSGLightmapUVGenerator::remap<quint8>(source: data, vertexMap: r.vertexMap, componentCount: vbe.componentCount)); |
| 1155 | break; |
| 1156 | case ComponentType::Int8: |
| 1157 | newData.append(t: QSSGLightmapUVGenerator::remap<qint8>(source: data, vertexMap: r.vertexMap, componentCount: vbe.componentCount)); |
| 1158 | break; |
| 1159 | case ComponentType::UnsignedInt16: |
| 1160 | newData.append(t: QSSGLightmapUVGenerator::remap<quint16>(source: data, vertexMap: r.vertexMap, componentCount: vbe.componentCount)); |
| 1161 | break; |
| 1162 | case ComponentType::Int16: |
| 1163 | newData.append(t: QSSGLightmapUVGenerator::remap<qint16>(source: data, vertexMap: r.vertexMap, componentCount: vbe.componentCount)); |
| 1164 | break; |
| 1165 | case ComponentType::UnsignedInt32: |
| 1166 | newData.append(t: QSSGLightmapUVGenerator::remap<quint32>(source: data, vertexMap: r.vertexMap, componentCount: vbe.componentCount)); |
| 1167 | break; |
| 1168 | case ComponentType::Int32: |
| 1169 | newData.append(t: QSSGLightmapUVGenerator::remap<qint32>(source: data, vertexMap: r.vertexMap, componentCount: vbe.componentCount)); |
| 1170 | break; |
| 1171 | case ComponentType::UnsignedInt64: |
| 1172 | newData.append(t: QSSGLightmapUVGenerator::remap<quint64>(source: data, vertexMap: r.vertexMap, componentCount: vbe.componentCount)); |
| 1173 | break; |
| 1174 | case ComponentType::Int64: |
| 1175 | newData.append(t: QSSGLightmapUVGenerator::remap<qint64>(source: data, vertexMap: r.vertexMap, componentCount: vbe.componentCount)); |
| 1176 | break; |
| 1177 | case ComponentType::Float16: |
| 1178 | newData.append(t: QSSGLightmapUVGenerator::remap<qfloat16>(source: data, vertexMap: r.vertexMap, componentCount: vbe.componentCount)); |
| 1179 | break; |
| 1180 | case ComponentType::Float32: |
| 1181 | newData.append(t: QSSGLightmapUVGenerator::remap<float>(source: data, vertexMap: r.vertexMap, componentCount: vbe.componentCount)); |
| 1182 | break; |
| 1183 | case ComponentType::Float64: |
| 1184 | newData.append(t: QSSGLightmapUVGenerator::remap<double>(source: data, vertexMap: r.vertexMap, componentCount: vbe.componentCount)); |
| 1185 | break; |
| 1186 | } |
| 1187 | } |
| 1188 | |
| 1189 | VertexBufferEntry lightmapUVEntry; |
| 1190 | lightmapUVEntry.componentType = ComponentType::Float32; |
| 1191 | lightmapUVEntry.componentCount = 2; |
| 1192 | lightmapUVEntry.offset = 0; |
| 1193 | lightmapUVEntry.name = lightmapAttrName; |
| 1194 | |
| 1195 | QByteArray newVertexBuffer; |
| 1196 | newVertexBuffer.reserve(asize: newVertexCount * (srcVertexStride + 8)); |
| 1197 | |
| 1198 | quint32 bufferAlignment = 0; |
| 1199 | for (int vertexIdx = 0; vertexIdx < newVertexCount; ++vertexIdx) { |
| 1200 | quint32 dataOffset = 0; |
| 1201 | for (int vbIdx = 0, end = m_vertexBuffer.entries.size(); vbIdx != end; ++vbIdx) { |
| 1202 | VertexBufferEntry &vbe(m_vertexBuffer.entries[vbIdx]); |
| 1203 | |
| 1204 | const quint32 alignment = MeshInternal::byteSizeForComponentType(componentType: vbe.componentType); |
| 1205 | bufferAlignment = qMax(a: bufferAlignment, b: alignment); |
| 1206 | const quint32 byteSize = alignment * vbe.componentCount; |
| 1207 | const quint32 newOffset = getAlignedOffset(offset: dataOffset, align: alignment); |
| 1208 | |
| 1209 | if (newOffset != dataOffset) { |
| 1210 | QByteArray filler(newOffset - dataOffset, '\0'); |
| 1211 | newVertexBuffer.append(a: filler); |
| 1212 | } |
| 1213 | |
| 1214 | if (vertexIdx == 0) |
| 1215 | vbe.offset = newVertexBuffer.size(); |
| 1216 | |
| 1217 | newVertexBuffer.append(s: newData[vbIdx].constData() + byteSize * vertexIdx, len: byteSize); |
| 1218 | dataOffset = newOffset + byteSize; |
| 1219 | } |
| 1220 | |
| 1221 | const quint32 byteSize = 2 * sizeof(float); |
| 1222 | const quint32 newOffset = getAlignedOffset(offset: dataOffset, align: byteSize); |
| 1223 | if (newOffset != dataOffset) { |
| 1224 | QByteArray filler(newOffset - dataOffset, '\0'); |
| 1225 | newVertexBuffer.append(a: filler); |
| 1226 | } |
| 1227 | |
| 1228 | if (vertexIdx == 0) |
| 1229 | lightmapUVEntry.offset = newVertexBuffer.size(); |
| 1230 | |
| 1231 | newVertexBuffer.append(s: r.lightmapUVChannel.constData() + byteSize * vertexIdx, len: byteSize); |
| 1232 | dataOffset = newOffset + byteSize; |
| 1233 | |
| 1234 | if (vertexIdx == 0) |
| 1235 | m_vertexBuffer.stride = getAlignedOffset(offset: dataOffset, align: bufferAlignment); |
| 1236 | } |
| 1237 | |
| 1238 | m_vertexBuffer.entries.append(t: lightmapUVEntry); |
| 1239 | |
| 1240 | m_vertexBuffer.data = newVertexBuffer; |
| 1241 | |
| 1242 | const QSize lightmapSizeHint(r.lightmapWidth, r.lightmapHeight); |
| 1243 | for (Subset &subset : m_subsets) |
| 1244 | subset.lightmapSizeHint = lightmapSizeHint; |
| 1245 | |
| 1246 | return true; |
| 1247 | } |
| 1248 | |
| 1249 | size_t simplifyMesh(unsigned int *destination, const unsigned int *indices, size_t indexCount, const float *vertexPositions, size_t vertexCount, size_t vertexPositionsStride, size_t targetIndexCount, float targetError, unsigned int options, float *resultError) |
| 1250 | { |
| 1251 | return meshopt_simplify(destination, indices, index_count: indexCount, vertex_positions: vertexPositions, vertex_count: vertexCount, vertex_positions_stride: vertexPositionsStride, target_index_count: targetIndexCount, target_error: targetError, options, result_error: resultError); |
| 1252 | } |
| 1253 | |
| 1254 | float simplifyScale(const float *vertexPositions, size_t vertexCount, size_t vertexPositionsStride) |
| 1255 | { |
| 1256 | return meshopt_simplifyScale(vertex_positions: vertexPositions, vertex_count: vertexCount, vertex_positions_stride: vertexPositionsStride); |
| 1257 | } |
| 1258 | |
| 1259 | void optimizeVertexCache(unsigned int *destination, const unsigned int *indices, size_t indexCount, size_t vertexCount) |
| 1260 | { |
| 1261 | meshopt_optimizeVertexCache(destination, indices, index_count: indexCount, vertex_count: vertexCount); |
| 1262 | } |
| 1263 | |
| 1264 | } // namespace QSSGMesh |
| 1265 | |
| 1266 | QT_END_NAMESPACE |
| 1267 | |